

I

Malware Prediction Using Deep Neural Network

By

Natasha Kiran

A thesis submitted to the faculty of Information Security Department, Military College of

Signals, National University of Sciences and Technology, Islamabad, Pakistan, in partial

fulfillment of the requirements for the degree of MS in Information Security.

JUNE 2021

ii

ABSTRACT

This research focuses on Malware Prediction techniques using different machine learning algorithms

on Microsoft Telemetry Dataset. The malware industry continues to be a well-organized, well-

funded market dedicated to evading traditional security measures. Once a computer is infected by

malware, criminals can hurt consumers and enterprises in many ways. This project focuses on

developing techniques to predict if a machine will soon be hit with malware, using machine learning.

Large- and small-scale IT companies are under constant threat of malware and large sums of money

is spent to protect these systems, in addition to regular security audits of the systems, because once

the systems are infected by malware, there is a serious threat to the businesses and their customers

in many ways including data theft. For these reasons, this project is proposed with the goal of being

able to predict any malware activity using machine learning techniques, to thwart the threats before

they could harm the systems. We have trained models using three different Machine Learning

algorithms to compare the most accurate and robust algorithm for malware prediction. This kind of

research is also relevant to our national needs as now a days, more and more reliance is being put

on IT systems all over the world including Pakistan, because they are efficient and reliable. These

systems range from simple bus ticket management system to National data registration system and

border management systems, which hold very critical and sensitive national information. The

security and integrity of these systems are a paramount concern for the authorities and if a successful

algorithm and system is developed which could effectively analyze and report any threat to these

systems before they happen, it will be of immense importance and utility. With our research we will

be able to deliver such a system that would be able to predict malicious activities including malware

attacks and viruses in IT systems

III

CERTIFICATE

This is to certify that NS Natasha Kiran Student of MSIS-16 Course Reg.No 00000206298

has completed his MS Thesis title “Malware Prediction Using Deep Neural Network” under

my supervision. I have reviewed his final thesis copy and I am satisfied with his work.

Thesis Supervisor

(Assistant Professor Mian M. Waseem Iqbal)

Dated: ______Jun 2021

IV

DECLARATION

I hereby declare that no portion of work presented in this thesis has been submitted in

support of another award or qualification either at this institution or elsewhere.

V

DEDICATION

This thesis is dedicated to MY PARENTS, FAMILY, AND TEACHERS

for their love, endless support, and encouragement

VI

ACKNOWLEDGEMENTS

I am grateful to ALLAH Almighty who has bestowed me with the strength and

the passion to accomplish this thesis and I am thankful to Him for His mercy and

benevolence. Without His consent, I could not have indulged myself in this task.

VII

Table of Contents
1 Introduction ... 1

2 Literature Review ... 3

2.1 Early-stage malware prediction using Recurrent Neural Networks 3

2.2 Automatic Analysis of Malware Behavior Using Machine Learning 3

2.3 Classification of Malware System Call Sequences by Deep Learning 4

2.4 Malware Detection Using Process Behavior with Deep Neural Network 5

2.5 Analysis of Virtual Memory Access Patterns for Malware Detection Using Machine

Learning ... 6

2.6 Zero-Day Malware Detection ... 6

3 Proposed Methodology ... 11

3.1 Data .. 11

3.2 Research Flow Chart .. 13

3.3 Exploratory Data Analysis .. 14

3.4 Data cleaning ... 19

3.5 Data Encoding .. 20

3.5.1 Categorical Columns Encoding ..21

3.5.2 One-Hot-Encoding ...21

3.5.3 Frequency Encoding ..22

3.6 Data Engineering .. 22

4 Experimental Setup and Scenarios .. 24

4.1 LightGBM with Deep Neural Network ... 25

4.1.1 Light Gradient Boost Machine to Find Important Features ..25

4.1.2 Deep Neural Network Training using PyTorch ..27

4.2 Deep Neural Network with Embedding Layer ... 33

4.2.1 Embedding Layer...34

4.2.2 Network Training ..36

4.3 LightGBM ... 24

5 Result Analysis ... 40

5.1 Comparison .. 40

6 Future Work and Discussion .. 44

7 References ... 45

VIII

8 Appendices ... 46

8.1 LightGBM with Deep Neural network Training Code... 46

1

 Introduction

The malware industry continues to be a well-organized, well-funded market dedicated to

evading traditional security measures. Once a computer is infected by malware, criminals

can hurt consumers and enterprises in many ways. Large- and small-scale IT companies

are under constant threat of malware and large sums of money is spent to protect these

systems, in addition to regular security audits of the systems. Once the systems are

infected by malware, there is a serious threat to the businesses and their customers in many

ways including data theft.

After a malware attack, as a part of traditional pipeline of mitigation strategy, researchers

manually try to dissect the malware files to look for any sign of code which can lead to

malicious activity. On the other hand Anti-Virus programs rely on comparing the

program code with an existing malware database and look for any similarities which can

give away the presence of malicious activity. But code obfuscation is a very big flaw in

static analysis, which is being exploited in zero-day attacks, in which attackers modify

the code completely to evade static analysis.

A technique called dynamic, or behavior malware analysis involves the execution of

malware in a controlled environment to look for any malicious footprints left by malware

execution. Behavior malware analysis focuses on getting malware execution data to

perform analysis rather than static files/codebase. As good as dynamic malware detection

seems, Antivirus companies avoid using this technique for malware detection in the real

world because of inherent problems which come with dynamic analysis time penalty.

Dynamic analysis relies on post-execution data from malware which requires time for

gathering data and then further time for processing information to look for malicious

activities. Hence, in the real world, it is very cumbersome to wait for dynamic analysis,

during that delayed time system can lose critical information to malware attack.

2

Many researchers are now more attracted towards the analysis of malware behavior data

produced during live execution instead of post-execution. They setup live monitors to

analyse traffic generated on the system to look for anomalies in network traffic like the

size of packets sent, open ports through which data is being communicated, IP addresses

talking to system etc. or systems call being made to the system by different programs, for

example program making changes to the registry or accessing memory etc. But such

anomaly-based analysis generates more false positives than actual numbers and some

studies have suggested that attackers are now exploiting this technique to generate fake

bulk traffic to disguise actual malicious activity.

