
IMPROVED MODEL ORDER REDUCTION 

TECHNIQUES WITH ERROR BOUNDS 

 

 

 

 

 

 
 

 

 

 

 

 

By 

Shabana Bashrat 

 

 

 

 

A thesis submitted to the faculty of Electrical Engineering Department, Military College of 

Signals, National University of Sciences and Technology, Islamabad, Pakistan, in partial 

fulfillment of the requirements for the degree of MS in Electrical (Telecommunication) 

Engineering 

 
August2021 



i  

 

 

 

 

 

 

 
 

THESIS ACCEPTANCE CERTIFICATE 
 

 

 

 

Certified that final copy of MS Thesis written by Shabana Bashrat Registration No. 

00000206507, of Military College of Signals has been vetted by undersigned, found 

complete in all respect as per NUST Statutes/Regulations, is free of plagiarism, errors 

and mistakes and is accepted as partial, fulfillment for award of MS degree. It is further 

certified that necessary amendments as pointed out by GEC members of the scholar 

have been also incorporated in the said thesis. 

 

Signature:  

Name of Supervisor:   

Date:     

 

 
 

Signature (HOD):    

Date:    

 

 
 

Signature (Dean/Principal):    

Date:    



ii  

 

 

 

 

 

 
 

Declaration 

 
I hereby declare that work carried out in this thesis has not been submitted in support 

of any degree or professional qualification either at this institution or elsewhere. 



iii  

 

 

 

 

 

 
 

Dedication 

 
I dedicate this thesis to my loving parents and wonderful elder brothers for their love, 

endless support and motivation. 



iv  

 

 

 

 

 

 
 

Acknowledgement 

 
My sincere thanks goes to my supervisor Dr. Muhammad Imran for his constant en- 

couragement and dedicated guidance, which enabled me to undertake this research. 

This dissertation would not have been possible without his continuous support, patience 

and insightful analysis. Throughout the thesis writing process, his guidance and brain 

storming motivation remained with me like a beacon. I could not imagine having an 

enlightened mentor for my MS thesis. 

Besides my advisor, I also acknowledge others whose contributions are really signifi- 

cant. To Dr. Adil Masood Siddiqui, Dr. Abdul Ghafoor and Dr. Safia Akram, I am 

thankful for their encouragement, insightful comments, hard questions and their con- 

tributions as members of my committee. Moreover, I would like to express my sincere 

gratitude to Dr. Abdul Wakeel and Ma’am Sammana Batool for their guidance and 

suggestions. 

My appreciation extends to my lovely friends, Samina Kanwal and Kinza Kazmi whose 

interest and encouragement enabled me to accomplish this herculean task. 

Above ground, I am indebted to my family. Through the many years, my parents have 

always supported me, encouraged me to explore new directions in life. And finally, my 

deepest gratitude goes to my lovely brothers and sisters for their motivation, support 

and patience during study. 



v  

 

 

 

 

 

 
 

Abstract 

 
Model Order Reduction (MOR) is a computational technique to build low order system 

from high order system by capturing the original properties of the actual system. The 

demand of MOR is ever higher during the study of dynamic behavior of the complex 

system. Because the complex high order systems impose difficulties e.g slow compu- 

tations and expensive storage requirements. So, MOR techniques facilitate to reduce 

these difficulties in order to provide fast computations and less storage requirements in 

the process of designing and simulation of large- scale physical systems. MOR capitu- 

lates Reduced Order Models (ROMs) which conserve the input output behavior of the 

original physical system. Construction of stable ROMs with low approximation error 

between original and compact (reduced) model is the main goal of MOR. MOR can be 

done in frequency-domain as well as in time-domain. Remarkable research work has 

been done on various directions of MOR to build ease in the designing, simulation and 

analysis of the complex dynamic systems. The precedent MOR techniques mostly have 

limitation of un-stability, large approximation error and lack of a priori error bounds in 

ROMs. Hence, the aim of this thesis is to construct improved model reduction tech- 

niques in order to overcome the existing problems of model reduction techniques in 

frequency domain.  The proposed techniques guarantee the preservation of stability   

in ROM and low frequency-response approximation error with easily computable er- 

ror bound as compared to existing MOR techniques. In this thesis, firstly frequency 

weighted MOR problem is developed, then improved frequency weighted model re- 

duction techniques are proposed for continuous-time systems. A frequency limited 
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Gramians-based MOR technique is also illustrated with error bounds for continuous- 

time systems. The applicability of the presented work is demonstrated in the context of 

some practical numerical examples to show the accuracy and efficacy of the proposed 

methods. 
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Chapter 1 
 

 

 

Introduction 

 
This chapter presents a brief introduction to the work accomplished in this thesis. Sec- 

tion1.1explains the main concept of MOR, the main motivation of thesis is explained 

in Section1.2. Section1.3highlights the shortcomings of the existing literature, the 

problem formulation is discussed in section1.4. The main contribution of the thesis is 

elaborated in section1.5. Finally, section1.6gives the idea regarding the organization 

of the thesis. 

 
 

1.1 Main Concept 

 
MOR is associated with extraction of a small-scale system that approximates the ac- 

curate behavior of a large-scale dynamical system at its predefined input and output 

parameters. The mathematical approximation techniques for large differential equa- 

tions (define the physical behavior of the systems) come in the frame to accomplish 

the process of MOR. Hence, the terms such as “reduced-bases approximation”, “retain- 

ing of high energy states”, “states truncation (having less effect on system response)” 

“balancing of the Gramians (controllability and observability )” and “order reduction” 

are associated with the concept of MOR. The theme of MOR, originally has been in- 

troduced in mathematics in the context of the differential equations. Later, MOR has 
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been carried over to the control system engineering and other fields such as civil engi- 

neering, chemical engineering, process engineering, aerospace engineering, earthquake 

engineering, mechanical and Very Large-Scale Integration (VLSI) circuits designing 

[1,2,3]. 

 
 

1.2 Motivation 

 
Simulations or computation science is considered as a reliable tool to identify, analyze 

and predict the dynamical behavior of the physical system. Computation science has 

great importance in today’s technological world. Computation science is regarded as 

third discipline other than the classical disciplines of theory and experiment . Computer 

simulations are now carried out for many chemical and physical processes on routine 

basis. Computer Aided Design (CAD) and virtual environments have been built in order 

to provide ease in the designing of new products to make the process faster, more reli- 

able and building less costly prototypes (validate the correct functioning of the designed 

system before it goes into production). Moreover, the building of a virtual prototype is 

absolutely cheaper and faster than generating a physical prototype. MOR is a computa- 

tional technique that speed up the simulations and make computationally expensive in 

terms of time and memory storage while preserving the original properties of the actual 

system [4,5,6,7]. 

 
 

1.3 Shortcomings of Existing Literature 

 
Balanced Truncation (BT) is the most common method in MOR techniques to capture 

low order model from high order model. BT not only ensures stability but also provides 

error bound for ROMs. The least controllable and observable states are discarded in 

BT and the most significant observable and controllable states are used to consider low 

order approximation of original system. Generally, Bt performs the reduction process 
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by using full range of frequency to compute the system’s response [8]. However, some 

applications like filter and controller reduction etc, it is preferred to consider approxi- 

mation error over a certain frequency range of interest as sometimes, the reduction error 

is more significant in particular range of frequency. This introduces the concept of fre- 

quency weighted MOR [9]. 

Enns [10] upgraded the BT technique by using frequency weights and this technique 

preserves the stability for single sided frequency weights (input/output) but it may not 

yield stable ROMs in case of both sided frequency weights. To handle this issue, many 

frequency weighted MOR techniques have been presented in literature [11,12,13,14, 

15,16,17,18,19,20]. 

Wang et al. [20] proposed a useful technique to achieve the stability of ROMs by en- 

suring input and output related matrices’ positive/semipositive definiteness by using 

absolute function. This technique is also applicable to controller reduction as the prece- 

dent techniques are not applicable to controller reduction due to zero pole cancellation 

and computes a priori error bound expression. Varga et al. [12] established stability by 

ignoring all negative eigenvalues and retaining only positive eigenvalues. 

Later, Imran et al. [21] introduced a method to subtract the least negative eigenvalue 

from all eigenvalues to ensure positive/semipositive definiteness of input and output 

related matrics to guarantee stability but it leads to large approximation error due to 

nullification of last eigenvalue. 

Gawronski et al. [22] simplified the frequency weighted MOR by considering the 

approximation in the desired frequency range instead of constructing weights. It is 

named as frequency limited MOR. In this technique, the controllability and observabil- 

ity Gramians are defined for limited frequency interval. But this technique also capitu- 

lates unstable ROMs for the original stable system. Moreover, it does not compute error 

bound. 

