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Abstract

Model Order Reduction (MOR) is a computational technique to build low order system
from high order system by capturing the original properties of the actual system. The
demand of MOR is ever higher during the study of dynamic behavior of the complex
system. Because the complex high order systems impose difficulties e.g slow compu-
tations and expensive storage requirements. So, MOR techniques facilitate to reduce
these difficulties in order to provide fast computations and less storagerequirements in
the process of designing and simulation of large- scale physical systems. MOR capitu-
lates Reduced Order Models (ROMSs) which conserve the input output behavior of the
original physical system. Construction of stable ROMs with low approximation error
between original and compact (reduced) model is the main goal of MOR. MOR can be
done in frequency-domain as well as in time-domain. Remarkable research work has
been done on various directions of MOR to build ease in the designing, simulation and
analysis of the complex dynamic systems. The precedent MOR techniques mostly have
limitation of un-stability, large approximation error and lack of a priori error bounds in
ROMs. Hence, the aim of this thesis is to construct improved model reduction tech-
niques in order to overcome the existing problems of model reduction techniques in
frequency domain. The proposed techniques guarantee the preservation of stability
in ROM and low frequency-response approximation error with easily computable er-
ror bound as compared to existing MOR techniques. In this thesis, firstly frequency
weighted MOR problem is developed, then improved frequency weighted model re-

duction techniques are proposed for continuous-time systems. A frequency limited



Gramians-based MOR technique is also illustrated with error bounds for continuous-
time systems. The applicability of the presented work is demonstrated in the context of
some practical numerical examples to show the accuracy and efficacy of the proposed

methods.

Vi
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Chapter 1

Introduction

This chapter presents a brief introduction to the work accomplished in this thesis. Sec-
tionl.1lexplains the main concept of MOR, the main motivation of thesis is explained
in Sectionl.2. Sectionl.3highlights the shortcomings of the existing literature, the
problem formulation is discussed in sectionl.4. The main contribution of the thesis is
elaborated in sectionl1.5. Finally, sectionl1.6gives the idea regarding the organization

of the thesis.

1.1 Main Concept

MOR is associated with extraction of a small-scale system that approximates the ac-
curate behavior of a large-scale dynamical system at its predefined input and output
parameters. The mathematical approximation techniques for large differential equa-
tions (define the physical behavior of the systems) come in the frame to accomplish
the process of MOR. Hence, the terms such as “reduced-bases approximation”, “retain-
ing of high energy states”, “states truncation (having less effect on system response)”
“balancing of the Gramians (controllability and observability )” and “order reduction”

are associated with the concept of MOR. The theme of MOR, originally has been in-

troduced in mathematics in the context of the differential equations. Later, MOR has



been carried over to the control system engineering and other fields such as civil engi-
neering, chemical engineering, process engineering, aerospace engineering, earthquake
engineering, mechanical and Very Large-Scale Integration (\VLSI) circuits designing

[1,2,3].

1.2 Motivation

Simulations or computation science is considered as a reliable tool to identify, analyze
and predict the dynamical behavior of the physical system. Computation science has
great importance in today’s technological world. Computation science is regarded as
third discipline other than the classical disciplines of theory and experiment . Computer
simulations are now carried out for many chemical and physical processes on routine
basis. Computer Aided Design (CAD) and virtual environments have been built in order
to provide ease in the designing of new products to make the process faster, more reli-
able and building less costly prototypes (validate the correct functioning of the designed
system before it goes into production). Moreover, the building of a virtual prototype is
absolutely cheaper and faster than generating a physical prototype. MOR is a computa-
tional technique that speed up the simulations and make computationally expensive in
terms of time and memory storage while preserving the original properties of the actual

system [4,5,6,7].

1.3 Shortcomings of Existing Literature

Balanced Truncation (BT) is the most common method in MOR techniques to capture
low order model from high order model. BT not only ensures stability but also provides
error bound for ROMs. The least controllable and observable states are discarded in
BT and the most significant observable and controllable states are used to consider low

order approximation of original system. Generally, Bt performs the reduction process

2



by using full range of frequency to compute the system’s response [8]. However, some
applications like filter and controller reduction etc, it is preferred to consider approxi-
mation error over a certain frequency range of interest as sometimes, the reduction error
is more significant in particular range of frequency. This introduces the concept of fre-
quency weighted MOR [9].

Enns [10] upgraded the BT technique by using frequency weights and this technique
preserves the stability for single sided frequency weights (input/output) but it may not
yield stable ROMs in case of both sided frequency weights. To handle this issue, many
frequency weighted MOR technigues have been presented in literature [11,12,13,14,
15,16,17,18,19,20].

Wang et al. [20] proposed a useful technique to achieve the stability of ROMs by en-
suring input and output related matrices’ positive/semipositive definiteness by using
absolute function. This technique is also applicable to controller reduction as the prece-
dent techniques are not applicable to controller reduction due to zero pole cancellation
and computes a priori error bound expression. Varga et al. [12] established stability by

ignoring all negative eigenvalues and retaining only positive eigenvalues.

Later, Imran et al. [21] introduced a method to subtract the least negative eigenvalue
from all eigenvalues to ensure positive/semipositive definiteness of input and output
related matrics to guarantee stability but it leads to large approximation error due to

nullification of last eigenvalue.

Gawronski et al. [22] simplified the frequency weighted MOR by considering the
approximation in the desired frequency range instead of constructing weights. It is
named as frequency limited MOR. In this technique, the controllability and observabil-
ity Gramians are defined for limited frequency interval. But this technique also capitu-
lates unstable ROMs for the original stable system. Moreover, it does not compute error

bound.

To solve the instability issue, Gugercin et al. [23] proposed a method to take absolute of



negative eigenvalues to ensure the positive or semi-positive definiteness of some input
and output related matrices to achieve stability. Ghafoor et al. [24] achieved stabil-
ity by ignoring all negative eigenvalues and retaining only positive eigenvalues. But
[23,24] techniques do not affect the all negative eigenvalues equally that lead to large
approximation error in some systems. Imran et al. [25] guaranteed the stable ROMs in
desired frequency range by subtracting the least negative eigenvalue that ensure posi-
tive/semipositive definiteness of input and output related matrics. Stability is achieved

by existing techniques [23,24,25] but at the cost of large approximation error.

1.4 Problem Formulation

The pioneer frequency weighted and frequency limited interval-Gramians based schemes
for continuous-time systems yield unstable ROMs, due to some input/output related
matrices that are not conserved to be positive or semi-positive definite. Some existing
techniques preserve stability but at the cost of large approximation error and poor error

bounds.

1.5 Contributions

The main contribution of this thesis are as follows.

«Proposed MOR techniques are developed for efficient reduction of continuous-

time Linear Time-Invariant (LTI) systems.

Proposed techniques establish stable ROMs with less frequency-response approx-
imation error and computable error bounds as compared to existing techniques in

the literature.

Proposed techniques are applied on frequency weighted and frequency limited



interval-Gramians based MOR techniques.

