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Abstract

In this thesis, we have discussed linear and non-linear effects on dust acoustic waves
(DAWSs) in a magnetized electronegative dusty plasma. By electronegative dusty plasma,
we mean the plasma having electrons, positive ions, negative ions, and dust particulates
constituents. In the linear analysis regime, in the absence of dust charge fluctuations,
the Doppler’s frequency and growth rate are our main focus. The Doppler’s frequency
variation has been discussed with the effects of Cairns distributed positive ions, oblique-
ness of the magnetic field, density ratio of electrons versus energetic positive ions, and
normalized dust cyclotron frequency or magnitude of the magnetic field. It was found
that for dust acoustic waves these parameters affect the Doppler’s frequency. Similarly,
the growth rate variations have been discussed with the effects of Cairns distributed
positive ions, obliqueness of the magnetic field, normalized dust cyclotron frequency,
density ratio of electrons versus energetic positive ions, and density ratio of negative
ions versus energetic positive ions. It was observed that for dust acoustic waves these
parameters affect the growth rate. While in the same regime we also considered the
dust charge fluctuation and derived a linear expression.

On the other hand, in the non-linear regime, DAWs have been investigated. Since we
are studying the low-frequency wave, therefore, we have to enlarge the space and time
coordinates by stretching the coordinates. By using the Reductive Perturbation Tech-
nique (RPT), the Korteweg-de Vries Burger equation is derived for the small but finite
amplitude non-linear dust acoustic wave (DAWSs) bearing non-thermality (Cairns dis-
tributed) in the positive ions. In our case, the non-linear KdVB equation in the absence
of the dust charge fluctuation, the dissipative term vanishes, and the non-linear KdVB

equation is reduced to the KdV equation which admits solitary wave solution. While

vi



for the parallel propagation, i.e., # = 0 (no obliqueness in the magnetic field) under

anN{V(g, )
dn

dust acoustic wave is governed by Burger equation which admits the monotonic shock

certain boundary conditions, i.e., Ncgl)(g, T), — 0 as n — —o0, the non-linear
solution. In this analysis, the amplitude, as well as the width of the soliton, has been
discussed with effects of obliqueness, Cairns distributed positive ions, density ratio of
electrons versus Cairns distributed positive ions and density ratio of negative ions ver-
sus Cairns distributed positive ions. It was found that for dust acoustic waves these
parameters affect the propagation properties of solitary waves. Similarly, the ampli-
tude of the monotonic shock has been discussed with the effects of Cairns distributed
positive ions, density ratio of electrons versus energetic positive ions, and density ratio
of negative ions versus energetic positive ions, it is found that for dust acoustic waves

these parameters affect the monotonic shock structure.
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Chapter 1

Introduction

1.1 What is Plasma

The word "plasma" is derived from the Greek which means something molded or
fabricated. For the very first time in 1929, it was Irving Langmuir an American
scientist and a Nobel laureate who proposed that an ionized gas comprising of the
ions, electrons, and neutrals could be considered as fluid and called this fluid medium
plasma [1|. After 1929, the research in the plasma field widely spread in many di-
rections like the development of radio broadcasting which led to the discovery of the
Earth’s ionosphere (a layer in the upper atmosphere which is partially ionized), which
absorbs the radio waves and also distorts the same radio waves [2]. We have already fa-
miliar with the three states of matter but not so much familiar with the fourth state of
matter that is a "plasma" state. Thus, plasma is considered the fourth state of matter.
By giving sufficient heat to gas, it can be converted into ionized gas and under certain
conditions it becomes plasma. These conditions under which the ionized gas becomes
plasma will be discussed later. Firstly, we define plasma in such a way that it is "a
quasineutral gas of charged and neutral particles which exhibits collective behavior"
[3]. By "quasineutrality" we mean that their is an equivalency of negative charge den-
sity (n_) and positive charge density (ny) that is n_ ~ n, = n, where n is the common
plasma density. But here one thing is most important that the plasma cannot be con-
sidered a neutral mixture of electrons and ions but a small deviation from neutrality

is developed on a very small scale called Debye length, therefore, the plasma must be



quasi-neutral on a length scale larger than Debye length. By the word "collective",
we mean the interaction between the positive and negative charge due to long-range
electromagnetic forces which predominates the collisions. Therefore, the motion of the
charged particles not only depends on local conditions but the state of plasma in the
remote region as well. In plasma, the electrostatic interaction can be described by the
Coulomb force which is also a long-range force and decays with the distance r=2. On
the other hand in neutral gas dynamics, the particle interaction is through short-range
Vander Waal’s force during collisions. This force decays very rapidly with the distance
70 [4].

At the time of the Big Bang, the temperature is excessively high that the whole uni-
verse was in the state of plasma. And due to very much high temperature, the plasma
at that time was a quark-gluon plasma. As time passes the temperature of the plasma
decreases and the well-known states of matter that is gas, liquid and solids are began
to form. However, most of the matter in the universe is still in a plasma state, it is
estimated to be 99 percent of the plasma [3|. Therefore, the temperature is one of
the fundamental parameters of a plasma. Besides temperature, the particles (electron
and ion) per unit volume known as number density is also an important parameter.
Since we considered the simple plasma situation contained only two species that is
electrons and positive ions. But there is a certain environment that contains other
species like positrons, negative ions, dust particles, etc. Each of these species responds
to electromagnetic forces differently, so their number density could be considered as an
independent variable. Therefore, the range of the temperature and density is different
from space plasma to laboratory plasma. For example, the interstellar gases have a
typical density of 105 m~3 and temperature of about 10* K. Space plasma in the so-
lar wind and the vicinity of the earth has particle densities in the range of 107 m~=3 to

10" m™3 and temperature in the range of 10°> K to 10° K [5].



1.1.1 Criteria for Plasmas

The ionized gases must satisfied certain criteria to become a plasma. These criterias

are
e \p K L
e Np>1
o wr >1

These are the basic criteria to be followed by ionized gases to become plasma where

L is the dimension of the plasma and Ap is the length of the Debye sphere called Debye

EQKBT
Ap =14/ 1.1
D n€2 ’ ( )

here n, e and T" are equilibrium plasma number density, charge of electron and plasma

length and can be expressed as

temperature respectively, and ¢y and K are the Boltzmann constant and permittivity
of the free space respectively. In the second criteria, their is Np which represents the

number of particles present in the Debye sphere of radius Ap. Although,

[ ne2
w =~ wp = Eo—m, (12>

is the characteristic oscillation frequency of a plasma, where m is mass of the plasma
specie. For different species, the plasma frequency is different. However, the fast
specie frequency in the plasma that is electron frequency is referred to be the plasma
frequency. In the third criteria, 7 is the mean time of collisions among charged particles

and neutrals. [3].

1.2 Non-Degenerate or Classical Plasmas Regime

The temperature and particle number density are the most important parameters in

plasma. The non-degenerate or classical plasma regime can be characterized by a low

3



number of density and high temperature. And to handle such type of plasma dynamics,
the classical laws with Maxwell-Boltzmann statistics are sufficient to elaborate the dy-
namical response of the plasma and the energy distribution of classical plasma species
that are at thermal equilibrium. However, the non-degenerate or classical plasma can

be defined by the coupling parameter as

1
e’ns
EoKBT'

The coupling parameter is the ratio between interaction energy to the average kinetic

energy i.e g. = —g;@, and therefore, it is a dimensionless parameter. The interaction
m
1
2

e‘n3
€0

energy i.e Fj,; is of the order of electric energy , here the mean distance between
the two charged particles is n7s.

If g. < 1, then it means that thermal energy is greater than the interaction energy, and
the plasma is weakly coupled called collision-less plasma. In this plasma environment,
the particle collisions or Coulomb interaction between two particles are negligible and
hence neglected. Whenever, g. ~ 1 or larger than one the collision factors dominate

and cannot be ignored, and thus the plasma is strongly coupled [6].

1.3 Magnetized Plasma

A plasma is said to be magnetized if the strength of the magnetic field B is strong
enough to change the trajectories of the plasma species. This magnetic field changes
the plasma nature to anisotropic and therefore, the plasma responds differently to
forces that are parallel and perpendicular to the magnetic field direction. As the mag-
netic field strength increases the decrease in the helical orbits occurs and finally these
helical orbits become very tightly wound and tying particles to the magnetic field
lines effectively. However, the magnetic field has a direct impact on the particles gy-
rating in the magnetic field, so the Larmor radius (gyro-radius) and cyclotron frequency
(gyro-frequency) are also effected. The Larmor radius (gyro-radius) and cyclotron fre-

quency (gyro-frequency) are expressed as:



_ 1.4

P= (1.4)
lq| B

C: ) ]_5

o=t i

where p and w, is the Larmor radius (gyro-radius) and cyclotron frequency (gyro-
frequency), respectively. Whereas, m and ¢ is the mass and charge of the plasma
species, and for each plasma species there is a distinct gyro-radius|3|. If species tem-
perature is comparable then the ion gyro-radius is larger than electron gyro-radius and
vise versa,

Mme

Pe ~ (E)szw (1.6)

7

Consider L as a characteristic length scale, and when this length L is very small as
compare to gyro-radius i.e p > L, then the trajectory of the particle is a straight line.
While on the other hand if p < L, then the plasma system is said to be magnetized.

The magnetization in a plasma can be measured by magnetization parameter denoted
by ¢ and defined as

J

p
Ly 1.7
X (17)
Sometime in a plasma the ion species are magnetized but electron species is not mag-
netized, but ignoring these type of situation and take both species of the plasma as a

magnetized species. This state is generally achieved when

0;

Pi
— <1 1.8
< (1)

1.4 Dusty Plasma

In most cases, a plasma which is usually the combination of electrons and ions species
co-exists with micron or sub-micron additional charged constituents (called dust parti-

cles). These charged constituents are either positively or negatively charged depend-



ing on the plasma’s surrounding environment . Thus the mixture of electrons, ions,

dust particles, and sometimes neutrals forms a "dusty plasma".

For the very first time when the research on the space plasma is started, the dust
particle is considered as an impurity that does not change the behavior of the plasma.
They just considered the effect of the dust component to be the sum of the effects
occurring for individual grains. But after that, it was understood that such a con-
sideration is not complete, but we have to count the new effects of collective behav-
ior of plasmas containing dust grains. In Space plasma, dust is almost present in
all environments including earth’s upper atmosphere and magnetosphere, interstellar
clouds, and in cometary tails, etc. The dust also plays an important role in the dy-
namics of stellar wind, explosions in nova and supernova, and in the formation of
stars and planets |7]. Likewise, the worth of the dusty plasma received a very huge
improvement in the research of the zodiacal light clouds and when Jupiter’s ring was
discovered and the active volcanism on lo, with its ejection of fine ash into the Jo-
vian magnetosphere was first detected by the detector aboard the Voyager space-
craft [8]. Historically , the main interest of the problems of the plasmas containing
dust was not only related to the industrial aspects of the dusty plasma but also
space plasma. The dusty plasma has the main role in space plasma and was real-

ized a century ago [9].

1.5 Characteristics of Dusty Plasma

A dusty plasma loosely defines as "a plasma having, electrons and ions species with an
additionally charged constituent called dust particle". This extra component increases
the complexity of the plasma system, that’s why the dusty plasma is also called com-
plex plasma. Dust grains are very massive i.e., billion times heavier than protons and
their size range from nano-meters (1072 m) to millimeters (10~2m). The size and shape
of the dust grains are different and they can be metallic, conducting, or made of ice par-

ticulates.



A plasma with additional dust grains or particles titled as either "dust in a plasma"
or "dusty plasma" depending on the characteristic lengths, i.e., the dust grain ra-
dius (r4), average inter-grain distance (a), the Debye radius (Ap) and the dust plasma

dimension. The condition for the "dust in a plasma" is:
rqg < Ap < a, (19)

in this situation the dust charged particles are considered as a collection of isolated
grains, they cannot participate in collective behavior and then the local inhomogeneities

cannot be ignored. On the other hand, the condition for the "dusty plasma" is
ra < a < \p, (1.10)

in this situation, the charged dust particles participate in the collective behavior and
here we take the dust grains as massive charged particles similar to charged neg-
ative or positive ions. Due to the presence of the charged dust grains in plasma,

the existing low-frequency waves are modified, i.e.,

Ion-acoustic waves (IAW)

Lower-hybrid waves (LHW)

Ton-acoustic (IA) solitons

Ton-acoustic (IA) shocks etc.

However, some new kinds of low-frequency dust related waves are also indicated, i.e.,

e Dust-acoustic waves (DAW)
e Dust-ion acoustic waves (DIAW)

e Dust-ion acoustic (DIA) solitons



e Dust-ion acoustic (DIA) shocks
e Dust-acoustic (DA) solitons

e Dust-acoustic (DA) shocks

1.5.1 Macroscopic Neutrality

A dusty plasma is said to be macroscopically neutral when their is no external distur-
bance is present. In this condition, the electric charge is zero because no external forces
are present and the dusty plasma is in equilibrium. Therefore , the equilibrium charge
neutrality condition is

qiNio = ENeo — qdNdo, (1.11)
where 1,9, N, Ngo, are the unperturbed number densities of the ions, electrons and dust
grains respectively and e is the magnitude of the electron charge. However, ¢; is the
ion charge and can be expressed as ¢; = Z;e, where Z; = 1, and q4— Zge or (—Z4e)
is the dust particle charge when the dust grains are positively or negatively charged,
and Z; is the number of charges resides on the dust grain surface.

Usually, one thousand to several thousand elementary charges are collected on
the dust grain surface and Zyng4 approaches to n;y even when the unperturbed den-
sity of dust grain is very much less than ion unperturbed density. When the back-
ground electrons take part in the charging process of the dust particles then we can-
not ignore the depletion of electron number density, but actually, complete depletion
of electrons is not possible. Consequently, for negatively charged dust grains equa-

tion (1.11) becomes

Nio ~ Zdndo. (112)

1.5.2 Debye Shielding

The influence of the electric field of an individual charged particle and surface that
has some potential is observed by other charged particles inside the plasma at a dis-

tance called Debye radius.



Let us put a small charged ball inside a dusty plasma whose species are electrons,
positive ions, and dust particles (positive or negative). The ball would attract particles
of opposite sign, so if the ball is positively charged then it would be shielded by the
electrons and negatively charged dust particles. Similarly, if the ball is negatively
charged then it would be shielded by positive ions and positively charged dust particles.
If the dusty plasma is cold and there are no thermal motions, then there would be just
as many changes in the cloud as in the ball, this is referred to as a perfect shielding,
and there would be no electric field present outside the cloud. On the other hand, when
plasma is not cold then the edge of the cloud occurs at the radius where the thermal
energy of the particles and potential energy is approximately equal, while particles at
the edges of the cloud have enough thermal energy to escape from the cloud.

Now we are going to calculate the approximate thickness of a charged cloud under
some assumptions, i.e. the potential ¢(r) at center (r = 0) of the cloud is ¢4 and the
dust-ion mass ratio Z—‘: > 1. Hence dust particles prevent ions to move significantly.
The electrons and ions in the dusty plasma are assumed to be in local thermodynamic
equilibrium. The number density of electrons (n.) and positive ions (n;) obey the

Boltzmann distribution, i.e.,

Ne = neoeajp(;j; ), (1.13)
and
n; = nioea:p(—;j;), (1.14)

where n.g, n;p are the electron and ion number densities respectively at equilibrium,
while T, T; are the electron and ion temperature, respectively. For the current situa-

tion, the Poisson’s equation can be written as:
V3¢, = 4m(ene — en; — qana), (1.15)

where ng is the number density of dust particles. According to our consideration, inside
and outside the cloud the particle number density is same, i.e. qqng = gango = €neo -

enjo. Now putting equations (1.13) and (1.14) into equation (1.15), we get

€2 NenOs T eneof eQs )2+ *nin@s eno eds )2> (1.16)

2 :4< _
Vs =Am\ T KsT,) " KpT, k5T,



Thus, under the approximation 4 equ < 1 and e¢s - < 1, equation (1.16) becomes
V26, = (1o ! >¢ (1.17)
X5, X,

1 1
where Ap. = (%) 2 and A\p; = (%)2 are electron and ion Debye radius, re-

spectively. Our approximations, i.e ed)s < 1 and eqﬁ* - < 1, cannot be effective near
the region r = 0 (this region is Called sheath). In thls region the potential drops very
quickly and cannot contribute to the thickness of the cloud. Now we consider some
value of the potential, i.e ¢, = ¢506l’p(—%), and finally we obtain the dusty plasma
Debye radius from equation (1.16),

>\De/\Di
V A%e + >\2Dz

Equation (1.18) represents the shielding distance in a dusty plasma. If we have neg-

Ap = (1.18)

atively charged dust grains then the particle number density at equilibrium and tem-
perature of electrons and ions are related as n.g < n; and T, > T;, i.e. Ap; < Ape.
Thus from equation (1.18) it is clear that Ap ~ Ap;. From this result: it is clear that
temperature and the number density of ions governs the shielding distance or thickness

of the sheath in a dusty plasma.

