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Abstract

The electrostatic low-frequency hybrid wave generated by the classical electron beam

in electron-hole plasma is discussed here using the quantum hydrodynamic model

(QHD). Semiconductors provide a suitable source to investigate such waves because

of the mass asymmetry of electrons and holes which leads to charge separation and

oscillating electric field in the electron-hole plasma. This oscillating electric field

produces various electrostatic modes and drives instability in electron-hole plasma.

Many quantum effects are considered such as quantum Bohm potential, perturbed

Fermi pressure at T>0K, exchange-correlation effects. To study the behavior of

wave and instability growth rate, the derived dispersion relation is applied to GaAs

compound semiconductor. The dynamics of the plasma species like electrons, holes,

and beam electrons play an important role in the propagation and growth rate of

the wave. Increasing the electron to hole number density causes a blue shift in the

spectrum. The increase in electron beam speed will increase the instability whereas

an increase in beam temperature will decrease the instability due to a larger amount

of excited particles. Moreover if the angle between the LHW wavevector and the

x-axis or the hole cyclotron frequency increases, the instability increases due to the

stronger magnetic field.
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Chapter 1

An Introduction to Plasma

1.1 Plasma

Plasma is one of the four states of matter alongside solid, liquid, and gas. The tran-

sition from one phase to another takes place by adding heat. As the temperature

increases, the gas molecules collide with each other results in the detachment of a

few electrons from the parent molecules and gas becomes ionized but not all ionized

gases are plasma.

"Plasma by definition is a quasi-neutral gas of charged and neutral particles which

exhibits collective behavior mediated by the electromagnetic forces"[1].

Figure 1.1: States of Matter
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Here, the collective behavior represents a phenomenon specified by the whole ensem-

ble of charged particles in the system. The charged particles in plasma at a distance

beyond the Wigner-Seitz radius (the average particle separation distance n1/3 in

which n is the charged particle density), interact with many neighboring charged

particles through their coulomb fields. This process is called collective interaction.

The temperature and density are the most fundamental parameters of a plasma.

High temperatures are usually required to maintain ionization. This energy is stored

in different degrees of freedom of a plasma. But high temperature does not neces-

sarily guarantee a plasma state. By decreasing the temperature the particles of the

system become closer to each other. This reduces the degree of ionization as pos-

itive and negative charges combine to form atoms, and partially ionized plasma is

formed. As the temperature is more decreased, the degree of ionization is so small

that we are left with the system of the neutral gas.

In the low-temperature plasma, the electron temperatures are in the range of elec-

tron volts, which is sufficient for ionization, and the heavy species temperature is

often close to room temperature. The degree of plasma ionization is determined by

the Saha equation that relates the electron temperature to the ionization energy.

ni
nn
≈ 2.4× 1021T

2/3

ni
e
−Ui
kBT (1.1)

Here, ni and nn are respectively, the number density per m3 of ionized atoms and

neutral atoms, T is the gas temperature in kelvin, kB is Boltzmann’s constant and

Ui is the ionization energy of the gas[2].

Along with the temperature, density is also a fundamental parameter of plasma. An

incredible range of density can be seen in different systems as air and water differ

in density by only 103, while the density difference of water with white dwarf and
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a neutron star is 105 and 1015 respectively. Table(1) shows a tremendous range of

plasma densities and temperatures.

1.2 Plasma in Nature

1.2.1 Ionosphere

A small portion of the Earth’s neutral atmosphere is ionized by solar ultraviolet

(UV) radiation. These radiations ionize the oxygen molecules to create a positive

ion and a free electron. At altitudes above 80 km collisions are too rare resulting

in a low recombination rate of atmospheric particles and as a result, a permanent

ionized population is formed called the ionosphere. The ionosphere extends to high

altitudes 600 km and at low or mid-latitudes, it eventually merges into the plasma-

sphere. An atmospheric structure can be organized by temperature profile but the

layer structure of the ionosphere is organized by the number density of the plasma.

Initially, the temperature will decrease with altitude but at 10km altitude when the

stratosphere begins it starts increasing because of UV absorption by ozone. Then

at 50 km, it is maximum after that it will again decrease up to 90 km. Above a
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region where there is a slight separation between the magnetosphere and solar wind

known as magneto-pause, it increases drastically due to the high absorption of solar

UV and EUV radiations. These radiations have enough energy to ionize the neutral

atmosphere. Fig(1.2) shows the night and daytime profiles of solar radiation interac-

tion with the atmosphere. During the daytime, these solar radiations are absorbed

by the atmosphere and their intensity decreases in this process shown by the vertical

layer in the figure. Most plasma densities occur in F-layer at noontime, because of

high ionization rate of neutral gas results in high free electron concentration. Other

layers(E, D) are formed by absorbing solar radiations of a different spectrum[3].

Figure 1.2: Typical variation of neutral gas temperature and ionized gas density
with various atmospheric layers

1.2.2 Magnetosphere

A magnetosphere is an envelope of charged particles around a planet, where these

charged particles are affected by that planet’s magnetic field. The solar wind cannot
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penetrate this magnetic field and deflect around it forming a comet-shaped bubble.

The magnetosphere is stretched in a direction opposite to the sun, in such a way

that a tail is formed known as magnetotail. The stretching of the magnetosphere

is caused due to solar wind kinetic pressure, due to which the front side of the

magnetosphere is compressed while the backside is stretched. Magnetosphere plasma

mainly consists of electrons, protons, and a fraction of He+, O+ ions, and He++ ions

that come from the solar wind and ionization of particles in the ionosphere. The

magnetosphere plasma is not evenly distributed but consists of different regions,

each of which has a different temperature and densities. Magnetotail usually has

a high density in the tail forming a thick plasma sheet. Average temperature and

density in the sheet is ne ≈ 0.5cm−3 and T ≈ 5× 106K. The outer part of the tail

has an density of ne ≈ 10−2cm−3 and temperature of T ≈ 5× 105K[4].

Figure 1.3: Head on crash between solar wind and Earths magnetosphere
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1.3 Classical Plasma

In a classical plasma, the quantum mechanics have no significant role in the macro-

scopic dynamics of the plasma particles (except for the close inter-particle collisions

which in general must be described quantum mechanically), such plasma is called

classical plasma. In a classical plasma, the inter-particle distance is so large that the

wave nature of charged particles plays no significant role in the collective properties

of the plasma. Classical plasmas usually have a very high temperature and low

density. Certain basic dimensionless parameters are used to describe this plasma

regime. These parameters also help us in determining whether it is classical regime

or quantum regime, and whether the individual effects (colloidal plasma) are domi-

nants or collective effects (collision-less plasma) are dominants[5].

Thermal velocity

The thermal velocity of a plasma with finite temperature is defined as,

vT = (2KBT

m
)1/2. (1.2)

This the thermal velocity of particles due to their random thermal motion, here kB
is the Boltzmann’s constant, and m is the mass of particle.

Plasma frequency

The second parameter is plasma frequency which can be defined for a plasma system

with number density n of the plasma particles, mass m, the electric permittivity

because of Coulomb interaction, and electric charge e. With these parameters, we

can construct a quantity known as plasma frequency that has the dimensions of an
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inverse time and it is given as:

ωp = ( e
2n

mε0
)1/2 (1.3)

where, ”n” is the density of particles, εo is the permittivity of free space. The plasma

frequency is the characteristic oscillation frequency for electrons in a background of

static positive ions that provide charge neutrality.

Debye Length

By combining the above two quantities, we can define a length scale known as the

Debye length:

λD = vT
ωp

= (ε0KBT

ne2 )1/2. (1.4)

The Debye length describes an important phenomenon of electrostatic screening.

If a test charge is placed in the plasma, a cloud of oppositely charged species will

surround it. As a result, this test charge will be screened out and nearly become

hidden from other particles situated at larger distances in plasma.

Coupling parameter

The coupling parameter is the ratio of mean interaction energy and kinetic energy

of particles where mean interaction energy is given by,

Upot = e2n1/3

ε0
, (1.5)

and the kinetic energy is kBT . Then the coupling parameter ΓC can be written as:
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ΓC = Upot
K.E

= e2n1/3

ε0kBT
= 2.1× 10−4n

1/3

T
. (1.6)

we can also write,

ΓC = ( 1
nλ3

D

) 2
3 . (1.7)

From the above expression, it is clear that when the coupling parameter is small

ΓC 6 1, the plasma is dominated by thermal effects, and Coulomb interactions are

weak, which is known as the collision-less or weakly coupled plasma. On the con-

trary, when the coupling parameter is large ΓC ≥ 1, collisions become unavoidable

and the plasma is said to be colloidal or strongly coupled. We also note that a

classical plasma is collision-less at high temperatures and low densities[6].

Figure 1.4: Classification of plasma
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1.4 Quantum Plasma

Until the 1920s, plasma physics involves systems are highly dilute so that the QM

effects were ignored. Sometimes for the systems that are so dense, quantum me-

chanics become necessary such as, in semiconductor quantum wells, semiconductor

lasers, metallic systems, and nanoscale electronic devices. In such calculation, addi-

tional quantum mechanical results are plugged into completely classical frameworks.

In a plasma system, when the mean inter-particle distance becomes comparable to

the mean de-Broglie wavelength (λB = h
mvT

) of the lightest plasma particles and

there is a significant overlap of particle wave functions due to quantum uncertainty,

then this many-body problem is described by Fermi-Dirac statistics. In contrast

to that, the usual laboratory and space plasma obey Maxwell-Boltzmann statistics.

For classical regimes, the thermal de-Broglie wavelength that explains the spatial

extension of the wave function is so small compared to the inter-particle distance

that particles are considered as point-like. In this case, there is no wave functions

overlapping and quantum interference. So on this basis, it is reasonable to say that

quantum mechanical effects become important when the de Broglie wavelength be-

comes comparable or greater than Wigner-Seitz radius (the average inter-particle

distance) a = ( 3
4πn)− 1

3 [7].

λB ≥ ( 3
4πn) 1

3 =⇒ λB ≥ n−
1
3

Some important QM dimensionless parameters are given below.

Fermi velocity

In the QM regime, electrons are fermions that obey the Pauli exclusion principle

that states that the same spin fermions cannot be placed in the same QM state.

If our system has an N number of fermions in volume V, fermions with the same

spin should not be placed in the same quantum state. Only fermions with the
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opposite spin can be placed in the same quantum state. In this way, the fermions

fill higher energy levels. This highest energy level is called the Fermi level and the

corresponding energy is known as the Fermi energy EF , which is given as:

EF = h2k2
F

2m , (1.8)

where kF is length of Fermi sphere or Fermi wave vector,

kF = (3π2n0)1/3, n0 = N

V
(1.9)

Put this in equation (1.8) the Fermi energy will become,

EF = h2

2m(3π2n0)1/3. (1.10)

The Fermi velocity is given as,

vF = (2EF
3m )1/2. (1.11)

Fermi length

Now the ratio of plasma frequency and Fermi velocity gives us Thomas Fermi length

or electrostatic screening length analogous to the Debye length,

λF = vF
ωp

= (2ε0EF
3n0e2 )1/2. (1.12)

Notice that if the system is at zero thermodynamic temperature, then λD = 0 while

λF 6= 0. This is because at zero thermodynamic temperature in a classical system

the electron gas cloud around the test charge will have no radii but for quantum

electron gas Fermi sphere still exists.
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Coupling parameter

The quantum coupling parameter is the ratio of the interaction energy Uint to the

kinetic energy Ekin. The interaction energy or potential energy is the same as in

the classical regime, whereas the kinetic energy is now given as the Fermi energy

Ekin = EF . So, coupling parameter is given as:

ΓQ = Upot
K.E

= 2me2

(3π2)2/3ε0h2n
1/3
0

= 5.0× 1010n
−1/3
0 , (1.13)

or

ΓQ ≈ ( 1
nλ3

F

)2/3.

In a quantum collision-less regime, the quantum coupling parameter is small (Eint
is small) and collective effects dominate. From the above expression, it is clear

that a quantum plasma is more colloidal at higher densities, which is opposite to

a classical plasma. This can be due to the Pauli exclusion principle, according to

which two fermions cannot place in the same quantum state. At T = 0K in a

completely degenerate fermionic gas, all lower energy levels are filled. If we want

to add more particles, we must supply enough energy to fill the high-energy levels.