Proposed techniques are applied on some practical examples of model reduction

to show their efficacy and accuracy.

1.6 Organization of thesis

The rest of the thesis is organized as follows:

Chapter 2 presents a concise background on the main subjects relevant to this
work such as, MOR for LTI continuous-time systems and their modelings, BT,
frequency weighted background and its existing literature’s shortcomings and fre-

quency limited existing literature’s problems.

Chapter 3 develops the proposed techniques algorithms for frequency weighted
and frequency limited interval- Gramians based MOR that guarantee the stabil-
ity of the ROMs with minimum frequency-response approximation error . Error
bounds are also developed for frequency weighted problem involving predefined

weights and without predefined weights.

«Chapter 4 presents the numerical simulation and discussion to illustrate the appli-

cability of the proposed solutions.

«Chapter 5 presents the conclusions and future work.



Chapter 2

Background and Literature Review

This chapter illustrates the essential background information on which the presented
work is formed: in particular, sections2.1and2.2recall the basic preliminaries regard-
ing MOR procedure. Section2.3represents the basic procedure of model reduction
using frequency weights and section2.4recalls some existing stability preserving fre-
quency weighted MOR techniques. Finally, section2.5illustrates the frequency limited
MOR method that simplifies the Gramians of the frequency weighted MOR technique
to yield near-optimal ROMs and some existing stability preserving frequency limited

techniques are discussed in section2.6.

2.1 The General Idea of MOR

Numerous artificial, mechanical and physical procedures can be defined by dynamical
systems which can be applied for simulation or control. The modeling of many physi-
cal systems can be done using a set of continuous Partial Differential Equations (PDES)
or discrete Ordinary Differential Equations (ODESs). Moreover, the transformation of
PDEs is done into a system of linear/non-linear ODEs and approximation of the behav-

ior of continuous system is acquired using discretization. However, the fast develop-



ments in large-scale dynamic systems like telecommunications systems, power systems
and chemical systems impose complexity in the modeling of these systems which result
in large system of ODE equations and make computationally expensive in terms of time
and memory storage. MOR techniques are developed and efficiently used to speed up
the computation time and save storage requirements for the fairly large-complex system

[26,27,28,29]. The idea of MOR has been demonstrated as a valuable tool to obtain

Mathematical Modeling

Discretization

Figure 2.1: MOR Process

efficacy in simulations while guaranteeing desired accuracy. Its applicability to real
life problems has made it a poplar tool in many branches of science and engineering.
The MOR process is explained pictorially in Figure1.1[1,30]. MOR is a technique to
capitulate low order system from high order system by capturing the key properties of
the original system. The main goal of MOR is to construct the stable ROMs with less

approximation error [31,32,33,34,35].



2.2 Balanced Truncation

Moore [36] proposed the BT method by combining the Principle Component Analysis
(PCA) and Singular VValue Decomposition (SVD) to cope with the structural instabilities
of the dynamic systems. BT is also named as internally balanced realization and it is
very significant in control engineering. In balanced realization, the less observable and
controllable states are truncated and dominant states that affect the system’s response
usefully are retained. BT yields stable reduced models with explicit error bounds.

Consider a LTI continuous system in state space

X'(t) = Ax(t)+ Bu(t)
y(t)r =Cx(t)r + Du(t) (2.2.1)

where { x(t) € R", u(t) € R™y(t) € R” }, n, m and p represent order, number of inputs
and number of the outputs of the system respectively. A is the system matrix of the
dimension R™", B is the input matrix of the dimension R™™, C is the output matrix
of the dimension R”" and D is the feedforward matrix of the dimension RP*™. The

transfer function of the original system is represented in equation (2.2.1) is

Go(s)=C(sl -A)'B+D (2.2.2)

The controllability and observability Gramians are defined mathmatically as

J e A T AT

P. = e™BB e tdt (2.2.3)
-0
J e ATt ~T~ At

Q= et tcTceMdt (2.2.4)
-00



The controllability Gramian P¢ and observability Gramian Qo are the solution of fol-

lowing Lyapunov equations

APc+PcAT +BBT =0 (2.2.5)

A"Qo+QoA+CC™ =0 (2.2.6)

After calculating the SVD of the matrix, a non-singular transformation matrix T is used
to obtain a balanced system from dynamic system by converting observability and con-

trollability Gramians into equal and diagonal matrics [37].

TTQoT =T'PcT " == =diag{o1,0o, ..., 00} (2.2.7)

where Oy =2 01, Mm=1,2,3,...,n—1 and formulate the Hankel Singular Values
(HSV) of Z that are used to measure the robustness of the observable and control-

lable state [21]. The ROM is obtained by applying the transformation over the original

system
. } A1 A . =T'B 5 0
A=TAT =10 0, B, 0_ B
Ao A2y - !
C=GC,T = Ci C ., Dt =D,

The transfer function of ROM is obtained as

Gi(s) =Ca(sl ~A11) 'B1+D (2.2.8)

2.3 Frequency Weighted Model Reduction Technique

The frequency dependence of the error is critical for the stability of a control system

with respect to MOR error, especially in case of feedback controller design wherein



the error should be small in crossover frequency ranges and can be larger in case of
other frequency ranges. This motivated the Enns [10] to use weighted error criterion.
Consider the transfer functions of the stable input weight Vi(s) = Ci(sl —Ai) ™B; + D;
and stable output weight Wo(s) = Co(sl —Ao) 'B, + D, respectively. The augmented

systems are given by

Go(s)Vi(s)=Ci(sl —Ai) "'Bi+D; (2.3.1)
Wo(5)Go(S) =Co(s —Ag) *Bo+ Do (2.3.2)
where
[]
A BC, BD,
= 0 A B,
[ ]
C DC, DD,
O O A, B,C B,D
AO BO ] Aw W w ]
] 0 = 0 0 A B U
Co D, 0 0
G, DuC | Dup
Let the Gramians
[] U] C 0
Pe P T
Qw Qp
P, = [ D’Qy:D O (2.3.3)
PL P Q1 Qe

satisfy the following Lyapunov equations:

AP+PA"T+BB’  =0(2.3.4)
|

ATQ,+Q,A,+C'C, 0(2.3.5)
0 0

10



Expanding the blocks (1,1) and (2,2) respectively, of the Eq (2.3.4) and (2.3.5) yield

AP.+PAT+X, = 0(2.3.6)
ATQc+Q.A+Y, = 0(2.3.7)
where
X, = BCiP" + P;,C"'B' +BD,D'B" (2.3.8)
12 i i
Y, = C'B'Q" +Q1,B,C+C'D'D,C (2.3.9)
o 12 o]
The contragredient matrix T obtained as
TTQT=T'P.T =% (2.3.10)

where 2 formulates the HSV, diagonal elements and arranged in the descending order.
By applying transformation and partitioning the original system,the ROMs are obtained

by GZ(S) = C]_(Sl _All)_lBl +D.

