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Abstract

The modelling and analysis of biological networks is a key challenge in understanding the

functioning of complex cellular systems. Qualitative modelling framework introduced by

René Thomas is a well-established method to study the dynamical behavior of biological

networks. Significant contributions have been made towards the application of the

qualitative modelling framework. However, the availability of the framework as an API

and open-source implementation remains a challenge to date. In this work, we have

developed an open source python package that can be used by application developers in

the area of systems biology and bioinformatics towards analysis of qualitative biological

regulatory networks. We demonstrate that our implementation can be used to create

qualitative models and perform key computations, such as cycles, deadlock states and

generation of dynamic state graphs. We report the processing time for various models

from the literature. Moreover, a frontend application is developed as a part of the

API is provided to facilitate development of future applications. In future, we aim to

improve the scalability of our API for complex networks by employing model reduction

and parallel processing techniques.

Keywords: systems biology, biological regulatory networks, modelling, René Thomas,

smbionet, genoteche, ginsim
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Chapter 1

Introduction

1.1 Biological Regulatory Networks

The relationship between biological entities is represented by Biological Regulator Net-

works (BRNs). Conventionally, in an initial step, it depends on the description of a

graph of regularity, and each node in this graph represents a regulatory parameter. The

regulator may be protein, RNA, DNA, and combination of both. Plenty of complex

operations can be involved as their regulations, but the regulations’ complexity is com-

monly clarified by performing two operations that are inhibition and activation which

are denoted by positive and negative arcs in a graph. These arcs show the relation be-

tween the target and source nodes. Each of these nodes is modelled as a unique feature

and must have a finite possible value. These values are normally boolean (only two

values), i.e. 0 or 1 that denote protein presence (activity) or absence (inactivity). The

interaction can be direct or indirect. For each node, the boolean function is defined.

The purpose of this function is to detect the changes of its values as the values of the

regulatory changes. In a regulatory graph, the recommended order of the values of all

the nodes is required. According to the logical function, the state of the network can be

upgraded, and logical functions are used on each node by activating a transition toward

a successor state. In synchronous updating mode, all the nodes are updated at the

same time till final state, also known as Unique Successor State (USS). So, the obtained

dynamical performance is significantly determinate thoroughly. On the other hand, in

an asynchronous updating mode, at a time only one node is updated. Several exten-

sions and variants of the updating modes are already defined, for example allocating

1



Chapter 1: Introduction

probabilities for updates’ node or allocating predetermined priorities etc.

René Thomas justified the Boolean modelling approach as a discretization of the con-

tinuous differential equation system [1], it opposed to the classical analysis in terms of

continuous differential equations [2]. Snoussi and Thomas proved that a discrete ap-

proach can find all steady states in a given BRN [3]. In a later study, Thomas and

Kaufman [4] produced the discrete formalism yields a qualitative alternative of the dif-

ferential equations with a few possibilities of values for the parameters. An interesting

study of Cinquin [5] based on the formal method of René Thomas showed the basis to

develop a positive and negative regulation and its analysis on BRN.

1.2 Modelling of Biological Regulatory Networks

In BRNs, a group of molecular entities may be observed. These entities regulate and

interact with each other. In the cell, the biological entities are represented by the nodes

in the network such as proteins, genes, and their products. The edges are used to repre-

sent the interactions. Regulations (inhibition or activation) are shown by interactions.

As a unique feature, each node is modelled, having a possible value represented by finite

numbers. To control the processes of cellular, the expression level of genes evolves, is

calculated by these interactions. A Biological Network that consists of a complex pro-

cess has several nodes and these networks grow by regulatory entities. The relationship

between proteins and genes is summarized by given network. Traditionally, the systems

of biological modelling have been accomplished by a system of Ordinary Differential

Equations (ODEs) or Stochastic Differential Equations (SDEs) by biological circuit’s

connections and taking into account of entities. The concentration of gene product is

represented by each feature in an ODEs’ system, and non-linearity varies to another. A

mathematical challenge is posed by the non-linearity of these ODEs and the development

approaches of qualitative modelling are paved by this limitation [6].

1.3 Existing tools and frameworks

Many tools are being used for exploring biological networks which include GINsim,

SM-BioNet, Pathway Studio, Cytoscape, Patika, and VisANT. For development of the

system biology and integrative biology, these tools are very important. The emerging

2



Chapter 1: Introduction

trend for the development of biological network tools is to use the more dynamic model

instead of ‘static’ representations of cellular state [7].

For the analysis and construction of logical models of multi-valued, GINsim (Gene Inter-

action Network simulation) is used and it is a Java based application. For the simulation

and modelling of Genetic Regulatory Networks (GRNs), GINsim is used. The logical

formalism of multilevel is performed by this tool. State Transition and Logical Regu-

larity Graphs are supported by this tool. In functional genomics, modern developments

have produced a huge size of data on gene expression and the underlying regulatory

mechanism. Usually, these networks include a complex path that may have more than

one feedback. For this purpose, simulation and modelling tools are an important com-

plement to the experimental tools. As detailed and accurate information on mechanisms

of molecular and also kinetic parameters’ values are presently tough to determine. The

qualitative methods are a good approach to analyses and model the essential and nec-

essary properties of GRNs.

For understanding the organisms functioning on a molecular level, it is important to

know which genes are expressed, where and when in the organism, and which extend.

GRNs systems structured are used to achieve the gene expressions’ regulation by in-

teractions’ networks between RNA, small molecules, DNA, and proteins. Most of the

GRNs of interest contain several elements connected over interlocking negative and pos-

itive feedback loops. So, formal tools and methods for the simulation and modelling of

GRNs will be essential [8]. GINsim contains a qualitative models’ simulator of GRNs

supported distinct, logical formalism. Through GINsim, the user is allowed to specify

a model of a GRNs in respect of multivalued logical functions, asynchronous, and to

analyses and/or simulate its qualitative impulsive behaviour [9].

SMBioNet tool is used to model the systems of biological regulatory. This tool is estab-

lished based on the Computational Tree Logic (CTL) [10] and the multivalued logical

formalism of Rene Thomas.

The input file comprises four sections, VAR, REG, PARA and CTL. The input file is

divided into four sections. The first section (VAR) represent the variables, the second

section contains REG the regulatory process of what we call a discrete regulatory net-

work. The logical parameters in the third section, PARA. on the logical parameters

associated with the network are given. The last one Computational Tree Logic (CTL),

3



Chapter 1: Introduction

contains contains a formula that represents a dynamic property which is then tested on

all transition states.

GenoTechE is another java based graphical tool which is used to analyze the dynamics

of given BRN. It calculates the state graph by using René Thomas’ methodology. It can

also be used to identify the diseased states and equilibrium states in the state graph.

The states may be visualized in this tool for better understanding. GenoTechE supports

the "dot" format to import and export graphs [11].

1.4 Limitations

For the last few decades, researchers have been working with these tools. These tools

help us a lot in problem-solving as well as the experimental purpose. But we have to

face some kind of limitations in using these tools which are mentioned below:

• The tools that are already being used by an individual do not provide a program-

ming interface. Existing tools are not extendable and can not be modified as an

individual to solve any other problem other than the already given i.e the biologists

need APIs to solve the problems like parameter estimation.

• Ease of use: Existing tools need to be set up before use. We also need a training

session to train the end-user before using it. So, there is a need for such a tool

that is available online and ready to use at any instance. And that tool must be

easy to use and understandable by the end-user. For this purpose, there must be

a tool that has a considerable user interface so that the user may interact with the

tool more conveniently.

• Interpretability: The file exported by the Cytoscape can not be imported by GIN-

sim. The user has to rewrite/convert these files. Given that, the programmer

must have to develop a different code to convert the files exported from GINsim

to import in GenoTechE.

1.5 Problem Statement

Modelling, simulation and analysis of biological systems is a well-known problem in sys-

tems biology. The pathways are abstracted in the form of biological regulatory networks,

4



Chapter 1: Introduction

often represented as weighted directed graphs. René Thomas’ qualitative modelling

framework is a widely used technique to analyse biological networks and their dynamic

behaviours. However, not much has been done towards the development of application

programming interfaces to facilitate the development of packages and libraries based

on the aforementioned framework. In this study, we address this problem by develop-

ing a programming framework in python language. Our work provides a well-defined

programming interface to model, simulate and visualize biological networks using a qual-

itative modelling framework. The availability of the programming framework in python

language makes it easy to use and integrate with existing packages.

1.6 Objectives

This study focuses on

1. Python package to support further development of systems biology applications

based on the qualitative modelling approach of René Thomas’

2. Development of a web-based tool for modelling, simulation and visualization of

biological regulatory networks using qualitative modelling framework.

3. Cross-platform implementation to ensure portability across existing tools such as

GinSim, SMBioNet, GenoTechE, etc.