On the other hand, if dust particles are positively charged which indicates that
most of the positively charged ions are attached on the dust grains surface, then we
obtain a relation between temperature and equilibrium particle number densities, i.e.,
Toni < Tineo, which indicates that Ap. < Ap; and from equation (1.18), we get Ap ~
Ape. Thus, in a dusty plasma where dust particles are positively charged the shielding

distance is usually governed by the temperature and the density of electrons.

1.5.3 Characteristic Frequencies

Frequencies have a significant role when we study waves and especially when these
waves are generated in a plasma environment. When a plasma is slightly disturbed
from its equilibrium position it gives rise to collective particle motion and the elec-

tric field will be established in such a direction to restore the charge neutrality and
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pull the charges back to their equilibrium position. But due to the inertia of the par-
ticles, they overshoot the equilibrium position, and then the field changes its polarity
and pushes particles back to the equilibrium position. These particle motion about
their mean position with a characteristic frequency called plasma frequency (w,).
Now we obtained an expression for the plasma frequency (w,), under the following

assumptions, i.e., our dusty plasma environment is:

Uniform

Cold (mean there are no thermal motions, i.e., KgT = 0)

Unmagnetized

e No sources and sinks

No pressure gradient forces

For this situation our governing equations are:

Continuity equation

Ons + V.(ngvs) =0, (1.19)
Equation of motion
Byvs + (05.V)v; = —(L)Ve, (1.20)
ms
and Poisson’s equation
V2= —4m ) quns. (1.21)

Note that by 0, we mean % and V is the three dimensional space operator. To make
the linear theory valid, we assume small amplitude oscillations. Therefore, the terms
containing higher-order amplitudes are neglected.

By linearizing equations (1.19), (1.20), (1.21), we consider ns = ng + ng, where

ng1 <K ng. Under these assumptions we obtained a relation

Mg

RV = —4ny (”LQQ> V2, (1.22)
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where ¢, g5 is the dusty plasma potential and charge of the species (i.e. electrons,
positive ions and dust particles), and ny, m, are the equilibrium number density of
the dusty plasma species (i.e. electrons, positive ions and dust particles) and mass of
the plasma species, respectively.

Now, integrate the equation (1.22) twice over space (three dimensional space) under
suitable boundary condition, i.e. ¢= 0 at r = 0 (at equilibrium). Then equation (1.22)
will be transformed and become second order ordinary differential equation. Thus, we

replace % by %

d*¢
e + wf,¢ = 0. (1.23)
In this equation w), is the plasma frequency related with plasma species given as
Z AT g0q>
2 _ SOQS
P —_— m—s. (1.24)

S
The plasma frequency is not same for all species but depends on the charge and mass
of the specie. Therefore, following are plasma frequencies for electron, positive ion and

dust particle, respectively,

e Electron plasma frequency(here electrons oscillate around ions having this fre-

( Arnege? ) % )

Me

qUency), Wye =

e Positive ion plasma frequency (here ions oscillates around dust grains having the

following frequency), w,; = (%)%

e Dust plasma frequency (dust particles oscillates around their equilibrium posi-

tion), wyg = (%)%.

1.6 Dust Charging Processes

The main thing of dusty plasma is to understand the charging process of dust grains.
The elementary process of dust grains charging is somehow complicated and depend

on the surrounding plasma environment. The basic charging processes are
e Interaction of dust grains with gaseous plasma particles,
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e Interaction of dust grain with energetic particles, i.e., electrons or ions,

e Interaction of dust grain with photons.

When dust grains are introduced in a plasma environment, then plasma species (elec-
trons and ions) are collected by the dust grains. This collection of plasma species on
dust grains act as a probe. Therefore, the dust grains are charged by the surrounding
plasma environment. Currents are produced due to the plasma species collection on

the dust grains surface, so the dust grain charge (¢q;) is determined by the equation

dqq

= i1 In this equation, [; represents the current related with j plasma species

(electrons and ions). But at equilibrium, there will be no current on the dust grains
surface, i.e ) ; Lijo=0, here Iy represents the equilibrium current. This will lead to
the conclusion that dust grain surface grab some potential ¢, (¢, represents the grain
potential), which is —2.5% (where T = T, ~ T;) for simple hydrogen plasma and -
3.6% for simple oxygen plasma [17|. This indicates that whenever dust grains appear

in a plasma it usually gets negatively charged.

Besides the interaction of dust grains with gaseous plasma particles, there is also
the interaction of energetic particles with the dust grain surface. There are two possi-
bilities, i.e., (i) the energetic plasma particles will be back-scattered or reflected, and
(ii) these energetic particles will pass through the dust grain material . So, when the
energetic particles pass through the dust grain material then the particles either lose
their energy partially or totally. During the process when energetic particles lose par-
tial energy, then a part of the energy can accelerate further electrons which are then
able to escape from the material (known as secondary electron emission). Finally, the

dust grain material becomes positively charged after secondary electron emissions.

When photons stick to the dust grain surface, it causes photo-emission and makes
the dust grain surface positive due to the emission of electrons. These emitted electrons
are then trapped onto some other grains which become negatively charged. There are

so many other charging mechanisms, namely

e Thermionic emission
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e Field emission
e Radioactivity

e Impact ionization etc.

To discuss all these processes simultaneously is a complex job, therefore, we take a
simple way by considering the dust grain as an isolated dust grain. After that, a detail

explanation of non-isolated dust grains will be provided.

1.7 Isolated Dust Grains

If the plasma with dust constituent obeying the relation ry < A\p < a, where r4, Ap
and "a" are the dust grain radius, plasma Debye radius and average inter-grain distance
respectively, then the plasma is called "dust in plasma". Therefore, some important

mechanisms of dust charging in "dust in plasma" are discussed below.

1.7.1 Collection of Plasma Particles

Considered an unmagnetized plasma whose species are electrons and ions and a finite
size neutral dust particles. The electrons reached very quickly onto the dust grain sur-
face than ions because the thermal speed of electrons are much more than ions and
make the dust grain surface potential negative. While the plasma ions absorption makes
the dust grain charge and potential positive. The electron and ion current gets affected
by the potential of the dust grain surface, and it also depends on the relative speed be-
tween plasma and dust grain. Therefore, for the negative surface potential of the dust
grain, the ions are attracted and electrons are repelled . When the surface potential
of a dust grain is positive then it will attract the electrons and current transfer by elec-

trons increases, and similarly, it will repel the ions and current due to ions decreases.

Now, these charging currents (I;)can be calculated by using orbit limited motion
(OLM) approach [18, 21]. Let us considered a j plasma particle come closer to

a spherical dust grain of radius "ry" and "¢4" charge. When the plasma particle
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7 enters the spherical dust grain’s Debye sphere the effect of the electrostatic forces
will be felt by the particle and thus change its trajectory and just grazing collision
can occurs. Let’s consider the speed of plasma particle before and after grazing col-
lision with dust particle is v; and vy; respectively and impact parameter is b;. The

cross-section for the collision between the dust and the plasma particle j is

o = b2, (1.25)

J

In grazing collision, the conservation of momentum and energy has a key role and can

be expressed as

MjUjbj = ijngd, (126)
and
1 1 Qjqa
B U5 = §MjU§j + ;d ; (1.27)

where ¢ and (); are the charge on dust particle and charge on j plasma particle
respectively. Also g4 = C¢p, where C' is the capacitance of spherical dust grain and ¢p
is the potential difference between dust grain potential (¢,) and the plasma potential
(¢p), ie., ¢p = ¢, - ¢p. The capacitance of spherical dust grain is expressed as C =
rq exp(—x%). When we assume that A\p < r4 then C ~ r4. Using equation (1.25) in

D

equation (1.27), we get

1— =4 (1.28)

By simplification of equation (1.26), we get

1}2

b? :rﬁ%. (1.29)
J
Now, multiply equation (1.28) with 72 and put it in equation (1.25),. Finally, we get

the expression for the cross section,

20) .
ol = m"fl(l — T?LJZZ >
777

(1.30)

The dust grain charging current (I;) carried by j plasma species with velocity distri-

bution can be expressed as

]j = Q]/ UjO'?fj(Uj)de. (].3].)
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Where f;(v;) is the velocity distribution function and v}* is the minimum velocity re-
quired by the plasma particle to hit the dust grain.

For the lower limit of integration, assume two kind of situation, i.e., Q;¢p < 0 and
Q;¢p > 0. For the first situation (Q;¢p < 0) their is a force of attraction between dust
grain and plasma particles, thus the integration of equation (1.31) will be performed
on the whole velocity domain. While in second situation (Q;¢p > 0) their is a force
of repulsion in dust grain and plasma particles. To allow the collision we take vj* > 0,

therefore, v7" can be expressed as

2Qj¢D>é
M= —-——=]". 1.32
o - (-2 L3
Consider the velocity distribution function as Maxwellian, i.e.,
M; \3 Mjv?
(o :N(_ﬂ ) <_ 2] ) 1.33
fitvi) = Nl 32, 1) P\~ 2, (1.33)

where N; is the particle number density. Now, substitute equation (1.30) and (1.33)
in equation (1.31), to get a result for both situations.

For attractive potential (Q;¢p < 0),

KgT;\ 3 Qo
I = 4wr§Nij(27fM?) (1- ﬁ) (1.34)
j j
For repulsive potential (Q;¢p > 0),
KpTj\ 3 -
I = 4wr§Nij<ﬁ> zexp(?(ij;). (1.35)
j j

These situations are simple where the ions streaming is not involved [10]. This OLM
theory is further extended to cylindrical dust grains and dust grains which are less

symmetric than spherical and circular cylinders [19].

1.7.2 Photo-emission

When several photons having hv energy greater in magnitude than photoelectric work
function (wy) of dust grain strikes on the dust grain surface then it releases photoelec-

trons. The photo-emission of the electron depends upon
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e Wavelength (\) of the incident photons
e Surface area of dust grains

e Properties of the dust grain material.

The photo-emission process makes dust grain positive with the associated positive
charging current.

Suppose the photoelectric work function (wy) of the material of dust grain is pos-
itive, i.e., for excitation of the electron , the incoming photon must have energy hv

> wy + %e. Therefore, maximum dust grain charge is roughly

Ta

4= (hv — wy) (1.36)

=
Since the dust grain surface is positive (¢p > 0) then some of the electrons come
back to the dust grain surface and the photoelectrons having more energy will es-
cape by overcoming the dust grain potential. Therefore, the net current determined

by the balance between the photoelectrons comes back to the dust grain and photo-

electrons escape from the dust grain surface.
eQa )

I,= qbrﬁerQY;Dexp( — KoT,

where J,, @, Y, and T}, are photon flux, efficiency of the absorption for photons and

(1.37)

average temperature. This current equation is valid only when photo-emitted electrons

follow a Maxwellian distribution [10].

1.7.3 Radioactivity

Radioactivity is a process in which unstable atomic nuclei radiate (lose energy). This
process in a body may cause a charging mechanism by the emission of charged species
and due to primary accelerated species the secondary electrons also escape from the
surface. In 1981, Whipple concludes that the amount of ordinary radioactive material
in a body is insignificant for charging effects [20]. But on the other hand, Yanagita in
1977 indicates nova and supernova dust grains can have remarkable radioactive levels
which are 8 emitters. The 8 emission from large dust grains can make it positively

charged [10].
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1.8 Non-isolated Dust Grains

Dust grain becomes non-isolated in the situation ry < a < Ap, which we called dusty
plasma situation.

Since the charge neutrality condition is given as:

N, Ny
—=1—-Z;— 1.38
Nz‘ dNia ( )

where N; and N, are the particle number densities of positive ions and electrons. If
Zd% < 1, then dust particles would considered as isolated, while for Zd% ~ 1 then
dust particles would considered as non-isolated dust particles. Therefore, for the non-
isolated case, Ny increases at the same time Z,; decreases rapidly. This will leads to the
conclusion that particle number density increases in the non-isolated case which means
that dust grains together have a large tendency towards electrons but the number of
available electrons for dust particles decreases.

For negatively dust grain, the currents are:

KBT % €¢d
I = —4mriNee (52 ) eap( o) 1.
7r;Nee oIl exp KT (1.39)
and )
KpTi\z €Pq
I = _47TT‘21Ni6(27rMi) exp(l— KBTZ), (1.40)

where I; < T, because M, < M;, therefore dust grain surface is negatively charged.
Ion current is increasing and electron current is decreasing until I; = - I, which implies

that I, + I;= 0, we get Using equations (1.39) and (1.40) in I, + I; = 0.

n 2 €¢d Ne Te 2 €¢d
) - 51) =% GE) ew(r)
M; KgT; N; \ M, KgT.

By using charge neutrality condition, we get

T; M, 3 edq edq Ny
1— ) (- ):1—2—, 1.41
(TEM) ( K1) P\ 7 KT N, (1.41)
where ¢4 and Z,; are related as
2, = 90", (1.42)
e
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Using equation (1.42) in (1.41) and take T, = T, = T
e¢a ePa M\ = Parand
e (- ar) = (Gr) T (0 mR),
( KT )P\ KyT) T\, T e

L () 1 )2 o

KBT Mz n;e KBT
ey M.\ 3 ePq edq
1— - ( ) [1 P } ( ) —0, 1.43
ko7 \a) U T R\ KT (1.43)
where P = 4w Ngrgh3, and A3, = 225 By solving this equation numerically we

calculate ¢4, and Z;. By taking N;, T and r4 constant then the variation in logP with

;BdT shows that when n, increase slowly (it mean that dust grain inter-space distance
slowly decreases) and overshoot a critical value, the value of —% starts to decay

which indicates that the average dust grain charge Z; starts to decrease.

1.9 Different types of Non-linear Structures

The nonlinear wave structure strongly depends on the type of nonlinearity. In general,

three types of nonlinearities are discussed in plasma environments, i.e.,

e Scalar nonlinearities (Solitons, multi-solitons, envelop solitons, Shocks etc.)
e Vector nonlinearities (Vortices)

e Chaos (Chaotic evolution or behavior)

1.9.1 Solitons

Solitons are nonlinear and stable profiled dip or hump-shaped structure. Solitons main-
tain their shape despite dispersion and nonlinearity of medium. And it has self local-
ized solutions of a nonlinear partial differential equation that takes into account the
evolution of nonlinear systems. Before the mathematical representation, solitons are

detected as pulsed type structures of density, potential, electric field, or some other
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physical quantity in the medium.

One can define a soliton as a solitary wave having the following unique properties [43].

e Shape of solitons does not change, i.e. solitons are shaped invariant during
their propagation. This property (shape invariant) of soliton has occurred in

the plasma environment where dispersion and nonlinearity both are present.

e Solitons interact nonlinearly and during two soliton waves collision, the waves
just pass through each other without changing the shape but phase shift can be

occurred.

e Solitons are localized waves and a soliton vanishes asymptotically. For example if
we have a localized structure of electrostatic potential ¢(z,t) then we can impose

condition i.e, ¢(x,t) — 0 as|z| — Loo.

When wave phase dispersion and nonlinearity comes at the same phase then an isolated
hump or dip like wave profile comes to existence called soliton with no rapid oscillations
inside the packet . This type of soliton is called the aforementioned KdV type soliton
because its dynamics are governed by Korteweg-de Vries (KdV) type equation. And
when wave group dispersion balance the nonlinearity then another type of soliton
formed which is known as envelope soliton. Envelope soliton is a localized modu-
lated wave packet whose dynamics are governed by nonlinear Schrodinger equation
(NLS). The KdV equation shows the dynamics of wave pulses itself, while on the
other hand, the nonlinear Schrodinger equation controls the far-field dynamics of
the amplitude of the almost monochromatic (narrow-banded ) wave train propagat-
ing in a weakly nonlinear and strongly dispersive medium .

Solitons are abundantly in nature, such as in water (like Tsunami waves, referred to
as solitons in literature) and in space, etc. A familiar example of solitons are moving
clouds that are observed in Australia, Gulf of Carpentaria.

Nonlinear phenomena in nature are very common than linear phenomena. Since
the very first time observation of nonlinear phenomena called solitary waves is made

by John Scott Russell (Scottish naval architect and an engineer) during riding a horse
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in the Union canal in Edinburgh in August 1834. He saw a hump of water somehow
thirty feet long produced in a narrow canal that was traveling with constant speed
without any change in its shape for a distance of about two miles. He observed the
strange behavior of waves above the surface of the water and carry water along with
it unlike the ordinary water wave having crest and trough. Therefore, Russel called
this strange and unique wave a "solitary wave of translation". This is how the birth of

nonlinear science (like solitons, envelope solitons, and shocks, etc) came into being.

