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Abstract

We study B → Dτν̄τ and B → D∗τ ν̄τ flavour changing charged current decay pro-

cesses. These processes are interesting due to having persistent anomalies, RD and RD∗ ,

first reported by Belle in 2007 and later by the different experiment like LHCb, Belle

and BABAR. These anomalies hint physics beyond-the-Standard Model that is com-

monly named as new physics. For theoretical framework to study these transitions,

for all possible dimension-six operators including new physics in model independent

way, we write a low-energy effective Hamiltonian. We used the Wilson coefficients that

are obtained from a numerical fit to all existing data to predict our observables. For

numerical predictions we used HQET form factors for both transitions. We focus on

B → D∗τ ν̄ decay that provides interesting angular observables due to cascade decay

of D∗ → Dπ. Within and beyond the standard model our findings match with the

known results in model independent way for angular observables.
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Chapter 1

Introduction

This thesis is based on the Standard Model (SM) [1–16] and beyond. The SM out-

line our present knowledge of the three fundamental non-gravitational forces: strong,

electromagnetic and weak. It is incredible that all these three forces are based on a

common principle of gauge invariance. The main component of the SM is electroweak

symmetry breaking (EWSB) mechanism occurring at the scale v ∼ 248 GeV. The scale

v corresponds to the vacuum-expectation-value (vev) of the Higgs doublet that pro-

vides masses to the weak bosons W± and Z0, leaving the spinless boson H0 (Higgs)

as the physical degree of freedom. The SM emerged as a complete theory in 2012 in

the sense that its last missing Higgs particle H0 was experimentally found with mass

around 126 GeV [17,18]. In the next chapter 2, we will present the details on the SM.

The B meson has developed a framework for studying the SM and for exploring

the New Physics (NP) effects at low-energy scales both at theoretical and experimental

levels.

In the present work, we focus on the quark flavour sector in the context of a sub-

class of B-meson flavour-changing-charged-current (FCCC) [see Sec. 2.2] semileptonic

decays specifically,

B+(b̄u)→ D̄0(c̄u)l+νl, B+(b̄u)→ D̄∗
0
(c̄u)l+νl (1.1)
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and

B0(b̄d)→ D−(c̄d)l+νl, B0(b̄d)→ D∗−(c̄d)l+νl, (1.2)

here l stands for (e), (µ) and (τ) leptons. At quark level they are represented as

b̄ → c̄l+νl, see Fig. 1.1. However, for brevity through out this thesis we will use

B → Dτν̄ and B → D∗τ ν̄ and b → clνl. In these exclusive decay processes both the

flavour and charge will be changed as the b quark is converted to a c quark by the

weak current that causes a factor of CKM matrix element ∨cb (see Sec. 2.3) in the

amplitude. The SM parameter | ∨cb | can be extracted precisely using these decays.

There are two directions are for the determination of CKM matrix component, namely

inclusive and exclusive final states. It is shown in Fig. 1.1 that in this process b → c

Figure 1.1: b̄→ c̄τ+ν processes in the SM (left) and possible beyond the SM (right). And,
q in graphs represents u, and d quarks see, Eqs. 1.1 and 1.2. [19]

the new physics NP effect potentially comparable with the tree-level contribution of

the SM. These processes are appealing and compelling due to the reason that they have

anomalies since 2007 in the following RD and RD∗ observables that are defined as,

RD ≡
B(B → Dτντ )

B(B → Dlνl)
, RD∗ ≡

B(B → D∗τντ )

B(B → D∗lνl)
, (1.3)

where l in Eqs. 1.3 stands for electron (e) and muon (µ). The B(B → Dτντ ) encodes

the branching ratio for B → Dτντ decay. The CKM matrix element | ∨cb | cancell
in these ratios so they are independent of | ∨cb |, but these ratios depend on the non-

perturbative form factors over the entire kinematic range, (ml)
2 < q2 < (MB−mD(∗))2,

with the massless neutrinos. As mentioned above, in these anomalies physicist look

for physics BSM. We consider NP in a model independent way present our work, see
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Eq. 4.1 of chapter 4. The SM predictions, performed by several groups [20–23], are

averaged by Heavy Flavour Averaging Group (HFLAV) [24] for these ratios are given

as,

RSM
D = 0.299± 0.003, RSM

D∗ = 0.258± 0.005. (1.4)

The first measurment of semitauonic B decays was by Belle [25] in 2007, with

succeeding measurments by Belle [26–29], BaBar [30], and LHCb [31,32]. The average

values by HFLAV [24] of the experimental results read as,

Rexp
D = 0.407± 0.039± 0.024, Rexp

D∗ = 0.306± 0.013± 0.007, (1.5)

Here the first is statistical and second is systematical uncertainty. However, the latest

Belle measurement brings down to the world average discrepancy from 3.8σ (HLFAV

2018) to 3.1σ (HFLAV 2019) that is shown in Fig. 1.2.

Figure 1.2: Current status of RD and RD∗ . Latest Belle measurement brings down to the
world average discrepancy from 3.8σ (HFLAV 2018) to 3.1σ [19].

For theoretical framework to study these transitions, we use an effective field theory

approach discussed at length in chapter 3. Including new physics, we write down a

low-energy effective Hamiltonian. In chapter 4, we start with this Hamiltonian and
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subsequently, we write down the differential decay distribution for decay processes

under consideration of this thesis. We use the heavy quark effective theory (HQET)

parametrization for the B → D and B → D∗ transition form factors. Moreover, to pre-

dict our observables we use the Wilson coefficients appear in the effective Hamiltonian

that are obtained from a numerical fit to all existing data.

The thesis consists of four chapters that are organized as follows. In Chapter 2

we have reviewed the SM of particle physics in detail. Chapter 3 is devoted to a

comprehensive analysis of the theoretical framework for B-decays. In Chapter 4, the

b → cτντ process and its phenomenology are discussed. At the end, we conclude in

Chapter 5.

5



Chapter 2

The Standard Model of elementary

particle physics

The SM is an impressive theoretical achievement Despite its success, one should keep in

mind that the SM is likely only an effective theory that describes Nature at low energies,

at or below the EWSB scale (v ∼ 248 GeV). At higher energies, BSM degrees of freedom

may become dynamical. Their possible existence could help us in better understanding

the EWSB mechanism, neutrino masses and mixings, A search for BSM theories is

actively being carried out in two complementary ways, namely via direct production

searches (high energy frontier) and via indirect searches (high intensity frontier). Both

approaches require sincere theoretical predictions with quantifiable error estimates. In

both of them, an important issue is to keep quantum effects under control, particularly

the QCD ones. The main purpose of the Large Hadron Collider (LHC) are the direct

searches at the TeV scale and beyond. At the same time, low energy measurements

are becoming progressively accurate, increasing their potential of indirect searches.

This requires higher precision on the theoretical side. In many cases, higher-order

perturbative quantum corrections need to be calculated. It is particularly relevant for

processes where virtual exotic particles might contribute to loop amplitudes.

The gauge theory of the SM is based on SU(3)C×SU(2)L×U(1)Y gauge group and
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its contents are given in Tab. 4.1. We will used SU(3)C×SU(2)L×U(1)Y unanimously

as SU(3)×SU(2)×U(1) in this thesis. In electroweak theory, a chiral particle (fermion)

can be defined with two elements as left and right components as,

ϕ = ϕL + ϕR. (2.1)

Component of ϕ can be find by the operation of projection operator,

ϕL = PLϕ, ϕR = PRϕ, PL,R =
1

2
(1± γ5). (2.2)

Within the SM, for the vacuum expectation value of Higgs doublet H, the SU(2)⊗U(1)

symmetry is spontaneously broken.