To solve the instability issue, Gugercin et al. [23] proposed a method to take absolute of 
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negative eigenvalues to ensure the positive or semi-positive definiteness of some input 

and output related matrices to achieve stability. Ghafoor et al. [24] achieved stabil-  

ity by ignoring all negative eigenvalues and retaining only positive eigenvalues. But 

[23,24] techniques do not affect the all negative eigenvalues equally that lead to large 

approximation error in some systems. Imran et al. [25] guaranteed the stable ROMs in 

desired frequency range by subtracting the least negative eigenvalue that ensure posi- 

tive/semipositive definiteness of input and output related matrics. Stability is achieved 

by existing techniques [23,24,25] but at the cost of large approximation error. 

 
 

1.4 Problem Formulation 

 
The pioneer frequency weighted and frequency limited interval-Gramians based schemes 

for continuous-time systems yield unstable ROMs, due to some input/output related 

matrices that are not conserved to be positive or semi-positive definite. Some existing 

techniques preserve stability but at the cost of large approximation error and poor error 

bounds. 

 
 

1.5 Contributions 

 
The main contribution of this thesis are as follows. 

 

• Proposed MOR techniques are developed for efficient reduction of continuous- 

time Linear Time-Invariant (LTI) systems. 

• Proposed techniques establish stable ROMs with less frequency-response approx- 

imation error and computable error bounds as compared to existing techniques in 

the literature. 

• Proposed techniques are applied on frequency weighted and frequency limited 
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interval-Gramians based MOR techniques. 

 
• Proposed techniques are applied on some practical examples of model reduction 

to show their efficacy and accuracy. 

 
 

1.6 Organization of thesis 

 
The rest of the thesis is organized as follows: 

 

• Chapter 2 presents a concise background on the main subjects relevant to this 

work such as, MOR for LTI continuous-time systems and their modelings, BT, 

frequency weighted background and its existing literature’s shortcomings and fre- 

quency limited existing literature’s problems. 

• Chapter 3 develops the proposed techniques algorithms for frequency weighted 

and frequency limited interval- Gramians based MOR that guarantee the stabil- 

ity of the ROMs with minimum frequency-response approximation error . Error 

bounds are also developed for frequency weighted problem involving predefined 

weights and without predefined weights. 

• Chapter 4 presents the numerical simulation and discussion to illustrate the appli- 

cability of the proposed solutions. 

• Chapter 5 presents the conclusions and future work. 
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Chapter 2 

 

 

Background and Literature Review 

 
This chapter illustrates the essential background information on which the presented 

work is formed: in particular, sections2.1and2.2recall the basic preliminaries regard- 

ing MOR procedure. Section2.3represents the basic procedure of model reduction 

using frequency weights and section2.4recalls some existing stability preserving fre- 

quency weighted MOR techniques. Finally, section2.5illustrates the frequency limited 

MOR method that simplifies the Gramians of the frequency weighted MOR technique 

to yield near-optimal ROMs and some existing stability preserving frequency limited 

techniques are discussed in section2.6. 

 

 

 
2.1 The General Idea of MOR 

 
Numerous artificial, mechanical and physical procedures can be defined by dynamical 

systems which can be applied for simulation or control. The modeling of many physi- 

cal systems can be done using a set of continuous Partial Differential Equations (PDEs) 

or discrete Ordinary Differential Equations (ODEs). Moreover, the transformation of 

PDEs is done into a system of linear/non-linear ODEs and approximation of the behav- 

ior of continuous system is acquired using discretization. However, the fast develop- 
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ments in large-scale dynamic systems like telecommunications systems, power systems 

and chemical systems impose complexity in the modeling of these systems which result 

in large system of ODE equations and make computationally expensive in terms of time 

and memory storage. MOR techniques are developed and efficiently used to speed up 

the computation time and save storage requirements for the fairly large-complex system 

[26,27,28,29]. The idea of MOR has been demonstrated as a valuable tool to obtain 

 

 
Figure 2.1: MOR Process 

 

efficacy in simulations while guaranteeing desired accuracy. Its applicability to real 

life problems has made it a poplar tool in many branches of science and engineering. 

The MOR process is explained pictorially in Figure1.1[1,30]. MOR is a technique to 

capitulate low order system from high order system by capturing the key properties of 

the original system. The main goal of MOR is to construct the stable ROMs with less 

approximation error [31,32,33,34,35]. 
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O 

2.2 Balanced Truncation 

 
Moore [36] proposed the BT method by combining the Principle Component Analysis 

(PCA) and Singular Value Decomposition (SVD) to cope with the structural instabilities 

of the dynamic systems. BT is also named as internally balanced realization and it is 

very significant in control engineering. In balanced realization, the less observable and 

controllable states are truncated and dominant states that affect the system’s response 

usefully are retained. BT yields stable reduced models with explicit error bounds. 

Consider a LTI continuous system in state space 
 

 

x (̇t) = Ax(t)+ Bu(t) 

 
y(t)r = Crx(t)r + Du(t) (2.2.1) 

 
where { x(t) ∈  Rn

, u(t) ∈  Rm
,y(t) ∈  Rp

 }, n, m and p represent order, number of inputs 

and number of the outputs of the system respectively. A is the system matrix of the 

dimension R
n×n

, B is the input matrix of the dimension R
n×m

, C is the output matrix   

of the dimension R
p×n

 and D is the feedforward matrix of the dimension R
p×m

. The 

transfer function of the original system is represented in equation (2.2.1) is 

 
Go(s) = C(sI −A)−1

B + D (2.2.2) 

 
The controllability and observability Gramians are defined mathmatically as 

 

P  = 
∞ 

e
At

 BB
T
 e

AT tdt (2.2.3) 
−∞ 

Q   = 
∞ 

e
AT tC

T
Ce

At
 dt (2.2.4) 

−∞ 
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t o 2 

The controllability Gramian PC and observability Gramian QO are the solution of fol- 

lowing Lyapunov equations 

 
APC + PCA

T
 + BB

T
 = 0 (2.2.5) 

 

A
T
 QO + QOA +CC

T
 = 0 (2.2.6) 

 
After calculating the SVD of the matrix, a non-singular transformation matrix T is used 

to obtain a balanced system from dynamic system by converting observability and con- 

trollability Gramians into equal and diagonal matrics [37]. 

 
T

T
 QOT = T−1

PCT
−T

 = Σ = diag{σ1, σ2, . . . , σn} (2.2.7) 

 

where σm ≥ σm+1, m = 1, 2, 3, . . . , n − 1 and formulate the Hankel Singular Values 

(HSV) of Σ that are used to measure the robustness of the observable and control- 

lable state [21]. The ROM is obtained by applying the transformation over the original 

system 

Â  = T −1
A  T =  

A11 A12
  , B̂ 

= T−1
B 

= 
B1 

,

 
 

Ĉt  = CoT = 
Σ 

C1    C2  

Σ 
, 

The transfer function of ROM is obtained as 

D̂t  = Do 

 
 

Gr(s) = C1(sI −A11)
−1

B1 + D (2.2.8) 

 

2.3 Frequency Weighted Model Reduction Technique 

 
The frequency dependence of the error is critical for the stability of a control system 

with respect to MOR error, especially in case of feedback controller design wherein 

A 21 A22 

t 
o 

B
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Ai 

Ci 

Bi 

Di 

Ao 

Co 

Bo 

Do 

12 

 
Cw

 

D  

 

Pv 12 e 

D wC D w 

the error should be small in crossover frequency ranges and can be larger in case of 

other frequency ranges. This motivated the Enns [10] to use weighted error criterion. 

Consider the transfer functions of the stable input weight Vi(s) = Ci(sI − Ai)
−1

Bi + Di 

and stable output weight Wo(s) = Co(sI − Ao)
−1

Bo + Do respectively. The augmented 

systems are given by 

 

 

 

 
where 

Go(s)Vi(s) = Ci(sI −Ai)
−1

Bi + Di (2.3.1) 

Wo(s)Go(s) = Co(sI −Ao)
−1

Bo + Do (2.3.2) 

 

   =

 

 

A BCv 

0 Av 

C DCv 

BDv 

 

Bv 

DDv 

 
 

  
 Aw BwC BwD   

 =   0 A B  
 

 
 

 

Let the Gramians 

 
Pe P12  

 
Qw QT 

 

Px = 
T 

, Qy = 
Q

 
Q 

 (2.3.3) 

 

satisfy the following Lyapunov equations: 
 

 

AiPx + PxA
T
 + BiB

T
 = 0(2.3.4) 

i i 

A
T
 Qy + QyAo +C

T
Co =  0(2.3.5) 

o o 

  

P

 

 

12 
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Expanding the blocks (1,1) and (2,2) respectively, of the Eq (2.3.4) and (2.3.5) yield 

 
 

APe + PeA
T
 + Xz =  0(2.3.6) 

A
T
 Qe + QeA +Yz =  0(2.3.7) 

 

where 

 
 

Xz =  BCiP
T
 + P12C

T
 B

T
 + BDiD

T
 B

T
 (2.3.8) 

12 i i 

Yz =  CT
 B

T
 Q

T
 + Q12BoC +C

T
 D

T
 DoC (2.3.9) 

o 12 o 

 
 

The contragredient matrix T obtained as 

 
 

T
T
 QeT = T−1

PeT
−T

 = Σ (2.3.10) 

 
where Σ formulates the HSV, diagonal elements and arranged in the descending order. 

