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Abstract 

Machine learning is used for extraction of valuable information from data thus helping in 

exploration of hidden patterns, leading to learning models that can be used for prediction. In the 

domain of autonomous vehicles machine learning techniques have been applied in several areas, 

vehicle platooning being one of them. Vehicle platooning is a vital feature of automated highways 

which provides the key benefits of fuel economy, road safety and environmental protection 

coupled with safe road transportation. However, high computational cost associated with the 

numerical simulation of vehicle aerodynamics makes the Computational Fluid Dynamics (CFD) 

study of vehicle platoon prohibitively expensive and complex. Machine learning, with its high 

predictive power, has emerged as a promising compliment to CFD studies of external 

aerodynamics.  

This thesis presents estimation error based performance comparison of five different 

supervised learning algorithms: Support Vector Regression, Polynomial Regression, Linear 

Regression and two different models of Neural Networks for prediction of aerodynamic drag 

coefficient corresponding to each vehicle in a two, three and four vehicle platoon configurations 

based on the drag coefficients provided by experimental study at different inter-vehicle distances. 

Predicted drag coefficients are then juxtaposed with CFD data from numerical simulations to 

evaluate closeness to experimental drag coefficients. Results reveal that polynomial regression 

model best fits the aerodynamics with 0.0223 estimation error. To the best of our knowledge, no 

machine learning based methods have been applied before for modeling aerodynamic drag on 

vehicle platoon.  
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Chapter 1: INTRODUCTION 

Extracting valuable information from raw data can be used for modeling physical 

relationship between system parameters. Need of exploring useful information from data can help 

in modeling very intricate relations between physical parameters. Machine learning techniques 

play vital role in accurately extracting information from data. Such techniques are replacing the 

traditional physical modeling methods by learning from the data and letting the algorithms itself 

learn the model. 

Transportation plays a vital role in daily life. Human safety and fuel economy have always 

been the goals of development in the said field. Self-driving vehicles will constitute the future 

transport systems providing the benefits of human comfort, fewer accidents and fuel and time 

economy. Substantial research has been going on in autonomous driving area in a multitude of 

dimensions including vision [1], control [2], tracking [3] and navigation [4]. 

The advent of automated highways, as an alternative to conventional highways, is a future 

vision of intelligent transportation that offers road safety [5] and smooth traffic flow [6] at high 

speeds [7] [8]. One of the most prominent features of the automated highways is autonomous 

vehicle platooning [9] [10] that makes an appreciable four-facet contribution [11] [12] in this 

modern transportation technology: fuel economy, environmental protection [13], road safety and 

smooth traffic flow. In fact, studies have been conducted to elicit maximum advantage from 

vehicle platooning in terms of these benefits through an optimum switch control strategy [14] as 

well as distributed model predictive control [15]. The phenomenon of slipstream effect allows 

the leader-follower configurations of the vehicles in minimizing the aerodynamic drag on each 

vehicle in the road train thereby resulting in reduced fuel consumption [16] [17] against 

subsequently decreased aerodynamic drag. As a matter of fact, 20\% of all energy losses on 

modern vehicles are due to aerodynamic drag, flow separation being the primary reason [18] The 

recent advances in internet of things and up-gradation in autonomous vehicles has provided 

tremendous opportunity in establishing autonomous vehicle platooning as a viable means of road 

transportation [19] [20]. Fuel economy is one of the aspects of road transport, which is directly 

related to the aerodynamic drag faced by the vehicle [21]. Experimental methods for drag 

measurement deploy wind tunnel using scaled down models of cars to characterize aerodynamic 

coefficients [22]. On-road experiments were employed by Tadakuma et al. [23] to derive a 
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formula to predict drag coefficient using power law approach based on wake analysis of vehicle 

in platoon configuration. More recently, research trends have shifted from experimental to 

computational approach for estimating drag on vehicle platoons. Bureau et al. [24] used 

numerical simulations to estimate drag on tractor trailer vehicles in platoons while Kaluva et al. 

[25] studied autonomous electric vehicles, both studies highlight the computational cost of for 

larger more complex aerodynamic studies of vehicle platoons. 