SU(3)C ⊗ SU(2)L ⊗ U(1)Y
SSB−−→ SU(3)C ⊗ U(1)QED (2.3)

where SSB stands for Spontaneous symmetry breaking. This spontaneous break of

SU(2) ⊗ U(1) gives mass to the gauge bosons W± and Z0. The generators of the

the electroweak gauge group are related to electric charge Q by Gell-Mann-Nishijima

formula and Q remain conserved,

Q = I3 + Y. (2.4)

The flavour structure of the SM is dictated by the Higgs-quark-antiquark Yukawa

interactions which generate the quark masses. The Yukawa coupling matrices contain

a sizeable number of independent parameters. The CKM matrix describes the quark

mass eigenstate mixing under weak interactions. See Sec. 2.3 for details on CKM

matrix. We review in detail the SM ingredients mentioned above in what follows to

this chapter.
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Table 2.1: Matter fields in the standard model

Field SU(3)C SU(2)L U(1)

Qi
L =

(
uiL
diL

)
3 2 1/6

uiR 3 1 2/3
diR 3 1 -1/3

LiL =

(
νiL
eiL

)
1 2 -1/2

eiR 1 1 -1

H =

(
H+

H0

)
1 2 1/2

1The i index label the families of leptons and quarks. [?]

2.1 Standard Model Lagrangian

The SM lagrangian reads as,

LSM = LY ukawa + LHiggs + Lkin, (2.5)

where Lkin, LHiggs and LY ukawa are given in equations 2.12, 2.13 and 2.24, respectively.

To slightly talk about gauge invariance, let us take free Dirac Langrangian that is

defined as,

L = ϕ(iγµ∂µ −m)ϕ. (2.6)

This Langrangian is invariant in the global gauge transformation,

ϕ(x)→ eiαϕ(x); ϕ(x)→ e−iαϕ(x), (2.7)

where phase iα is independent of space time position x. Local gauge invariance refers

to invariance with iα(x) phases that are dependent at every spacetime level,

ϕ(x)→ ϕ′(x) = expiα(x) ϕ(x), ϕ(x)→ ϕ′(x) = e−iα(x)ϕ(x). (2.8)
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Above Langrangian does not hold local gauge invariance. Therefore, a certain gauge

field corresponding to each symmetrical group will be added for gauge invariance. Here

a Covariant derivative Dµ will be used for symmetry requirement. So ∂µ → Dµ and it

is definable as,

Dµ = ∂µ − ieqAµ, (2.9)

here e is the coupling constant, q is the fermions charge and Aµ is the fermionic field,

that is transformed as,

Aµ → Aµ′ = Aµ −
1

e
∂µα(x). (2.10)

Yang-Mills extended the idea of local gauge invariance from U(1) to SU(2) symmetric

transformation with two Dirac particles lying in SU(2) doublet. In this case, covariant

derivative is defined as

Dµϕ = (∂µ − igsGa
µt
a − igW i

µτ
i − ig′BµY )ϕ, (2.11)

where the second term gsG
a
µt
a indicate the strong interaction with strong coupling gs,

gluonic field Ga
µand SU(3) generator ta. The generator ta = 0 for color singlet and

ta = λa

2
for color triplet, λa is Gell-Mann matrices. The third term gW i

µτ covers the

weak coupling (g), 3 gauge bosons W i
µ and τ i is the generator of SU(2), for SU(2)

doublet τ i = σi

2
, where σi is the Pauli Matrices and for SU(2) singlet τ i = 0. In the

fourth term Y represents the hypercharge, Bµ is the electromagnetic field and g′ is the

electromagnetic coupling.

The kinetic component of the SM Langrangian (Lkin) introduced in Eq. 2.5 can be

define as,

Lkin = ϕL(i∂µ +
1

2
gsG

a
µλ

a +
1

2
gW i

µσ
i +

1

6
g′Bµ)ϕL (2.12)

The Higgs part of the SM lagrangian introduced in Eq. 2.5 reads,

Lhiggs = (DµH)†(DµH)− V (H), (2.13)
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whereD is the covarient derivative introduce to produce gauge invariance under SU(2)L×
U(1)Y ,

Dµ = ∂µ − igW i
µτ

i − ig′BµY, (2.14)

and SU(2) doublet of the real scalar field H is,

H =

 H+

H0

 , (2.15)

and the Higgs potential V (H) reads,

V (H) = −µ2H†H + λ(H†H)2 (2.16)

In the Higgs potential, λ and µ are two couplings. At λ > 0, the grounded state is

defined with two possibilities:

1. For µ2 < 0 the Higgs potential has minimum value at H = 0. It define mass of

massive particle is associated with µ and the parabolic form of Higgs potential curve

is obtained as in the fig. 2.1(right).

2. For µ2 > 0, the Higgs potential has non-zero minimum value through Higgs mech-

anism H acquires a vev, and we can use SU(2) symmetry to rotate this expectation

value into the standard form one 2.18. The shape obtained is a ’Mexican hat’ curve for

the potential as depicted in fig. 2.1(left). The minimum value of the potential is at,

HH† =
µ2

2λ
=
υ2

2
, (2.17)

with absolute value of the ground state is,

〈H〉 =

 0

υ/
√

2

 ,with υ a real and positive number, υ =

√
µ2

λ
. (2.18)
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Figure 2.1: The potential corresponding with two different values of µ2 [33]

At this vev symmetry breaks spontaneously, SU(2)L⊗SU(1)Y
SSB−−→ U(1)EM . Accord-

ing to the ’Goldston Theorem’ three massless gauge bosons will become massive during

the symmetry breaking in the Higgs field The scalar field in terms of unitary gauge are

written as,

(DµH)†(DµH) =

∣∣∣∣∣∣∣
(
∂µ − i

2
gσiW i

µ − i
2
g′Y Bµ

) 0

ν√
2


∣∣∣∣∣∣∣
2

=
ν2

8

∣∣∣∣∣∣∣
(

g
2
W i
µσ

i + g′

2
Y Bµ

) 0

1


∣∣∣∣∣∣∣
2

=
ν2

8

∣∣∣∣∣∣∣
 gW 1

µ − igW 2
µ

−gW 3
µ + g′Bµ


∣∣∣∣∣∣∣
2

.

(2.19)

Gauge Field Masses: We can now evaluate the spontaneously generated mass terms

for the W± and Z0 by using Eq. 2.13,

Lgauge−boson−mass =
g2ν

8
(W 1

µW
1
µ +W 2

µW
2
µ) +

ν2

8
(gW 3

µ − g′Bµ), (2.20)
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where gauge bosons can be defined as,

W±
µ =

W 1
µ ∓ iW 2

µ√
2

, Aµ =
gW 3

µ + g′Bµ√
g2 + g′2

, Zµ =
gW 3

µ − g′Bµ√
g2 + g′2

. (2.21)

The masses of bosons are defined as,

MW =
gν

2
, MZ = ν

√
g2 + g′2

2
, MA = 0. (2.22)

There are some important relations that we will use in this work that read as,

e = g sin θW = g′ cos θW , g
2 = 4

√
2GFm

2
W , (2.23)

where GF is Fermi constant used below Eq. 3.2 and θW is Weinberg angle or weak

mixing angle. Its value is sin θ2
W ∼ 0.23.

Fermion Masses: A fermionic mass term Lm = −mϕϕ = −m(ϕLϕR + ϕRϕL) is not

allowed, because it causes an explicitly break of gauge symmetry. The fermion get

masses from the interaction between Dirac field (ϕ) and scalar field (H) is known as

Yukawa Coupling. So the Yukawa Langrangian is defined as,

LY ukawa = Yijϕ
i
LHϕ

j
R + Y ∗ijϕ

j
RH

†ϕiL. (2.24)

After EW symmetry breaking, masses of quarks and leptons are described by Lan-

grangian in weak basis,

Lmass = ϕ
′u
iLM

′u
ij ϕ

′u
jR + ϕ

′d
iLM

′d
ij ϕ

′d
jR + l

′

iLM
′l
ijl
′

jR + h.c. (2.25)

where mass matrices Mij defined as

M
′u
ij ≡ υY

′u
ij M

′d
ij = υY

′d
ij M

′l
ij = υY

′l
ij . (2.26)
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Generally, the Yukawa coupling and mass matrices are not diagonal. They can diago-

nalized by bi-unitary transformations as follows,

V u†
L M ′u

ij V
u
R = diag(mu,Mc,mt) ≡ mu

ij,

V d†
L M ′d

ij V
d
R = diag(md,ms,Mb) ≡ md

ij, (2.27)

V l†
L M

′l
ijV

l
R = diag(me,mµ,mτ ) ≡ ml

ij,

where V s are the unitary (3 ⊗ 3) matrix that are related to flavour (weak) and mass

eigenstates as,

ϕuL = V u
Lϕ

′u
L , ϕdL = V d

Lϕ
′d
L , lL = V l

Lϕ
′l
L, (2.28)

ϕuR = V u
Rϕ

′u
R , ϕdR = V d

Rϕ
′d
R , lR = V l

Rϕ
′l
R. (2.29)

By using these transformations Langrangian becomes,

Lmass = ϕuiLm
u
ijϕ

u
jR + ϕdiLm

d
ijϕ

d
jR + liLm

l
ijljR + h.c., (2.30)

and mass-term has been created. So the generalized form of the SM Langrangian in

terms of Gauge bosons and field is,

LSM = Lkin + LY ukawa + LHiggs

= iϕL(∂µ −
i

2
gsλ

2Ga
µ −

i

2
gσiW i

µ −
i

6
g′Bµ)ϕL (2.31)

+ Yijϕ
i
LHϕ

j
R + (DµH)†(DµH)− V (H) + h.c. .