By applying transformation and partitioning the original system,the ROMs are obtained 

by Gz(s) = C1(sI −A11)
−1

B1 + D. 

Remark 1. Since in Enns [10] technique, Xz ≥ 0 and Yz ≥ 0 are not always guaranteed, 

the ROMs may not remain stable in case of double sided frequency weights [20]. 

 

 

2.4 Existing Stability Preserving Frequency Weighted 

Techniques 

To handle the issue of instability in Enns method [10], a lot of stability preserving 

techniques have been proposed in literature. In this section we review some well-known 

frequency weighted stability preserving techniques . Stability is ensured by converting 

some input output related matrices into positive/semi positive definiteness matrices. 



12  

12 

12 

o Lo o Lo 

BwD + Q−
w 

1Q
T
 B 12 

2.4.1 Generalized Lin and Chiu’s Technique 

 
Lin and Chiu [11] modified the Enns’ method [10] to ensure the stability of the ROMs 

for strictly proper two sided weights. Let the transformations be applied to input output 

augmented system realization respectively, 

  
I P12Pv

−1  
   

I −Q
−
w 

1Q
T
    

TLi =  

0 I 
, TLo =  

0 I 

 

 

The input system of the transformed augmented realization is: 
 

 
Aˆ = T−1

A T = 
A X12 , B̂  = T−1

B 

= 
BL 

,

 

i Li i Li  

0 Av 

 Li i 

Bv 

 

 

Ĉi = CiTLi = 
Σ 

C   CP12Pv + DCv  

Σ 
, D̂ i = Di = DDv 

 

The output system of the transformed augmented realization is: 
 

 
Aˆ = T−1

A T =  
Aw    Y12 

 

 , B̂ 

 
= T−1

B =  
B

 

 ,

 

 

 

 
 

 
where 

Ĉo = AoTLo = 
Σ 

CL    Cw  

Σ 
, D̂ o = Do = DwD 

 

 

X12 = AP12Pv
−1 + BCv − P12Pv

−1Av 

BL = BDv − P12Pv
−1Bv 

Y12 =   Q−
w 

1QT  A + BwC − AwQ−
w 

1QT
 

12 12 

CL =   DwC −CwQ
−
w 

1Q
T
 

0 A 
Lo o o 

i 
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L 

L 

12 12 

o Lo o 

0 QE − Q12Q−
w 

1QT
 

P̂    = T P T = 

12 

The transformed augmented realization Gramians: 
 

1 T 
PE  − P12Pv

−1PT 0   i L
−
i i   L

−
i  

12 

0 Pv 
 

 
Q̂   = T T

 Q  T =  
Qw 0 

 

 

satisfy the following Lyupnov equations: 
 

 

AiPi + PiA
T
 + BiB

T
 = 0(2.4.1) 

i i 

A
T
 Qo + QoAo +C

T
Co =  0(2.4.2) 

o o 

 
 

Solving the (1,1) of the (2.4.1) and (2,2) block of the (2.4.2) results respectively 
 
 

APL + PLA
T
 + BLB

T
 = 0(2.4.3) 

 

A
T
 QL + QLA +C

T
CL =  0(2.4.4) 

 

 

where PL = PE − P12Pv
−1P

T
  and QL = QE − Q12Q

−
w 

1Q
T
 .   Diagonalize the weighted 

gramians PL and QL simultaneously, yield 

 

 

 
T

T
 QLT = T−1

PLT
−T

 = Σ = diag{σ1, σ2, . . . , σn} (2.4.5) 

 
where σm ≥ σm+1, m = 1, 2, 3, . . . , n − 1. The ROMs are acquired by applying the 

transformation and partitioning the original system. Lin and Chiu [11] produce stable 

ROMs in case of double-sided weights, assuming no pole-zero cancellation between 

original system and weights [38]. 

Lo 
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wa 

wa 

wa 

wa 

wa 

2.4.2 Wang et al’s Technique 

 
Wang et al. [20] proposed a useful technique to achieve the stability of eigenvalues that 

are calculated from the eigenvalue decomposition of some input and output related ma- 

trices by using absolute function. This method is also applicable to controller reduction 

as the precedent techniques are not applicable to controller reduction due to zero pole 

cancellation and computes a priori error bound expression. 

Let the new controllability Pwa and observability Qwa Gramians satisfy the following 

Lyapunov equations 

 

APwa + PwaA
T + BwaBT

 = 0(2.4.6) 

A
T
 Qwa + QwaA +C

T
 Cwa =  0(2.4.7) 

 

The contragredient matrix Tw obtained as 

 

 

 
T

T
 QwaT = T−1

PwaT
−T

 = Σ = diag{σ1, σ2, . . . , σn} (2.4.8) 

 
where σw ≥ σw+1, w = 1, 2, 3, ...n − 1. 

The  fictitious  input  Bwa  and  output Cwa  matrices  are  defined  as,  Bwa = Uwa|Swa|
1/2 and 

Cwa = |Rwa|
1/2V 

T
 .  Since the expressions Uwa, Swa,Vwa and Rwa are computed by 

orthogonal Eigen Value Decomposition (EVD) of symmetric matrices Xw = UwaSwaU
T
 

and Yw = VwaRwaV
T
 , where Swa = diag(s1, s2, ..., sm) ≥ 0 and Rwa = diag(r1, r2, ......... , rt ) ≥ 

0. The ROMs are computed by partitioning the transformed realization. 

 
Theorem 1. The following error bound holds, if the rank conditions rank [BwaB] = 

rank [B ] and rank 

 
Cwa 

 

= rank [C ] are satisfied. 

wa 
 

C 

 
wa 

n 

ǁWy(s)(Go(s) −Gz(s))Vx(s)ǁ∞ ≤ 2ǁWy(s)Lwaǁ∞ǁKwaVx(s)ǁ∞ ∑ σm 

m=n+1 
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wa 

vr 

vr 

 

where 
 

 

Lwa = Cwadiag(|r1|
−1/2, |r2|

−1/2, ..., |rmi|
−1/2, 0, ..., 0) 

Kwa = diag(|s1|
−1/2, |s2|

−1/2, ..., |smo|
−1/2, 0, ..., 0)UT

  B 

 

 
mi = rank[Xz] and mo = rank[Yz]. 

 

 
2.4.3 Varga and Anderson Technique 

 
Varga et al. [12] modified the Wang et al. [20] technique by reducing the Gramians 

distance to Enns choice (i.e, the size of Pwa-Pe and Qwa-Qe). The proposed transfor- 

mation simultaneously diagonalized the controllability and observability Gramians Pvr, 

Qvr respectively, 

 
T

T
 QvrT = T−1

PvrT
−T

 = Σ = diag{σ1, σ2, . . . , σn} (2.4.9) 

 
where σm ≥ σm+1, m = 1, 2, 3, . . . , n− 1 and Gramians satisfy the following Lyapunov 

equations 

 

APvr + PvrA
T + BvrB

T
 = 0(2.4.10) 

A
T
 Qvr + QvrA +C

T
 Cvr = 0(2.4.11) 

 
 

The fictitious input B and output C matrices are defined as, B = U  S
1/2

 and C = 
vr vr vr vr  vr vr 

R
1/2

V
T
 . The terms U , S ,V and R EVD of symmetric matrices 

vr vr vr1 vr1 vr1 vr1 

Svr1 0 

 

 

 
T vr1 

Xe = [Uvr1 Uvr2 ]  
0 Svr2 

 
T 
vr2 

 (2.4.12) 
U

 

U
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Z1 

Z2 

im 

im 

im 

 

Rvr1 0 
VT 

 

Ye = [Vvr1 Vvr2 ]  
0 Rvr2 VT 

 (2.4.13) 

 

where 
Svr1 0 

 

= diag(s , s , ..., s ) and 
Rvr1 0 

 

= diag(r , r , ....., r ), S ≥, 

 

0 Svr2 

 1    2 m  

0 Rvr2 

 1    2 t vr1 

Svr2 < 0 and Rvr1 ≥ 0, Rvr2 < 0. The ROMs are computed by partitioning the trans- 

formed realization. 