5



Chapter 2

Literature Review

2.1 Modelling of Biological Regulatory Networks

Biological Regulatory Networks (BRNs) represent the interconnections between bio-

logical entities. The graph of the BRNs consist of the regulatory components. The

interaction of cellular networks comprises of genes, tiny molecules, proteins, their mu-

tual interactions, DNA, RNA, and their complexes. The link captured in the gene is first

recorded into messenger RNA (mRNA) when a gene is turned on and then respective

link is interpreted into proteins. Proteins subset has a monitoring role which is able to

turn other genes on/off. Such regulations among genes and proteins may involve difficult

operations in the form of a network that leads us to the Biological Regulatory Networks

(BRNs).

BRNs are required to be investigated, for experimental manipulation and for an under-

standing of how BRNs work. Biological Regulatory Networks (BRNs)’ formal methods

are recommended since 1960 for investigation. Several protocols have been developed

to create behavioural expectations as of the model of the framework utilizing examina-

tion (based on simulation) as well as to build the model by using investigative data-set

on monitoring mechanisms. Few proposed protocols, along with their techniques for

simulation are being discussed here. The new protocols consist of stochastic equations,

directed graphs, differential equations (ODEs and PDEs), Boolean networks and their

generations. The modelling framework is categorized into four sections by using the

proposed protocols that include different types of modelling; quantitative, qualitative,

hybrid and piece-wise linear differential equations (PLDEs).

6



Chapter 2: Literature Review

A Biological Regulatory Network (BRN) is analyzed as a group of molecular objects.

These entities interact collectively with one other. The biological objects are presented

by nodes in the network. The interactions are represented using edges that show acti-

vation or inhibition of that entity. There are numerous monitoring networks involved to

capture segments linked through meshing positive and negative loops for feedback, and

it becomes difficult to analyse the interactions. Resultantly, the proper approaches and

tools used for modelling the simulations, used computer techniques in genetic regula-

tory networks that can be crucial. Each node in BRN is demonstrated as a unique fickle

which has a limited number of likely outcomes. BRNs consists of complex processes. A

connection between genes or proteins is summarized by the network. Usually, demon-

strating of biological schemes is done by the use of Ordinary Differential Equations

(ODEs) or Stochastic Differential Equations (SDEs).

Over the two years, proven verification is raised as an important method for conventional

demonstration and investigation of ongoing responsive and capricious frameworks. The

key benefit of the model is examining an analysis based on simulation and its charac-

teristics and consistency of calculated results. They clea state model regulator (SPIN)

for proper modelling, and for examination, Linear Temporal Logic (LTL) of the com-

plex dynamics (cycles) of BRNs was used. A framework was modelled for BRNs on

the Kinetic Logic of René Thomas, and a state of the art, SPIN model regulator. The

framework is based on boolean modelling and can also be used for the analysis of BRNs

objects. To check the quality and practical usefulness of the structure, and for analysis

BRNs of pseudomonas aeruginosa and Indoleamine 2,3-dioxygenase is cast-off [12].

Gene network, represented by completely associated Boolean systems, where every com-

ponent communicates with all components including itself. In this method, an input

circuit creates its normal dynamical behaviour (i.e. multistationarity or oscillations)

just to fit under the estimation of logical constraints. After every constraint, the state is

known as functional. This formalism permits the calculation for the constraints, applied

on the logical limitations to know whether the input circuit is useful or not. From a bio-

logical perspective, it recommends that the formal regulatory networks can be degraded

to smaller but independent feedback circuits. In other words, this connection expresses

that the bigger the circuit, the greater the arrangement of limitations to be fulfilled [13].

The Petri Net (PN) formalism proposed an integral structure for examining the dynam-

7



Chapter 2: Literature Review

ical behaviour of big systems formed by qualitative or quantitative understandings. It

is a PN formalism with a logical approach, Which is difficult and systematic plotting of

multi-level logical regulatory models into exact standard Petri nets, called Multi-level

Regulatory Petri Nets (MRPNs). On the other hand, some reduction strategies are also

proposed. This consolidated approach includes two main phases. First, the specification

of the model is done regarding a basic regulatory graph, tracked by its parameteriza-

tion. The flexibility provides an advantage over the logical limitations and then MRPN

corresponds to the resultant systematically generated graphs and lets the application of

the current techniques to assess the dynamical property [14].

An integrative approach for verification of regulatory networks based on the biological

study analyzes that the previous verification methods suffer from different issues i.e.,

different characteristics of network dynamics like fluctuations that are not expressed

easily utilizing classical logic, mostly the existing set of tools are unable to perform

such evaluation. In order to reduce these limitations, it had been proposed that CTRL

logic that is an extension of CTL, with fairness operators and regular expressions. The

method permits a natural description of biological properties i.e., multistability. This

method aims to offer a syntax that is simpler to benefit those users who are not experts

to formulate different complex biological problems [15].

A network based on data that is regulatory gene-to-gene microarray obtained by infer-

ence method from yeast. This particular method finds the out-degrees by studying the

simplified network. The nodes with extraordinary out-degrees are unlikely but effective

from a biological view. The study also finds a biological group of genes that are relevant

among many of the genes and also the excess of genes coding for different products

included in the record between genes with higher out-degree. Simulation results proved

that usage of linear approach is valid and efficient for getting large-scale networks [16].

2.2 Quantitative Modelling

Quantitative modelling methodology relies on two different equations; The ODEs and

The PDEs that are being used tremendously to investigate BRNs. BRNs are generally

represented by biological experts in the format of directed graphs or logical feedback

circuits [17, 18]. The dynamics of these intuitive circuits and graphs are then investigated

8



Chapter 2: Literature Review

for deducting the elements from the frameworks. The simplest and straight way is

to depict a network in the form of a regulatory network. Previously, the formalism

of directed graphs was utilized to provide an example of the regulatory networks. A

directed graph G consists of nodes and edges which is represented as a tuple G < N,E >,

where N is the set of nodes and E is the set of edges. Moreover, a directed graph is

defined as a set of vertices < i, j >, where i signifies the head and j signifies the tail of the

edge. The biological objects are exemplified as nodes of the directed graph. The edges

indicate the interactions among the biological objects (nodes). The kind of formalism is

summed up in a few different methods. The edges and nodes can be marked to denote

the rate of the interaction of biological objects. The directed edges can be expressed

as a tuple like < i; j; s >, where i denotes the head of the head j denotes the tail and

s denotes whether i is activated or inhibited by j. Limitation of differential equation-

based modelling is that it requires enormous CPU time and memory along with the

inherited incomplete nature of numerical simulations [19].

The respective study showed that Petri net permits the combination of analyzing quali-

tatively and mathematically. The findings were responsible for the reduction of essential

limitations to fulfil system performances noticed in monitored networks for a gene [20].

The benefits of using hybrid Petri net models are: 1) The interface is user friendly

interface that permits an easy simulation, visualization and design. 2) In continuous

and distinct events, the model can handle the metabolic process and gene regulation.

3) The inhibitor arc is beneficial for studies to learn about enzymes interaction with a

substrate to know about the role related to inhibitors in gene expression. The benefit

of mathematical equations is that the simulations of the model are dynamically visi-

ble. The complex networks can be managed with the similar set of behavioural and

structural properties. When HPN is used for such large network, the hierarchical as-

sumption makes it easy to make a generalized version of HPN. HPN is abbreviation

of? Write complete word after word when and then HPN should be written in brackets.

A grained model for transcription of gene along with developed approaches to recover

them from expression data of the gene within the model of a probabilistic approach is a

great phenomenon. This method focuses on quantitative transcription rates and at the

same time, it finds the kinetic limitations that are used to regulate these rates and the

level of activities of regulators that are not observed. The proposed approach is applied

to expression data-sets taken from yeast sample and prove that the scheme is capable

9



Chapter 2: Literature Review

to learn the dynamics of unknown activities. The scheme also proposed a new learning

technique and shows its accuracy [21] .

Different approaches for both logic and quantitative modelling of gene and molecular

networks were studied. During the process, Most examples were considered from gene

networks. The study led to the way for researchers to make a contribution in these

fields and have better knowledge of these. Mathematical modelling is an essential part

of biological systems. Well-designed and evaluated models help to learn the cellular

and molecular process and can find the causes of mutation and drugs. The study gave

awareness of various methods and showed ways to combine these models for making

them more useful.[22]

Quantitative modelling technique based on fuzzy logic to manage kinetic data that is

unknown and further produces related results in case kinetic energy is not complete.

This study successfully evaluated the proposed model with the combination of the ODE

relied model. The proposed biological model was not only dependent on the information,

not related to kinetic data, but also on known kinetic information. Variance among the

conventional and fuzzy model will increase by the process numbers that is demonstrated

with uncertain logic. However, the technique is capable to show quantitative output with

biological relation [23].