In the context of physical fermions and bosons fields we will proceed the study of

neutral and charged current.
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2.2 Charged and Neutral Currents

Neutral Current: The interaction in which only flavour of the quark change but

charge remain same are known as FCNC. See fig. 2.2 for FCNC vertices. An example

of FCNC is b→ sl+l−. In the standard model FCNC is forbidden at tree level that is

it only occurs at loop level in the SM. Flavour changing is due to different masses of

quarks and when these quark move in the loop

Figure 2.2: Neutral current vertices describing the couplings of fermion pairs (quarks and
leptons) to Z0 boson.

Charged Current: The interaction in which both the flavour and charge will be

Figure 2.3: Charged current vertices describing the coupling of fermion pairs to vector
boson W±.

changed known as charged current. The Langrangian for the charged current reads,

LCC = − g√
2

[W+
µ ϕ

u
iLγ

µ(∨CKM)ijϕ
d
jL +W−

µ liLγ
µνliL + h.c.], (2.32)

where ∨CKM = V u†
L V d

L is the unitary matrix called CKM matrix. This is a 3×3 mixing

14



matrix element in the case of three quark generations,

∨CKM =


∨ud ∨us ∨ub

∨cd ∨cs ∨cb

∨td ∨ts ∨tb

 . (2.33)

For more details on CKM matric see Sec. 2.3. In the SM, weak charged currents

interactions are occur at tree level that change the flavour. The FCCC process b→ cτντ

under our consideration belongs to this class. See fig. 2.3 for FCCC vertices.

2.3 CKM matrix and its parameterization

A central item in the Standard Model explaining flavour dynamics is the CKM ma-

trix. [34, 35] The CKM matrix define mixing between three families of quarks in the

SM such as, 
d′

s′

b′

 = ∨CKM


d

s

b

 , (2.34)

where ∨CKM is defined in Eq. 2.33. Here d′, s′, b′ are the weak eigenstates and d, s, b

are the mass (physical) eigenstates. The CKM matrix given in Eq. 2.33 has following

parametrizations.

Standard parametrization: This parametrizes CKM matrix as,

VCKM =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12s23 − s− 12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c− 13

 , (2.35)
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where cij = cos θij, Sij = sin θij. The above parametrization of VCKM is defined by the

product of three rotation matrix. Most experiments predicted that θ12 � θ23 � θ13

and δ ∼ O(1). Above parametrization depend on these three angles and one complex

phase factor. Next we will discuss another parametrization that is called ’Wolfenstein

Parametrization’.

Wolfenstein parametrization: This parametrization explains the off diagonal en-

tities. In this parametrization, explicitly there are three real parameters (ζ, δ, A) and

one imaginary parameter (η) in the ∨CKM according to the Wolfenstein parametrization

that is defined as,

VCKM =


1− δ2

2
δ Aδ3(ζ − iη)

−δ 1− δ2

2
Aδ2

Aδ3(1− ζ − iη) −Aδ2 1

+O(δ4). (2.36)

This is widely useful approximation, mainly in B physics, This parametrization displays

the unitarity condition of VCKM as,

V †CKM∨CKM = I = ∨CKMV
†
CKM. (2.37)

This implies that,

ΣkVikV
∗
jk = δij and ΣkVkjV

∗
ki = δij. (2.38)

By using above relation one finds,

∨ud V ∗ub + ∨cdV ∗cb + ∨tdV ∗tb = 0 = δdb, (2.39)

that depicts the unitary triangle shown in fig. 2.4. In this figure,

α = arg

(
∨cd∨∗cb
∨td∨∗tb

)
, β = arg

(
∨td∨∗tb
∨ud∨∗ub

)
, γ = arg

(
∨ud∨∗ub
∨cd∨∗cb

)
, (2.40)
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Figure 2.4: The CKM unitary triangle in (ζ, η) plane. [34]

are the angles of this triangle. It is worth to mention that there is no analogue of the

CKM matrix in the leptonic sector as one can see in Eq. 2.32.
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Chapter 3

Theoretical Framework for B-decays

In the present chapter, Sec. 3.1 covers the basic and technical aspects of setting up a

low energy effective theory that is valid below the electroweak scale. We focus on its

elements that are relevant to B physics in and beyond the SM NP in model independent

way.

3.1 An Introduction to Effective Field Theory

The weak radiative B meson decays are generated by loop diagrams involving the

electro-weak-scale particles (notably the W boson and the top quark). In conse-

quence, one encounters QCD corrections that are enhanced by powers of logarithms

ln(m2
W/m

2
b). In fact, the QCD perturbation series turns out to be a series in powers

of (αs(Mb))
n (αs(mW ) ln(m2

W/m
2
b))

m, with n,m = 0, 1, 2, . . . . Given the numerical

values of αs(Mb) ∼ 0.22 and αs(mW ) ln(m2
W/m

2
b) ∼ 0.7, it makes sense to treat

these quantities as formally independent, and resum the series in the latter one, still

working order-by-order in αs(Mb). It can most conveniently be achieved by Renormal-

ization Group Equations (RGE) [36] for the Wilson coefficients work as a tool for the
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Figure 3.1: The LO b → cdū process in the SM and in the low energy effective theory.
Gray boxes show an insertion of one of the effective operators. [36]

large logarithm resummation.1 In Sec. 3.1.1, the effective Lagrangian is constructed

In perturbation theory, such a procedure can be thought about as an extension of the

so-called decoupling theorem by Appelquist and Carazzone [37]. Once the effective La-

grangian is defined, we discuss the three necessary steps for evaluation of determining

the matching and mixing in Sec. 3.1.2, and calculating the matrix elements in Sec.

3.1.1 The effective Lagrangian and operators basis

The core idea of OPE [38, 39] is a factorization of long- and short-distance physics.

We shall begin with illustrating this idea using a simpler example. Let us consider a

tree-level b→ cdū transition that is mediated by the W boson, as depicted in Fig. 3.1

(left). There are two reasons why we have chosen this very example for the sake of

illustration. First, such a process is sensitive to QCD effects. Second, it involves

quarks of four different flavours, so the number of relevant effective operators will be

very limited. The amplitude corresponding to the LO Feynman diagram of this process

in the SM reads (in the ’t Hooft-Feynman gauge):

A =

(
−ig√

2

)2

∨cb V ∗ud
(
d̄LγµuL

) igµν

m2
W − q2

(c̄LγνbL) (3.1)

1Construction of effective theories and using the RGE is a general method for resummation of
all sorts of large logarithms of scales that appear in physical amplitudes in Quantum Field Theory
(QFT).
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where g = e/ sin θW is weak coupling defined 2.23, and the maximum momentum

transfer squared is q2
max = (Mb − Mc)

2. Throughout the thesis, we treat the three

lightest (u, d and s) quarks as massless. For brevity, we use identical notation for

the quark fields and the corresponding Dirac spinors. Their left- and right- handed

projections are denoted in the standard manner, i.e. ϕL,R = PL,R ϕ, where PL,R =

(1∓ γ5)/2.

