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Abstract

Distributed sensor networks that are tracking the movement of multiple objects

often sense redundant objects due to measurement noises and network errors. This

can cause confusion as the actual number of objects and their actual locations are

difficult to identify. track to track association algorithms can be used to overcome

this problem. Many algorithms have been proposed in literature and they can

be largely classified into two main categories i.e statistical algorithms and clus-

tering based algorithms. One important clustering based algorithm is fuzzy track

to track association algorithm which is the focus of this thesis. A variant of the

fuzzy track to track association algorithm is tested on a set of data generated

through a model that represents a multi sensor multi target scenario environment.

In actual sensors the error in tracks is usually induced in azimuth, elevation and

range values hence an error model based on azimuth, elevation and range system

is proposed in this thesis. The resolutions for the association algorithm are also

based on this realistic error model. In addition, time synchronization of tracks

is also essential before performing track association. A linear predictor that syn-

chronizes the tracks prior to their association is employed in this thesis and the

performance of algorithm is analyzed under time synchronization of tracks. Also a

recent technique based on batch processing is studied which improves the perfor-

mance of fuzzy track to track association algorithm in certain cases. The technique

in particular is beneficial for the real-time implementation of the algorithm. The

results of our proposed method are compared under various multi sensor multi tar-

xii
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get scenarios and it is observed that the proposed method is more than 90 percent

accurately associating the given tracks in scenarios where the noise in tracks is low.

Keywords: T2TA,Data Association, Data Fusion, Fuzzy Clustering



Chapter 1

Introduction

1.1 Background

Airborne radars are used for reconnaissance and interception of aerial targets.

These radars usually work at very high frequencies and have various modes of

operation like Track while Scan (TWS), Situational Awareness mode (SAM) and

Single Target Tracking (STT). Due to various design limitations of the airborne

radars they have limitation on their ranges. To enhance the performance of aerial

missions there is a need to enhance the ranges of these airborne radars.

To overcome the design limitations of the airborne radars multiple radars are con-

nected to each other with a wireless network.This network between a group of air

crafts is known as Tactical data link (TDL). The advantage of this approach is

that it reduces the information uncertainty and enhances the range of airborne

sensor network. But sharing information over a network brings a problem with it,

a single target could get represented multiple times. To get rid of this problem a

track to track association (T2TA) algorithm followed by a Track fusion (TF) algo-

rithm must be implemented. Consider a scenario shown in Figure 1.1 as following:

There are two aircrafts in the scenario moving in the same direction. They are

tracking a single target moving away from them. These aircrafts are working in

an overlapping coverage region. The radars on aircrafts have inaccuracies due to

which they report somewhat different position of the target. When these aircrafts

1
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share their data over the data link, due to sensor inaccuracies, different sampling

rates of sensors and communication delays, it is possible that the target gets de-

picted twice on the individual displays of the aircrafts.

Figure 1.1: Two sensors tracking one target and sharing data over TDL

A robust track to track association algorithm is needed to eliminate this prob-

lem of duplicity of targets while sharing data over Tactical data link. The complex-

ity of the problem increases even further when the number of targets and sensor

increases as shown in Figure 1.2:
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Figure 1.2: Multiple sensors tracking multiple targets and sharing data over TDL

In the aforementioned scenario there are four sensors sharing their data over a

TDL. The sensors are operating in an overlapping coverage region, giving rise to

the ambiguity that which of the sensors are tracking same targets and which of

them are tracking different targets. The following sensor-target combinations are

possible of the scenario in figure 1.2.

(A) There is only one target and all the sensors are tracking the same target.

(B) There are four different targets and all the sensors are locking different targets.

(C) There are two different targets, each of sensors is tracking one of the two

targets. Another combination is to have one sensor tracking a target and the

other three sensors tracking the second target.

(D) There are three different targets, a pair of sensor is tracking the same target

while the other two sensors are tracking two different targets.

Multi target tracking systems(MTT) are used to detect, track and counter aerial

threats. These systems are composed of various heterogeneous sensors sharing

information with each other over a network. Each sensor that is part of this

network generates sensor level tracks using its own processed data. System level

tracks are generated after fusing the sensor level tracks and the tracks that are
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received over the network.

Since sensors can operate in an overlapping coverage region, it is important to

identify which tracks belong to same targets and which of them belong to different

targets. This process of correlating the tracks prior to fusion is known as track to

track association.

Distributed sensor networks (DSN) is an architecture in which multiple sensors are

connected to each other via a network. Each sensor in this network is called a node

which is generating some piece of information. The network in this architecture

could be working on a wired or wireless communication protocol. The nodes part

of this architecture could be few large sensors or a huge number of small micro

sensors. The nodes could be mobile or stationary in nature. The topology of this

architecture could be a stationary or a dynamic one.

1.2 Problem Statement

In modern surveillance systems there are various heterogeneous sensors that are

physically distributed in space to gather information on targets in overlapping cov-

erage regions. To generate tracks and finding the actual position of targets there

is a need to fuse these tracks. This fusion process can be carried out in two ways,

the first being the centralized fusion, in which all the tracks are sent to a central

node (fusion center) for fusion which fuses the tracks together and then sends the

remaining tracks after fusion to individual nodes. The other being the distributed

fusion in which each individual node on the network shares track data with every

other node on the network, and every local node performs its own fusion [18][23].

In practical distributed sensor environments with multi target tracking, there is a

need to implement a robust track to track association algorithm before performing

track fusion. There are various constraints on application of track to track associ-

ation in real environments as tracks are asynchronous in nature with varying accu-

racy’s of tracks, hence there is a need for implementation of a suitable track to track

association algorithm that performs optimally in real environments.Therefore, an

algorithm based on fuzzy clustering means algorithm is studied to address the

problem of track to track association in this thesis.
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1.3 Research Objectives

This thesis concentrates on studying methodologies for track to track association

and suggests a new framework for track to track association that is suitable for

real time multi-target environments. The main objectives of this thesis are as

following:

• Creating a simulation environment for testing the two configurations i.e all

at one and pair-wise, of fuzzy track to track association algorithm

• Test the performance of fuzzy track association algorithm under various

sensor-target scenarios.

• Test the performance of the algorithm after applying time-synchronization

to track data.

• Test the performance of fuzzy algorithm after applying batch processing.

• Test the performance of fuzzy track association after applying altitude and

heading filters.

1.4 Motivation

The main aim of undertaking this research topic was its wide ranging applications,

some of which include:

• Computer vision.

• Self driving cars.

• Sea, air and surface surveillance.

• Missile defense.
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1.5 Thesis Layout

Chapter 2 of this thesis gives a brief overview of the research already conducted

in this field, firstly in this chapter we give an overview about working of the radar

technology, after that we discuss how targets are tracked using radars. We also

discuss the various frame of references that are used in airborne target tracking,

track to track association and fuzzy track to track association algorithms described

in literature are also discussed in this chapter. Chapter 3 of this thesis describes the

methodology we adopted for data generation and testing our algorithm. Chapter

4 presents the results and related discussion on our proposed algorithm for various

sensor-target scenarios. Chapter 5 briefly discusses the conclusion of this research

work and considers some future directions of this research.



Chapter 2

Literature Review

2.1 Radar Basics

Radar stands for radio detection and ranging, it is a device that enhances one’s

perception for observation of the environment. Radars are capable of gathering the

information about one’s environment in adverse conditions like fog, haze, darkness

etc. Radars also have an advantage to see objects at very long ranges which makes

them a very useful tool for a plethora of applications.

At the very basic level a radar is made up of two antennas for transmission and re-

ception (Bi-static Radar) of electromagnetic waves,an oscillator that can generate

electromagnetic radiation and a receiver that can perceive fluctuations in received

energy are also part of the radar. Radar works by emitting electromagnetic radi-

ations in the environment, these radiations strike the objects in the environment

and return to the radar receiving antenna. On the basis of these reflections from

various objects radar finds out its desired objects called as targets.

The reflections from targets give information about their range, azimuth, elevation

and velocity; only 3D radars are capable of gathering elevation information.The

range of target from the radar is computed by using the information on the time

elapsed between emission and reception of the radar signal after hitting the target.

The information on the angles of the target are computed using the angle of ar-

rival of the radar signal after striking the target. Radars are capable of detecting

both stationary and mobile targets, to distinguish between stationary and mobile

7
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targets radars use the information on shift in the relative frequency of radar and

target, hence in this way targets can be discerned from unwanted objects [27]. A

basic radar block diagram is given in Figure 2.1:

Figure 2.1: Radar Block diagram

There are many types of radars, if distinguished on the basis of physical rela-

tionship between transmitting and receiving antenna, radars can be of two types;

mono-static and bi-static radars. Mono-static radars use same antenna for trans-

mission and reception of radar signals while in bi-static radars there are different

antennas for transmission and reception of radar signals separated by a sizeable

distance. Radar classification is also done on the basis of the kinds of signals

they transmit. A continuous wave (CW) radar is a radar whose transmitter con-

tinuously emit radar signal, on the other hand a pulsed radar is a radar which

transmits a relatively short burst of radar signal called as pulses and after every

pulse the receiver is turned on to receive the echo. Radars can also be classified

on the basis of the type of missions they perform, search and tracking radars are

the classifications of radars if differentiated on the basis of mission they perform.

Search radars are the radars which continuously scan a designated volume without
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staying at a specific location, their primary responsibility is to detect the range and

direction of the targets. Tracking radars are the radars which continuously follow

the targets and are responsible for giving information about the range, azimuth,

elevation and doppler of the targets [10].

2.2 Modes of a Radar

On the basis of their functionality, radars can be classified into various modes of

operation. Some of the radar modes are given as following:

2.2.1 Pulse Search

This is a traditional technique that uses pulses to accurately find range, angle and

speed of a target. This technique is prone to errors as it can easily be deceived by

jamming and it also has smaller range as compared to other modes.

2.2.2 Velocity Search

This mode of a radar uses a high pulse repetition frequency (PRF) doppler wave-

form to determine the azimuth and velocity of an adversary aircraft. This mode

performs better when the targets are moving towards the radar in nose direction,

its performance degrades in case of tail-on targets.

2.2.3 Track while Scan (TWS)

In this mode the radar maintains tracks on several targets while still searching for

other targets. The accuracy of this mode is less as compared to single target track

mode as radar is distributing its computational resources among various different

targets.

2.2.4 Single Target Track (STT)

This is the most accurate mode of a radar in which the radar continuously directs

its energy on a single target. In this mode the radar antenna is continuously
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following the target where ever it moves.

2.2.5 Dual Target Track (DTT)

In this mode the radar tracks two different targets, the radar antenna automatically

predicts the coordinates of the second target and moves in that direction

2.2.6 Situational Awareness Mode (SAM)

In this mode the radar doesn’t track any targets, it just keep operator updated

about the situation of the surrounding environment.

2.2.7 Raid Assessment

In this mode the radar only maintains a track of a single target but also routinely

checks whether other adversary aircrafts are present in its immediate surroundings.

2.3 Radar Tracking

Tracking is a process by which a radar measures essential data on target and uses

this data for determining the path of a target and estimating the future positions

of a target. Radar usually measures the data on range, azimuth angle, elevation

angle and doppler shift or a combination of these to track its targets. Generally

any radar can perform as a tracking radar provided its data is handled properly

but specifically a tracking radar is a radar that is able to perform angle tracking

tasks.

Tracking radars can be further classified into categories based on the method by

which they track targets. There are two major types of tracking radars, continuous

tracking radar and track while scan (TWS) radar. A Continuous tracking radar

provides uninterrupted data on specific target. Whereas track while scan radar

provides sampling data on one or more targets. These radars also differ from each

other on the basis of their equipment usage.

Airborne tracking radars use three major techniques for target tracking, they are

sequential lobing, conical scan and simultaneous lobing. In sequential lobing we use
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two different radar beams for alternate instants to track the target. Conical scan

technique uses a continuously rotating beam for tracking the target. While, the

simultaneous lobing technique uses simultaneous beams from two different radar

antennas placed at a certain offset to track the targets, this technique is the most

accurate of all aforementioned technique’s [27]. Simultaneous lobing technique is

used in modern mono-pulse radars, which is briefly described below.

2.3.1 Components of a Tracking Radar

Generally a tracking radar can be divided into two main components i.e hardware

and software components [12]. These components will be briefly described as

following:

2.3.1.1 Hardware Components

A tracking radar has eight major components which work in tandem to perform

the tracking function of a radar. These components are as following:

(A) Synchronizing System

(B) Transmitter System

(C) RF (monopulse duplexer) and antenna system.

(D) Receiving system.

(E) Ranging system.

(F) Antenna positioning system.

(G) Presentation system.

(H) IF and RF testing systems.

2.3.1.2 Software Components

(A) Angle tracking

2.4 Filtering for Target Tracking

Real time tracking is an essential feature of a tracking radar. Filtering is the

process in which radar data is processed with the help of adaptive processing
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techniques to track targets i.e to find their range, course, heading ,flight level,

speed etc. Filtering also helps in minimizing the measurement errors by utilizing

appropriate methods to accurately calculate the speed, position and acceleration of

a desired target. The filtered data from several filter banks in the radar processor

is the basis of the target tracking process. In tracking real time statuses of targets

are updated based on the filtered data obtained from filters in the radar processor

[25]. Apart from tracking process filtering also helps in observation and display

of the targets of interest. Many filters have been proposed in the literature to

accurately track objects based on the types of targets and the application area

in which the filters are to be deployed, some of the filters are discussed briefly as

following:

2.4.1 Alpha-Beta-Gamma Filter

An alpha beta gamma filter works on a prediction correction model. The filter is

initialized after a certain number of measurement data is available to the filter after

that using this available measurement data we predict the position and velocity at

next time interval and hence in this fashion a target of interest is tracked using an

alpha beta gamma filter. The equation of an alpha beta gamma filter are presented

as following:

Xp(k + 1) = Xs(k) + TVs(k) +
T 2

2
as(k) (2.1)

Vp(k + 1) = Vs(k) + Tas(k) (2.2)

Xs(k) = Xp(k) + α(X0(k)−Xp(k)) (2.3)

Vs(k) = Vp(k) +
β

T
(X0(k)−Xp(k)) (2.4)

as(k) = ap(k) +
γ

T 2
(X0(k)−Xp(k)) (2.5)
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where X, V and a are position, velocity and acceleration respectively. X is the

measurement. α, β and γ are the tuning parameters of the filter. These can be

disturbed to enhance the performance of the filter [26].