Remark 1. Since in Enns [10] technique, X; 20 and Y, 20 are not always guaranteed,

the ROMs may not remain stable in case of double sided frequency weights [20].

2.4 Existing Stability Preserving Frequency Weighted

Techniques

To handle the issue of instability in Enns method [10], a lot of stability preserving
techniques have been proposed in literature. In this section we review some well-known
frequency weighted stability preserving techniques . Stability is ensured by converting

some input output related matrices into positive/semi positive definiteness matrices.

11



2.4.1 Generalized Lin and Chiu’s Technique

Lin and Chiu [11] modified the Enns’ method [10] to ensure the stability of the ROMs
for strictly proper two sided weights. Let the transformations be applied to input output

augmented system realization respectively,

0 0 ] 0
| PR I -Qu'Q
Ti = - I Te=" 0
0 | o I

The input system of the transformed augme%ted realization is:

U
A _ ) U U
A=TIAT o AXe Bo1ig T
i Li iLi [ B [ L = ,
0 A\/ BV
A z Z A
Ci=CTi= C CPyR+DC, - Di = D; = DD,

The output system of the transformed augmented realization is:

. _ Ay Yo R _ B
A=TIAT ,=0"" 1, Be=T B, =1 a,
0 A B,D+Q, Q"B
A z 2 A
Co=AcTo= C. Cw Do =D, =DyD

where

X12 = APpP, 1+ BC, - PP, A,
B. =BD,-PP,'By
Y, = Q\,'V1Q12A+ BWC—AWQV'\,lQle

CL DuC -CuQy'Q'y,

12



The transformed augmented realization Gramians:

U u
i G1iur - PE 'P12PV_1PT12 0
P=T PT = 0 P, 0
o Qu 0 0

Qo = Tl_ToQ ol =
Lo 0 Qe-Q12Q4'QM2

satisfy the following Lyupnov equations:
APi+PAT+BB’ =0(2.4.1)
| 1

ATQO+Q0AO+CTC0 = 0(2.4.2)
0 0

Solving the (1,1) of the (2.4.1) and (2,2) block of the (2.4.2) results respectively

AP +P AT +BB", =0(2.4.3)

ATQL+QA+CTC, 0(2.4.4)

where B = P= —P;,P;1PT ;and Q. = Qe - QuQy, Q" . [Diagonalize the weighted

gramians P_ and Q, simultaneously, yield

TTQT =T P T == =diag{oy, 0a, ..., On} (2.4.5)

where Oy 2 Om+1, M=1,2,3,...,n—1. The ROMs are acquired by applying the
transformation and partitioning the original system. Lin and Chiu [11] produce stable
ROMs in case of double-sided weights, assuming no pole-zero cancellation between

original system and weights [38].

13



2.4.2 Wang et al’s Technique

Wang et al. [20] proposed a useful technique to achieve the stability of eigenvalues that
are calculated from the eigenvalue decomposition of some input and output related ma-
trices by using absolute function. This method is also applicable to controller reduction
as the precedent techniques are not applicable to controller reduction due to zero pole
cancellation and computes a priori error bound expression.

Let the new controllability Py, and observability Qua Gramians satisfy the following

Lyapunov equations

APya+PyuaAT +ByaBl, = 0(2.4.6)

ATQuatQueA+CT Gwa = 0(2.4.7)
The contragredient matrix T,, obtained as
TTQuaT =T *PuaT " == =diag{01,02,...,0n} (2.4.8)

where oy 2 Oys1, W=1,2,3,..n -1

The fictitious input By, and output C,, matrices are defined as, Bya = Uya|Swal*? and
Cua = |Rua|?V " . Sipge the expressions Uya, Swa, Vi @nd Ry, are computed by
orthogonal Eigen VValue Decomposition (EVD) of symmetric matrices X,,= Uwaswaq]a
and szvwaRanTNawhere Swa=diag(s1,S2,...,Sm) 20and Ry, =diag(ry,ro, ......... )2
0. The ROMs are computed by partitioning the transformed realization.

Theorem 1. The foﬁowing%rror bound holds, if the rank conditions rank [By.B] =

rank[B ]and rank " =rank[C ] aresatisfied.
[ O

wa wa

C

IWy(S)(Go(S) =G(S))Vi(S)lleo = 2MIWy(S)Lwall collKwaVx(S)lleo > Om

m=n+1

14



where

Lya = Cuadiag(|rs| ™2, |r2| ™22, ..., Irmil 2,0, ..., 0)

Kuwa = diag(|se| /2, |s:] 72, ..., Ismo] /2,0,...,0)U B,

mi = rank[X;] and mo = rank[Y].

2.4.3 Vargaand Anderson Technique

Varga et al. [12] modified the Wang et al. [20] technique by reducing the Gramians
distance to Enns choice (i.e, the size of Pys-Pe and Qua-Qe). The proposed transfor-
mation simultaneously diagonalized the controllability and observability Gramians P,

Q.r respectively,
T QuT =T P, T == =diag{03,0%,...,0n} (2.4.9)

where Oy 20m+1, M=1,2,3,...,n—1and Gramians satisfy the following Lyapunov

equations

AP +P,AT+B,Bl, = 0(2.4.10)

ATQu+QuA+C" L, = 0(2.4.11)

The fictitious inputB  and outputC matricesare definedas,B = U S¥?andC =
V

r vr vr vrovr vr
R¥V" ThetermsU ,S ,V andR EVD of symmetric matrices
vroovr vrL vrn v VI
l
0
Svrl 0 jju\]}l
Xe = [Uyr, Uyr, ] 00”0 (2.4.12)
Svrz Uvrg

15



oo o
erl 0 T
Z
Ye= [erlvvrz]D oo~ o (2.4.13)
0 Rw T
O O O B
R
where =diag(s ,s ,...,s )and vrl =diag(r ,r,.....,r),S 2,
0 g 1 2 m U H 1 2 t vri
0 Sy 0 Ry,

2
Swr, < 0 and Ryr; 2 0, Ry, < 0. The ROMs are computed by partitioning the trans-

formed realization.

2.4.4 Imran et al’s Technique

Imran et al. [21] introduced a method to subtract the least negative eigenvalue from
all eigenvalues to ensure positive/semipositive definiteness of input and output related
matrics to guarantee stability. The proposed transformation simultaneously diagonal-

ized the controllability and observability Gramians Pim, Qim respectively,
T QT =T 'PinT ' == =diag{01,02,...,0n} (2.4.14)

where Om 2 One1, M=1,2,3,...,n—1, controllability and observability Gramians

satisfy the following Lyapunov equations

APim+PinAT+BinBT, = 0(2.4.15)

ATQim+QimA+C"iCim = 0(2.4.16)
The fictitious input an output related matrices Biy, and Ciy, respectively, are defined as
Bim = Uin(S —snl)* fors, <0(2.4.17)

Cim=(R-r,)”>V".~ forr,<0(2.4.18)
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Theterms Uiy, S,Vimand Rare computed by EVD of symmetric matricesxe:UimSUTim
and Ye = VinRV{ . where S = diag(s:,S2, ,Sm) 20 and R =diag(ry,r2, ,rn) 20,
S1 25 =832,...5,and ry 2 rp 2r3 2, r, . The ROMs are computed by partitioning

the transformed realization.