In 1844 Russel reported his results based on several experiments to explore this
unusual unique wave [44]. While next year in 1845, Airy published his analysis on such
types of waves which contradicts the theory proposed by Russel [45]. In Airy’s analysis,
he finds that during propagation this wave does not maintain its shape. And also in
1847 Stokes showed that in nonviscous fluids, such type of waves could not exist [46].
After many years that is in 1865 Russel’s work was confirmed by a French scientist
named Bazin. For this purpose, Bazin performed many experiments in a canal close
to Dijon. In years 1871 and 1876, Boussinesq and Rayleigh confirmed the existence
of such types of waves in the absence of dissipation because of the decrease in the
dispersion and increase in the velocity of the wave because finite-amplitude balances
each other resulting in a wave of permanent form. In 1895 the well known Korteweg
deVries equation was derived by Korteweg and deVries during their observations on
competition between steepening and dispersion in traveling shallow water waves which
confirmed the existence of solitary waves [47]. And in 1967 KdV equation was derived
by Zabusky and Kruskal in the long-wavelength limit and found that when two waves
interact with each other then they emerge with only change in their phase shift whereas

their shape remains the same [48].

1.9.2 Shock Waves

The shock wave is a propagating disturbance which appears in a medium due to nonlin-
ear and dissipative effects. The shock waves carry the energy and can also pass through
the medium like liquids, solids, gases, and plasmas, and in some cases in absence of a

material medium, like electromagnetic fields in free space. When state variables such as
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velocity, density, etc. of the medium experience sudden changes because of a surface of
discontinuity which propagates through the medium then such surface of discontinuity
is termed as a shock wave. Shock waves can further be classified into two types, i.e.
compressive (positive) shocks, and rarefactive (negative) shocks. Compressive shocks
travel in a direction of the minimum density of the medium whereas rarefactive shocks

propagate along the direction of maximum density of the medium [49].

Nonlinear shock waves are large-amplitude waves having the following properties.

e When a frame moves with the shock then subsonic velocity remains behind

whereas supersonic velocity remains ahead of the shock.

e Change in velocity and strength of non-planar imploding (exploding) shocks de-
pends on the distance from the center of origin. As the distance increases the

velocity and strength decrease and vice versa.
e When a fluid is compressed because of a shock, its entropy increases.
e Formation of a steep wavefront across which the state variables change abruptly.

e Nonlinear superposition principle holds during the interactions and reflection of

shock waves.

Formation of shock wave required damping or dissipative mechanism. The dissipation is
provided by viscosity or thermal conductivity of the medium in ordinary fluids. But in
plasmas, other processes also play an important role which appears because of collective
effects, i.e. Landau damping, particle trapping in a potential well, and reflection.
These processes are collision-less that engender the collision-less shock structures whose
transition layer can be much smaller as compared to their mean free path. The earth
bow shock is an example of collision-less shock structures.

A mathematical theory of shock waves was the first to predict the existence of
shock waves [50]. And Toepler used a spark discharge in 1864 to produce shock waves
[51]. Many researchers like Mach, Wentzel, and Salcher [52, 53| performed experiments

on explosions and blast waves to determine the speed of shock waves by using the
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soot method invented by Antolik [54| to investigate the shock wave interactions. Lord
Rayleigh argued that the shock waves can be as thick as of the order of the ratio of
specific gas viscosity and wave velocity [55]. The well-known Burger equation was
derived by Bateman in 1905 [56] whereas Burger studied weak turbulence by using this
equation and from then this equation is termed as Burger’s equation [57]. This is a
model equation for several dissipative and diffusion processes in convention dominated
systems and is responsible for the formation of weak shocks. When dispersion plays
a role along with nonlinearity, dissipation, and diffusion mechanisms on spatial and
temporal scales then Burgers equation can be combined with Korteweg deVries equation
to get KdV Burgers (KdVB) equation which has been derived in long-wavelength limits

to obtain the wave dynamics for a variety of plasma systems.

1.10 Dusty Plasma in Space

Dust is an abundant particle that presents on large scale in space plasma. Interstel-
lar clouds, circumstellar clouds, and the solar system contain dust particles in large

numbers.

The space between the stars (i.e, interstellar space) is filled up by gas medium and
dust particles. The collapse of massive molecular clouds can give birth to new stars
which decrease the gas content of the interstellar medium. The dust grains in the
interstellar clouds or circumstellar clouds are present in different forms, i.e. it may be
dielectric (ice, silicates, etc) or metallic (graphite, magnetite, amorphous carbon, etc).
In the interstellar clouds, certain parameters of dust-laden plasma are given as
Electron number density n, = 1073em =3 to 10~%em =3
Temperature of electrons 7T, ~ 12K
Dust particles number density ng = 10~ 7em ™3
Dust grain radius ry >~ 0.2um
Neutrals neutral density n,, ~ 10*cm =3

Debye screening radius 5= < 0.3. [10]

Beside these, dusty plasma also presents in different region of the space, like

23



Interplanetary space

Comets

Jupiter’s ring system

Saturn’s ring system

e Uranian ring system

Neptune’s ring system

Earth’s atmosphere

1.10.1 Interplanetary Space

The space between the stars is not empty but occupied by photons (electromagnetic
radiation), cosmic rays, hot plasma (electrons and ions), solar wind, magnetic field,
and dust particles. The dust particles are distributed in the region of the inner so-
lar system with the contribution of the asteroid belt which causes the zodiacal light.
When the asteroids collide with the asteroid belt that can also produce interplanetary
dust. The earth also receives the dust which is an accretion of interplanetary dust
estimated 40,000 tonnes per year, and the interplanetary dust is also detected in the
stratosphere. This interplanetary dust is been collected by NASA by their research
aircraft for the past several decades. At the altitude of 18 kilometers to 20 kilometers,
the dust particles have been detected. In the interplanetary space, the inside and out-

side interplanetary dust particles are shown in figure 1.1 respectively.

1.10.2 Comets

Comets are like stars but not the stars since it is the smallest members of the solar
system. The comets have an important role in understanding the cosmic and solar

systems. It has been said that during the first stages of our planet, the long period
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comets may have transported water and organic materials which are necessary for the
evolution of life. It has been said that the interaction of dust with solar electromagnetic

radiation is the key which leads to the discovery of solar wind [11].

Figure 1.1: A view of comet Hale-Bopp showing.

Most comets are composed of three components, ahead, a nucleus, and a tail (dust
tail or may be a simple plasma tail), and are considered as a globe of dust and ice.
Coma and nucleus which in the middle of the comet less than 10km in diameter, form
the head of the comet. Comet is usually surrounded by clouds of diffuse materials
(coma), when the comet comes closer to the sun then the coma size increases and
gets more brightness. When this distance decreases the comet develops a tail in the
opposite direction of the sun from the head, and this tail is then expanded in millions
of kilometers. However, when the comet is far away from the sun its material in
the nucleus is in solid form. But when the distance between the comet and the sun
decreases, the material in the comet nucleus gets warm and warm and then finally from
a comet nucleus form a coma of gas and dust. The dust particles in the coma have the

property to reflect more sunlight, while the gas in the coma absorbs ultraviolet light
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and begin to fluorescence. Now, when this distance decreases further the fluorescence
intensity becomes greater than dust particles reflected sunlight. Nearly at this stage,
the hydrogen envelope is also formed due to the absorption of ultraviolet light that
makes the hydrogen escape from the comet’s gravity. This envelope which is formed
due to the escape of hydrogen cannot be seen from the earth (due to the absorption of

this light in our atmosphere) but can be detected by spacecrafts.

As the comet comes closer to the sun the material inside the head of the comet
accelerates with different velocities (depend on the material’s size and mass), due to
the radiation pressure of the sun and solar wind. Therefore, the tail which contains dust
particles accelerated slowly and become curved. The ions (which are lighter particles
than dust) in the comet tail can accelerate more and look like a straight line. So, the
ion tail extends away from the comet in opposite direction to the sun [10]|. Figure 1.2,
a view of comet Hale-Bopp showing two distinct tails, i.e thin blue plasma tail and

broad white tail of dust particles.

1.10.3 Jupiter’s Ring System

Jupiter’s ring was firstly discovered by Voyager 1 that was basically in the search
of Faint ring system. After Voyager 1, a more clear image was taken by Voyager 2.

Jupiter’s ring is composed of three basic components, i.e.,
e Main ring
e Halo ring

e Gossamer ring

The main ring is about 7 x 103 kilometers wide and their outer boundary is about
1.29 x 10° kilometers from the center of the planet . This ring also encompasses
the orbits of the two small moons (Adrastea and Metis ), which may act asa source

for the dust that makes up most of the ring.
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1.10.4 Saturn’s Ring System

Saturn’s ring was firstly discovered by Galileo (in 1610) using his telescope. This ring
confused the researchers and astronomers of that time. Their confusion increased since
the Voyager 1 and Voyager 2 image the ring system in 1980 and 1981, respectively.
Voyager 1 closest approach at a distance of 6.42 x 10* kilometer while Voyager 2 closest
approach is 4.1 x 10* kilometers, therefore, Voyager 2 observe the ring system at a
higher resolution than Voyager 1 and report many unseen ringlets [12]. The main
rings from the outward direction are known as A, B, and C rings. Rings A and B are
divided by the Cassini Division, i.e, the largest gap in the rings. The fainter rings are
also discovered recently which are called G, D, and E rings. D ring is extremely faint
and also close to the planet. At the outer side of the A ring, there is another ring
called the F ring. Saturn’s ring is primarily composed of ice and range from micron
to meters in size. The exciting characteristic observed by Voyager 1 and Voyager 2
in the ring system of Saturn was nearly radial spokes strength for the dust-plasma
interaction study in the planetary magnetosphere. The spoke model is based on the
consideration that spoke contains electro-statically floated micron and sub-micron dust
size dust grain. In Saturn’s ring, the features of the plasma and dust vary from one
ring to another, i.e.,

E ring:

ne = 10 em™3

T, = 10° K to 10° K
ng = 107" em™3

rqg ~ 1 um

and % = 0.1 um

F ring:

ne = 10 em™3

T, = 10° K to 10° K
3

ng <10 em™

rqg = 1 um,
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and & < 1077

D
Spokes
ne = 0.1 em™ to 10% em™3
T. ~10* K
ng ~1cem™3
rqg ~ 1 um

and 3= < 1072 [10].

1.10.5 Uranian Ring System

Uranian ring system discovery was reported in the early few months of 1977 during
an examination of an occultation by the planet. Before the planet, the blinking star
(blink five times) was observed, and later its blinking is also observed five times. These
blinking indicate that the planet was surrounded by five narrow rings. But this ob-
servation is not final, and some other observations show that there are actually nine
major rings, i.e a, 5, v, 1, 0, €, 4, 5, and 6. In 1986 Voyager spacecraft took certain
images of the ring system and it also notices that these rings are surrounded by a belt
of dust particles. Some images taken by the Voyager spacecraft look brighter than
their environment which indicates that there must be dust particles there because dust

particles have a property that reflects sunlight [10].

1.10.6 Earth’s Atmosphere

In the earth’s atmosphere at an altitude of 80 km to 90 km, polar summer mesopause
is located where the dust particles are detected [13]. In polar summer mesopause, the
most puzzling phenomenon has been detected in 1885, i.e the formation of clouds known
as "noctilucent clouds" (NLC). In the year 1957 to 1958 (International Geophysical
Year), some other peculiarity of polar mesopause has been reported that it was much
colder in summer than in winter, which indicates that NLCs were composed of ice
(which is formed at very low temperature, even below 100K).

Besides these, there are many other theories that involve charge dust particles

with a total charge density that is significant compare with electron or ion com-
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ponent. These dust particles are highly charged (positively charged) by the photo-
emission dust charging process. When the photo-emission process is negligible then
the charging of dust particles is only due to the collection of plasma particles, there-

fore, the dust particles will get negatively charged [14].

1.11 Dusty Plasmas in Laboratories

Laboratory dusty plasma has some distinct characteristics from those of space and
astrophysical dusty plasmas. The first thing which differentiates laboratory dusty
plasma from space and astrophysical dusty plasma is the laboratory discharges that
have geometric boundaries, and these boundaries structure , composition , tempera-
ture , and conductivity , etc affect the formation and transport of the dust grains.
Second distinguish feature of a laboratory dusty plasma is the external circuit (needs
to maintain the dusty plasma) which imposes spatiotemporally varying boundary con-

ditions on the dusty discharge. Dust occurs in many laboratory devices, such as:

e Direct current (DC) discharges
e Radiofrequency (RF) discharges

e Fusion plasma devices etc.

1.11.1 DC and RF Discharge

Dust particles are traced in DC discharges having large quantities for the same
gases under conditions of RF excitations. Here the dust particles are originated in the
gas phase, for-example carbon monoxide (CO) or silane containing discharges. While,
dust particles may originate from the sputtering of electrodes , for example, metals
(most metals not all metals) and graphite, etc. The formation of dust particles also
depends on the nature of gas, i.e in electronegative gas mixtures, the dust particles
are formed more quickly. The dust particles also occur more rapidly in a gas mixture

where silicon or carbon-like substrates are present, and electronegative free radicals
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are obtained from silicon and carbon by the process of sputtering. The Radio-frequency
(RF) discharges is a very effective trap for negative ions and for negatively charged
dust particles. The electrons have more mobility power than positive ions due to the
less mass from positive ions, therefore, the electrodes receive negative DC bias. Due
to these mobility effects, an ambipolar electric field occurs in the radial direction where
negative ions and dust particles are trapped. The physical properties of dust particles
like growth, charge, position, and temperature, etc, which are formed in DC or RF

discharges depend on many physical and chemical processes involved [15].

Figure 1.2: A view of comet Hale-Bopp showing two distinct tails.

1.11.2 Fusion Plasma Devices

It has been known for a long time that microscopic grains of solid matter (dust)
exist infusion devices. Although, interest is also developed recently in outcomes of
plasma operation and performances [16]. The plasmas in fusion devices like Toka-
maks and Stellarators etc are somehow contaminated by impurities (heavier than

hydrogen isotopes) which are the fuel in fusion reactors. These impurities which
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are known as dust particles are generated by different processes like desorption, arc-
ing and sputtering, etc, and there are some other important mechanisms which are
spallation and flaking of thin films of redeposited material (or the films which were

grown intentionally) for wall conditioning purposes.

Recently, a different type of dust particles was collected from Tokamak experiment
for technology oriented research 94 (TEXTOR-94) in which plasma-wall interactions
are studied is a medium size tokamak, and this collection is done by means of the
vacuum cleaner. The remaining rough particles were removed from the sticky bag of
the vacuum cleaner by a coarse fraction. The coarse fraction basically contains the
irregular size of dark or whitish particles (0.1 to 0.5 millimeter). Coarse particles
may be found in different types and sizes like metal cuttings, spheres (diameter in

between 0.01 mm and 0.1 mm), and irregularly formed pieces , etc [10].
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Chapter 2

Mathematical Model

2.1 Mathematical Model

The fluid theory for the plasma system is modeled by fluid equations and Maxwell’s
equation. These equations then form a number of coupled partial differential equa-
tions, which is very complicated to solve exactly (analytically) rather than approxi-
mate methods. These approximate methods are either numerical or analytical like the
asymptotic perturbative method. To solve the number of coupled partial differential
equations numerically then strong command on some favorable programming languages
are necessary like Fortran, C+-, or some computational software packages like MATH-
EMATICA and MATLAB. The deeper understanding of the physical mechanisms and
reliance of system behavior on different physical parameters over space (it may be
Cartesian, spherical, or cylindrical, etc) scale and time scale, the analytical method
is the best approach. Although, analytical and numerical approaches are needed to
greatly investigate the dynamics of the plasma system.

Generally, two analytical methods, i.e., reductive perturbative method (RPM) and
pseudo-potential method (PPM) are used to solve the number of coupled partial dif-
ferential equations in the investigation of non-linear structure in plasma-like solitary
waves and shock waves, etc. For the investigation of small amplitude nonlinear waves,
the reductive perturbative method (RPM) is used while studying the arbitrary ampli-
tude waves the pseudo-potential method (PPM) is used. Moreover, the RPM has some

advantages over PPM, i.e., RPM is applied to study the non-planar nonlinear wave
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structures and the study of time evaluation of nonlinear waves. The final equation

obtained through both the methods required numerical techniques.