The W -boson mass mW ' 80 GeV is over 16 times larger than
√
q2 < Mb ∼ 5GeV,

i.e. q2/m2
W < 0.004. Thus, one can perform a Taylor expansion of the W -propagator

into an infinite sum of local terms using (1 − x)−1 =
∑∞

n=0 x
n. Then the amplitude

takes the form

A = −i 2
√

2 GF ∨cb V ∗ud
(
d̄ u
)
V−A (c̄ b)V−A

∞∑
n=0

q2n

m2n
W

(3.2)

where GF = g2
2/(4
√

2m2
W ) is the Fermi constant, and (2

√
2GF )−1/2 ' 174GeV. The

CKM matrix elements are denoted by Vij, while
(
d̄ u
)
V−A stands for d̄LγµuL (and

similarly for other flavours).

The r.h.s. of Eq. (3.2) can equivalently be obtained from the following LO effective

weak interaction Lagrangian term:

Leff = −4GF√
2
∨cb V ∗ud

∞∑
n=0

1

m2n
W

Q(n), (3.3)

where the operators Q(n) are given (in position space) by

(
d̄ u
)
V−A [(−1)n�n] (c̄ b)V−A (3.4)

with � ≡ ∂α∂α denoting the d’Alembertian. The dimensionality of the operators Q(n)

in the units of mass is 6 + 2n, i.e. [Q(n)] = 6 + 2n. Due to the suppression of higher-n

operators by inverse powers of mW , the first term is a good approximation. In fact,

higher-dimensional operators are practically always negligible from the phenomenolog-
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ical standpoint in the SM analyses of FCNC processes.

From now on, we shall restrict to the dimension-six (n = 0) operators alone, assum-

ing that it is sufficient for the required precision in our example. Taking into account

possible generation of other operators at the dimension-six level, we write

Leff =
4GF√

2
∨cb V ∗ud

∑
m

CmQ
(0)
m (3.5)

where the summation is always finite, and we will drop the superscript (0) below.

Eq. (3.5) illustrates that the local operators are weighted by effective couplings Cm
called Wilson coefficients.

Let us now figure out explicitly what particular operators can arise from(
d̄ u
)
V−A (c̄ b)V−A after including effects of the strong interactions. Since these interac-

tions are chirality-conserving, they cannot produce anything but the (V −A)×(V −A)

structures at the dimension-six level. Moreover, the flavour content of all the operators

must remain the same. Thus, it is only the color structure (i.e. contraction of the color

indices) that may change with respect to our initial operator. We conclude that to all

orders in QCD we have the following form of the Lagrangian

Leff =
4GF√

2
∨cb V ∗ud

(
C1Q

ducb
1 + C2Q

ducb
2

)
, (3.6)

where Qducb
1 = (d̄iLγ

µujL)(c̄jLγµb
i
L), Qducb

2 = (d̄iLγ
µuiL)(c̄jLγµb

j
L), and i, j stand for color

indices of the quark fields. Such operators are traditionally called current-current

operators. Before turning on the QCD effects, we have C1 = 0 and C2 = −1.

Our operators can easily be rewritten in terms of products of color-singlet and

color-octet currents, thanks to the following identity for the SU(3) generators T a:

(T a)ij(T
a)kl = TF

(
− 1

Nc

δijδ
k
l + δilδ

k
j

)
(3.7)

where TF = 1/2, and Nc = 3 stands for the number of quark colors. Moreover, one can
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Figure 3.2: The LO b→ clν̄l process in the SM (left) and in the low energy effective theory
(right). Black dots show an insertion of one of the effective operators. [40]

show that no other operators arise because there are only two independent singlets in

the tensor product 3̄ ⊗ 3 ⊗ 3̄ ⊗ 3. The full set of operators in each given example

can be written without specifying nothing but the particle content and symmetries of

a given theory (see, e.g., Ref. [40]).

The effective Lagrangian for b→ clν̄l is given in Eq. 3.8 and depicted in fig. 3.2.

Leff =
4GF√

2
∨cb (c̄Lγ

µbL)(l̄LγµνL). (3.8)

This lagrangian is extensively discussed in chapter 4 where the effective operator in the

SM is defined as, OLLV = (cγµPLb)(τγ
µPLντ ) = (c̄Lγ

µbL)(l̄LγµνL), where PL = (1−γ5)/2

and corresponding Wilson coefficients is CLL
V = 1. The Hamiltonian for b→ cτ ν̄ decay

is given in Eq. 4.1. The SM lagrangian defined in Eq. 3.8 can be obtained from Eq.

4.1 by setting CX
AB = 0.

We discuss theoretical framework for B physics in chapter 3. The effective Hamil-

tonian for b→ cτ ν̄ decay can be generaly written as,

3.1.2 Determination and renormalization of the Wilson coeffi-

cients

The Wilson coefficients Ci in the effective theory Lagrangian 3.8 can be treated as

coupling constants that undergo MS renormalization, similarly to the QCD gauge cou-
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pling gs. Once they are fixed at a given renormalization scale µ0, their values at other

scales µ can be calculated using the RGE. However, contrary to the gauge coupling, the

initial conditions for the RGE (Ci(µ0)) do not need to be determined from experiment.

Instead, they are fixed by the requirement that the effective theory in its region of

validity reproduces the full theory (SM) Green’s functions.

Instead of the SM, the role of the full theory could be played by any other model

whose beyond-SM degrees of freedom are not much lighter than the W boson. In

such a case, the operator basis in Eq. (3.8) might need to be extended. However, for

definiteness, we shall restrict to the SM in our discussion here.

After solving the RGE, we calculate the physical amplitudes which are given by

matrix elements of the operators Qi between the final and initial states.

Such a procedure is common for any FCNC and FCCC process that takes place

much below the electroweak scale. It always consists of three steps in which one

subsequently determines the matching, mixing and matrix elements. A discussion of

the matrix elements will follow in next Section.

3.1.3 Matrix elements

After having described the determination and renormalization of the Wilson coeffi-

cients, we now pass to the third step of the previously outlined procedure, namely to

evaluating the matrix elements of the operators Qi between the external P states of

interest.

Due to the hadronic nature of the external states, nonperturbative QCD effects

show up at the stage of the matrix element (unanimously called as Form Factors) eval-

uation. To overcome and/or control this problem, one considers the heavy quark limits,

exploiting the fact that the b-quark mass is large compared to the QCD confinement

scale δ. For exclusive decays, the available calculational frameworks are HQET [41],

Soft-Collinear Effective Theory (SCET), QCD sum rules, light cone sum rules and lat-

tice QCD. Matrix elements, B → D and B → D∗, of our processes are discussed in
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chapter 4. It is worthy to mention that for the inclusive decays, Heavy Quark expan-

sion (HQE) allows to express the hadronic matrix elements in terms of the perturbative

ones for the underlying quark-level process. In the following section we review HQET.

3.2 Heavy Quark Effective Theory (HQET)

HQET is a common feature of all EFTs with heavy quarks. HQET defines a single

heavy quark system where all light degrees of freedom are soft, i.e. all their momenta’s

components are of the order δQCD. With the simplest heavy quark expansion, we will

build its Lagrangian first from integrating out heavy degrees of freedom. Later we dis-

cuss symmetries of HQET that are very relevant feature of HQET for phenomenology,

which eventually yield constraints on low scale non-perturbative matrix element that

are not evident in full QCD.