2.4.2 Kalman Filter (KF)

A kalman filter is a more robust and optimal filter as compared to alpha beta

gamma filter. It also works on a prediction correction model. The filter uses the

currently known information about the target dynamics and projects it forward

and tells what the next state of the target will be. The correction part of the filter

compares our predicted state with the measurement reported by the radar and

compensates for the error. A kalman filter can have many configuration depending

on the type of problem at hand but the simplest form of a kalman filter is called

a linear kalman filter and its equations are given as following [24]:

Firstly we predict the state vector using the provided state dynamic equations,

X̂k|k−1 = FX̂k−1 +Gk−1uk−1 (2.6)

Where X̂k|k−1 is the vector of the predicted state, X̂k−1 is the estimated vector of

the previous state, u is the input vector, and F and G are the matrices that define

the dynamics of the system.

Similarly the covariance associated with the state can also be predicted in a similar

fashion as:

P̂k|k−1 = Fk−1Pk−1F
T
k−1 +Qk−1 (2.7)

Where P̂k|k−1 is the prediction of the error covariance matrix, P̂k−1 is the previous

estimation of the error covariance matrix and Q is the process noise associated

with the process.

After acquiring the predicted values of the state estimate and covariance matrix

we can compute the kalman gain of the filter by using following equation:
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Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1 (2.8)

Where H matrix is the matrix defining output equation and R matrix is the mea-

surement noise covariance matrix.

After computation of the kalman gain of the filter we update the state using fol-

lowing equation:

X̂k = X̂k|k−1 +Kk(zk −HkX̂k|k−1) (2.9)

Where zk is measurement of output equation and K is the kalman gain.

Similarly the update of error covariance matrix is obtained by:

Pk = (I −KkHk)Pk|k−1 (2.10)

Where I is the identity matrix.

2.4.3 Extended Kalman Filter (EKF)

Linear kalman filter is usually used when the noise in the system of interest is

Gaussian. In systems where non-linearity is involved an extended version of the

kalman filter known as extended kalman filter is used. The non-linearity of sys-

tem in extended kalman filter is usually approximated using derivatives of first

or second order [29]. An extended kalman filter can be realized with the help of

following equations:

The model and observation equation of an extended kalman filter can be given as:

X̂k = f(X̂k−1) + wk−1 (2.11)

Zk = h(X̂k) + vk (2.12)
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Where X̂k is the state vector, wk is the process noise vector, Zk is the observation

vector, vk is the measurement noise vector, f(.) is the non-linear vector function

of the process and h(.) is the non-linear vector function of the measurement.

The initialization of the filter can be done with the following equation:

X̂a
0 = µ0 with error covariance P0 (2.13)

The prediction step of an extended kalman filter works in following fashion:

X̂p
k ≈ f(X̂a

k−1) (2.14)

P p
k = Jf (X̂

a
k−1)Pk−1J

T
f (X̂a

k−1) +Qk−1 (2.15)

Where X̂p
k is the predicted state vector, f(.) is the non linear vector function of

the process, P p
k is the error covariance matrix, Jf is the jacobian of the non linear

vector function of the process and Q is the co-varinace vector of the noise related

to the process.

The equations for the correction process of an extended kalman filter are given as

following:

X̂a
k ≈ X̂p

k +Kk(zk − h(X̂p
k)) (2.16)

Kk = P p
k J

T
h (X̂p

k)(Jh(X̂
p
k)P p

k J
T
h (X̂p

k) +Rk)
−1 (2.17)

Pk = (I −KkJk(X̂
p
k))P p

k (2.18)
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Where h(.) is the non linear vector function of the observation, Qk is the covariance

vector of the noise related to the process, Rk is the covariance matrix of the noise

related to the measurement, Kk is the filter gain, superscript p denote the predicted

quantities and I is the identity matrix.

2.4.4 Particle Filter

Particle filters can be used when the system is non linear and the noise related

to the system is non Gaussian. It works under similar conditions as EKF but

differs from it in its implementation as it doesn’t make linearity assumptions while

filtering the data. Kalman filters achieve filtering goals by using linear projections

but particle filter instead uses sequential monte-carlo method. Particle filters have

shown superiority over extended kalman filters in many real world applications

and hence are a very important filtering tool. An algorithmic version of a particle

filter is described as following.

The system model which is non linear in case of particle filtering is presented in a

following manner:

xk = f(xk−1, uk−1) + ωk (2.19)

yk = g(xk) + vk (2.20)

Where xk is the state vector, f(.) is the system equation and is non linear, g(.)

is equation for measurement and yk is the vector for measurement. ωk is the sys-

tem noise that contains all un-modeled dynamics involved, and any mismatches

between process and the system, vk is the measurement noise that models inac-

curacies involved during the measurement process, uk is the control input to the

system [14].

The state estimation task of a particle filter involves estimation of the given equa-

tion:

Ep(x1:n|y1:n)[xn] =

∫
xn

xnp(x1:n|y1:n)dxn (2.21)
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There are two main hindrances to compute the aforementioned equation, (i) sam-

pling directly from p(x1:n|y1:n) is not possible and (ii) estimation of the above

equation is only feasible in an online recursive manner. Overcoming the prob-

lems mentioned before is only possible if we employ an importance function of the

form q(x1:n|y1:n). This allows the recursive estimation possible and to compute

importance weights in time.

Ep(x1:n|y1:n)[xn] =

∫
xn

xn
p(x1:n|y1:n)

q(x1:n|y1:n)
q(x1:n|y1:n)dxn (2.22)

WhereWn = p(x1:n|y1:n)
q(x1:n|y1:n)

is the recursive weight. The proposal distribution q(x1:n|y1:n)

can be rewritten as following:

q(x1:n|y1:n) = q(xn|x1:n−1, y1:n)q(x1:n−1|y1:n−1) (2.23)

Usually the states follow Markov processes q(xn|x1:n−1) = q(xn|xn−1) so the above

equation can be further simplified as:

q(x1:n|y1:n) = q(xn|xn−1, y1:n)q(x1:n−1|y1:n−1) (2.24)

The target distribution can be simplified in a following manner:

p(x1:n|y1:n) = p(xn|x1:n−1, y1:n)p(x1:n−1|y1:n) (2.25)

= p(xn|y1:n)p(x1:n−1|y1:n) (2.26)

=
p(yn|xn)p(xn|y1:n−1)

p(yn|y1:n−1)
p(x1:n−1|y1:n−1) (2.27)
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We can recursively update the importance weight using Equations (2.32) and (2.29)

as given below:

Wn =
p(x1:n|y1:n)

q(x1:n|y1:n)
(2.28)

∝ p(yn|xn)p(xn|xn−1)p(x1:n−1|y1:n−1)

q(xn|x1:n−1, y1:n)q(x1:n−1|y1:n−1)
(2.29)

∝ p(yn|xn)p(xn|xn−1))

q(xn|x1:n−1, y1:n))
Wn−1 (2.30)

∝ p(yn|xn)Wn−1 (2.31)

The particle filters have following two steps:

• Prediction: Every sample is propagated across the system model to get

samples from the prior at step k : xk(i)
∗ = f(xk−1(i)∗) + ωk−1 where ωk−1 ∼

p(ωk−1)

• Update: In the update step we essentially implements Bayes rule p(xk|xk−1, yk) =
p(yk|xk)p(xk|y1:k−1)

p(yk|y1:k−1)

Although the equations are in the form of density functions but in practical sce-

narios the filter is run based on discrete samples.

2.5 Tactical Data Link (TDL)

To increase the field of view of a standalone sensor or a group of sensors and to

increase the number of inferences that could be drawn from the information, as
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more inferences can be drawn from the information from multiple sensors, a con-

cept of tactical data link has evolved under the knowledge area of C4SIR systems.

Tactical data links provide a continuous stream of data, gathered from multiple

sensors over a wireless network, to command center and also to individual actors

involved in the mission. The main advantage of the tactical data link is that it

provides the data gathered from multiple sources in near real time, the data may

be composed of precise location of the object of interest, its imagery etc [28].

The main purpose of the tactical data link is to provide enhanced monitoring ca-

pability at the command center on the mission under progress. It also provides

the capability of sending mission related data to the participant nodes from the

command center. Standards have also been developed on sharing of different kinds

of data that could be shared using tactical data link as depicted in Figure 2.2.

Figure 2.2: A basic concept diagram showing TDL working
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2.6 Frames of Reference

In object tracking, reconnaissance and surveillance missions there are multiple dis-

parate sensors involved which are making a complete picture of a mission. These

sensors are working on different kinds of frame of reference measuring various

parameters required to track and search objects of interest. Some of the most

commonly used frames of reference in airborne systems are briefly mentioned as

following:

2.6.1 Earth Centered Inertial (ECI)

A frame of reference that is either stationary in nature or is mobile with a constant

velocity is said to be an inertial frame of reference. The measurements of an

inertial sensor are obtained in reference to an inertial frame that is resolved along

the sensitive axis of the instrument. For an inertial frame, the center of mass of

earth acts as an origin, the z-axis is along earth’s rotation passing through the

conventional terrestrial pole (CTP), a right handed system is completed by y-axis

and z-axis points towards vernal equinox in an equatorial plane.

2.6.2 Body Frame

In a body frame the origin of the frame lies at the center of the body, x-axis of

the frame points in the longitudinal direction, y-axis in the lateral direction while

the z-axis is perpendicular to the x-y plane pointing in a downward direction.

There is a rigid attachment between a body frame and the body of interest. The

geographical representation of this frame can be described with the help of three

angles known as Euler angles (φ, θ,Ψ). Where φ is the roll angle of the body, θ is

the pitch angle and Ψ is the yaw angle of the body. Generally this frame is used

to represent the outputs of inertial sensors. When the body of interest rotates

this frame rotates with the body and its origin moves in the direction of the body.

Axes of body frame are shown as following in Figure 2.3:
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Figure 2.3: Body Frame

2.6.3 Geographic Frame

In navigation the most commonly used frame is the geographic frame, origin of this

frame lies at the center of the earth. This frame considers an ellipsoidal nature of

the earth and then assigns the point of interest P in a 3-tuple manner as (λ, φ, h).

Where λ is the latitude, φ is the longitude and h is the elevation of the point of

interest. Latitude is an angle defined in the meridian plane, it runs from equatorial

plane to ellipsoidal normal at point P, longitude is an angle in the equatorial plane

running from prime meridian to the projection of point P on the equatorial plane.

A geographic frame is depicted in Figure 2.4:
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Figure 2.4: Geographic Frame

2.6.4 Earth Centered Earth Fixed Frame (ECEF)

This frame is like geographic frame on the basis of position of origin but ECEF

frame is represented in terms of Cartesian coordinates. The x-axes of this frame

points in the direction of the north pole and x-y plane is at the equator. Literature

shown its better to perform tracking related tasks in this frame. A basis diagram

of ECEF frame is shown in Figure 2.5 below:
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Figure 2.5: Earth Centered Earth Fixed Frame

2.6.5 Local Geodetic Frame

This frame of reference is also known as East-North-Up (ENU) reference system.

This frame of reference is determined by fitting a tangent plane to the earth’s

reference geoid at point of interest P. The x-axis of this frame points toward east,

y-axis towards the true north and z-axis points in the upward direction from the

surface of earth hence completing the rotation. A diagram of local geodetic frame

is shown in Figure 2.6 as following:
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Figure 2.6: Local Geodetic Frame

2.7 Data Association

Data association is one of the most important task in Multi target tracking (MTT)

problems. Data association could be simply defined as a hypothesis testing method

for comparison of two pieces of information, the results of this hypothesis testing

could be either the pieces of information are same or they are different. Data

association problem can be broadly categorized into three categories, (a) Measure-

ment to Measurement association (M2MA), (b) Measurement to Track association

(M2TA) and (c) track to track association (T2TA). The concept of data associa-

tion is simply explained with the help of Figure 2.7:
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Figure 2.7: Data Association

2.7.1 Measurement to Measurement Association

To initialize a track a radar or sensor obtains a sequence of measurements from

consecutive scans, these measurements are then compared to each other on the ba-

sis of various geometrical relationships between them. These relationships could

be on the basis of distance between measurements, velocity of measurements, an-

gle of measurements etc. If a comparison between these measurements satisfies a

predetermined criteria known as threshold then the measurements are associated

and a track is initiated on the basis of these associated measurements, this pro-

cess of track initiation is called as measurement to measurement association [11].

Some of the commonly used track association algorithms are briefly discussed as

following:
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2.7.1.1 Rule Based Track Initiation

This algorithms initiates a track based on following two conditions:

1- The measured or estimated speed shall be greater than a predefined minimum

speed and less than a predefined maximum spreed (Vmax < Vest < Vmin). If the

initiation of sensor is performed on the basis of N-scans than the criteria given

above is: Vmin < ||ri+1 − ri||/ts < Vmax for i=1,2,...,N-1, Where ri is the position

vector of the target at scan i and ts is the interval time of measurements.

2- Estimated or measured acceleration shall be less than a maximum predefined

acceleration (amax > aest), for i=1,2,...,N-1, ||(ri+1−ri)/ts−(ri−ri−1)/ts|| < amaxts

2.7.1.2 Logic Based Track Initiation

Consider rik is the position of measurement k at scan i. Following steps produce a

logic-based initiate track:

1- The process of initiation starts when the first two scans report their measure-

ments, a velocity is estimated based on these two scans i.e., V (e) = [r2
j − r1

k]/ts.

Where rk,j are positional data at different time stamps and ts is the time interval

between k and j time stamps. If V (e) satisfies a gating criterion based on speed as,

Vmin < ||V (e)|| < Vmax then a likely track is posted and the prediction for position

is made into the third scan as r(3) = r2
j + V (e)ts. 2- For the third scan we set up

an acceptance gate having radius r0 around each potential track that was formed

during the second scan. Any measurement falling in the gate ||r3
k − r(3)|| < r0

will augment the potential tracks of the second scan. We will then compute the

velocity V (2e) and acceleration a(2e), where a(2e) = [V (2e) − V (e)]/ts and using the

information we make position prediction as r(4) = r3
i + tsV

(2e) + 1/2t2sa
(2e). Where

a(2e) is the acceleration at third scan and r3
i is the measured position at third scan.