 
 

2.4.4 Imran et al’s Technique 

 
Imran et al. [21] introduced a method to subtract the least negative eigenvalue from 

all eigenvalues to ensure positive/semipositive definiteness of input and output related 

matrics to guarantee stability. The proposed transformation simultaneously diagonal- 

ized the controllability and observability Gramians Pim, Qim respectively, 

 
T

T
 QimT = T−1

PimT
−T

 = Σ = diag{σ1, σ2, . . . , σn} (2.4.14) 

 
where σm ≥ σm+1, m = 1, 2, 3, . . . , n − 1, controllability and observability Gramians 

satisfy the following Lyapunov equations 

 

APim + PimAT + BimBT
 = 0(2.4.15) 

A
T
 Qim + QimA +C

T
 Cim = 0(2.4.16) 

 

The fictitious input an output related matrices Bim and Cim respectively, are defined as 

 

Bim = Uim(S −snI)1/2
 f or sn < 0(2.4.17) 

 

Cim = (R−rnI)1/2
V

T
 f or rn < 0(2.4.18) 
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im 

im 

2π 

G j 
2π −ω 

2 1 

G j 
2π −ω 

2 1 

1 

The terms Uim, S,Vim and R are computed by EVD of symmetric matrices Xe = UimSU
T
 

and Ye = VimRV
T
 , where S = diag(s1, s2,  , sm) ≥ 0 and R = diag(r1, r2,    , rn) ≥ 0, 

s1 ≥ s2 ≥ s3 ≥,...sn and r1 ≥ r2 ≥ r3 ≥, rn . The ROMs are computed by partitioning 

the transformed realization. 

 

 

2.5 Frequency Limited Model Reduction Technique 

Gawronski et al. [22] presented a method in which the frequency weights are not 

directly predefined, but approximation is considered in desired frequency interval for 

linear continuous time systems. Let controllability PG j and observability QG j Grami- 

ans are defined for limited frequency interval as PG j = P(ω2) − P(ω1) and QG j = 

Q(ω2) −Q(ω1) respectively. The Gramians are expressed using Parseval’s relationship 

as 

P =
 1 

∫ ω2 

( jω I −A)−1
BB

T
 (− jω I −A

T
 )−1

dω (2.5.1) 

Q =
 1 

∫ ω2 

(− jω I −A
T
 )−1

C
T
C( jω I −A)−1

dω (2.5.2) 
 

 

These Gramians are the solution of the following Lyapunov equations 

 
 

APG j + PG jA
T
 + Xg = 0(2.5.3) 

A
T
 QG j + QG jA +Yg = 0(2.5.4) 

 

 

where  
Xg = (So(ω2) − So(ω1))BB

T
 + BB

T
 (So

∗ (ω2) − So
∗ (ω1)) (2.5.5) 

Yg = (So
∗ (ω2) − So

∗ (ω1))C
T
C +C

T
C(So(ω2) − So(ω1)) (2.5.6) 

So(ω) =
  j 

ln(( jωI + A)(− jωI + A)−1) (2.5.7) 

1 
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X  = U 
Sj1 0 

U
T
 ,Y = V 

Rj1 0 
V

T
 

g  

0 S 
j2 

 g  

0 R 
j2 

 

 
 

 

S j1 = diag(s1, ....., sm) ≥ 0, S j2 = diag(sm+1, ..., sn) < 0 

Rj1 = diag(r1, ....., rt ) ≥ 0, Rj2 = diag(rt+1, ...... , rn) < 0 

 
m ≤ n and t ≤ n are the number of the positive eigenvalues of Xg and Yg matrices 

respectively.  So
∗ (ω) is the conjugate transpose of So(ω).  The contragredient matrix T 

is obtained as 

T
T
 QjT = T−1

PjT
−T

 = Σ (2.5.8) 

 
The ROM is obtained by Gz = Cz(sI − Az)

−1
Bz + D after applying the transformation 

and partitioning the original system. 

Remark 2. In Gawronski et al. [22], for a desired frequency range, the symmetric 

matrices Xg and Yg are not sometimes positive/semi positive definite that lead to yield 

unstable ROMs [23]. 

 
 

2.6 Existing Stability Preserving Frequency Limited Tech- 

niques 

2.6.1 Gugercin et al’s Technique 

 
Inspired by Wang et al.[20] frequency weighted MOR technique, Gujercin et al. [23] 

modified the Gawronski et al. [22] technique to achieve stability by introducing abso- 

lute function. The new controllability Pga and observability Qga Gramians respectively, 
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ga 

ga 

ga 

ga ga 

ga 

ga 

acquired as the solution to the following Lyapunov equations 
 

 

APga + PgaA
T + BgaBT

 = 0(2.6.1) 

A
T
 Qga + QgaA +C

T
 Cga =  0(2.6.2) 

 

The contragredient matrix T obtained as 

 
 

T
T
 QgaT = T−1

PgaT
−T

 = Σ = diag{σ1, σ2, . . . , σn} (2.6.3) 

 
where σw ≥ σw+1, w = 1, 2, 3, ...n − 1. 

The new fictitious input Bga and output Cga matrices are defined as, Bga = Uga|Sga|
1/2

 

and Cga = |Rga|
1/2V 

T
  , respectively. The terms Uga, Sga,Vga and Rga are computed by or- 

thogonal EVD of symmetric matrices Xg = UgaSgaU
T
 and Yg = VgaRgaV

T
 , where Sga = 

 

diag(s1, s2, ..., sn) ≥ 0 and Rga = diag(r1, r2, ....., rn) ≥ 0, |s1| ≥ |s2| ≥ |s3| ≥,...|sn| and 

|r1| ≥ |r2| ≥ |r3| ≥,...|rn|. The ROMs are computed by partitioning the transformed 

realization. 

 

2.6.2 Ghafoor et al’s Technique 

 
Inspired by Varga et al.[12] frequency weighted MOR technique, Ghafoor et al. [24] 

modified the Gawronski et al. [22] technique respectively, to achieve stability by ignor- 

ing negative eigenvalues and retaining only positive values. The new controllability Pga 

and observability Qga Gramians respectively, acquired as the solution to the following 

Lyapunov equations 

 

APga + PgaA
T + BgaBT

 = 0(2.6.4) 

A
T
 Qga + QgaA +C

T
 Cga =  0(2.6.5) 
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im 

im 

The contragredient matrix T obtained as 

 
 

T
T
 QgaT = T−1

PgaT
−T

 = Σ = diag{σ1, σ2, . . . , σn} (2.6.6) 

 
where σw ≥ σw+1, w = 1, 2, 3, ...n − 1. 

 
2.6.3 Imran et al’s Technique 

 
Inspired by Wang et al.[20] and Varga et al.[12] frequency weighted MOR techniques, 

Gujercinet al. [23] and Ghafoor et al. [24] modified the Gawronski et al. [22] tech- 

nique respectively, to handle the issue of unstability. Later, Imran et al. [25] applied the 

frequency weighted MOR technique [21] on frequency limited interval to yield stable 

ROMs with less approximation error. Imran et al. [21] introduced a method to subtract 

the least negative eigenvalue from all eigenvalues to ensure positive/semipositive defi- 

niteness of input and output related matrics to guarantee stability. The proposed trans- 

formation simultaneously diagonalized the controllability and observability Gramians 

Pim, Qim respectively, 

 
T

T
 QimT = T−1

PimT
−T

 = Σ = diag{σ1, σ2, . . . , σn} (2.6.7) 

 
where σm ≥ σm+1, m = 1, 2, 3, . . . , n − 1, controllability and observability Gramians 

satisfy the following Lyapunov equations 

 

APim + PimAT + BimBT
 = 0(2.6.8) 

A
T
 Qim + QimA +C

T
 Cim =  0(2.6.9) 



21  

im 

im 

im 

The fictitious input an output related matrices Bim and Cim respectively, are defined as 

 

Bim = Uim(S −snI)1/2
 f or sn < 0(2.6.10) 

 

Cim = (R−rnI)1/2
V

T
 f or rn < 0(2.6.11) 

 

 

The terms Uim, S,Vim and R are computed by EVD of symmetric matrices Xe = UimSU
T
 

and Ye = VimRV
T
 , where S = diag(s1, s2, ... , sm) ≥ 0 and R = diag(r1, r2, ...... , rn) ≥ 0, 

s1 ≥ s2 ≥ s3 ≥,...sn and r1 ≥ r2 ≥ r3 ≥, ......... rn . The ROMs are computed by partitioning 

the transformed realization. 
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Chapter 3 
 

 

 

Proposed Techniques 

 
In this chapter the new proposed methods are being applied on frequency weighted 

and frequency limited interval Gramians-based model reduction techniques to compute 

least frequency-response error and easily calculable priori error bound as compared to 

existing stability conserving frequency weighted (Wang et al.[20], Imran et al. [21]) 

and frequency limited (Gujercin et al.[23], Ghafoor et al.[13], Imran et al.[25]) model 

reduction techniques. These Gramians based schemes are proposed for LTI continuous- 

time systems. 