2.1.1 Reductive Perturbative Method

A simple case for the perturbation method is the dynamical system whose model
equation is an ordinary linear differential equation with some small parameter € (which
shows the strength of nonlinearity or weakness of dispersion) and the system is exactly
solvable if this small parameter € is set equal to zero. Then use the regular pertur-
bative method to solve such a system by expanding the dependent variable in terms
of elike X = Xy +eX +e2X?% + X3 +. . ., where X, X, and € are the dependent vari-
able, the unperturbed quantity of dependent variable X and strength of nonlinearity
respectively. Then putting these expansions back into the original equation and com-
pare the terms for various orders of € to obtain a set of equations for various orders,

which can be solved to calculate different orders of the asymptotic solution.

Moreover, if the set of model equations explains a physical system and does not
contain a small parameter, the perturbative methods are still used to solve the sys-
tem if certain parameters of the systems are assumed to be either too small or too
large. Then expand the different state-dependent variables of the system in terms of
these small parameters which leads to getting the asymptotic solution. Considered a
nonlinear oscillation with small amplitude and nonlinearity effect one can go through
a perturbative solution, this weakness of amplitude and nonlinearity can be utilized
to obtain a perturbative solution. Since the regular perturbative methods break for
the highest order derivative occurs to be a multiple of € and due to the existence of
weak nonlinearity in the model equations, the regular perturbation method is also
broke. Therefore, the solution obtained in this way becomes invalid over long spatial
and temporal scales due to the presence of unbounded terms known as secular terms.
To avoid such problems and make sure the logic of the solution over large scales the
singular perturbation methods is used. In this method, the dependent variables and
independent variables of time and space are expressed in terms of the small param-

eter € and known as multiple-scale analysis. Different singular perturbation methods
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are implemented which not only allow secularity free solution but also assemble the
progressive effect of the nonlinearity over long space and time scales.

The reductive perturbative method (RPM) is also a singular perturbative method
and seems to be the first use in 1960 by Gardner and Morikawa [33][34] to explore
the nonlinear behavior of hydrodynamic waves in cold plasma. After that Washimi
and Taniuti [35] used this method to derive KdV equation for small amplitude ion-
acoustic waves and then generalized by Taniuti and Wei [36] to solve an immense
category of weakly nonlinear and weakly dispersive and dissipative systems and suc-
cessfully applied it to investigate different plasma systems. The method is known as
a reductive perturbative method because it reduces the far-field behavior of a sys-
tem of partial differential equations to the solution of a scalar, nonlinear evolution

equation [37] like KdV, Burgers, or KdVB equations.

2.2 Korteweg de-Vries (KdV) Equation

The phenomenon described by Russell can be expressed by a non-linear Partial Differ-
ential Equation of the third order. A partial differential equation (PDE) is a mathemat-
ical equation that contains an unknown function of more than one variable as well
as some derivatives of that function concerning the different independent variables.
In practical applications where the PDE describes a dynamic process one of the vari-
ables has the meaning of the time (hence denoted by t) and the other (normally
only up to 3) variable have the meaning of the space (hence denoted by z, y, and

Korteweg de-Vries (KdV) Equation is usually written as
ug(z,t) + 6u(z, t)uy(z,t) + Ugee(x,t) = 0. (2.1)

Where the short notations are express as

ou(x,t ou(x,t
e, t) = 2000, (g 4y = 2400,
and et
0’u(x,t
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This equation (2.1) is known as Korteweg-de Vries(KdV) equation and is named
due to the paper written by Korteweg and de Vries which is published in 1895 [38].
This equation is nonlinear because due to the product shown in the second summand,
and of third order because of the third derivative as highest present in this equation,
and factor 6 is just a scaling number. And finally, Korteweg and de Vries found the
solution for solitary waves in this way. For many decades this equation pays attention

to many researchers and leads to quite important discoveries.

2.2.1 Exact Solution of Kd-V equation

Let u = u(z,t) be a function of two variables x and t representing the space and time

coordinates respectively. Then the general KdV equation is as follows.
U + 6uly + Upyy = 0. (2.2)

To solve this PDE we adopt the exact solution method, since this PDE is nonlinear
and dispersive in nature. Considered u(z,t) = z(z — ct) = f(£), where ¢ is the phase
velocity and & = x - ¢t. The wave equation uy - c*u,, and which has a characteristic

wave solution, i.e., f(z + ct) and f(z — ct). Therefore, we have

u(z,t) = z(x — ct) = f(&), (2.3)

here one can replace the parameter ¢ by [ and and the function f by g. And by
Substituting equation (2.3) in (2.2), we obtained the ordinay differential equation

dg dg = dg
B2 1 69=2 + =2 — . 9.4

Taking single integration over &, the following equation is obtained

d?g
—Bg + 392 + d_f2 = Cl, (25)

where ('] is the constant of integration. Now multiply this equation with Z—g to obtained
an expression for g
dg | , »dg  d’gdg dg

T e Tagas ~ Cae
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d*g
—Bzdg + 32%dg +

i dg = C4dg.
Hence, integrating over variable &
B 1 (d )
—= =C C 2.6
59 +9°+ 3 2 \ag 19 + Ca, (2.6)

where ()5 is the constant of integration. In this case apply boundary conditions i.e., x

— £ oo we have g — 0, E 0 and & dgg — 0. From that we have, C7; = Cy = 0.
Therefore, solution of (2.6) under these boundaries conditions is
dg\ 2 2
— ) = —2g). 2.7
(3e) =93~ 20) (2.7)

Using separation of variable technique, we obtained the following result

/ [, (2.8)
o &VB =28 Jo

In this equation’s lower limit 0 the generality cannot lose since the starting point can
be transformed linearly. Use the transformation, i.e., s = %Bseciﬂw and integrate the

left side of equation (2.8), one can obtained the equation

B —28= B(l — sech2w> = Btanh®. (2.9)
Using the identity cosh? — sinh? = 1, then
d€ stnhw
B N o diiatadin 2.1
dw (cosh3w) (2.10)

Now the upper integration limit of the left hand integral of equation (2.8) due to the

transformation s = $Bsech?w becomes

29

1
w = sech 5 (2.11)
substituting equations (2.9)—(2.11) in equation (2.8), we obtained the following equation
B sinhw
/B / sech2w tanhw coshw
B _i Y cosh?w.coshw sinhw dw
VB Jo sinhw  cosh3w
9w
\/23 ; dw
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By back substitution &, we get

&= —%sech_ E7

-
[\
Q

o(€) = 5 seci? (Ve

therefore, the final result is of the form

u(z,t) = gsech2 [?(m - 615)]. (2.12)

Equation (2.12) is the solution of KdV equation and describe the stationary bell shaped

2.0

— =05 1 e B=4.0 |
\
— t=15 R B=3.0
P— t=25 SV Re—— B=2.0
(R \‘
S ! !
£ 1.0 ] \ :
= \
\
\
\
\

0.5

0.0

|
—_
[a)
|
V)]
e
(V)]
—_—
e
—
(V)]
)
e

Figure 2.1: Propagation of KAV Solitons for two different values (a) Solid curves g = 1
and (b) Dashed lines ¢ = 2

curved propagating with velocity £ along x with width of the pulse A = \/lﬁ without

any change in its shape.
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2.3 Burger Equation

Burger’s equation is obtained from combining nonlinear wave motion with linear dif-
fusion and is the simplest model for analyzing the combined effect of nonlinear ad-
vection and diffusion. The presence of viscous terms helps to terminate wave break-
ing and smooth out shock discontinuities which help to obtain a well behaved and
smooth solution. Since the inviscid limit, the diffusion term becomes vanishingly
small and the smooth viscous solutions converge non-uniformly to the appropri-
ate discontinuous shock wave, leading to an alternative mechanism for analyzing con-
servative nonlinear dynamical processes . Burger in 1948 first succeeds in his equation
to throw light on turbulence describing the interaction of two opposite effects of con-

vection and diffusion.

2.3.1 Solution of Burger Equation

If the nonlinearity is balanced by the dissipation the resultant equation is the non-linear

equation with diffusion term

o + ud,u — woyeu = 0. (2.13)
This equation is well known Burger equation. Where by 0, we mean a% and similar
is the case for x, while by 0,, we mean 88—;2 and u = u(z,t). The equation (2.38) is

composed of time evolution (J;u), nonlinearity (ud,u) and diffusion (0,,u) terms. This

is the simplest nonlinear model equation for diffusive waves in fluid like dynamics.

The effect of nonlinear term (uu, ) is shocking up that cause to break the wave while
the diffusion term (vu,)is like one occuring in heat equation. To find the travelling

wave solution of following nonlinear equation, we considered
u(z,t) = h(z — ct) = h(§), (2.14)

where £ = x - ¢t and c is the phase velocity. One can also determine the phase velocity

c and h. Therefore, by chain rule, i.e., 24 = -ch/(€), 24 = K/(€), 24 = h"(€)
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Now Substituting these expressions into equation (2.38), the following ordinary differ-

ential equation is obtained

—ch'(§) + h(§N'(§) — vh"(§) = 0. (2.15)
In equation (2.40), h(§)R'(€) = %dd—’f, after performing the integration with respect to
¢ yields

—ch(€) + Zh(E) v (€) = O,

2v%§> - <h2(§) — 2ch(€) — 201),
22— (h9) - (@) (1(6) - (), (2.16)

where (] is the constant of integration, hy = ¢ + /c? + 2C1 and hy = ¢ - /¢ + 2C.
Assuming h; and ho are real and therefore, h; > hy. After separation of variable

integrate equation (2.16), we get the following equation
g_/ dh(e)
20 (1) = m(©) (h©) - hat©))

1 m©-hE
hi(§) = ha(€)  h(E) — ha(§)
Assuming hy(€) < h(€) < hy(€), this will leads to the equation of the form

h(€) + ha(©)e

hy(€)—ho(€
1( )21; 2( ))f

h(&) = 14 6(h1(s)2;h2<5>)5 (2.17)
Or this equation may be write as
(E) = hafe) + &L —1e(©) (218)

14 6(h1<§);;h2(§))£ ’

Equation (2.17) can be written as

hq(&)—ha(€)
ha(€) + hy(ge (502
te ( h1(€)2—vh2(6) )5
1

(€ — ha()) tamh [ - (1a(€) — Pal©))e].

hE) = = (hi(€) + ha(€)) +

— 5 ((€) + ha(@),

(7 (&) + ha(€))

N = N

39



This solution of Burger’s equation is called shock structure solution because it looks
like the actual shock wave profile as it connects the asymptotic states h1(£) and hy ().
When the Burger’s equation solution does not contain the viscous term then a shock
wave would be formed and at last, it breaks. The presence of the diffusion term stop
the moderate distortion of the wave and it’s breaking would occur by countering
the non-linearity. Therefore, the nonlinear advection term and the linear diffusion
term balance each other in the same fashion in real shock waves in the small region,
which is the region where the gradient is steep. In this regard, the diffusion coefficient
affects the waveform, i.e smaller the diffusion coefficient the sharper the transition layer
between the two asymptotic values of the solution and vice versa. And finally traveling

wave solution to equation (2.38) is

1 1

ule,t) = e — 5 (h(€) - hQ(f))tcmh[E(hl (€) = ha(&)) (x — ct)] . (2.19)

Now from hq(§) and hq(&) relation, we calculate the expression for ¢, i.e

1
c= §(h1(§) + ha(€))- (2.20)
And for special case where hy(§) = 2 and he(§) = 0, the travelling wave solution
becomes
he = 2 - t(mh(é) (2.21)
1+es 207

this solution is independent of time in space-time frame.

Since the traveling wave solution defines shock thickness, and one can obtained this

) ... _(hus)—hg(s))g . . .
thickness by multipling a factor e 2v with equation (2.17), i.e.,

NENGENG!
ey — Pal®) + e (s (2.22)
a (MO na@) ) '
1+e v
And for a special case where hi(£) = 2 and hy(§) = 0, we have
3
2e v
h(¢) = —- (2.23)
1+ew

In equation (2.22), the exponential term specify the existence of a thin layer of thickness

o,le,o0 = m This is basically the shock wave thickness which is approaching
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to zero as v — 0 (means that hy(§) and ho(§) is fixed). While on the other hand
o increases as hi(§) — ha(§) where v is fixed. This will leads us to an idea that
if ¢ is small comparable with other typical length scales of the problem then the

rapid shock transition can satisfactorily be approximated by a discontinuity.

2.4 Distribution Functions

In plasma, the plasma’s species moving with random velocities and are affected by
different parameters. To assign a specific velocity to individual species is very difficult.
Therefore, the velocities of plasma species are distributed and the systems are best
dealt with by considering the statistical approach called velocity distribution function.
All physical information like macroscopic properties related to the plasma environment
contains in the distribution function. In the simple case when plasma is in thermal

equilibrium its distribution function is homogeneous, isotropic, and time-independent.

A volume element in phase space is a six dimensional cube at position (r, v) and is
represented by d®rd®v. Inside the volume the particles contained are d®r = dxdydz with
velocities d*v = dv,dv,dv, [22]. More generally with the addition of time coordinate
the distribution function becomes the seven variable function, i.e., F(x, y, z, vy, vy, Vs,
t), which gives the number of particles per unit volume in phase space. The particle

number density is the write as

N(r,t):/ dux/ duy/ dv,F(r,v,t),

:/ F(r,v,t)d*y,
:/ F(r,v,t)dv.

And finally write in the normalized form

/ F(r,v,t)dv = 1.
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2.4.1 Maxwellian Distribution Function

In thermally equilibrium plasma the velocities of the particles disperse around the
average velocity of the particles. But in stationary state plasma, the average velocity
of the particles is zero and the distribution obeys statistical Gaussian distribution of

errors |23].

h(Azx) = (W(Ax)2)%lexp< - Eigi)

In plasma situation Az equivalent to the x-direction velocity component (v,), and
(Az) show the variance from average velocity of particles, i.e, (v,).h(Az). For the
N number of particles number density in thermal equilibrium, the one dimensional

distribution function is

) = Nwlonf?) 7 e~ 128).

= v2 + vy + vZ the three dimensional

More generally, in three dimensional space /2

Maxwellian distribution function is

) = Nerl?) Fean( - ).

where v is the thermal velocity of the plasma species having mass (m) and average
1

thermal energy (KpT) of plasma species, i.e (V) = (M>§ Thus, the distribution

m

function becomes
2

fw) = N(2723T> Smp( - 27;2T>’ (2.24)

m1/2

5~ is kinetic energy and by integrating equation (2.24) over velocity space gives

where

density of the plasma and sketched in Fig. 2.2.

The Maxwellian distribution function depends on the ratio of kinetic energy and
average thermal energy. If we take the distribution function for electrons species where
there is any external potential is applied, i.e., £ = -V¢. Thus the kinetic energy
of electrons replaced by total energy, then the Maxwellian distribution of electrons

becomes
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Figure 2.2: Maxwell Distribution Function

felv) = N(zw?(;ﬁ g“”( N KgT)' (2.25)

While write the distribution function in the form of total energy (as variable of system)
U=m | e, ie.,

2(U + ed)\ 3

sy =2(ATED) i) (2.26)
The equation (2.26) is known as Boltzmann distribution function [23|. And by inte-

grating equation (2.25) we get the electron number density

Ne = noexp( — K(jjTe)' (2.27)

2.4.2 Cairns Distribution Function

Cairns distribution is common non-maxwellian nature distribution function. It received
the attention when Cairans et all in 1995 presented that the nature of ion acoustic
solitary structures should modified to rarefactive in the presence of non-Maxwellian

distribution of electrons [24|, and mostly found in auroral zone [25, 26]. And their
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structure which has upper and lower cavities has been observed by two different satel-
lites, namely Freja satellite and Viking satellite [27, 28]. In foreshock and bow shock
of earth [29, 30|, proximity of the Moon [31] and upper Martian ionosphere [32| these
non-thermal populations are detected. The Non-thermal velocity distribution function

used by Cairan et al has the following form

- IV (V2 — 2€¢)
2m02) % (14 = Jeap( — "2 ) 2.28
) (14 Jean( — ") (2.28)

o
(3T + 1)

where ng, v; and I' are the equilibrium number density, velocity of j species in plasma

fs(v) =

J

and non-thermality parameter, respectively. We can swith to Maxwellian distribution
by putting I' = 0. For the electrons number density integrate equation (2.28) over

velocity space, we get

20 ]
— a=0.0
— a=0.1
1.5 A
— a=0.2
- a=0.3
2 10— a=04 f
0.5 ]
0.0 j\ I | I | \7
-1.0 -0.5 0.0 0.5 1.0
v
Figure 2.3: Cairn Distribution Function
_ e ep 2 e
Ne = Neo 1 /BTe—i_ﬂ(Te) :|exp(Te>7 (229)
where 8 = 2L In fig(2.2) shows the plot for various values of the Cairns distribution
1437

function. The shoulders in the Cairns distribution function represents the behavior of
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the non-thermal particles at low energies. It is double humped and is essentially an

unstable distribution.