A company named Virus Total that aggregates many antivirus products and online scan

engines to check for viruses that the user's own antivirus may have missed, or to verify

against any false positives, has reported that nearly one million new malwares have been

seen everywhere in the recent years. With such huge numbers of new malware it is very

difficult to do static or dynamic analysis on every new malware and getting results in real

time, therefore we need to move towards more advanced ways to automatically detect

and predict viruses in adequate time, based on different parameters.

Owing to the inherent flaws in static and dynamic analysis discussed above, we propose

a novel idea of relying on machine telemetry data to predict chances of malware infection

in system or network of systems, by using machine learning and deep neural networks.

Our aim is to predict the chances of malware infection before they actually happen.

3

 Literature Review

Numerous research work has been done in the field of malware analysis, which can be

broadly divided into categories static analysis and dynamic analysis. Static analysis

involves inspection of malware files before execution, analyzing code for network calls,

API calls or any suspicious behavior. Whereas dynamic analysis, which is more advanced

than static analysis, work on malware in execution or post execution looking at behavior

or pattern of malware. I took systematic approach and reviewed research on malware

prediction using different techniques and datasets.

 Early-stage malware prediction using Recurrent Neural Networks

As good as dynamic malware detection may seem it has its drawback as well, one being

that the time which is spent on collecting malware execution data for analyzing the

behavior which can be drastic sometimes as virus can still effect system and more work

would need to be done to undo the harm caused by malware. Matilda and Pete conducted

a study on dynamic study using recurrent neural network where prediction is done during

execution rather than waiting post execution. Analysis of Behavior snapshot of malware

through deep neural network has improved the detection of malware in 5 seconds with

95% accuracy; a research by Matilda Rhodeb and Pete Burnap (2018) concluded that

dynamic analysis of malware during execution is preferable.

 Automatic Analysis of Malware Behavior Using Machine

Learning

More and more researchers are moving toward dynamic analysis of malware rather than

static because of fact that attackers can change signature of malwares to escape from

static analysis. Rieck et al. [1] devises a new mechanism where he dynamically studies

4

behavior of malware by devising their own dataset named Malheur. Dataset was devised

by researchers by using behavioral analysis of binaries of malwares provided by different

antimalware companies. Each malware was executed in sandbox and its pattern files were

generated.

 One of the most important factors in dynamic malware analysis is time required to

process the malware so that enough data can be collected to be analyzed further for

malware presence. And with the enormity of malware and more patterns to be observed

it becomes successively difficult to detect malware in a timeframe that malware can be

detected at earliest.

 This research was conducted in 4 steps. First, Rieck et al. [1] and teams executed all

the malwares in controlled environment to generate the system calls and changes

malwares would be making to system. Once all the malwares were executed, behavior

reports were generated for every malware containing key information like changes made

to registry, network calls, data packets transported etc., these reports were then converted

to vector space. Once all the malwares were represented in form of vectors different

machine learning clustering techniques were applied to classify to which class malwares

belong. At last successive analysis was done altering between clustering and

classification.

 Results show that by processing the behavior of malwares in clusters reduce the

processing time and speed from 100 min to 25 min, and memory consumption was

reduced from 5GB to 300 MBs. Hence Rieck et al. [1] successively proves that

incremental behavior analysis increases efficiency in both time and memory space.

 Classification of Malware System Call Sequences by Deep

Learning

With every passing day malware detection is becoming one difficult task as attackers are

devising novel ideas and techniques. Hence researchers are focusing on generic patters

rather than actual code study. Every research is focused on different behavior of malware

like the calls or changes to system.

5

 Kolosnjaji et al. [2] focuses on call sequences made by malware to classify it using deep

neural networks. This research utilizes deep learning in a very novel way. Firstly, call

sequences made by malwares were analyzed with DNN. Then for classification of actual

malwares were studied with RNNs and CNNs. Finally, the neural units were analyzed to

predict performance of their work.

 In this research LSTM was used in conjunction with CNNs, LSTM was used to sort

importance and results show that using LSTM with CNN increased performance from

79% to 89%.

 Malware Detection Using Process Behavior with Deep Neural

Network

This research was conducted on malware detection using traffic data. Problem with such

research is requirement of domain knowledge is very important. One cannot understand

criticality of data if they cannot understand traffic dumps captured. This research was

conducted using processed injected by malware after execution. Dataset was generated

by executing malwares in Cuckoo Sandbox. After malware execution injected processes

were tracked and logged. Tobiyama et al. [3] used RNN and CNN for this research, one

very good point from this research is usage of LSTM with RNN, because RNNs are

dependent on previous nodes output it faces error vanishing problem, but this problem is

addressed by use of LSTM which only focuses on the meaningful information from

previous node rather than whole.

 For this research malware pattern files were generated by executing malwares in

sandbox and collecting log files. Using RNN features were collected from log files,

collected features were converting to image file to pass through CNN and lastly models

were checked for validity. Results show that proposed model in this survey got 92%

accuracy, but the dataset against which models were trained was very small hence

accuracy of model could not be vouched for.

6

 Analysis of Virtual Memory Access Patterns for Malware

Detection Using Machine Learning

Malware detection can generally be divided into static and dynamic analysis, in static

analysis malware is analyzed for any anomalies in code of malware looking for any

existing known or suspicion signatures system or API calls, whereas dynamic analysis

rely on the execution of malware so that its behavior can analyzed from its behavior. In

this research, Xu et al. suggest a new way reliant relying on neither of previously

suggesting techniques and proposing rather a new idea of malware detection with

hardware analysis of malware memory access during its execution. But this technique

requires strong understanding of binary execution, machine architecture and ways

memory is accessed and managed during software execution lifecycle.

Xu et al. carried out analysis in iterations, whole execution of software was divided into

different iterations and each iteration was analyzed. The result show that the way from

where memory is accessed and how often largely tell a malicious behavior from

legitimate software. Summary histogram was created for each iteration, and it was

labelled as benign or malicious during software execution. Binary signature would be

verified on after training model was trained, finally analyzing hardware memory

execution, alarm would be generated on malware detection. Different models were tested

for best performance, Near Forest gave best results with 99% accuracy.

 Zero-Day Malware Detection

With rise of technology comes curse of increased attacks, even though Anti-Virus

programs are becoming most robust and sophisticated but there always lurks zero-day

attacks. Because new malwares keep evading signature-based methods and obfuscating

their signatures. This study conducted by Gandotra et al. suggests combining both static

and combing techniques to detect malwares, but shortcoming in this technique is

enormity of data and time it takes to detect malware. Hence author suggests that

classification should be done on selection of relevant data instead of whole. Research

was conducted through WEKA classification technique.