The pioneer frequency weighted MOR scheme for continuous-time systems proposed 

by Enns [10] computes lowest frequency-response approximation error but it yields 

unstable ROMs, due to some input/output related matrices that are not conserved to  

be positive or semi-positive definite. Same is the case with frequency limited model 

reduction scheme, the Gawronski et al.[22] also capitulates lowest frequency response 

error but computes unstable ROMs. Whereas, the proposed methods yield stable ROMs 

with less approximation error by building some variations in Xz and Yz matrics to ensure 

the positive/semi-positive definiteness of input/output related matrics respectively, in 

MOR schemes. 
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Z2 

Z2 

  (3.1.7)
U

 

1 Z1 

1 Z1 

Z1 Z1 

Z1 Z1 

SZ1 
0 UT 

 

Z2 

Z1 

Z2 

3.1 New Frequency Weighted MOR Tehniques 

 
Let a new controllability PZk and observability QZk Gramians respectively, are calculated 

by solving the following Lyapunov equations: 

 

APZ + PZ A
T
 + BZ B

T
 = 0(3.1.1) 

k k k    Zk 

A
T
 QZ + QZ A +C

T
 CZ = 0(3.1.2) 

k k Zk k 

 
 

where k = 1, 2. For indefinite symmetric matrices XZ and YZ the new input, output 

related matrices are defined as BZk and CZk 

UZ  S
1/2 f or sn ≥ 0 

UZ2 (sin(SZ2 ) − SZ2 )
1/2

 f or sn < 0 
 

UZ  S
1/2 

 
f or sn ≥ 0 

 

 

 
and 

UZ2 ((exp(1/SZ2 ))
n)1/2

 f or sn < 0 

 

R
1/2

V T
 

 

 
f or rn ≥ 0 

(sin(RZ2 ) − RZ2 )
1/2

V
T
 

R
1/2

V T
 

 

f or rn < 0 

 

f or rn ≥ 0 

((exp(1/RZ2 ))
n)1/2

V
T
 f or rn < 0 

where n is the order of the system matrix A and the terms UZ1 , UZ2 , SZ1 , SZ2 , VZ1 , VZ2 , 

RZ1 and RZ2 are attained from following symmetric matrices, 

 

 

Xz = [U S U
T
 ] = [UZ1   UZ2 ]  

0 S T
 

= 

= 

BZ1 = (3.1.3) 

BZ2 = (3.1.4) 

CZ1 (3.1.5) 

CZ2 (3.1.6) 
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Z1 

Z2 

Zk k Zk k Zk 

k Zk Zk k 

 

 

T RZ1 0 
VT 

 

Yz = [V R V ] = [VZ1 VZ2 ]  
0 RZ2 VT 

 (3.1.8) 

 

where 
 

 

SZ1 = diag(s1, ....., sm), SZ2 = diag(sm+1, sm+2 ........ , sn), 

RZ1 = diag(r1, ........, rt ), RZ2 = diag(rt+1, rt+2 ....... , rn). 
 

 
Remark 3. When Xg > 0 and Yg > 0, BZ = SZ S

1/2
 and CZ = R1/2

V
T
 . 

k k    Zk k Zk Zk 

 

Let a contragradient transformation matrix T is derived as 
 

 

T
T
 QZ TZ = T−1

PZ T
−T

 = diag(σ1, σ2 · · · σn) (3.1.9) 
 

 

Where σm ≥ σm+1, m = 1, 2, 3, ......... , n − 1, σl > σl+1. A ROM {A11, B1,C1, D} is at- 

tained by portioning the transformation realization as 
 

 
T

−1
AT = 

A11 A12  T
−1

B = 
B1

 

Zk Zk 
A21 

Zk 

A22 B2

 

CTZk  = 
Σ 

C1    C2  

Σ 
DZk  = D (3.1.10) 

 

Remark 4. Since Xz ≤ BZ B
T
 , Yz ≤C

T
 CZ , PZ > 0 and QZ 

 

> 0. Hence, the realization 

(A, BZk ,CZk ) is minimal and stability of ROM is conserved. 

k 

k k 
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1 Z1 

1 Z1 

Z1 Z1 

Z1 Z1 

 
((exp(1/SZ2 )

n)−1/2
U

T
 B f or sn < 0 

Z2 

Z2 

3.1.1 Error Bound 

 
Theorem 2. The following error bound holds for the proposed frequency weighted 

MOR techniques, 

ǁWo(s)(Go(s) −Gz(s))Vi(s)ǁ∞ ≤ 2ǁWo(s)LZk ǁ∞ǁKZkVi(s)ǁ∞ 

 
n 

∑ σm 

m=n+1 

 
 

 
if the following rank conditions rank [B 

 
B] = rank [B ] and rank 

 
CZk

 = rank [C ] 

 
 

are satisfied. 

where 

Zk 

 

 

 

 CVZ  R
−1/2 

Zk 
 

C  

 Zk 

 
f or rn ≥ 0 

 
CVZ2 (sin(RZ2 ) −RZ2 )

−1/2
 f or rn < 0 

 CVZ  R
−1/2 

f or rn ≥ 0 

 

 
and 

 
CVZ2 ((exp(1/RZ2 )

n)−1/2
 f or rn < 0 

 S
−1/2

U
T
 B f or sn ≥ 0 

 

 
(sin(SZ2 ) − (SZ2 )

−1/2
U

T
 B f or sn < 0 

 S
−1/2

U
T
 B f or sn ≥ 0 

 

 
 Proof. As the rank [B 

 
 B] = rank [B 

] and rank 

 
CZk 

 

= rank [C 

 
 ] holds. By sub- 

Zk Zk  

C  

 Zk 

LZ1 = (3.1.11) 

LZ2 = (3.1.12) 

KZ1 = (3.1.13) 

KZ2 = (3.1.14) 
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stituting B1 = BZ1 KZk , C1 = LZkCZ1 ,B = BZk KZk and C = LZkCZk respectively computes 

 
ǁWo(s)(G(s) −Gz(s))Vi(s)ǁ∞ 

= ǁWo(s)(C(sI−A)−1
B−C1(sI−A11)

−1
B1)Vi(s)ǁ∞ 

= ǁWo(s)(LZkCZk (sI −A)−1
BZk KZk −LZkCZ1 (sI −A11)

−1
BZ1 KZk )Vi(s)ǁ∞ 

= ǁWo(s)LZk (CZk (sI −A)−1
BZk −CZ1 (sI −A11)

−1
BZ1 )KZkVi(s)ǁ∞ 

≤ ǁWo(s)LZk ǁ∞ǁ(CZk (sI −A)−1
BZk −CZ1 (sI −A11)

−1
BZ1 )ǁ∞ǁKZkVi(s)ǁ∞ 

 
If {A11, BZ1 ,CZ1 , D} is ROM attained by splitting a balanced realization {A, BZk ,CZk , D}, we 

have from [20], [21]. 

 

ǁ(CZk (sI −A)−1
BZk −CZ1 (sI −A11)

−1
BZ1 )ǁ∞ ≤ 2 

n 

∑ σm 

m=n+1 

 

Therefore, 
 

 

 

ǁWo(s)(Go(s) −Gz(s))Vi(s)ǁ∞ ≤ 2ǁWo(s)LZk ǁ∞ǁKZkVi(s)ǁ∞ 

n 

∑ σm 

m=n+1 

 

 

 

 

 

 

 

3.2 Frequency Limited MOR Techniques 

 
Let a new controllability PZk and observability QZk Gramians respectively, are calculated 

by solving the following Lyapunov equations: 

 

APZ + PZ A
T
 + BZ B

T
 = 0(3.2.1) 

k k k    Zk 

A
T
 QZ + QZ A +C

T
 CZ = 0(3.2.2) 

k k Zk k 
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Z2 

Z2 

Z1 

Z2 

Z1 

Z2 

Zk 2π −ω 
2 1 

Zk 
2π −ω 

2 1 

1 Z1 

1 Z1 

Z1 Z1 

Z1 Z1 

Z2 

1 

where 

P =
 1 

∫ ω2 

( jω I −A)−1
BB

T
 (− jω I −A

T
 )−1

dω (3.2.3) 
 

 

Q =
 1 

∫ ω2 

(− jω I −A
T
 )−1

C
T
C( jω I −A)−1

dω (3.2.4) 

and k = 1, 2. For indefinite symmetric matrices XZ and YZ the new input, output related 

matrices are defined as BZk and CZk 

UZ  S
1/2 

 

 

f or sn ≥ 0 

UZ2 (sin(SZ2 ) − SZ2 )
1/2

 f or sn < 0 
 

UZ  S
1/2 

 
f or sn ≥ 0 

 

 

 
and 

UZ2 ((exp(1/SZ2 ))
n)1/2

 f or sn < 0 

 

R
1/2

V T
 

 

 
f or rn ≥ 0 

(sin(RZ2 ) − RZ2 )
1/2

V
T
 

R
1/2

V T
 

 

f or rn < 0 

 

f or rn ≥ 0 

((exp(1/RZ2 ))
n)1/2

V
T
 f or rn < 0 

The terms UZ1 , UZ2 , SZ1 , SZ2 , VZ1 , VZ2 , RZ1 , RZ2 , are attained from following symmetric 

matrices, 

T 
SZ1 

0  UT 
 

Xz = [U S U ] = [UZ1  UZ2 ]  

0 S  UT 

 (3.2.9) 

 

 

 

T RZ1 0 
VT 

 

Yz = [V R V ] = [VZ1 VZ2 ]  
0 RZ2 VT 

 (3.2.10) 

= 

= 

1 

1 

BZ = (3.2.5) 

BZ2 = (3.2.6) 

CZ1 (3.2.7) 

CZ2 (3.2.8) 
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Zk k Zk k Zk 

k Zk Zk k 

 

where 
 

 

 

 

SZ1 = diag(s1, ....., sm), SZ2 = diag(sm+1, sm+2 ........ , sn), 

RZ1 = diag(r1, ........, rt ), RZ2 = diag(rt+1, rt+2 ....... , rn). 
 