If there are multiple measurements satisfying the above criterion the track will be

split. If no measurement satisfy the criterion the track will get terminated. If the

measurements are not associated with any tracks at any scan together with the

unused measurements at the last scan are used to search for new potential tracks

by method given in first step.

3- The method explained in second step is repeated for a predefined N number of
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scans. Every potential track that remains at the end of the process is a new track.

2.7.1.3 Hough Transform Track Initiation Technique

The points in Cartesian coordinates are mapped using hough transform in θ − ρ
plane as:

ρ = x cos θ + y sin θ (2.32)

Where ρ is the distance from the line passing through (x,y) to the origin and θ is

the angle with the x-axis to the normal. The range of θ is 0 − 180 degrees and

ρ can take positive and negative values. A curve is generated in θ − ρ plane for

each point in x-y plane and if the points are collinear they will generate a family

of curves intersecting at point (ρ0, θ0). Hence a straight line track that is initiated

in x-y plane is like searching an intersection point in θ − ρ plane.

We divide the parameter θ into Nθ equal portions, the length of each portion being

∆θ = π/Nθ and each portion centered at:

θk = (k − 1/2)∆θ for k = 1, 2, ..., Nθ (2.33)

We calculate lengths for each observation (xi, yi) for all θn points. We make com-

putations for N measurements for N continuous scans and obtain a set of ρ values

given by : ρi(θk) = xi cos θk+yi sin θk for i=1,2,..,N and n=1,2,...,Nθ. We calculate

an average of ρ over all the scans for every θk and measure deviation of ρ from

this average and get the maximum deviation and then another search is performed

for finding a minimum deviation over all θn. The minimum value of the search is

compared with a predefined threshold to initiate a track.

2.7.2 Measurement to Track Association

Once the tracks are initialized, the next task is to maintain those tracks. Mea-

surement to track association algorithms are used for track maintenance process,

these algorithms keep a record of initialized tracks and when the new measure-

ments are reported they compare those initialized tracks with the new reported
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measurements and find out whether the new reported measurements belong to an

already existing track or not, and if it belongs to an already existing track then

to which existing track it belongs and extend that track. These association algo-

rithms define a gating region on the basis of a predicted state of each track and if a

certain measurement falls inside that gate they get associated [20]. Measurement

to track association can be mathematically described as following:

Consider at time step k+1 the set of tracks which were predicted at prior time

step can be given as:

X = {(x1, P1), ..., (xn, Pn)} (2.34)

Where x1, ..., xn are the states and P1, ..., Pn are the covariance matrices of errors

linked to the states. The track density related to the tracks can be modelled as a

Gaussian distribution as:

f(x|i) = Npi(x− xi) (2.35)

And the likelihood function for the sensor at time k+1 is as:

fi(z|x) = NR(z −Hxi) (2.36)

The set of measurements obtained at time set k+1 is as:

Z = {z1, ..., zm}, |Z| = m (2.37)

The measurement to track association can be then defined with a function as

following:

Θ : {1, ..., n} −→ {0, 1, ...,m} (2.38)

It has the following property: Θ(i) = Θ(i′) > 0 implies that i=i’. The above
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function can be explained using following points:

1- For every i=1,...,n, if any Θ(i) > 0 then the measurement ZΘ(i) associates

uniquely with track xi.

2- There is no track detection as no measurement associates with xi in case

Θ(i) = 0.

3- If any measurements don’t meet the criteria laid down in step 1 they are deemed

as false detection’s.

Many algorithms have been studied in literature, such as, Nearest Neighbor (NN),

Global Nearest Neighbor (GNN), Probability Data Association Filter (PDAF),

Joint Probability Data Association Filter (JPDAF), Multi Hypothesis Tracker

(MHT) etc. to solve the measurement to track association problem. Some of the

most commonly used algorithms are discussed briefly as following:

2.7.2.1 Probability Data Association Filter

Consider that we have established a single target track under the influence of noise

(clutter). Let PD be the probability of detection and PG be the probability that

accurate target falls inside the track gate. Let β be the density of extraneous

returns and is poisson in nature (β = βNT + βFT , where NT is new target and FT

is false target). Consider we have M number of observations within the region gate

of track j, so we can form M+1 hypotheses on the basis of this data for track j.

The first hypothesis is H0 and represents that none of observations is valid. The

probability of H0 cane be given as:

pj0 = βM(1− PDPG) (2.39)

Correspondingly Hk(k = 1, 2, ...,M) is the hypothesis that observation k is valid

and its probability is given by:

pjk = βM−1PDPG
e
−djk

2

PG(2π)
N
2

√
|Sj|

= βM−1PD
e
−djk

2

(2π)
N
2

√
|Sj|

(2.40)



CHAPTER 2. LITERATURE REVIEW 30

Where Sj is the innovation noise covariance and djk is the euclidean distance.

Ultimately the normalization equation to compute the probability for all M+1

hypotheses is given as:

pjk =
pjk∑M
l=0 pjl

(2.41)

A simplified form of pjk after normalization process, as factor βM−1 cancels during

normalization, can be given as:

pjk =


b

b+
∑M
l=1 αjl

, j = 0(No valid observation)

αjk

b+
∑M
l=1 αjl

, 1≤ k ≤ M
(2.42)

where

b = (1− PDPG)β(2π)
N
2

√
|Sj|

αjk = PDe
−d2jk

2

Once the probabilities are computed the next step is to merge the hypotheses.

First we compute the residuals associated with M observations that are to be used

in a kalman filter update as:

yj(l) =
N∑
k=1

pjkyjk(l) (2.43)

Where

yjk(l) = yk(l)−Hxi(k|k − 1)

yk(l) = observation k received at scan l

Then we use standard kalman filter update equation as:

x(k|k) = x(k|k − 1) +K(k)y(k) (2.44)

Where K(k) is the gain. The covariance at scan k is given as:
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P (k|k) = P 0(k|k) + dP (k) (2.45)

Where P 0(k|k) is the covariance of the kalman filter in case if there is only single

return and that makes the correct association, and dP (k) is an increment added

in case if there are uncertain associations.

Where

P 0(k|k) = pj0P (k|k − 1) + (1− pj0)P
′
(k|k)

dP (k) = K(k)[
∑N

l=1 pjlyjly
′

jl − yjy
′
j]K(k)

′

And P
′
(k|k) is the kalman filter’s standard covariance matrix, it is computed as

following:

P
′
(k|k) = [I −K(k)H]P (k|k − 1) (2.46)

The aforementioned equations define a probability data association filter for a

single target in clutter, for cases of multiple targets many variants of probability

data association filter have been studied in literature [5].

For track initiation and deletion process of a probability data association filter,

Interactive multiple model probability data association filter (IMM-PDAF) and

Integrated probabilistic data association (IPDA) filter have been realized.

2.7.2.2 Multi Hypothesis Tracker

Multiple hypothesis tracker is best suitable for scenarios when an observation-track

conflict situation arises. It is based on a deferred decision logic and creates alter-

native hypothesis in case of a conflict situation. Consider the scenario in Figure 2.8:
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Figure 2.8: Example of an association conflict situation

A flow chart diagram depicting the high level working of MHT is given in

Figure 2.9:
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Figure 2.9: Flow chart of MHT

2.7.3 Track-to-Track Association

The aforementioned algorithms are useful at a sensor level only. When multiple

sensors are sharing information with each other or sending their information to

a centralized location then there is a need to perform an association among this

information, the association algorithms which perform a correlation test between

such kind of information are known as track to track association algorithms. Track

to track association algorithms are used in scenarios when there are multiple sen-

sors involved and are reporting well established tracks. Track to track association

presumes that measurement to measurement and measurement to track associ-

ation has already been performed and sensors are reporting their time-stamped

data along with their covariance matrices.
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2.7.3.1 Approaches for Track-to-Track Association

The idea of track-to-track association was first propounded by Kaynuck and Singer

in their seminal paper on the topic [15]. This idea was further extended by many

researchers afterwards, many algorithms have been proposed on track-to-track

association [5]. The algorithms employ a cost function that tests the likelihood that

tracks reported from two distinct sensors characterize a same or different target.

An assignment algorithm could be employed on the costs obtained from each sensor

to get the maximum likelihood (ML) pairing of tracks for each sensor. There is

a similarity between some track-to-track association algorithms and measurement

to track association in a sense that both use cost and assignment algorithms to

find out the associations. Track to track association algorithms could be divided

into several categories depending on the number of sensors and tracks involved

i.e algorithms for two sensors and one track each, algorithms for two sensors and

multiple tracks each and algorithms for multiple sensors and multiple tracks each.

Algorithms For Two Sensors and Two Tracks

The most easiest and simplest way of checking whether two tracks reported from

two different sensors have originated from a same object or from different objects

is pairwise association test. Other algorithms such as clustering algorithms could

be used to associate the two tracks but they are not cost effective for such a simple

problem. The test is given as following:

∆̃ij(k)T [T ij(k)]−1∆̃ij(k) ≤ Da (2.47)

Where,

∆̃ij(k) = x̃i(k)− x̃j(k) (2.48)

T ij(k) = Ri(k)−Rj(k) (2.49)
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Da is a threshold computed based on prior data, x̃i(k) is a state vector originating

from sensor i and Ri(k) is a covariance matrix of that state from sensor i.

The track state vectors and their related covariance matrices should be in a com-

mon frame of reference. The state vectors could be composed of 2D positions,

3D positions , 2D positions and velocities so on and so forth. The complexity of

the test will grow by adding more parameters to the vectors. State vectors and

covariance matrices are usually coming from the radar tracker and to apply this

test successfully they should be time aligned which is generally not possible so

predictions are made about the state vectors to apply this test.

Another parameter given in aforementioned Equation 2.52 is Da which is a thresh-

old used to test the hypothesis that whether the tracks are similar or different.

It is usually calculated based on the prior data available on the scenarios under

consideration.

Algorithms For Two Sensors and Multiple Tracks

Usually sensors are tracking more than one targets so a simple pairwise associa-

tion test can not be applied in this case. Many algorithms have been proposed

in literature for scenarios in which there are two sensors having multiple targets,

some of them are discussed as below:

2D Assignment Problem For Two Sensors

If there are two sensors having more than two tracks each then the 2D assignment

algorithm first computes a 2D matrix of costs using Equation 2.52. In this 2D

matrix there is a cost computed for every track pair, each cost is then verified

with a threshold and all the unlikely track correlations are disregarded. After that

the track to track association is a solution of a 2D assignment problem [17]. An

example of a 2D matrix is given in Figure 2.10. The constrains to an assignment

problem are as following:

(a) The overall cost of summation should be minimum.

(b) There should be one assignment in each row and column at most.
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Figure 2.10: 2D matrix for two sensors with 5 tracks each

The 2D assignment algorithms have a complexity of O(n!) but it can be reduced

to a complexity of O(n3) by the use of algorithms such as Munkres algorithm, Auc-

tion algorithm and Hungarian method. The Figure 2.11 depicted below show the

complexity reduction procedure using Hungarian method:

Figure 2.11: Complexity reduction of 2D assignment problem using Hungarian
method
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Track-to-Track Association based on Weighted State Correlation Sim-

ilarity

The above mentioned assignment method technique is a single scan technique

and requires covariance matrices for associating the tracks. In some cases these

covariance matrices are difficult to obtain, the association performance could also

be improved by applying batch processing. A track-to-track association algorithm

based on weighted state correlation similarity could prove to a better alternative

to algorithm mentioned above in cases where accuracy is preferred over time [31].

This method derives a hybrid distance matrix from the correlation coefficients of

the covariance matrix which is computed using the sequential states of individual

tracks and distance between those target states. The position components of state

vector of track l of sensor k are given as:

Xk
l (n) = [x̂, ŷ, ẑ]T (2.50)

The mean of track l of sensor k is given as:

µkl =
1

N + 1

n0+N∑
n=n0

Xk
l (n) (2.51)

Where, N is the window size. The covariance matrix can then be computed as

following:

Σk
l =

1

N + 1

n0+N∑
n=n0

[Xk
l (n)− µkl ][Xk

l (n)− µkl ]T (2.52)

We will then obtain the ρ coefficients from the covariance matrix given above,

then we will obtain a vector V k
l which will have the implicit track direction as

correlation coefficients have the strength of relative movements between the two

random variables.

V k
l = [ρl,kxy , ρ

l,k
xz , ρ

l,k
yz ]T (2.53)
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Now, the distance between the means and correlations of lth track of sensor-1 and

mth track of sensor-2 are given as following:

∆µ12
lm = (µ1

l − µ2
m)T (µ1

l − µ2
m) (2.54)

∆V 12
lm = (V 1

l − V 2
m)T (V 1

l − V 2
m) + 1 (2.55)

When the two targets are same the cost of means and correlations are smaller as

compared to when they are different. The cost of associating track l of sensor-1

with track m of sensor-2 is given as:

J12(l,m) = ∆µ12
lm∆V 12

lm (2.56)

The proposed algorithm is given as following:
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Algorithm 1 Proposed methodology

Require: X1
l , X

2
m, L,∈ l = 1, 2, ...,M,m = 1, 2, ..., N

Ensure: AM×N
1: Lk = (k − 1)L+ 1...kL, k = 1, 2, 3, ...
2: for k=1,2,...,T

L
do

3: for l=1,2,...,M do
4: for m=1,2,...,N do
5: Calculate : µ1

l ,Σ
1
l , µ

2
m,Σ

2
m

6: ∆µ12
lm = f(µ1

l , µ
2
m)

7: ∆V 12
lm = g(Σ1

l ,Σ
2
m)

8: J12(l,m) = ∆µ12
lm∆V 12

lm

9: end for
10: end for
11: Apply Hungarian algorithm: J12(l,m)→ Ak(l,m)
12: end for
13: if (l→ m) >∈ then
14: A[l,m] = 1
15: else
16: A[l,m] = 0
17: end if
18: return A[l,m]

Where, f(.) and g(.) functions represent the Equations presented in (2.56),

(2.57) and (2.58) respectively.

Track-to-Track Association based on Sequence Processing of States

Another algorithm for two sensors and multiple tracks is track-to-track association

based on sequence processing of states. This algorithms take a batch of estimated

states within a predefined time interval, the argument behind this algorithm is

that association results obtained on the basis of a batch processed data will be

more accurate in contrast to single scan data [30].