7

 Research was started by gathering malwares samples from virus Total database and

collecting files from different operating systems. Second step was analysis of malware in

sandbox environment through which attribute files were created, from which features

were selected to be passed through classification model. But before that top feature were

selected using IG method, top 7 features were selected to be passed to classification

model. WEKA library was used to build classification model. Different classification

models were used but random forest gave best results with 99% accuracy.

 We have seen a lot of research being conducted in the field of dynamic malware analysis

considering various parameters such as pattern, processes, API calls, network traffic,

memory access etc. However, none of the research has been focused on machine

telemetry data to look for malicious activity pattern and predict for malwares.

TABLE I. SUMMARY OF AVAILABLE TECHNIQUES

Sr. Research Focus Technique Summary

1 Early-stage malware

prediction using

recurrent neural

networks

Dynamic

Malware

Detection

Recurrent Neural

Network

Research focused on dynamic

malware detection using recurrent

neural network (RNNs) where

prediction is done during

execution rather than waiting post

execution. Analysis of Behaviour

snapshot of malware through

deep neural network has

improved the detection of

malware in 5 seconds with 95%

accuracy.

2 Automatic Analysis of

Malware Behaviour

Using Machine

Learning

Malware

Pattern

Clustering and

Classification

Techniques

Devised their own dataset named

Malheur. Successive analysis was

done altering between clustering

and classification. Results show

that by processing the behaviour

8

of malwares in clusters reduce the

processing time and speed.

3 Deep Learning for

Classification of

Malware System Call

Sequences

Calls

made by

Malwares

Deep Neural Network Research focuses on call

sequences made by malware to

classify it using deep neural

networks. This research utilizes

deep learning in a very novel way.

4 Malware Detection
with Deep Neural

Network

Using Process

Behavior

Process

Behavior

RNN and CNN Research conducted using traffic

data generated by running

systems. Using RNN features were

collected from log files, collected

features were converting to image

file to pass through CNN and lastly

models were checked for validity

achieving 92% accuracy.

5 Automatic Malware

Classification and

New Malware

Detection Using

Machine Learning

Automatic

Malware

Detection

Decision Trees and

Clustering.

Research done on huge dataset of

malwares including Trojan,

viruses, worms etc. On extracted

features and decision tree

techniques were applied to

identify the malware family and

unknown malwares were

detected with clustering

technique based on SNN.

6 Malware Detection

Using Machine-

Learning-Based

Analysis of Virtual

Memory Access

Patterns

Virtual

Memory

Access

Pattern

Near Forest Technique Research suggests a new way of

malware detection with hardware

analysis of malware memory

access during its execution.

Different models were tested for

best performance, Near Forest

9

gave best results with 99%

accuracy.

7 Zero-Day Malware

Detection

Zero Day

Attack

Random Forest

Technique

Research suggests combining

both static and combing

techniques to detect malwares,

author suggests that classification

should be done on selection of

relevant data instead of whole,

random forest gave best results

with 99% accuracy.

In all the research methods we have identified we have seen that dynamic methodology is

more preferred way of detecting malwares rather than static methodologies, but dynamic

malware detection has its limitations as well with time required to collect enough data to

detect malwares.

 In all the previously conducted research on malware detection main focus was on data

from malwares like call sequences Kolosnjaji et al. [2], API calls , process Behavior

Tobiyama et al. [3] , Virtual Memory Access Patterns Xu et al. [3] but none of the research

was focused on data of machine on which malwares were executed .We are focusing our

research and analysis on telemetry data of machines plus the threat reports generated by

antivirus software to see for patterns and common features from machines infected by

malwares , the analysis will be captured in form of machine learning model. Our focus

will be on predicting chances of any machine getting infected by malware with help of

our trained model so that sufficient steps can be taken ahead of time to stop the attack.

After going through all the research done previously in the field of malware detection, we

decided to approach our training through different angles. First, almost all the aspects of

malwares had been covered starting from analyzing actual malware files, logs generated

by malwares, API made by malwares to system, memory access pattern of malwares,

network traffic of systems running malwares. But we could not find any research

10

conducted on telemetric data. So, we decided to train model through deep neural network

and have it compared with different other techniques like LightGbm.

11

 Proposed Methodology

In this research we will be using dataset provided by Microsoft Kaggle, specific business

needs were considered while formulating the sample Dataset. Main consideration points

were the running time of machines and user privacy. Malware Detection is ever growing

research which is going forward with same pace of technological advancement ,

advancement in machine learning and data mining techniques and ever increasing

sophistication which we are seeing in the attacks being launched but malware detection is

becoming more complex with systems offline and online time , systems which are

periodically getting patches for known vulnerabilities , systems which are getting

advanced operating system versions and many more factors.

 Data
Each row in dataset can be uniquely identified by MachineIdentifier column,

HasDetection will tell if malware was detected on machine or not. Methodology used to

create dataset was crafted to meet certain constraints like to not to violate user privacy

and time during which machines were running. Malware detection is fundamentally a

time series problem, but more complications are added to it by certain factors like

introduction of new systems, Machine’s status either they are in use or not, Machines

with security patches, machines with outdated OS versions etc. Dataset has total of 82

feature columns, few of the columns are explained in table 2 to give vague idea of data

we are dealing with. We had total 8921483 records available to us for training.

12

TABLE II. DATASET COLUMNS DESCRIPTION

Column Name Description

ProductName Defender state information e.g.,

win8defender

CountryIdentifier ID for the country the machine is in

OrganizationIdentifier ID for the organization the machine belongs

in, organization ID is mapped to both

specific companies and broad industries

GeoNameIdentifier ID for the geographic region a machine is in

LocaleEnglishNameIdentifier English name of Locale ID of the current

user

Platform Calculates platform name (of OS related

properties and processor properties)

IsProtected This is a calculated field derived from the

Spynet Report's AV Products field.

Returns: a. TRUE if there is at least one

active and up-to-date antivirus product

running on this machine. b. FALSE if there

is no active AV product on this machine, or

if the AV is active, but is not receiving the

latest updates. c. null if there are no Anti-

Virus Products in the report. Returns:

Whether a machine is protected.