A model which covers the space among the frequency running in background of the

nucleotide and rate of gene gap is recorded. The record model presented that it depends

on energy binding among regulators and their targeted genes. The regulatory efficiency,

kinetic parameters and binding affinity are used to get information of features related to

the promoter are modelled as a binding energy function. The un-observed transcription

factor and kinetic functions are not incorporated into a probabilistic technique. Ex-

perimental outputs that depend on the data-set of yeast reflects that the method can

effectively find the regulators attention [24].

2.3 Qualitative Modelling

It is the simplest and fundamental modelling approach. It is distinct and logic-based

technique, firstly introduced by René Thomas and Kauffman. Qualitative approaches

include Boolean login and Kinetic logic of Thomas. In 1970s, Kauffman et al. demon-

10



Chapter 2: Literature Review

strated the activation levels of objects with Boolean variables in BRNs. The Boolean

variables comprised of only two promising states which are “1” and “0”. These states

can also be represented as “ON” and “OFF”. The logic based Boolean methodology is

suffering from several challenges and limitations in analysis. It is only dealing with two

levels, however observing the difficulty of biological objects, their modelling requires

more than the two-levels for apprehending their innate dynamics precisely. Kinetic the-

ory and René Thomas’ model are multi-valued logic that permits us to estimate the

sigmoid nature of biological entities more closely. This approach is observed as procras-

tinating in a distinct domain. Whereas, the expression level of a gene u at time t+ 1 is

ruled by the function, involving equations from the regulators of u. René Thomas et al.

prolonged Kauffman’s contributions to the multi-state models. In multi-state methods,

the expression’s level of some biological object in BRNs is modelled by a distinct variable

[25].

The basic dynamics of Rene Thomas models are overseen by standards of model param-

eters within a due time, also known as logical parameters. Mostly, the actual measure-

ment influenced by biological entities cannot be exerted. Therefore, discovering suit-

able model parameters that are going to explain tough regulatory controls in qualitative

modelling that are used in inter-cellular processes in biological systems. Although, when

modelling complex disease progression in different scenarios, it is essential to calculate

the parameters that can guide the system to a recommended performance level/scenario.

The computational model can predict the therapeutic intervention. A new technique

to find the unidentified logical parameters by using a formal authentication method,

known as model checking was also proposed. In these frameworks, the semantics of

BRNs are specifically modelled like some state-transition system. Every state model

has a conceivable formation of requisite system that may possess numerous promising

successor states. Model organizer calculates the state space of the bio-network, by gain-

ing a Cartesian product, among the thinkable configurations of the system. Hypotheses

are experimented in the temporal logical equation that is developed by logical links and

operators [26].

A technique constructed on the model and analyzing the Regulatory-Network of In-

doleamine 2, 3-dioxygenase in Tumour Immune Escape, where Immune discharge is a

serious entrance to malignancy was practiced. According to the findings, to suppress the

T-cell immunity in pathological settings Indoleamine 2, 3 Dioxygenase (lDO) is engaged

11
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including cancer. To demonstrate the BRNs utilizing kinetic logics of Rene Thomas,

a renowned and dominant method for modelling formalism, provision to comprehend

their dynamical performances of the IDO related BRNs. The homeostasis of IDO and

T cell mediated protected regulation in the body that is accountable for overpowering

the tumour by monitoring IDO activation, is revealed by a qualitative cycle. A distinct

modelling of the IDO associated BRN was used. IDO attentiveness in a cell ought to

be under constricted control, by keeping up the homeostasis of the framework commu-

nicating IDO. This BRN can be additionally tuned when postponing parameters that

are being investigated by utilizing the hybrid model examination devices [27].

The consolidated utilization of numeral-valued logical formalism, and, distinct Petri-nets

to demonstrate and analyze regulatory networks qualitatively was summarized. This

explanation reflects on a distinctive qualitative framework legalized by non-existence

of specific quantitative data regarding regulatory mechanisms. Logical process firstly

presented by René Thomas and coworkers have verified that it is beneficial and well-

equipped for the qualitative modelling of respective regulatory networks. It has per-

formed very well for a variety of cellular mechanisms. Besides this, Petri nets (PNs)

establish mathematical framework to characterize distinct simultaneous schemes. Since

a huge quantity of formal effort and computational advances are achieved, PNs’ value

from a well-developed mathematical framework and a group of suitable delays, dedicated

computational techniques/tools proposed a methodology that is dependent on several

workflows had been applied for a decent variety of cell forms. Then, the second one is

Petri nets (PNs) which comprises a mathematical framework resulting in a methodology

that is dependent on several workflows systems [28].

A well-developed Systematic Perturbation Qualitative Reasoning (SPQR), for reasoning

qualitatively to systematize the acceptance of findings by systematic perturbation tests

was evaluated. This technique is built on a qualitative concept of the investigative data-

set. It is worthwhile to mention that for an agitation experiment, estimated standards of

the experimental variables are lower, higher, or equal than the estimation in an irregular

form, when no disturbance is conducted. This scheme uses a set of IF − THEN rules

for concluding fundamental affairs among the variables, examining the patterns that

are broad casted for the disturbing signals via bio-network. This algorithm is especially

designed to overcome the false rate of positive between the contingent relations [29].

12
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Amethodology, dependent on several work-flows, where diverse programming techniques

combined with delicate parameters are bound together, with additional manual steps

most of the time is a steady approach. To access and recreate such an approach is

thought, as distributions are habitually neglected examination realities, and because of

a portion of the instruments are tricky to introduce, and additionally have a sharp ex-

pectation to absorb information. The CoLoMoTo Interactive Notebook gives an insight

for a unified domain to change, implement, share, and replicate analysis of biological

networks’ qualitative model. This system has advantage over various technological skills

to guarantee the iteration and to decrease the user learning curve of these skills. The

computational flow is applied by using the Jupyter web interface that enables textual

annotations and uses clear code for execution and illustration. The consequent files

were again executed in a particular environment. Till now, the CoLoMoTo’s Interactive

Notebook delivers admittance to the various software tools like GINsim, BioLQM, Pint,

MaBoSS, and Cell Collective, for analysis and modelling of Boolean as well as numeral

value bearing networks. In future, more up-to-date tools may be added. A Python

interface was established for each tool that is proposing unified incorporation in the

Jupyter web-interface, favours ease in connecting complementary analysis [30].

2.3.1 Parameters Estimation

Models are deliberations of real systems, and the qualities which are responsible for

deciding how close a model is to a real system are known as parameters. Estimation

of parameters is a difficult assignment since it is hard to get the right ones from the

tremendous arrangement of parameter values. In like manner, parameters estimation of

biological regulatory networks to study the dynamical changes in biological systems is as

challenging as it is significant. Parameters estimation by utilizing qualitative modelling

framework is favoured over quantitative modelling as articulation levels are represented

using distinct qualities, which diminishes the trouble for parameters calculation job

keeping the parameter state space limited; whereas, in the case of quantitative modelling

where expression levels have continuous values, the difficulty for parameters computation

is high as parameter state space is infinite. Also, the qualitative modelling framework

unveils important properties of Biological systems i.e., bifurcation points, cyclic behavior

in the form of feedback loops and stable or steady states, etc. Parameters estimation
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isn’t just useful in the investigation of systems-level diseases like Parkinson’s disease,

Alzheimer‘s disease, and cancer, etc., yet additionally advantageous in the identification

of potential helpful medication targets. According to René Thomas Logical Formalism,

the dynamics of a biological system are studied by converting its regulatory network

into a state graph based on logical parameters. These logical parameters are unknown

and a huge challenge for Qualitative Modelling is their estimation.

Model Checking is an automatic method for the confirmation of compound peripheral

systems [31]. At first, they established for simultaneous program verification, the model

examination is working as an industry-standard methodology for demonstrating the cor-

rectness of digital circuits, security protocols, and embedded systems. Model-checking

methods are distinguished based on the way, they understand the notion of time either it

is Linear [32] or branching [33]. Computation Tree Logic (CTL) is favors the expression

of properties of non-deterministic dynamical systems such as BRNs, where an existing

state can have more than one descendant state.