The prerequisite for performing association through this algorithm is that the

mean vector of the states and covariance matrices related to the states are readily

available at every time instant. Let, Xml
t be a state vector with a mean umlt and

covariance matrix Pml
t , where t denote the time instance, l denotes a track and m

is the sensor from which the data is being obtained. Now, we obtain a new random
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vector by averaging the state vectors across multiple time instants as following:

Zml
nt1:ntn =

1

ntn − nt1 + 1

ntn∑
t=nt1

Xml
t (2.57)

Where, Xt is a state vector, nt1 and ntn are the initial and the final time indices

of each time interval respectively.

Now we calculate the expected value of the averaged random vector which is de-

scribed above as following:

µml = E[Zml
nt1:ntn ] =

1

ntn − nt1 + 1

ntn∑
t=nt1

µmlt (2.58)

Now, the approximate covariance of the averaged random vector described above,

under the assumptions that states are uncorrelated, is given as following:

Σml =
1

(W ′)2

ntn∑
t=nt1

Pml
t (2.59)

Where, (W ′ = ntn − nt1 + 1) is the window length. Now, usually the states are

correlated so we compensate the covariance matrix as following:

Σ̂ml = α
√

Σml
√

Σml
T

(2.60)

Where α is the scaling factor and the roots of the covariance matrices can be

obtained by the use of Cholesky factorization. The matrix of costs for associating

tracks can be found out easily if µml and Σml are available for all m and l. The

costs for a two sensor case can be found as following:

Π(a, b)12 = (µ1a − µ2b)T (Σ2b)−1(µ1a − µ2b) (2.61)

Where, Π(a, b)12 represents the cost of association between track a of sensor1 and

track b of sensor2. µ1a, µ2b represent the time averaged means of track a and b
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obtained from sensor 1 and 2 respectively, and Σ2b is the estimated covariance

matrix of track b of sensor2. We then apply the Munkre’s algorithm after finding

the cost association matrix [21]. Now, the final associations are made on the basis

of following expression:

A(t)0:T = mode[A(t)0, A(t)1, ..., A(t)T ] (2.62)

The above expression suggests that A(t)k is the association result of track t of

sensor1 in time interval k, whereas A(t)0:T the track number of sensor2 that track

t of sensor1 is most associated in time interval T. This is then selected as the final

correspondence of sensor 1.

Algorithms for Multiple Sensors having Multiple Tracks (N-D As-

signment Problem)

When there are multiple sensors with each having multiple tracks with them,

then a methodology similar to 2D assignment problem can be employed to per-

form track-to-track association. However, this now becomes an N-D assignment

problem having every possible combination of track pairs. This N-D assignment

problem is not polynomially bounded and hence is a NP hard problem. So, to

solve the N-D assignment problem there are some methods available in literature

with their own pros and cons. Some of these approaches are discussed as following:

• Sequential Minimum Normalized Distance Nearest Neighbour (SMNDNN)

• Extension of Pairwise Cost Methods.

• Clustering Based Algorithms.

Sequential Minimum Normalized Distance Nearest Neighbour

For a distributed tracking system coordinates of the local tracks must be synchro-

nized to a common reference time [4]. Once this time synchronization of tracks is

achieved then we perform track-to-track association and fusion tasks. The sequen-

tial minimum normalized distance nearest neighbour approach uses a distributed
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tracker setup and is based on a MDM/OR logic to cater the multi-radar track

correlation to fuse the track pairs with minimum normalized distance based on

minimum mean squared error (MMSE) methodology. This algorithm is advanta-

geous in a sense that it works sequentially both in time and space. In this technique

the fused tracks are generated at each scan of sensor without prior knowledge from

the last or past scans, the fused tracks could also be generated by making sensor

pairs in space. Essentially, the sequential structure of the algorithm makes it into

a one-to-one assignment architecture algorithm [8].

The algorithm works in following manner:

• To initialize this algorithm there must be at least two sensors.

• Apply 2D track association algorithm for the two sensors.

• Fuse the likely track states and their related covariance matrices with the

help of following relationship:

X̃ab = Ra(Ra +Rb)
−1X̃a +Rb(Ra +Rb)

−1X̃b (2.63)

Rab = Ra(Ra +Rb)
−1Rb (2.64)

Where, X and R are respective state and covariance matrices.

• Once the fused tracks from a pair of sensors are obtained,initialize a syn-

thetic sensor and assign these fused tracks to it. Follow the same technique

for all the remaining sensors till there is no sensor left for association [33].

The complete methodology is explained via following Figure 2.12:
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Figure 2.12: Sequential Minimum Normalized Distance Nearest Neighbour

Extension of Pairwise Association Test Methods

In the previous section we considered a pairwise association test which is only

applicable when there are only two sensors present. However, by making some al-

terations pairwise association test can be modified to cater for a multi sensor multi

target environment. Extension of pairwise association test methods are realized to

extend the pairwise test to multi sensor multi target environment, these methods

compute costs which are then compared with a threshold or thresholds to test the

hypotheses [16]. Generally, the costs are smaller if the targets are same and they

are larger if they are different. Many algorithms can be classified as extension of

pairwise association test algorithms, some of them are mentioned as following:

Sequential Sum Cost Method (SSCM)

The mathematical form of this algorithm is presented as following:

C(S1, ..., SN) =
N−1∑
i=1

[(Si+1 − Si)T (Pi + Pi+1)−1(Si+1 − Si)] (2.65)

Where, C is the cost, S is the state vector and P is the covariance matrix.

This method is dependent on the order of the sensors.

Generalized Likelihood Ratio Test (GLRT)

The algorithm is mathematically represented as following:
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C(S1, ..., SN) =
N∑
i=1

[(Si − Sf,1:N)T (Pi)
−1(Si − Sf,1:N)] (2.66)

Where,

Sf,1:N = Pf,1:N

N∑
i=1

P−1
i Si (2.67)

Pf,1:N = (
N∑
i=1

P−1
i )−1 (2.68)

Where, subscript f represents the fused quantities, C is the cost, S is the state

vector and P is the covariance matrix. The performance of this algorithm

is quite good, but its drawback is that it has to compute fused states every

time before getting to any decision.

Sum of All Pairwise Costs (SAPC)

The mathematical representation of SAPC algorithm is given as following:

C(S1, ..., SN) =
N∑
i=1

N∑
j=i+1

[(Si − Sj)T (Pi + Pj)
−1(Si − Sj)] (2.69)

Where, C is the cost, S is the state vector and P is the covariance matrix.

As compared to SSPC and GLRT, SAPC algorithm is most suitable of all as

it has less computational complexity and is also independent of the ordering

of sensors.

Algorithms based on Clustering

Clustering is defined as sorting the data into groups in a manner that similar kinds

of data is placed in a same group, and there should be minimum inter-group sim-

ilarity. Track to track Association tasks limits the choice of clustering algorithms

that could be employed to accurately solve the problem. Popular algorithms such

as k-means clustering are infeasible for this application, as the data in this case is
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in the form of tracks with varying dimensionality, and k-means algorithm requires

computation of means of the data which is difficult in this application.

For track-to-track association problem in multi sensor multi target environment,

an alternative approach to means based algorithms are distance based cluster-

ing algorithms. Distance based algorithms define a distance function between the

tracks and based on the output of the distance function cluster the tracks into

different groups [13]. Some of distance based clustering algorithms are discussed

as following:

Density-Based Clustering

These are a large family of algorithms depending upon the gating of distance

parameters for clustering data. These algorithms juxtapose the distance be-

tween a a pair of tracks with a distance gate or threshold to determine that

if the tracks are close or not. A simple gated clustering and a density based

spectral clustering with applications to noise (DBSCAN) are categorized as

density based algorithms. A simple version of density based algorithms is

presented as following:

Algorithm 2 Clustering Based on Gating

1: for every track do
2: if a track is not part of any cluster then
3: Put the track in a cluster;
4: end if
5: for every track with unknown distance to initial track do
6: Compute distance;
7: if inter track distance is below a certain threshold then
8: if second track is part of cluster a cluster then
9: Merge the cluster of the two tracks;

10: else
11: Insert the second track into the cluster of the initial track
12: end if
13: end if
14: end for
15: end for
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Spectral Clustering

This is another class of clustering algorithms which is also based on distance

based clustering. This class of clustering algorithms is a part of larger class

known as dimensionality reduction methods. The main aim of these algo-

rithms is to reduce the dimensionality of the data but retaining the accuracy

of the information. Once these algorithms achieve their data compression

task, the problem is then solved with any simple clustering algorithm. A

simple spectral clustering algorithm is presented as following:

Algorithm 3 Spectral Clustering

1: Compute a distance matrix D based on the given tracks;
2: Compute adjacency matrix A using the distance matrix D;
3: Compute Laplacian matrix L (un-normalized) using adjacency matrix A;
4: Compute the e eigenvectors of L having the smallest magnitude;
5: Use respective elements of each eigenvector to create objects and group them

into k clusters using any simple clustering algorithm.

Algorithms based on Fuzzy Clustering

Fuzzy clustering is a subclass of large class of clustering algorithms known

as partition clustering algorithms. These algorithms allow a single piece of

data to be part of more than one cluster, in contrast to normal clustering in

which a single piece of data can be part of only one cluster [22]. If a certain

data is to be classified into a certain number of clusters, the normal cluster-

ing algorithms assign a probability of either 0 or 1 to individual data points

to be a part a of certain cluster. In contrast, the fuzzy clustering assigns

probability between 0 and 1 to a certain data point showing its linkage to

every possible cluster.

Approaches based on fuzzy clustering have been extensively studied for solv-

ing track-to-track association problems, some of these approaches are dis-

cussed as following:

Fuzzy Track-to-Track Association in distributed multi-sensor

environment
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This algorithm is based on a fuzzy clustering means (FCM) algorithm.

A fuzzy clustering means algorithm computes a membership matrix M

which presents the probability of any data point sn to be a part of a

fuzzy cluster l (with cluster center cl). The probability of association of

data points to a certain fuzzy cluster are called as degrees of member-

ship, they are computed by minimizing the sum of squared errors which

are weighted by their related ith power of the degree of membership [2].

The expressions for degree of membership and cluster centers are given

as following:

mln =
1

[
∑a

m=1( dln
dmn

)
2
i−1 ]

∀ l,n, (2.70)

cl =

∑b
n=1(mln)ixn∑b
n=1(mln)i

(2.71)

Where m is the degree of membership, c is the cluster centroid, i is the

fuzziness parameter and its value is between 1 and∞ but the algorithm

works optimally between 1 and 2, a is the number of clusters, b is the

total number of measurements and Xn is the state vector.

Now to calculate the degree of membership there is parameter d which

is the distance between different reports, it is computed as following:

dln =

||Rn −Rl|| if l 6= n

||∆l||2 if l = n
(2.72)

Where, R is the track report which can have various attributes of tar-

gets such as positional data, ∆ is the resolution of the sensor from which

the report is originating, l is the target and n is the sensor.

By using Equations 2.75 and 2.77 we get two matrices, the first matrix

is a distance matrix and the second matrix is a membership matrix,

the order of these matrices depend upon the number of reports that are

to be associated. Then, the association decision becomes a hypothesis

testing problem which is carried out as following:
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H =

The tracks are same mnl > mll

The tracks are different mnl < mll

Intrusionistic Fuzzy Clustering Based Multi-Sensor Track-to-

Track Association

To formulate a track-to-track association problem in a multi-sensor en-

vironment, consider the following scenario.

Suppose we have N sensors in an overlapping coverage region, they are

denoted by S1, S2, ..., SN , every one of them is sensing a number of tar-

gets T which is unknown at present. Usually the track association is

dealt by associating a complete track at once but this algorithm only

takes into account single frame of track at time t, which renders the

track association problem into a state association one. Assume that

sensor S1 estimates M1 target states, sensor S2 estimates M2 target

states and SN sensor estimates MN target states. These target states

can be represented as following:

x1, ..., xM1 , ..., xM1+M2 , ..., xM1+M2+M3 , ..., xM1+M2+M3,...,MN
(2.73)

Where, each target has A attributes of its own as:

xj = (xj1, ..., xji, ..., xjA) (2.74)

Where, xji is a scalar representing the ith attribute of track state xj,

1 ≤ i ≤ A

The main aim of this technique is to split the M1 +M2+, ...,MN target

states into various groups and make sure that same target represents

the states in one group.

The intrusionistic fuzzy sets (IFS) are a generalized form of normal

fuzzy sets, the main difference between them is the extension of mem-
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bership degrees, non membership degrees and the fuzzy set itself with

an uncertainty degree and describing that uncertainty degree as follow-

ing:

B = {< x, µB(x), vB(x)|xεX >} (2.75)

Where, X is called as a universe of discourse, µ is the membership degree

and v is the non-membership degree. These must follow the conditions

as described below:

µB(x)ε[0, 1], vB(x)ε[0, 1], µB(x) + vB(x)ε[0, 1] (2.76)

Now, we define the hesitation degree being mapped from x to B as:

ΠB(x) = 1− µB(x)− vB(x) (2.77)

The advantage of this technique over normal fuzzy sets is due to its

enhanced ability of dealing with uncertainty [19].

Now, the next step in this technique is to transform the target states

and their attributes to intrinsic fuzzy sets attributes. We can express

the target states using following matrix:

Xs =



x11 x12 ... x1A

...
...

...
...

xM11 xM12 ... xM1A

...
...

...
...

x(M1+...+MN )1 x(M1+...+MN )2 ... x(M1+...+MN )A


The significance of the above matrix is that each row of the matrix

represents one target and the first M1 rows are for sensor S1, in a

similar fashion all sensors and their relative targets are represented.

Another problem in converting this problem to IFS is, IFS cannot have
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negative elements but the states may be negative. So, to eliminate the

negative elements from our matrix we will map the negative elements

to their positive counterparts in a following manner:

x̂ji = xji − ximin (2.78)

where,

ximin = min(x1i, x2i, ..., x(M1+...+MN )i) (2.79)

This transforms the above state matrix as following:

X̂s =



x̂11 x̂12 ... ˆx1A

...
...

...
...

ˆxM11 ˆxM12 ... ˆxM1A

...
...

...
...

ˆx(M1+...+MN )1 ˆx(M1+...+MN )2 ... ˆx(M1+...+MN )A


We will now compute the IFS of each corresponding attribute in X̂s in

following manner:

∗ For every element x̂ji in every column, select two thresholds φ1 and

φ2; φ1 < φ2.