13

 Research Flow Chart

Our approach to this problem has been depicted in following flow chart, and each step is

discussed in detail in the subsequent sections.

14

 Exploratory Data Analysis

To better understand data interpolation, we plotted some graphs which are as follows.

Following topics were investigated during this process.

 Distribution of the target feature

 Frequency of the types of binaries, numerical and categorical in data

 Dimensions of each feature

 Frequency of each dimension

 Frequency of NaN-values

In addition, binary and numerical features were studied based on:

 Maximum value.

 Minimum value.

 Mean value.

 Standard deviation.

 Frequency of zero values

To answer basic question that is our data unbalanced with rest tour target column

HasDetections. As we can see in Figure.1 that we are not facing any problem of data

imbalance.

15

Fig. 1. Target column data distribution

As we stated earlier that this dataset is provided by Microsoft and it was crafted by

collecting data from threat reports, Figure 2 is showing stats of which product generated

how much data, we can see that most of the data was produced by wind8Defender.

Fig. 2. Data Distribution of Product

16

Figure 3 shows data distribution for country identifier, in the data country identifier is

shown is integer values but these values can easily be mapped to which country each

number is representing.

Fig. 3. Data distribution by Country Identifier

And we can see data distribution across different OS in Figure 4, explaining that which

version of operating system has seen most virus reports.

17

Fig. 4. Data distribution for platform count

And figure 5 is showing distribution of data across different processors, this could be

very helpful in seeing that for which family of processor most of the malwares are

launched.

18

Fig. 5. Data distribution for type of processor

Now let us see how some of the columns has distribution for our target column

HasDetection in Figure 6, we can see blue bar as HasDetection 1 and orange bar

HasDetection 0, graph is plotted to see data distribution of each type of workstation

against target column.

Fig. 6. Data distrubution for type of system.

Data exploration both manual and achieved through automation is very critical as it gives

initial understaning of system , as ininitially data is provided as huge amount. Data

exploration gives better understading of system then viewing data as unstructured flat

files. After getting bettter understanding of provided dataset we started working on data

cleaning as explained in next section.

19

 Data cleaning

The Data Cleaning Process pre-processes the raw data sets and transform those for

feature use. The goals of data cleaning step are as follows.

 Features with too many NaN-values are deleted.

 Features with highly unbalanced dimensions are deleted.

 Features are classified as binary, numeric or categoric.

 NaN Or Missing Values

Occurrence of missing values represent messiness of data, reason of presence of missing

or NaN values could be human error, software glitch or any other reason but they would

skew our results I left in data. If we try to remove all such rows where we see missing

values size of our dataset will drastically reduce one thing, we cannot afford in machine

learning process, we cannot even replace it with 0 or 1 as for regression problems it could

be misleading. So, for our data cleaning process we replaced numerical NaNs with mean

and median for such columns which had any outliers in them. Whereas for categorical

values we went with most frequent values.

Before cleaning up the data sets, the underlying features and characteristics were

intensively studied with an EDA (Exploratory Data Analysis) Process as explained in

previous chapter.

 Deleting highly unbalanced Features

Training model on unbalance data will produce wrong predictions for instance if we train

our model with data where 99% times x happens and only 1% y happens, trained model

will predict x in most of times. So, it is important to either get rid of such columns or bias

your data to get interesting results. As we can see some examples of unbalanced columns

from our dataset in Figure 7 and Figure 8, we removed such columns before our training.

20

Fig. 7. Unbalanced IsBeta column

Fig. 8. UnBalanced RtpStateBitField, IsPassiveMode Column

 Data Encoding
We have been provided with 82 columns in the dataset with total 8921483 entries. In the

dataset we have numeric, categorical and timestamps, we will be using different

techniques to encode data. Variables are encoded using following techniques.

 Selective One Hot Encoding

 Numeric Encoding

 Label Encoding

 Frequency Encoding

21

In total we have 43 categorical values which have total 211,562 entries.

 Categorical Columns Encoding

As we know categorical values contain labels rather than numbers, many machine learning

algorithms like decision trees can work with categorical data directly but for our research

we need to convert all the categorical values to numeric for making our system more

robust and efficient, because we do not have any ordinal relation in the categorical values.

 One-Hot-Encoding

We will be using One-Hot-Encoding but we cannot possibly use 211,562 entries for

encoding hence we will be using specialized selective technique to use only values which

will be impacting on HasDetection. We are dividing our category variables in 2 categories

Frequency Encoded Parameters FEM and One-Hot-Encoded parameters. Following 4

columns ‘Engine version’, ‘Application Version’, Antivirus Signature Version’, ‘Census

OS Version’ will get encoded through frequency encoded because we have ordinal values

in these columns, they can be easily encoded but we will use Selective One hot encoding

for 39 columns which does not have any ordinal relation with each other.

 In selective One-Hot-Encoding we will ignore all the values which are deviating 0.5 less

than 1 standard deviation for HasDetection. We will test following hypothesis for every

value we have.

 HP1 = Probability (‘Has Malware’= 1 for Malware was Present) = 0.5

 HP2 = Probability (‘Has Malware’= 1 for Malware was Present) (is not equal) 0.5

For every value from each selected category, we will see how it is impacting on

HasDetection rate, we are assuming that roughly 0.5 of the values has positive detection

rate, then for every value we see if it deviates from our 0.5 standard deviation. If standard

deviation is more or equal to 0.5, we will use a Boolean at its place otherwise we ignore

it. As an example, let us take column ‘Antivirus Product Installed’, Value 1 has detection

rate of 54.8% and Value 2 has Detection Rate of 39.6%, using Central limit theorem z =

2(p(X)-0.5) √n their respective z values are

 Z value for 1 = 2 (0.54-0.5) √6208893 = 199

 Z value for 2 = 2(0.39 – 0.5) √2459008 = -344

22

Hence, we will keep all values for version 1 and ignore value for 2. Similarly, For Column

‘Country Identifier’ we have total 222 unique identifiers. If we apply same Central Limit

Theorem, we reduced 222 values to 115 values eliminating 107 values.

 Frequency Encoding

Another way of Encoding data we have adapted in our research is Frequency Encoding,

where we use the frequency of category as their label. Frequency Encoding helps machine

learning training model to assign weights to labels with respect to target column. To

optimize the code and model training we did some memory optimizations on variables

assigning them to uint8, unint16 and uint32 depending on the highest values.