Owing to wind tunnel constraints in experimental work and computational expense in 

numerical simulations, predictive power of machine learning algorithms can be used to learn from 

experimental data leading to an aerodynamic model, which predicts drag coefficients given inter-

vehicular distance and vehicle tag number in the vehicle platoon. This paper assesses the 

performance of five machine learning models to predict drag coefficients in comparison with 

those numerically computed through Computational Fluid Dynamics (CFD). As discussed later 

in detail, the results reveal that the machine learning models perform better than CFD in terms of 

both time and computational expense. This study, thus, achieves a two-fold contribution. It, first, 

provides a way forward for coupling machine learning with vehicle aerodynamics as a viable 

conjunction to advance the development of vehicle platooning in the inter-disciplinary paradigm 

of automated highways. Secondly, in view of the associated benefits of relative cost and time 

saving pertaining to the data-driven approach of machine learning, this study serves to open up 

avenues for exploring machine learning as a promising partial alternative to wind tunnel testing 

as well as CFD simulation for the aerodynamic performance study of vehicle platoons. 
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Chapter 2: LITERATURE REVIEW 

 

Aerodynamic study of the vehicle platoon through CFD [26] is usually employed to study 

the drag characteristics of each vehicle in the platoon since experimental testing abounds 

considerable risk and cost. In particular, the experimental study of drag on platoons using wind 

tunnel testing is not feasible for platoons greater than 4 cars given the space restriction within a 

wind tunnel as opposed to greater length platoons for scaled-down vehicle size, let alone the 

original size of the vehicles. On the other hand, although there has been appreciable development 

in high performance computing but the CFD numerical solution are exorbitantly expensive for a 

multitude of practical engineering applications especially capturing flow physics in large 

computational domains at highly turbulent flows. The driving cause for the high computational 

cost of CFD is the requirement of a fine grid for a reliable simulation of the fluid flow 

phenomenon through a grid-independent solution. Hence, this fine grid requirement reduces the 

computational time step thereby translating into uneconomical usage of computational resources 

[27]. The associated cost of doing high fidelity CFD study of vehicle platoons that captures the 

very fine aerodynamics over minute details of vehicles, like flow around side-mirrors, front grill, 

tires and other complex geometric features, is prohibitively expensive. To quantify the budget 

requirement for such a study, we estimated the cost of replicating the experimental work of Calif. 

Pathway [28] on commercially available CFD resources like Ansys Fluent [29] via cloud 

computing services offered at Amazon Web Services [30] to be approximately 2 million USD. 

This estimate is bound to increase exponentially with the increase in the platoon size coupled 

with a fine grid of around 200 million elements to adequately capture the flow physics for each 

vehicle in the platoon.  

This experimentally and computationally demanding outlook of the investigation of 

vehicle aerodynamics prevents an extensive study of the drag characteristics of a large vehicle 

platoon covering its diverse parameters, including vehicle permutations, speeds and inter-vehicle 

distances. Hence, it is not economically feasible, and therefore research conducive, to conduct 

further experimental and computational studies on platoon aerodynamics to collect more data for 

data-driven predictions. 
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In the previous decade, plenty of research has been done to explore the potential of 

employing Artificial Intelligence in supplementing CFD [31]–[33]. One application of Artificial 

Intelligence in augmenting the Computational Fluid Dynamics is the use of a data-driven 

approach of aerodynamic performance evaluation where machine learning algorithms are used 

for the prediction of the drag coefficients for a wide range of real-world geometries and/or 

scenarios. He, et al. [34] conducted an extensive inquiry into the modeling of the drag forces that 

are vital to the dynamics of dense fluid-particle systems. The results of the study establish the 

reliability of the supervised machine learning approach especially artificial neural network 

(ANN)for the estimation of the drag force. Given the high computational cost of the CFD coupled 

with wind tunnel testing for estimating the drag coefficient of the car side silhouette design, 

Gunipar et al. [35] also resorted to the utilization of machine learning regression and neural-

network methods for obtaining a mathematical model which is trained on the available drag 

coefficient dataset obtained from CFD simulation. This trained mathematical model, in turn, 

reliably predicts the coefficient of drag of a given silhouette. Similarly, Dube et al. [36] employed 

data driven drag prediction for studying the aerodynamic performance of the underhood and 

underbody drag enablers by using linear regression, neural network, and random forest 

approaches to generate models for a fairly accurate prediction of the associated aerodynamic drag 

coefficients. 

Based on these studies an alternative approach to experimental or computational studies 

is to employ MachineLearning (ML) algorithms to use its high predictive power for estimating 

the aerodynamic drag characteristics of each vehicle in the platoon in comparison with the CFD 

approach that computes the numerical solution (aerodynamic drag coefficients) by solving 

complex Navier Strokes equations. The drag coefficients of each vehicle platoon obtained from 

the experimental wind-tunnel tests at various inter-vehicle distances at a speed of 23 m/s serves 

as the input database with known drag coefficient for machine learning models. For most 

aerodynamic objects the drag coefficient remains nearly constant across a broad range of speeds, 

we therefore focus on 23 m/s speed which is comparable to urban speed limits across the world. 