BRNs are accountable for developing and maintaining the inter-linked programs and

functions in the organisms. The functions are applied by the dynamic nature of BRNs

and are delicate to the regulations that stand compulsory by specific activators as well

as inhibitors. The reasonable modelling formalism of René Thomas integrates the com-

passion of collection of logical constraints modulated specifically by existing regulators,

changing over time. Due to an increment in the difficulty of BRNs, in case of the number

of entities, their communications, the undertaking of parameter estimation turns out to

be computationally costly with the existing sequential SMBioNET tool. The authors

spread the current consecutive usage of SMBioNET by utilizing the data decomposition

method with the use of a Java messaging library known as MPJ Express. The methodol-

ogy separates the parameters space into various areas and then explored in a parallel way

on the High-Performance Computing hardware (HPC). A qualitative modelling frame-

work is extensively used for exploring the nature and functions of biological regulatory

networks. Though, the calculation of model parameters in qualitative modelling is an

intensive task with respect to computation. It almost offers linear speed-up on both

clusters and multi-core platforms. Additionally, the parameters similarly recommend a

potential therapeutic intervention that restores homeostasis [34].
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2.3.2 Challenges in Qualitative Modelling

For validation, the modelling and simulations are made that require tools for model

validation. The direct threats opposed to model validation are accomplishments that

are based on the model experimentation and predictions of the data and also have a

look at observations and comparisons. One of the big issues faced, was the develop-

ment of a biological model that is lacking the graphical tool impact that manages the

large networks. Qualitative models of dynamics of signalling trails and gene regulatory

networks, allow to have chronological properties of bio-networks while demanding few

parameters. Though, these distinct models typically agonize from the state space explo-

sion problem that creates formal evaluation of their potential performances are pretty

competitive [35]. Generally, qualitative models suited the system under constraint infor-

mation regarding qualitative facts and then quantitative models are used to give details

in a complete manner. Qualitative models do not incorporate usually, kinetic aspects

of cellular signalling and can thus not provide a complete quantitative understanding as

with mechanistic ODE modelling [36]

2.4 Hybrid Modelling

Hybrid modelling is comprised of a mixture and a combination of approaches. In the field

of biology, it is said to be the coupling or combination of qualitative and quantitative

formulation. Traditionally, the reaction-diffusion system of partially different Differen-

tial Equations, demonstrating the developments of chemical concentrations/densities,

are united with the cellular auto-mata or available agent-based models. The proper-

ties of the biological characteristics change altered with continuous external chemical

change. Most models follow the same pattern. Summarily, a hybrid model agrees to

any interaction or coupling between the two models, which are not executing on similar

pattern. For instance, deterministic and stochastic, global and local, phenomenological

and physically based, etc [37]. A novel hybrid method for automated formal analysis

of biological systems is established with an emphasis on their oscillatory behaviours,

which allows incomplete and practical knowledge based biological data-set. To meet the

needs of quantitative information, our modelling focuses on (i) the biological compound

product signs and (ii) the temporal properties related to the biological properties of the
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mutual interactions. Such limitations are informal to be removed from the available ex-

perimental data. They propose perceptive on a hybrid system, which is adapted to large

gene regulatory networks, that is appropriate for underlining the biological properties

[38]. Hybrid Systems and hypothetical models. Evaluations are recognized related to

the data requirements, scalability along with network size, and computational burden.

The visualized programs along with extensive case studies at huge scale genomic models

& in particular sub-systems of various organisms [39].

The phenomenon of hybrid refers to the composition of two innately different things. In

biology, the hybrid modelling is known as the combination of different continuous and

discrete formulations having discrete characteristics. Traditionally, reaction-diffusion

systems of Partial Differential Equations (PDE), reflecting the evolutions of chemical

concentrations or densities, are coupled with the cellular auto-mata/agent based models.

The state and/or characteristics of these entities, are evolved with the external contin-

uous chemical any other fields. It is a fact that many models related to bio-medicine

follow this pattern, hybrid modelling can be much more than that. Summarily, a hybrid

model reflects any interaction or coupling between two or more models, and their for-

malism is entirely different. For example, deterministic and stochastic, global and local,

phenomenological and physically based, etc [37].

A new hybrid technique for automatic formal analysis of biological systems is developed

with a special emphasis on their oscillatory behaviours. It allows the use of incom-

plete and empirical biological data. To meet the needs of quantitative data-set, this

methodology focuses on (i) the biological compound product signs and (ii) the temporal

properties which are associated with the biological effects of different interactions. This

information can be obtained from experimental data-set. They aim at reasoning on

such a hybrid modelling system which is adapted to the large gene regulatory networks,

which may be suitable for emphasizing biological properties [38].

Hybrid Systems and stochastic models. Comparisons are also established regarding

different requirements of data-sets, their scalability, along with network size and com-

putational needs. These methods of developing requisite models are incorporated with

successful case studies in large-scale genomic models, and in the particular subsystems

of different organisms [39].

There are a few tools available to model biological regulatory networks. Two of widely
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used are SMBionet and GinSim their workings are as follows:

2.5 SMBioNet

SMBioNet [40] uses qualitative biological networks and quantifies them into a robust

quantitative model. The tool uses Thomas’ algorithm for the stategraph quantification.

The first step in the tool is gather biological information including static knowledge [41],

for instance about the gene, its sequence, and its ontology to populate node character-

istic; the second ifnormation is the dynamic properties that changes as a result of the

weights of the node structures, the influx and regulation of the gene or protein as a result

of its interactions with its environment. These dynamic properties include whether the

stategraph is homostatic or multistationary etc [26]. The next step is to formalize these

inputs into a a node structure and its associated edges with direction. Thirdly, a way to

hypothesize about the given nodes and its interactions are proposed. These hypotheses

can be reiterated until appropriate hypothesis is developed. In comparison to this.

2.6 GINsim

GINsim [42] is another tool that translates biological networks into stategraphs. Thi tool

provides a graphical user interfae using JGraph, an open source Swing tool. Regulatory

networks can be input into the software for analysis. After the input, simulation can

be run. A separate window uses different weights that can be input for the simulation

where nodes activate or repress the other through an interaction. For a simulation of n

nodes can lead to a stategraph of 2n states. For optimization, the tool uses depth first

search to simulate on a given node. Subsequently the more important states on genes

are prioritized by the user.

2.7 Research gap analysis

We need a tool with user interface that is user friendly and open source, so that anybody

can modify it according to their requirements. For existing tools, we need a training

session initially and they are not user friendly. So, we need a system that can be modified

by the user, according to the individual’s requirements and must be user friendly. The
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other issue in the existing scheme is that the file exported by the one tool cannot be

imported by the other. The user must rewrite/convert these files. We need a package

for system biology that is based on qualitative modelling approach. There is a need for

a tool which is web based and provide the modelling, simulation and visualization of

biological regulatory networks.
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Methodology

3.1 Overview

This chapter discusses the methodology to develop the approach used in this work. Given

the popularity among data science and bioinformatics researchers, Python language is

used to implement René Thomas’ approach. From that BRN and its parameters, next

dynamic states are computed and are used for the state graph generation and then

analysis can be performed on generated state graph. Figure 3.1 shows the workflow of

the approach. Every step is discussed one by one in detail.

3.2 Systems Biology

Systems biology is the mathematical analysis and computational modelling of biological

systems. It is a biology based interdisciplinary field of study that focuses on complex

interactions within biological systems. The main idea behind systems biology is that to

understand biology, it needs to be studied on the systems level, considering gene regu-

latory networks, protein interactions, or metabolism networks as a whole. Kauffmanś

qualitative modelling approach represents the activation levels of different entities in

a BRN by utilizing different Boolean variables which are possessing only two possible

states i.e. "ON (active or 1)" and "OFF (inactive or 0)" also called Boolean Modelling.

Initially, René Thomas’ proposed a qualitative framework based on Boolean logic which

can be widely applied on BRNs which precisely approximated the different ODE models.

Later, it was widely admitted that the Boolean model is inefficient to completely reflect
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Figure 3.1: Workflow starts by a BRN as input with parameters, which is processed and in the

end, a state graph is produced. Interoperability layer provide an easy to use API

for conversion of graph formats.

different interactions within BRNs, at different gene expression concentrations. This led

to the presentation of kinetic logic formalism which allows the modelling of discretely

abstracted concentration levels other than Boolean as well. Qualitative modelling ap-

proaches have been used to model the behaviour of several biological networks including

MAL associated BRN, dengue virus pathogenesis and clearance mechanism and many

more. Thomas’ Formalism is primarily based on modified graphs, known as Biological

Regulatory Networks (BRNs).

3.2.1 Pseudomonas

Pseudomonas aeruginosa is a species of bacteria that live in the human lung. The genes

under study here encode mucus production which severs symptoms in cystic fibrosis
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patients. This AlgU gene positively regulates an operon and all genes involved in mucus

production including AlgU itself. This is a classic An operon is a set of inter-linked

genes that are translated to protein together. case of positive auto-regulation. The

model presented here is simple but it can accurately encapsulate and give insights into

potential therapeutic solutions [25]. The problem under consideration here is how can

the mucus production network be translated into a state graph that can be modelled

through BRN. In Figure 3.3 we have a biological regulatory network of Pseudomonas

aeruginosa where x represents AlgU and y represent anti-AlgU gene respectively.