 Data Engineering
For our Method 4.1(Deep neural network with embedding layer) after analysing data some

new columns were introduced after mixing existing columns for instance Column

AppVersion2 is engineered from AppVersion (e.g., 4.9.10586.0), in this column second

number is taken for instance if AppVersion is 4.9.10586.0 we will take 9 as AppVersion2.

This number indicates whether operating system has been updated and it is running latest

version. All the categorical variables with cardinality greater than 10 are introduced as

new variables, which increases model accuracy. For rest of our methods no new columns

were added. In addition to all the encoding techniques we applied on categorical variables

we defined above, new columns are introduced for all the columns with cardinality greater

than 10, there new columns are introduced with the technique of Frequency encoding.

With this technique 35 new variables are introduced.

Instead of passing data directly to network, all the variables are grouped in different pools

depending on their relevance to each other, we have introduced 4 groups. All the variables

are categorized in these 4 groups.

23

TABLE III. Groups with relevant columns

Group Columns

Geographical

Group

'CountryIdentifier','CityIdentifier','OrganizationIdentifier','GeoNameIde

ntifier',

'LocaleEnglishNameIdentifier','Census_OSInstallLanguageIdentifier','C

ensus_OSUILocaleIdentifier','Wdft_RegionIdentifier'

Software &Virus

Group

'DefaultBrowsersIdentifier','AVProductStatesIdentifier','AVProductsInst

alled','AVProductsEnabled','IsProtected','SMode','IeVerIdentifier',

'SmartScreen','Firewall','Census_IsSecureBootEnabled',

'Census_IsWIMBootEnabled','Wdft_IsGamer','Census_OSWUAutoUpd

ateOptionsName','Census_GenuineStateName','AppVersion2'

Hardware Group

'Processor','Census_PowerPlatformRoleName','Census_MDC2FormFact

or','Census_DeviceFamily','Census_ProcessorCoreCount','Census_Proce

ssorClass','Census_HasOpticalDiskDrive','TotalPhysicalRAM','Census_I

nternalBatteryType','Census_InternalPrimaryDiagonalDisplaySizeInInch

es''Census_InternalBatteryNumberOfCharges'

Name and Model

Group

'Census_ProcessorModelIdentifier','Census_FirmwareManufacturerIdent

ifier','Census_FirmwareVersionIdentifier','Census_OEMModelIdentifier'

,'Census_ProcessorManufacturerIdentifier'

24

 Experimental Setup and Scenarios

After data cleaning and encoding we trained following 3 neural networks to compare

their performance:

 Network training using LightGBM

 Network training using PyTorch Framework

 Network trained using TensorFlow Framework

 Network Training Using LightGBM

As a first experiment we decided to run simple LGBM model on our cleaned and encoded

data to see its performance. For model training we started with data preprocessing to get

data into a state after which model can be trained for best result. For data cleaning we first

cleared all the NaN values in data so that it will not skew the results. As we divided whole

dataset in 3 groups i.e. categorical data, binary data, and numeric data, we applied different

techniques for NaN removal. For categorical data we replaced such values with label

Unknown, for numeric values we replaced it with -1 and for binary features we replaced

values with most frequent values, and we did some basic label encoding. Afterwards

LightGBM algorithm was applied with Bayesian Hyperparameter Optimization training

using Cross Validation (3 folded) to return best fitted model, model was trained by passing

parameters as explained in Table VII.

TABLE IV. LightGBM classifier parameters

Parameter Value

boosting _type Gbdt

learning_rate 0.0106

min_child_samples 295

num_leaves 160

reg_alpha 0.6321152748961743

reg_lambda 0.6313659622714517

25

subsample_for_bin 80000

Subsample 0.8202307264855064

colsample_bytree 0.6110437067662637

Estimators 12000

 Important Feature Selection using LightGBM

For our second method we decided to take slightly different approach and play with

feature and their impact on our target column “HasDetection” and then train important

features using neural network.

 Light Gradient Boost Machine to Find Important Features

LGBM is one of the best methods which produces a baseline model using subsample

and it also highlights important features in dataset, features which are contributing most

towards target column. First, we split our dataset in train and test for validation before

passing it to LGBM. Afterwards we decided our parameters to train our model as shown

in Table V.

TABLE I. LGBM FEATURE SELECTION PARAMETERS

Parameter Value

boosting _type gbdt

learning_rate 0.0106

min_child_samples 295

26

num_leaves 160

reg_alpha 0.6321152748961743

reg_lambda 0.6313659622714517

subsample_for_bin 80000

subsample 0.8202307264855064

colsample_bytree 0.6110437067662637

Estimators 5000

Defined parameters were passed in LGBM model with objective set as binary and we

got Feature importance as displayed in Table VI, we are only mentioning top 10

columns here.

TABLE II. Top 10 Features

 Feature Importance Normalized Cumulative

0 DisplaySizeInInches 57048 0.071758 0.071758

1 monitor_dims 44264 0.055678 0.127436

2 AVProductsInstalled 39925 0.050220 0.177657

3 AVProductIdentifier 35066 0.044108 0.221765

4 CountryIdentifier 34878 0.043872 0.265636

5 AvSigVersion 29084 0.036584 0.302220

6 OSInstallTypeName 28141 0.035397 0.337618

27

7 RegionIdentifier 24468 0.030777 0.368395

8 AppVersion 22664 0.028508 0.396903

9 LocaleEnglishNameId 21664 0.027250 0.424153

After analyzing the feature importance, we trained our model with different selection of

column as explained in next section.