Given the greater engine power required to overcome air drag than tire and mechanical resistance 

at a speed of approximately 23 m/s [37], it is imperative to minimize the energy loss in 

aerodynamic resistance and, therefore, reduce fuel consumption. In this regard, it was observed 

that at spacings lesser than 0.25 times the car length, corresponding decrease in the aerodynamic 
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drag coefficient is diminutive [28], [38] . Thus, in this study the minimum inter-vehicle distance 

was chosen to be 0.25 times the car length. In order to address the risk of collision at such small 

inter-vehicle distances, Dharshan et al. [39] present an experimentally validated approach to 

optimize the braking system of autonomous vehicle platoon considering the vehicle loading 

condition for executing a collision free braking maneuver. Moreover, the close/narrow inter-

vehicle distance, used in vehicle platoon studies [28], [38] and in this study, have been 

substantiated by the recent advancements in autonomous vehicle ecological cooperative control 

[40], [41] coupled with IoT [42], [43] to ensure passenger safety. Models deployed for drag 

coefficient prediction include Artificial Neural Networks, Regression models and Support Vector 

Regression. Once the training of these models is completed, they are applied to unseen vehicle 

platoon data for predicting drag coefficient. This estimated data and the one obtained from CFD 

simulations [44] is then compared with corresponding drag coefficient data acquired from 

experimentation. The analogy of this general approach of reproducing the complex computational 

model in terms of high predictive capability, has been used to achieve remarkable curtailment in 

high computational demands relative to original model [45], [46]. 

Keeping this in perspective, this study aims at investigating the feasibility of 

complementing Computational Fluid Dynamics (CFD) solutions with Machine Learning in the 

study of aerodynamics of vehicle platoons. In particular, the aerodynamic drag coefficient of each 

vehicle in a two, three and four vehicle-platoon for eleven different inter-vehicle distances, 

ranging from 1L to 2L, will be computed through the combination of the robust yet costly 

numerical approach of CFD and then will be predicted by the high predictive capabilities coupled 

with cost-effectiveness offered by machine learning algorithms via training on experimental data 

from California PATH project [28]. 

The study and construction of computer algorithms that can learn from the input data is 

the domain of machine learning. Machine learning is a branch of artificial intelligence that 

enables computers to create knowledge and draw inferences from data, it can learn hidden 

patterns inside data and represent it in the form of a model. Machine learning algorithms are being 

used in various applications in science and technology these days, since they are capable of 

detecting meaningful patterns in the data provided and apply them to new data [47] . This 

approach is an alternative to conventional approach for devising algorithmic solution [48]. While 

conventional design flow begins from data acquisition followed by mathematical modeling from 
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fundamental physics principles, machine learning approach replaces domain knowledge with data 

acquisition, thereby using that data for training by using a learning algorithm to produce a trained 

machine. Two approaches to machine learning are supervised learning and unsupervised learning. 

In supervised learning, the training dataset has pairs of inputs and ground truth labels and 

the algorithm learns a mapping from input to the output [48]. Applications of supervised learning 

include regression and classification. In unsupervised learning inputs have no labels. Idea of 

unsupervised learning is to discover the inherent properties of mechanism generating data. In this 

study, the problem statement of aerodynamic drag coefficient prediction falls under the category 

of supervised machine learning through regression. Studies pertaining to regression problems 

have highlighted the difference in performance of various machine learning algorithms especially 

epidemic regression models and artificial neural networks [49], [50]. These studies employed a 

selection criterion based on the performance of the machine algorithms in terms of estimation 

error and computation time. However, an extensive literature review reveals that there are no 

substantial research endeavors that aim at the application of these five machine learning 

algorithms to aerodynamics of vehicles and, especially, the vehicle platoons. Therefore, it can be 

reasoned that for a small data set, as in this study, the regression models may perform better than 

neural network-based approaches. Hence, we present a comparison of neural network and 

regression models for the prediction of drag force on vehicles in a platoon configuration. 

Accordingly, the procedure for conducting machine learning training and testing was carried out 

using common machine learning modeling and training best practices. Five supervised machine 

learning algorithms have been employed in this study to provide an efficient and effective 

alternative to both wind tunnel tests as well as CFD studies for predicting the aerodynamic 

performance of vehicle platoons thereby helping to advance the development of vehicle platoon 

through the supplementation of the domain of vehicle aerodynamics by machine learning in the 

interdisciplinary context of automated highways. 
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Chapter 3: METHODOLOGY 

 

Proposed methodology is to compare five regression models: Support Vector 

Regression(SVR),Linear Regression (LR), Polynomial Regression (PR) and two neural network 

models namely ANN-I and ANN-II to predict the drag coefficient considering the experimental 

data as the true values. 