3.2.1 Construction of the HQET Langrangian

To construct HQET’s Lagrangian, the idea of EFT is directly followed by the identi-

fication of the heavy degree of freedom and the integrating it out from the functional

integral. This approach is quite helpful, as it can be made explicitly at the tree level

as well as at a one loop. This approach leads to the HQET Lagrangian being closed

form, at least at tree level. The initial step is the QCD Lagrangian with a single heavy

quark written as,

LQCD = Q(i /D −mQ)Q+ Llight, (3.9)

where mQ is the mass of the heavy quark, Dµ = ∂µ + igAµ is the covariant derivative

including the interaction with the gluon Aµ and Llight is the Langrangian for the light

quarks and gluons. A decomposition of the covariant derivative into a ’time’ and a

’spatial’ (⊥) part,

Dµ = vµ(v ·D) +D⊥µ , D
⊥
µ = (gµν − vµvν)Dν , { /D⊥, /v} = 0. (3.10)
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In order to calculate the HQET Langrangian suppose we have a single heavy quark

system which is enclosed in the heavy hadron. This hadron has a mass mH and moves

with a definit momentum pH . In case the hadron contains only a single heavy quark,

its mass will scale with the heavy quark mass, likewise its momentum will scale with

the heavy quark mass. To this end, it is convenient to define a four velocity

υ =
pH
mH

, υ2 = 1, υ0 > 0, (3.11)

which is independent of the heavy quark mass. This vector defines the desired frame

υ = (1, 0, 0, 0) is the rest frame for heavy hadron. We consider heavy quark is inside

the heavy hadron and

pQ = mQυ + k, (3.12)

is the momentum of the heavy hadron where a small k residual momentum satisfying

k � mQ. To implement this idea on the technical side, we use this ’external’ velocity

vector v to decompose the heavy-quark field Q into an ’upper’ (large) component φ

and a ’lower’ (or small) component ξ,

φv =
1

2
(1 + /v)Q, /vφv = φ, ξv =

1

2
(1− /v)Q, /vξv = −ξ. (3.13)

Using above new fields 3.13 and Eq. 3.10 in first part of Eq. 3.9 one finds,

Lheavy = φ(i(υ.D)−mQ)φ− ξ(i(υ.D)−mQ)ξ + φi /D
⊥
φ+ ξi /D

⊥
ξ. (3.14)

To proceed further, we now implement the decomposition of the heavy quark mo-

mentum into a ’large’ and a residual piece i.e., pQ = mQυ + k. This is achieved by

multiplying the heavy quark field by a phase,

φv = e−imQ(v·x)hv, ξv = e−imQ(v·x)Hv. (3.15)
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Since the momentum of a field is the derivative acting on the field that is,

pµQ ∼ i∂µQ(x) (3.16)

that leads us to obtain,

i∂µφv(x) = e−imQ(v·x)(mQv
µ + i∂µ)hv, (3.17)

which tells that the derivative acting on the field hv reproduces the residual momentum

k (i∂µ) introduced above in Eq. 3.12. This observation give us with the power counting

of HQET: once we have constructed the theory in terms of hv , we aim at an expansion

in iDµ/mQ.

Now one can indicate the Langrangian of the heavy quark in term of the field hυ
and Hυ as follows,

Lheavy = hυi(υ.D)hυ −Hυ

{
i(υ.D) + 2mQ

}
Hυ + hυi /D

⊥
Hυ +Hυi /D

⊥
hυ. (3.18)

With this formation of the Lagrangian we can now easily identify the degrees of free-

dom. In the sense of EFT, the field Hυ is the heavy degree of freedom and field hυ is

light. hυ does not have mass term and Hυ has acquired a mass term 2mQ. The rest

terms are couplings between these fields.

However, if the degree of freedom that has been integrated out is heavy, it is in

general possible to expand the result in inverse powers of the mass of the heavy scale.

In our case this is quite evident, since we have (v ·D) � 2mQ as (v ·D) is related to

the residual momentum k of the heavy quark. Consequently we expand and get,

1

i(v ·D) + 2mQ − iε
=

1

2mQ

∞∑
n=0

(
−i(v ·D)

2mQ

)n
. (3.19)

Triming at some order N yields a local action functional, and hence we get as the
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Lagranian,

L1/mQ-expansion = hυi(υ.D)hυ −
1

2mQ

hυ /D
⊥
∞∑
n=0

(
−i(v ·D)

2mQ

)n
/D
⊥
hυ. (3.20)

This expression is the expansion of the QCD Lagrangian up to the order 1/mN
Q . The

leading term,

L1/mQ-expansion = hυi(υ.D)hυ, (3.21)

is the Lagrangian for a static heavy quark moving with the four velocity v, i.e the

Lagrangian on Heavy Quark Effective Theory (HQET).

The Feynman rules of HQET: The Feynmann rules of HQET are set up from the

HQET Langrangian, [42]

LHQET = hυi(υ.D)hυ = hυi(υ.∂)hυ + ighυi(υ.A)hυ. (3.22)

The propagator may be read from in the first term, whereas the heavy quark-gluon

interaction is represented in the second term as illustrated in Fig. 3.3.

Figure 3.3: Feynmann rules of HQET. k is residual momentum moving with velocity υ. i
and j are the color indices. [42]

We will suppose the semileptonic decay B → Dlν to illustrate this in more detail.
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The corresponding hadronic matrix element is,

〈B(p)bγµcD(p′)〉. (3.23)

At scales below Mc, the static limit for both b and c quark can be used, however, the

two mesons have different velocities υ = p
Mb

and υ′ = p′

MD
, so we need to introduce two

static quarks bv and cv with different velocities and we get the heavy quark Langrangian

Lb→cHQET = bυi(υ.D)bυ + cυ′i(υ
′.D)cυ′ , (3.24)

where v = p/Mb and v′ = p′/MD. Flavour Symmetry: QCD Lagrangian is familiar

to have flavour symmetries in the event that quarks become mass degenerate: The

approximate degeneracy of the quark relates to the isospin symmetry, in case all quarks

are supposed to be massless, QCD has a chiral symmetry, of which the flavour SU(3) is

evident. It is because the interaction of quarks with gluons does not depend on mass,

it depends on the color charge of the quarks represented in SU(3). If a heavy quark

is a static color source, its flavour becomes nsubstantial. To make this more clear, we

consider the b→ c HQET Langrangian for the case of two equal velocities,

Lb→cHQET = bυi(υ.D)bυ + cυ′ i(υ
′
.D)cυ′ , (3.25)

Lb→cHQET = (bυ, cυ)

 i(υ.D) 0

0 i(υ.D)


 bυ

cυ

 , (3.26)

which is as a model SU(2) symmetry: for any unitary 2× 2 matrix U transformation

is defined as,  bυ

cυ


′

= U

 bυ

cυ

 , (3.27)

under which the HQET Langraqngian stands invariant, this symmetry appeal only to
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heavy quark moving at the same velocity v. We will suppose a semileptonic decay of

B meson into a D meson and both b and c to be heavy. The maximum momentum

transfer of the leptons defined as q2
max = (Mb−MD)2 = (Mb−Mc)

2. Spin Symmetry: To

make this intelligiable from the HQET Langrangian, we break down the heavy quark

field into the two spin components by introducing a spin vector s with s.υ = 0 and

s2 = 0 such that,

h±sυ =
1

2
(1± γ5/s)hυ, hυ = h+s

υ + h−sυ . (3.28)

The expression in terms of the projections we have the Langrangian,

LHQET = h
+s

υ (iυD)h+s
υ + h

−s
υ (iυD)h−sυ , (3.29)

LHQET = (h
+s

υ , h
−s
υ )

 i(υ.D) 0

0 i(υ.D)


 h+s

υ

h−sυ

 . (3.30)

Similarly before we have an SU(2) symmetry: for any 2 × 2 unitary matrix U trans-

formation is defined as,  h+s
υ

h−sυ


′

= U

 h+s
υ

h−sυ

 , (3.31)

under which the heavy quark symmetry remains invariant and symmetry relate again

only heavy quarks moving with same velocity υ.
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Chapter 4

Analyses of B → Dτντ and B → D∗τντ

4.1 Theoretical framework

We discuss theoretical framework for B physics in chapter 3. The effective Hamiltonian

for b→ cτ ν̄ decay can be generaly written as,

Heff =
4GF∨cb√

2

(
OVLL +

∑
X=S,V,T ;A,B=L,R

CX
AB OXAB

)
, (4.1)

that involve following ten four-fermion dimension six operators. S, V and T stands for

scaler, vector and tensor, respectivly and L (R) represent PL (PR) defined in Eq. 2.2.