∗ If |x̂ji− x̂ki| ≤ φ1, k = 1, 2, ...,M1 + ...+MN , x̂ki can be considered

as a membership of x̂ji. Suppose xsupport =
∑
x̂ki, then the degree

of membership of x̂ji can be computed as:

µ(x̂ji) =
xsupport∑n1+n2
m=1 ˆxmi

(2.80)

∗ If |x̂ji − x̂ki| ≥ φ2, l = 1, 2, ...,M1 + ...+MN , then x̂li is considered

as a non-membership of x̂ji. Suppose xobject =
∑
x̂li and the non-

membership can then be computes as follwoing:
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v(x̂ji) =
xobject∑n1+n2
m=1 ˆxmi

(2.81)

Hence we have obtained an IFS matrix as following:

XILF =



[µ(x̂11), v(x̂11)] ... [µ( ˆx1A), v( ˆx1A)]
...

...
...

[µ( ˆxM11), v( ˆxM11)] ... [µ( ˆxM1A), v( ˆxM1A)]
...

...
...

[µ( ˆx(M1+...+MN )1), v( ˆx(M1+...+MN )1)] ... [µ( ˆx(M1+...+MN )A), v( ˆx(M1+...+MN )A)]



Where, x̂ji can be used to calculate the distances which in turn are used

to calculate the thresholds; dkji = |x̂ji − x̂ki|, φ1 = ˆd[(M1+..+MN )]/3 and

φ2 = ˆd[2(M1+..+MN ])/3.

We then calculate the association coefficients of the IFS as following:

C(T1, T2) =
∑m
i=1 wi(µT1(xi)µT2(xi)+vT1(xi)vT2(xi)+ΠT1(xi)ΠT2(xi))

max(
∑m
i=1 wi(µ

2
T1(xi)+v2T1(xi)+Π2

T1(xi)),
∑m
i=1 wi(µ

2
T2(xi)+v2T2(xi)+Π2

T2(xi)))

Where w = (w1, w2, ..., wm) is the weight vector for states xj(j =

1, 2, ...,m) with wj ≥ 0 and
∑m

j=1wj = 1.

Now, we formulate a matrix for the (M1 +M2 + ...+MN)2 association

coefficients. The resultant matrix has (M1 + M2 + ... + MN) rows and

(M1 +M2 + ...+MN) columns as following:
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C =


c11 c12 ... c1(M1,...,MN )

c21 c22 ... c2(M1,...,MN )

...
...

...
...

c(M1,...,MN )1 c(M1,...,MN )2 ... c(M1,...,MN )(M1,...,MN )


Where, cij denotes the coefficients for target i and j respectively.

Matrix C is not transitive in nature, firstly we will make this matrix

C transitive in nature and after that will perform association. Suppose

we have satisfied the transitivity for matrix C then the matrix can be

represented as following:

S =


S11 S12 ... S1N

S21 S22 ... S2N

...
...

...
...

SN1 SN2 ... SNN


Now, we can compute the association matrix from the transitive C ma-

trix as following:

Sij =


ĉ11 ĉ12 ... ˆc1Mj

ĉ21 ĉ22 ... ˆc2Mj

...
...

...
...

ˆcMi1 ˆcMi2 ... ˆcMiMj


Where, hat denotes the coefficients of the C matrix after applying tran-

sitivity.

The track association rules for two sensors can be stated as following:

∗ Find the largest element
ˆ
cφij in S12, 1 ≤ i ≤M1 and 1 ≤ j ≤M2;

∗ Associate the ith target from S1 and jth target from S2 and then

make all elements in ith row and jth column zero.
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∗ iterate the algorithm until all the elements in S12 are zero.

Fuzzy Double-Threshold Track Association Algorithm

Consider a scenario in which we have two nodes S1 and S2 operating

in a multi-sensor multi-target environment. The two nodes have their

local processing systems and have their own set of target tracks.

Consider T1 = (1, 2, ..., k, ...,m1) are the tracks from S1 and T2 =

(1, 2, ..., l, ...,m2) are the tracks from S2.

The membership functions for this technique can be computed as fol-

lowing:

µi = µ(µi) = e
(−τi(

µ2i
σ2
i

))
; i = 1, 2, ..., n (2.82)

Where, τi is the degree of adjustment, µ is the fuzzy element set for ith

parameter and σi is the degree of latitude for the ith parameter.

A basic flow diagram of the algorithm is presented in following Figure

2.13:
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Figure 2.13: Flow diagram of fuzzy double threshold algorithm

The aforementioned algorithm has following steps [6]:

∗ First of all we have to initialize the parameters. The parameters

are the initial moment 1, the threshold N0, the threshold A, the

threshold ε0, the threshold εmin where (ε0 > εmin) and the step

εstep.

∗ After initialization is done then we have to find out which track

pairs are a fixed track association pair. If any two tracks are fixed
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association pair then they don’t have to qualify the association test

anymore. Consider we have two tracks l and m, to find out whether

they are fixed association pair we will check the condition in case

l > N0 that if the total number of correct association pair during

a time period (l − N0 + 1 to l) > K, then track l and m are a

fixed association pair. In case l < N0, we have to compute the total

number of correct association pair for whole time K.

∗ Now we will calculate the comprehensive similarity using following

expression:

flm(l) =
m∑
b=1

ab(l)µb; lεT1;mεT2 (2.83)

Where ab is the the assignment weight at moment l.

∗ Now build an association matrix of the tracks from sensor l and

sensor m as below:

F (l) =


f11(l) f12(l) ... f1T2(l)

f21(l) f22(l) ... f2T2(l)
...

...
...

...

ST11(l) ST12(l) ... ST1T2(l)



∗ Now, if flm > ε0 track l and m are associated and assign zeros to

row l and column m, iterate this process until the max parameter

in F(l) becomes less than ε0.

∗ The next step in this algorithm is to select the correct gate, if the

max element in F(l) is greater than εmin then decrease the threshold

ε0 by order of εstep to achieve better track association. Repeat this

process until max in F(l) is not less than εmin.

∗ If track l from S1 correlates with more than one tracks from S2 then

initiate the multi valency processing for track l.
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∗ In this manner associate the tracks via track pair assignment.

Fuzzy Binary Track Correlation Algorithm

This algorithm firstly computes the membership function between a

pair of tracks as following:

µi(µi) = e
(−τi(

µ2i
σ2
i

))
(2.84)

After calculating the membership of each pair we apply a weighted

average method to compute the following fuzzy association matrix:

flm(l) =
m∑
b=1

ab(l)µb (2.85)

F (l) =


f11(l) f12(l) ... f1T2(l)

f21(l) f22(l) ... f2T2(l)
...

...
...

...

ST11(l) ST12(l) ... ST1T2(l)


By aforementioned procedure we can compute a fuzzy correlation ma-

trix between T1 tracks of sensor S1 and T2 tracks of sensor S2.

Now the next step is to associate the tracks, if flm > ε then track l is

regarded as being correlated with track m. After achieving a correlation

we delete the row and column in which association was achieved in F (l).

The process is repeated until all the elements remaining in F (l) are less

than ε, where ε is a threshold and is set a ε ≥ 0.5. In this manner the

association between the tracks from two sensors at time l is processed.

By using the double threshold method of the automatic radar detection

theory, we can select two positive integers Y and Z, ∀ l = 1, 2, ..., Z in

the association test, where mlm(l) = mlm(l− 1) + 1 and mlm(0) = 0 , if

tracks l and m are associated, otherwise Dlm(l) = Dlm(l − 1) + 1.

Where m is an association mass and D is a separation mass between the

two tracks at time l. The correlation between tracks is approximately
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confirmed when the following condition is achieved:

mlm(l − 1) ≥ L (2.86)

The association test between two tracks is terminated when only one

pair satisfy the above equation, otherwise if more than one pairs satisfy

the above equation multi valency processing is initiated [32]. Similarly

the dis-association is tested with the help of following expression:

Dlm(l − 1) ≥ Z − L (2.87)

The association test is terminated if the above expression is true.

The method for hypothesis testing for association is described as fol-

lowing:

glm(l) = −flm(l) = −
m∑
i=1

ai(l)µi (2.88)

We define a binary hypothesis testing as following:

τlm =

1, H0

0, H1

Where, H0 means that both the tracks are same and H1 means the

tracks are different. By doing this we have decomposed the association

problem into a fuzzy classic assignment problem as following:

min

T1∑
l=1

T2∑
m=1

τlmglm(l) (2.89)

subject to:

If T1 > T2,

T2∑
l=1

τlm ≤ 1,

T1∑
m=1

τlm ≤ 1 (2.90)
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If T1 < T2,

T2∑
l=1

τlm ≤ 1,

T1∑
m=1

τlm ≤ 1 (2.91)

And,

T1∑
l=1

T2∑
m=1

τlm = min(T1, T2) (2.92)

A complete flow chart of the algorithm is depicted as following 2.14:
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Figure 2.14: Flow diagram of fuzzy binary track correlation algorithm

Fuzzy Track-to-Track Association using Membership Function

and Clustering
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Consider a scenario in which each sensor is reporting NR reports to the

fusion center. The interpretation, that whether a pair of tracks has

originated from same target or a different target, can be computed us-

ing fuzzy membership function.

If we want to correlate two tracks l and m, coming from sensors S1 and

S2 then we have to select the fuzzy attributes at first. These attributes

can be the position of the tracks, the velocities of the tracks etc. The

membership function based on various attributes are computed as fol-

lowing: 

µ1(t) = |xT1l (t)− xT2m (t)|

µ2(t) = |yT1l (t)− yT2m (t)|

µ3(t) = |x̂T1l (t)− x̂T2m (t)|

µ4(t) = |ŷT1l (t)− ŷT2m (t)|

Where, x and y are positional estimates of the tracks and x-hat and

y-hat are velocity estimates of the tracks.

The degree of membership dlm between two tracks can then be com-

puted as following:

µlm(µt) = e(−τ(
µ2t
σ2

)) (2.93)

dlm(i) =
∑
i=1

aiµlm(µt) (2.94)

Where, µt(t = 1, 2, 3, 4) are the fuzzy attributes as explained above,

σ and τ are empirically compute parameters and can be computed by

performing a large number of simulations. a is the fuzzy weight of at-

tributes and depends upon the accuracy of various attributes.

The range of the fuzzy membership degrees dlm lies between 0 and 1

with 0 signifying no association between the tracks and 1 signifying

complete association between the tracks. The greater the value of d the

more strong correlation between the tracks.
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The next step in this technique is to perform clustering operation on

the NR track reports from various sensors. Consider we have a fuzzy

membership matrix for the NR tracks being reported as following:

F (l) =



d11 d12 ... d1NR

d21 d22 ... d2NR
...

...
...

...

dNR1 dNR2 ... dNRNR


The next step is to find the tracks which satisfy the clustering condition,

which is dlm > J where J is a threshold which depends on the type of

scenario under consideration and is empirical in nature. The dlm’s which

satisfy our condition are placed in the same cluster and they signify that

track l and n tracks are tracking the same target [9].



Chapter 3

Methodology

The main aim of this chapter is to present a system model that is used to test the

performance of the studied algorithm i.e fuzzy track-to-track association algorithm

under close to real multi-target tracking conditions. To achieve our goal, firstly

we define sensor and target trajectories under consideration that they are being

reported in Geodetic coordinate system (GCS). We have also defined a noise model

that ensures to make our scenarios as real as possible, for that we have consid-

ered standard deviations of sensors in Azimuth Elevation Range (AER) coordinate

system and transform these into a Gaussian noise in GCS system. After that we

convert our sensor and target trajectories from GCS system to Earth Centered

Earth Fixed (ECEF) coordinate system and apply a time synchronization predic-

tor on these sensor and target tracks to align these to a common time reference,

once the tracks are time aligned we then apply a fuzzy track to track association

algorithm. The chapter ends with a discussion on advantages of batch processing

and single scan data for testing of the algorithm. figure 3.1 pictorially explains

the system model employed for testing the performance of the track association

algorithm.

62
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Figure 3.1: System Description

3.1 Multi-Sensor Multi-Target Scenario Gener-

ation

To test the performance of our algorithm there is a need to create a multi-sensor

multi-target environment that imitates the real world scenarios. To model the

system correctly there is a need to create a simulation environment that is able

to generate P number of sensor-platforms that are tracking T number of unknown

targets. There are two possible ways through which our goal can be achieved,

these are mentioned as following:

• Scenario Generator

• Way Point Trajectory Method
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3.1.1 Scenario Generator

To model multi-target multi-sensor scenarios, a scenario generator was designed

and developed using Matlab app designer in Matlab version 2020a by Mr.Rafi-ul-

zaman (NUST-SEECS-MS-EE-16); a peer working on a project with the author of

this thesis. The scenario generator has the user interface as shown in the following

Figure 3.2.

Figure 3.2: Graphical User Interface of Scenario Generator

The scenario generator has following salient features:

• A maximum of 8 sensor-platforms can be added to a certain scenario.

• A maximum of 8 targets can be added to a certain scenario.

• Real-time scenario display on the window at the top-right portion of the

interface.

• Saving a certain scenario and using it in the future.

• The data generated on sensor and targets can be ported to a CSV file.

• Provision of unique ID’s for sensors and targets.
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Consider we have two sensor-platform that are tracking two targets in their en-

vironment. To model this scenario using scenario generator first of all we will

push the add sensor button twice to add two sensors and set their properties using

the options provided by the scenario generator; the properties include giving a

particular trajectory to a sensor, setting its speed, heading etc. Once the sensors

are added then we add targets in a similar manner as the sensors were added.

After adding sensors and targets we push the simulate button and the scenario

starts running; the display window on the top-right corner of the interface starts

displaying the scenario as shown in the Figure 3.3.