2.5 Frequency Limited Model Reduction Technique

Gawronski et al. [22] presented a method in which the frequency weights are not
directly predefined, but approximation is considered in desired frequency interval for
linear continuous time systems. Let controllability Pg; and observability Qg; Grami-
ans are defined for limited frequency interval as Pgj = P(w2) — P(w1) and Qg j =

Q(w2) —Q(w,) respectively. The Gramians are expressed using Parseval’s relationship

as
_1ij . “1ppT(_; Ty-1
Psj= ) (jw L-A) BB (-jw ITA") "dw (2.5.1)
01
1jw2 - TN-1~T -1
QGj:_ZI‘I w(—Ja) L-A") C'C(jw I TA) dw (2.5.2)
—w1

These Gramians are the solution of the following Lyapunov equations

APGj+PgAT +X4=0(2.5.3)

ATQgj+QgjA+Yy=0(2.5.4)

where
Xg = (So(@2) —So(@1))BB' + BB’ (S;(w2) — Sy (1)) (2.5.5)
Yy = (S5 (W2) = Sg(@1))C'C +CTC(So(w2) — So(@1)) (2.5.6)
So(w) :—zjnln(( jol+A)(—jol+A)™) (2.5.7)
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m < nand t < n are the number of the positive eigenvalues of Xy and Yy matrices
respectively. Sy(w) is the conjugate transpose of So(w). The contragredient matrix T
is obtained as

TQT=T'PT =X (2.5.8)

The ROM is obtained by G, = C,(sl —=A,)™B, + D after applying the transformation

and partitioning the original system.

Remark 2. In Gawronski et al. [22], for a desired frequency range, the symmetric
matrices Xq and Y4 are not sometimes positive/semi positive definite that lead to yield

unstable ROMs [23].

2.6 Existing Stability Preserving Frequency Limited Tech-

nigques

2.6.1 Gugercin et al’s Technique

Inspired by Wang et al.[20] frequency weighted MOR technique, Gujercin et al. [23]
modified the Gawronski et al. [22] technique to achieve stability by introducing abso-

lute function. The new controllability Py and observability Q4. Gramians respectively,

18



acquired as the solution to the following Lyapunov equations

APga+PgaAT+BgaBy, = 0(2.6.1)

ATQu+QuA+C L = 0(26.2)
The contragredient matrix T obtained as
T'QgaT =T 'Pg T == =diag{o1,02,...,0n} (2.6.3)

where 0y, 2 Ow+, W=1, 2, 3, ...n — 1.

The new fictitious input Bga and output Cy, matrices are defined as, By = Uga|Sga|1/ 2
and Cya = |Rga| Y2V ', respectively. The terms Uga, Sga, Vga and Ry, are computed by or-
thogonal EVD of symmetric matrices Xy =UgaSgaUgzand Yg=VgaRgaV' gyhere Sga =
diag(si, Sz, ...,Sn) 20 and Rga = diag(r, rz, .....,n) 20, |S1| 2 [S2| = s3] 2,...]S4| and

[ri] = |r2] 2 |rs| 2,...]ra|. The ROMs are computed by partitioning the transformed

realization.

2.6.2 Ghafoor et al’s Technique

Inspired by Varga et al.[12] frequency weighted MOR technique, Ghafoor et al. [24]
modified the Gawronski et al. [22] technique respectively, to achieve stability by ignor-
ing negative eigenvalues and retaining only positive values. The new controllability Pg,
and observability Qga Gramians respectively, acquired as the solution to the following

Lyapunov equations

APga+PgaAT +BgaBy, = 0(2.6.4)

A'Qu+QuA+C G = 0(2.6.5)
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The contragredient matrix T obtained as
TTQuaT =T Py T T == =diag{01,0%, ...,00} (2.6.6)

where oy 2 O+, W=1,2,3,..n—-1.

2.6.3 Imran et al’s Technique

Inspired by Wang et al.[20] and Varga et al.[12] frequency weighted MOR techniques,
Gujercinet al. [23] and Ghafoor et al. [24] modified the Gawronski et al. [22] tech-
nique respectively, to handle the issue of unstability. Later, Imran et al. [25] applied the
frequency weighted MOR technique [21] on frequency limited interval to yield stable
ROMs with less approximation error. Imran et al. [21] introduced a method to subtract
the least negative eigenvalue from all eigenvalues to ensure positive/semipositive defi-
niteness of input and output related matrics to guarantee stability. The proposed trans-
formation simultaneously diagonalized the controllability and observability Gramians

Pim: Qim respectively,
TT QimT :T_lpimT_T =5 = diag{o‘l’ 0,..., o-n} (267)

where Om =2 One1, M=1,2,3,...,n—1, controllability and observability Gramians

satisfy the following Lyapunov equations

APin+PinAT +BimB],, = 0(2.6.8)

ATQin+QinA+C .Cin = 0(2.6.9)
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The fictitious input an output related matrices Biy, and Ciy, respectively, are defined as

Bim = Uim(S =snl)*? f or s, <0(2.6.10)

Cim=(R-r,DY2VT~ forr,<0(2.6.11)

The terms Ui, S,Vim and R are computed by EVD of symmetric matrices Xe = Uim.SUT
and Ye = VinRV] . where S =diag(si, S, ...,Sm) 20 and R = diag(r, rz,......, ) =0,
S128p2S32,..5pand ry 2r, 2r3 2, ......... rn . The ROMs are computed by partitioning

the transformed realization.

21



Chapter 3

Proposed Techniques

In this chapter the new proposed methods are being applied on frequency weighted
and frequency limited interval Gramians-based model reduction techniques to compute
least frequency-response error and easily calculable priori error bound as compared to
existing stability conserving frequency weighted (Wang et al.[20], Imran et al. [21])
and frequency limited (Gujercin et al.[23], Ghafoor et al.[13], Imran et al.[25]) model
reduction techniques. These Gramians based schemes are proposed for LTI continuous-
time systems.