 
Remark 3: When Xg > 0 and Yg > 0, BZ = SZ S

1/2
 and CZ = R1/2

V
T
 . 

k k    Zk k Zk Zk 

Let a contragradient transformation matrix T is derived as 
 

 

T
T
 QZ TZ = T−1

PZ T
−T

 = diag(σ1, σ2 · · · σn) (3.2.11) 
 

 

Where σm ≥ σm+1, m = 1, 2, 3, ......... , n − 1, σl > σl+1. A ROM {A11, B1,C1, D} is at- 

tained by portioning the transformation realization as 
 

 
T

−1
AT = 

A11 A12

 

T−1B = 
B1  

Zk Zk 
A21 

Zk 

A22 B2

 

CTZk  = 
Σ 

C1     C2 

Σ 
, D (3.2.12) 

 

Remark 4: Since Xz ≤ BZ B
T
 , Yz ≤C

T
 CZ , PZ > 0 and QZ 

 

> 0. Hence, the realization 

(A, BZk ,CZk ) is minimal and stability of ROM is conserved. 

 
 

3.2.1 Error Bound 

 
Theorem 3. The following error bound is hold for the proposed frequency limited MOR 

techniques, where the weights are not explicitly defined. 

ǁGo(s) −Gz(s)ǁ∞ ≤ 2ǁLZk ǁǁKZk ǁ 

 
n 

∑ σm 

m=n+1 

k 

k k 



29  

 
Proof. If the rank conditions rank [B 

 
B] = rank [B ] and rank 

CZk 
= rank [C ] 

Zk Zk  

C  

 Zk 

are satisfied, substituting B1 = BZ1 KZk , C1 = LZkCZ1 and using the equations (3.1.11- 

3.1.14) respectively, yields 

 
ǁ(Go(s) −Gz(s))ǁ∞ 

= ǁ(C(sI−A)−1
B−C1(sI−A11)

−1
B1)ǁ∞ 

= ǁ(LZkCZk (sI −A)−1
BZk KZk −LZkCZ1 (sI −A11)

−1
BZ1 KZk )ǁ∞ 

= ǁLZk (CZk (sI −A)−1
BZk −CZ1 (sI −A11)

−1
BZ1 )KZk ǁ∞ 

≤ ǁLZk ǁǁ(CZk (sI −A)−1
BZk −CZ1 (sI −A11)

−1
BZ1 )ǁ∞ǁKZk ǁ 

 
The RoM {A11, BZ1 ,CZ1 , D} is attained by splitting a balanced realization {A, BZk ,CZk , D}, 

we have from [20], [21]. 

 

ǁ(CZk (sI −A)−1
BZk −CZ1 (sI −A11)

−1
BZ1 )ǁ∞ ≤ 2 

n 

∑ σm 

m=n+1 

 

Therefore, 
 

 

 

ǁGo(s) −Gz(s)ǁ∞ ≤ 2ǁLZk ǁǁKZk ǁ 

n 

∑ σm 

m=n+1 

 

 

 
 

 

Remark 5. Two choices of KZk ∈  {KZ1 ; KZ2 } and LZk ∈  {LZ1 ; LZ2 } form basis to derive 

error bounds for each proposed technique. 
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← 

← 

← 

← 

− − 

x x 

y y 

k k k Zk k 

k k Zk k k 

3.3 Algorithms 

 
The algorithms for proposed work are as follows 

 
Algorithm 1: Generation of New Input and Output Matrices 

 

Input : Negative Diagonal Matrices S(m), R(t) 

Output: Positive Diagonal Matrices S(m), R(t) 

1  for m 1 : n do 

2 if S(m) < 0 then 

3 S(m) ← (sin(S(m)) − S(m))1/2 // for Technique I 
4 S(m) ← (exp(1/S(m))1/2 // for Technique II 

5 else 

6 S(m) S(m) 

7 end 

8 end 

9  for t 1 : n do 

10 if R(t) < 0 then 

11 R(t) ← (sin(R(t)) − R(t))1/2 // for Technique I 
12 R(t) ← (exp(1/R(t))1/2 // for Technique II 

13 else 

14 R(t) R(t) 

15 end 

16 end 

17 return S(m), R(t) 

 
 
 

Algorithm 2: Frequency Weighted MOR Algorithm 
 

Input: Original Model(A,B,C,D), Input-Weights(Ax, Bx,Cx,Dx), Output-Weights (Ay,By,Cy ,Dy) 

Output: Reduced Model (Az, Bz,Cz ,Dz) 

1 Compute AxPx + PxA
T
 = −BxB

T
 for controllability Gramian Px; 

2 Compute A
T
 Qy + QyAy = −C

T
 Cy for observability Gramian Qy; 

3 Compute Xz = (APe + PeA
T
 ) and Yz = (A

T
 Qe + QeA) for symmetric 

matrices; 
4 Decompose Xz and Yz into [UzSzU 

T
 ] and [VzRzV 

T
 ] using SVD; 

z z 

5 Proceed with steps 1-17 in Algorithm 1 to compute new input/output matrices; 

6  Compute BZk  ← U diag(S1, ...Si.., 0...0); 
7  Compute CZk  ← diag(R1, ...Rk .., 0...0)V    ; 

T 

8 Compute APZ + PZ A
T
 = −BZ B

T
 for new controllability Gramian PZ ; 

9 Compute A
T
 QZ + QZ A = −C

T
 CZ for new observability Gramian QZ ; 

10 Compute the contragradient transformation matrix T 
T
 QZ TZ = T 

−1
PZ T 

−T
 ; 

Zk k k Zk k Zk 

11  Compute the balanced realization as Ât  = T 
−1

AzT , B̂t  = T 
−1

Bz ,Ĉt  = CzT ; 
12  Select ROM and truncate A, B, C to compute reduced realization Az, Bz and Cz 

  and it is Dz = D;  
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2π 

2π 

k k k Zk k 

k k Zk k k 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Algorithm 3: Frequency Limited MOR Algorithm 

Input: Original Model(A,B,C,D), Desired Frequency Ranges(ω1, ω2) 
Output: Reduced Model (Az, Bz,Cz,Dz) 

1 Compute S1(ω1) ←
 j
 

2 Compute S2(ω2) ←
 j
 

ln((jω1I + A)(−jω1I + A)
−1

); 
ln((jω2I + A)(−jω2I + A)

−1
); 

3   Compute Xg ← (S2(ω2) − S1(ω1))BB
T + BB

T (S2
∗ (ω2) − S1

∗ (ω1)); 

4   Compute Yg ← (S2
∗ (ω2) − S1

∗ (ω1))C
T C + C

T C(S2(ω2) − S1(ω1)); 
5 Decompose Xg and Yg into [UzSzU 

T ] and [VzRzV 
T ] using SVD; 

z z 

6 Proceed with steps 1-17 in Algorithm 1 to compute new input/output matrices; 

7   Compute BZk  ← U diag(S1, ...Si.., 0...0); 
8   Compute CZk  ← diag(R1, ...Rk.., 0...0)V    ; 

T 

9 Compute APZ + PZ A
T = −BZ B

T for new controllability Gramian PZ ; 

10 Compute A
T QZ + QZ A = −C

T CZ for new observability Gramian QZ ; 
11 Compute the contragradient transformation matrix T 

T QZ TZ = T 
−1

PZ T 
−T ; 

Zk k k Zk k Zk 

12   Compute the balanced realization as Ât = T 
−1

AzT , B̂t = T 
−1

Bz,Ĉt = CzT ; 
13 Select ROM and truncate A, B, C to compute reduced realization Az, Bz and Cz 

  and it is Dz = D;  
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+100 s+10 

 
 
 
 
 
 

 

Chapter 4 

 

 

Numerical Simulations and Discussion 

 
In this chapter, the proposed techniques are applied on some practical examples of 

frequency weighted and frequency limited model reduction techniques to show the ac- 

curacy and efficacy of the presented work. Examples are taken form literature and com- 

parison of the proposed techniques have been done with existing techniques to illustrate 

the effectiveness of the proposed techniques. 

 
 

4.1 Frequency Weighted MOR Simulations 

 
Example 1: Consider a 5

th
 order orignal stable system [39] with stable frequency 

weights Vx(s) = s 
100

 

system is described as 

and Wy(s) = 10
  [40]. The transfer function of the original 

 

G 
2s

5
 + 4s

4
 + 800s

3
 + 1200s

2
 + 6e

4
s + 4e

4
 

 

o(s) = 
s5 + 22s4 + 440s3 + 6600s2 + 3.8e4s + 2.2e5 

 
The corresponding results of the given system are presented in Table4.1and it can be 

observed from the results that the proposed techniques capitulate minimum frequency- 

response approximation error with calculable priori error bound as compared to existing 



33  

i 

0 05 0 1 0 1  0 0 

 
. . 

o 

0 025 0 4 0 7  0 0 

 
. . 