 Deep Neural Network Training using PyTorch

After feature selection using Light GBM we then trained our neural network using

pyTorch framework. The network architecture of our model is given below

28

Fig. 9. Model Network Architecture

29

 Block Summary

TABLE III. Summary of all the layers in network

Layer (type) Output Shape Param #

Linear-1 [-1, 0, 64] 4,416
BatchNorm1d-2 [-1, 0, 64] 128

ReLU-3 [-1, 0, 64] 0

Linear-4 [-1, 0, 128] 8,320

Dropout-5 [-1, 0, 128] 0

BatchNorm1d-6 [-1, 0, 128] 256

GELU-7 [-1, 0, 128] 0

Linear-8 [-1, 0, 256] 33,024

Dropout-9 [-1, 0, 256] 0

BatchNorm1d-10 [-1, 0, 256] 512

GELU-11 [-1, 0, 256] 0

Linear-12 [-1, 0, 128] 32,896

Dropout-13 [-1, 0, 128] 0

BatchNorm1d-14 [-1, 0, 128] 256

GELU-15 [-1, 0, 128] 0

Linear-16 [-1, 0, 64] 8,256

Dropout-17 [-1, 0, 64] 0

BatchNorm1d-18 [-1, 0, 64] 128

GELU-19 [-1, 0, 64] 0

Linear-20 [-1, 0, 16] 1,040

Dropout-21 [-1, 0, 16] 0

BatchNorm1d-22 [-1, 0, 16] 32

GELU-23 [-1, 0, 16] 0

Linear-24 [-1, 0, 1] 17

Sigmoid-25 [-1, 0, 1] 0

Total params 89,281

Trainable params 89,281
Non-trainable params 0

Brief explanation of our network layers is as follows.

 Batch Normalization

Training Deep Neural Networks is complicated by the fact that the distribution of each

layer's inputs changes during training, as the parameters of the previous layers change.

30

This slows down the training by requiring lower learning rates and careful parameter

initialization and makes it notoriously hard to train models with saturating nonlinearities.

We address the problem by normalizing layer inputs by making normalization a part of

the model architecture and performing the normalization for each training mini-batch.

Batch Normalization allows us to use much higher learning rates and be less careful

about initialization. It also acts as a regularizer, in some cases eliminating the need for

Dropout.

The mean and standard-deviation are calculated per-dimension over the mini-batches

and γ\gammaγ and β\betaβ are learnable parameter vectors of size C (where C is the

input size). By default, the elements of γ\gammaγ are set to 1 and the elements of

β\betaβ are set to 0. The standard-deviation is calculated via the biased estimator,

equivalent to torch.var(input, unbiased=False).

Also, by default, during training this layer keeps running estimates of its computed mean

and variance, which are then used for normalization during evaluation. The running

estimates are kept with a default momentum of 0.1.

 RELU

Applies the rectified linear unit function element-wise:

31

Fig. 10. ReLU Layer

 Dropout

During training, randomly zeroes some of the elements of the input tensor with

probability p using samples from a Bernoulli distribution. Each channel will be zeroed

out independently on every forward call.

Furthermore, the outputs are scaled by a factor of during training. This means that

during evaluation the module simply computes an identity function.

 GELU

Applies the Gaussian Error Linear Units function:

32

where is the Cumulative Distribution Function for Gaussian Distribution.

 Sigmoid

Applies the element-wise function:

33

Fig. 11. Sigmoid Activation Layer

 Deep Neural Network with Embedding Layer

For our final experiment we used TensorFlow to train our deep neural network, we

passed all the groups, as explained in Data engineering section, through embedding layer

before sending it to Neural network.

34

 Embedding Layer

Fig. 12. Embedding Layer concatenating into Group

35

All the variables, statistically encoded labels, as discussed previously are fed to

embedding layer with configuration of 1:1, in 1:1 ratio one input to node will generate one

output. Output from first embedded layer is grouped together based on our grouping

criteria. These grouped variables are then feed into common dense layer with input output

ration of 2:1. Introduction of this dense layer will squeeze variables and it will represent

variables in reduced dimensional space. As our dense layer is only using identity

activation, our dense layer is behaving like PCA. We are passing following number of

variables in every group.

TABLE V. Groups with variable counts

Group Name Variables count

Geographical 8

Hardware 18

Name-Model 6

Software 15

Misc. 12

Timestamp 33

Embedding layer mimics one hot encoding for category variables. For instance, if we have

got 200 unique values and we pass them from one hot encoding, we will get 100 Boolean

values back. In embedding layer, it would be like sending 100 units to 100 output 100:100.

Let us take another example from our implementation, we are first passing 3 inputs to

embedding layer and getting output of 3 making it 3:3 embedding layer, in second instance

we are seeing embedding layer of 6:3, we are sending input of 6 to embedding layer and

getting back output of 3 making it like PCA.

36

Fig. 13. Embedding layer with 6:3 ratio.

 Network Training

The training network architecture diagram is as follows:

37

Fig. 14. Network Diagram of trained model

38

TABLE VI. BLOCK SUMMARY OF LAYERS IN NETWORK

Layer (type) Configuration

Dense Kernel [756x100]

Bias 100
Dropout

Batch Normalization Gamma 100

Beta 100

Moving mean 100

Moving Variance 100

Activation ELU

Dense Kernel [100x100]

Bias 100

Dropout

Batch Normalization Gamma 100

Beta 100

Moving mean 100

Moving Variance 100

Activation ELU

Dense Kernel [100x100]

Bias 100

Dropout

Batch Normalization Gamma 100

Beta 100

Moving mean 100

Moving Variance 100

Activation ELU

Dense Kernel [100x1]

Bias 100

Sigmoid

Block summary of all the layers in network are explained in Table V, we used these layers

with mention parameters, each layer is explained below in detail.

 Dense Layer

As we explained earlier that we divided all our features into different groups and passed all the

groups through Embedding layer which gave us representation of data with more concise and

related features, output from all the groups was fed into first dense layer of network.

39

 Dropout

We passed output of Dense layer to Dropout Layer with rate 0.2.

 Batch Normalization

After Dropout we introduced layer of batch normalization with configurations explained

in Table V

 Activation ELU

Batch Normalization output was fed into ELU layer.

 Sigmoid

At the end Sigmoid layer was introduced.

We trained our network on system with 32gb ram and 8gb GPU. Result of last training

epoch are shared below. We achieved accuracy of 73%

Fig. 15. Training Result of last Epochs.

40

 Result Analysis

 Experiment Number 1

The block diagram of our first experiment shows the end to end process involved in this

method. As explained earlier, we started with cleaning the data for any NaN values, then

we trained our model using Bayesian Hyperparameter Optimization as a training criteria

with LightDBM.

Fig. 16 Block Diagram Experiment 1

41

 Experiment Number 2

For the second experiment we started with already cleaned data from experiment 1, and

used LightGBM for selecting important features of the data rather than training the

model. Afterwards we fed the data to deep learning training algorithm using PyTorch

framework. The type of neural network training in which we already have target labels

and tune our training algorithm to minimize loss in predicting the correct label is called

supervised learning. The block diagram of the end to end process is shown below.