Figure 3.3: Generated Scenario on Two Sensors and Two Targets

In the figure above, the blue points represent the trajectory of the sensor-

platforms and the red points represent the trajectory of the targets. The green

cone shows the range of the sensors on the sensor-platforms. When a certain

target enters into a cone of a certain sensor its data starts to get reported; the

data includes the latitude, longitude, altitude, heading and speed of the target in

a sensor cone. The data of the sensor-platforms is reported all the times which

includes the similar kind of data as targets along with the specific IDs of the sensor

platforms. When a target is not in a sensor cone it reports empty data.
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3.1.2 Way Point Trajectory Method

The second method to generate the multi-sensor multi-target data for testing and

validating our algorithm is way point trajectory method using Matlab. To gener-

ate sensor and target tracks using this method there is Matlab navigation toolbox

which provides a command for trajectory generation. To generate a track using

this command the user needs to provide the way-points which are followed by tar-

get and sensors, a sampling rate at which the data is gathered, orientation of the

platform and the reference frame in which data is to be generated. For the purpose

of this thesis we are gathering our data in geodetic coordinate system. Following

Figure 3.4 shows Matlab commands for generating tracks using way points trajec-

tory method:

Figure 3.4: Generate Tracks using Way Points

3.2 Coordinates Conversion

To effectively perform track-to-track association, there is a need to have tracks in

same global coordinates. Usually the positions of airborne objects are defined in

geodetic frame which has coordinates as Latitude, Longitude and Altitude (λ, φ, h).
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This coordinate system is also called as East-North-UP (ENU) or North-East-

Down (NED). For the purpose of this thesis we are also generating our trajectories

in this coordinate system. But usually standard deviations and noise measures

which are the bedrock of association algorithms are usually not available in this

coordinate system, another problem directly feeding the data in this coordinate

system to association algorithm is that a small difference in this coordinate sys-

tem is a very large real distance and in networked environments where the data

is encoded into binary bits there is a chance of data loss. Hence for these reasons

firstly we transform the track data from this coordinate system to a Cartesian

Earth-Centered Earth-Fixed (ECEF) coordinate system. The advantages of this

system are, that it has very well defined distance measures which makes it easy to

apply track-to-track association, and it also works well in networked environments.

Following paragraph explains a conversion from ENU to ECEF system:

3.2.1 ENU To ECEF

Consider an aerial object whose position in ENU frame of reference is given as

[Pe;Pn;Pu]. To transform this position into an ECEF position [xecef ; yecef ; zecef ]

following equations are used:xecefyecef

zecef

 =

x0

y0

z0

 + C

PePn
Pu


Where, [x0; y0; z0] is the origin of the ECEF coordinates, C is the transformation

matrix and is given as following:

C =

− sin (λ0) − sin (φ0) cos (λ0) cos (φ0) cos (λ0)

cos (λ0) − sin (φ0) sin (λ0) sin (φ0) cos (λ0)

0 cos (φ0) sin (λ0)


Where, φ0 and λ0 are the longitude and latitude of the origin of the local tangent

plane. This conversion can be easily done by using a Matlab command lla2ecef(
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3.3 Measurement Inaccuracies

In 3D radars the position of a target of interest are measured in the form of range,

azimuth and elevation of that target. There are multiple source which impact

these measurement such as clutter, glint, propagation errors, jamming from the

foes etc., however,only following errors are considered in the literature [27, 7]:

• Random measurement error dependent on Signal to Noise Ratio (S/N)

• Small errors due to noise (as in certain receptors)

• Bias errors of the radars linked to their calibration.

3.3.1 Accuracy in Range Measurement

The range of a radar is computed in a following manner:

R = c∆t/2 (3.1)

Or as,

R = c/2B (3.2)

Where, c is the speed of light and B is the bandwidth of the radar channel. The

measurement accuracy in the range of a certain radar can be computed using

following equation:

σR =
√
σ2
RS/N

+ σ2
Rbias

+ σ2
Rrnd
≈ σRS/N (3.3)

The dominant range inaccuracy in range comes from the signal to noise ratio and

is given as following:

σRS/N =
∆R√

2S
N

(3.4)

The equation mentioned above is derived from the Cramer-Rao bound for the

time interval. If a radar has a bandwidth of 1 Megahertz then typically its range-
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resolution is 150m. For a signal to noise ratio of 15db, the resolution σRS/N is

27.5m, if the bias error is 9.5m and the resolution σRrnd is 0.02 times the range

resolution which comes out to be 3m. This makes the overall range measurement

inaccuracy to be 40m which is the result of higher signal to noise ratio. The internal

noise of the radar is usually 1.25 percent to 4 percent of the range resolution, this

measures to be 6m in our case.

3.3.2 Accuracy in Angular Measurement

The angular accuracy of a monopulse radar is given by following expression:

σA =
√
σ2
AS/N

+ σ2
Abias

+ σ2
Arnd

(3.5)

Where,

σAS/N =
θ

km

√
2S
N

(3.6)

Where, the beam width of the radar is θ, and km is the slope of the monopulse

difference with a typical value of 1.6. The angular noise produced by the internal

components of the radar typically ranges from 0.8 percent to 4 percent of the an-

gular resolution, the random angular errors are generally very small if the beam

width is kept at 1 degree and signal to noise ratio maintained at 12db. The error

σAS/N is usually 0.12 degrees or 2.098mrad. If we consider σAbias to be 0.5mrad and

σArnd to be 0.2mrad then the typical azimuth error becomes 2.7mrad. The table

below, Figure 3.5, presents the values for measurement errors for typical radar

scenarios:
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Figure 3.5: Typical Values of Radar Inaccuracies

3.3.3 A Simple Error Model for Range-Angle Accuracy

For keeping things simple, a range-angle inaccuracy model is assumed in this the-

sis. In this model we have assumed that range and angle errors are only dependent

on the range of the targets from the sensors. The table below, Figure 3.6, presents

the values for measurement errors for certain ranges [1]:
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Figure 3.6: Range Based Inaccuracies

3.4 Error Model for GCS and ECEF Tracks

In this thesis we have assumed that the sensor-platforms are working in a dis-

tributed manner, this means that every sensor-platform has its own processing

unit hence each platform will add its own systematic biases. The tracks generated

in this thesis are in geodetic coordinate system having latitude, longitude and

altitude as coordinates. These are transformed into ,Cartesian Earth-Centered

Earth-Fixed system having x,y,z coordinates, prior to applying track-to-track as-

sociation. The systematic biases added to the tracks deviate them from their

original positions hence their is a need to model them at both ends of the system

i.e track generation end and track reception end which is consequently fed into a

track-to-track association algorithm.

A technique is proposed in this thesis which computes the error in GCS coordi-

nates and ECEF coordinates if the radar standard deviation in AER coordinates

is known, the position of respective sensor in GCS coordinates is known and the

position of respective target in GCS coordinates is known.
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Figure 3.7: Relative Positions of Sensor and Target in Geodetic Coordinate System

In the figure above the sensor is located at geodetic coordinates (φs, λs) having

φs as latitude and λs as longitude of the sensor. This position can be translated

from geodetic coordinates to Cartesian coordinates with sensor position as the

origin in following manner:

xsys
zs

 =

 (N(φs) + hs) cosφs cosλs

(N(φs) + hs) cosφs sinλs

(N(φs)(1− e2) + hs) sinλs


Where the values of parameters are given as:

• Length of semi major axis = a = 6378.137km

• Length of semi minor axis = b = 6356.7523142km

• Flattening of the earth = f = 1
298.257223563
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• Square of first eccentricity = e2 = 2f − f 2

• Length of the normal at sensor’s latitude to the z-axis = N = a√
1−e2 sin2(φ)

•

xsys
zs

, is the Cartesian position of the sensor.

The target position in Cartesian coordinated can be computed in a similar manner

as following:

xTyT
zT

 =

 (N(φT ) + hT ) cosφT cosλT

(N(φT ) + hT ) cosφT sinλT

(N(φT )(1− e2) + hT ) sinλT


Once we have obtained the sensor and target positions in Cartesian coordinates

we then obtain the target position in local coordinates of the sensor by using a

rotation matrix which aligns ECEF to ENU coordinates of the sensor as following:

xTLyTL

zTL

 =

 − sinλs cosλs 0

− sinφs cosλs − sinφs sinλs cosφs

cosφs cosλs cosφs sinλs sinφs


xT − xsyT − ys
zT − zs


The azimuth angle of the target with respect to radar in local (ENU) coordinates

of the sensor can be computed as:

tanα =
xTL
yTL

(3.7)

Where, α is the azimuth angle.

The elevation angle of the target with respect to radar in local (ENU) coordinates

of the sensor can be computed as:
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tan β =
zTL√

x2
TL + y2

TL

(3.8)

Where, β is the elevation angle.

The slant range between sensor and target can be computed as following:

R =
√

(xs − xT )2 + (ys − yT )2 + (zs − zT )2 (3.9)

After the coordinates in Azimuth-Elevation-Range coordinate system are available

we incorporate the sensor inaccuracies in these coordinates as given below. The

typical inaccuracies are available in table form in Figures 3.6 and in table 3.5.

αnew = α + σθ (3.10)

Where, αnew is the azimuth angle after incorporating the azimuth resolution of the

sensor to the measured azimuth of the target in Equation 3.7.

βnew = β + σφ (3.11)

Where, βnew is the elevation angle after incorporating the elevation resolution of

the sensor to the measured elevation of the target in Equation 3.8.

Rnew = R + σR (3.12)

Where, Rnew is the slant range after incorporating the range resolution of the sen-

sor to the measured slant range of the target in Equation 3.9.

Once the error resolutions are incorporated, the position of the target in local coor-

dinates of the sensor also changes. The new local coordinate position is computed

using following equations:

xTLnew = Rnew cos (βnew) sin (αnew) (3.13)

yTLnew = Rnew cos (βnew) cos (αnew) (3.14)
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zTLnew = Rnew sin (βnew) (3.15)

After obtaining the new position of target in local coordinates of the sensor, we

can find the new position of target with inaccuracies in Cartesian coordinates by

applying following transformation:xTnewyTnew

zTnew

 =

− sinλs − sinφs cosλs cosφs cosλs

cosλs − sinφs sinλs cosφs sinλs

0 cosφs sinφs


xTLnewyTLnew

zTLnew

 +

xsys
zs


After obtaining the new estimate the error in Cartesian coordinates can be ob-

tained as following:

σxerror = xTnew − xT (3.16)

σyerror = yTnew − yT (3.17)

σzerror = zTnew − zT (3.18)

Similarly, the error in geodetic coordinates can be obtained by transforming the

new target Cartesian coordinates into new geodetic coordinates using the Matlab

command ecef2lla() or by using WGS-84 model. Once the new geodetic coordinates

are obtained, the error can simply be found by:

σlaterror = ΦTnew − ΦT (3.19)

σlongerror = λTnew − λT (3.20)

σalterror = hTnew − hT (3.21)
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3.5 Fuzzy Track-to-Track Association Algorithm

We take help from a simple scenario for formulation of a track-to-track association

problem in multi-sensor multi-target (MSMT) setting as shown in Figure 3.8. The

scenario has two sensors in an overlapping coverage region observing three distinct

targets. A total of four track reports will be generated for these three targets due

to overlapping nature of the scenario. Let’s consider the target reports are denoted

as, Top, o = 1, 2, 3 and p = 1, 2, have two attributes i.e. the positions in Cartesian

coordinates as x and y coordinates of the tracks. In track report Top, o represents

the target number and p represents the sensor number.

Figure 3.8: Two Sensors and Three Targets in a MSMT Setting

The data reported from the tracks as mentioned in figure above can be pre-

sented in the form of a data matrix as presented in table in Figure 3.9. The data

matrix contains the information on the tracks being reported to the fusion cen-

ter at every single scan. The columns of the matrix represent the tracks which

are under consideration for correlation, and the rows present the peculiar features

of the tracks. The main aim of the fuzzy track-to-track association algorithm or

any track-to-track association algorithm,for that matter, is to identify the similar

(same target) and dissimilar tracks (different targets) among multiple reported
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tracks.

Figure 3.9: Data Matrix

The data matrix presented in the table above is based on a very simple scenario

having very simple data which doesn’t require analysis based on clustering. The

results obtained from the above matrix concludes that tracks T21 and T22 represent

same target while the other two tracks T11 and T32 are reporting different targets.

But in very large data sets, say for example; having 15 attributes and 100 tracks,

the conclusion made on visual inspection fails and requires more advanced tech-

nique to perform track-to-track association such as, clustering. Fuzzy clustering

algorithm is a very useful technique to solve track association problems, it is ex-

plained in detail in the following paragraphs:

The fuzzy track-to-track association algorithm is based on fuzzy clustering means

algorithm (FCM), this algorithm formulates a membership matrix M having mem-

bers moq, these members represent the membership degrees of the data point xq

within a fuzzy cluster o (having a center of the cluster co). The membership de-

grees are computed by minimizing the sum of squared errors which are weighted

by their corresponding ath power of the membership degrees, a is an iterative pa-

rameter found after a large number of simulations and works well with a value

between 1 and 2 for the problem under consideration. The expressions for mem-

bership degrees and cluster centers are given as following:
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moq =
1

[
∑nc

p=1(doq
dpq

)
2
a−1 ]
∀ o,q, (3.22)

co =

∑nm
q=1(moq)

axq∑nm
q=1(moq)a

∀ o, (3.23)

Where nc represents the number of clusters, and nm represents the number of

measurements in total.

Now, consider we have two tracks so we will initiate two distinct clusters for these.

We can then find the optimal membership degrees using the following matrix:

DCfcm =

[
||x1 − c1||2 ||x2 − c1||2

||x1 − c2||2 ||x2 − c2||2

]
=

[
d11 d12

d21 d22

]

The membership degrees define the extent of similarity between the members of

the matrix DCfcm. We require to match the matrix described above to solve our

problem, track-to-track association, effectively. Consider To is a column vector

having A attributes, these attributes could be range, bearing, speed etc. Every

attribute in the column vector will have a related resolution to it, Σ0, o = 1, 2,

that depicts the accuracy of the sensor for that attribute. Let’s assume that there

are two sensors and first sensor is more accurate as compared to the second one

i.e Σ1(p) < Σ2(p)∀p = 1, 2, ...A, where A is the attribute number. For performing

track-to-track association our main goal is decide whether the two track reports

characterize same target or different targets. The scheme of the fuzzy track-to-

track association algorithm is to transform all attribute differences between two

tracks into a single membership degree (cost) and then compare this single mem-

bership degree to another membership degree (threshold), which is computed using

the known attribute resolutions of the sensors which are reporting the tracks [2].