Therefore, increasing the number density of fermions will increase the Fermi energy

of the fermionic gas[1][8].

1.5 Degenerate Plasma

Degenerate plasma is a highly dense and comparatively low-temperature plasma.

These plasma are naturally found in the final stages of stars, such as white dwarfs

and neutron stars. In these stars, thermal pressure is not enough to balance the

gravitational pressure and to avoid gravitational collapse. Degenerate plasma parti-
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cles are electrons, protons, neutrons, or other fermions (quarks and leptons). These

plasma particles obey the Pauli exclusion principle. When the systems have low

thermal energy the fermions will reside in low energy quantum states so all energy

levels below the Fermi level are filled and above are empty. This is the full degen-

eracy state.

Figure 1.5: Ideal Fermi gas at T = 0K and T > 0K

With the increase in temperature, the fermions occupy higher energy states as shown

in fig (1.5), and plasma will become less degenerate. If plasma is cooled under in-

creasing pressure after a certain limit further compression of the plasma becomes

impossible. This limitation is due to the Pauli exclusion principle. In this highly

compressed form, no extra space is available for the particle, thus particle’s location

is well define[9].

A low-density gas has a few electrons per cubic centimeter, free energy levels are

available and electrons can easily reside there but in dense gas, this becomes im-

possible because the energy levels are filled. To move an electron to the available

energy levels, a large amount of energy is required. In a degenerate plasma, most of

the energy is absorbed by the nuclei moving very slowly except for a few electrons
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to reach the top.

Another dimensionless parameter is degeneracy parameter χ = TF
T
, that is Fermi

temperature (TF = EF
kB

, where EF is the energy of highest occupied energy level

and kB is the Boltzmann constant) to thermodynamic temperature ratio. Using the

de-Broglie wavelength λB = h
(mvT ) , one can find the degeneracy parameter in the

form of dimensionless parameter n0λ
3
B [7] as,

χ = TF
T

= 1
2(3π2n0λ

3
B)2/3. (1.14)

Therefore, if the mean inter-particle distance is comparable to the de Broglie wave-

length, the Fermi Dirac statistics becomes necessary. So limitations on degeneracy

parameter will identify whether plasma is degenerate or non-degenerate.

1)Non-Degenerate plasma:

χ = TF
T

<< 1 =⇒ TF << T

2) Degenerate plasma

χ = TF
T

>> 1 =⇒ TF >> T

Low temperature and highly dense regimes take place in metals, semiconductors,

nano-thin films at room temperature, and in astrophysical environments like in white

dwarfs and neutron stars, where T ≈ 107K and TF ≈ 109K so, the degenerate regime

is achieved as TF >> T =⇒ χ = TF
T
>> 1 also, densities are high 1025cm−3.
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1.6 Semiconductor Plasma

The atomic structure of a material is responsible for the electrical properties of a

material, including conduction. An atom consists of a valence shell and a core with

all the inner shells and the nucleus. In solids, the atoms are close enough that elec-

tronic orbitals tend to overlap. This intermixing leads to energy bands instead of a

single energy level. Depending on the gap between the conduction band (completely

or partially empty) and the valence band (completely or partially filled) materials

are classified into three main groups: conductors, semiconductors, and insulators.

Figure 1.6: Classification of materials

Semiconductors are the materials in which the forbidden energy gap is small as

shown in fig (1.6). They can conduct when the energy is supplied to charge carriers

to overcome this energy gap Eg. When energy is pumped into a semiconductor, the

electrons in the valance band get excited and jump to the conduction band leaving

behind a hole in the valence band. These electrons with some higher energy now

behave as if they are in a vacuum with different effective mass m∗. This process is

known as electron-hole pair formation that satisfies plasma conditions.

Electrons and hole concentration can be controlled by doping (adding impurities
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into the crystal structures. The number of charge carriers depends on doping. If

there is an excess of holes in a semiconductor material it is named p-type otherwise

with the excess of electrons, n-type. The dopants always rely on the atomic prop-

erties of both the dopant and the material to be doped.

Semiconductors are considered as one of the media which are compressed and low

cost so they are used to study solid-state plasma in the quantum regime. The semi-

conductor quantum systems involve the electrons and holes in nano-scale such as

(spintronics, nanotubes, Gunn oscillators, quantum wells, and quantum dots). The

dimension of these systems becomes comparable or larger than the electron/hole

thermal de-Broglie wavelengths. So, for sufficiently high electron/hole density and

low temperature, it becomes essential to incorporate the quantum mechanical effects

and study the dynamics of the electrons and holes under these effects. The quan-

tum mechanical effects such as Bohm effect due to collective transport, exchange and

correlation effects due to spin and Fermi pressures of degenerate quantum plasma

particles play a crucial role in the collective behavior of the charge carriers in semi-

conductor electronic devices at nano scale[10][11].

In the semiconductors both electron and hole have different effective mass because

of their different curvature in conduction and valance band.

Figure 1.7: Curvature of charge carriers
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This mass asymmetry creates charge separation and a restoring force will pull the

charge carriers back to their equilibrium position but because of their inertia they

will overshoot again a restoring force of opposite polarity will pull them backward.

This results in the oscillation of charge carriers and this oscillation create waves or

modes in plasma systems[12]. The investigation of these wave’s stability or instabil-

ity in electron-hole plasma has attracted considerable attention. The perturbation

in the semiconductor quantum plasma can be created by using different sources

such as electron beam pumping which initiates the instability. The electron beam

interaction with the material generates electrons and holes, which satisfy our plasma

conditions. The electron-hole oscillations excitation can be unstable and can grow

in time[10][13].

1.7 Properties of semiconductors

1.7.1 Effective Mass

In solid-state physics when a material is subjected to some external potential such

as (electric field, magnetic field, test charge, external pressure) the particles of that

material move under the influence of this applied potential and periodic lattice

potential of ions. Under the influence of such potential, the particles seem to have

a mass different from that of true mass/rest mass. This mass is called effective

mass[14]. As we know that free electron energy in a vacuum is given as:

E = h2k2

8π2m
. (1.15)

with m is the mass of electron. Now differentiate the above equation to get,

dE

dk
= h2k

4π2m
=⇒ d2E

dk2 = h2

4π2m
, (1.16)
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or we can write

m = h2

4π2 (d
2E

dk2 )−1. (1.17)

For the free electron model, the mass of electron remains constant so d2E
dk2 is also

constant. In this case, E versus k curve is parabolic as shown in fig (1.8a). But

when the particles are under the influence of an external or internal potentials E and

k curve is no longer parabolic. We experience different breakups in the parabolic

curve which are the origin of allowed and forbidden gaps in materials as shown in

fig (1.8b).

The mass given in the equation (1.18) is the effective mass which is represented by

m∗ and is equal to the inverse of the curvature of particle[15].

m∗ = h2

4π2 (d
2E

dk2 )−1 (1.18)

Figure 1.8: (a) E and k relation of free particle. (b) E and k relation of particle in
periodic potential.

An important property of effective mass is that it can become negative near the

Brillouin zone boundaries where first it reduce to zero and then become negative.

Negative effective mass means particle curvature is opposite to the periodic poten-
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tial. This also shows that particle curvature is no longer constant similar to mass

and both are the functions of k as shown in fig (1.8).

Figure 1.9: Inverse of the second derivative of energy.

From figure (1.9), it is clear that m∗ is positive for small values of k ( middle of Bril-

louin zone) and negative near the Brillouin zone boundaries at k ≈ ±π
a
. It can only

be equal to rest mass m0 when energies do not lie near Brillouin zone boundaries,

and the corresponding E/k curve is parabolic.

1.7.2 Electron Density (concentration) in Intrinsic and

Extrinsic Semiconductors

Intrinsic Semiconductors:

These semiconductors are also called pure semiconductors e.g Ga, As, etc. At low

values of temperatures, the valence electrons are attached to the atoms through

covalent bonds. But when the temperature starts increasing thermal energy (KT)

becomes comparable with the bond energy, some of the covalent bonds will start

breaking, and electron-hole pairs will be generated[15].
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ne = 2[2πm
∗
eKT

h2 ]3/2e
EF−Ec
KT (1.19)

nh = 2[2πm
∗
hKT

h2 ]3/2e
Ev−EF
KT (1.20)

where, ne and nh are the electron and hole concentration in intrinsic semiconductors.

Ec and Ev are the conduction and valance band energies of semiconductor.

Extrinsic Semiconductors:

Extrinsic semiconductors are also called impure semiconductors or doped semicon-

ductors. If the semiconductor is doped with an atom which has donor electron the

semiconductor is called an n-type semiconductor and if the doped atom accept an

electron then it is called a p-type semiconductor[15]. In n-type semiconductors, the

electron and hole concentrations are given below

ne = 1
2[(ND −NA) +

√
ND −NA)2 − 4n2

i , (1.21)

and

nh = n2
i

ne
, (1.22)

whereas in p-type semiconductors,

nh = 1
2[(ND −NA) +

√
ND −NA)2 − 4n2

i , (1.23)

and

ne = n2
i

nh
, (1.24)
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where, ND and NA are donor and accepter concentrations[16].

1.8 Exchange-Correlation Effects

All the information about a system lies in its electronic structure. The quantum

mechanical understanding of the electronic structure of a system requires dealing

with a Schrodinger equation for N-body problems related to N-body wave functions

given as:

Ĥψ(x1, x2, x3, .....xN) = Eψ(x1, x2, x3, .....xN) (1.25)

where,

Ĥ =
∑
l

P 2
l

2Ml

+ 1
2

∑
l 6=l′

qlq
′
l

| ~Rl − ~Rl′|

Ĥψ =
∑
l

P 2
l

2Ml

ψ + 1
2

∑
l 6=l′

qlq
′
l

| ~Rl − ~Rl′ |
ψ = Eψ (1.26)

In the above equation, the Hamiltonian operator contains all possible interactions.

The first sum represents the kinetic energies of all electrons and nuclei. The second

term represents the Coulomb attraction between the electrons and nuclei. Ml is the

mass of all electrons and nuclei and ql is the charge. From the computational point

of view, it is an impractical task to solve the above equation, so different approxima-

tions are used to deal with this difficulty. The first approximation was suggested by

Born and Oppenheimer in 1927 for the N-body problems. According to this approx-

imation, the first step was to remove nuclei from the quantum mechanical problems

and consider them fixed in space. Then solve the electronic problem without wor-

rying about the nuclei. This approximation is mostly used in quantum chemistry

for the computation of molecular wave functions of larger molecules. Unfortunately,

Born Oppenheimer approximation becomes invalid when it is difficult to disentangle
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the electrons and nuclei.

Further approximations to solve the above equation can be divided into two main

categories based on the computational methods.

(i) Hartree and Hartree-Fock Theory

This is a wave function-based method. As Coulomb potential of an electron and

a nucleus is responsible for all of the computational difficulty, so Hartree in 1928

suggested to replace this potential with an effective potential called electron-electron

potential Uee(r). Effective potential means that each electron interacts with an

average charge distribution due to all the other electrons. Such an effective potential

is given as:

Uee(~r) =
∫
dr
e2n(~r)
|~r − ~r′|

, (1.27)

where n(~r) = ∑
j |ψj(~r)|2 is the number density of electrons. The failure of the

Hartree method is that it did not include the Pauli principle. The Hartree Wave

function does not have the property to vanish when two same spin electrons occupy

the same quantum state[17].

Fock and Slater (1930) showed that the way to include the Pauli principle is to work

within the space of anti-symmetric wave functions. By assuming that the wave

function can be approximated by a single Slater determinant made up of one spin-

orbital per electron. The Hartree-Fock equation includes kinetic energy, Coulomb

potential, and exchange potential. Exchange potential exists for the same spin

electrons but vanishes for opposite spin electrons which are its limitation. As the

true energy of the system is the sum of Hartree- Fock and correlation energy, so HF

approximation failed to explain this correlation term.
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Etrue = EHartree−Fock + Ecorrelation

(ii) Density Functional Theory

DFT is a computational quantum mechanical method used to study the electronic

structure (ground state) of N- body systems. DFT is one of the most successful and

practical methods used in physics, chemistry, and material sciences. DFT gave the

exact value of many-body wave functions but it involves some approximations. The

foundation of DFT lies on two theorems of Hoenberg and Kohn (1964) and Kohn

and Sham (1965)[18][19].