2.5 Linear Analysis of Plasma Waves

In general, plasma is known to be a nonlinear medium, although, linear waves has also
an important role in plasma. To study small-amplitude perturbations in linear approx-
imation, we assume and write variable quantities as a perturbed and unperturbed state
of plasma, where we have to neglect nonlinear terms. Therefore, the linear differential
equations are solved by either Fourier transformation or Laplace transformation. For
Fourier analysis assume that perturbed quantities undergo sinusoidal oscillations and
sinusoidal character, i.e., eb(k‘r_“’t), can be taken into account to solve linear plasma
waves. Where k, r, w and t represents the wave vector, position vector, angular fre-
quency and time respectively. Such kind of equations ends up with dispersion relation
which relates the wave vector and angular frequency. In the linear regime, several
waves can overlap each other without interacting and these waves travel without dis-
turbing the medium. For linear theory, only small amplitude plasma waves are to be

considered.

Now, we describe two different kinds of waves to understand the linear analysis of

waves.

e Linear and non-dispersive

e Linear and dispersive

In linear and non-dispersive cases, one can consider the basic wave equation.

ou(z,t) ou(z,t)
o o

=0. (2.30)
The periodic solution of plane wave leads for equation (2.30) leads to
u(x,t) = e'ke=t), (2.31)
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The linear dispersion relation which is the relationship between angular frequency w
and wavenumber k is given by w = vk. Where v is the phase speed. This is a linear
dispersion relation of a non-dispersive wave. The main aspect of such wave is that
the initial pulse-type profile (which is made up of superposition of plane wave with
diAderent wavenumbers do not change the shape). The reason is that each superposed

plane wave is traveling at the same speed.

In linear dispersive case, their is only some additional effects which modify the

equation
ou(z,t) ou(zx,t) PPu(z,t)
ot v Oz o Ox3

Assume the plane wave solution for equation (2.51) and dispersion relation for this case

= 0. (2.32)

write as w = vk - ok, this involves higher order in k ,so its basically nonlinear in k.
For the given case the phase velocity and group velocity are respectively, v, = v - ok?
and vy = v - 30k?. As the wave travels it can spread out because of velocity variation

due to k. Which mean that linear dispersive wave do not preserve it’s original shape.

2.5.1 Dust Acoustic Waves

The dust acoustic waves have been theoretically investigated by Rao et al in 1990
[39]. In these investigations, they take multi-component collision-less dusty plasma
whose species are the electrons, ions, and negatively charged dust grains. The phase
velocity of the dust acoustic waves is much smaller than the electron and ion thermal
speeds. Consequently, the inertia-less electrons and ions establish equilibrium in the
dust acoustic wave potential denoted by ¢. The pressure gradient in this situation
balanced by the electric force, leading to Boltzmann electron and ion number density

perturbation n;;, which are, respectively,

ep
el = Ne0 75 2.33
Nel nOkBTe ( )
and
ep
PR 2.34
ni nOkBTi ( )
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The main governing equation for the system is given as:

Continuity equation

0
Nl 4 oV vg = 0. (2.35)
ot
Momentum equation
0 3kpT,
T _ oGy 2B, (2.36)
ot mg MqMNdo
And the system is closed by Poisson’s equation
Vip = 47T(eneo —eni; — qdondl). (2.37)

In these equations (2.35) - (2.37), vy is the fluid velocity, gqo is the non-perturbed dust
charge which is assumed to be constant. And n.;, n;; and ng; are the number densities
of electrons, ions and dust grains, respectively.
In the linear analysis of waves, one can obtain the dispersion relation. For this
purpose we combine equations (2.35) and (2.36) and obtained
(5—; - 31/;3v2) nay = nd&—i“V%b. (2.38)

Substituting n.; and n;; in the above equation, we get

V2 = kho — 4nqaona, (2.39)

4me?neg 4 dme3n,g

2
where k7, = T T

And assuming ng = ngexp(—wt + tk.r) and ¢ =
dgexp(—awt + tk.r), where w and k are the frequency and the wave vector, respec-
tively. Now we Fourier transform equations (2.38) and (2.39), i.e., % = —w and
V = 1k and the combination of these equations will leads to dispersion relation for

dust acoustic waves

k2 W2d
1+2 - — 2 __ -0, (2.40)
k?  w?—3k2V32
which gives the equation of form
k2C?%
2 2772 D
w?=3kVi5+ ———, (2.41)
T4 k2N

where Cp = wpgAp is the dust acoustic speed. Although, w > kV,4, we deduce from

equation (2.41) the dust acoustic wave frequency
kCp

(1+ k2023
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which in long wavelength limit, i.e., k2%, < 1, the equation (2.42) reduced to

w:kzdo(”dO)%(’fBTi)%[1+5(1— Zdo”do)} B (2.43)

N0 mq T. N0

when the dust grains are negatively charged. Equation (2.42) tells that the restoring
force in the dust acoustic waves comes from the pressure of inertia-less electrons and
ions. While the dust mass provides the inertia to support the waves. Frequency
of the dust acoustic waves is much smaller than the dust plasma frequency. Using
equation (2.43), the dust acoustic phase velocity, i.e., V, = ¥ can be estimated if one
knows the plasma and dust parameters [10].

2.5.2 Dust lon Acoustic Waves

The dust ion acoustic waves were predicted for the first time by P. K. Shukla and
Silin in 1992. The phase velocity of the dust ion acoustic waves is much smaller
(larger) than the electron thermal speed (ion and dust thermal speeds). Here the
electron number density perturbation associated with the dust ion acoustic waves
is given by (2.33) while the ion number density perturbation n;; is calculated from
the ion continuity equation

8’/’%1

ot

+ niov.vi = 0, (244)
and the ion momentum equation

ov; e 4
_ _ | 2.4
ot m; Ve miNio Vi, (2.45)

where v; is the ion fluid velocity. By combining the continuity ion continuity and ion

momentum equations, we get the following equation

2 .
(% - 31/t§v2)nﬂ - Zﬁev%. (2.46)

Equation (2.38) for the dust number density perturbation remains intact for the dust

ion acoustic waves as well. However, for stationary dust grains, we have ng =~ 0 and

the dust ion-acoustic waves appears on a time scale much shorter than the plasma
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period, i.e., 3—7; Assuming w > kV};, kV,4. One can combine equations (2.33), (2.37),
p
(2.38) and (2.46) and Fourier transform the resultant equation in order to obtained the

dust ion acoustic wave dispersion relation, i.e.,

k2 w24 w?
1+ k;_d? _ T Tpd = rd _ . (2.47)

Because of the large mass of dust grains, the ion plasma frequency w,; is much larger
than the dust plasma frequency w,q. Therefore, by simplify the equation (2.47), one
can get the equation of the form

) kCE

where C5 = wpidpe = (”"0)%05 and ¢, = (%)% In the long wavelength limit the

Neo
10 :
w= k‘( ) Cs. (2.49)

equation (2.48) reduced to

Tle0
Equation (2.49) shows that the phase velocity of the dust ion-acoustic waves in a
dusty plasma is larger than c, because n;y > n.y for negatively charged dust grains.
The increase in the phase velocity is attributed to the electron density depletion in
the background plasma so that the electron Debye radius becomes larger. As a result,
there appears a stronger space-charge electric field which is responsible for the en-

hanced phase velocity of the dust ion-acoustic waves [10].

2.6 Non-linear Analysis of Plasma Waves

While on the other hand during the last four decades, growing attention has been given
to nonlinear plasma waves [40, 41, 42|. If the plasma wave amplitude is large enough
then nonlinearities cannot be ignored. When wave amplitude is large enough then
wave start interacting with each other. These waves’ interaction generates new waves
of the same kind and similarly, waves of different types generate new waves. These
nonlinearities, contribute towards the localization of produced waves, which result in

various forms of structures such as solitons, shocks, and vortices, etc. Now, we describe
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two different kind of waves to understand nonlinearities.

e Nonlinear and non-dispersive

e Nonlinear and dispersive

For non-linear and non-dispersive case, we take the non-dispersive wave equation, i.e.,

Ou(x,t) N ou(z,t)

o W =0 (2:50)

In equation (2.50) the term U(u)% makes the equation nonlinear and solution to this

equation is u(z,t) = u(z — v(u)t), where v(u) = v + au™. Since v(u) is an increasing
function, which shows that wave travels faster when its amplitude grows. Therefore,
the top of the wave travels faster than its base, which results in wave breaking and

steepening and finally wave breaks and disappear completely.

The nonlinear and dispersive case is so interesting because such kind of situation
give birth to solitary waves, which on specific case becomes solitons. Take the nonlinear

and dispersive equation as equation

ou(z,t) ou(z,t) . ou(z,t) Pu(x,t)
5 +v pe + au pe +o D = 0. (2.51)

In previous cases neither linear dispersive nor nonlinear dispersive wave is stable in
nature but we see that solitary wave exist when the system has both nonlinearity and
dispersion. In solitary wave the velocity at the top of wave and at base of wave is same.
These nonlinearities, contribute towards localization of produced waves, which result

in various forms of structures such as solitons, shocks and vortices etc.

2.6.1 Dust Acoustic Solitary Waves

In our physical problem, we take the plasma environment to contain electrons, positive
ions, and negative dust species. The electrons and ions species particle number density
are taken as Maxwellian and for simplicity take a one-dimensional problem. Therefore,

the dynamics of low phase velocity, i.e. Vpg(thermal velocity of dust particles) < V,
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(plasma velocity) < Vp. and Vp; (thermal velocities of electron and ion, respectively).
The one-dimensional dust acoustic solitary waves are governed by the following main
equation of plasma.

Continiuty equation
8Tld andud

ot 0z

— 0. (2.52)

Equation of motion

8nd 8ud %

— tUug— = —. 2.53
ot oz 9z (2:33)
And the system is closed by Poisson’s equation
92
— = Ng + YN — [N, 2.54
022 d T f K (2.54)
. Me 1 . ng ) oy
where p, = T = 5 M T g 5 and 0 = e,
The normalized electron and ion number densities are, respectively,
ne = exp(o;0), (2.55)
n; = exp(—9), (2.56)
where o; = % and the normalization scheme are introduced as
. —1 _ [4mng Z2e2\ —1
Time (t) — Woy = (—W'idd ) 2

N[

Space parameter (x) — Ap = (%)

1
M)ﬁ
mq

nd—>n50,ud—>0d:(

And electrostatic wave potential ¢ — —K}zT"

To study the small but finite amplitude nonlinear dust acoustic solitary (DAS) wave

using the reduction perturbation technique, the independent variables are stretched as

[SIE

¢ =e€2(z — vot), (2.57)

and

T =€t (2.58)
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where € is a small parameter characterizing the strength of the nonlinearity or weakness
of the amplitude or dispersion and vy is the soliton speed normalized by dust acoustic

speed (Cy). The dependent variables are expanded as

ng=1+enl) +en? + ., (2.59)
Ug = eug) + e2u512) + .. (2.60)
¢ = e + 26 ... (2.61)

By using the chain rule the independent variable are stretched as

9 _ 00, oo
ot 9Cot  orot’
0 0
=€

ac ot (z — vot) + aaezt,

.
= —ciuge (2.62)

0 0

N[

And
o0 00¢ 0ot

92 9Coz T oroz
0 0 0 0 3

= 6_{’&6 (z —vot) + Eaeﬁt,
9,

. 2.63
e (2.63)
Using equations (2.59) and (2.82) in equation (2.52), i.e. continiuty equation

=

1
2

9, 0 9,
(e ) (1l )+ 2 1) )

x (eul) + Eul) =0,

0 0 0
— 6%1)08_( (1 + en((il) + 6271((12)) + G%E (1 + en((jl) + 62n&2)> + 6%8_§ (eugl)

+ EQ’LL((iZ) + 63ul(13) + EQTLS)US) + egnél)uf) + e3n22)u21)) =0,
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: 0 (s 0
e%nfi) + e2n&2)) + a—(eing) + e%n((f)> + 5=
T

e2ug)+e2u(2)

¢ ( (2.64)

_%m<
+62u£l )ng > =0.

Now using equations (2.59) - (2.63) in equation (2.53), i.e., equation of motion

0 0 0
( — e%vo— + 6%—) (eug) + 62u&2)> + < (1) + € um)( %—) (eu&l) + 62u((f))
T

¢ ) ¢
_ eé% (€¢<1) i 62¢(2>>,
— eévoa2 (eufll) =+ 62u((12)) + eg2 <6u&1) + 62uf12)) + (eufil) + 62u&2)> 2 (62 u( 't u(2)>
¢ or oC
::§%<63¢ux+62¢@07
- anﬁc(ezuy Fetu®) - L (Euld ) o () jcugp T efuf) §<u< )
n eéufﬁa%ugﬂ) a%(eggbm +elg®)

(2.65)
At finally using equations (2.59) - (2.63) in equation (2.54), i.e., equation of Poisson.
P (g M, 2,0
3C2 (eqS + € ¢ ) = <1 +en,  + € n, ) + feNe — 4N (2.66)

Using equation (2.55) and (2.56) in equation (2.85), and expand the exponential terms

Cfg2<2¢(1)+63¢ ) ( end +en(2))+ﬂe[1+az(6¢l)+€¢ )
+

SN

%( 2?1 23 p@ 1 132 )] _ [1 — (ep™ (2.67)
+8¢®)+§¢%ﬂf+2é¢”¢”+e%®ﬁ]

To the lowest order of €, equations (2.83),(2.84) and (2.86) give

()

= 27 (2.68)
Yo
M

u§>:-—fl—, (2.69)
Vo
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and
1

- 2.70
. Vi + Oifle (2.70)
To the next higher order e, we obtained a set of equations
onl) o o 0/ 0y
— — =0 2.71
5~ e o+ ac (e u’) = o (2.71)
8u§1) 8u(2) 6¢(2> (1) 0 (1)
— Vg~ — — =0 2.72
or "o T a¢ TMeacte T (272)
and 2 )
0°¢ 1 1 2
Y @@ 22 12 _
acz 7 ng + 2(;@ o [Le>¢ 0. (2.73)

Using equations (2.68) and (2.69) in equations (2.90) and (2.91), add these equations

2 O™ 2 anff) . i¢(1) 9o 9p® 0
w or  Vac T2Y Tac T Tac T

06" 3 108V i ong  v09® 0 (2.74)
or 2vg ¢ 2 0C 2 0¢ '

Taking derivative of equation (2.92) with respect to ¢ and multiply by §

1
1;_36%(1) @&b@) v_gang) v_g)(m B Uz‘,“e) ¢(1)8L@ = 0. (2.75)

2 033 2 9C 2 aC @ 2 ¢
Addition of equations (2.93) and (2.94) which leads to KdV equation

3 (1)
79y, (2.76)

ac TP

Where A, and B, are non-linearity and dispersion terms, respectively. Where the value

of non-linearity and dispersion are

3 3
=B (-t ) )
o (M= oike =), (2.77)
and
BS:%, (2.78)

Again we have to transform the following independent variables ( and 7, such as n =

( - u,m and 7 = 7. Where wug is normalized constant speed and following appropriate
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. . . & 1
boundary conditions for localized perturbations are ¢ — 0, % — 0, dz%; — 0 and

n — +oo. And obtained the stationary solution of the KdV equation (2.95)

1 _ 4@ 2[C — UoT
¢ Po sech[ A } (2.79)

where (;5(()1) and A, are the amplitude and width of the soliton, respectively, given as
(()1) = %’ and A, = ,/47%.
2.6.2 Dust Acoustic Shock Waves

In our physical problem we take plasma environment contain electrons, positive ions
and negative dust species. The electrons and ions species particle number density
are taken as Maxwellian and for simplicity take one dimensional problem. Therefore,
the dynamics of low phase velocity, i.e. Vrg(thermal velocity of dust particles) < V,,
(plasma velocity) < Vr. and Vp; (thermal velocities of electron and ion, respectively).