OVAB ≡ (c̄ γµPAb) (τ̄ γµPBν) ,

OSAB ≡ (c̄ PAb) (τ̄PBν) ,

OTAB ≡ λAB (c̄ σµνPAb) (τ̄σµνPAν) , (4.2)

that includes right-handed leptonic part as well. λAB is kronecker delta function. Ef-

fective operator OVLL that only contribute in the SM is defined below Eq. 3.8. The SM

contribution to OVLL is added to Eq. (4.1) such that CX
AB = 0 in the SM. The non-zero

CX
AB is a manifestation of NP. It has been shown that NP in b→ clν̄l transitions [43] is
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negligible therefore, we are assuming NP only in operators involving third generation

charged leptons. In the following sections, we provide the analytic expressions of ob-

servables obtained from the b→ cτ ν̄τ quark-level decays. Our studies can be put into

those involving B → D and B → D∗ semileptonic decays.

4.2 B → Dτν̄τ decay transition

We study this process only in the SM. One can parametrize the hadronic matrix ele-

ments for B → D by showing explicitly their Lorentz structure as [44,45],

〈D(pD)|c̄γµb|B̄(pB)〉 =

[
(pB + pD)µ −

M2
B −M2

D

q2
qµ

]
F1(q2) + qµ

M2
B −M2

D

q2
F0(q2) ,

〈D(pD)|c̄b|B̄(pB)〉 =
M2

B −M2
D

Mb −Mc

F0(q2) ,

〈D(pD)|c̄γµγ5b|B̄(pB)〉 = 〈D(pD)|c̄γ5b|B̄(pB)〉 = 0 ,

〈D(pD)|c̄σµνb|B̄(pB)〉 = −i(pBµ pDν − pDµ pBν)
2FT (q2)

MB +MD

,

〈D(pD)|c̄σµνγ5b|B̄(pB)〉 = −εµναβ pαB p
β
D

2FT (q2)

MB +MD

, (4.3)

where F0(q2), F1(q2) and FT (q2) are the form factors in above matrix elements are

defined as,

F1(q2) =
1

2
√
MBMD

[
(MB +MD)h(q2)− (MB −MD)h

′
(q2)

]
,

F0(q2) =
1

2
√
MBMD

[
(MB +MD)2 − q2

MB +MD

h(q2)− (MB −MD)2 − q2

MB −MD

h
′
(q2)

]
,(4.4)

FT (q2) =
MB +MD

2
√
MBMD

hT (q2) .

In the heavy quark limit, each of above form factor either vanishes or equals to the

leading order Isgur-Wise function,

h
′
= 0, h = hT = ξ. (4.5)
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The order O
(
λQCD
Mc

)
corrections to form factors are calculated in [21]. We have not

included above corrections in our analyses because our main focus is to discuss B →
D∗τ ν̄τ where we have consider HQET form factors.

4.2.1 Differential decay rate

The differential decay rate of B → Dτν̄τ can be written as,

dΓ

dq2
(B → Dτν̄) =

G2
F∨2

cb

192M3
Bπ

3
q2 λ

1/2
D (q2)

(
1− m2

τ

q2

)2

×
{(
|1 + CV

LL + CV
RL|2 + |CV

LR + CV
RR|2

)[
(Hs

V,0)2

(
m2
τ

2q2
+ 1

)
+

3m2
τ

2q2
(Hs

V,t)
2

]
+

3

2
(Hs

S)2
(
|CS

RL + CS
LL|2 + |CS

RR + CS
LR|2

)
+ 8

(
|CT

LL|2 + |CT
RR|2

)
(Hs

T )2

(
1 +

2m2
τ

q2

)
+ 3Re

[
(1 + CV

LL + CV
RL) (CS

RL + CS
LL)∗ + (CV

LR + CV
RR) (CS

RR + CS
LR)∗

] mτ√
q2
Hs
SH

s
V,t

− 12Re
[
(1 + CV

LL + CV
RL)CT∗

LL + (CV
RR + CV

LR)CT∗
RR

] mτ√
q2
Hs
TH

s
V,0

}
. (4.6)

where the amplitudes for B → D transitions are:

Hs
V,0(q2) ≡ Hs

VL,0
(q2) = Hs

VR,0
(q2) =

√
λD(q2)

q2
F1(q2) ,

Hs
V,t(q

2) ≡ Hs
VL,t

(q2) = Hs
VR,t

(q2) =
M2

B −M2
D√

q2
F0(q2) ,

Hs
S(q2) ≡ Hs

SL
(q2) = Hs

SR
(q2) ' M2

B −M2
D

Mb −Mc

F0(q2) , (4.7)

Hs
T (q2) = Hs

TL+− = Hs
TL0t = −Hs

TR+− = Hs
TR0t = −

√
λD(q2)

MB +MD

FT (q2) ,

4.2.2 Plots

We obtained the plots for B → D process within the SM, CX
AB = 0, that are shown

in Figs. 4.1 and 4.2. The numerical value for input parameters that are used in our
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calculation are given in Tab. 4.1 to make these plots. One can also obtain plots wrt

Figure 4.1: Differential decay rate in the SM for B → Dlνl with respect to q2. Left plot
is for τ and right plot is for µ. The band shows the parametric error.

to w that is defined as,

w ≡ v · v′ = (M2
B +M2

D − q2)

2MBMD

, (4.8)

where v and v′ are defined in HQET Sec. 3.2 and these plots within the SM are shown

in Fig. 4.2.

Figure 4.2: Differential decay rate in the SM for B → Dlνl with respect to Isgur-Wise
function w. Left plot is for τ and right plot is for µ. The band around shows the parametric
error.
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4.3 B → D∗τ ν̄τ decay transition

4.3.1 Matrix elements and Form Factors

The hadronic matrix elements for B → D∗ transition are written as [44,45],

〈D∗(pD∗ , λM)|c̄γµb|B̄(pB)〉 = −i εµνζσ εν∗(λM) pζB p
σ
D∗

2V (q2)

MB +MD∗
,

〈D∗(pD∗ , λM)|c̄γµγ5b|B̄(pB)〉 = (MB +MD∗)A1(q2)

(
ε∗µ(λM)− qµ

(ε∗(λM) · q)
q2

)
+qµ(ε∗(λM) · q)2MD∗

q2
A0(q2)

− ε∗(λM) · q
MB +MD∗

A2(q2)

(
(pB + pD∗)µ − qµ

M2
B −M2

D∗

q2

)
,

〈D∗(pD∗ , λM)|c̄b|B̄(pB)〉 = 0 ,

〈D∗(pD∗ , λM)|c̄γ5b|B̄(pB)〉 = −(ε∗(λM) · q) 2MD∗

Mb +Mc

A0(q2) ,

〈D∗(pD∗ , λM)|c̄σµνb|B̄(pB)〉 = εµνζσ
{
−εζ∗(λM)(pB + pD∗)

σT1(q2)

+2
(ε∗(λM) · q)

q2
pζB p

σ
D∗

(
T1(q2)− T2(q2)− q2

M2
B −M2

D∗
T3(q2)

)
+ε∗ζ(λM)qσ

M2
B −M2

D∗

q2
(T1(q2)− T2(q2))

}
. (4.9)

The B → D∗ helicity amplitudes involving form factors for vector, axial, pseudoscalar

currents,

V (q2) =
MB +MD∗

2
√
MBMD∗

hV (q2),

A1(q2) =
(MB +MD∗)

2 − q2

2
√
MBMD∗(MB +MD∗)

hA1(q
2),

A2(q2) =
MB +MD∗

2
√
MBMD∗

[
hA3(q

2) +
MD∗

MB

hA2(q
2)

]
, (4.10)

A0(q2) =
1

2
√
MBMD∗

[
(MB +MD∗)

2 − q2

2MD∗
hA1(q

2)− M2
B −M2

D∗ + q2

2MB

hA2(q
2)

− M2
B −M2

D∗ − q2

2MD∗
hA3(q

2)

]
,
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and for the tensor matrix elements read,

T1(q2) =
1

2
√
MBMD∗

[
(MB +MD∗)hT1(q

2)− (MB −MD∗)hT2(q
2)
]
,

T2(q2) =
1

2
√
MBMD∗

[
(MB +MD∗)

2 − q2

MB +MD∗
hT1(q

2)− (MB −MD∗)
2 − q2

MB −MD∗
hT2(q

2)

]
, (4.11)

T3(q2) =
1

2
√
MBMD∗

[
(MB −MD∗)hT1(q

2)− (MB +MD∗)hT2(q
2)− 2

M2
B −M2

D∗

MB

hT3(q
2)

]
.