In 1964, Hohengurg and Kohn gave two theorems based on observations that ground

electron number density contains the same information as wave-function of N elec-

trons :

(a) The first theorem says that, if one knows the ground state of electrons then he

can find an external potential from it. (b) The second theorem says that one can

find a universal function of energy E(n) in terms of density. Kohn and Sham (1965)

modified DFT into a more practical approach that can be used for solving larger

equations, also it involves exchange-correlation energy. Thomas Fermi theory is the

first approximation to find the universal function of energy E(n). Other approxima-

tions to find exchange-correlation energy from DFT are local density approximation

(LDA) and generalized gradient approximation (GGA)[20][7].

1.9 Dynamical Response of the Electron Gas

In some solids, namely metals and doped semiconductors, some electrons are free and

move throughout the material forming an electron gas and the ion core provides a

uniform positive background. This electronic gas show response to outside influences

like ( test charges, electron beams, applied electric and magnetic fields, or an applied

26



pressure). Their response depends on electron’s interactions with the ion core and

with each other. The interaction of an electron with an ion core can be modeled by

the idea of the effective mass and the interaction of electrons with each other can

be explained by the dielectric function.

1.9.1 Dielectric Function from the Drude Model

Drude’s model is a classical model used to describe the response of electronic gas

in metals and doped semiconductors. This electron gas is not interacting with the

positive ion background. The response of this electron gas to external potential, like

time-dependent electric field E = E0e
−iwt, is given by the dielectric constant, given

as:

εL(ω) = ε∞ −
ω2
pl

ω2 + iγDω
, (1.28)

where ωpl is the plasma frequency, ε∞ is the dielectric contribution from the positive

ion core and γD is the Drude model parameter[21].

1.9.2 Dielectric Function from the Lindhard Model

A quantum mechanical treatment for electron gas response to external potentials is

done by Lindhard in 1954. This treatment is based on Random-Phase Approxima-

tion(RPA) and first-order perturbation theory. This method is capable of explaining

screening at large and small wavelength limits[21]. The Lindhard dielectric function

for an electron gas is given as:

εL(q, ω) = ε∞ − Vq
∑
k

f(k + q)− f(q)
E(k + q)− E(k)− h(ω + iδ) , (1.29)

where Vq = 4πe2

q
is the Coulomb potential. f(k) is the Fermi-Dirac distribution
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function, E(k) is the energy of an electron, δ is a positive infinitesimal constant,

and the subscript L refers to Lindhard. This expression can be modified for different

limited cases such as:

1) zero and large temperature limit 2) small and large wave vector limit 3) non-

equilibrium distribution functions.

Case(1): For long wavelength or zero wave-vector limit q = 0 expression (1.29) has

the same form as Drude dielectric constant[22]i.e;

εL(ω) = ε∞ −
ω2
pl

(ω + iγL)2 , (1.30)

Case(2): For static potential or when the potential is varying slowly (ω + iδ ≈ 0)

and ε∞ = 1 equation (1.29) modified to Thomas Fermi screening dielectric constant,

given as:

ε(q) = 1 + q2
F

q2 (1.31)

where qF =
√

4πe2

ε
∂n
∂µ

is the inverse Thomas Fermi length. For temperature T = 0,

n = 1
3π2 (2m

h2 EF )3/2 and µ = EF , the Fermi wave vector will become,

qF =
√

6πe2n

εEF
. (1.32)

Thomas Fermi theory is valid only when the wave vector of wave packet must have

the same length as the length of the first Brillouin zone i.e q = qF . On the other

hand, Lindhard theory is valid for all values of wave vector (q >> qF ) even outside

of 1st Brillouin zone. The value of Thomas Fermi length for metals and semicon-

ductors are the order of one Angstrom that is the same as the typical inter-particle

distance[23] [24][25].
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1.10 Instabilities in Semiconductors

Semiconductors have various applications that require an understanding of the opti-

cal and electrical capabilities of semiconductors. Various researches have done work

to find the safe and stable energy handing capabilities of semiconductors. This

involves studying semiconductors under high energies to find what triggers the in-

stabilities of charge carriers in semiconductors. The main outcome of these studies

is that the main reason for semiconductor components breakdown is the formation

of solid-state plasma because of the excitation of charge carriers to the conduction

band. Solid-state plasma has a strong dependence on the bandgap of that spe-

cific semiconductor. Additional experiments using laser also prove the formation

of plasma. Lasers produce an avalanche of electron gas that is highly absorptive,

which leads to thermal failure in semiconductors. This process of heating is called

Joule heating which increases the number of charge carriers and their kinetic en-

ergy. The concept of instabilities and equilibrium in solid-state plasma is mostly

related to external potentials or confinement similar to interstellar plasma. These

instabilities lead to a huge charge carrier population, change in current flow, and

unstable dynamics of charge carriers. The solid-state plasma remains stable as long

as there is constant free energy. When this free energy available for the carriers

is increased using external injection such as electron beam, waves become excited

leading to instabilities[26].

Instabilities are classified into four major categories depending on the driving force

that initiate the instability.

Streaming Instabilities

When a current or an electron beam is driven through a plasma, various plasma

species have different drift velocities. As a result, plasma waves can grow which

can interact with the charge carriers and steal energy from the carriers resulting in
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Landau damping.

Kinematic Instabilities

Kinematic instabilities are drawn by temperature anisotropies or when the velocity

distribution of plasma species is not Maxwellian. These types of instabilities are

naturally seen in solar wind plasma[27].

Rayleigh-Taylor Instabilities

This type of instability is formed in plasma where the diffusive forces dominate.

The most common example of these instabilities in solid-state plasma is the Gann

effect, which is the large fluctuation of current in semiconductors by applying high

voltage. This effect is also used in forming Gann diodes[28].

Universal Instabilities

The different ways in which a plasma is confined can lead to these instabilities.

These instabilities also depend on the geometries of the material in which plasma is

confined. If the solid-state plasma that is physically confined in a material expands

rapidly, an increase in the free energy will leads to these instabilities[29].

Extraordinary safety measures must be taken to control these instabilities in a semi-

conductor. These often include a liquid nitrogen bath, application of quasi-steady

state electric field, and magnetic field.
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Chapter 2

Background

2.1 Maxwell’s Equations

Maxwell’s equations are originally a classical phenomenon but they explain the quan-

tum mechanical phenomenon of photons in a semi-classical limit when the number of

photons is large. This semi-classical phenomenon can be explained for semiconduc-

tors that undergo an interaction with an electron beam or light. The only drawback

of this semi-classical phenomenon is that it fails to explain the spontaneous emission

of light (lasers). There are two most common types of Maxwell’s equations. (1) The

first types are used to describe the interaction of electromagnetic radiation with

matter. (2) The second type is used to describe the long-range interactions between

charged particles in the form of conductivity. The second type of Maxwell’s equa-

tions is of great importance in condensed matter physics, solid-state physics, and

solid-state plasma because they explain the interaction of electromagnetic radiations

with the matter as well as the interaction of electrons and phonons[30].

Maxwell’s Equations in Vacuum

∇.E = 4πρ (2.1)
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∇.B = 0 (2.2)

∇× E = −1
c

∂B

∂t
(2.3)

∇×B = 1
c

∂E

∂t
+ 4π

c
J (2.4)

These are the Maxwell’s equations in Gaussian units(cgs). Which are used for the-

oretical simplifications. These equations are also referred to as a microscopic set of

equations in which the response of a material to the electromagnetic field is explicit.

In the above equations, ρ and J represents the electric charge density and electric

current density respectively, given as:

ρ = e(ni − ne), (2.5)

J = e(nivi − neve). (2.6)

Here ni and ne are ion and electron number densities respectively. Equation (2.1)

is the Gauss’s Law that shows a relation between the static electric field and the

electric charge density that is producing it. Equation (2.2) states that no magnetic

mono-poles exists. Third Maxwell’s equation is the Faraday’s law which shows that

a time-varying magnetic field is creating an electric field. Fourth Maxwell’s equation

is the Ampere’s Law which states that the magnetic field can be produced in two

ways i.e; by an electric current and by the time-varying electric field.

Maxwell’s Equations In Medium

These Maxwell’s equations are also called macroscopic Maxwell’s equation in which

the response of the system is incorporated in the microscopic equations. The most

simple way to do that can be done in three steps.
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Step 1

Step one is to separate the inside and outside charges (nint, next) and currents

(Jint, Jext) in the Maxwell’s equations given above. Internal charges show a response

to external charges.

Step 2

The equation of continuity is given as:

∂ρint
∂t

+∇.Jint = 0. (2.7)

Taking integral on both side of equation (2.7)

ρint = −∇.
∫ t

0
dt′jint(t′), (2.8)

or we can write,

ρint = −∇.P, (2.9)

where P is polarization (the electric dipole moment per-unit volume) given as:

P =
∫ t

0
dt′jint(t′). (2.10)

Step 3

Now as D is the dielectric displacement given as:

D = E + 4πP. (2.11)
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This shows the system’s response to external electric field in the form of susceptibility

Pj = ∑
j χjEj. Equation (2.11) will become,

D = E + 4πχE =⇒ D = εE (2.12)

ε = 1 + 4πχ (2.13)

Using equation (2.9) and (2.11) Maxwell’s equations will become,

∇.D = 4πρext, (2.14)

∇.B = 0, (2.15)

∇× E = −1
c

∂B

∂t
, (2.16)

∇×B = 1
c

∂D

∂t
+ 4π

c
Jext. (2.17)

The above equations represent Maxwell’s equations in a medium, where ρext and Jext
represents the external charge density and external current density respectively[15][31].

Now take the cross product of the Faraday’s law,

∇× (∇× E) = −1
c

∂

∂t
(∇×B), (2.18)

Combining (2.17) and (2.18) we have,

∇× (∇× E) = − 1
c2
∂2D

∂t2
, (2.19)

use the value of the dielectric displacement from equation (2.12), to get

∇(∇.E)−∇2E = − 1
c2
∂2

∂t2
(εE). (2.20)
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Now fourier transform this equation w.r.t space and time,

ik(ik.E)− (ik)2E = − 1
c2 (−iω)2ε(k, ω)E, (2.21)

k2E − k(k.E) = ω2

c2 ε(k, ω)E, (2.22)

where, ε(k, ω) is the dielectric tensor. It contains all the information about the

linear properties of the system.

2.2 Waves in Plasma

Waves are the set of particles and fields that propagate in a periodic(repeating)

manner. The important terms related to the waves in a plasma are given below.

Parallel and Perpendicular Propagating Waves

The propagation direction of wave vector k related to the unperturbed magnetic

field classifies whether a wave is parallel or perpendicular propagating.

(1) k ‖ B0 condition for the parallel propagating wave which means the wave is

traveling along the magnetic field.

(2) k ⊥ B0 condition for perpendicular propagating wave which means the wave is

traveling across the magnetic field.

Transverse and Longitudinal Waves

The direction of wave vector w.r.t oscillating electric field decide whether a wave is

longitudinal or transverse.

(1) When k ‖ E it is a longitudinal wave.

(2) When k ⊥ E it is a transverse wave.

Electromagnetic waves are mostly transverse and electrostatic waves are longitudi-

nal. The further main classification of waves in plasma is based on an oscillating
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magnetic field.

2.2.1 Electromagnetic Waves

Electromagnetic waves are transverse waves(k ‖ E) produced in a plasma but can

also be partially longitudinal. In electromagnetic case the time varying magnetic

field is non-zero ∂B
∂t
6= 0 also k.E will vanish as k ‖ E .

So, Maxwell’s equations in the electromagnetic case will reduce to the form

∇.E = 0, (2.23)

∇.B = 0, (2.24)

∇× E = −1
c

∂B

∂t
, (2.25)

and

∇×B = 1
c

∂E

∂t
+ 4π

c
J. (2.26)

For electromagnetic waves, equation (2.22) will also transform .

k2E = ω2

c2 ε(k, ω)E. (2.27)

2.2.2 Electrostatic Waves

Electrostatic waves are longitudinal waves produced in plasma. They are produced

due to perturbation either because of disturbance of internal electric neutrality or

because of the externally applied field. These perturbations accelerate charged par-

ticles which result in plasma oscillations. These plasma oscillations can be produced

by a local electron beam or a grid launcher excitation. Waves can further be di-

vided into two modes based on oscillating species. (1) Electron modes (2) Ion modes.
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Electron mode involves only electron dynamics due to the smaller mass of electrons

whereas ions are assumed to be infinitely massive and static. An ion mode involves

the dynamics of both species where ions are massive, and electrons are assumed to

be massless. In electrostatic case, the time-varying magnetic field is zero i.e; ∂B
∂t

= 0.