The pioneer frequency weighted MOR scheme for continuous-time systems proposed
by Enns [10] computes lowest frequency-response approximation error but it yields
unstable ROMs, due to some input/output related matrices that are not conserved to
be positive or semi-positive definite. Same is the case with frequency limited model
reduction scheme, the Gawronski et al.[22] also capitulates lowest frequency response
error but computes unstable ROMs. Whereas, the proposed methods yield stable ROMs
with less approximation error by building some variations in X; and Y, matrics to ensure
the positive/semi-positive definiteness of input/output related matrics respectively, in

MOR schemes.
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3.1 New Frequency Weighted MOR Tehniques

Leta new controllability Pz and observability Qz, Gramians respectively, are calculated
by solving the following Lyapunov equations:

AP; + P,A"T + Bz BT =0(3.1.1)
k k k Zk

ATQ; +Q;A+C"C; =0(3.1.2)
k k Zk  «k

where k = 1, 2. For indefinite symmetric matrices Xz and Yz the new input, output

related matrices are defined as Bz and Cz,

Uz, SY° fors,>0
B, = (313)

DUy, (sin(Sy,) -S,)2 fors, <0

DUZﬁZZ fors,20
Bz, = (3.1.4)
DUz, ((exp(1/Sz,))")?  fors, <0
and
ORYAv] forr,=0
Cy= 7 ” (3.15)
T(sin(Rz,) —Rz,) VT 2 forr,<0
/2,71
_DRzl vy, forr,=0
Csp, = (3.1.6)

D((exp(I/RR))YANT, forr <0
where n is the order of the system matrix A and the terms Uz, , Uz,, Sz;, Sz,, Vz;, Vz,,

Rz, and Rz, are attained from following symmetric matrices,

l N
X,=[USU" ]1=[Uz Ug]V Sz 0 DU% O 317
0 S, 7 U
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oo O
T Rz, O i
Y;=[VRV 1=V Vz,]7 0o o (3.1.8)
Rz, W
where
Sz, =diag(s,.....,Sm), Sz, = diag(Sm+1,Sm+2 ........ +Sn),
Rz, =diag(ry, ........ 1), Rz, =diag(resa, ez ... )

Remark 3. When Xg>0andYy>0,Bz; =S; 52 5nd C,= RY2\T
k k Zk k Zk  Zk

Let a contragradient transformation matrix T is derived as

T Qa Tz = TP, T =diag(01, 05 - 0y) (3.1.9)
Where O 2 O, m=1,2,3,......... ,n—=1, 0y > 0j+:1. A ROM {A11,B1,C4,D} is at-
tained by portioning the transformation realization as -
O O
B1
TIAT = ]All Ab  TB=
20, U 2z 0O
21 Az B,
3 )3
CTZk = C G Dzk =D (3110)

Remark 4. Since X; < BZ,BTZ& Y,<C’ £z,Pz >0andQz, > 0. Hence, the realization

(A, Bz ,Cz) is minimal and stability of ROM is conserved.
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3.1.1 Error Bound

Theorem 2. The following error bound holds for the proposed frequency weighted

MOR techniques,

IWo(S)(GolS) =Ga(S))Vi(S)lleo < 2IWo(S)Lz, loolKz Vi(s)lew 2. Om

m=n+1
U g

Cz,
if the following rank conditionsrank[B ~ B]=rank[B landrank = rank[C]

Zk Zy U 0 Zk
C
are satisfied.
where
- CVZlR;/Z forr,=0
Lz, = ' (3.1.11)
CVz,(sin(Rz,)-Rz,) ™ forr,<0
vy RZ_UZ forr,=0
Lz, = ' (3.1.12)
CVz, ((exp(1/Rz,)") ™ forr,<0
and
Hs iyt fors, 20
K= ° A n (3.1.13)
- (sin(Sz,) =(Sz,) 2UT" B fors, <0
Hgtulp fors, =0
Kz, = R ' (3.1.14)

- (exp(U/S,))UTB,, fors, <0

Proof. Astherank [B  B] =rank[B ] holds. By sub-

Cz,
]and rank =rank[C

Zk Zk O [] 7k
C
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stituting B1 = Bz, Kz, C1 = Lz Cz, ,B = Bz Kz.and C = Lz Cy, respectively computes

IWo(S)(G(S) —G(S))Vi(S)leo
= IWo(s)(C(sI-A) *B—C1(s1-A11) 'B1)Vi(S)lleo
= IWo(s)(Lz,Cz, (S| =A) Bz, Kz, —LzCz (I =A11) "Bz, Kz )Vi(8)lleo
= IWo(s)Lz, (Cz, (sI =A) "Bz, —Cz, (s| —A11) "Bz, )KzVi(s)llo

< IWo(S)Lz Nooll(Cz, (51 =A) Bz, —Cz, (sI =A11) "Bz, MeollKz,Vi(5) oo

If {A11,Bz,,Cz,, D} is ROM attained by splitting a balanced realization {A, Bz,,Cz,, D}, we
have from [20], [21].

n
I(Cz, (s! =A) Bz, —Cz, (s =A11) "Bz, )lleo <2 > Om

m=n+1

Therefore,

IWo(S)(GolS) =Go(S))Vi(S)lleo < 2IWo(S)Lz loolKz Vi(S)lew 2. Om

m=n+1

3.2 Frequency Limited MOR Techniques

Leta new controllability Pz and observability Qz Gramians respectively, are calculated

by solving the following Lyapunov equations:

AP; + P,A"+B;B" =0(3.2.1)
k k k Zk

ATQ; +Q,A+C" C; =0(3.2.2)
k k Zk k
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where

1Iw2 . 1ppT(_; Ty-1
P, 2_2,7 w(ja) b—A) BB (-jw ITA') dw
—w1
_1'[(‘)2 - T\-1~T Ay -1
Qz. =7, w(‘JCU L-A") "C C(jw I 7A) "dw
“wi

(3.2.3)

(3.2.4)

andk=1,2. For indefinite symmetric matrices Xz and Yz the new input, output related

matrices are defined as Bz, and Cz,

DUleZZ fors,20
le =
LUz, (sin(Sz,) —Sz,)Y* fors, <0
Hug, sy fors,20
Bz, =
DUz, ((exp(1/S,))")*  fors, <0
and
U2, T
c _DR21 V21 forr,=20
71
T(sin(Rz,) =Rz, )YAVT 2 forrm<0
/2,7
_DRZ1 Vz1 forrh,20
Cz, =

S ((exp(U/R )N, forr, <0

(3.2.5)

(3.2.6)

(3.2.7)

(3.2.8)

The terms Uz,, Uz,, Sz,, Sz,, Vz;, Vz,, Rz, Rz,, are attained from following symmetric

matrices,
U] N [J

Sz, 0 T
Xz:[USUT]:[uzluZZ]D 4 DDUZ1D
0

Sz, -I;

[]

00 O
T Rzl 0 VT

Y;=[VRV 1=V Vz,]" 0020
0 Rz2 \é-lz-
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where

Remark 3: When X;>0andY,>0,B; =S; 52 and C,= RY2\T
k k Zx k Zx  Zx

Let a contragradient transformation matrix T is derived as
Tsz Qz Tz, :T_zlkPZ I_szzdiag(Ul,UZ' *+On) (3.2.11)
Where 0y 2 Ome1, m=1,2,3,......... ,n—1, 0y > 0j+1. A ROM {A1,B1,Cy, D} is at-

tained by portioning the transformation realization as
U U U 0O

TIAT - ]A11 A1z T-1g = B1
[
Ze A Zk Hp
21 Az B,
2 2
CTa= C; C, , D (3.2.12)

Remark 4: Since X; <BzBY, Y, <C" £, Pz , >0andQz, > 0. Hence, the realization

(A, Bz,,Cz) is minimal and stability of ROM is conserved.