The HQET form factors that we used in our work can be expressed as [46]

hV (w) =R1(w)hA1(w) ,

hA2(w) =
R2(w)−R3(w)

2 rD∗
hA1(w) ,

hA3(w) =
R2(w) +R3(w)

2
hA1(w) ,

hT1(w) =
1

2(1 + r2
D∗ − 2rD∗w)

[
Mb −Mc

MB −mD∗
(1− rD∗)2(w + 1)hA1(w)

− Mb +Mc

MB +mD∗
(1 + rD∗)

2(w − 1)hV (w)

]
,

hT2(w) =
(1− r2

D∗)(w + 1)

2(1 + r2
D∗ − 2rD∗w)

[
Mb −Mc

MB −mD∗
hA1(w)− Mb +Mc

MB +mD∗
hV (w)

]
,

hT3(w) =− 1

2(1 + rD∗)(1 + r2
D∗ − 2rD∗w)

[
2
Mb −Mc

MB −mD∗
rD∗(w + 1)hA1(w)

− Mb −Mc

MB −mD∗
(1 + r2

D∗ − 2rD∗w)(hA3(w)− rD∗hA2(w))

− Mb +Mc

MB +mD∗
(1 + rD∗)

2 hV (w)

]
,

(4.12)
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where the w-dependencies are parametrized as [46]

hA1(w) =hA1(1)[1− 8ζ2
D∗z + (53ζ2

D∗ − 15)z2 − (231ζ2
D∗ − 91)z3] ,

R1(w) =R1(1)− 0.12(w − 1) + 0.05(w − 1)2 ,

R2(w) =R2(1) + 0.11(w − 1)− 0.06(w − 1)2 ,

R3(w) =1.22− 0.052(w − 1) + 0.026(w − 1)2 ,

(4.13)

where rD∗ = MD∗/MB ,w = (M2
B+M2

D∗−q2)/2MBMD∗ , z(w) = (
√
w + 1−

√
2)/(
√
w + 1+

√
2). The numerical values of the parameters that we used in form factors are given

as,

hA1(1) =0.908± 0.017 [47], ζ2
D∗ = 1.207± 0.026 [48], (4.14)

R1(1) =1.403± 0.033 [48], R2(1) = 0.854± 0.020 [48] . (4.15)

4.3.2 Four fold angular distribution

In this decay, the vector meson D∗ in the final state as shown in Fig. 4.3 provides ad-

ditional observables as compare to the B → D case. The differential decay distribution

of this decay process B(pB) → D∗(pD∗) τ(pτ ) ν̄(pν̄), with D∗(pD∗) → D(pD) π(pπ) on

the mass shell, can be expressed in the form [49],

d4Γ(B → D∗τ ν̄)

dq2 d cos θl d cos θ∗ dχ
≡ I(q2, θl, θ

∗, χ)

=
9

32π

{
Is1 sin2 θ∗ + Ic1 cos2 θ∗ +

(
Is2 sin2 θ∗ + Ic2 cos2 θ∗

)
cos 2θl

+ (I3 cos 2χ+ I9 sin 2χ) sin2 θ∗ sin2 θl + (I4 cosχ+ I8 sinχ) sin 2θ∗ sin 2θl

+ (I5 cosχ+ I7 sinχ) sin 2θ∗ sin θl +
(
Is6 sin2 θ∗ + Ic6 cos2 θ∗

)
cos θl

}
.(4.16)

The angular coefficients Ii’s that depends on q2 contain both short- and long-distance
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Figure 4.3: The description of the angles in the four fold angular distribution. [49]

physics contributions. Using the global normalization,

NF =
G2
F | ∨cb |2

27 3π3m3
B

q2 λ
1/2
D∗ (q2)

(
1− m2

τ

q2

)2

B(D∗ → Dπ) , (4.17)

where B(D∗ → Dπ) is the branching fraction of the D∗ decay into Dπ states, the

expressions for the angular coefficients are,

Ic1 = NF

[
2
(

1 +
m2
τ

q2

)(
|AL0 |2 + 4 |ALT 0|2

)
− 16mτ√

q2
Re[AL0ALT 0

∗
] +

4m2
τ

q2
|ALtP |2 + (L→ R)

]
,

Is1 = NF

[1

2

(
3 +

m2
τ

q2

)(
|AL⊥|2 + |AL‖ |2

)
+ 2

(
1 +

3m2
τ

q2

)(
|ALT ⊥|2 + |ALT ‖|2

)
− 8

mτ√
q2
Re[AL⊥ALT ⊥

∗
+AL‖ALT ‖

∗
] + (L→ R)

]
,

Ic2 = −2NF

(
1− m2

τ

q2

)(
|AL0 |2 − 4 |ALT 0|2 + (L→ R)

)
,

Is2 =
1

2
NF

(
1− m2

τ

q2

)(
|AL⊥|2 + |AL‖ |2 − 4

(
|ALT ⊥|2 + |ALT ‖|2

)
+ (L→ R)

)
,

I3 = NF

(
1− m2

τ

q2

)(
|AL⊥|2 − |AL‖ |2 − 4

(
|ALT ⊥|2 − |ALT ‖|2

)
+ (L→ R)

)
,

I4 =
√

2NF

(
1− m2

τ

q2

)
Re[AL0AL‖

∗ − 4ALT 0ALT ‖
∗

+ (L→ R)] ,
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I5 = 2
√

2NF

[
Re[
(
AL0 − 2

mτ√
q2
ALT 0

) (
AL⊥
∗ − 2

mτ√
q2
ALT ⊥
∗ )− (L→ R)]

− m2
τ

q2
Re[AL

∗
tP

(
AL‖ − 2

√
q2

mτ

ALT ‖
)

+ (L→ R)]
]
,

Ic6 = NF
8m2

τ

q2
Re[AL

∗
tP

(
AL0 − 2

√
q2

mτ

ALT 0

)
+ (L→ R)] ,

Is6 = 4NF Re[
(
AL‖ − 2

mτ√
q2
ALT ‖

)(
AL⊥
∗ − 2

mτ√
q2
ALT ⊥
∗ )− (L→ R)] ,

I7 = −2
√

2NF

[
Im[

(
AL0 − 2

mτ√
q2
ALT 0

) (
AL‖
∗ − 2

mτ√
q2
ALT ‖
∗ )− (L→ R)]

+
m2
τ

q2
Im[AL

∗
tP

(
AL⊥ − 2

√
q2

mτ

ALT ⊥
)

+ (L→ R)]
]
,

I8 =
√

2NF

(
1− m2

τ

q2

)
Im[AL0

∗AL⊥ − 4ALT 0

∗ALT ⊥ + (L→ R)] ,

I9 = 2NF

(
1− m2

τ

q2

)
Im[AL‖AL⊥

∗ − 4ALT ‖ALT ⊥
∗

+ (L→ R)] . (4.18)

where the AL,Rλ are the transversity amplitudes, that are the projections of the total

decay amplitude into the explicit polarization basis. Their explicit dependence on the

hadronic helicity amplitudes, and the Wilson coefficients is listed below,

AL0 = HV,0 (1 + CV
LL − CV

RL), AR0 = HV,0 (CV
LR − CV

RR),

AL‖ =
1√
2

(HV,+ +HV,−) (1 + CV
LL − CV

RL), AR‖ =
1√
2

(HV,+ +HV,−) (CV
LR − CV

RR),

AL⊥ =
1√
2

(HV,+ −HV,−) (1 + CV
LL + CV

RL), AR⊥ =
1√
2

(HV,+ −HV,−) (CV
LR + CV

RR),

ALt = HV,t (1 + CV
LL − CV

RL), ARt = HV,t (CV
LR − CV

RR),

ALP = HS (CS
RL − CS

LL), ARP = HS (CS
RR − CS

LR),

ALT0 = 2HT,0 C
T
LL, ART0 = −2HT,0 C

T
RR,

ALT‖ =
√

2 (HT,+ −HT,−) CT
LL, ART‖ = −

√
2 (HT,+ −HT,−) CT

RR,

AL,RT⊥ =
√

2 (HT,+ +HT,−) CT,R
LL , (4.19)
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where the t and the P amplitudes combined as