So, the Faraday’ law becomes,

∇× E = −1
c

∂B

∂t
,

(∇× E)L = 0.

which means that the electric field associated with the electrostatic mode is curl free

so it can be represented as a gradient of some scalar potential,

E = −∇φ,

As in the electrostatic case, waves are longitudinal so k ‖ E equation (2.22) will

become

ω2

c2 ε(k, ω)E = 0 (2.28)

ω2

c2 E 6= 0 =⇒ ε(k, ω) = 0 (2.29)

2.3 Electrostatic Modes in Semiconductor Plasma

2.3.1 Hole Acoustic Waves (HAWs)

The low-frequency acoustic waves in plasma are the most fundamental electrostatic

waves in which the wave vector is nearly perpendicular to the unperturbed magnetic

field. Because of their simple mechanism, they have many applications in space and

lab plasma including semiconductors. Primarily these waves develop by a small
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charge separation that produces an electric field. These waves are also called Ion

acoustic waves (IAWs) because the ion dynamics play an important role in wave

propagation. In semiconductors, these waves are produced even without collisions

because of the mass difference of electrons and holes and referred to as hole acoustic

waves (HAWs). The final dispersion relation of hole acoustic waves excited by an

electron beam in quantum semiconductor plasma is given as:

ω2 = v2
s,hk

2 +
C2
s,hk

2[v2
0 − v2

b ]k2

(1 + λ2
s,Dak

2)[v2
0 − v2

b ]k2 − ω2
pbλ

2
s,Dak

2 , (2.30)

where, C2
s,h = ω2

ph

ω2
pe
v2
s,e is the effective sound speed with degenerate and quantum

effects. λ2
s,Da = v2

s,e

ω2
pe

is the modified form of Debye length[32]. By considering the

electron beam oscillation frequency ωpb = 0. The above dispersion relation will

modify to standard dispersion relation in quantum semiconductor plasma.

ω2 = v2
s,hk

2 +
C2
s,hk

2

(1 + λ2
s,Dak

2) . (2.31)

2.3.2 Upper Hybrid Waves (UHWs)

Upper hybrid waves are the electron electrostatic waves that propagate perpendicu-

lar to an unperturbed magnetic field. In this case, it is assumed that holes are fixed

and form a uniform background. As the electron moves across the magnetic field

two restoring forces act on these electrons. (1) Electric force (2) Lorentz force. The

dispersion relation is given as[33]:

ω2 = ω2
ce + v′′2Fek

2
x +

ω2
pe[v2

0 − v2
b ]k2

x

[v2
0 − v2

b ]k2 − ω2
pb

, (2.32)

In this equation, v′′2Fe is an effective velocity that contains all the thermal, quantum,

and correlation effective. When the beam dynamics are not involved and all thermal,
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quantum, and exchange-correlation effects are neglected, then the equation (2.32)

will be modified to

ω2 = ω2
ce + ω2

pe. (2.33)

which is the classical non thermal upper hybrid wave dispersion relation.

2.3.3 Lower Hybrid Waves (LHWs)

Waves around the Lower hybrid wave (LHW) mode recently gain attention in differ-

ent laboratory and space plasma environments such as in Tokamaks, fusion devices,

and Earth’s magnetopause because of their resonant interaction with both electrons

and ions[34]. These waves have frequencies between the ion and electron gyro-

frequencies ωch << ωLH << ωce and with wavelengths between the electron and

ion gyro radii. This allows LH waves to resonate with both species and transfer

energy. This results in plasma heating or particle acceleration. The electrons with

smaller Larmor radius are magnetized and can move only parallel to B, while the

ions with larger Larmor radius are un-magnetized and free to move perpendicular

to B. These waves mediate energy in between parallel and perpendicular motion of

electrons and ions respectively[35][36].

Lower hybrid waves are nearly electrostatic with k vector nearly perpendicular to

the magnetic field ~B as shown in figure (2.1). In cold plasma, LH wave occurs at

a frequency that is dependent on the angle between propagation wave vector ~k and

applied magnetic field ~B.

ω2 = ω2
LH(1 + mi

me

cos2θ), (2.34)

where,mi and me are masses of ions and electrons respectively and LH frequency is

given as:
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ωLH = 1√
(1/ω2

pi + 1/ωceωci)
. (2.35)

Figure 2.1: Lower hybrid electrostatic wave propagating at nearly perpendicular to
unperturbed magnetic field B0.

In cold plasma when the wave is propagating at exact perpendicular to the unper-

turbed magnetic field (k ⊥ B) it can only resonate with the ions. Due to small

Larmor radius (rL = mev⊥
eB

) electrons cannot move along the x-direction and hardly

oppose an electric field that moves them back and forth in the y-direction. However,

if the electric field is not exactly perpendicular to B then the response time of ions

will become less than or comparable to the response time of electrons, so now wave

can resonate with both electrons and ions. For the LH resonance, the response time

of ions should be smaller than or comparable to the response time of electrons. i.e.
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when the following is satisfied.

mi

me

cos2θ . 1. (2.36)

In warm plasma or when the electromagnetic effects are involved in plasma the LH

resonance still satisfy the mi
me
cos2θ . 1 condition.

Hence, the parallel and perpendicular components of propagation wave vector k

w.r.t B have different magnitude,

k‖/k⊥ .
me

mi

<< 1

k‖ << k⊥

The resonant condition of a lower hybrid wave for the un-magnetized ions is ω = kvi

and for the magnetized electrons is ω = k‖ve‖. Thus LH waves interchange energy

between ions and electrons as it moves perpendicular and parallel to the magnetic

field either accelerate particles or heating them[37][38].

In a cold plasma system, the parallel distribution of electrons and perpendicular

distribution of ions can generate LH waves. These waves then redistributing the

energy among plasma species. Such redistribution can occur in the heliosphere,

Earth’s magnetotail, and solar corona. The wave damping and particle diffusion

rates help us determine the redistribution of the non-thermal energy. To find these

the phase ω/k and group speeds dω
dk
, of the LH waves should be calculated. The

dispersion relations for LH waves can be calculated either including electromagnetic

(EM) effects by taking cold plasma regime or taking thermal plasma regime and

electrostatic waves.
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2.4 Theoretical Descriptions to Study Behavior

of Plasma

Theoretically, different plasma models are used to study the behavior of plasma.

This theoretical description involves solving simple Newton equations =⇒ fluid

equations =⇒ kinetic equations. Choosing one or other theoretical methods de-

pends on the problem at hand.

2.4.1 Single Particle Approach

As the most fundamental way to study the behavior of plasma is to study the

behavior and trajectory of each particle under the influence of electromagnetic fields.

This method is difficult from both theoretical and computational point of view. So, a

simple way to overcome this difficulty is to study single/individual charged particles

under the influence of electromagnetic fields.

The motion of these charged particles is given by Newton’s equation of motion.

F = ma, (2.37)

where F = q(E + v × B) is the Lorentz force, and a = dv
dt

is the acceleration. So

above equation will become,

m
dv

dt
= q(E + v ×B). (2.38)

The single-particle approach is mostly used to describe the gyration motion of par-

ticles, magnetic mirror effect, and adiabatic invariant of this cyclotron motion, etc.

The single-particle approach is valid only when the charged particle density is low.

This theoretical picture fails to explain the true plasma picture as plasma consists
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of a large number of particles.

2.4.2 The Kinetic Theory

The kinetic theory describes plasma behavior on a microscopic level. In a kinetic

approach, the statistical description of plasma particles is given by a six-dimensional

distribution function f(v, r, t) that contains all the information about plasma as a

whole. This distribution function is different from a fluid picture where it only

depends on (r and t).

Classical Kinetic Theory

The equation used in classical kinetic theory for this distribution function is the

Vlasov equation given as:

∂f

∂t
+ v.

∂f

∂r
− q

m

∂φ

∂x
.
∂f

∂v
= 0. (2.39)

This equation is latter combines with the Maxwell’s equations to find electric and

magnetic fields and also with the Poisson equation to find electrostatic potential[39].

Quantum Kinetic Theory

The quantum mechanical kinetic description in phase space is given by Wigner func-

tion f(r, v, t). For a quantum state, the Wigner function is given as:

f(r, v, t) = m

2πh

∫
exp(imvs

h
)ψ∗(x+ s

2 , t)ψ(x− s

2 , t)ds (2.40)

By using the Wigner function, we can find the macroscopic quantities like the num-

ber and current densities. This Wigner function obeys the Wigner equation given as:
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∂f

∂t
+ v.

∂f

∂x
− q

m

∂φ

∂x
.
∂f

∂v
= qh2

24m3
∂3φ

∂x3 .
∂3f

∂v3 . (2.41)

From this equation, we can simply obtain the Vlasov equation by approximating

h→ 0. The Wigner equation that describes the time evolution of the Wigner func-

tion can be coupled with the Poisson’s equation to give,

∂2φ

∂x2 = e

ε0
(
∫
fdv − n0). (2.42)

These Wigner-Poisson equations are used to describe the self-consistent collective

electrostatic and electromagnetic field. This model has certain drawbacks. (a) This

model is for collision-less and non-relativistic plasma. (b) Wigner - Poisson equation

requires certain boundary conditions. In the case of bulk plasma systems (when size

of the system is above 100nm) we can apply periodic boundary conditions but for

nano-structures (1-100nm size). The size of the system is so small that it is difficult

to choose suitable boundary conditions. (c) The Wigner function is non-localized

and needs to be specified over whole space[6][5].

2.4.3 The Fluid Theory

The fluid theory describes the behavior of plasma on a macroscopic level. In the

fluid model, the identity of individual particles is neglected and the dynamics of fluid

elements are considered. The fluid theory is a reduced form of kinetic theory. The

fluid theory is a localized description. One can find the macroscopic properties of the

plasma system by taking the moments of Vlasov and Wigner equations. All of these

moments satisfy fluid equations that do not involve any information about velocity

space. In a classical fluid picture, the velocity distribution of all charged particles

is considered to be Maxwellian everywhere and can be given by temperature T [8].
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Classical multi-stream Model

According to Dawson, the classical analog of the Wigner distribution function can

be written as:

f(x, v, t) =
N∑
α=1

Pαnα(x, t)δ(v − uα(x, t)) (2.43)

This is a distribution function for N- number of streams and it satisfy the Vlasov

equation. Each fluid is characterized by their number density nα, probability Pα

and a velocity uα, whereas δ represent the Dirac delta function. The velocity and

number density given in equation (2.43) satisfy two-fluid equations.

∂nα
∂t

+ ∂

∂x
(nαuα) = 0 (2.44)

∂uα
∂t

+ uα
∂uα
∂x

= e

m

∂φ

∂x
(2.45)

The main failure of the model is that when the velocity given in equation (2.43)

is evolved in time, it has multiple values. This can cause a problem as when we

calculate the density using the continuity equation it has infinite values at certain

positions.

Quantum Fluid Models

Quantum mechanically the collective dynamic of N-number of charged particles can

be explained by using Schrodinger equation for N- charged particles with corre-

sponding wave function ψ(x1, x2, ..., xN , t) , but solving this problem is a difficult
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task so, it is necessary to neglect certain effects by using zeroth-order approximation.

In this approximation, higher-order correlation is neglected and the corresponding

many body wave function split in product form[8].

ψ(x1, x2, ..., xN , t) = ψ1(x1, t), ψ2(x2, t), ......, ψN(xN , t)

This approximation also makes it clear that plasma is a collection of charged particles

that interact through their collective field. There are two quantum fluid models.

(i) The quantum analog of the multistream model (ii)The quantum hydrodynamic

model. These models are based on Schrodinger’s equation.