 

3.1  Evaluation Parameter 

Popular metrics used in regression problems are shown in Table 3-1: 

 

Table 3-1: Prevalent evaluation metrics for regression 

Evaluation Metrics Mathematical Formula 

MAE (Mean Absolute Error) 
1/𝑚 ∑|𝑦𝑖̂ − 𝑦|

𝑚

𝑖=0

 

MSE (Mean Squared Error) 
1/𝑚 ∑(𝑦𝑖̂ − 𝑦)2

𝑚

𝑖=0

 

RMSE (Root Mean Squared Error) 

1/𝑚√∑(𝑦𝑖̂ − 𝑦)2

𝑚

𝑖=0

 

 

Here, m is total number of examples, yb is prediction and y is true label. It is important to note 

that MSE is used as the evaluation metric because it punishes the larger values.

 

3.2   Training Process 

Fig. 3.1 shows the training procedure. Red boxes indicate experimentally calculated drag 

coefficients [28] and CFD calculated drag coefficients. Fig. 3-2 shows the vehicle tags and 

configuration within the platoon of 2; 3 and 4. This is the same configuration as was employed in 
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the pathway experiment [28] and in the simulations. Brief overview of the training procedure is 

presented below while details follow the current section: 

 • Taking the experimental data as the true labels, data set has been prepared with vehicle 

tag and inter-vehicular distance being two features, since these two parameters along with speed 

(which is constant in this case) influence drag coefficient.  

• Same feature parameters have been used to calculate drag using numerical simulations 

(CFD). 

• Data set has been used to train five models namely: Linear Regression, Polynomial 

Regression, Support Vector Regression and two models of Neural Networks with MSE loss and 

Huber Loss. 

• After the training is complete, test data is used for prediction of drag coefficients.  

• Predicted values are compared with experimental values and error has been calculated as 

shown in Table 3-1. 

  • Model showing minimum estimation error is taken as the finalized model. 

 

3.3    Data Set 

The dataset comprises two columns of features namely: Inter-vehicular distance and 

Vehicle tag. The vehicle tags numbers have been chosen as separate features because their position 

in platoon influences the drag faced by the vehicle. Front-most vehicle (SUV-1) will experience 

the greatest drag (and hence the greatest drag coefficient) which will subsequently be lessened for 

later vehicles, hence, making vehicle tag a salient feature. Furthermore, as the vehicles move in a 

platoon, they maintain a specific spacing, so this inter-vehicular distance can greatly affect the 

drag. Thus, it is logical to consider these two attributes and make a dataset of which Inter-vehicular 

distance and Vehicle tag are two columns. Vehicle tags corresponding to two, three and four 

vehicle platoons are SUV1, SUV2; SUV1, SUV2, SUV3; and SUV1,SUV2, SUV3 SUV4, as 

shown in Fig. 3-2 The data-points give values of drag at following inter-vehicular distances:0.06m, 

0.1m, 0.13m, 0.15m, 0.19m, 0.25m, 0.3m, 0.33m,0.4m, 0.5m, 0.63m, 0.75m, 1m. Fig. 3-3 shows 

dataset structure. It is important to note here that the experimental data is extracted from the results 

of pathway [28] experiment. There are 28, 42 and 56 data points for platoon comprising 2, 3 and 

4 vehicles. 
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Figure 3-1: Process flow chart of the machine learning implementation 
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Figure 3-2: Vehicle tags corresponding to two, three and four vehicles in a platoon 
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Figure 3-3: Description of Dataset 
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3.4     COMPUTATIONAL ESTIMATION OF DRAG 

The computational domain employed for the CFD study of 4-vehicle platoon is formulated 

on the basis of the Ahmed Body CFD results [51]. The layout of the configuration of 4-vehicle 

platoon for CFD simulation is illustrated in Fig. 3-2. The meshing of the computational domain 

for each of the inter-vehicle spacing ranging from 0.25L to 1L is carried out on consistent 

parameters. The values of these mesh parameters are dictated by the best practices in the 

computational study of external aerodynamics [52] such that the resulting mesh density ensures a 

numerically realizable yet computationally cost-effective CFD solution. In this regard, the 

specifications of the vehicle under consideration is based on the vehicles employed in Calif. 

Pathway [28] experiment: 1991 General Motors Lumina APV having length of 4616 mm, width 

of 1890 mm, height of 1688 mm, and a ground clearance of 184 mm. On the other hand, Fig. 3-4 

depicts the detail of mesh elements employed in the discretization of the computational domain. 

In particular, the computational domain of 4-vehicle platoon is discretized using, on average, 25 

million volume mesh elements with an appreciable orthogonal quality and skewness. Table 3-2 

summarizes the average mesh statistics for the CFD study of 4-SUV platoon at inter-vehicle 

distances of 0.25L, 0.5L, 0.75L and 1L. The remaining aspects of the computational setup 

including governing equations, solver parameter and convergence are based on the work by Farid 

et al [44]. 