Once the single membership degree and threshold between a pair of tracks is avail-

able the problem simplifies into a binary hypothesis testing problem as following:
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H =

1, Reported Tracks are Identical

0, Reported Tracks are Non-Identical
(3.24)

When we are comparing a pair of tracks the track-to-track association decision can

be taken in two manners i.e (1) compare resolution of sensor 1 with the distance

between tracks from sensor 1 and 2, (2) compare resolution of sensor 2 with the

distance between tracks from sensor 1 and 2. The idea is explained by presenting

matrix DCfcm for two sensors as following:

DC =

[
||Σ1||2 ||T2 − T1||2

||T1 − T2||2 ||Σ2||2

]
=

[
d11 d12

d21 d22

]

Where,

doq =

||Tq − To||2, if o 6= q

||Σo||2, if o = q
(3.25)

We can then use Equations 3.22 and 3.23 to compute the optimum membership

degrees for a scenario of two sensors having a track each as following:

m11 =
(Σ
′
1Σ1)

1
1−a

(Σ
′
1Σ1)

1
1−a + ((T1 − T2)′(T1 − T2))

1
1−a

(3.26)

m12 =
((T1 − T2)

′
(T1 − T2))

1
1−a

(Σ
′
2Σ2)

1
1−a + ((T2 − T1)′(T2 − T1))

1
1−a

(3.27)

m21 =
((T2 − T1)

′
(T2 − T1))

1
1−a

(Σ
′
2Σ2)

1
1−a + ((T1 − T2)′(T1 − T2))

1
1−a

(3.28)

m22 =
(Σ
′
2Σ2)

1
1−a

(Σ
′
2Σ2)

1
1−a + ((T2 − T1)′(T2 − T1))

1
1−a

(3.29)

Hence, a similarity matrix is obtained as given below:
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S =

[
m11 m12

m21 m22

]

In the matrix above the diagonal elements represent the membership degrees of

the sensor thresholds of sensors 1 and 2 respectively, and the off diagonal elements

represent the membership degree of the difference between two reported tracks

according to respective sensors. The fuzzy association decision now can be taken

in two manners i.e (1) on the basis of more accurate sensor and (2) on the basis

of less accurate sensor as following:

The fuzzy decision on the basis of more accurate sensor is given as:

FD1 =

1, if m21 > m11,

0, if m21 < m11,
(3.30)

The fuzzy decision based on the less accurate sensor is given as:

FD2 =

1, if m12 > m22,

0, if m12 < m22,
(3.31)

Sensors usually have varying resolutions and noises, so to cater the impact of noises

on association decisions and make the algorithm more robust, we take the global

decisions on the basis of less accurate as following:

FDg = FD2 (3.32)

Hence, the correlation between two reported tracks T1 and T2 is given as:

CORR(T1, T2) =

1, if FDg = 1 (Tracks are same),

0, if FDg = 0 (Tracks are different),
(3.33)
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A logical improvement to the method described above is to extend it to a multi-

sensor multi-target scenario. This can be achieved very easily by defining a matrix

as following:

=


||Σ1||2 ||T1 − T2||2 ... ||T1 − TnT ||2

||Σ2||2 ||T2 − T1||2 ... ||T2 − TnT ||2
...

... ...
...

||ΣnT ||2 ||TnT − T2||2 ... ||TnT − TnT−1||2



Where, nT is the total number of track reports.

The resolution elements can be diagonalized to obtain a matrix similar to matrix

DC as following:

DC =


||Σ1||2 ||T1 − T2||2 ... ||T1 − TnT ||2

||T2 − T1||2 ||Σ2||2 ... ||T2 − TnT ||2
...

... ...
...

||TnT − T1||2 ||TnT − T2||2 ... ||ΣnT ||2



The elements of the above matrix are obtained using:

doq =

||Tq − To||2, if o 6= q

||Σo||2, if o = q Where o, q = 1, 2..., nT
(3.34)

Consequently, the distance matrix is obtained as given below:
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DC =



d11 d12 ... d1nT

d21 d22 ... d2nT
...

... ...
...

dnT 1 dnT 2 ... dnTnT



After obtaining the distance matrix we can then find the similarity matrix using

Equations 3.22 and 3.23 as following:

S =



m11 m12 ... m1nT

m21 m22 ... m2nT
...

... ...
...

mnT 1 mnT 2 ... mnTnT



After obtaining the similarity matrix we can easily get the association decision

between any two tracks Ta and Tb, Tb from less accurate sensor, as:

CORR(Ta, Tb) =

1, if mTaTb > mTbTb (Tracks are same),

0, if mTaTb < mTbTb (Tracks are different),
(3.35)

3.6 Track Synchronization

The tracks used in this thesis are of a certain format, Every reported track has a

sensor identity from which it is being reported, it has a unique time tag at which it
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is being reported, it has the positional coordinates of sensor along with the sensor

speed and heading, and similarly the positional coordinates of the tracked targets

along with their speeds and headings. An example of data packets used in this

thesis is shown in Figure 3.10 as following:

Figure 3.10: Data Packet

The track data described in preceding paragraph has a time tag assigned to ev-

ery track, so in order to perform correct associations first of all we have to align the

tracks to a common time instance and then apply the association algorithm. Con-

sider a MSMT scenario having two sensors each reporting one track, both sensors

having an update rate of 100ms. Each sensor will have an allocated time-slot for

reporting its data, consider the scenario starts, sensor 1 reports its data at 100ms

then sensor 2 will report its data at 200 ms then sensor 1 will again report its data

at 300ms and so on and so forth. Until both the sensor report their respective

tracks the association will not be initiated, the data of both sensors will be placed

in a data buffer until the association time is reached. The association time will

be chosen in a manner in which both sensors have reported at-least two updates

of their respective tracks. A concept diagram depicting a time synchronization

scenario for two sensors case is presented in Figure 3.11 as following:
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Figure 3.11: Time Synchronization For Two Sensors Scenario

3.6.1 Time Synchronization Filter

For the sake of keeping things simple in this thesis, we have simply used a kalman

filter’s prediction equation to achieve synchronization between tracks. The inputs

to our synchronization filter are the geodetic positions of the sensor and its related

target-track with at-least two samples of positional data, the time instants related

to the two samples and the time at which prediction is to be made. Once the

filter has the required inputs it converts the geodetic positional data into ECEF

positional data for the provided two instants. The time difference between the

two samples and change in position between elapsed time are computed which are

further utilized to compute velocity in Cartesian coordinates. Using the computed

velocities, the positional data of latest sample, the time at which prediction is to

be made and a constant velocity motion model equation we predict the positions

at the desired time.

Let’s assume we have converted the geodetic positions to Cartesian positions, and

let (x1, xt1),(y1, yt1) and (z1, zt1) be sensor and track positions respectively, at

previous instant and (x2, xt2),(y2, yt2) and (z2, zt2) be sensor and target positions
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respectively, at current instant. Let t1 be the time for previous instant and t2 be

the time for current instant for sensor and target-track data. Now, the Cartesian

velocities for sensor and target can be computed as following:

(vx, vxt) = (
x2 − x1

t2 − t1
,
xt2 − xt1
t2 − t1

) (3.36)

(vy, vyt) = (
y2 − y1

t2 − t1
,
yt2 − yt1
t2 − t1

) (3.37)

(vz, vzt) = (
z2 − z1

t2 − t1
,
zt2 − zt1
t2 − t1

) (3.38)

Let, 50ms after t2, be the time at which we have to make prediction, so we can

use following equation to make prediction:

xnew

ynew

znew

vxnew

vynew

vznew


=



1 0 0 T 0 0

0 1 0 0 T 0

0 0 1 0 0 T

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





x2

y2

z2

vx

vy

vz



Where, T=50ms.

In a similar manner we can predict the velocities and positions for target-track.

After the prediction the positions can be obtained using following equation:

xpredypred

zpred

 =

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0





xnew

ynew

znew

vxnew

vynew

vznew


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Once the predicted sensor and target positions are obtained, we pass these pre-

dicted positions to the error model presented in section 3.4 to make the model

more realistic.

3.7 Fuzzy Algorithms Used in this Thesis

Three different algorithmic versions of fuzzy track-to-track association algorithms

were studied in this thesis, these are mentioned as following:

• Converted Measurement Fuzzy Track-to-Track Association Algorithm.

Algorithm 4 CMF Algorithm

1: Initialize with Sensor and Target tracks in geodetic coordinates.
2: Add noise using proposed model to geodetic coordinates of tracks.
3: Convert positions of Sensors and Targets into ECEF coordinates.
4: Apply time synchronization to tracks.
5: Apply noise model to synchronized data to obtain Cartesian resolution of

tracks.
6: Apply fuzzy track-to-track association algorithms.
7: Obtain the results.

• Fuzzy Track-to-Track Association Algorithm With Speed and Heading Fil-

ters
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Algorithm 5 HSF Algorithm

1: Initialize with Sensor and Target tracks in geodetic coordinates time synchro-
nized data.

2: Convert positions of Sensors and Targets into ECEF coordinates.
3: Apply fuzzy track-to-track association algorithm based on positional data.
4: Apply fuzzy track-to-track association algorithm based on Heading.
5: Apply fuzzy track-to-track association algorithm based on Speed.
6: Give weightage to fuzzy algorithms in order: positional > heading > speed.
7: Obtain the results.

• Window Based Fuzzy Track-to-Track Association Algorithm

Algorithm 6 Windowing Based Fuzzy Algorithm

1: Initialize with Sensor and Target tracks in geodetic coordinates.
2: Add noise using proposed model to geodetic coordinates of tracks.
3: Convert positions of Sensors and Targets into ECEF coordinates.
4: Apply time synchronization to tracks.
5: Apply noise model to synchronized data to obtain Cartesian resolution of

tracks.
6: Set the window size and apply fuzzy track-to-track association algorithms.
7: Average the fuzzy results over applied window length
8: Obtain the results with windowing.
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Results And Discussion

To test the performance of fuzzy track-to-track association algorithm in different

settings, a scenario based methodology based on MSMT scenarios was employed

in this thesis. Following sections will present various MSMT scenarios along with

the performance of fuzzy track-to-track association algorithm in those scenarios.

4.1 Scenario: Two Sensors One Target

Consider a scenario in which there are two sensors working in an overlapping cover-

age region. Both the sensors are tracking the same target. The scenario is borrowed

from [3], in this scenario there are two ground sensors situated at (−2, 85)km and

(4, 85)km, there is a target with initial position of (3, 86.6)km. The sensors are

depicted with red circles and the target trajectories from sensor-1 and sensor-2 are

presented using green and blue asterisk trajectories in Figure 4.1. The target is

moving at a speed of 300m/s. The target moves in a following manner, the target

is initially moving towards south-east at an angle of −135◦. At t=15s the target

starts making a change in its course at a constant turn-rate of 4◦/s until t=26s

and moves toward east. At t=35s the target makes another change in its course at

a constant turn-rate of 4◦/s until the end of scenario at t=61s and starts moving

toward north-east.

88
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Figure 4.1: Sensor and Target Positions

Both the sensors have a range resolution σR of 10m and a bearing resolution

of σb of 2
3
mrad.

4.1.1 Results

To obtain the results we firstly transformed the tracks from NEWS coordinate

system to Cartesian coordinates, along with position transformation we also trans-

formed the resolutions of sensors into a Gaussian noise in Cartesian coordinates

along respective dimensions. Once the tracks were obtained with their respective

error they were compared with each other using fuzzy track-to-track association

algorithm, the results are presented as following:
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Figure 4.2: Results: Two Sensors Single Target

Figure 4.2 depicts that the algorithm was fairly able to associate the two tracks

as a single target with an accuracy of 98.36 percent. The scenario was run for 1000

monte-carlo simulations and the accuracy results were averaged.

4.2 Scenario: Two Sensors Two Targets

Consider a scenario in which there are two sensors working in a distributed fusion

environment, The sensors are sharing their tracks with each other. Consider there

are two targets in the environment of the sensors, sensor-1 is tracking target-1 and

sensor-2 is tracking target-2. The sensors are situated at (2, 90)km and (2, 80)km

respectively. The initial positions of targets are (10, 90) km and (10, 90.3)km re-

spectively. Initially both targets move in parallel at a speed of 300m/s, they are

moving towards south-east at an angle of -135◦. At t=15s target-1 starts making a

change in course with a constant turn-rate of 4◦/s until t=26s and moves towards

east. At t=15s target-2 starts making a change in course with a constant turn-rate

of -4◦/s until t=26s and moves towards south. At t=35s target-1 makes another

course change with a constant turn-rate of 4◦/s until the end of scenario t=61s and

starts moving towards north-east. At t=35s target-2 also makes another course

change with a constant turn-rate of -4◦/s until the end of scenario t=61s and starts

moving towards south-west. The scenario is depicted in Figure 4.3 as following:
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Figure 4.3: Results: Positions of Sensors and Targets

Both the sensors have a range resolution σR of 35m and a bearing resolution

of σb of 2mrad.

4.2.1 Results

To obtain the results we firstly transformed the tracks from NEWS coordinate

system to Cartesian coordinates, along with position transformation we also trans-

formed the resolutions of sensors into a Gaussian noise in Cartesian coordinates

along respective dimensions. Once the tracks were obtained with their respective

error they were compared with each other using fuzzy track-to-track association

algorithm, the results are presented as following:
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Figure 4.4: Results: Two Sensors Two Targets

Figure 4.4 depicts that the algorithm was fairly able to associate the two tracks

as two different targets with an accuracy of 96.72 percent. The scenario was run

for 1000 monte-carlo simulations and the accuracy results were averaged.

4.3 Scenario: 3D GCS Tracks with Two Sensors

Two Targets

Previously we considered the performance of fuzzy track-to-track association al-

gorithm with 2D tracks. A logical progression would be to test the performance

of the algorithm with 3D tracks. Consider we have two targets reporting their in

GCS coordinate system, the first target moves from GCS coordinates

(30.46◦LAT, 68.79◦LONG, 3048mALT ) to (33.23◦LAT, 70.35◦LONG, 3048mALT )

with a speed of 300m/s, the second target move from (30.46◦LAT, 68.79◦LONG, 3048mALT ),

the second target moves from GCS coordinates (30.48◦LAT, 68.74◦LONG, 3109mALT )

to (33.25◦LAT, 70.3◦LONG, 3109mALT ). Both the targets are following a straight

trajectory and are moving in parallel. There are two sensors that are tracking these

targets are both the targets are tracked by both the sensors. The sensors are work-

ing in an overlapping coverage region, the first track of sensor-1 has target-1 and

the second track of sensor-1 is target-2, while the first track of sensor-2 is target-2

and the second track is target-1. The target tracks are depicted in Figure 4.5, the
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blue tracks are from sensor-1 and the red tracks are from sensor-2.