Schrodinger-Poisson Equation or Quantum Multistream Model

Schrodinger-Poisson equation is a system of an equation which is based on N-charged

particle wave functions ψα(x, t).

ih
∂ψα
∂t

= − h2

2m
∂2ψα
∂x2 − eφψα, α = 1, 2, ......., N (2.46)

∂2φ

∂x2 = e

ε0
(
N∑
α=1

Pα|ψα|2 − n0) (2.47)

In these equations, φ is the electrostatic potential. These equations do not involve

spin and relativistic effects. For analytical, study we must introduce a wave function

with Aα amplitude and Sα phase given as:

ψα = Aαe
iSα
h . (2.48)

Now the number density nα and velocity uα of α streams can be given as,

nα = |ψα|2 = A2
α, (2.49)
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uα = 1
m

∂Sα
∂x

. (2.50)

Putting equation (2.48),(2.49) and (2.50) in (2.46) and (2.47) one can obtain the

quantum multi-stream set of equations.

∂nα
∂t

+ ∂

∂x
(nαuα) = 0 (2.51)

∂uα
∂t

+ uα
∂uα
∂x

= e

m

∂φ

∂x
+ h2

2m
∂

∂x
(
∂2(√nα)
∂x2√
nα

) (2.52)

From this equation, it is clear that if we put the limit h → 0 we are left with a

classical multistream model. The advantage of the quantum multistream model

is that it does not give infinite values of density. The wave will disperse due to

quantum Bohm potential result into finite values of density[1][5][8].

2.5 Pauli Blocking

The concept of the Pauli exclusion principle is one of the most important and fun-

damental concepts in Quantum mechanics. It has a crucial rule in many branches of

physics and chemistry including high-density plasma. The stability of high-density

systems such as white dwarfs, neutron stars, is because of Pauli blocking. As we

know that the coupling parameter of ordinary metals and semiconductors is greater

than one so the collision of charged particles cannot be neglected. The quantum

collisional regime is difficult to deal with since no collisional fluid model exists to

deal with it except for the kinetic controversial Wigner (+ coll) model. Fortunately,

the Pauli blocking effect helps us to reduce the collision rate drastically. If the sys-

tem is at T=0K all the energy states are filled and the collision rate is less. Even

if the temperature is slightly above 0K the only electrons in the small KBT region
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will undergo collisions as shown in figure (2.2).

Figure 2.2: Fermi-Dirac distribution function when T
TF

< 1

For these slightly perturbed electrons the collision rate is given as:

vee ∝
KBT

h
, (2.53)

which is the inverse of collision time τee. It can also be understood in the form of

the uncertainty principle.

∆E∆t ≈ h (2.54)

The average collision rate can be calculated by multiplying equation (2.53) with the

thickness of the region around the Fermi surface that is proportional to T
TF

to get,

vee ≈
KBT

2

hTF
. (2.55)

Above expression can be written in the form of coupling parameter as:

vee
ωpe
≈ EF
hωpe

( T
TF

)2 ≈ 1
g

1/2
Q

( T
TF

)2. (2.56)
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So when gQ > 1 then vee < ωpe also T < TF . As in the case of GaAs, for the

electron temperature at T = 2K, Fermi temperature TF = 83.3K the corresponding

coupling parameter is greater than one. The collisional time scale for this case will

be

τee = 1.6× 10−10s.

This electron-electron collision time is greater than the typical plasma collision-less

time scale τp = 2π
ωpe

= 1.33× 10−13s. So it is evident that for the time scale smaller

than τee we can neglect collisions. This allows us to use collision-less models for this

time scale. This effect will only work if the system is at absolute thermodynamic

equilibrium or a slightly perturbed system. Because when the system is way beyond

thermodynamic equilibrium we can not neglect collisions like in laser-induced plasma

systems in semiconductors and metals the e-e collisions become unavoidable[40][41].
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Chapter 3

Methodology

In this chapter, the first step is to choose an appropriate model for our problem.

Many different types of models can be used for an N-body problem. Since we are

interested in finding the response of quantum electron and hole gas to beam-induced

perturbation in localized distribution. A suitable method for this case would be the

Quantum hydrodynamic model (QHM).

3.1 Quantum Hydrodynamic Model (QHM)

Hydrodynamic models were formed in condensed-matter physics. In condensed-

matter physics, these models are usually called time-dependent Thomas-Fermi mod-

els that are mainly used for the systems like electron gas in metal and semiconduc-

tors. Recently, these hydrodynamic models are used in gaseous quantum plasma

such as the dense plasma system in cosmological objects like white dwarfs, neutron

stars, and inertial confinement fusion.

The Quantum hydrodynamic model(QHD) can be developed by taking moments of

the Wigner six-dimensional distribution function f(x, v, t). The moment of order s

is given below:
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Ms(x, t) =
∫ ∞
−∞

f(x, v, t)vsdv. (3.1)

Low-order moments gave us much needed physical quantities like the number den-

sity, velocity, and pressure. Each of these quantities satisfies certain fluid equations.

The zeroth moment is the particle number density and it obeys the corresponding

continuity equation. The first moment is the velocity and the corresponding fluid

equation is the momentum equation (Euler equation). The second moment defines

the pressure, and so on. Thus the equation for the nth-order moment requires the

knowledge of the (i+1) moment. This process generates an infinite number of fluid

equations, but in the electrostatic case, moments up to 2nd order are enough. To

close the system to a particular order a closure equation is required. This closure

equation is the thermodynamic equation of state, like in the poly-tropic relation

P ∝ nγ the pressure and density relation[8].

The QHD model consists of the first three moments of the Wigner function f(x, v, t),

such as the number density given as:

n(x, t) =
N∑
α=1

pαnα, (3.2)

and the velocity is given as:

u(x, t) =
N∑
α=1

pα
nα
n
uα. (3.3)

These moments satisfy two set of equations, continuity equation and the Euler

equation,

∂n

∂t
+ ∂(nu)

∂x
= 0, (3.4)
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∂u

∂t
+ u

∂u

∂x
= e

m

∂φ

∂x
− 1
mn

∂P

∂x
. (3.5)

These equations seem to be similar to the classical system of equations obtained by

taking the moments of the Vlasov equation. But in this case, the quantum nature

is hidden in pressure terms. The pressure given in the above equation is the sum of

classical and quantum mechanical pressure.

P = P cl + PQ (3.6)

So, equation (3.5) can be written as:

∂u

∂t
+ u

∂u

∂x
= e

m

∂φ

∂x
− 1
mn

∂P cl

∂x
− 1
mn

∂PQ

∂x
(3.7)

These two pressures are given as:

P cl = mn(
∑N
α=1 pαnαu

2
α

n
−

∑N
α=1 pαnαuα

n
) =⇒ P cl = mn(< v2

α > − < vα >
2)

(3.8)

PQ = h2

2m
∂

∂x

N∑
α=1

pαnα(∂x
√
nα√
nα

) (3.9)

Two assumptions are used on P cl and PQ to close the system.

(1) According to the first assumption, the amplitudes of all wavefunctions of plasma

particles are the same. Also the spatial distribution of density nα = |ψα|2 will

be equal to density n of all plasma particles. After applying this assumption the

quantum pressure will become,

PQ = h2n

2m (∂x
√
n√
n

). (3.10)
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(2) The second assumption involves considering an equation of state. This equation

relates the electron density n to the classical pressure in the Euler equation,

P = P0(n
n0

)γ. (3.11)

That is a poly-tropic equation with exponent γ = 3 for 1D

P = mv2
F

3n2
0
n3. (3.12)

where P0 = 2
3n0EF is the pressure at zero T .

The final form of QHD equation will be given as:

∂n

∂t
+ ∂(nu)

∂x
= 0 (3.13)

∂u

∂t
+ u

∂u

∂x
= e

m

∂φ

∂x
+ h2

2m2
∂

∂x
(∂

2
x

√
n√
n

)− 1
mn

∂P

∂x
(3.14)

where m and e are the mass of electron and magnitude of the charge respectively

[19]. The QHD model is derived from the Wigner-Poisson equations. The difference

between the quantum multi-stream model and the QHD model is that in the Quan-

tum hydrodynamic model the system of N stream equations is modified to only two

sets of equations. This model still has certain drawbacks which are given below :

(a) Quantum term are considered up to 2nd order in the Planck’s constant.

(b) This model can be used for the systems with wavelengths larger than the

Thomas-Fermi screening length.

The latter limitation is similar to the classical fluid models, which are suitable for

wavelength larger than the Debye length.[42].
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3.1.1 Bohm Potential

The term in equation (3.14) that is proportional to h2 is a quantum mechanical

correction to the classical fluid model referred to as Bohm potential. This potential

is the main concept of deBroglie- Bohm’s description of quantum mechanics. This

is referred to as potential instead of quantum pressure because physically it explains

the concepts of quantum tunneling and quantum uncertainty (wave packet spread-

ing), so from a thermodynamics point of view, it is not pressure[1][43]. The Bohm

potential can be described in the form of Fermi pressure of nano-metric objects given

as

VBohm = h2

2m(∂
2
x

√
n√
n

) (3.15)

From Hamilton-Jacobi equation we can find quantum Bohm term in the form of

wave length[44].

VBohm ≈
h2

mλ2 (3.16)

Also we know that the Fermi pressure at T = 0K is given as:

P ≈ nEF =⇒ P

EF
≈ n (3.17)

Now assume that the length scale given in equation (3.16) is approximately equal

to Thomas-Fermi length λ ≈ λF . Put value of λF = vF
ωp

from equation (1.12)in

Equation (3.16) we get,

VBohm ≈
h2

mλ2
F

≈ ( hωp
mvF

)2 (3.18)

Also,
VBohm
EF

≈ (hωp
EF

)2 (3.19)

Comparing equation (3.17) and (3.19) shows that Bohm potential has same impact

as Fermi pressure[19].
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3.1.2 Fermi Pressure or Semi-Classical Pressure

The semi-classical pressure given in equation (3.14) is the thermodynamic Fermi

pressure. The concept of Fermi degenerate pressure can be understood in the form

of wave particle duality of fermions. Since these fermions are confined to dense

region like in white dwarfs, neutron stars or in metals and semiconductors. If we

treat them as wave then the wavelength of these fermions will reduce so as to confine

them to a smaller volume. This will increase the energy of fermions and collisions

with other particles will also increase which give rise to Fermi degenerate pressure.

This concept can also be explained by uncertainty principle which is given as,

∆x∆p ≥ h

2 .

Since the fermions position become certain by containing them to smaller volume the

corresponding momentum become uncertain and will correspond to Fermi pressure.

This pressure can be derived for full or partially degenerate gas.

Zero Temperature Properties of Fermi gas

Since electrons have half-integral so they are fermions and obey the Pauli exclusion

Principle. At T = 0 all the low-energy states are filled up to a certain maximum

energy level EF . This state depends on the density of the Fermi gas and is called

Fermi energy. The total number of fermions in a quantum level is given by the

distribution function. For the fermions, this distribution function is Fermi-Dirac

distribution. The Fermi-Dirac distribution gives the average number of the particles

in the quantum level of energy ε and chemical potential µ given as:

f(ε) = 1
eβ(ε−µ) + 1 (3.20)
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At T = 0K,

f(ε) = 1, ifε < εF

f(ε) = 0, ifε > εF

At T = 0K the energy states start filling at the lowest level (ground energy level)

and εF the highest occupied level. The states above εF are empty. So the states

above εF are empty and bellow are filled. For a 3D system of free fermions the

Figure 3.1: Fermi-Dirac distribution function

density of states D(ε) is given as:

D(ε) = V

2π2h3 (2m) 2
3
√
ε. (3.21)

The Fermi pressure is given by,

P = −(U
V

)T,µ (3.22)

where, U is internal energy and V is the volume. At zero thermodynamic tempera-

ture the internal energy is given by,

U =
∫ εF

0
εD(ε)dε (3.23)
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Put eq (3.21) in eq (3.23) and integrate to get,

U = 2
5

V

2π2h3 (2m) 2
3 ε

2
5
F . (3.24)

Pressure at T = 0K will become,

P = 2
5nεF , (3.25)

where εF is the Fermi energy in 3D given as:

∵ εF = 3
2mv

2
F = 3h2

2m (3π2) 2
3n

2
3

∵ v2
F = h2

m2 (3π2) 2
3n

2
3

P = 3
5nmv

2
F = 3h2

5m (3π2) 2
3n

5
3 (3D) (3.26)

P = 1
5nmv

2
F = h2

5m(3π2) 2
3n

5
3 (1D) (3.27)

This is the Fermi pressure for Fermi gas at T = 0K with the Fermi velocity vF =√
2EF
3m . The pressure in equation (3.25) is for the whole system of particles, but when

only "1
6" of the particles are included the Fermi pressure will become,

P = nmv2
F (3D) (3.28)

P = 1
3nmv

2
F (1D) (3.29)
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Non-Zero (low) Temperatures of Fermi gas

To find non- zero thermodynamic properties of indistinguishable particles like fermions,

the statistical description is given in the form of canonical ensemble.