Table 4.1: Error and Error Bounds Comparison for Example 1 

RO Enns 

[10] 

Wang [20] Imran [21] Proposed-I Proposed-II 

 

Error Error Bound Error Bound Error Bound Error Bound 

1 4.7097 5.6073 52.915 5.6748 30.503 5.2837 513.08 5.2716 141.9 

3 3.5208 3.5455 24.413 5.3409 14.137 3.5293 234.52 3.5293 64.829 

4 3.5068 7.3238 12.141 11.269 6.8762 6.342 116.75 6.427 32.275 

 
stability preservation techniques [20,21]. 

 
Example 2: Consider a 6

th
 order original stable system [21] with following stable input- 

output frequency weights 

A  =  
−2.25 −0 

 
  

 , B =    
2 0.5  

C
 

 

=  
1.3   0.5  

 

, D
 

 

  

= 
0 0 

 

 

 

A   =  
−4.2  0 

 
  

 , B =    
1 0.5  

C
 

 

=  
1.3   0.5  

 

, D
 

 

  

= 
0 0 

 

 

The results of the presented system are shown in Table4.2and it can be observed from 

the results that the proposed techniques compute least frequency-response approxima- 

tion error with computable priori error bound as compared to existing stability conser- 

vation techniques. 

It can be stated from the Table4.2that the 1 
st
 order model obtained using Enns [10] 

technique is unstable having pole location at s = 0.0164 whereas, the proposed tech- 

niques, Imran et al. [21] and Wang et al. [20] have poles with negative real parts that 

lead to compute stable ROM. 

. . 0 2 0 3 . − 0 

. . 0 2 0 3 . − 0 
i i i 

o o o 
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Table 4.2: Error and Error Bounds Comparison for Example 2 

RO Enns 

[10] 

Wang [20] Imran [21] Proposed-I Proposed-II 

 

Error Error Bound Error Bound Error Bound Error Bound 

1 unstable 2462.8 6718.1 2724.4 30109 2362.6 35378 2028.4 93130 

2 12.742 136.68 2662.5 123.14 6768 136.46 14152 129.69 41295 

3 5.9973 39.9 718.24 225.28 3733.8 36.545 3248.7 16.501 8103 

4 0.24849 16.811 287.91 141.42 1745.5 11.034 1317 4.89 3241.6 

5 .079136 5.8769 68.684 9.417 415.71 3.7963 302.23 1.7825 765.42 

 
Example 3: Consider a Linear Quadratic Gaussian (LQG) controller for a four-disk sys- 

tem [24]. The system plant to be controlled is represented as LTI, Single-Input-Single- 

Output (SISO), unstable and non-minimum phase an 8
th

 order system. The transfer 

function of this plant is described as 

 

 

G 
0.006443s

5
 + 0.00232s

4
 + 0.07125s

3
 + s2

 + 0.1046s + 0.9955 
 

o(s) = 
s8 + 0.161s7 + 6.004s6 + 0.5821s5 + 9.983s4 + 0.4073s3 + 3.982s2 

 
A full order stable controller Ko(s) using standard LQG technique is defined as 

 

 

Ko(s) = 

0.1116s
7
 + 0.0224s

6
 + 0.6711s

5
 + 0.0918s

4
 

+ 1.119s
3
 + 0.0902s

2
 + 0.4485s + 0.018 

 
 

s
8
 + 1.313s

7
 + 6.853s

6
 + 7.359s

5
 + 14.09s

4
 

+ 11.43s
3
 + 9.177s

2
 + 4.49s + 1.377 
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Table 4.3: Error and Error Bounds Comparison for Example 3 

RO Enns 

[10] 

Wang [20] Imran [21] Proposed-I Proposed-II 

 

Error Error Bound Error Bound Error Bound Error Bound 

1 unstable 4.7523 89.108 3.7822 3198.2 4.6593 2690.1 4.3577 158.01 

2 .47908 .1857 63.67 1.3042 2180.1 .59125 1916.9 .39233 111.75 

3 .48602 5.2643 40.137 5.5405 1524.3 5.2035 1212 4.4625 72.001 

4 .12204 .11569 20.482 1.098 894.81 .11593 616.37 .11816 34.706 

5 .12287 1.6913 13.045 2.6299 485.8 1.6325 393.28 .76322 22.092 

6 .028233 .02806 6.2782 1.0335 67.92 .028058 190.29 .028112 10.615 

7 .028184 .48441 3.1295 3.4767 18.979 .46831 94.854 .21744 5.2982 

 
Let the input-output frequency weights be 

 
 

Vx(s) = (1 + Go(s)Ko(s))
−1, Wy(s) = (1 + Go(s)Ko(s))

−1
Go(s) 

 

The comparison of the approximation error and error bounds is shown in Table4.3. 

However, it can be noticed from the Table4.3that the 1 
st
 order model build by Enns 

[10] gives unstable ROM as the pole is located at s = 0.0003072 whereas, the Wang et 

al. [20], Imran et al.[21] and the proposed techniques produce stable ROMs. Although 

Enns [10] can yield unstable ROMs as shown in Tables4.2and4.3, it computes lowest 

frequency-response approximation error. 

Example 4: Consider a hospital building model sparse system with 48
th

 states [41]. 

The reduction of the given model is performed at different orders to show the efficacy 

of the proposed techniques. The model reduction is done using the following stable 



36  

Table 4.4: Error and Error Bounds Comparison for Example 4 

RO Enns 

[10] 

Wang [20] Imran [21] Proposed-I Proposed-II 

 

Error Error Bound Error Bound Error Bound Error Bound 

5 .00092531 22.812 218.39 1.4119 13655 .14381 3928 .0637 55.453 

7 7.6812e
−
5 7.8962 134.49 9.5973 12286 5.2571 24096 5.187 34.011 

11 .00014655 15.575 60.595 2.3981 9839.9 2.2417 10854 2.234 15.319 

21 1.3634e
−
5 1.0204 4.9859 14.921 5299.3 .63525 890.22 .631 1.2564 

22 2.4239e
−
6 .04578 3.4508 .25526 4926.8 .02871 617.29 .0286 0.8712 

23 8.882e
−
6 .17772 2.443 4.2064 4559.4 .07622 436.84 .0760 .61652 

25 3.4602e
−
6 .21507 1.0174 2.9544 3866.1 .08449 182.12 .0842 .25703 

26 2.0156e
−
7 .00068 .60326 .03153 3550.2 .00040 107.72 .0003 .15202 

28 1.1608e
−
7 .00133 .32491 .01513 2997.3 .00077 58.09 .0007 .08198 

31 1.1012e
−
7 .01733 .16011 25.08 2267.3 .00918 28.517 .0091 .04024 

32 4.0385e
−
8 .00121 .1251 .97626 2044.9 .00064 22.29 .0006 .03145 

33 1.7617e
−
7 .00525 .10024 20.219 1830.8 .00225 17.873 .0022 .02522 

34 2.3365e
−
8 .00113 .07552 .01303 1618.3 0.00060 13.485 .0006 .01903 

35 4.158e
−
8 .00718 .06196 7.7542 1429.9 .00252 11.06 .0025 .01560 

36 1.38e
−
8 .00038 .04876 .3655 1248.7 .00017 8.6824 .0001 .01225 

38 2.0139e
−
8 .00029 .02585 .00495 902.42 .00013 4.6101 .0001 .00650 
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input/output weights transfer functions respectively, 

 
 

Vi(s) = (0.6)/(s + 0.6), Wo(s) = (s + 3.201)/(s + 0.0006) 

 

Table4.4illustrates the corresponding results of the given model at that reduced orders 

where the approximation error is significant and it can be noticed from the given model 

that the stable ROMs build by the proposed techniques capitulate minimum frequency- 

response approximation error as compared to existing stability conservation techniques 

with computable error bounds. 
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4.2 Frequency Limited MOR Simulations 

 
Example 1: Consider a random model sparse system [41]. It is a 200

th
 order system 

with desired frequency interval [15, 24] rad/s. The comparison of the error function 

singular values σ [G200(s) −G45(s)] is shown in Fig.4.1, where G200(s) is original or- 

der stable system and G45(s) is the 45
th

 order ROM that is derived using Gawronski 

et al. [22], Gugercin et al. [23], Ghafoor et al. [24], Imran et al. [25] and proposed 

techniques. Fig.4.2shows the close-up view of the error plot in the desired frequency 

range [ω1, ω2] = [15, 24] rad/s to illustrate the efficacy of the proposed techniques’ re- 

sults. It can be noted that the proposed techniques capitulate comparable approximation 

error, within the desired frequency range as compared to Gawronski et al [22] technique 

and low frequency response approximation-error as compared to stability preservation 

techniques [23,24,25]. 