Figure 4.5: GCS Tracks of targets.

4.3.1 Results

Firstly the GCS tracks were transformed from GCS coordinates to ECEF coordi-

nates. The resolutions of the sensors in ECEF coordinates were unavailable so we

tried various resolutions in ECEF coordinates that correctly associated the targets.

Histograms of various resolutions were plotted and the best performing resolutions

were selected as the resolutions for algorithm. Afterwards the fuzzy track-to-track

association algorithm was applied to the scenario to test the performance. The

results are presented in following Figure 4.6. In the figure above S11 stands for

sensor-1’s first track S12 stand for sensor-1’s second track and so on. The left most

sub-plot in the figure shows a comparison between the first track from sensor-1

and first track from sensor-2 and depicts that they represent different targets.

Similarly, other subplots show the different possible combinations.



CHAPTER 4. RESULTS AND DISCUSSION 94

Figure 4.6: Two Sensors Four Tracks

figure 4.6 shows that the algorithm was able to associate the respective tracks

of the two sensors with reasonable accuracy.

4.4 Scenario: 3D GCS Tracks with Eight Sensors

Three Targets

In this scenario there are eight sensors in total working in an overlapping coverage

region. There are three targets in the overlapping region of these sensors. Target-1

is being tracked by sensors-1,4,5,6,7 and 8, and moves from GCS coordinates

(30.46◦LAT, 68.79◦LONG, 3048mALT ) to (33.23◦LAT, 70.35◦LONG, 3048mALT )

with a speed of 300m/s, this target is represented by multi-colored multiple-tracks

(from various sensors) in Figure 4.7 below. Target-2 is being tracked by sensor-

2 and moves from GCS coordinates (30.48◦LAT, 68.74◦LONG, 3109mALT ) to

(33.25◦LAT, 70.3◦LONG, 3109mALT ) with a speed of 300m/s, the track of this

target is presented with a blue track in Figure 4.7. Target-3 is being tracked by

sensor-3 and moves from GCS coordinates (30.47◦LAT, 68.7◦LONG, 3200mALT )

to

(33.24◦LAT, 70.26◦LONG, 3200mALT ) with a speed of 300m/s, the track of this

target is presented with a blue track in Figure 4.7. The GCS coordinates are con-

verted to their ECEF equivalents for presentation purposes as following:
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Figure 4.7: Tracks of the Three Targets

4.4.1 Results

The algorithm correctly confirms the ground truth scenario selected. The algo-

rithm also provides the insights into the associations at a track-pair level; which

track pair represents the same target and which track pair represents different

targets. The algorithm also tells us about the the total number of targets present

in the scenario along with the accuracy of the result. The results for the sce-

nario discussed above are presented in Figures 4.8 and 4.9. In the figures above

the Sen01Trk01 stands for the first track from sensor-1, Sen02Trk01 stands for

the first track from sensor-2 and similarly the notation is followed for sensor track

combinations. The first sub-plot on Figure 4.8 depicts that the first track reported

from sensor-1 does not associate with first track from sensor-2, all the other sub-

plots depicts various sensor-track association combinations. The last sub-plot on

4.9 depicts the cumulative number of targets in the scenario after verification from

the association algorithm.
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Figure 4.8: Eight Sensors Three Targets(1)

Figure 4.9: Eight Sensors Three Targets(2)

4.5 Scenario: Two Sensors with One Track Each

in Gaussian uncertainty Environment

In previous two sections the tracks coming from sensors were considered to be

noise-less. In real scenarios the track data is impacted due to various kinds of
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uncertainties. To account for the impact of the uncertainties on fuzzy track-to-

track association algorithm we introduce uncertainties in the tracks reported by

the sensors.

Consider a scenario in which there are two air-borne sensors working in an over-

lapping coverage region. Sensor-1 is moving at a speed of 181m/s, it moves from

GCS coordinates (31.35◦LAT, 70.3◦LONG, 8001mALT ) to

(31.35◦LAT, 74.24286◦LONG, 7781mALT ), the heading of the sensor is 90◦ from

the north. Sensor-2 is moving at a speed of 181m/s, it moves from GCS coordinates

(31.5◦LAT, 70◦LONG, 8003mALT ) to (31.5◦LAT, 73.941421◦LONG, 8354mALT ),

the heading of the sensor is 90◦ from the north. There is a single target in the

overlapping region of the sensors which accelerates and decelerates during the

scenario, with the minimum speed of 98m/s and a maximum of 114m/s. The

target moves from GCS coordinates (31.2◦LAT, 72.37◦LONG, 10298mALT ) to

(31.2◦LAT, 74.62228◦LONG, 102943mALT ), the heading of the target was 90◦

due-north. To make the scenario more realistic an error was induced in the target

tracks coming from both sensors using the model presented in table of Figure 3.6.

The tracks of the target from respective sensors are presented in Figures 4.10 and

4.11. The scenario is run for 2740 seconds with an update rate of 1s for each sensor.

Figure 4.10: Target Track with Ground Truth and Noise from Sensor-1
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Figure 4.11: Target Track with Ground Truth and Noise from Sensor-2

4.5.1 Results

The resolutions for the fuzzy track-to-track association algorithm were computed

based on the relative distance between the sensors and the target. The resolutions

for both the sensors were kept identical and results were obtained as shown in the

following figure 4.12.

Figure 4.12: Accuracy of Algorithm under the influence of increasing Track noise

The aforementioned figure shows that the accuracy of the algorithm is very

good when the noise standard deviation in the tracks is less than 1.5 times the
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respective standard deviations of the sensors. When the noise standard deviation

in the tracks is increased the accuracy of the algorithm keeps on deteriorating.

4.6 Scenario: Three Sensors with a Track Each

in Gaussian uncertainty Environment

Consider a scenario in which there are three air-borne sensors working in an over-

lapping coverage region. Sensor-1 is moving at a speed of 181m/s, it moves from

GCS coordinates (31.35◦LAT, 70.3◦LONG, 8001mALT ) to

(31.35◦LAT, 74.24286◦LONG, 7781mALT ), the heading of the sensor is 90◦ from

the north. Sensor-2 is moving at a speed of 181m/s, it moves from GCS coordinates

(31.5◦LAT, 70◦LONG, 8003mALT ) to (31.5◦LAT, 73.941421◦LONG, 8354mALT ),

the heading of the sensor is 90◦ from the north. Sensor-3 is moving at a speed of

181m/s, it moves from GCS coordinates (31.2◦LAT, 70◦LONG, 7996mALT ) to

(31.2◦LAT, 74.94286◦LONG, 7865mALT ), the heading of the sensor is 90◦ from

the north. There is a single target in the overlapping region of the sensors 1 and

2 which accelerates and decelerates during the scenario, with the minimum speed

of 98m/s and a maximum of 114m/s. The target moves from GCS coordinates

(31.2◦LAT, 72.37◦LONG, 10298mALT ) to (31.2◦LAT, 74.62228◦LONG, 102943mALT ),

the heading of the target was 90◦ due-north. There is another target in the coverage

region of sensor-3 which accelerates and decelerates between 103m/s and 117m/s.

The target moves from GCS coordinates (30.90009◦LAT, 72.370178◦LONG, 10343mALT )

to (30.900009◦LAT, 74.622298◦LONG, 10156mALT ), the heading of the target

was 90◦ due-north. To make the scenario more realistic an error was induced in

the target tracks coming from all the sensors using the model presented in table

of Figure 3.6. The tracks of the target from respective sensors along with target

ground-truths, with bold black lines in the background being ground-truths and

the colored random lines being erroneous tracks from respective sensors, are pre-

sented in Figure 4.13. The scenario was simulated for a total of 2740s with the

common update rate of 1s for each sensor.
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Figure 4.13: Ground Truths of Targets along with Sensor Tracks

4.6.1 Results

The resolutions for the fuzzy track-to-track association algorithm were computed

based on the relative distance between the sensors and the targets. The resolutions

for all the sensors were kept identical and results were obtained as shown in the

following Figure 4.14.

Figure 4.14: Accuracy of Algorithm under the influence of increasing Track noise

The aforementioned figure shows that the accuracy of the algorithm is very

good when the noise standard deviation in the tracks is less than 1.5 times the
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respective standard deviations of the sensors. When the noise standard deviation

in the tracks is increased the accuracy of the algorithm keeps on deteriorating.

4.7 Scenario: Four Sensors with a Track Each

with different update rates in Gaussian un-

certainty Environment

Consider a scenario in which there are four air-borne sensors working in an over-

lapping coverage region. Sensor-1 is moving at a speed of 181m/s, it moves from

GCS coordinates (31.35◦LAT, 70.3◦LONG, 8001mALT ) to

(31.35◦LAT, 74.24286◦LONG, 7781mALT ), the heading of the sensor is 90◦ from

the north. Sensor-2 is moving at a speed of 181m/s, it moves from GCS coordinates

(31.5◦LAT, 70◦LONG, 8003mALT ) to (31.5◦LAT, 73.941421◦LONG, 8354mALT ),

the heading of the sensor is 90◦ from the north. Sensor-3 is moving at a speed of

181m/s, it moves from GCS coordinates (31.2◦LAT, 70◦LONG, 7996mALT ) to

(31.2◦LAT, 74.94286◦LONG, 7865mALT ), the heading of the sensor is 90◦ from

the north. Sensor-4 is moving at a speed of 181m/s, it moves from GCS coordi-

nates (31.2◦LAT, 70◦LONG, 7996mALT ) to

(31.2◦LAT, 74.94286◦LONG, 7275mALT ), the heading of the sensor is 90◦ from

the north. There is a single target in the overlapping region of the sensors 12

which accelerates and decelerates during the scenario, with the minimum speed

of 98m/s and a maximum of 114m/s. The target moves from GCS coordinates

(31.2◦LAT, 72.37◦LONG, 10298mALT ) to (31.2◦LAT, 74.62228◦LONG, 102943mALT ),

the heading of the target was 90◦ due-north, the heading is changing slightly due to

noise over the complete scenario. There is another target in the coverage region of

sensors 34 which accelerates and decelerates between 103m/s and 117m/s. The tar-

get moves from GCS coordinates (30.90009◦LAT, 72.370178◦LONG, 10343mALT )

to (30.900009◦LAT, 74.622298◦LONG, 10156mALT ), the heading of the target

was 90◦ due-north with heading changing slightly due to noise over the complete

scenario. The scenario is working under the paradigm of time division multiple ac-
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cess, each sensor has its own designated time slot for sharing its track. The scenario

starts with sensor-1 sharing its track data at 200ms after that every sensor shares

its track with a difference of 200ms. The update rate of each sensor is 800ms. To

make the scenario more realistic an error was induced in the target tracks coming

from all the sensors using the model presented in table of Figure 3.6. The tracks

of the target from respective sensors along with target ground-truths, With bold

black lines in the background being ground-truths and the colored random lines

being erroneous tracks from respective sensors, are presented in following Figure

4.15. The scenario was simulated for a total of 685s with the update rate of 800ms

for each sensor.

Figure 4.15: Target Tracks

4.7.0.1 Results: Applied linear prediction for Time Synchronization

To ascertain the performance of fuzzy track-to-track association in scenarios where

the sensors have different update rates and their tracks are asynchronous a simple

linear predictor was implemented as described in section 3.6. The results obtained
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are presented in following Figure 4.16.

Figure 4.16: Accuracy of Algorithm under TDMA Paradigm

In the figure given above, one can clearly observe that the accuracy of the

algorithm is significantly dropped when the tracks from sensors are asynchronous

in contrast to the cases where the tracks were synchronized.

4.7.0.2 Results: Applied Batch Processing

In previous section we introduced time asynchronous tracks, they were synchro-

nized using a linear time predictor which deteriorated the performance of the

algorithm. The reason behind decrease in accuracy was that we were associating

the tracks by only considering the track data of a single instant. The accuracy

of the algorithm can be increased by applying batch processing technique to the

algorithm. In this technique the association decision can be taken based on vari-

ous instants of the data. Data windows of various sizes were employed to test the

performance of the algorithm, the results are presented as following:



CHAPTER 4. RESULTS AND DISCUSSION 104

Figure 4.17: Accuracy of Algorithm with window size of two

Figure 4.18: Accuracy of Algorithm with window size of five
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Figure 4.19: Accuracy of Algorithm with window size of ten

From the figures presented above one can observe that batch processing im-

proves the performance of algorithm when the noise in tracks is low. When the

noise in tracks is high the performance of batch processing is poor.

4.7.0.3 Results: Applied Speed and Heading Filters

Speed and heading filters were applied to increase the time efficiency of the algo-

rithm. When the targets are different their speed and headings are also different,

so we can use speed and heading filters to separate out different targets without

going into the algorithm. This significantly improves the efficiency of the algorithm

as the complexity of the scenarios grow. The time complexity for 1000 monte-carlo

simulations of the scenario mentioned above is presented as following.
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Figure 4.20: Efficiency of the Algorithms with Speed and Heading Filters

It is clearly visible that speed and heading filters make the algorithm more effi-

cient. The simulations were performed on a desktop with specification as presented

in Figure 4.21 below.

Figure 4.21: Machine Specifications



Chapter 5

Conclusion And Future Work

5.1 Conclusion

Fuzzy track to track association algorithm could prove to be a very beneficial algo-

rithm for sensors that are working on geodetic coordinate system. It can also prove

to be very efficient algorithm for sensor that are not identical. The performance of

algorithm was very good after applying time alignment to the tracks, it performed

significantly even under the error spread due linear prediction of track data. It

was also shown that the performance of fuzzy track to track association algorithm

with batch processing is excellent when the errors in the track data are low, the

performance deteriorates when the errors in track data are high. The speed and

heading filters applied along with the fuzzy track to track association algorithm

proved to be a good choice as they improved the efficiency of the algorithm as

compared to stand alone algorithm.

The system model presented in the thesis was a significant achievement as near

real world testing of the algorithm was possible in simulation due to it. Due to

the system it was also proven that fuzzy track to track association algorithm can

perform significantly even the noise in the tracks is increased considerably.

107
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5.2 Future Work

The improvements planned in future for this research work are as following:

• Implementation of the algorithm in a hardware compatible language.

• Testing the algorithm in real time distributed network.

• Implementation and analysis of the algorithm for a very large number of

sensors and targets.
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