 

Table 3-2: Average Mesh Statistics of 4-vehicle platoon with inter-vehicle distances of 

0.25L, 0.5L, 0.75L and 1L 

No. of Elements No of Nodes Average Aspect 

Ratio 

Average 

Skewness 

Average 

Orthogonality 

27425053 14573396 3.1297 0.218405 0.779655 
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Figure 3-4: Mesh detail of 4-vehicle platoon for CFD study 
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3.5    TRAINING AND TESTING DATA 

As evident from section III-C, there are a total of 126 data points: 10% of the data is 

separated as test data while the rest is used for training. Pre-processing is a necessary operation 

which needs to be performed on data before training. Pre-processing ensures that the features are 

on a similar scale, enabling gradient descent to reach global minimum quickly. Table 3-3 shows 

two pre-processing methods.  

 

Table 3-3: Pre-processing methods for regression 

Operation Mathematical Formulation 

Standardization 𝑋𝑖 − 𝑋̅

𝜎
 

Normalization 𝑋𝑖 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 

 

Here 𝑋𝑖is the ith entry of column, 𝑋̅ is the mean of column, σ is standard deviation of column, 

𝑋𝑚𝑎𝑥 is maximum value in column and 𝑋𝑚𝑖𝑛 is minimum value in the column. 

Standardization brings the feature distribution mean at 0 and Normalization pushes the 

feature columns within [0, 1] range. Table 3-4 shows the type of pre-processing operation applied 

prior to training for each of the models. 

 

Table 3-4: Pre-processing method used for the models 

Pre-processing type Model 

Linear Regression Normalization 

Polynomial Regression Normalization 

Support Vector Regression Standardization 

ANN-I Normalization 

ANN-II Normalization 
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3.6   LOSS FUNCTIONS 

Loss function/Objective function characterizes how well a model performs. Depending on 

the objective, it can be minimized or maximized. Table 3-5 shows primary loss functions used for 

regression task.  

 

Table 3-5: Loss functions used for regression 

Loss function Mathematical Formulation 

 

𝑀𝑆𝐸𝑎 1/𝑚 ∑(𝑦𝑖̂ − 𝑦)2

𝑚

𝑖=0

 

 

𝑀𝐴𝐸𝑏 1/𝑚 ∑|𝑦𝑖̂ − 𝑦|

𝑚

𝑖=0

 

 

Huber 
{

1

2
(𝑦𝑖̂ − 𝑦)2                           𝑓𝑜𝑟 |𝑦 − 𝑦̂| ≤ 𝛿

𝛿|𝑦 − 𝑦̂| − (
1

2
) 𝛿2       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                            

 

Mean Squared Error𝑎 

Mean Absolute Error𝑏 

 

 

3.6.1 Mean Squared Error (MSE) 

MSE is the most widely used loss function used for regression. It is the averaged sum of 

squared distances between true label value and predicted value. Key attributes of MSE include 

being easier to solve and continuous derivative at all points. It is also known as L2 loss. 

 

3.6.2 Mean Absolute Error (MAE) 

MAE also called as L1 loss is average sum of absolute differences between our target 

values and predicted values. MAE derivative is continuous everywhere except at 0. 

Mathematically it is evident that L1 loss is robust against outliers in data as compared to 

L2 loss. This is because L2loss squares the error, which in case of outliers becomes a large number. 

Apart from this, L1 loss has the same gradient value which also means it will have large 

gradient for small inputs. Contrary to this, MSE gives small gradient for small input values and 
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greater for large values. There is a possibility that gradient descent might take large step and skip 

global minimum. These problems can be mitigated to large extent by using a loss function with 

the qualities of both MSE and MAE; Huber loss is one such function. 

 

3.6.3 Huber Loss 

Huber loss is an amalgam of MSE and MAE and so is less sensitive to outliers and also 

differentiable at 0. For some small value δ it behaves like L2 loss if the error is smaller than δ and 

becomes L1 if the error is larger than δ. It is also evident form equation given in Table 3-5, Huber 

loss approaches MAE if δ is small and becomes nearly same as MSE if δ is large. Comparison of 

Huber loss with different values of δ and with other loss functions is shown in Fig. 3-5. δ is also a 

hyper-parameter and is learnt the same way as other weights of the model. 