3.2.1 Error Bound

Theorem 3. The following error bound is hold for the proposed frequency limited MOR

techniques, where the weights are not explicitly defined.

n
1Go(s) =Go(S)lleo < 2lLz MKz I 2 Om

m=n+1
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0 0

Z
Proof. If the rank conditions rank [B B] = rank[B ] and rank =rank [C]
Zk Zx U U Zk
C
are satisfied, substituting B; = Bz, Kz,, C1 = LzCz, and using the equations (3.1.11-

3.1.14) respectively, yields

1(Go(S) =G(8))llo
= I(C(sI-A) *B-C1(s1-A11) 'B1)lleo
= (L2 Cz (5! =A) "Bz Kz —Lz,Cz, (S =A11) "Bz, Kz, )llo
= Lz (Cz (51 =A) Bz, —Cz, (s =A11) Bz, )Kz, lloo

< Lz, (Cz, (sI =A) Bz, —Cz, (sI =A11) "Bz, )leolKz, I

The RoM {A11,Bz,,Cz,, D}is attained by splitting a balanced realization {A, Bz,,Cz,, D},
we have from [20], [21].

n
I(Cz, (s =A) "Bz, —Cz, (S| —A11) "Bz, )lleo <2 > Onm
m=n+1

Therefore,

n
1Go(S) =Gy(S)lleo < 2lIL7, MKz I > Om

m=n+1

Remark 5. Two choices of Kz, € {Kz,;Kz,} and Lz, € {Lz;Lz,} form basis to derive

error bounds for each proposed technique.
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3.3 Algorithms

The algorithms for proposed work are as follows

Algorithm 1: Generation of New Input and Output Matrices

Input : Negative Diagonal Matrices S(m), R(t)
Output: Positive Diagonal Matrices S(m), R(t)
1 form <« 1:ndo

2 if S(m) < O then

3 S(m) < (sin(S(m)) —-S(m))*?  // for Technique I
4 S(m) «— (exp(1/S(m))*’? // for Technique II

5 else

6 | S(m) « s(m)

7 end

send

9 fort<— 1 :ndo

10 if R(t) < Othen

11 R(t) < (sin(R(t)) - R(t))*¥? // for Technique I
12 R(t) «— (exp(1/R(t))¥? /] for Technique II

13 else

14 | R@® <« R(®)

15 end

16 end

17 return S(m), R(t)

Algorithm 2: Frequency Weighted MOR Algorithm

Input: Original Model(A,B,C,D), Input-Weights(Ax, Bx,Cx,Dx), Output-Weights (Ay,By,C,,Dy)
Output: Reduced Model (A, BZ,CZ,DZ)

1 ComputeA P, +PAT =By B' forcontrollability GramianP,;

zComputeA/Qy+Qy -C' Cyjorobservab1l1tyGram1anQy,

s ComputeX,=—(AP.+P.A")andY,= (A'Q.+Q.A)forsymmetric

matrices;
+Decompose X, and Y, into [U SUT] and [V,R,V "] using SVD;

sProceed with steps 1-17 in Algorlthm 1to compute new input/output matrices;
2 cOmpt b I
8 ComputeAPZ( +P; A = —Bz B' foEnewcontrollabllltyGram1an Pzy

s Compute A’ Qz, +Qz =-Cc'C fornewobservab1l1tyGram1an Qz;
10Compute the contragrad1ent'&transformanon matrix T' Q; T; = Fo P, T

k kK k Zy k Zg

11 Compute the balanced realization as Ac=T1A, T, Bi = T'lBZ,Ct C,T;

12 Select ROM and truncate A, B, C to compute reduced realization A,, B, and C,
anditisD,=D;

)
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Algorithm 3: Frequency Limited MOR Algorithm

Input: Original Model(A,B,C,D), Desired Frequency Ranges(w;, ;)
Output: Reduced Model (A;, B,,C,,D;)
1ComputeSy(w;) <7 (Gl + A)(~jeorl + A):i)§
2Compute Sy(w,) In((jeozl + A)(Zwal + A));
3 Compute Xg «— (Sp(z) = Sy(@1))BB’ + BB (Sj(0z) = Si();
+ ' T T .
o e S SS S an a Y  svo
6 Proceed with steps 1-17 in Algorithm 1 to compute new input/output matrices;

; EOMBHE Bz = HdiRRC: mY o
9 Compute APz +Pz AT =-B B fognew controllability Gramian P ;

10 ComputeA’Qz +Qz A=-C’ C; for newobservability GramianQz ;

11 Compute the contragradient ‘transformation matrix T Q, T, =T p, T 'T;
Zx k Kk Zx k Zx

12 Compute the balanced realization as Ar = T™A,T, Be = T7'B,,Ct = C,T;
13Select ROM and truncate A, B, C to compute reduced realization A, B, and C,
anditisD,=D;
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Chapter 4

Numerical Simulations and Discussion

In this chapter, the proposed techniques are applied on some practical examples of
frequency weighted and frequency limited model reduction techniques to show the ac-
curacy and efficacy of the presented work. Examples are taken form literature and com-
parison of the proposed techniques have been done with existing techniques to illustrate

the effectiveness of the proposed techniques.

4.1 Frequency Weighted MOR Simulations

Example 1: Consider a 5" order orignal stable system [39] with stable frequency
weights V(s) = <299 and Wy(s) =_19, [40]. The transfer function of the original

system is described as

2s° +4s* + 800s® + 120052 + 6e*s + 4¢*

G
S =
o(S) S + 2254 + 440s3 + 6600s2 + 3.8e4s + 2.2e>

The corresponding results of the given system are presented in Table4.1and it can be
observed from the results that the proposed techniques capitulate minimum frequency-

response approximation error with calculable priori error bound as compared to existing
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Table 4.1: Error and Error Bounds Comparison for Example 1

RO | Enns Wang [20] Imran [21] Proposed-I Proposed-I11
[10]

Error | Error | Bound | Error | Bound | Error | Bound | Error | Bound

1 |4.7097| 5.6073| 52.915| 5.6748 | 30.503 | 5.2837 | 513.08 | 5.2716 | 141.9

3 3.5208 | 3.5455| 24.413 | 5.3409 | 14.137 | 3.5293 | 234.52 | 3.5293 | 64.829

4 | 3.5068| 7.3238| 12.141| 11.269 | 6.8762 | 6.342 | 116.75| 6.427 | 32.275

stability preservation techniques [20,21].

Example 2: Consider a 6™ order original stable system [21] with following stable input-

output frequency weights

[ U U]
-2.25 -0 2 05 1.3 0. 00
AiZD ],Bi:D jCi:j % ,Di:D L
0 -0.05 0203 0101 00
B [l L]
-4.2 0 1 05 1.3 0. 00
0= " J,Bo=" Co=" u Do=10 L
0 -0.025 0203 0407 00

The results of the presented system are shown in Table4.2and it can be observed from
the results that the proposed techniques compute least frequency-response approxima-
tion error with computable priori error bound as compared to existing stability conser-
vation techniques.