3.2.2 Malaria

The second pathway under study is that of malaria. Malaria is caused by the Plas-

modium parasite that is trasnmitted from one organism to another by the Anopheles

fly. Symptoms of malaria include chills, elevated body temperature, and in severe cases

death. The Plasmodium parasite feeds on the host body’s red blood cells and ruptures

the cells to come out. This causes a severe drop in the number of red blood cells in

the body causing death if not taken care of. Symptoms are often severe in children.

Chloroquine phosphate is used to treat patients with the disease.

In this study, a special case of malaria is considered called cerebral malaria. This is

the case when red blood cells going to the brain are heavily sequestered which lim-

its the amount of oxygen supply with a simultaneous increase in nitric oxide. This

leads to coma in a condition called encephalopathy or cerebral marlaria. To understand

this pathway, in this study, the BRN of MyD88-adapter-like (MAL) and its depen-

dent proteins were used to model hyperinflammation, or the abnormal increase in body

temperature. Another study showed that MAL, through different snignle nucleotide

polymorphism studies, is involved by being activated by the Bruton’s tyrosin ekinase

(BTK) through phosphorylation [43, 44]. This started an inflammatory response by ac-

tivating cytokines as well as SOCS-1 (suppressor of cytokine signalling 1) protein which

degrades phosphorylated MAL and acting as a negative feedback. These three proteins

are modeled here through BRN using the canconical algorithm.
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3.2.3 Dengue Virus

The dengue virus is a single stranded RNA virus that has four serotypes that can

equally infect the human body through the Aedes aegypti mosquito. Serotypes refer to

the sub-classes within the dengue virus family. Dengue is caused by the bite of the Aedes

aegypti mosquito which transfers the virus through saliva to skin cells which then trigger

an inflammatory response throughout the body. During the viral incubation phase, the

virus can induce fever, fatigue and severe muscular and joint pain. In extreme cases,

the virus can elicit haemorrhage inside the blood vessels that causes internal bleeding

under the skin and abdominal pain among other symptoms. This virus is found in the

tropical and sub-tropical regions of the world. In the present case study, viral binding

to the Toll-like receptor 3 that induce innate immunity is modelled. Dengue virus uses

the SOCS protein to inhibit innate immunity by binding to the Toll-like receptor 3

proteins. This is done by using the Rene Thomas formalism to capture the effects of

the interaction between Toll-like receptor 3 of human cells and SOCS protein in dengue

[45].

3.2.4 Hexosamine Biosynthetic Pathway (HBP)

The Hexosamine Biosynthetic Pathway (HBP) is a component of the glycolysis pathway

that is involved in protein glycosylation. Protein glysylation inolves the addition of

glucose groups to the protein moiety which stabilizes protein for further activity [46].

Disruption in HBP has been implicated in cancer where tumorous cells go to metastasis,

which is when tumour cells migrate from the local center to the blood system and

circulate throughout the body. Therefore modelling HBP and its rather complex network

is very relevant to cancer genomics. HBP is yet to be well-understood because of how

it is intertwined with the glycolytic pathway. But the rate limiting enzyme, which is

the slowest and most important step in a chemical reaction, is the protein Glutamine-

Fructose-6-phosphate amidotransferase (GFAT). This pathway involves the addition of

N and O-glycosylation [47] which means adding a glucose group to target protein’s

Nitrogen and Oxygen atoms. What is not understood in the pathway is how these

phenomena affect the body’s functions, but several studies have shown that GFAT1

and GFAT2 are involved in eliciting many different types [48–52] of cancerous events,

including metastasis. These genes are also involved in exacerbating other tumours [53–
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x y

Figure 3.2: Directed Graph representing nodes x and y with and arrow showing the direction

of the edge.

55]. Additionally, studies have shown that increase in HBP leads to hyper N and O-

glycosylation events that reduce cell motility and therefore melanoma cell migration.

Here is this study, HBP is used to understand this, owing to its breadth of complexity

in terms of networks.

Qualitative modelling by using René Thomas’ approach is a widely used approach for

Study of BRNs However, the availability of the framework as an API and open-source

implementation remains a challenge to date. Therefore, the present study is aimed to

develop a qualitative modelling framework based on Python; a programming language

widely used in the development of computational life sciences applications. Later on,

the developed programming interface may be integrated with existing system-biology

applications to have more efficient usage of existing systems

Following are the definitions explained in [56] which are fundamental to this work. The

intent is to give the reader an overview of basic concepts.

Definition 1 (Directed Graph). “A directed graph is a form of a graph that is is defined

as an ordered triple G = (V,E, f), where f is a function that maps each element in E to

an ordered pair of vertices in V . The ordered pairs of vertices are called directed edges,

arcs or arrows. An edge E = (i, j) has direction from i to j”.

Directed graphs are suitable for the representation of networks describing biological

pathways which show the sequential interaction of elements at one or multiple times.

It also points and the flow of information throughout the network. These are mainly

known as regulatory networks. In the theory of directed graphs, a path is a chain of

distinct nodes, connected by directed edges, without branches or cycles. The graphs we

are using in this study are directed weighted graphs. In figure 3.2 we have a directed

graph with nodes x and y and a directed edge from x to y.

Definition 2 (Weighted Directed Graph). “A weighted directed graph is defined as a

graph G = (V,E) where V is a set of vertices and E is a set of edges between the vertices

E = (x, y)|x, y ∈ V associated with it a weight function w : E → R, where R denotes
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Figure 3.3: Weighted Directed Graph with weight/threshold specified on the edge. Edge from

x to y has weight 1. Edge from y to x has weight −1 and edge from x to x has

threshold of 2.

the set of all real numbers.”

Most of the time, the weight wxy of the edge between nodes Vx and Vy represents the

relevance or strength of the connection. Usually, a larger weight corresponds to the

higher reliability of a connection. Weighted graphs are currently the most widely used

category of graphs throughout the field of bioinformatics. The weights on the edges

represent the concentration required for a biological entity to activate or inhibit the

other biological entity.

Definition 3 (Biological Regulatory Network). “According to the qualitative model of

René Thomas, the biological entity represented as a weighted directed graph G = (V,E)

a node i ∈ V may have multiple activators and inhibitors where

• biological entities are represented by a set of nodes V

• interactions are represented by set of a edges E ∈ V × V

• Each edge Vi, Vj is labelled by a pair (τ, σ) where τ is the threshold at which gene

Vi regulating gene Vj and σ{+,−} is called a sign of interaction. (+ for activation

and − for inhibition)”.

Definition 4 (State). “The State of BRN is n-tuple S = {svi , ..., svn}∀svi ∈ σvi where

• svi is the abstract expression level of vi.

• In a given state, each svi is regulated by its predecessors Gvi formally denoted as

set of resources (ωvi)“.
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Definition 5. (Resource) “The resources ωvj of an entity at a state svj resources gives

the level towards which the entity v tends to evolve. Let G = (V,E) be a BRN. The set

of resources ωvj at a state svj is defined as

ωvj = vi ∈ G−vj
|(svi ≥ τvivj and σvivj = +)”.

Definition 6 (State Graph). “A state graph is a graph that represents how a biological

system represented as a graph behaves given certain values of parameters. Let G = (V,E)

be a BRN and SVi is the expression level of Vi in a state s ∈ S. Then the state graph

R = (S, T ) is a directed graph, where S represents a set of states, and T ⊆ S × S is a

relation between states also called the transition relation, such that s→ s′ ∈ T iff:

• ∃ a unique vi ∈ V such that svk
6= s‘

vj
and svx‘ = svi � Ki(ωvi)

• ∀vj ∈ V {I}s
′
vj

= svj”

Let G = (V,E) be a BRN. The set of resources ω(x) at level svx , is defined as:

X Y ωx ωy

0 0 Kx[y] Ky[]

0 1 Kx[] Ky[]

1 0 Kx[y] Ky[x]

1 1 Kx[] Ky[x]

2 0 Kx[x, y] Ky[x]

2 1 Kx[x] Ky[x]

The parameter set is a Cartesian product of each entity’s resources

Kx 0

Kxx 2

Kxy 2

Kxx,y 2

Ky 0

kyx 1

In biological terms, the model above shows a simple system where node x and y represent

two genes, are regulating each other in the following manner: gene x activates y with
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0, 1 1, 1

0, 0 1, 0 2, 0

2, 1

Figure 3.4: State Graph of pseudomonas aeruginosa for a given set of parameters. States (0, 1)

(1, 1), (0, 0), and (1, 0) represent equilibrium while (2, 1) and (2, 0) states represent

a deadlock.

a weight of 1, whereas y inhibits x with a weight of -1. These two weights are equal in

magnitude opposite in direction, implying that the two genes equally excite and inhibit

each other. There can also be cases when the inhibition is twice as high as activation.