 

 

 

Figure 3-5: Comparison of Loss functions 
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3.7  MACHINE LEARNING ALGORITHMS 

In this research, five supervised learning algorithms have been applied. Deep learning 

framework employed is Keras. Same training data is used for training all the models. After 

training is complete, models are compared to find the best one which predicts the drag 

coefficient close to the original experimental data. Models used and their architecture has been 

briefly described below: 

 

3.7.1 Linear Regression 

 

Mathematically linear regression is defined as in Equation (3.1): 

 

ℎ𝜃(𝑥) = 𝑌̂ =  𝜃0 + ∑ 𝜃𝑖

𝑁

𝑖=1
𝑥𝑖                                        (3.1) 

Here, 𝜃0 is the bias, 𝜃𝑖 is the ith weight and N is the total number of features in the dataset. 

As is evident from linear model equation, it tries to fit a straight line through data while 

minimizing the MSE loss (defined in Table 3-1) and the weights learnt by model behave similarly 

as the slope and y-intercept in equation of a straight line. 

Linear regression model works well if dependent and independent variables correlate with 

each other to some extent [53]. In this dataset the drag faced by the front vehicle is greater than 

those following front vehicle, leaving the possibility of existence of a linear relationship with drag. 

 

3.7.2 Polynomial Regression 

Polynomial regression is defined by Equation (3.2) where M is the order of polynomial, 

𝑥𝑗denotes feature x to the power of j and w denotes coefficients vector ω0,ω1, ω2 ... ωM. 

𝑦(𝑥, 𝜔) = 𝜔0 + 𝜔1𝑥1 + ⋯ + 𝜔𝑀𝑥𝑀 = ∑ 𝜔𝑗 𝑥𝑗  
𝑀

𝑗=0
                   (3.2) 

It comes under the domain of linear models because although the function 𝑦(𝑥, 𝑤) is 

nonlinear with respect to x but is linear in terms of unknown variable w hence fitting the data in 

𝑅(𝑀+1) space. Values of the coefficients are determined by fitting this polynomial to the training 

data by using MSE loss function as indicated in Table 3-5. Polynomial regression model in this 

research uses a second degree polynomial and Fig. 3-6 shows new features made in the dataset. 
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One of the problems faced by polynomial regression is that as the degree of polynomial grows 

the magnitude of the learnt coefficients typically gets larger and so the model becomes tuned to 

the random noise on target values [54]. Less magnitude of the weights also means that noise in 

the input will not affect the model performance much whereas if the magnitude of learnt 

coefficients is large, any noisy data will render the model prone to wrong predictions.  

This problem can be avoided using regularization. Polynomials are flexible and useful 

where a model must be developed empirically and can fit a wide range of curvatures giving a 

good approximation of the relationship. 

 

 

Figure 3-6: Comparison of Loss functions 
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3.7.3 Support Vector Regression 

Support Vector algorithm is a non-linear generalization of generalized portrait algorithm, 

firmly grounded in statistical learning theory framework. Such algorithms are designed to fit well 

on the unseen data. In support vector based algorithms, data is transformed into higher dimensional 

space (kernel trick) and is then classified or regressed based on the type of algorithm. 

Support vector regression tries to fit the best line within a predefined or threshold error 

value instead of minimizing the error between the predicted and the actual value [55]. Also, 

Support Vector Regression is independent of the dimensionality of input data [56]. 

Input data is transformed into high dimension by applying kernel, followed by formulation 

of correlation matrix using which weights are learnt. These weights are used to estimate the test 

data. Regression takes place within high dimensional vector space. The linear regression within 

the (transformed) vector space is somewhat different than least squares method [46]. 

Fig. 3-7 demonstrates the support vector machine parameters. Only the points outside the 

boundary region contribute to the cost insofar, as the deviations are penalized in a linear fashion. 

The error function for support vector regression can be stated as Equation (3.3) while Equation 

(3.4), Equation (3.5), Equation (3.6) and Equation (3.7) demonstrate the constraints of 

optimization problem. 
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Figure 3-7: Parameters of SVR, (taken from [56]), ε= margin, ξ is the distance from 

nearest point 
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𝐸 = 𝐶 ∑ (𝜀𝑛 + 𝜀𝑛̂

𝑁

𝑛=1
) +

1

2
‖𝜔2‖                  (3.3) 

 

𝜀𝑛  ≥ 0                                                                   (3.4) 

 

𝜺̂𝑛  ≥ 0                                                                   (3.5) 

 

𝑦(𝑋𝑛) + 𝜀 + 𝜀𝑛 ≥ 𝑡𝑛                                           (3.6) 

 

𝑦(𝑋𝑛) − 𝜀 − 𝜀𝑛 ≤ 𝑡𝑛                                             (3.7) 

 

In these equations, 𝑡𝑛 is the target and 𝜀𝑛𝜀𝑛̂ are the slack variables. 𝜀𝑛  > 0  refers to 

point where 𝑡𝑛 > 𝑦(𝑋𝑛) + 𝜀 and  𝜺̂𝑛  > 0    refers to a point where 𝑡𝑛  <  𝑦(𝑋𝑛) − 𝜀. 