Step one is to introduce the grand partition function, ZF−D
gr for fermions with two-

fold degeneracy given as:

ZF−D
gr =

∞∏
k

(1 + exp β(µ− εk)). (3.30)

Thermodynamic properties of Fermi-Dirac systems are determined from the grand

potential with two-fold degeneracy ΩF−D
gr given as:

ΩF−D
gr = − 2

β
lnZF−D

gr , (3.31)

put equation (3.30) in (3.31) to get,

ΩF−D
gr = − 2

β

∞∏
k

ln (1 + exp β(µ− εk)) (3.32)

as we know that pressure is given by,

P = −(∂Ω
∂V

)T,N . (3.33)

now put equation (3.32) in equation (3.33) to get,

P = [ ∂
∂V

2
β

∞∏
k

ln (1 + exp β(µ− εk)]T,N , (3.34)

P = 2
β

∞∏
k

∂ ln (1 + exp β(µ− εk))
∂V

, (3.35)
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P = 2
β

∞∏
k

exp β(µ− εk)
(1 + exp β(µ− εk))

(−β∂εk
∂V

), (3.36)

P = −
∞∏
k

2
(exp β(εk − µ) + 1)(∂εk

∂V
). (3.37)

∵ εk = h

2m(3π2N

V
) 2

3 .

∂εk
∂V

= ∂

∂V
[ h2m(3π2N

V
) 2

3 ],

∂εk
∂V

= 2h
6m(3π2N) 2

3 (− 1
V

5
3

),

∂εk
∂V

= −2
3
εk
V
.

change the sum in equation (3.37) into integral over density of states and put value

of εk to get,

P = 4
3V

∫ ∞
−∞

D(εk)
εk

(exp β(εk − µ) + 1)dεk, (3.38)

∵ D(εk) = V

4π2 (2m
h

) 3
2
√
εk.

P = 1
3π2 (2m

h
) 3

2

∫ ∞
−∞

ε
3
2
k

(exp β(εk − µ) + 1)dεk. (3.39)

the integral in above equation can be solved by using Sommerfeld expansion given

as:
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∫ ∞
−∞

H(ε)f(ε)dε =
∫ µ

−∞
H(ε)dε+ π2

6β2
d

dε
H(ε)|ε=µ +Oβ4 + ................... (3.40)

The lower limit in 1st integral on R.H.S can be taken as zero because our lower

energy state is zeroth state. This integral is given as:

∫ µ

0
H(ε)dε =

∫ εF

0
H(ε)dε+ (µ− εF )H(εF ). (3.41)

eq (3.40) will become,

∫ ∞
−∞

H(ε)f(ε)dε =
∫ εF

0
H(ε)dε+(µ−εF )H(εF )+ π2

6β2
d

dε
H(ε)|ε=εF +Oβ4+...................

(3.42)

eq (3.39) will become,

P = 1
3π2 (2m

h
) 3

2 [
∫ εF

0
ε

3
2
k dεk + (µ− εF )ε

3
2
F + π2

6β2
d

dεK
H(ε)|εK=εF ] (3.43)

P = 1
3π2 (2m

h
) 3

2 [ ε
5
2
F

5/2 + (µ− εF )ε
3
2
F + π2

4β2 ε
1
2
F ], (3.44)

chemical potential in 3D is given as:

∵ µ = εF + π2

12εFβ
.

we get,

P = 1
3π2 (2m

h
) 3

2 [25ε
5
2
F + (− π2

12εFβ2 )ε
3
2
F + π2

4β2 ε
1
2
F ], (3.45)

P = 1
3π2 (2m

h
) 3

2
2
5ε

5
2
F [1− 5π2

24β2ε2
F

+ 5π2

8β2ε2
F

], (3.46)
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P = 1
3π2 (2m

h
) 3

2
2
5ε

5
2
F [1 + 5π2

12β2ε2
F

], (3.47)

P = 2
5n[( 1

3nπ2 )(2m
h

) 3
2 ε

5
2
F ][1 + 5π2

12β2ε2
F

], (3.48)

P = 2
5nεF ][1 + 5π2

12β2ε2
F

], (3.49)

P = 2
5nKBTF [1 + 5π2

12 ( KBT

KBTF
)2], (3.50)

P = 2
5nKBTF [1 + 5π2

12 ( T
TF

)2]. (3.51)

This is perturbed Fermi pressure in 1D at non zero temperature (T > 0 and T < TF ).

Compare equation (3.29) to equation (3.51) to get perturbed Fermi velocity given

as:

v2
F = 6

5
KBTF
m

[1 + 5π2

12 ( T
TF

)2].

3.2 Modeling of the Problem

For the theoretical analysis of the problem consider a spatially uniform, homoge-

neous, low temperature, high density, semiconductor plasma in an external magnetic

field in z-direction B0ẑ. Electron beams are an energy source to excite the species

of semiconductor plasma. The excitation of electron and hole results in electrostatic

modes in semiconductor plasma. The stability/instability of these modes can play

an important role in the application of semiconductor plasma. If we want to check

whether our plasma is in stable condition or unstable condition, we must check

whether any net forces can accelerate the charged particles in the plasma. Other-
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wise, the plasma is in equilibrium. Then to check plasma stability we must check

the growth, oscillation, and damping of the perturbation. The growth rate of the

wave tells us the instability of the plasma system. The electron beam is moving

with velocity v0||B0 with equilibrium number density nb0.

In semiconductor plasma, we have three separate fluids electrons, holes, and beam-

electrons. For this multi-fluid system, we have a system of equations in the QHD

model in 3D.

m∗jnj(
∂vj
∂t

+vj.∇vj) = njqj(E+ 1
c
vj×B0)−∇Pj + h2

4m∗j
∇(∇2nj)−∇njVj,xc. (3.52)

∂nj
∂t

+∇.(vjnj) = 0. (3.53)

In above multi-fluid equations j stands for for semiconductor species electrons(e),

holes(h) and beam electrons (b). m∗ is the effective mass of jth species. E and

B0 are the electric field and unperturbed magnetic field. vj, nj, Vj,xc, qj, Pj, are

velocity, number density, the exchange and correlation potential, charge magnitude,

and perturbed Fermi pressure of jth species, respectively.

3.2.1 Perturbed Velocity

(∂vj
∂t

+ vj.∇vj) = qj
m∗j

(E+ 1
c
vj×B0)− ∇Pj

njm∗j
+ h2

4m∗2j nj
∇(∇2nj)−

∇njVj,xc
njm∗j

. (3.54)

Introducing perturbation of the type,

vj → vjo + vj1
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nj → njo + nj1

All of these perturbed quantities are equal to the sinusoidal form ei(−ωt+kxx̂+kz ẑ)

where ω is angular frequency and k is wave vector. So we can write,

vj1 = vj1e
i(−ωt+kxx̂+kz ẑ)

nj1 = nj1e
i(−ωt+kxx̂+kz ẑ)

linearize equation (3.54) to get,

(∂vj1
∂t

+ vj0.∇vj1) = qj
m∗j

(E + 1
c
vj1 ×B0)− ∇Pj

nj0m∗j
+ h2

4m∗2j nj0
∇(∇2nj1)− ∇nj1Vj,xc

nj0m∗j
,

(3.55)

As in the case of electrostatic waves, the time-varying magnetic field is zero i.e;
∂B
∂t

= 0. So Maxwell equation will become (∇ × E)L = 0, which means that

the electric field associated with the electrostatic model is curl-free, and it can be

represented as the gradient of a scalar potential given as:

E = −∇φ.

(∂vj1
∂t

+vj0.∇vj1) = qj
m∗j

(−∇φ+ 1
c
vj1×B0)− ∇Pj

nj0m∗j
+ h2

4m∗2j nj0
∇(∇2nj1)−∇nj1Vj,xc

nj0m∗j
,

(3.56)
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Lorentz force

1st term on R.H.S is the Lorentz force in Gaussian (cgs) units in the presence of both

electric and unperturbed magnetic field. For vj = vjxx̂ + vjyŷ + vjz ẑ and B = B0ẑ

we get,

vj ×B0 = vjyB0x̂− vjxB0ŷ,

qj
m∗j

(E + 1
c
vj ×B0) = qj

m∗j
[−∇φ+ 1

c
(vjyB0x̂− vjxB0ŷ)].

Perturbed Fermi Pressure

2nd term on R.H.S is the gradient of perturbed Fermi pressure. The thermodynamic

equation of state is given as:

P = P0(n
n0

)γ,

where exponent is given as γ = 3 for 1D, P0 = 2
3n0EF , is the Fermi pressure at

T = 0K, EF = 1
2mv

2
F , is the Fermi energy in 1D and vF is the Fermi velocity. The

corresponding Fermi pressure will become,

P = mv2
F

3n2
0
n3.

we can use the above equation even for 3D although γ = D+2
D

which give 5
3 in 3D.

This can affect our results because we are dealing with linear wave propagation that

is a 1D phenomenon, and no energy is exchanged in the other two directions.

so,

∇Pj = m∗jv
2
Fj∇nj1.

where v2
Fj = 6

5
KBTFj
m∗j

[1 + 5
12π

2( T
TFj

)2], is the Fermi velocity at non zero temperature.

∇Pj
nj0m∗j

= 1
nj0m∗j

m∗jv
2
Fj∇nj1 = v2

Fj∇
nj1
nj0

.
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Bohm Potential

3rd term on R.H.S is the Bohm potential given as, h2

4m∗2j nj0
∇(∇2nj1).

Exchange-Correlation Potential

4th term on R.H.S is the exchange-correlation potential. This phenomenon appears

because of anti-symmetric particles. The electron exchange and correlation effects

incorporate a short electric potential that depends only on the number density of

the charge carriers. It is given as:

Vj,xc = 0.985
3 (

q2
j

ε
)n

1
3
j0 + 0.986× 0.034

3a∗bj
(
q2
j

ε
)

18.37a∗Bjn
1
3
j0

1 + 18.37a∗Bjn
1
3
j0

.

where a∗Bj = εh2

mjq2
j
is the Bohr radius, ε is the dielectric constant and qj is the charge

magnitude. We get,

(∂vj1
∂t

+vj0.∇vj1) = qj
m∗j

[−∇φ+1
c

(vjyB0x̂−vjxB0ŷ)]−v2
F∇

nj1
nj0

+ h2

4m∗2j nj0
∇(∇2nj1)−

∇nj1Vj,xc
nj0m∗j

, (3.57)

now Fourier transform above equation w.r.t space and time, by introducing ∂
∂t
→

−iω , ∇ → ik. This will transform the differential equation into a simple algebraic

equation given as:

−i[w−k.v0]vj1 = −ikqjφ
m∗j

−qjB0

m∗jc
vjxŷ+qjB0

m∗jc
vjyx̂−ikv2

F (nj1
nj0

)−ih
2k3

4m∗2j
(nj1
nj0

)−ikVj,xc
m∗j

(nj1
nj0

),

(3.58)

where w−k.v0 → ω∗ is the Doppler shift in frequency and ωcj → qjB0
m∗j c

is the cyclotron
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or gyro frequency of jth species. we get,

−iω∗vj1 = −ikqjφ
m∗j

− ωcjvjxŷ + ωcjvjyx̂− ikv2
F (nj1
nj0

)− ih2k3

4m∗2j
(nj1
nj0

)− ikVj,xc
m∗j

(nj1
nj0

),

(3.59)

ω∗vj1 = kqjφ

m∗j
+ ωcj

i
vjxŷ −

ωcj
i
vjyx̂+ kv2

F (nj1
nj0

) + h2k3

4m∗2j
(nj1
nj0

) + kVj,xc
m∗j

(nj1
nj0

), (3.60)

ω∗vj1 = kqjφ

m∗j
+ ωcj

i
vjxŷ −

ωcj
i
vjyx̂+ (nj1

nj0
)[v2

F + h2k2

4m∗2j
+ Vj,xc

m∗j
]k, (3.61)

ω∗vj1 = kqjφ

m∗j
+ ωcj

i
vjxŷ −

ωcj
i
vjyx̂+ (nj1

nj0
)[v2

Fj(1 + h2k2

4m∗2j v2
Fj

) + Vj,xc
m∗j

]k, (3.62)

where,
h2k2

4m∗2j v2
Fj

= γj,

v2
Fj(1 + h2k2

4m∗2j v2
Fj

) = v2
Fj(1 + γj),

v2
Fj(1 + γj) = v′Fj,

and,

vFj
√

(1 + γj) = v′2Fj.