Additionally, gene x activates itself with a magnitude of 2. In other words, this model

shows two genes that activate and inhibit each other with the same magnitude while the

first gene activates itself with twice as much potential as it activates the second gene.

3.3 Implementation

Implementation is divided into three parts. At the core of this project is the imple-

mentation of René Thomas’ algorithm, and perform analysis on generate state graph

e.g finding stable and unstable states, then we have a module that allows the imple-

mentation to work with multiple other graph formats which are used by other tools e.g.

GINSim, Cytoscape.

3.3.1 Graph Representation

As discussed in definition 2 we need to represent biological entities as nodes in a graph

with additional information, e.g minimum and maximum thresholds of the entities can

reach for this purpose we have used NetworkX a Python language package to represent

graphs and analyse them [57].
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3.3.2 Parameters

Parameters of a BRN are the thresholds/levels at which we want to see how the biological

entity behaves. These parameters are the inputs given to each entity in a given time

step. These inputs change as a result of the network’s structure and transition function

over time.

3.3.3 Interoperability Layer

As researchers can use multiple existing tools to analyse their BRN for example, Cy-

toscape works based on sif and graphml files while GenoTechE works based on Graphviz

dot file format. To help easily convert between these formats we have implemented

a compatibility layer that can import and export BRN to and from GraphViz dot,

GraphML, Simple interaction file (sif) formats.

3.3.4 State Transition Graph

Generation of state transition graph is the core part of this work which is based on René

Thomas’ explanation of the state graph is given in definition 6.

To generate a state graph we first need to compute the state space for entities of BRN.

The state space encapsulates all the combinations of states our entities under study can

attain. These states may also transition between different states. A gene or protein may

get activated or silenced by the activity of five other genes or proteins simultaneously.

These states need to be modelled using the state transition graph in BRN. Transitions

between states are represented by weights with a direction, whether the given state is

activated, given a positive integer weight, or silenced, which is given a negative integer

value.

3.4 Tools and Frameworks Used

For development of proposed PyPi library and web based user interface, we have used

Open Source or freely available tools. To Write the whole code PyCharm Community

version was used as integrated development environment.
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3.4.1 Integrated development Environment

Integrated development environment (IDE) is a tools which facilitates the programmer

to write source code. For development of PyRThomas and Web based interface of it

PyCharm was used. PyCharm is is a widely used, feature rich development environment

for professional Python development, although it is a paid tool but for educational

purposes they provide a educational license to help students take advantage of all paid

features. With student license we also got access to IDE’s support for Web development

which is essential for development of software proposed in this study.

3.4.2 NetworkX

To implement René Thomas’ formalism we need to represent biological entities as

weighted directed graphs, we found NetowrkX as best to be used for development of

the framework because of it’s high performance and maintainability. It also provide

utility functions to perform some basic functions and analysis as well [58].

3.4.3 Angular JS

For the development of web interface we used Angular Js as a framework which allows

us to dynamically manipulate webpages and change the behavior without refreshing the

page and allow us to implement routing to allow user to navigate between the pages

[59].

3.4.4 Cytoscape js

Cytoscape js is a graph network standalone library which is used to represent graphs

in a web application. It provides support to show graphs in a very user friendly way.

With it’s canvas it allows user to interact with the graphs as well. It also support many

layouts which can help biologist understand the behavior and dynamics of the network

[60]
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Results

In this chapter, we highlight the results of our implementation of Python framework.

With the help of datasets available in literature, we show how or framework can be used

to model biological networks and computation of stable states and cycles.

4.1 Dataset

To test the performance of our developed framework we started with pseudomonas

aeruginosa. Pseudomonads is one of the bacteria species that reside in human lungs

responsible for cystic fibrosis. The gene AlgU controls mucus production by regulating

the operons and all the involved genes. AlgU autometically regulates its expression in

the system by making a feedback loop. We modelled this auto-regulated yet simple BRN

and translate it into a state graph. The figure 4.1 shows 2 nodes and 3 edges where

node X represents AlgU and Y represents the anti−AlgU gene [61].

Figure 4.1: Biological regulatory network of pseudomonas aeruginosa.

Another pathway selected for study is malaria, caused by the parasite plasmodium and

transmitted through vector fly Anopheles. The parasite attacks the host RBCs and

comprises the immune system. Typical symptoms of malarial infection include high

body temperature, chills fatigue and death if the number of RBCs drops in the body.

29



Chapter 4: Results

In a special case called cerebral malaria the red blood cells of the brain are sequestered

which leads to the shortage of oxygen in the brain often lead to the patient death due

to hypoxia. To understand the underlying molecular physiology of hyperinflation in

malaria, the network of MAL and associated genes were modelled [41] as shown in

figure 4.2.

Figure 4.2: The celeberaial maleria associated biological regulatory network.

In addition, we utilized the dengue virus-related regulatory network shown in figure 4.3

for modelling using developed framework. Dengue virus is a single-stranded RNA based

virus that infects the human body through the mosquito Aedes aegypti. Once the virus

enters the human body it lives here using the host machinery for its replication and

protein production. During the virus incubation time, the host body exhibit symptoms

such as fever, body aches, joint pain and fatigue. In some cases, the dengue virus can

cause haemorrhages inside blood vessels leading to internal bleeding that might worsen

the symptoms [45].

Figure 4.3: The TLR3 associated biological regulatory network of dengue virus.
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The Hexosamine Biosynthetic Pathway (HBP) is one of the components of glycolysis

which is responsible for protein glycosylation represented in figure 4.4. Protein glyco-

sylation is an important post transcription modification that stabilizes the functional

structure of the protein [47]. HBP has been repeatedly reported to be involved in tumour

progression and cancer metastasis. The link between HBP and the glycolytic pathway

is not well understood which makes the modelling of HBP relatively a complex task.

Figure 4.4: The Hexosamine Biosynthetic Pathway represented as a BRN.

4.2 Application Programming Interface

PyrThomas is split up in two modules one is NetworkService and the other one is

NetworkAnalyser. NetworkService is responsible for representation of the network. It

supports creation and deletion of nodes and edges from a network, clear the network,

import and export network in sif, graphml and dot format. To support NetworkService

there are two models defined, named Node and Edge. The Node represents the biological
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entity with an additional properties to support René Thomas’ approach. Additional

properties are min and max which represent the minimum and maximum threshold that

can be reached by an entity. Edge represent the interactions between the nodes, with

additional property called weight which represents the threshold at which the source

entity will activate or inhibit the target entity. The signature of the models (Node and

Edge) is represented in 4.5.

Figure 4.5: Node and Edge class diagram

All available method for NetworkService are represented in form of a class diagram in

figure 4.6

Figure 4.6: NetworkService class diagram. Using network service one can eithr create the

network manually or import from a file. It can also export a given network to

graphml, dot and sif formates.

The methods described here represent functions that can be performed within the

pyRThomas framework. A brief explanation of each of the methods is as follows:
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network: BRN represented as a networkx directed graph.

add_node: Adds a node to the graph

add_edge: Adds an edge to the graph with its respective weights

remove_node: Removes a node from the graph

clear: Destroys all the nodes and edges in the network

import_graphml: Imports from a graphml file as input

import_dot: Imports from a .dot file

import_sif: Imports from a .sif file

export_graphml: Exports data to a graphml file

export_dot: Exports data to a .dot file

export_sif: exports data to a sif file

Listing 4.1: Network Service API methods

4.3 Application on a case study

The case study chosen to be analysed under this developed framework is that of cerebral

malaria 4.2. There are some proteins associated with MAL like BTK, INCY, NFkβ and

SOCS-1. To model cerebral malaria using the framework developed we first need to

install the package made available through the official python package manager called

PyPI

Execute the following command to install:

$ pip install pyrthomas

Once pyrthomas is installed we need to import NetworkService, Node and Edge and

then define the nodes and edges as given in listing 4.2.

from pyrthomas.network import NetworkService

from pyrthomas.models import Node, Edge

service = NetworkService()

# add nodes

service.add_node(Node('BTK', 0, 1))

service.add_node(Node('MAL', 0, 1))
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service.add_node(Node('NKFB', 0, 2))

service.add_node(Node('SOCS-1', 0, 1))

service.add_node(Node('INCY', 0, 1))

# add edges

service.add_edge(Edge('BTK', 'MAL', 1))

service.add_edge(Edge('MAL', 'NFKB', 1))

service.add_edge(Edge('NFKB', 'INCY', 1))

service.add_edge(Edge('INCY', 'NFKB', 2))

service.add_edge(Edge('INCY', 'SOCS-1', 1))

service.add_edge(Edge('SOCS-1', 'NFKB', -1))

service.add_edge(Edge('SOCS-1', 'MAL', -1))

Listing 4.2: Representation of MAL using pyrthomas

Once we have the BRN represented as a network, NetworkAnalyser can be used to

generate state graph and analyse it.