The one dimensional dust acoustic solitary waves are govern by the equations, i.e.,
(2.52), (2.54), (2.55), (2.56) and (P. K. Shukla and A. A. Mamun)[10]
o¢

(14 7.D¢) [na(Dyug + Vanug — E)] — B,

82ud
022"

(2.80)

In equation (2.80) the D, = % + ud%, V,n is normalized by the dust plasma frequency,
Tm 18 the viscoelastic relaxation time and normalized by the dust plasma period and 34
is the normalized longitudinal viscosity co-efficient and expressed as (m) [77b +
5]

To derive a governing equation for dust acoustic shock waves, we have to employ the
RPT (Reductive Perturbation Technique). For this purpose we introduce the stretched

coordinates, i.e.,

N|=

€ =e€2(z — upt), (2.81)

and

T =€t (2.82)
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where € is a small parameter characterizing the strength of the nonlinearity or weak-

ness of the amplitude or dispersion. The dependent variables are expanded as

Ng = 1—|—en(1)+e ngl)—l—..., (2.83)
Ug = eug) +e ué ST (2.84)

and
¢ =epM + 2@ 4 . (2.85)

Now substitute equations (2.82) - (2.85) in (2.52), (2.54), (2.55), (2.56) and (2.80) and

obtain the following relations of lowest order of €,

(1)
ull) = —¢—, (2.86)
Vo
1
w9 (2.87)
Yo
_1
vo = (oate + 1) 2. (2.88)
Now to the next high order in €, we get
8n&1) 8n£f) 0 1) (1) (9u((12)
— — —— =0 2.89
or Yo ag +a£(nd Ug >+ ag ) ( )
out)  oul)  ap® ou')
1 T d d 1— VT (1) Y%q
( + Va T) or Uo 85 85 +( VinT )ud 85 (2 90>
GQUS) '
— Ba—d_ —
and
P p 1 )
—— - n((f) = —(o7pe — ,ui)gzﬁ(l) . (2.91)

0¢? ug 2
By eliminating the second order quantities from Eqgs. (2.89) to (2.91) and using the
relation of Eqgs. (2.86) to (2.88), we obtained the following expressions

B (1 + ViuTs) 0o B (VianTn — 1) ) L) N @8%(1)
v} or v} o vy 0&2

=0, (2.92)
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L0¢ | 2 0%

=0 2.93
w2 or or ’ (2.93)
and 3451 (1)
¢ 2 2 1) 09
e = (ine - pi) ¢! )a—g (2.94)
After a short algebraic manipulations one can get the following KdV Burger equation,
given as:
a¢ a¢(1) a3¢(1 a2¢(1)
) — 2.95
or 0 o Tiga T Haaye (2.95)
v3a T _1 Toy, —
Where A = OTd(l + —Vdg ) s Mda = a%, Vg = —d and ag = (—vg‘f;jijﬂfo'?)' As Vg, >0,

Tn > 0, Bgo > 0 and v, > 0, therefore, the sign of A, v; and uy are determined by the
sign of ag. Where ag = (Va7 — 3)(1i + oipte)? — 02 pte + pi = pte | (Vi — 3)02pte —

+ (VdnTn -3+ ZZ—":O) + 2(Vdn7'n — 3)/%#@01'- It is clear that for strongly coupled
dusty plasma with a significant background of neutrals. In such kind of situation we
have |4, 7, > 1, i.e., ag > 0, which corresponds to A > 0 , which corresponds to
A >0, pge > 0 and 74 > 0. While for a weakly coupled dusty plasma or a collision-less
dusty plasma Vg,7, — 0, we have ag < 0, which corresponds to A < 0, pg, < 0 and
Ya < 0.

2.6.3 Dust Ion Acoustic Shock Waves

In this section we have to present the one dimensional dust DIA shocks in an unmag-

netized dusty plasma. The governing non-linear equations which are normalized are

given as ( )
ON;  O(NV;V;
p— 2'
or T oz (2.96)
aV; aV; 0P ON; 02V,
= _35,N,— 2.
o1 "oz = oz~ Nigg T g (2.97)
and
92d
5@ = exp(P) — ON; + (0 — 1). (2.98)
In the following equations V; is the ion fluid speed which is normalized by the ion

acoustic speed Cy, @ is the electrostatic wave potential which is normalized by kBTe
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and n; = % (here pi4 is the kinematic viscosity). Here the time and space variables

are in units of the ion plasma period wp_il and the electron Debye length ’\\]/3367 respec-

tively.
Now to derive the governing equation for DIA shock waves, we expand the depen-

dent variables in the following manner

Ni=14+eNY +en® 4 (2.99)
V=W VP (2.100)

and
b= epM) + 2P + .. (2.101)

Introducing the stretched coordinates as
¢ =e2(Z - V), (2.102)
and
r=eT, (2.103)

where € is a small parameter characterizing the strength of the non-linearity or weak-

ness of the amplitude or dispersion.

Now substituting equations (2.99) - (2.103) into equations (2.96) - (2.98), we ob-

tained the following expressions from the lowest order of ¢
oM = N, (2.104)

v =N, (2.105)

where Vy = (6 + 302~)%. And to the next higher order in €, we get the following

expressions
) VO R oy
5 W 96 +8—§(NZ-VZ-)+ 5 =0, (2.106)
)V Y L JO N L
or Ve TV e T g T e

8/\/-(1) 8/\/'-(2) (2.107)
- 302‘-/\/;‘8—g — 30; 8{' )
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and o (1)
0°d 1 12
=W 4 9 — N 2.108
852 2 + 7 ) ( )
where we have assumed n; = e%mo. By eliminating the second order quantities from
equations (2.106) - (2.108) and using the lower order equations in it, we obtained the

following equations

1 1
1990 N 2VO®(1)3<1>< ' 0
5 or = o2 ¢ ’

Vool (v_g 4 37090 00 gV 0?0
o Or 602 2 o€ b 0&
and ) )
;020 gwmoey
o¢? o€ '
After a short algebraic manipulation one can get the following KdV Burger equation
oot oo 9ol o*oW)
12— 4 M : ; . 2.109
A T e T e e (2.109)
Where A = 2v N % and a; = w. The sign of the coeffecients

A, B; and p; are determined by the sign of a;.

Now, we have replace ®) with new variable y, so the solution of the KdV Burger

equation (2.113) can also be written in the following form,

oy &y Py 0%y

Transform the space variables ( = £ — Uy, where Uy is the normalized velocity of the

A 1

shock waves and find a third order ordinary differential equation for y({), and can be
integrated once, yields
dy 1 UO

2
y
ﬂd—@_”dCJr_y - =0 (2.111)

Where we have to imposed the appropriate boundary conditions, namely, y — 0,
C -0, 4 dcg — 0 at ( — oo. Now, one can easily describe the shock wave whose velocity
is Up and related to the extreme values, i.e., y(—c0) —y(oc0) =Y by Y = 280, There-
fore, in the rest frame the normalized the normalized velocity of the shock waves is
(1+ ATY) The nature of the shock structure depend on the relation between the

dispersive and dissipative parameters 5 and pu.
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We first considered a situation where the dissipative term is dominant over the
dispersive term. In such case, we can express equation (2.111) as
Uy dy d*y
(r=2)a 1

Now, one can easily integrated the equation (2.112) and using the coordinate that y is

(2.112)

bounded as ( — o0, to obtained the following equation

y = %[1—tanh (2%(5—%7))] (2.113)

This equation represents a monotonic shock solution with the shock speed (Up), the
shock height (%), and the shock thickness (“g—g‘) The solution of shock is appeared
due to the dissipative term, which is proportional to the viscosity coefficient.

Now, we have to discuss the effects of the dispersive term on the shock solution
of equation (2.111). When g is very small, the shock wave will have an oscillatory
profile in which the first few oscillations at the wave front will be close to solitons
moving with velocity Uy. And when g is increased and it is larger than a certain
critical value p. then shock wave will have a monotonic behaviour. To determine the
values of the dissipation coeffecient y corresponding to monotonic or oscillatory shock
profiles, we investigate the asymptotic behaviour of the solution of equation (2.111)
for ( — —oo. Therefore, one can substitute y(¢) = yo + y1(¢), where y; < 7, into

equation (2.111) and after that linearized it with respect to y; in order to obtained

Oy dy1 Uy
Ba—gg - 'u8_§ + a9
The solution of the equation (2.114) are proportional to exp(p,x), where p, is given by

) 1

H H Up 2
= (A ) 2115
r=g5+ (1w 1) 2419

This equation turns out that the shock wave has a monotonic profile for y > p. and an
1

= 0. (2.114)

3
oscillatory profile for p < ., where p. = <4’8%> . Thus, for p < p., the stationary

solution of equation (2.110) is

y=y0+Hexp<g—g) Cos (C’U%), (2.116)

where (' = ( — Uyt and H is constant.
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Chapter 3

Linear and Non-linear Analysis of
Dust Acoustic Waves in
Electronegative Halley Comet Plasma

3.1 Introduction

Since the early 1990s, there has been a great deal of interest in studying the physics of
dusty (or complex) plasmas. Interest in this area of plasma physics has grown consider-
ably over the last two decades. A dusty plasma is a usual electron and ion plasma with
an additional charged component of micron- or sub-micron sized particulates. This
extra component, which increases the complexity of the system even further, is re-
sponsible for the name "complex plasma". This complexity comes from the fact that
the dust grain charge, mass, and size vary with space and time. Dusty plasmas are
ubiquitous in nebulas, in asteroid zones, in interstellar clouds, in the planetary mag-
netosphere, as well as in cometary environments (e.g., cometary comae and tails),
on the surfaces of Mars and Earth’s moon, and in the Earth’s polar mesosphere
[58]]59][60][61]. Charged dust particles are also encountered in the plasma-assisted
manufacturing of semiconductor devices and in fusion reactors like Tokamaks, where
they are regarded as a serious contamination problem. Unique and novel features of
dusty plasmas when compared with the usual electron and ion plasmas are the ex-
istence of a new, ultra-low frequency regime for wave propagation and the highly

charging of the grains which can fluctuate due to the collection of plasma currents
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onto the dust surface. Dust grains become charged due to different processes, such
as a collection of charged particles from the surrounding plasma, photo-ionization,
secondary electron emission, sputtering by energetic ions, etc. Because of the high
charge and large mass of the grain particulates compared to those of ions, new time
and space scales come into play, giving rise to either new or modified waves and in-
stabilities in the dusty plasmas. Not only the existing low-frequency waves are mod-
ified [74] but also new types of low-frequency dust-related waves are introduced such
as the dust acoustic (DA) mode (weak coupling regime) [75], the dust lattice (DL)
mode (strong coupling regime) [76] and dust Bernstein-Greene-Kruskal modes [79].
The dust acoustic (DA) wave is the most well studied of such new modes. It arises
due to the restoring force provided by the plasma thermal pressure electrons and

ions while the inertia is due to the dust mass.

Numerous observations indicate the presence of non-thermal electron and ion struc-
tures as ubiquitous in a variety of space plasma environments and measurements of
their distribution functions revealed them to be highly non-isothermal [66]. Such non-
thermal populations may arise due to the effect of external forces acting on the nat-
ural space environment plasmas or to the wave and particle interaction, which ulti-
mately lead to non-Maxwellian distributions. Some recent theoretical work has fo-
cused on the effects of non-thermal ions on the dust acoustic (DA) waves [67] [68].
In this work, we addressed the problem of arbitrary amplitude solitary dust acous-
tic (DA) waves in a charge varying dusty plasma with non-thermal ions. Our results
showed that in such a plasma, large-amplitude spatially localized dust acoustic (DA)
waves can exist. Their spatial patterns are significantly modified by the presence
of the non-thermal ion component. In particular, we have noticed that an addi-
tion of a small concentration of non-thermal ions may abruptly reduce the potential
pulse amplitude and increase the net negative charge residing on the dust grain sur-
face. The purpose of this work is to examine the combined effects of an oblique
magnetic field and ion non-thermality on weak dust acoustic (DA) waves in a charge

varying electronegative dusty plasmas.

This chapter is further organized in such a way that physical assumptions and
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formulation of the problem are given in section (ii). The basic equations of the plasma
and their normalization scheme are mention in section (iii). The non-linear Korteweg-
de Vries (KdV) Burger equation is calculated in section (iv). The nature of the steady-
state solution of the Korteweg-de Vries (KdV) Burger equation is discussed in section

(v). The Comet Halley’s numerical results are discussed in section (vi).

3.2 Physical Assumptions

The physical assumptions will help to formulate the physical problem which will later
be justified by numerical values related to Halley’s comet. These assumptions will help
us in the explicit form of final results. Therefore, based on the following physical

assumptions we proceed with our calculations.

e The magnetized electronegative dusty plasma is homogeneous, collision-less, and
unbounded. In the plasma, species are electrons with particle number density
"n.", positive ions with particle number density "n,", negative ions with par-

" and mobile negatively charged dust grains with par-

ticle number density "n,'
ticle number density "ng". The dust grains are negatively charged and the
charge varies continuously with time, i.e., non-steady charge variation. The
constant magnetic field (B) lies in the "z — z" plane making an angle § with the

x-axis and, therefore, the wave propagation vector lies along the x-axis.

e At far upstream, there is a plasma flow V, in the x direction, that is the direction
of wave wave propagation. In equilibrium state plasma is quasi-neutral and de-
scribed by ¢ = 0, ne = neo, np = Npo, Ny, = Mo, Ng = Ngo and g = —Zze. Where,
the subscript "0" and "Z4" are the unperturbed quantities and dust grain charge

number, respectively. Therefore, the quasi-neutrality condition is
Npo = Neo + Npo + Zdndo. (31)

e On the dust time scale, the electrons and negative ions are assumed to be in thermal

equilibrium, with the densities
ep

Ne = neOexp(T)7
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(20
Ny, = nnoexp(—T).

In the following expressions, ¢ is the electrostatic potential, n; represents the
number densities where j represents the electrons and negative ion species, 7} is
the temperature of the plasma species (electrons and negative ions), 1., and 1,
are the unperturbed densities of electron and negative ion. These densities are

not normalized, so there normalized form can be expressed as

ne = negexp(P), (3.2)
d
n_ = nn()exp(_)7 (33>
where, & (= eT—¢) is normalized plasma potential.

Now, to model the fast non-thermal positive ion distribution, we refer to a possible
three dimensional equilibrium state ion velocity distribution function that solves
the collision-less Vlasov equation with a population of fast particles [70].

v2 ep 2
l+al o5 +2+
(W Tp)

n

PO 1 :
fo(0) =fp(a, vy, v2) = (1+ 3a) (2WVEP>

( 02+ 02 4 02 e¢>
exp\ —————— — = |,

212, T,

here "a" is a parameter determining the number of non-thermal positive ions or

energetic positive ions present in our plasma model. And V;, = ,/% is the
D

positive ion thermal velocity.

The particle number density of positive ion is also calculated from equation (3.4),

ol @)

. Here one can noted that to justify the validity of our theoretical

which is in the form

np(¢) = npO

4a
14+3a

where, G =
model, we take a small deviation from the isothermal (Boltzmann) case (a = 0)

for the positive ions, i.e., 0 < a < 0.15.
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e Here we presume that the dust grain having radius 74 is very much smaller than
that of the electron gyro-radius p. [69]. And the flow velocity of the dust is very
less than the thermal velocities V;, i.e., Vy < V;;, where j represents the plasma
species, which is in our system be the electrons, positive ion and negative ion. As
it has been pointed out by Taibany and Sabry [79], where the assumption, i.e., 4
< pe may be appropriate for a laboratory plasma that is used in weak magnetic
fields. However, in the presence of a very strong magnetic field, the orbits of the
magnetized plasma particles are confined to one dimension along the field lines,
and thus the perturbed field does not come into play, and the problem of charg-
ing currents becomes independent of the magnetic field. The electron, negative
ion, and positive ion charging currents, i.e., I. I, and I, for spherical dust grain

with radius r4 are given by

I = Joexp [(IH—Z(Q - 1)}, (3.6)
d+7(Q—1
I, = Jnexp[ 2@ )], (3.7)
oy
and
1 24a  16a P P2 Z(Q-1) 8a 8a ®
L=J,—— 14+ 20 4 20 pgq— -2 22T
P p1+3a{ 5 * 3010jL aag o4 +5 3 o,
, (3.8)
d d
+ 4a—2> }exp( — —)
o2 oy
where, J;, = 7wrieng iIT:. In this expressions mg, T, are the mass of the sth

plasma species and temperature of the sth plasma species. And "a" determining

the number of non-thermal positive ions. And Z can be expressed as

Zd062

47T607”0Te ’

where 4megrg is the capacitance of spherical dust grain. And dust charge can be

expressed as

qa = q5" + qa, (3.9)
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wnere q, (— —<Zqp€) an qq are equilibrium dust cnarge aln uctuating aus
here ¢5? Z d o ilibrium dust ch d fluctuating dust

charge, respectively. Therefore, the equation (3.9) becomes,

qq = —Zq0€ + 0qa,

Gd_ _ .y O
Zdoe Zd()e’
dd
=Q-1

here, () = % which is normalized in units of equilibrium dust charge. Here and

in the following ® = ;_¢ is the normalized electrostatic potential, o, = % and o,

Ty
T

2
e Dust oscillation frequency w,, has a value, i.e., wyq = \/%@. And the ratio
omq
of dust oscillation frequency (w,q) to dust charging frequency (v.,) is finite, i.e.,
Weh, = U,j_p: is finite, i.e., we, ~ O(1). Which is in contrast to the assumption
that we, is small but # 0, ie., we ~ 0(y/€), where € is the usual expansion
parameter. While on the other hand, because of weak magnetic field, the ratio of

dust cyclotron frequency Q4(= Z‘irgl—z&)) to Wpa, 1.€., Weg = 3—”; is small but # 0,
P

i.e., weq ~ 0(1/€). Which is in contrast to assumption w.y ~ 0(1).