This speed contain the effects of both the Bohm potential (quantum effects) and the

perturbed Fermi pressure. The exchange-correlation speed of jth species is given as:
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Vj,xc = m∗jv
2
j,xc →

Vj,xc
m∗j

= v2
j,xc.

we get,

ω∗vj1 = kqjφ

m∗j
+ ωcj

i
vjxŷ −

ωcj
i
vjyx̂+ (nj1

nj0
)[v′2Fj + v2

j,xc]k (3.63)

v′2Fj + v2
j,xc = v′′2Fj

ω∗vj1 = kqjφ

m∗j
+ ωcj

i
vjxŷ −

ωcj
i
vjyx̂+ (nj1

nj0
)v′′2Fjk, (3.64)

ω∗vj1 = kqjφ

m∗j
− iωcjvjxŷ + iωcjvjyx̂+ (nj1

nj0
)v′′2Fjk. (3.65)

The components of above equation are given as:

x-component

ω∗vj1x = qjφ

m∗j
kx + iωcjvjy + (nj1

nj0
)v′′2Fjkx, (3.66)

ω∗vj1x − iωcjvjy = qjφ

m∗j
kx + (nj1

nj0
)v′′2Fjkx, (3.67)

ω∗[vj1x −
iωcjvjy
ω∗

] = qjφ

m∗j
kx + (nj1

nj0
)v′′2Fjkx, (3.68)

ω∗[vj1x −
iωcjvjy
ω∗

] = qj
m∗j

[φ+
m∗j
qj

(nj1
nj0

)v′′2Fj]kx, (3.69)
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Φ = [φ+
m∗j
qj

(nj1
nj0

)v′′2Fj].

This is the effective potential which includes the electrostatic potential "φ".

ω∗[vj1x −
iωcjvjy
ω∗

] = qjΦ
m∗j

kx. (3.70)

y-component

ω∗vj1y = −iωcjvjx, (3.71)

vj1y = −iωcj
ω∗

vjx. (3.72)

put y-component in x-component to get,

ω∗vj1x −
iωcj
ω∗

(−iωcj
ω∗

vjx) = qjΦ
m∗j

kx, (3.73)

ω∗[vjx −
ω2
cj

ω∗2
vjx] = qjΦ

m∗j
kx, (3.74)

vjx[1−
ω2
cj

ω∗2
] = qjΦ

m∗jω
∗kx, (3.75)

vjx = qjΦ
m∗jω

∗ [
ω∗2 − ω2

cj

ω∗2
]−1kx, (3.76)

vjx = qjΦ
m∗jω

∗ [
ω∗2

ω∗2 − ω2
cj

]kx. (3.77)

now put x-component in y-component to get,

vjy = −iωcj
ω∗

[ qjΦ
m∗jω

∗ (
ω∗2

ω∗2 − ω2
cj

)]kx, (3.78)
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vjy = − qjΦ
m∗jω

∗ (
iω∗ωcj
ω∗2 − ω2

cj

)kx. (3.79)

z-component

ω∗vj1z = qjφ

m∗j
kz + (nj1

nj0
)v′′2Fjkz, (3.80)

vj1z = qj
m∗jω

∗ [φ+
m∗j
qj

(nj1
nj0

)v′′2Fj]kz, (3.81)

vj1z = qjΦ
m∗jω

∗kz, (3.82)

the perturbed velocity of jth species can be obtained by,

vj = vjxx̂+ vjyŷ + vjz ẑ.

vj = qjΦ
m∗jω

∗ (
ω∗2

ω∗2 − ω2
cj

)kxx̂−
qjΦ
m∗jω

∗ (
iω∗ωcj
ω∗2 − ω2

cj

)kxŷ + qjΦ
m∗jω

∗kz ẑ, (3.83)

vj = qjΦ
m∗jω

∗ [
ω∗2

ω∗2 − ω2
cj

kxx̂−
iω∗ωcj
ω∗2 − ω2

cj

kxŷ + kz ẑ]. (3.84)

3.2.2 Perturbed Number Density

Perturbed number density of jth species can be obtained by using equation of con-

tinuity given as:

∂nj
∂t

+∇.(vjnj) = 0.
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now introduce perturbation of the form,

nj → nj0 + nj1

vj → vj0 + vj1

we get,

∂

∂t
[nj0 + nj1] +∇.[nj0 + nj1][vj0 + vj1] = 0, (3.85)

∂nj0
∂t

+ ∂nj1
∂t

+∇.[nj0vj0 + nj0vj1 + nj1vj0 + nj1vj1] = 0, (3.86)

neglect the non linear terms such as:

∂nj0
∂t

= 0,∇vj0 = 0,∇nj0 = 0

we get,

∂nj1
∂t

+ nj0∇.vj1 + vj0∇.vj1 = 0 (3.87)

∂nj1
∂t

+ vj0∇.vj1 = −nj0∇.vj1, (3.88)

nj1[−iω + vj0.ik] = −nj0ik.vj1, (3.89)

nj1[ω − k.vj0] = nj0k.vj1, (3.90)

nj1ω
∗ = nj0k.vj1, (3.91)
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nj1 = nj0k.vj1
ω∗

, (3.92)

now put value of vj1 to get,

nj1 = nj0
ω∗

(kxx̂+ kz ẑ). qjΦ
m∗jω

∗ [
ω∗2

ω∗2 − ω2
cj

kxx̂−
iω∗ωcj
ω∗2 − ω2

cj

kxŷ + kz ẑ], (3.93)

nj1 = nj0
ω∗

qjΦ
m∗jω

∗ [
ω∗2

ω∗2 − ω2
cj

k2
x + k2

z ], (3.94)

nj1 = nj0qj
m∗jω

∗2 [ ω∗2

ω∗2 − ω2
cj

k2
x + k2

z ]Φ, (3.95)

nj1 = nj0qj
m∗jω

∗2 [ ω∗2

ω∗2 − ω2
cj

k2
x + k2

z ][φ+
m∗j
qj

(nj1
nj0

)v′′2j,xc], (3.96)

nj1 = nj0qj
m∗jω

∗2 [ ω∗2

ω∗2 − ω2
cj

k2
x + k2

z ]φ+ nj0qj
m∗jω

∗2 [ ω∗2

ω∗2 − ω2
cj

k2
x + k2

z ][
m∗j
qj

(nj1
nj0

)v′′2Fj], (3.97)

nj1 = nj0qj
m∗jω

∗2 [ ω∗2

ω∗2 − ω2
cj

k2
x + k2

z ]φ+ nj1
ω∗2

v′′2Fj[
ω∗2

ω∗2 − ω2
cj

k2
x + k2

z ], (3.98)

nj1[1−
v′′2Fj
ω∗2

[ ω∗2

ω∗2 − ω2
cj

k2
x + k2

z ]] = nj0qj
m∗jω

∗2 [ ω∗2

ω∗2 − ω2
cj

k2
x + k2

z ]φ, (3.99)

nj1 =
nj0qj
m∗j

[ k2
x

ω∗2−ω2
cj

+ k2
z

ω∗2
]φ

[1− v′′2Fjk
2
x

ω∗2−ω2
cj
− v′′2Fjk

2
z

ω∗2
]
. (3.100)
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3.2.3 Dielectric Response Function

We are interested in the response of the system to some external electron beam

moving with velocity v0 (in other words external charges and currents). The system

show response to these external charges and currents and generates internal charges

and currents, and their corresponding internal electric and magnetic fields Eint and

Bint. Instead of taking these internal and external charges and currents separately,

we can consider that these external charges and currents are the part of the system

and produced in the localized apace within the system. Theoretically, to do that

we consider a single Fourier component of a wave-packet out of all wave-packets.

Of course, this is experimentally difficult to analyze, because experimentally they

are outside the system. One way to deal with this situation in the electrostatic

case is to introduce the polarization field P because polarization vanishes outside

the system just like D which means they had a transverse component outside the

system. Polarization can be written in the form of charge density given as:

∇.P = −ρ,

∇.χjE
4π = −qjnj1,

−χj∇
2φ

4π = −qjnj1,

χjk
2φ

4π = −qjnj1,

nj1 = −k
2χjφ

4πqj
.

This expression relates the number density with the dielectric susceptibility. Now,

after putting the value of perturbed number density the dielectric susceptibility for

jth species is given as:
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χj = −4πqj
k2φ

nj1. (3.101)

χj = −
4πq2

jnj0

k2m∗j

[ k2
x

ω∗2−ω2
cj

+ k2
z

ω∗2
]

[1− v′′2Fjk
2
x

ω∗2−ω2
cj
− v′′2Fjk

2
z

ω∗2
]
, (3.102)

where ω2
pj = 4πnj0q2

j

m∗j
, is plasma beam frequency of jth species.

χj = −
ω2
pj[

k2
x

ω∗2−ω2
cj

+ k2
z

ω∗2
]

k2[1− v′′2Fjk
2
x

ω∗2−ω2
cj
− v′′2Fjk

2
z

ω∗2
]
. (3.103)

the dielectric constant for electrostatic waves is given as:

ε(ω, k) = 1 +
∑
j

χj = 0,

or,

1 + χb + χe + χh = 0. (3.104)

by reducing the expression of (3.103) according to the conditions for electrons, beam

and holes we get,

Dielectric Susceptibility of Electron Beam

As kx >> kz so, we can neglect kz.

χb ≈ −
ω2
pb[

k2
x

(ω−k.v0)2 ]

k2[1− v′′2
Fb
k2
x

(ω−k.v0)2 ]
. (3.105)

The effective speed that includes thermal, exchange-correlation and the Bohm effects

is given as:
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v′′2Fj = [v2
j,xc + v2

Fj(1 + h2k2

4m∗2j v2
Fj

)].

For electron beam the effective speed have no exchange correlation and quantum

effect contribution. we are left with only thermal speed of beam electrons at equi-

librium given as:

v′′2Fb = v2
Fb = kBh

2(3π2nb0)2/3

m2
e

.

the Fermi temperature of beam electrons is given as:

TFb = Tb = h2(3π2n
2/3
b0 )

2me

.

the effective speed will become,

v′′2Fb = v2
Fb = 2kBTb

me

= v2
b .

χb ≈ −
ω2
pb[

k2
x

(ω−k.v0)2 ]

k2[1− v2
b
k2
x

(ω−k.v0)2 ]
. (3.106)

The phase speed ω/k of LHW is smaller than the speed of the electron beam v0 i.e.

k.v0 >> ω, ω
k
<< v0 we get,

χb ≈ −
ω2
pb

(v2
0 − v2

b )k2 . (3.107)

This is the dielectric susceptibility of electron beam with ω2
pb = 4πnb0q2

b

me
, is the oscil-

lation frequency of beam electrons.
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Dielectric Susceptibility of Electrons

As kx >> kz so, we can neglect kz to get,

χe ≈ −
ω2
pe[

k2
x

(ω−k.v0)2−ω2
ce

]

k2[1− v′′2Fek
2
x

(ω−k.v0)2−ω2
ce

]
, (3.108)

χe ≈ −
ω2
pe[

k2
x

ω2−ω2
ce

]

k2[1− v′′2Fek
2
x

ω2−ω2
ce

]
, (3.109)

∵ ω << ωce, ωpe

where ω − k.v0 ≈ 0 for the Cerenkov interaction (the resonance condition) [45][46].

χe ≈ −
ω2
pe[

k2
x

−ω2
ce

]

k2[1− v′′2Fek
2
x

−ω2
ce

]
, (3.110)

χe ≈
ω2
pe

(ω2
ce + v′′2Fek

2
x)
k2
x

k2 . (3.111)

This is the dielectric susceptibility of electrons with ω2
pe = 4πne0q2

e

m∗e
, is the oscillation

frequency of electrons. ωce = eB0
m∗ec

, is the cyclotron frequency of electrons.

v′′2Fe = [v2
e,xc + v2

Fe(1 + h2k2

4m∗2e v2
Fe

)], is the effective speed that include thermal,exchange-

correlation, and Bohm effects.