NetworkAnalyser is the second module in pyrthomas. Using this module, we can gen-

erate state graphs using the qualitative modeling approach and check for stable and

deadlock states. In listing 4.3 we first initialise network analyser and then generate all

possible state graphs. Then we loop over all possible stategraphs to check cycles and

deadlocks.

from pyrthomas.network import NetworkAnalyser

analyser = NetworkAnalyser(service.network)

state_graphs = analyser.get_possible_state_graphs()

for state_graph in state_graph:

cycles = analyser.get_cycles(state_graph)

deadlock_states = analyser.get_deadlock_states(state_graph)

Listing 4.3: Compute all possible state graphs using PyRThomas
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4.4 Performance

We computed all possible stategraphs of BRNs from Dataset. For BRN of pseudomonas

aeruginosa given in figure 4.1 we were able to compute all possible graphs in 17 seconds.

It was that quick because the network is so small, it has just two entities and three

interactions. For the celeberaial maleria associated biological regulatory network given

in figure 4.2 we were able to compute all possible stategraphs using developed framework

in 8 minutes 56 seconds. The TLR3 associated biological regulatory network of dengue

virus has 4 entities and 8 interactions given in figure 4.3, using PyRThomas we were

able to calculate all possible stategraphs in 2 minutes 16 seconds. The Hexosamine

Biosynthetic Pathway (HBP) is more denser than the ones discussed above. It has 9

entities with 17 interaction we were able to calculate 100000 state graphs in 1 hour

which is only 0.000001455% of the expected possible number (68719476736) of state

graphs. For less complex systems like malaria and dengue, the computational time is

as short as 8.56 and 2.16 minutes respectively. The execution time for mentioned BRN

is given in figure 4.7 represented in minutes. As the number of nodes and edges in the

network grows, there is an exponential growth in complexity since a node needs to be

evaluated in connection with different combinations of other nodes that affect the state

of the given node. This complexity is still better than the other tools available, since

they do not provide support for all state graphs to be computed in the first place. This

will be discussed more in the next section. In future, it is planned to have parallelism

builtin support to be able to execute in a cluster of computers.

4.5 Web Interface

As part of this work we have also developed a web based graphical user interface, which

can be easily deployed on a server to allow the users to access remotely and easily

input, manipulate and analyse BRNs. This GUI provides an editor to create nodes,

create edges, import and export graphs, and view them in different layouts. It also

support generating state graphs with specific parameters and find deadlocks and cycles

in stategraph. Subsequent figures 4.8, 4.9, 4.10, 4.11, 4.12, 4.13 show the interface for the

tool. Although not as dynamic as the command-based, it still has more functionality

than is available for free with respect to the other tools in the market. Both nodes
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Figure 4.7: Execution time in minutes to generate all possible state graphs. For Pseudomonas

aeruginosa we were able to calculate all 382 graphs in 0.17 min and for HBP we

were able to process only 0.000001455% of possible state graphs.

and edges are input giving weight and directionality to each node and edge. In two-

dimensional space the whole graph can be moved for ease of access to each node. this is

important for looking at specific parts of the graph and their respective states. Figure

4.13 shows a state graph for the whole network, showing binary and mutual relationship

between all the nodes with an epicenter in the middle. The René Thomas’ framework can

subsequently be run on the graph to model its behavior across time. These parameters

are also also present in the interface.

36



Chapter 4: Results

Figure 4.8: User can add node by clicking on the dot icon on top left and specify the name of

the node and maximum threshold that a certain node can reach.

Figure 4.9: User can add edge for a network using the arrow button on top left. Pressing the

button will ask to specify source node, target node, threshold and directionality of

threshold (Activation/Inhibition).
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Figure 4.10: Import, Export menu: User can use import and export buttons on top right

corner to save/restore the network

Figure 4.11: Biological regulatory network of Cerebral Malaria.
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Figure 4.12: User can input parameter for each of the K state.

Figure 4.13: After parameters input pressing “Generate” creates a State graph of Cerebral

malaria with given parameters. Shown in a circle layout.
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Discussion

PyRThomas is built considering the limitations faced in the usage of existing tools

for modelling biological regulatory networks. We developed PyRThomas using python

programming language to provide easy to use application programming interface, and

a graphical user inteface to make the visualization of BRNs easier. Already available

tools to analyse the biological regularity networks based on René Thomas’ formalism are

GenoTechE, GINsim and SMBioNet. The comparison of PyRThomas with existing tools

is shown in table 5.1. For instance GenoTech which is a graphical tool, is not open source

nor does it offer API to the user. Similarly, GINsim just like GenoTechE does not provide

API or open-source code base but rather has both graphical and command-line based

interface however, web Application is not available for GINsim. on contrary widely used

application SMBioNet is open source but does not offer APIs. In addition it does not

have any graphical user interface GUI, only command line facility is available, which

often compromise its use by the researchers. Here we have developed an application

PyRThomas to overcome the discussed limitations of existing tools. In contrast to all

these tools, PyRThomas is an open-source application, that does not provides command

line facility however the graphical interface with API and web application that allows

quick prototyping is provided. Moreover, it also check for already available Thomas

framework based tools for BRN modeling in the industry. Table 5.1 provided shows

each tool with their respective strengths and limitations marked as Yes or No. As

reported in chapter 4, PyRThomas was used to draw and interpret complex Biological

Regulatory Network.

Although the our developed Python based Thomas framework can perform what we
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Table 5.1: Comparison With Existing tools: PyRThomas is Open Source, has an API avail-

able, with a Web application which allows quick prototyping. As it provides GUI

which is web base, it can be deployed to a remote server.

Tool Open Source API GUI Command Line Web Application

GenoTechE No No Yes No No

GinSim No No Yes Yes No

SMBioNet No No No Yes No

PyRThomas Yes Yes Yes No Yes

intended, however some drawbacks are there. The major limitation is that at the moment

it is only able to do the processing on a single compute core. Biological systems are

generally complex in nature, the denser BRNs with large number of nodes and edges

can have state graphs in billions, processing on a single core can be challenging for

PyRThomas.
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Conclusion

The study of complex biological pathways, their abstraction into biological regulatory

networks and analysis to extract useful information constitutes an important domain

in systems biology. The qualitative modelling framework proposed by René Thomas

is helpful in reducing the complexity of problem compared to quantitative methods.

A number of tools such as GinSim have been developed that can be used to analyze

biological networks. An important requirement however is the availability of open source

libraries and packages that can be easily extended and integrated with the existing codes

and packages. To come up with an application that can cater existing limitations of

already available tools is need of the hour.

In this study, we developed a Python framework based on Reneé Thomas’ qualitative

modelling formalism. PyRThomas can be used to construct biological network by defin-

ing object of a network service. Afterwards entities like genes and proteins can be added

in the form of nodes and elicit all possible interactions between them. Once the network

is defined in PyThomas, Network Analyser can be invoked to run different algorithms

such as building a dynamic stategraph, compute cyclic circuits and deadlock states etc.

The state-graph can be imported in different formats for further interpretation. To

check the performance of PyRThomas we utilized pseudomonas, dengue, malaria, and

the Hexosamine Biosynthetic Pathway gene as case studies. Our application was ro-

bust enough to build and analyse these networks in relatively less time. In addition it

provides different useful operations that include defining or importing a new network

(using GraphML, dot or sif) formats, setting various layouts for existing network, and

invoking different operations in a GUI mode. The GUI application is also open source
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that can be used to extend the frontend to support new features. The availability of

an application programming interface, comprising of various key functions enables the

development of future applications in a modular manner.
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Recommendation

This research can be reproduced and extended in different directions. One of the main

challenges underlying the analysis of complex biological networks is the computational

complexity of the algorithms for computation of cycles and stable states. The challenge

can be addressed by incorporating model reduction techniques into existing framework.

Similarly by providing a support for parallel execution of some of the computational

intensive procedures such as finding out stable states and cycles, the processing time

for the large networks can be reduced. This service is available for SMBioNet but even

that is provided as a web-server limiting its scalibility. In future PyRThomas can be

modified to generate all possible state-graphs of estimated parameters for the user to

read and interpret graphically at the same time.

In this study, we have also developed a frontend application that is provided with the

existing framework. The aforementioned application can be used to write future appli-

cations that are GUI based. The current GUI supports most of the options/features

provided by the API.
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Supplementary Content

A.1 MIT License

Pyrthomas - an open source biological network analysis tool based on the Rene-Thomas

algorithm

Author: Talha Junaid

Institution: Research Center for Modelling and Simulation, NUST, Pakistan

License: MIT License

Copyright (c) [2019] [Talha Junaid]

Permission is hereby granted, free of charge, to any person obtaining a copy of this

software and associated documentation files (the "Software"), to deal in the Software

without restriction, including without limitation the rights to use, copy, modify, merge,

publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons

to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or

substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THEWARRANTIES

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-

INFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLD-

ERS BE LIABLE FOR ANY CLAIM, DAMAGES OROTHER LIABILITY,WHETHER

IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
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OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER

DEALINGS IN THE SOFTWARE.