 

3.7.4 Neural Networks 

Artificial Neural Networks are an imitation of the human brain. The main idea is to create 

a network of simple processing units called neurons, which perform computations. A transfer 

function is applied on the weighted sum of the inputs to each neuron and the result is forwarded 

as the output value of that particular neuron [57]. They are also called as universal function 

approximates because given enough hidden layers and neurons, they are able to approximate any 

function. Neural networks are used in supervised and unsupervised machine learning algorithms. 
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Figure 3-8: Neural Network Model 

 

Fig. 3-8 shows generic model of a neural network. The index of the neuron is i, it receives 

inputs from N other neurons. The strength of the connection from neuron j to neuron i is denoted 

by 𝜔𝑖𝑗. The function 𝜃𝐻(𝑏) is the activation function. The threshold value for neuron i is denoted 

by 𝜇𝑖.The index 𝑡 = 0,1,2,3 labels the discrete time sequence of computation steps. 

Neural Network applies subsequent transformations on the input data as it passes through 

hidden layers, including linear (affine transformation) (Equation (8)) followed by a nonlinear 

transformation (activation function denoted by σ (Equation (9)) for each hidden layer. 

𝑍 = 𝑊 . 𝑋 + 𝐵                                                                             (8) 

𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑜𝑢𝑡𝑝𝑢𝑡 =  𝜎  (𝑍)                                                      (9) 

For problems related to regression, no activation function is applied in the output layer to 

output raw score value. Table 6 shows mathematical formulation of different activation functions. 

tan h function is also used as activation but is more prevalent in recurrent neural networks. Sigmoid 

activation function squashes the output between [0, 1] range. Relu activation makes input values 

less than z to zero. 
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Table 3-6: Preprocessing method used for models 

Activation Function Mathematical Formulation 

Sigmoid 1/(1 + 𝑒𝑥𝑝−𝑍) 

Relu max (0, 𝑧) 

Softmax 𝑒𝑥𝑝𝑧𝑖

∑ 𝑒𝑥𝑝2 𝑗
 

 

 

Nonlinear transformations (activation functions) have their own inherent properties of 

derivatives as shown in Fig. 3-9, suitable for the problem type [58], [59]. This allows neural 

networks to fit on any type of data. 

 

 

Figure 3-9: Activation Functions Comparisons 

 

Derivatives are important in the back- propagation. ReLU activation function solves the 

problem of vanishing gradient faced by sigmoid and tan h activation functions. It is clear that at 

smaller or larger values of input, sigmoid and tan h derivatives tend to be closer to 

zero (𝐷𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒𝜎(𝑥) ≈ 0|𝜎 = (𝑠𝑖𝑔𝑚𝑜𝑖𝑑, 𝑡𝑎𝑛ℎ) ∧ (𝑥 >> 0 ∨ 𝑥 << 0)), this declines learning 

of the corresponding weights during back-propagation. As compared to this ReLUderivative is a 
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large constant value for x > 0 where x is input. This constant value of ReLUs results in faster 

learning [60]. An added benefit is that ReLU(x) = 0|x ≤ 0 which results in sparsity and sparse are 

representations are beneficial as compared to dense representations because forward and backward 

propagation consist of a series of matrix operations. 

Two different models of neural networks namely ANN-I and ANN-II are employed in 

this research. Table 3-7 shows a comparison of both models whereas architectures of both 

models are shown in Fig. 3-10 and Fig. 3-11. 

 

Table 3-7: Comparison of ANN-I and ANN-II 

Model Attribute ANN-I ANN-II 

Input neurons 2 2 

Hidden Layers 3 2 

Loss function used MSE Huber 

Output neurons 1 1 
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Chapter 4: RESULTS AND DISCUSSION 

The CFD results obtained after the simulation of computational domain in OpenFOAM© 

are illustrated in Fig.4-3 through colored contour plots and air flow streamlines that help visualize 

the pressure distribution and air velocity, respectively. The flow physics in the regions of interest 

near the front and back bumper of the vehicles has been specifically highlighted to study the 

general aerodynamic behavior of 4-vehicle platoon. The head-on interaction of the first vehicle 

with the incoming air results in the development of stagnation region at the front bumper of the 

vehicle that encapsulates a high pressure thereby resulting in maximum aerodynamic drag 

coefficient of the lead vehicle in the platoon. This is followed by the development of boundary 

layer owing to the air flow over vehicle body and road surfaces, which is characterized by the 

velocity gradient. The interaction of the air with the vehicle bodies at the gaps between the first, 

second and third vehicles in the platoon results in the formation of vortices as indicated by the 

recirculation of the air flow. These vortices are of almost similar density, so this translates into 

approximately similar drag coefficients for the second and third vehicles. Although, the vortex 

formation at the front bumper of last vehicle is marked by a relatively less concentration but the 

development of trailing vortices in the wake of the last vehicle reciprocates into a high drag 

coefficient for the last vehicle in the platoon.  
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Figure 4-1: ANN-I model 
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Figure 4-2: ANN-II model 
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Figure 4-3: CFD visualization of the aerodynamic characteristics of 4-vehicle platoon 

using pressure contours and air-velocity streamlines 

 