It can be stated from the Table4.2that the 1 * order model obtained using Enns [10]
technique is unstable having pole location at s=0.0164 whereas, the proposed tech-
niques, Imran et al. [21] and Wang et al. [20] have poles with negative real parts that

lead to compute stable ROM.
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Table 4.2: Error and Error Bounds Comparison for Example 2

RO | Enns Wang [20] Imran [21] Proposed-I Proposed-I11

[10]

Error | Error | Bound | Error | Bound | Error | Bound | Error | Bound
1 unstable | 2462.8| 6718.1| 2724.4| 30109 | 2362.6| 35378 | 2028.4| 93130
2 12.742 | 136.68| 2662.5| 123.14| 6768 | 136.46| 14152 | 129.69| 41295
3 5.9973 | 399 | 718.24| 225.28| 3733.8| 36.545| 3248.7| 16.501| 8103
4 0.24849 | 16.811| 287.91| 141.42| 1745.5| 11.034| 1317 | 4.89 | 3241.6
5 .079136 | 5.8769| 68.684| 9.417 | 415.71| 3.7963| 302.23 | 1.7825| 765.42

Example 3: Consider a Linear Quadratic Gaussian (LQG) controller for a four-disk sys-

tem [24]. The system plant to be controlled is represented as LTI, Single-Input-Single-

Output (SISO), unstable and non-minimum phase an 8" order system. The transfer

function of this plant is described as

0.006443s+0.00232s* +0.07125s> +5° +0.10465 +0.9955

G

o(8)=

s8+0.161s’+6.004s6+0.58215°+9.983s%+0.4073s3+3.982s2

A full order stable controller Ky(s) using standard LQG technique is definedas

Ko(s)=

0.1116s’ + 0.0224s% + 0.6711s° + 0.0918s*
+ 1.119s° + 0.0902s® + 0.4485s + 0.018

s® + 1.313s’ + 6.853s® + 7.359s° + 14.09s*
+ 11.43s° + 9.177s? + 4.49s + 1.377
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Table 4.3: Error and Error Bounds Comparison for Example 3

RO| Enns Wang [20] Imran [21] Proposed-I Proposed-11
[10]

Error | Error | Bound| Error | Bound| Error | Bound| Error | Bound

1 | unstable| 4.7523| 89.108| 3.7822| 3198.2| 4.6593 | 2690.1| 4.3577 | 158.01

2 47908 | 1857 | 63.67 | 1.3042| 2180.1| .59125 | 1916.9| .39233 | 111.75

3 48602 | 5.2643| 40.137| 5.5405| 1524.3| 5.2035 | 1212 | 4.4625 | 72.001

4 12204 | .11569| 20.482| 1.098 | 894.81| .11593 | 616.37| .11816 | 34.706

5 12287 | 1.6913| 13.045| 2.6299| 485.8 | 1.6325 | 393.28| .76322 | 22.092

6 | .028233| .02806| 6.2782| 1.0335| 67.92 | .028058| 190.29| .028112| 10.615

7 | .028184| .48441| 3.1295| 3.4767| 18.979| .46831 | 94.854| .21744 | 5.2982

Let the input-output frequency weights be

Vx(8)=(1+Go(S)Ko(s)) ™, Wi(s) = (1+Go(8)Ko(S)) " Gol(s)

The comparison of the approximation error and error bounds is shown in Table4.3.
However, it can be noticed from the Table4.3that the 1 * order model build by Enns
[10] gives unstable ROM as the pole is located at s = 0.0003072 whereas, the Wang et
al.[20], Imranetal.[21] and the proposed techniques produce stable ROMs. Although
Enns[10] canyield unstable ROMsas shown in Tables4.2and4.3, itcomputes lowest

frequency-response approximation error.

Example 4: Consider a hospital building model sparse system with 48™ states [41].
The reduction of the given model is performed at different orders to show the efficacy

of the proposed techniques. The model reduction is done using the following stable
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Table 4.4: Error and Error Bounds Comparison for Example 4

RO

Enns
[10]

Wang [20]

Imran [21]

Proposed-I

Proposed-11

Error

Error

Bound

Error

Bound

Error

Bound

Error

Bound

.00092531

22.812

218.39

1.4119

13655

14381

3928

.0637

55.453

7.6812e'5
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input/output weights transfer functions respectively,

Vi(s) = (0.6)/(s+0.6),  Wo(s) = (s+3.201)/(s +0.0006)

Table4.4illustrates the corresponding results of the given model at that reduced orders
where the approximation error is significant and it can be noticed from the given model
that the stable ROMs build by the proposed techniques capitulate minimum frequency-
response approximation error as compared to existing stability conservation techniques

with computable error bounds.
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4.2 Frequency Limited MOR Simulations

Example 1: Consider a random model sparse system [41]. It is a 200" order system
with desired frequency interval [15, 24] rad/s. The comparison of the error function
singular values 0[G20o(s) ~G4s(s)] is shown in Fig.4.1, where Gyoo(S) is original or-

der stable system and Gs(s) is the 45™ order ROM that is derived using Gawronski
etal. [22], Gugercin et al. [23], Ghafoor et al. [24], Imran et al. [25] and proposed
techniques. Fig.4.2shows the close-up view of the error plot in the desired frequency
range [w1, 2] =[15,24] rad/sto illustrate the efficacy of the proposed techniques’ re-
sults. It can be noted that the proposed techniques capitulate comparable approximation
error,withinthedesiredfrequencyrangeascomparedto Gawronskietal [22] technique
andlowfrequency response approximation-errorascomparedto stability preservation

techniques [23,24,25].

Singular Values

Singular Values (dB)

\f [—— Gawrnnskielal.[‘?fz]l
————— Gugercin et al.[23]
=200 — — = Ghafoor et al.[24]

Imran et al [25]
Proposed |
+——+Proposed Il

3

107! 107 101 102 10 10* 10° 108
Frequency (rad/s)

Figure 4.1: 0[G0(S) —Gus(s)] in [w; = 15, w, = 24]

Example 2: Consider a 50" order stable high pass Chebyshev type-2 filter with stop-

38



Singular Values
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Figure 4.2: Close-up view of 0[Gag(S) —Gas(s)]

band edge frequency 38.5 Hz and stopband ripple 32.02 dB [42]. The comparison of
the error function singular values 0[Gso(S) —G21(S)] is shown in Fig.4.3, within the
desired frequency range [w1, @] =[9,20] rad/s, where Gso(S) is original order system
and G,4(s) is 21™ order ROM that is constructed using Gawronski etal. [22], Gugercin
et al. [23], Imran et al. [25] and proposed techniques. Fig.4.4shows the close-up
view of the error plotinthe desired frequency range [w1, w,]=[9,20] rad/sto elaborate
the efficacy of the proposed techniques . Fig.4.4illustrates the computing of lowest
frequency-response approximation error, within the desired frequency range as com-
paredtostability preservationtechniquesincluding Gugercinetal. [23], Ghafoor etal.