Fig. 17 Block Diagram Experiment 2

 Experiment Number 3

For our final experiment we again started with cleaned data from experiment 1, after

which we manually did data engineering and grouping based on likeness of data wihh

eachother. Finally we trained the deep neural network model by using Tensorflow

framework. Once again as we knew the result column so supervised learning process

42

was focused on minimizing loss in predicting the right result over several epocs. The

block diagram showing end to end process is shown below.

Fig. 18 Block Diagram Experiment 3

 Comparison

The comparison of training using 3 different methodologies is presented in the following

table. We achieved best performance through network trained using LGBM encoding

and PyTorch framework.

TABLE VII. COMPARISON RESULTS

43

Experiment LightGBM Deep Neural Network

with LGBM encoding

Deep Neural Network

with Embedding

Layer

Framework LGBM PyTorch Tensorflow

Data Preprocessing Data Cleaning

o Removing NaNs

 Data Cleaning

o Removing NaNs

 Data Encoding

o Using Light GBM

 Data Cleaning

o Removing NaNs

 Data Encoding

 Data Grouping

Training Criteria Bayesian

Hyperparameter

Optimization

Minimizing Loss in

predicting the Target

Label

Minimizing Loss in

predicting the Target

Label

Accuracy 66% 74% 73%

Comments Since we only did

data cleaning and then

trained on data, for

this reason this model

has less accuracy

For this experiment

we did data encoding

before training the

network, and by

tuning different

parameters like

number of layers and

loss criteria (Adam)

we achieved

maximum accuracy

For our final

experiment we took a

step further in data

engineering and

grouped similar data

columns before

training using

TensorFlow

framework and

achieved slightly less

accuracy than our

second experiment

44

 Future Work and Discussion

For improving the accuracy of neural networks further experiments can be performed by

tuning different training parameters like learning rate, loss function, depth of network

and number of training epochs etc. but these experiments need a considerable amount of

resources (GPU, RAM and CPU). As an example, our PyTorch network took 4 days to

train using 12GB Nvidia 2080Ti GPU, 16 GB Ram and 4 CPUs.

In order to utilize this research in practical scenarios, we are also working on a software

utility to predict chances of Malware threats in an organization or network setup by

selecting different inputs from the application and predicting results live by doing

inference from the trained network.

45

 References
[1] Matilda Rhode, Pete Burnap, Kevin Jones,Early-stage malware prediction using

recurrent neural networks,Computers & Security,Volume 77,2018,Pages 578-594,ISSN

0167-4048.

[2] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic analysis of malware

behavior using machine learning,” Journal of Computer Security, vol. 19, no. 4, pp. 639–

668, 2011. 2.

[3] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, “Deep learning for

classification of malware system call sequences,” in Australasian Joint Conference on

Artificial Intelligence. Springer, 2016, pp. 137–149.

[4] S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, and T. Yagi, “Malware

detection with deep neural network using process behavior,” in Computer Software and

Applications Conference (COMPSAC), 2016 IEEE 40th Annual, vol. 2. IEEE, 2016, pp.

577–582.

[5] Xu, S. Ray, P. Subramanyan, and S. Malik, “Malware detection using machine

learning based analysis of virtual memory access patterns,” in Proceedings of the

Conference on Design, Automation & Test in Europe. European Design and Automation

Association, 2017, pp. 169– 174.

[6] Sanjay Sharma, C. Rama Krishna and Sanjay K. Sahay. “Detection of

AdvancedMalware by Machine Learning Techniques”. Proceedings of SoCTA 2017.

[7] Kateryna Chumachenko. “Machine Learning Methods for Malware Detection and

Classification”. 2017.

[8] E. Gandotra, D. Bansal, and S. Sofat, “Zero-day malware detection,” in Embedded

Computing and System Design (ISED), 2016 Sixth International Symposium on. IEEE,

2016, pp. 171–175.

46

 Appendices
 LightGBM with Deep Neural network Training Code

pytorch mlp for binary classification

from numpy import vstack

from pandas import read_csv

from sklearn.preprocessing import LabelEncoder

from sklearn.metrics import accuracy_score

import torch

from torch.utils.data import Dataset

from torch.utils.data import DataLoader

from torch.utils.data import random_split

from torch import Tensor

from torch.nn import Linear

from torch.nn import ReLU

from torch.nn import GELU

from torch.nn import Dropout

from torch.nn import Sigmoid

from torch.nn import Module

from torch.optim import SGD, Adam

from torch.nn import BCELoss

from torch.nn import BatchNorm1d

from torch.nn.init import kaiming_uniform_

from torch.nn.init import xavier_uniform_

from tqdm import tqdm

import numpy as np

dataset definition

import dask.dataframe as dd

import pandas as pd

47

print('Training neural network, NK Net')

class CSVDataset(Dataset):

 # load the dataset

 def __init__(self, path):

 print('Reading CSV data')

 # load the csv file as a dataframe

 #df = read_csv(path, header=None)

 df = pd.read_csv(path) #.head(n=10000)

 # store the inputs and outputs

 #self.X = df.values[1:, 1:-1]

 # AVProductsInstalled, AVProductsEnabled, IsProtected, Firewall,

 IeVerIdentifier

 select_range = list(range(1,70))

 select_range.remove(55)

 self.X = df.values[:, select_range]

 self.y = df.values[:, -2]

 # ensure input data is floats

 self.X = self.X.astype('float32')

 self.y = self.y.astype('float32')

 # label encode target and ensure the values are floats

 self.y = LabelEncoder().fit_transform(self.y)

 #self.y = self.y.astype('float32')

 self.y = self.y.reshape((len(self.y), 1))

 # number of rows in the dataset

 def __len__(self):

 return len(self.X)

48

 # get a row at an index

 def __getitem__(self, idx):

 return [self.X[idx], self.y[idx]]

 # get indexes for train and test rows

 def get_splits(self, n_test=0.33):

 # determine sizes

 test_size = round(n_test * len(self.X))

 train_size = len(self.X) - test_size

 # calculate the split

 return random_split(self, [train_size, test_size])

model definition

class MLP(Module):

 # define model elements

 def __init__(self, n_inputs):

 super(MLP, self).__init__()