3.3 Model Equations

We considered homogeneous and collision-less magnetized dusty plasma comprising of
electrons, and negative ions modeled via Boltzmann distribution and positive ions are
modeled via Cairns distribution. The applied external magnetic field is such that B =
By cos 0z + By sinfz and the relative dust fluid velocity Vy(x) = Vau@ + Vayy + Viz 2.
In order to make our equations dimensionless we have to normalized the continuity,
momentum and Poisson’s equations. And the nonlinear dynamics of low phase velocity
DAW are governed by the normalized equations.

The normalization scheme is introduced as

_1
Time (t) — wp’dl = (M) 2, Space parameter (x) — Ap = ( L > , Ng — 24

€omy 4me?ynpo n4o

N[

1

M) 2. And electrostatic wave potential ¢ —

_ KpT;
andvd—>Cd—( ma .
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A= 1-8,-08, 8, 2§, —

During normalization we have N; = :—i, 0q = nee,
P!

Tq
ZdOTe ’
Z—ﬁ, g = idz—:(;‘m and v = (5p + Uip + fr_Z) The dust particles are modeled via adiabatic
pressure, i.e., pg = pdo(:—;))w, where 74 = % such that N stand for the degree of
freedom. For one dimensional case N = 1 and v4 = 3. The equilibrium dust pressure
is define as pgg = ngoTy. Where T} is dust temperature and v, is adiabatic index.

The set of equations which we have to deal with:

Continuity equation:

on - .
a—td + V.(ndvd) =0.
Equation of motion:
a'U_' oSN o — . 5 =
mang [a—td + (’Ud.V)’Ud] = qdnd[ — V¢ —+ vg X B] — Vpd. (310)

And the system is closed by Poisson’s equation, i.e.,
V>0 = en, + en, — en, — qang. (3.11)

After a short algebraic manipulations one can get the following normalized equations.

ONg 0

7 T gy NaVa) =0. (3.12)
aiTVdI + Vdgca%vdx = —(Q-1) [aidg—i — wegVay sin 9} - ’Vi—j’Ngd—QaiXNd. (3.13)
or
in + Vs in =(Q - 1w d[Vd cos — V,y, sin 9]. (3.14)
o7 Y vy Y cd | Vdz m
or
ﬂvd + Vi ivd = —(Q — Dwea(Vay cosb). (3.15)
o7 Vi Iy aks cd ( Vay
and
2 2
7% = dpexp(P) + §nexp(%) —A(Q—1)Ng—exp(— %) - [Q(% + %)] exp(— %).

Normalized charged variable () is determined by the charging equation:

dqg
= > I, (3.17)

s=p,n,e
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ddq
dt
The normalized form of this equation is

1 (1 ZQ ><1+8a+8a®+4 <I>2>+ op 16a
— JE— —_— a—
1+ 3a Z+o0, 5 3o o2 (Z40,)\ 5

+ 85;2) } X e:vp( — (;2) — Ape;vp(q) + ZQ) — Anexp<w)

=1, +1,+1.. (3.18)

Wen @ _ O'pﬁch
AT (1+0,+ )

p

(3.19)
where wg, = ‘:—”}‘f, and
Lo T w_f)pZ+0p (1+Up+’)72) a Z
o vV 27T th Z O-pﬁch 1 + 3CL 5(Z + O'p) ’
By = (Z+0y)(L+0p+72)
N Zo,(14Z+0,+71)
(240 A, 1 8a Z
=———<|ZA, + Z— 14+ — —1—-0,— 2
n Z Y s T
A 1 1 16a (1 o
Vo = A - _ N Z p -1
T2= % p+an 1+3a< ap+150p<2+Z+ap)>] 7P
s - dpexp(—2) <apmp>%
P (240, me
_ 5n€$p(§) (anapmp)%.
Y (24 0y) M,
At equilibrium the current balance equation, i.e., Zs:p,n,els = 0, which yields
1 8a 16a o
A=A+ — |1+ =+ —=-2 . 3.20
P +1+3OL<+5+ 5Z+ap> (3.20)

Here one can also obtain the Maxwellian expression in the limit a — 0.
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3.4 Linear Analysis

In this section, we proceed toward the linear analysis of the problem. Generally, we
cannot speculate that the non-linear coupling of frequencies will be missing. Although,
if we limit ourselves to the situations, in which the oscillations are small and when we
considered small amplitude waves, then we can linearize our model equations. After
that, we look at the first-order expansion of equations in the term of small perturbation
ignoring second and higher-order terms. Therefore, when two oscillating quantities are

multiply even both are so small, we considered this as higher-order and neglect it.

3.4.1 DAWs in the Absence of Dust Charge Fluctuations

In dusty plasma, either we consider the dust charge fluctuation or not under certain
conditions. When the dust charging frequency is very large as compared to dust acous-
tic frequency, then we take constant dust charge because the perturbation frequency
cannot feel the dust charging effects. While on the other hand, when the dust charging
frequency and dust acoustic frequency is comparable then we tackle the dust charge
fluctuation.

Under the same physical assumptions except for the dust charge fluctuation, we ob-

tained the following equation.
Wh — OW3 + AsDik = 0, (3.21)

where
0, =Dk + ./4?), + A%,
kA

D; = Ak
Ak + oo

:O,

Fimnkt ey -2,

Op
Al = Wed sin 9,

g,
A, = 2404

Qg

Az = weq cosb,
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and Wp = w — k), also known as a Doppler frequency. Now, by using quadratic

formula, we get the following expression
W3 =1, (3.22)

and
W3 = T,. (3.23)
Where in equations (3.22) and (3.23), we have

T, = %[O +1/0? — 443Dk,
T, = %[o —Jo2 - 4A§Dik]

and
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Figure 3.1: Variation of Doppler frequency (wp) against wave number (k) for different

value of non-thermal parameter "a".

3.4.2 Growth Rate
For the growth rate of a specific wave mode we have
W3 — Iy, =0,
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Figure 3.2: Variation of Doppler frequency (wp) against wave number (k) for different
value of obliqueness of the magnetic field 6.
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Figure 3.3: Variation of Doppler frequency (wp) against wave number (k) for different
value of non-thermal parameter "a" at fixed obliqueness of magnetic field . The left
panel represents # = 5 and the right panel represents 6 = 30.
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Figure 3.4: The profile of Doppler frequency (wp) against wave number (k) for different
value of density ratio d,. The other parameters are § = 30 and a = 0.

Now, putting the value of Wp and introduce w = w, +tX’, we get the following equation

w2 — X%+ 2w, X — 2w, kVy — 20Xk Vy + C; = 0,
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Figure 3.5: The behavior of Doppler frequency (wp) versus wave number (k) for dif-
ferent values of non-thermal parameter "a" with fixed density ratio d,. The left panel
shows ¢, = 0.1 and right panel shows 4, = 0.3.

a=0
0.0025 ¢
0.0020 | — Wq=0.011 1
— W=0.012
SQ 0.0015+ —_— de=Oo13 1
0.0010
0.0005 ¢
0.0000 | | | | |
0.00 0.02 0.04 0.06 0.08
k

Figure 3.6: The profile of Doppler frequency (wp) against wave number (k) for different
value of normalized dust cyclotron frequency w.. The other parameters are § = 30

and a = 0.

where C; = kQVg — 7. Therefore, for Z; the growth rate is

X, = i% /-0, (0 — 4.43D,1)3]. (3.24)
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Figure 3.7: The profile of Doppler frequency (wp) against wave number (k) for different
values of non-thermal parameter "a" with fixed normalized dust cyclotron frequency
Weq- The left panel shows the w.; = 0.011 and right panel shows the w.; = 0.033.
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Figure 3.8: Plot of growth rate () as a function of wave number (k) for different values
of non-thermal parameter "a".

Similarly, for Z, where C; = k*V3 — I, , we have the following expression

1 1
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Figure 3.9: Plot of growth rate (y) as a function of wave number (k) for different values
of magnetic field obliqueness 6.

3.4.3 DAWs in the Presence of Dust Charge Fluctuations

In this section of linear analysis, we take dust charge fluctuations. As we take dust
charge fluctuations which means that the dust charging frequency and dust acoustic
frequency is comparable.

Under the same physical assumptions including the dust charge fluctuations, we ob-

tained the following expression

W5 —TWp + & =0, (3.26)
where -
k*A
£ = A - A
Oéd("H—L;/{ B ‘/—-;)
k2A
Ti = A+ AT+ Ak° — _ :
’ 1 i (7057 — Fi)
2 8aZ A Z
H = + + A2 + ——,
(1+3a)(Z+0,) 5(1+3a)(Z+0p,) b On
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Figure 3.10: The behavior of growth rate (y) against wave number (k) for different
value of non-thermal parameter "a" with fixed magnetic field obliqueness 6. The left
panel shows # = 15 and right panel shows 8 = 30.
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Figure 3.11: The variation of growth rate () versus wave number (k) for different
values of normalized dust cyclotron frequency we,.
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Figure 3.12: The variation of growth rate () as a function of wave number (k) for
different values of non-thermal parameter "a" at fixed normalized dust cyclotron fre-

quency weq. The left panel shows w.; = 0.011 and the right panel shows w.q = 0.033.
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Figure 3.13: Plot of growth rate () versus wave number (k) for different values of
density ratio &,,.
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Figure 3.14: The behavior of growth rate () versus wave number (k) for different
values of non-thermal parameter "a" at fixed density ratio §,,. The left plot shows ¢,
= 0.1 and the right plot shows 9,, = 0.3.
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Figure 3.15: The profile of growth rate () against wave number (k) for different value
of density ratio d,. The other parameters are § = 30 and a = 0.

3.5 Derivation of Non-linear Evaluation Equation

In this section, we proceed toward the study of small but finite amplitude nonlinear

dust acoustic waves using the standard Reductive Perturbation Technique (RPT).
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Figure 3.16: The profile of growth rate () versus wave number (k) for different value
of non-thermal parameter "a" at fixed density ratio J,. The left panel shows ¢, = 0.1
and the right panel shows d, = 0.3.

The independent variables are stretched as:
§ = e(X = VpuT), (3.27)

and
=T (3.28)

In equation (3.27), V;, represents the normalized phase velocity of linear dust acous-
tic wave (DAW). And € is a small parameter characterizing the strength of the non-

linearity or weakness of the amplitude or dispersion.
The independent variable by using chain rule are stretched as:

0 _0 0  0or
oT 06 9T ~ 01 OT’
a0 9 0

o . 2

= 5 X = V) + 55T, (3.29)
d %}

_ 2 - .

= €5 eVon B
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And

0 _0o  9or
0X 060X  oroX’

0 0 o 0
= ———€X - VuT) +—==€T 3.30
8§8X€( wl) + 5o, (3.30)
0
=€—.
73
The dynamical variables are expanded in the power series of € as follow:
f=forefO4ef@ S0 4 (3.31)
and
Viy = €2V5) + VD + ... (3.32)

In equation (3.31) f shows the some dynamical variables, i.e., f = Ng, Viz, Vi, ©
and Q. Where fO = 1 for Ny, f© =V, for Vg and f© = 0 for Vg, ® and Q,
respectively. It is also noted that stretching expressions for velocity variables Vg, Va,

and V., in term of € have been chosen following Kakutani and Ono [71].

Thus dependent variable can be expanded in the following fashion.
Ny=1+eNY + NP + SN +

Vie = Vo + V) + VE + VD +
Vi. = V) + VP + eV +
d = edWV 4 203 + SO 4
Q =eQW + QP + QB + .,
Vg = eV + V2D + .. (3.33)

Due to the assumption (v) for consistent perturbation expansion, it is assumed that,

Weh = w—d = O(\/E) (3.34)

Now, substituting Eqgs. (3.29), (3.30) and (3.33) in Egs. (3.12), (3.13), (3.14), (3.15),
(3.16) and (3.19).
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We obtained the following relations in the lowest power of e:
VY = AN

Vc(li,) = —tan HNC(ll),

A2sin B sec? ON Y
Wed ag 7

oM = ad( — A%sec’ 0 + M),
aq

QW = Bay (A2 sec? ) — —%lad)N(gl).
0%

From the comparison of Poisson’s equation, we obtained a relation

g

(1)
de - —

On 1
el YOOIS 5pq)(1) + =M _ A(Q(l) _ Nél)) —_ T — 0,

On Op Op
Sy 1—
W (= 46, + g

On Op

On 1—
AQW = (= +4,+ g

On Op

On 1-6

)-a@y =) =0

)+ AN,

QW = S~ A%sec? 0+ 0 (2 15, + — )N 4 AN,

A ag oy, Op

Z On 1—
= {1— doTldo (A2se029—m) (—+5p+ g)}Ny),
Ay Qg On op

:{1 B ZaoNdo (Az soc?f) %Ud) (_
np0(6p+alp+j—z) (1—5p—5n) A

Zionao
+ > <A2 sec’ ) — M) Nél),
«
np0(5p+i+j—;>(1—5p—5n> ¢

using the quasi-neutrality condition, we obtained

QY :{1 — Zalay (A2 sec?f — M)

Npo Mp0o

T
Z40Mdo -

np0(1—g—;g—%g) <1—5p—5n)
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(A2 sec?f — Jd9d

0%

(3.35)
(3.36)
(3.37)
(3.38)
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and after a short algebraic manipulations one can get the following expression

g

o —J1_ <A2 sec? ) — W’d) n il (A2 sec? § — M) NV (3.40)
d (5 +1 4 5—“) A
p op on

Now, compare Eqgs. (3.39) and (3.40)

g
1— <A2 sec? f— %lad> + i <A2 sec? 9——%lad> = Bena (A2 sec? 9——%0(1)
Qd 5 4+ L b Qg ay
Npo D + a + On
9 o ”
1+ = (A2 sec” § — M) = (1 + 5chad) (A2 sec? ) — M)7
1 Sn Qg e %)
(e
o = o,
1= (14 Benca) (A’ sec®§ — M) — (A% sec® 0 — M))
Qq Y Oq
o 9
1= (A?sec’§ — M)(1 + Benag — =),
Qq y
9 o 9
L= A%sec?0(1+ B — ) = 22414 fpag — 22),
Y Qg Y
o 9 9
T+ M(1 + Benoa — 22) = A*sec? 0(1 4 Bopora — 22,
(%] y ~y
1
T+ 149 _ A2 goc? 0,
op Qg
(1 + Benota — 7)
1 o 1
AQ:seCQQ{VszjL < }’
T (1 Benova — =+

A:cos@{wad—i— ! 5 } ,

Y (14 Baag — %)
1
1 2
A:Vph—VOICOSQ{%—FE} . (3.41)
d

Eq. (3.41) shows the linear dust acoustic wave (DAW) phase velocity and where k =
<
(14 Benag — c;—p)
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The first order analysis only shows that the initial disturbance propagates and
nonlinear, dissipation, dispersion, and/or geometrical convergence effects have not yet

come into play. These effects appear in the next higher-order equations as given below:

aNY . aNIYM (ANY + V)

_ 42
or 0¢ ok o
Wy Ve 1 (0020 oM,
T PV ag 0, (9 g et - DN S5) (3.43)
1 9(0® — y0uNP) VP - |
- 12 eoally ) _a oo+ QUYL — Vi) sind,
vy,
A a? +wanQ (VY sind — VY cosb) = wa (VD sind — VP cos),  (3.44)
ayh ayh vy
TV = AT QU Vst (39
(5p + oy %) A(Q(2> - Ny + Q“)Nél))
PP L " "/ pm)? _ = 0. (3.46)

2(-2) 2(-2)

From the comparison of charging equation one can get the equation of the form

Ay 200 = — g5, — QO OpBen _z2(1+ B, \OW?
W e P = @ T 0, 4 3) B )@

1—02<1—|—Bn)
. ( p B K1> o2 n 22(1 — Up(Z + Up)(l + Bn) B K2> Q(l)@(l)},

o 0p(Z + 0p)

n

(3.47)

where

e a ( 11 n 32 )
' (1+3a)\1502 ' 150,(2 +0,) /)

a 612
K p—
? (1+3a)(15ap(z+ap)>’

and ,
Bn:An(l_On)+ a (—_7+ 160, )
o2 (1+3a)\ 5  5(Z+0,)

n
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Finally, eliminating all the second order quantities from Eqs. (3.42) - (3.47) and using
the relations (3.35) - (3.40), we obtained the following KdVB equation

Ny

Ny
or

PNy N
3 3 0¢?