A.2 Implementation of NetoworkService in PyRThomas

# CODE STARTS HERE

import networkx as nx

from networkx.readwrite import json_graph

from .constants import pickle_key, graphml_file_name, dot_file_name, sif_file_name

from .cytoscape import read_sif, write_sif

from . import utils

class NetworkService:

"""Bild a network and add characteristics to it."""

network: nx.DiGraph

def __init__(self) -> None:

try:

self.network = nx.read_gpickle(pickle_key)

except FileNotFoundError:

self.network = nx.DiGraph()

nx.write_gpickle(self.network, pickle_key)

def add_node(self, node):

"""Add a node to the network."""

self.network.add_node(node.id, min=node.min, max=node.max)

self.persist_network()

def add_edge(self, edge):

"""Add edge weights."""
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self.network.add_edge(edge.source, edge.target, weight=edge.weight)

self.persist_network()

def get_nodes(self):

"""Get total nodes built so far."""

return list(self.network.nodes)

def clear(self):

"""Collapse the whole network."""

self.network.clear()

self.persist_network()

def get_edges(self):

"""Get edge weights."""

return list(self.network.edges)

def import_graphml(self, file):

"""Import network from a graphml file."""

self.network = nx.read_graphml(file)

self.persist_network()

return json_graph.node_link_data(self.network)

def import_dot(self, file):

"""Import network from a dot format file."""

self.network = nx.drawing.nx_pydot.read_dot(file)

self.persist_network()

return json_graph.node_link_data(self.network)

def import_sif(self, file):

"""Import network from sif file format."""

self.network = read_sif(file)

self.persist_network()

return json_graph.node_link_data(self.network)
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def export_graphml(self):

"""Export to a graphml format."""

file = open(graphml_file_name, "wb")

nx.write_graphml(self.network, file, prettyprint=True)

file.close()

return file.name

def export_dot(self):

"""Export network to a dot file format."""

file = open(dot_file_name, "w")

nx.drawing.nx_pydot.write_dot(self.network, file)

file.close()

return file.name

def export_sif(self):

"""Export network in a sif file format."""

file = open(sif_file_name, "w")

write_sif(self.network, file)

file.close()

return file.name

def persist_network(self):

"""Parse the whole network."""

utils.persist_network(self.network, pickle_key)

A.3 Implementation of NetworkAnalyser in PyRThomas

import itertools

from typing import Tuple, Dict, List

from networkx import DiGraph, nx

from networkx.classes.reportviews import EdgeView, NodeView
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from pyrthomas import utils

class NetworkAnalyser:

"""Analyze the network for given sets of properties."""

@staticmethod

def set_predecessor_combinations(network: DiGraph):

"""Add predecessor information to the network."""

for node in network.nodes:

predecessors = frozenset(nx.DiGraph.predecessors(network, node

))

combinations = frozenset(utils.all_subsets(predecessors))

nx.set_node_attributes(network, {node: combinations}, '

predecessor_combinations')

@staticmethod

def get_state_space(graph: DiGraph) -> List[Dict[str, int]]:

"""Get the total state space of a network."""

max_thresholds = [NetworkAnalyser.get_max_threshold(graph, node)

for node in graph.nodes]

state_space = tuple(itertools.product(*max_thresholds))

return [dict(zip(graph.nodes, state)) for state in state_space]

@staticmethod

def get_max_threshold(graph: DiGraph, node: NodeView) -> Tuple[int]:

"""Get the maximum cut-off for the BRN and use it for analysis."""

edges = graph.edges(node, data=True)

max_weighted_edge = max(edges, key=lambda x: utils.get_weight(x,

absolute=True))

max_threshold = utils.get_weight(max_weighted_edge, True)

return tuple(range(max_threshold + 1))
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@staticmethod

def get_state_graph(network: DiGraph, parameters) -> DiGraph:

"""Get the total state graph for the network."""

state_space = NetworkAnalyser.get_state_space(network)

state_graph = nx.DiGraph()

state_space_nodes = [utils.create_node_from_dict(state) for state

in state_space]

state_graph.add_nodes_from(state_space_nodes)

resources = NetworkAnalyser.calculate_resources(network,

state_space)

k_states = NetworkAnalyser.calculate_k(resources, parameters)

next_states = NetworkAnalyser.calculate_next_states(k_states)

edges = NetworkAnalyser.generate_edges(next_states)

state_graph.add_edges_from(edges)

state_graph.graph['parameters'] = parameters

return state_graph

@staticmethod

def generate_edges(next_states):

"""Generate edges for the network."""

edges = list()

for key, states in next_states.items():

previous_value = dict(key)

source = utils.create_node_from_dict(previous_value)

for state in states:

target = utils.create_node_from_dict(state)

edges.append((source, target))

return edges
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@staticmethod

def calculate_next_states(k_states):

"""Using the Rene-Thomas formulation, calculate the next state of

a given set of nodes."""

for state_key, state in k_states.items():

previous_entities = dict(state_key)

new_val = list()

temp_previous = previous_entities.copy()

for entity_key, previous_entity in previous_entities.items():

next_value = k_states[state_key][entity_key]

if next_value > previous_entity:

previous_entities[entity_key] = previous_entity + 1

elif next_value < previous_entity:

previous_entities[entity_key] = previous_entity - 1

if not (previous_entities in new_val) and not

previous_entities == temp_previous:

new_val.append(previous_entities.copy())

previous_entities[entity_key] = temp_previous[

entity_key]

k_states[state_key] = new_val

return k_states

@staticmethod

def calculate_k(resources, parameters):

"""Calculate the k, rate constant for the biological network."""

for resource_key, entities in resources.items():

for entity_key, entity in entities.items():

matched_interaction = filter(lambda x: sorted(x[0]) ==

sorted(entity),

parameters[entity_key])
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first_interaction = next(matched_interaction)

entities[entity_key] = first_interaction[1]

return resources

@staticmethod

def get_cycles(network: DiGraph):

"""Get the total number of cycles."""

return nx.simple_cycles(network)

@staticmethod

def get_deadlock_states(network: DiGraph):

"""Get nodes that go into deadlock, either because of auto-

regulation or endpoint."""

out_degree_iter = network.out_degree(network.nodes)

return [node for node, out_degree in out_degree_iter if out_degree

== 0]

@staticmethod

def calculate_resources(network: DiGraph, state_space: List[Dict[str,

int]]):

"""Calculate available resources for the biological network."""

resources = dict()

for state in state_space:

node = dict()

for key in state:

entity_resources = list()

in_edges = network.in_edges(key, data=True)

for edge in in_edges:

is_resource = NetworkAnalyser.is_resource_of_state(

state, edge)

if is_resource:

entity_resources.append(edge[0])

entity_resources.sort()
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node[key] = entity_resources

state_key = tuple(state.items())

resources[state_key] = node

return resources

@staticmethod

def get_required_parameters(network: DiGraph):

"""Given a network, find all the required parameters needed to be

input."""

nodes = network.nodes

parameters = dict()

for node in nodes:

predecessors = frozenset(nx.DiGraph.predecessors(network, node

))

required_interactions = [(interaction, None) for interaction

in

utils.all_subsets(predecessors)]

parameters[node] = required_interactions

return parameters

@staticmethod

def is_resource_of_state(state: dict, edge: EdgeView):

"""Get vailable resources in a given state of the graph."""

weight = utils.get_weight(edge)

is_positive = weight >= 0

value = state[edge[0]]

return (is_positive and value >= abs(weight)) or (not is_positive

and value < abs(weight))

@staticmethod

def get_possible_parameters(network: DiGraph):

"""Get all the possible parameters in a given network graph."""
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combinations = dict()

for node in network.nodes:

combinations[node] = list()

max_threshold = utils.get_max_weighted_edge_threashold(network

, node)

predecessors = frozenset(nx.DiGraph.predecessors(network, node

))

required_interactions = list(utils.all_subsets(predecessors))

for arrangement in itertools.product(range(0, max_threshold +

1), repeat=len(required_interactions)):

arranged_combination = list(zip(required_interactions,

arrangement))

combinations[node].append(arranged_combination)

return [dict(zip(combinations, v)) for v in itertools.product(*

combinations.values())]

@staticmethod

def get_possible_state_graphs(network: DiGraph):

""""Get all the possible state graphs.""

all_params = NetworkAnalyser.get_possible_parameters(network)

for param in all_params:

yield NetworkAnalyser.get_state_graph(network, param)
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