 

Figure 4.1: σ [G200(s) −G45(s)] in [ω1 = 15, ω2 = 24] 

 
Example 2: Consider a 50

th
 order stable high pass Chebyshev type-2 filter with stop- 
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Figure 4.2: Close-up view of σ [G200(s) −G45(s)] 

 
band edge frequency 38.5 Hz and stopband ripple 32.02 dB [42]. The comparison of 

the error function singular values σ [G50(s) − G21(s)] is shown in Fig.4.3, within the 

desired frequency range [ω1, ω2] = [9, 20] rad/s, where G50(s) is original order system 

and G21(s) is 21
th

 order ROM that is constructed using Gawronski et al. [22], Gugercin 

et al. [23], Imran et al. [25] and proposed techniques. Fig.4.4shows the close-up 

view of the error plot in the desired frequency range [ω1, ω2] = [9, 20] rad/s to elaborate 

the efficacy of the proposed techniques . Fig.4.4illustrates the computing of lowest 

frequency-response approximation error, within the desired frequency range as com- 

pared to stability preservation techniques including Gugercin et al. [23], Ghafoor et al. 

[24] and Imran et al.[25]. 

 
Example 3: Consider a 30

th
 order high pass stable Chebyshev type-2 filter with stop 

band edge frequency 27.5 Hz and stop band ripple of 13.02 dB [42]. The comparison 

of the error function singular values σ [G30(s) −G12(s)] is presented in Fig.4.5within 
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Figure 4.3: σ [G50(s) −G21(s)] in [ω1 = 9, ω2 = 20] 

 
desired frequency range [ω1, ω2] = [9, 15] rad/s, where G30(s) is the original order stable 

system and G12(s) is 12
th

 order ROM that is capitulated using Gawronski et al. [22], 

Gugercin et al. [23], Imran et al. [25] and proposed techniques. Fig.4.6illustrates 

the close-up view of the error plot in the desired frequency range [ω1, ω2] = [9, 15] 

rad/s to show the efficacy of the proposed techniques’ results. Fig.4.6demonstrates 

the computing of lowest frequency-response approximation error, within the desired 

frequency range as compared to stability preservation techniques including Gugercin et 

al. [23], Ghafoor et al. [24] and Imran et al. [25]. 

 
 

Example 4: Consider a 20
th

 order type-2 Chebyshev high pass stable filter with stop- 

band edge frequency 35.5 Hz and stopband ripple of 13.02 dB [42]. The comparison 

of the error function singular values σ [G20(s) −G11(s)] is presented in Fig.4.7within 

desired frequency range [ω1, ω2] = [13, 29] rad/s, where G20(s) is the original order sta- 
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Figure 4.4: Close-up view of σ [G50(s) −G21(s)] 

 
Table 4.5: Poles Location of Frequency Limited ROMs 

Techniques Poles of Example 5 

Gawronski et al. [22] -2.7147 ±8.9013i -11.6622, 8.9836 

Gugercin et al. [23] -0.9625 ±16.6018i -1.3339 ±9.5342i 

Ghafoor et al. [24] -0.2614 ±15.1758i -1.1222 ± 9.6005i 

Imran et al. [25] -0.6544±17.7506i -1.5397 ± 12.7585i 

Proposed-I -2.5532 ±17.0912i -2.4541 ± 12.1899i 

Proposed-II -2.7070 ± 17.0382i -2.6278 ± 12.0768i 

 
ble system and G11(s) is 11

th
 order ROM that is derived using Gawronski et al. [22], 

Gugercin et al. [23], Ghafoor et al [24], Imran et al. [25] and proposed techniques. 

Fig.4.8illustrates the close-up view of the error plot in the desired frequency range 

[ω1, ω2] = [13, 29] rad/sec to show the efficacy of the proposed techniques’ results. 



Figure 4.8: Close-up view of σ [G20(s) −G11(s)] 
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Figure 4.5: σ [G30(s) −G12(s)] in [ω1 = 9, ω2 = 15] 
 
 
 



Figure 4.8: Close-up view of σ [G20(s) −G11(s)] 
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Figure 4.7: σ [G20(s) −G11(s)] in [ω1 = 13, ω2 = 29] 
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Figure 4.9: σ [G8(s) −G4(s)] in [ω1 = 5, ω2 = 12] 

 
Example 5: Consider an 8

th
 order high pass stable Chebyshev type-2 filter with stop- 

band edge frequency 17.5 Hz and stopband ripple of 11.2 dB [42]. The comparison 

of the error function singular values σ [G8(s) − G4(s)] is presented in Fig.4.9within 

desired frequency range [ω1, ω2] = [5, 12] rad/s, where G8(s) is original order stable 

system and G4(s) is 4
th

 order ROM is derived using Gawronski et al. [22], Ghafoor et 

al. [24], Gugercin et al. [23], Imran et al. [25] and proposed techniques. The close-up 

view of the error plot in the desired frequency range [ω1, ω2] = [5, 12] rad/s is shown 

in the Fig.4.8. It can be observed that the proposed techniques yield lowest approx- 

imation error within the desired frequency range as compared to stability preservation 

techniques [23] ,[25], [24]. The poles locations of the 4
th

 order ROM is presented in 

Table4.5. It can be seen from the Table4.5that the 4 
th

 order model is derived using 

Gawronski et al. [22] technique is unstable having pole location at s = 8.9836 whereas, 

the proposed techniques, Imran et al. [25] and Gugercin et al. [23] and Ghafoor et al. 
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Figure 4.10: Close-up view of σ [G8(s) −G4(s)] 
 
 

 

Figure 4.11: σ [G6(s) −G1(s)] in [ω1 = 13, ω2 = 17] 
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Figure 4.12: Close-up view of σ [G6(s) −G1(s)] 

 
Table 4.6: Poles Location of Frequency Limited ROMs 

Techniques ROMs of Example 6 Poles 

Gawronski et al. [22] −
s
0.07208 
−6.458 

6.4576 

Gugercin et al. [23] s+
−0.1195 

0.003525 -0.0035 

Ghafoor et al. [24] s+0
−
.
0.1222 
00009114 

-0.000091139 

Imran et al. [25] 0.07594 
s+0.02644 

-0.0264 

Proposed-I 0.04647 
s+0.04405 

-0.0441 

Proposed-II 0.01463 
s+0.02374 

-0.0237 

 
[24] produce stable ROMs. 

 
Example 6: Consider a 6

th
 order stable three mass mechanical system [43]. The com- 

parison of the error function singular values σ [G6(s) −G1(s)] is presented in Fig.4.11 

within desired frequency range [ω1, ω2] = [13, 17] rad/s, where G6(s) is the original or- 
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der system and G1(s) is 1
st
 order ROM is computed using W.Gawronski et al. [22], 

Gugercin et al. [23], Imran et al. [25] and proposed techniques. The close-up view of 

the error plot in the desired frequency range [ω1, ω2] = [13, 17] rad/s is illustrated in the 

Fig.4.12. The poles locations of the 1 
st
 ROM with reduced transfer function is pre- 

sented in4.6.It can be noticed from the Table4.6that the 1 
st
 order model derived using 

Gawronski et al. [22] technique is unstable having pole location at s = 6.4576 whereas, 

the proposed techniques capitulates stable ROM with lowest frequency-response ap- 

proximation error. Although Gawronski et al. [22] may compute unstable ROMs as 

shown in Tables4.5and4.6, it yields lowest frequency-response approximation error. 
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Chapter 5 
 

 

 

Conclusion 

 
In this thesis, two new frequency weighted and frequency limited-interval Gramians- 

based MOR are proposed for the LTI continuous-time systems. The proposed methods 

yield stable reduced systems with least frequency-response approximation error and 

computable error bounds to overcome the problems of the model reduction techniques. 

The proposed techniques are also illustrated with help of numerical simulations and 

examples are taken from the literature. The simulation results demonstrate that the 

proposed methods are fruitful and comparable with some other existing model reduction 

techniques. 

 
 

5.1 Future Work 

 
While developing this thesis, some recommendations are indicated for future work, 

which are listed below: 

 
• In this thesis, the proposed methods have considered the model reduction of 

Single-Input-Single-Output (SISO). It is interesting to see the results for Multi- 

Input-Multi-Output (MIMO) systems. 

• In this thesis the proposed MOR techniques have been applied on stable system. 
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In future the proposed methods can be extended for unstable systems. 

 
• In this thesis the proposed techniques use BT to process the frequency weighted 

and frequency limited-interval Gramians based model reduction process. In fu- 

ture work, instead of using BT the proposed methods can be used for different 

model reduction techniques like Pade approximation,Hankel norm and Krylov 

etc. 

• The proposed methods have been considered for LTI continuous-time system. In 

future work, we have planned to see the results for discrete-time systems, non- 

linear and time-variant systems. 
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