[24] and Imran et al.[25].

Example 3: Consider a 30" order high pass stable Chebyshev type-2 filter with stop
band edge frequency 27.5 Hz and stop band ripple of 13.02 dB [42]. The comparison

of the error function singular values 0 [Gso(s) —G12(s)] is presented in Fig.4.5within
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Figure 4.3: 0[Gso(S) —G21(s)] in [w1 =9, w, = 20]

desiredfrequencyrange[wi, 2] =[9,15] rad/s, where Gso(s) istheoriginal orderstable
system and Gy,(s) is 12" order ROM that is capitulated using Gawronski et al. [22],
Gugercin et al. [23], Imran et al. [25] and proposed techniques. Fig.4.6illustrates

the close-up view of the error plot in the desired frequency range [wi, W] =[9,15]
rad/s to show the efficacy of the proposed techniques’ results. Fig.4.6demonstrates

the computing of lowest frequency-response approximation error, within the desired
frequency range as compared to stability preservation techniques including Gugercin et

al. [23], Ghafoor et al. [24] and Imran et al. [25].

Example 4: Consider a 20" order type-2 Chebyshev high pass stable filter with stop-
band edge frequency 35.5 Hz and stopband ripple of 13.02 dB [42]. The comparison
of the error function singular values o[G,o(s) —G11(s)] is presented in Fig.4.7within

desired frequency range [w1, @] =[13,29] rad/s, where G,o(s) isthe original order sta-
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Figure 4.4: Close-up view of g[Gs(s) —=G21(S)]
Table 4.5: Poles Location of Frequency Limited ROMs
Techniques Poles of Example 5
Gawronski et al. [22] -2.7147 £8.9013i -11.6622, 8.9836
Gugercin et al. [23] -0.9625 +16.6018i -1.3339 £9.5342i
Ghafoor et al. [24] -0.2614 £15.1758i -1.1222 + 9.6005i

Imran et al. [25] -0.6544+17.7506i -1.5397 + 12.7585i

Proposed-I -2.5532 £17.0912i -2.4541 + 12.1899i

Proposed-I1 -2.7070 = 17.0382i -2.6278 = 12.0768i

ble system and Ga1(s) is 11" order ROM that is derived using Gawronski et al. [22],
Gugercin et al. [23], Ghafoor et al [24], Imran et al. [25] and proposed techniques.
Fig.4.8illustrates the close-up view of the error plot in the desired frequency range

[w1,w2] =[13,29] rad/sec to show the efficacy of the proposed techniques’ results.
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Figure 4.5: 0[Gzo(S) —G12(s)] in [w1 = 9, w, = 15]
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Figure 4.8: Close-up view of g[G(s) —=G11(S)]
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Figure 4.8: Close-up view of 0[G(s) —G11(s)]
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Figure 4.9: 0[Gg(s) —G4(s)] in [w1 =5, w, = 12]

Example 5: Consider an 8" order high pass stable Chebyshev type-2 filter with stop-
band edge frequency 17.5 Hz and stopband ripple of 11.2 dB [42]. The comparison
of the error function singular values o[Gg(s) —Ga4(s)] is presented in Fig.4.9within

desired frequency range [w1, W] =[5, 12] rad/s, where Gg(s) is original order stable
system and G4(s) is 4" order ROM is derived using Gawronski et al. [22], Ghafoor et
al. [24], Gugercinetal. [23], Imran etal. [25] and proposed techniques. The close-up
view of the error plot in the desired frequency range [w1, W»] = [5,12] rad/s is shown
inthe Fig.4.8. Itcan be observed that the proposed techniques yield lowest approx-
imation error withinthe desired frequency range as compared to stability preservation
techniques [23] ,[25], [24]. The poles locations of the 4™ order ROM is presented in
Table4.5. It can be seen from the Table4.5that the 4 ™ order model is derived using
Gawronskietal. [22] technique isunstable having pole location ats =8.9836 whereas,

the proposed techniques, Imran et al. [25] and Gugercin etal. [23] and Ghafoor et al.
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Figure 4.12: Close-up view of 0[Gg(s) —G1(s)]

Table 4.6: Poles Location of Frequency Limited ROMs

e +—+Proposed Il

Techniques ROMs of Example 6 Poles
Gawronski et al. [22] 207208 6.4576
Gugercin et al. [23] o -0.0035
Ghafoor et al. [24] e -0.000091139

Imran et al. [25] b -0.0264

Proposed-| e -0.0441

Proposed-II L -0.0237

[24] produce stable ROMs.

Example 6: Consider a 6™ order stable three mass mechanical system [43]. The com-

parison of the error function singular values o[Gg(s) —G1(s)] is presented in Fig.4.11

withindesired frequency range [w1,w2] =[13,17] rad/s, where Gg(s) isthe original or-
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der system and Gi(s) is 1* order ROM is computed using W.Gawronski et al. [22],
Gugercinetal. [23], Imranetal. [25] and proposed techniques. The close-up view of
theerror plotinthe desired frequency range [w1, w»] =[13,17]rad/sisillustrated inthe
Fig.4.12. The poles locations of the 1 * ROM with reduced transfer function is pre-
sented in4.6.1t can be noticed from the Table4.6thatthe 1 * order model derived using
Gawronskietal. [22] technique isunstable having pole locationats=6.4576 whereas,
the proposed techniques capitulates stable ROM with lowest frequency-response ap-
proximation error. Although Gawronski et al. [22] may compute unstable ROMSs as

showninTables4.5and4.6, ityields lowest frequency-response approximation error.
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Chapter 5

Conclusion

In this thesis, two new frequency weighted and frequency limited-interval Gramians-
based MOR are proposed for the LTI continuous-time systems. The proposed methods
yield stable reduced systems with least frequency-response approximation error and
computable error bounds to overcome the problems of the model reduction techniques.
The proposed techniques are also illustrated with help of numerical simulations and
examples are taken from the literature. The simulation results demonstrate that the
proposed methods are fruitful and comparable with some other existing model reduction

techniques.

5.1 Future Work

While developing this thesis, some recommendations are indicated for future work,

which are listed below:

«In this thesis, the proposed methods have considered the model reduction of
Single-Input-Single-Output (SISO). It is interesting to see the results for Multi-

Input-Multi-Output (MIMO) systems.
«In this thesis the proposed MOR techniques have been applied on stable system.
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In future the proposed methods can be extended for unstable systems.

«In this thesis the proposed techniques use BT to process the frequency weighted
and frequency limited-interval Gramians based model reduction process. In fu-
ture work, instead of using BT the proposed methods can be used for different
model reduction techniques like Pade approximation,Hankel norm and Krylov

etc.

«The proposed methods have been considered for LTI continuous-time system. In
future work, we have planned to see the results for discrete-time systems, non-

linear and time-variant systems.
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