Table 4-1 shows the estimation error results. It seems that polynomial regression is the best 

model for this data, giving 0.0223 estimation error. Apart from estimation error, the generalization 

capability of the model is a major concern when dealing with sparse data sets. The machine 

learning predictions based on small dataset, like the one employed in this work, are expected to 

suffer from over-fitting: increase in error computed for validation data occurring in concurrence 

to the decrease in error computed for training data. To address the issue of over-fitting, various 

techniques have been suggested in the literature to improve ANN generalization capabilities. In 

this regard, cross-validation [61] is a widely used and accepted approach for scarce dataset. To 

address this concern, we employed cross-validation approach which compares training and 

validation errors at each iteration of the model to provide an optimal criteria. The mean square 

error from training and validation data are shown to converge towards their respective minimum 
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values in Fig. 4-4, indicating that the model does not suffer from over-fitting and is general in 

nature. 

 

Table 4-1: Estimation Error Comparison 

 Linear 

Regression 

Polynomial 

Regression 

Support 

Vector 

Regression 

ANN-I ANNII 

Estimation 

Error 

0.2427 0.0223 0.085 0.0491 0.0498 

Parameters 3 5 rbf-kernel 1,052,161 264,705 

Update 

Method 

Gradient 

Descent 

Gradient 

Descent 

Gradient 

Descent 

Gradient 

Descent 

Gradient 

Descent 

 

 

Figure 4-4: Polynomial Regression training and validation loss 

 

Fig. 4-5 shows predicted drag coefficient from all five models compared with CFD data 

and experimentally calculated drag coefficients. As is evident from the figure, linear model 

performs the worst as compared with other prediction algorithms. The least accurate model among 

prediction algorithms (linear regression) is able to provide better approximations to experimentally 

calculated drag coefficient values as compared to numerical simulations. While in terms of 

processing time, none of the models take as much time for training as CFD takes to arrive at a 

solution. ANN-I and ANN-II both show approximately same results whereas SVR performs better 
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than ANN but worse than linear model. Overall, the polynomial regression has the relatively 

lowest estimation error, as illustrated in Fig.4-5, while the performance of linear regression is worst 

in terms of prediction estimation error. This poor performance of linear regression is a direct 

consequence of underfitting which results in a high RMSE value, and, therefore, high prediction 

estimation error. Accordingly, to reduce the prediction estimation error, the complexity of the 

model has to be increased by increasing the degree of the polynomial fitting on the data. As a 

result, the second order polynomial regression model of relatively higher complexity, used in this 

study, produced the best performance in data prediction by virtue of the subsequent increase in the 

magnitude of the learnt coefficients as well as the increased capability of the higher-degree i.e. 

second-order polynomial to become tuned to the random noise on the target values. Moreover, 

since the size of the data set is smaller for the proper training of a deep neural network as well as 

support vector regression, so this also explains the better performance of polynomial regression 

compared to other machine learning algorithms. 
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Figure 10-5: Comparison of models 
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          Chapter 5: CONCLUSION 

In this study, we have compared different machine learning approaches for the estimation 

of the aerodynamic drag coefficients for 2 to 4 vehicle platoon configurations. Intervehicle 

distances and vehicle tags were used as features for training and testing of the data. The data was 

regressed using support vector regression, polynomial regression, linear regression and neural 

networks for (comparison and) prediction of coefficients. Different models for neural networks 

consisting of two and three layers were used. Mean square error was used as loss function for the 

two layered network whereas, Huber model was used for the three layered network to compute the 

loss. Gradient decent algorithm was used as back propagation criterion for all machine learning 

models. Polynomial regression computed the lowest estimation error (0.0223) whereas the neural 

network models, ANN-I and ANN-II, computed 0.0491 and 0.0498 estimation errors, respectively. 

The neural network estimation errors were higher than the estimation error of polynomial 

regression due to limited training data. Upon further availability of data, a neural network may 

perform better. Therefore, it is proposed that in comparison to a numerical simulation, a neural 

network model can approximate drag coefficients for multi vehicular platoon configurations 

effectively with comparable performance and less coefficient estimation time. 
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