— AN = 0. (3.48)

The coefficients of non-linearity A, dispersion B and Burger term D are as follows:

5 1
cos? 0 | 404 3 1 a(dp+ 25— 52) o 2B, (C + K3)
= i 1 I . n D p=tdir-c
A= |, et D+ — 5| Baaba+ P (Ito,+7)k ||
(3.49)
where
22’7ﬁch 1
=1+ B)(ZBp — 1)+ ——2 - — )
C=(1+4B-)(Z8n—1) +UP(Z+%) gy (3.50)
sin’ @ cos 6 Yaoa  1\3
B = - 3.51
2w?, < Qq * k:> ’ (3:51)
adﬁchwch COS2 0 adﬁch 0082 0 Wpd
D = = 3.52
2k’2 2]{72 (Vch), ( )
and
a 11 2(16 — 61284,)
K3 = — ) 3.53
> (1+3a) (1503 150,(Z + 0,) (3:53)

The Burger term v, implies the possibility of the existence of a shock-like structure.
And for parallel propagation, i.e., # = 0, the dispersion term vanishes, i.e., B = 0, and

the nonlinear dust acoustic wave is governed by the so-called Burger equation

aN
or

(1) ON"

aQN(l)
— AN, i —

-D = 0. (3.54)

¢ e

3.6 Stationary Solution: Generation of Shock Wave

It is well known that the Kortewege-de Vries (KdV) Burger equation describes the
shock wave profile. The criteria for the formation of the shock wave is that the coefficient

of the Burger term D which arises due to the non-steady dust charge variation should be
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positive, i.e., D > 0. Otherwise, it would not be possible to get a stable solution to the

Burger equation. A particular solution of the above KdV-Burger equation (3.48)

_ 3D?
25AB

2
N (e, 7) = 1+ tanh-2_ (6—1)27 - 5)] . (3.55)

108 \258B

While for the parallel propagation, i.e., # = 0, the dispersive term vanishes and one

can easily obtained the following analytical solution of the Burger’s equation (3.54)
(1)

subject to the boundary conditions Nél)(f, T), aNda—(g’T) — 0 as n — —oo, which exhibits
7

monotonic shock solution.

N, 7) = N[l + tanh (Li)} , (3.56)

w

where N = % is the initial shock amplitude and L,, = % is the shock width.And in
the absence of charge fluctuation, i.e., v, = 0, the KdVB equation (3.48) reduced to
a KdV like equation

ON" MmN PN
— AN 4 _p—49= =0 3.57
or AN o0& g3 ’ ( )
which admits a solitary solution of the form
ND(g,7) = N sec h2(Ai), (3.58)
where, A and A,, = /28 represents the amplitude and the width of the solitary wave,

Vs
respectively. However, for steady state numerical solution transforming to the wave

frame n = V;7 + £ the KdV-Burger equation (3.48) with ¢ = Ny)(ﬁ, 7) reduce to the
following expression
2
o= (-G - (5)ay (359
The Eq. (3.59) has two fixed points, i.e., (0, 0) and (%, 0). However, ¢ = Nc(ll) can
be calculated by numerical integration. Here the Mach number is defined as the ratio
of dust acoustic (DA) wave velocity V, to the linear dust acoustic (DA) wave velocity.

The DAW velocity V, is expressed as
Va = V() - (Vph - EVf), (360)
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and the linear DAW velocity A which is expressed in equation (3.41). Therefore, the
Mach number is indicated as

Va
M= 2. (3.61)

3.7 Parametric Analysis

Horanyi and Mendis [72|[73] investigated the trajectories of micron and sub-micron
sized dust grains that are expected to be released from the cometary nucleus. It was
shown that the electromagnetic forces associated with the motion of the grains (which
are electrically charged by the plasma environment) through the magnetized plasma
play an important role in their dynamics. The different spacecrafts like Vega 1, Vega
2, and Giotto has the observation on comets which tells that Comet Halley is com-
posed of electrons, ice dust grains, different positive and negative ions. These positive
and negative ions are usually (H*,H™), (O7,07), (Sit,5i7), (OH",OH™) etc. Con-
sidered the positive and negative ions are (Si*,5i7) and pure ice dust grains for the
numerical analysis of present findings [74](75]|76]|[77]. The approximate physical pa-
rameters of Comet Halley which is approximate 10* km away from the nucleus are n,
~2x10°m™3, ngg ~1m=3, T, = ~ 100 eV, m, = my ~ 1.6726 X 107%" kg, By ~
7.5 x 1073 Tesla, ry ~ 5um and g ~ g It is also noted that the ratio of the mass
of positive ion and mass of the negative ion, i.e., Q = =* may have a strong influence

on the spatial patterns of ion-acoustic solitons in electronegative dusty plasma which

is recently reported by Taibany and Tribeche[78].
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Figure 3.17: Variation of dissipative term () against density ratio (d,) for different
value of density ratio d,. The other parameters are § = 30 and a = 0.
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Figure 3.18: Plot of dissipative term (u.;) against density ratio (d,) for different values
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Chapter 4

Discussions and Conclusions

4.1 Discussions

Figure 3.1 indicates that when the population of Cairn distributed positive ions in-
creases the Doppler frequency increases as well. The blue line refers to the Maxwellian
case. Figure 3.2 and figure 3.3 manifests the effect of increasing magnetic field oblique-
ness (6) for the Doppler frequency. It is observed that by increasing the magnetic field
obliqueness 6 the Doppler frequency is also increases and vise versa. And when the
population of Cairn distributed positive ions increases the Doppler frequency increases.
Now, to check the effects of the population of Cairn distributed positive ions, the den-
sity ratio of electrons and energetic positive ions we have to plot figure 3.4 and figure
3.5. It is noticed that by increasing the density ratio of electrons and energetic posi-
tive ions the Doppler frequency decreases. While by increasing the Cairn distributed
positive ion population the Doppler frequency is increasing. Similarly, figure 3.6 and
figure 3.7 shows the Doppler frequency variation against k£, which indicates that the
Doppler frequency increases by the increase of normalized cyclotron frequency w4 and
similarly by enhancing the non-thermal Cairn distributed positive ions the Doppler
frequency increases as well. The growth rate also increases with an increase in the
Cairn distributed positive ion population. Variation in normalized cyclotron frequency
means that there are variations in a magnetic field.

In figure 3.8 manifests the effect of an increasing Cairn distributed positive ion popu-

lation. It indicates that by increasing the non-therm parameter the growth rate also
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increases. On the other hand, if the magnetic field obliqueness () is increasing then
the growth rate is decreasing. The magnetic field obliqueness effects are shown in figure
3.9. Figure 3.11, 3.12,3.13, 3.14, 3.15 and 3.16 manifests the effects of normalized dust
cyclotron frequency (weq), electrons and Cairn distributed positive ions density ratio,
and negative and Cairn distributed positive ions density ratio. It shows that when the
normalized dust cyclotron frequency increases the growth rate is also increases while
increasing the electrons and Cairn distributed positive ions density and negative and
Cairn distributed positive ions density the growth rate is decreasing. The increase of
non-thermal parameter in all these cases will increase the growth rate.

Figure 3.17 and 3.18 explore the effects of electrons and Cairn distributed positive ions
ratio and the population of Cairn distributed positive ions. It is also noticed that the
ratio of electrons and Cairn distributed positive ions population plays a crucial role in
the dissipation term. It is observed that in a particular case when the ratio of electrons
and Cairn distributed positive ions density increases the dissipation term effects are
decreases. While, the population of energetic positive ions for a particular case, i.e.,
0, = 0.1, 9, = 0.2 and 9, = 0.3 will increase the variations of dissipative term. Figure
4.1 manifests that with the increase in obliqueness of the magnetic field the dissipative
term decay rapidly. While an increase in Cairn distributed positive ions population for
a specific obliqueness of the magnetic field (¢) shown in figure 4.2, indicates that the
dissipation term is increases.

Figure 4.3 demonstrates an increase in the population of Cairn distributed positive ions
for soliton structure. It is noticed that the increasing population of Cairn distributed
positive ions plays a crucial role that the amplitude of the solitons is decreasing with
increasing Cairn distributed positive ions population. While on the other hand, the
shoulders of the solitons broadened. The broadness of the soliton shoulders or wings
indicates that the population of Cairn distributed positive ions increase the dispersion
term. The figure 4.4 manifests the effect of increasing normalized dust cyclotron fre-
quency wgq. It is observed that by increasing the normalized dust cyclotron frequency
weq the soliton shoulders or wings shrinks but the amplitude remains the same. The

figure 4.5 shows that how the shoulders of the solitons spread with the increase of Cairn
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distributed positive ions population. The figures 4.6, 4.7, 4.8 and 4.9 indicates that
the amplitude of the soliton is increased with the increase of the ratio of electrons and
Cairn distributed positive ions density and the ratio of negative and Cairn distributed
positive ions while the shoulders of the solitons are shrinks. The figures 4.10 and 4.11
manifests the effects of increasing the obliqueness of the magnetic field and population
of Cairn distributed positive ions. It is observed that by increasing the obliqueness of
the magnetic field the amplitude, as well as the shoulders of the solitons, get smaller.
While, by increasing the population of Cairn distributed positive ions the amplitude,
as well as the shoulders of the solitons, get smaller.

Figure 4.12 demonstrates an increase in the population of Cairn distributed positive
ions for monotonic shock structure. It is noticed that the strength and amplitude of the
shock decrease with the increase in the non-thermal population of positive ions. While
increasing the density ratio of negative and energetic positive ions and density ratio
of electrons and Cairn distributed positive ions increases the strength and amplitude
of the monotonic shock elaborated in figures 4.13 and 4.15. If the population of Cairn
distributed positive ions increases the strength and amplitude of the monotonic shock

is decreases, shown in figures 4.14 and 4.16.
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Figure 4.1: The effect of dissipative term (u.,) against density ratio (4,,) for different
values of obliqueness of magnetic field 6.

4.2 Conclusions

In this project, we have investigated the linear and non-linear analysis of dust acoustic
waves with the application on the Halley comet. In the linear analysis regime, we have
investigated the Doppler’s frequency and growth rate for the constant dust charge vari-
ation. Besides this, we derived the relation for dust charge variation. To investigate the
Doppler’s frequency, we have observed that by increasing the population of energetic
positive ions, the Doppler’s frequency has also increased. Whereas, an increase in the
obliqueness of the magnetic field has decreased the Doppler’s frequency. Likewise, it
was also observed that the density ratio of electrons and energetic positive ions (9,)
played a crucial role, i.e., the increase in J, has decreased the Doppler’s frequency.
Similarly, the effects of normalized dust cyclotron frequency on Doppler’s frequency
cannot be ignored. It was observed that the small deviations in normalized dust cy-
clotron frequency led to a great increase in the Doppler’s frequency.

Moreover, to investigate the growth rate, it has been found that by enhancing the
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Figure 4.2: The effect of dissipative term () versus density ratio (4,) for different
value of different values of non-thermal parameter "a" at fixed magnetic field oblique-
ness 0. The left panel shows # = 6 and right panel shows 6 = 44.

N D
W

0OF

—-100 -50 0 50 100
n

Figure 4.3: The KdV solitons are plotted for different values of non-thermal parameter
"a" at fixed obliqueness of magnetic field § = 30.

population of energetic positive ions the growth rate increases. On the other hand,

increasing the obliqueness of the magnetic field the growth rate decreases. However,
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Figure 4.4: The profile of KdV solitons for different value of non-thermal parameter
n.n

a" at fixed obliqueness of magnetic field that is 6 = 30.

the increase in the normalized dust cyclotron frequency or the magnitude of the applied
magnetic field leads to an increase in the growth rate. Also, both ratios of electrons
versus energetic positive ions and negative ions versus energetic positive ions play a
crucial role in the growth rate. A small deviation in both ratios led us to a great
change in the growth rate. It was revealed that an increase in both the density ratios
decreased the growth rate.

In the non-linear analysis regime, we have derived the KdVB equation. For the parallel
propagation, i.e., § = 0, the dispersive term vanishes, and the KdVB equation is reduced
to Burger’s equation. This Burger’s equation led us to the monotonic dust acoustic
shock structure. While, in the absence of charge fluctuation, the KAVB equation was
reduced to a KdV like -equation which admits a solitary solution. The dissipative term
plays an important role in Burger’s equation. This dissipative term decreases when the
density ratio of electrons versus energetic positive ions increases. While the dissipative
term increases with the enhancement of energetic positive ions population. Moreover,

by increasing the obliqueness of the magnetic field the dissipative term decays gradu-
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Figure 4.5: The profile of KdV solitons for different value of non-thermal parameter
"a" at fixed normalized dust cyclotron frequency w.y. The plot (a) shows w. = 0.011
and plot (b) shows w.s = 0.013
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Figure 4.6: The behavior of KdV solitons are plotted for different values of negative
ions and positive ions density ratio d,,. The blue solid curve corresponds to 9, = 0.1,
the red solid curve corresponds to ¢,, = 0.5 and the black solid curve corresponds to 9,
= 1 at fixed obliqueness of magnetic field § = 30.

ally. The KdV soliton has been investigating, and it is found that by increasing the
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Figure 4.7: The behavior of KdV solitons for different values of non-thermal parameter
"a" at fixed negative ions and positive ions density ratio d,,. The left panel shows ¢,
= 0.1 and right panel shows ¢,, = 1.0.
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Figure 4.8: The profile of KdV solitons for different value of electrons and positive ions
density ratio 9, at fixed obliqueness of magnetic field 8 = 30.

population of energetic positive ions the amplitude of the soliton decreases while its

width or shoulders increase. However, the increase in the normalized dust cyclotron fre-
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Figure 4.9: The profile of KdV solitons for different values of non-thermal parameter
"a" at fixed electrons and positive ions density ratio d,. The left panel shows d, = 0.1
and right panel shows 4, = 1.0.
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Figure 4.10: The profile of KdV solitons are plotted for different values of obliqueness
of magnetic field 6.

quency or the magnitude of the applied magnetic field led to the decrease in the width
of soliton while its amplitude remains unaffected. It is also observed that by increasing

the density ratio of electrons versus energetic positive ions the amplitude of the soliton
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Figure 4.11: The profile KdV solitons are plotted for different value of obliqueness of
magnetic field §. The left panel shows 6§ = 20 and right panel shows 6 = 44.
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Figure 4.12: The profile of monotonic dust-acoustic shocks are plotted for different
value of non-thermal parameter "a".

increases but the width or shoulder of the soliton decreases. Similarly, for the density
ratio of negative ions versus energetic positive ions population the amplitude of the
soliton increases but the width or shoulder of the soliton decreases. Moreover, in our

system, the obliqueness of the magnetic field has a very important role. Therefore, it
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Figure 4.13: The behavior of monotonic dust-acoustic shocks are plotted for different

value of negative and positive ions density ratio d,, at fixed non-thermal parameter a
= 0.07.
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Figure 4.14: The behavior of monotonic dust-acoustic shocks are plotted for different
values of non-thermal parameter "a" at fixed density ratio 9,,.
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Figure 4.15: The profile of monotonic dust-acoustic shocks are plotted for different
values of electrons and positive ions density ratio J, at fixed non-thermal parameter a

= 0.07.

is observed that by enhancing the obliqueness of the magnetic field the amplitude, as
well as the width of the soliton, decreases.

Since for the parallel propagation, the dissipative term vanishes, and our system is gov-
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Figure 4.16: The profile of monotonic dust-acoustic shocks are plotted for different

value of non-thermal parameter "a" at fixed electrons and positive ions density ratio
dp. The left plot shows 9, = 0.1 and right plot shows 4, = 0.9.

erned by Burger’s equation. This Burger’s equation gave the monotonic dust acoustic
shock structure. To investigate the monotonic shock structures, it is interestingly
found that by enhancing the energetic positive ions population the shock amplitude
decreases. While, to investigate the different densities ratios, i.e., electrons density
versus energetic (Cairns distributed) positive ions density and negative ions versus en-
ergetic (Cairns distributed) positive ions, it is observed that both the density ratios

increase the amplitude of the monotonic dust acoustic shock.
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