AL,RtP =
(
AL,Rt +

√
q2

mτ

AL,RP
)
. (4.20)

The hadronic helicity amplitudes are,

HV,±(q2) = (MB +MD∗)A1(q2)∓
√
λD∗(q2)

MB +MD∗
V (q2) ,

HV,0(q2) =
MB +MD∗

2MD∗
√
q2

[
−(M2

B −M2
D∗ − q2)A1(q2) +

λD∗(q
2)

(MB +MD∗)2
A2(q2)

]
,

HV,t(q
2) = −

√
λD∗(q2)

q2
A0(q2) ,

HS(q2) = −
√
λD∗(q2)

Mb +Mc

A0(q2) , (4.21)

HT,0(q2) =
1

2MD∗

[
−(M2

B + 3M2
D∗ − q2)T2(q2) +

λD∗(q
2)

M2
B −M2

D∗
T3(q2)

]
,

HT±(q2) =
1√
q2

[
±(M2

B −M2
D∗)T2(q2) +

√
λD∗ T1(q2)

]
.

4.3.3 Observables

We define observables as follows,

• Differential decay rate

dΓ

dq2
=

1

4
(3I1c + 6I1s − I2c − 2I2s) , (4.22)

• RD∗

RD∗ ≡
dΓ(B → D∗τντ )/dq

2

dΓ(B → D∗lνl)/dq2
, (4.23)
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• Forward-backward asymmetry

AFB(q2) =
3

8

(I6c + 2I6s)

dΓ/dq2
, (4.24)

• D∗ polarization fraction

RL,T (q2) =
dΓL/dq

2

dΓT/dq2
, (4.25)

where ΓL and ΓT are the longitudinal and transverse D∗ polarization decay rates,

dΓL
dq2

=
1

4
(3I1c − I2c) ,

dΓT
dq2

=
1

2
(3I1s − I2s) . (4.26)

Alternatively, one can define the quantity FD∗
L which is a measure of the longi-

tudinally polarized D∗’s as,

FD∗

L (q2) =
RL,T (q2)

1 +RL,T (q2)
=

1

2

3I1c − I2c

3 (I1c + I1s)− I2c − I2s

. (4.27)

FD∗
L is also labelled as FD∗

L (q2) integrated over the available phase space.

• RA,B

RA,B(q2) =
dΓA/dq

2

dΓB/dq2
, (4.28)

dΓA
dq2

=
1

4
(I1c + 2I1s − 3I2c − 6I2s) ,

dΓB
dq2

=
1

2
(I1c + 2I1s + I2c + 2I2s) .

(4.29)

• A3 and A9

A3(q2) =
1

2π

I3

dΓ/dq2
, A9(q2) =

1

2π

I9

dΓ/dq2
. (4.30)

• A4 and A8
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A4(q2) = − 2

π

I4

dΓ/dq2
, A8(q2) =

2

π

I8

dΓ/dq2
. (4.31)

• A5 and A7

A5(q2) = −3

4

I5

dΓ/dq2
, A7(q2) = −3

4

I7

dΓ/dq2
. (4.32)

• A6s

A6s(q
2) = −27

8

I6s

dΓ/dq2
. (4.33)

The observables A7, A8 and A9 that are proportional to I7, I8 and I9, respectively are

zero in the SM. We have not shown plots for these observables in Fig. 4.6.

The numerical value for input parameters that are used in our calculation are given

in Tab. 4.1 to make plots in Secs. 4.2.2 and 4.3.4.

Table 4.1: The numerical value for input parameters that are used in our calculation.
Mb = 5.28 GeV MD = 1.86 GeV mD∗ = 2.01 GeV

ξ = 1 ∨cb = 39.8·10−3 GF = 1.166 · 10−5 GeV−2

mµ = 0.1057 GeV mτ = 1.7768 GeV Mb = 4.18
Mc = 1.27 GeV

4.3.4 Plots

Plots for Eq. 4.22 within the SM are shown in Figs. 4.4 and 4.5. The numerical value

for input parameters that are used in our calculation are given in Tab. 4.1 to make

these plots. One can also obtain plots wrt to w that is defined as,

w ≡ v · v′ = (M2
B +M2

D∗ − q2)

2MBMD∗
(4.34)
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Figure 4.4: Differential decay rate in the SM for B → D∗lνl with respect to function q2.
Left plot is for τ and right plot is for µ. The band shows the parametric error.

where v and v′ are defined in HQET Sec. 3.2 and these plots within the SM are shown

in Fig. 4.5. The plots of other q2-dependent observables defined above for different

Figure 4.5: Differential decay rate in the SM for B → D∗lνl with respect to Isgur-Wise
function w. Left plot is for τ and right plot is for µ. The band shows the parametric error.

benchmark values of NP couplings are shown in Fig. 4.6.

To make plots we took the benchmark values of gi from Ref. [49] that read as

follows,

gV = 0.20± i0.19, gS = 0.17± i0.16, gA = 0.69± i1.04,

gP = 0.58± i0.21, gT = 0.21± i0.35, (4.35)

where

gV,A = gVR ± gVL , gS,P = gSR
± gSL

, gT = gTL . (4.36)
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Figure 4.6: Observables for NP couplings gi and as functions of q2. The width of each curve shows the
theoretical uncertainties in hadronic form factors and quark masses. The benchmark gi are given in Eq.
4.35 are the best fit values. Black, cyan, purple, green and red curves are for the SM, gV , gA, gP and gT
values, respectively.
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The Wilson coefficients CX
AB in Eq. 4.1 are linked with coupling defined in Eq. 4.36 as

follows,

gVL = CV
LL, gVR = CV

RL, gSL
= CS

RL,

gSR
= CS

RL, gTL = CT
LL. (4.37)

Our plots match with the Fig. 2 of Ref. [49]. Our value of RD∗ in the SM that we have

evaluated reads as,

RD∗ = 0.257± 0.003. (4.38)

The average SM values of Ii are defined as

〈Ii〉` =
1

Γ(B → D∗`ν̄`)
×

(MB−mD∗ )2∫
m2

`

I`i (q
2) dq2 (4.39)

that for tau leptons in the final state, are given in Tab. 4.2.

` 〈I1c〉` 〈I1s〉` 〈I2c〉` 〈I2s〉` 〈I3〉` 〈I4〉` 〈I5〉` 〈I6c〉` 〈I6s〉` 〈I7〉` 〈I8〉` 〈I9〉`

τ 0.56(1) 0.346(4) -0.145(2) 0.054(1) -0.088(1) -0.138(1) 0.290(5) 0.36(2) -0.26(1) 0 0 0

Table 4.2: Standard Model values of the coefficients appearing in the angular distribution,
integrated over the full available phase space, as indicated in Eq. (4.39). The values are obtained
by using the HQET form factors.
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Chapter 5

Conclusions

We study B → Dτν̄τ and B → D∗τ ν̄τ flavour changing charged current processes.

These decay processes are interesting due to having persistent anomalies, RD and RD∗ ,

reported by the different experiment like LHCb, Belle and BABAR. These anomalies

hint physics beyond the standard model. For theoretical framework to study these

transitions, we adopt an effective field theory approach and write a low-energy effective

Hamiltonian for all possible dimension-six operators including new physics. We used

the corresponding Wilson coefficients obtained from a numerical fit to all available

experimental data to predict our observables. For numerical predictions we used HQET

form factors for both transitions. We study in detail the four fold angular distribution

for B → D∗τ ν̄ that provides interesting angular observables. Our findings match with

the known results [49] within and beyond the standard model in the model independent

way for observables including angular observables.
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