Dielectric Susceptibility of Holes

As kx >> kz so, we can neglect kz,

χh ≈ −
ω2
ph[

k2
x

(ω−k.v0)2−ω2
ch

]

k2[1− v′′2
Fh
k2
x

(ω−k.v0)2−ω2
ch

]
, (3.112)
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ω >> ωch, ωph

χh ≈ −
ω2
ph[

k2
x

ω2−ω2
ch

]

k2[1− v′′2
Fh
k2
x

ω2−ω2
ch

]
, (3.113)

χh ≈ −
ω2
ph

(ω2 − ω2
ch − v′′2Fhk2

x)
k2
x

k2 . (3.114)

This is the dielectric susceptibility of holes with ω2
ph = 4πnh0q

2
h

m∗
h

, is the oscillation

frequency of holes, ωch = eB0
m∗
h
c
is the cyclotron frequency and v′′2Fh = [v2

h,xc + v2
Fh(1 +

h2k2

4m∗2
h
v2
Fh

)] is the effective speed.

3.2.4 Dispersion Relation

As,

1 + χb + χe = −χh (3.115)

ω2
ph

(ω2 − ω2
ch − v′′2Fhk2

x)
k2
x

k2 = 1−
ω2
pb

(v2
0 − v2

b )k2 +
ω2
pe

(ω2
ce + v′′2Fek

2
x)
k2
x

k2 , (3.116)

ω2
ph

(ω2 − ω2
ch − v′′2Fhk2

x)
k2
x

k2 =
k2(v2

0 − v2
b )(ω2

ce + v′′2Fek
2
x)− ω2

pb(ω2
ce + v′′2Fek

2
x) + ω2

pek
2
x(v2

0 − v2
b )

k2(v2
0 − v2

b )(ω2
ce + v′′2Fek

2
x)

,

(3.117)

(ω2 − ω2
ch − v′′2Fhk2

x) =
ω2
phk

2
x(v2

0 − v2
b )(ω2

ce + v′′2Fek
2
x)

k2(v2
0 − v2

b )(ω2
ce + v′′2Fek

2
x)− ω2

pb(ω2
ce + v′′2Fek

2
x) + ω2

pek
2
x(v2

0 − v2
b )
,

(3.118)
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ω2 = ω2
ch + v′′2Fhk

2
x +

ω2
phk

2
x(v2

0 − v2
b )(ω2

ce + v′′2Fek
2
x)

k2(v2
0 − v2

b )(ω2
ce + v′′2Fek

2
x) + ω2

pek
2
x(v2

0 − v2
b )− ω2

pb(ω2
ce + v′′2Fek

2
x)
,

(3.119)

ω2 = ω2
ch + v′′2Fhk

2
x +

ω2
phk

2
x(v2

0 − v2
b )(ω2

ce + v′′2Fek
2
x)

[k2(ω2
ce + v′′2Fek

2
x) + ω2

pek
2
x](v2

0 − v2
b )− ω2

pb(ω2
ce + v′′2Fek

2
x)
, (3.120)

ω2 = ω2
lhδ+v′′2Fhk

2
x+

ω2
phk

2
x(v2

0 − v2
b )(ω2

ce + v′′2Fek
2
x)

[k2(ω2
ce + v′′2Fek

2
x) + ω2

pek
2
x](v2

0 − v2
b )− ω2

pb(ω2
ce + v′′2Fek

2
x)
. (3.121)

where, ω2
lh = ωchωch and δ = m∗e

m∗
h
. This is the linear dispersion relation for L.H.Ws

in an electron-hole plasma that is pumped by an electron beam, it includes the

exchange correlation effects, the quantum effects and the thermal degenerate effects.

3.2.5 Analytical Study L.H.Ws in Quantum Semiconductor

Plasma

Normalize equation (3.120) with scale ω2
ph to study LHWs in quantum semiconductor

plasma induced by electron beam.

ω2

ω2
ph

= ω2
ch

ω2
ph

+ v′′2Fhk
2
x

ω2
ph

+ k2
x(v2

0 − v2
b )(ω2

ce + v′′2Fek
2
x)

[k2(ω2
ce + v′′2Fek

2
x) + ω2

pek
2
x](v2

0 − v2
b )− ω2

pb(ω2
ce + v′′2Fek

2
x)
,

(3.122)
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ω̃2 = ω̃2
ch + ṽ′′2Fhk̃

2
x+

ω2
ph(

k2
xv

2
Fh0

ω2
ph

)( v2
0

v2
Fh0
− v2

b

v2
Fh0

)(ω2
ce + v′′2Fek

2
x)

[ω2
ph(

k2v2
Fh0

ω2
ph

)(ω2
ce + v′′2Fek

2
x) + ω2

peω
2
ph(
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ch + ṽ′′2Fhk̃

2
x+

(ω̃2
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ce + ṽ′′2Fek̃
2
x)(ṽ2
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where the normalized values are given as:
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ṽ′′2Fhk̃
2
x = v′′2Fh

v2
Fh0

v2
Fh0k

2 cos2 θ

ω2
ph

,
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ṽ′′2Fhk̃
2
x = [ṽ2

h,xc + 3
5(1 + 5

12π
2T̃h

2) + H̃2k̃2]k̃2 cos2 θ,
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ṽ′′
2

Fek̃
2
x = 1

v2
Fh0

[v2
e,xc + v2

Fe(1 + h2k2

4m∗2e v2
Fe

)]k̃2 cos2 θ,
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Chapter 4

Numerical Analysis and Discussion

The perturbations in the semiconductor plasma by the electron beam can form

various types of waves or modes, such as the Langmuir model, acoustic mode, upper,

and lower hybrid modes. The formation of these modes at low temperatures does

exist in many materials. An experimental study for several semiconductors like

GaN, GaAs, GaSb, and InP shows the formation of these modes. In this thesis,

an appropriate theoretical model is used that includes quantum effects such as the

Bohm effect, exchange-correlation effect, and Fermi pressure. The effect of electron

beam parameters on the propagating wave in electron-hole semiconductor plasma is

also investigated.

The study of the propagation and growth rate of L.H.W in electron-hole plasma is

of primary interest. This study can be done by introducing ω = ωr + iγ in equation

(3.126), where ωr is real angular frequency that describes propagation of wave and

γ describes the growth rate. Figure (4.1) shows typical parameters for different

semiconductors[16]. Now Applying our theoretical model to GaAs semiconductor

with parameters neo = 4.7×1016cm−3, m
∗
e

me
= 0.067, m

∗
h

me
= 0.5 and ε = 12.8[47][48][49].
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Figure 4.1: Typical parameters for different types of semiconductors.

The charge neutrality condition is given as:

ne0 + nb0 = nh0, (4.1)

ne0
nh0

+ nb0
nh0

= 1, (4.2)

α + β = 1. (4.3)

The graphical analysis is done using the above numerical parameters. The graphs

given bellow exhibit different behaviors for different numerical values of angle be-

tween propagation vector k and x-axis, the streaming speed of the pumped beam

electrons (v0), scaled thermal temperature of the pumped beam electrons Tb, Hole

cyclotron frequency ωch, number density ratio of electron and hole ( ne0
nh0

) and elec-

tron and hole temperature (Te, Th). Solid lines represent the instability of LH waves,

whereas dotted lines describe wave propagation.
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Variation of Critical Angle "θ"

The first plot shows the propagation and damping of LHWs for different values of

critical angle θ. If the angle between magnetic field B0ẑ and propagation vector kxx̂

is not exactly π
2 . Electrons will move in the direction of B0ẑ because of a smaller

Larmor radius to carry out shielding. The holes/ions because of larger Larmor

radius cannot do this, that is why we can neglect kz ẑ, for holes/ions.

A slight increase in the value of critical angle θ can cause instability spectrum of LH

waves to experiences a blue-shift of propagation vector k. The instability sharply

grows for a smaller value of θ.

Figure 4.2: Plot between (ω and k) at ωch = 0.4, Tb = 0.4, Th = Te = 0.1, v0 = 1
and α = 0.6. Dotted lines represent real part and Solid lines represent imaginary
part at θ = 9o, 10o.
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Variation of Streaming Speed "v0"

An increase in the speed of electron-beam v0 will affect the spectrum of the L.H.W

significantly. The LHWs spectrum becomes narrow and grows sharply to its max-

imum value at lower values of k (red-shift in the spectrum). Physically, the high

energy beam electrons would give more energy to the system, causing an increase

in the speed of systems particles and leads to instability at lower values of k.

Figure 4.3: Plot between (ω and k) at ωch = 0.4, Tb = 0.4, Th = Te = 0.1, θ = 10o
and α = 0.6. Dotted lines represent real part and Solid lines represent imaginary
part at v0 = 1, 1.5 and 2.
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Variation of Beam Temperature "Tb"

An increase in the incoming electron beam temperature Tb will decrease the instabil-

ity. The spectrum will shift towards higher values of k (blue shift of the spectrum).

Physically, high-temperature beam electrons excite a large amount of the high fre-

quency or low wavelength regime, causing a sharp growth of instability in higher

values of k. A large number of excited particles will reduce instability.

Figure 4.4: Plot between (ω and k) at ωch = 0.4, v0 = 1, Th = Te = 0.1, θ = 10o
and α = 0.6. Dotted lines represent real part and Solid lines represent imaginary
part at Tb = 0.4, 0.6, 0.8.
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Variation of Hole Cyclotron Frequency "ωch"

By increasing the values of cyclotron frequency of holes ωch = eB0
m∗
h
c
will cause a

shift in spectrum towards high values of k (blue shift of the wave). The instability

spectrum contract for a strong magnetic field and sharply grow at higher values

of k. A high magnetic field will confine the particles, this restriction causes more

unstable plasma.

Figure 4.5: Plot between (ω and k) at Tb = 0.4, v0 = 1, Th = Te = 0.1, θ = 10o and
α = 0.6. Dotted lines represent real part and Solid lines represent imaginary part
at ωch = 0.4, 0.6, 0.8.
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Variation of Electron to Hole Density Ratio "α = ne0
nh0

"

Spectrum will become narrow by increasing the value of electron to hole number

density ne0
nh0

. At lower values of k more energetic particles are present which leads to

high instability.

Figure 4.6: Plot between (ω and k) at Tb = 0.4, v0 = 1, Th = Te = 0.1, θ = 10o and
ωch = 0.4. Dotted lines represent real part and Solid lines represent imaginary part
at α = 0.6, 0.7, 0.8, 0.9.
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Variation of Scaled Electron and Hole Temperature "Th, Te"

An Increase in the scaled electron and hole temperature Te and Th will slightly effect

the spectrum.

Figure 4.7: Plot between (ω and k) at Tb = 0.4, v0 = 1, α = 0.6, θ = 10o and
ωch = 0.4. Dotted lines represent real part and Solid lines represent imaginary part
at Th = Te = 0.1, 0.3, 0.5.
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Chapter 5

Conclusion

The theoretical and numerical analysis of propagation of the LH wave in GaAs quan-

tum semiconductors is done in this thesis. The corresponding dispersion relation

includes quantum, thermal, and exchange-correlation effects. Variation of certain

parameters such as critical angle θ between the wave vector k and the x-axis, number

density ratio electron and hole ( ne0
nh0

), scaled electron beam speed ( v0
vFh0

), normalized

electron beam thermal temperature ( Tb
TFh

), and normalized hole cyclotron frequency

(ωch
ωph

), affect the wave propagation and growth rate. An increase in the electron beam

speed v0 and electron to hole density ratio will increase the instability because of the

availability of numerous charged particles. The spectrum will become narrow for

higher values of v0 and ( ne0
nh0

). A slight increase in the value of angle θ between the

propagation vector of the LH wave and the propagation axis also increases the insta-

bility and leads to the blue shift of the wave vector. Increasing the scaled electron

beam temperature will decrease the instability due to more excited particles, and

the spectrum will shift towards higher values of k. Whereas an increase in the hole

cyclotron frequency causes a blue shift in the spectrum and increases the instability.

As the influence of the magnetic field increases, the spectrum becomes narrow.
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