 # input to first hidden layer

 self.hidden1 = Linear(n_inputs, 64)

 kaiming_uniform_(self.hidden1.weight, nonlinearity='relu')

 self.bn1 = BatchNorm1d(64)

 self.act1 = ReLU()

 # second hidden layer

 self.hidden2 = Linear(64, 128)

 kaiming_uniform_(self.hidden2.weight, nonlinearity='relu')

 self.do2 = Dropout(0.2)

 self.bn2 = BatchNorm1d(128)

 self.act2 = GELU()

49

 # third hidden layer

 self.hidden3 = Linear(128, 256)

 kaiming_uniform_(self.hidden3.weight, nonlinearity='relu')

 self.do3 = Dropout(0.2)

 self.bn3 = BatchNorm1d(256)

 self.act3 = GELU()

 # fourth hidden layer

 self.hidden4 = Linear(256, 128)

 kaiming_uniform_(self.hidden4.weight, nonlinearity='relu')

 self.do4 = Dropout(0.2)

 self.bn4 = BatchNorm1d(128)

 self.act4 = GELU()

 # fifth hidden layer

 self.hidden5 = Linear(128, 64)

 kaiming_uniform_(self.hidden5.weight, nonlinearity='relu')

 self.do5 = Dropout(0.2)

 self.bn5 = BatchNorm1d(64)

 self.act5 = GELU()

 # sixth hidden layer

 self.hidden6 = Linear(64, 16)

 kaiming_uniform_(self.hidden6.weight, nonlinearity='relu')

 self.do6 = Dropout(0.2)

 self.bn6 = BatchNorm1d(16)

 self.act6 = GELU()

 # seventh hidden layer and output

 self.hidden7 = Linear(16, 1)

 xavier_uniform_(self.hidden7.weight)

 self.act7 = Sigmoid()

 # forward propagate input

 def forward(self, X):

50

 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

 X = X.to(device)

 # input to first hidden layer

 X = self.hidden1(X)

 X = self.bn1(X)

 X = self.act1(X)

 # second hidden layer

 X = self.hidden2(X)

 X = self.do2(X)

 X = self.bn2(X)

 X = self.act2(X)

 identity = X

 # third hidden layer

 X = self.hidden3(X)

 X = self.do3(X)

 X = self.bn3(X)

 X = self.act3(X)

 # fourth hidden layer

 X = self.hidden4(X)

 X = self.do4(X)

 X = self.bn4(X)

 X = self.act4(X)

 X += identity

 # fifth hidden layer

51

 X = self.hidden5(X)

 X = self.do5(X)

 X = self.bn5(X)

 X = self.act5(X)

 # sixth hidden layer

 X = self.hidden6(X)

 X = self.do6(X)

 X = self.bn6(X)

 X = self.act6(X)

 # seventh hidden layer and output

 X = self.hidden7(X)

 X = self.act7(X)

 return X

prepare the dataset

def prepare_data(path):

 # load the dataset

 dataset = CSVDataset(path)

 # calculate split

 train, test = dataset.get_splits()

 # prepare data loaders

 train_dl = DataLoader(train, batch_size=32, shuffle=True)

 test_dl = DataLoader(test, batch_size=1024, shuffle=False)

 return train_dl, test_dl

52

train the model

def train_model(train_dl, model):

 # define the optimization

 num_epochs = 200

 criterion = BCELoss()

 #optimizer = SGD(model.parameters(), lr=0.01, momentum=0.9)

 optimizer = Adam(model.parameters(), lr=0.05)

 # enumerate epochs

 for epoch in tqdm(range(num_epochs)):

 # enumerate mini batches

 for i, (inputs, targets) in enumerate(train_dl):

 device = torch.device(

 "cuda:0" if torch.cuda.is_available() else "cpu")

 inputs = inputs.to(device)

 targets = targets.to(device)

 # clear the gradients

 optimizer.zero_grad()

 # compute the model output

 yhat = model(inputs.type(torch.FloatTensor))

 # calculate loss

 loss = criterion(yhat.to(device), targets.type(torch.FloatTensor).to(device))

 # credit assignment

 loss.backward()

 # update model weights

 optimizer.step()

 print("Epoch {}/{}, Loss: {:.3f}".format(epoch+1,num_epochs, loss.item()))

evaluate the model

53

def evaluate_model(test_dl, model):

 predictions, actuals = list(), list()

 for i, (inputs, targets) in enumerate(test_dl):

 # evaluate the model on the test set

 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

 inputs = inputs.to(device)

 yhat = model(inputs)

 # retrieve numpy array

 yhat = yhat.cpu().detach().numpy()

 actual = targets.numpy()

 actual = actual.reshape((len(actual), 1))

 # round to class values

 yhat = yhat.round()

 # store

 predictions.append(yhat)

 actuals.append(actual)

 predictions, actuals = vstack(predictions), vstack(actuals)

 # calculate accuracy

 acc = accuracy_score(actuals, predictions)

 return acc

make a class prediction for one row of data

def predict(row, model):

 # convert row to data

 row = Tensor([row])

 # make prediction

 yhat = model(row)

 # retrieve numpy array

 yhat = yhat.cpu().detach().numpy()

54

 return yhat

prepare the data

path =

'/vol/research/facer2vm_dev/people/junaid/MalwareThesisLightGBM/data/train_encod

ed_selective_full.csv'

train_dl, test_dl = prepare_data(path)

print(len(train_dl.dataset), len(test_dl.dataset))

define the network

print('Defining model')

model = MLP(68)

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

model.to(device)

train_dl.to(device)

test_dl.to(device)

train the model

print('Starting training')

train_model(train_dl, model)

save model

PATH =

'/vol/research/facer2vm_dev/people/junaid/MalwareThesisLightGBM/nk_net.pth'

torch.save(model.state_dict(), PATH)

print('Fininshed training, model saved at {}'.format(PATH))

evaluate the model

acc = evaluate_model(test_dl, model)

print('Accuracy: %.3f' % acc)

make a single prediction (expect class=1)

AVProductsInstalled, AVProductsEnabled, IsProtected, Firewall,

 IeVerIdentifier

55

row = np.random.uniform(low=0.0, high=13.3, size=(68,))

model.eval()

yhat = predict(row, model)

print('Predicted: %.3f (class=%d)' % (yhat, yhat.round()))

