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Abstract

This thesis is devoted to �nd the Mei symmetries corresponding to the Lagrangian

of spherically symmetric and static metric. For this purpose, Schwarzschild metric is

considered and the criterion for Mei symmetries is analysed. The Lagrangian of the

spherically symmetric and static Schwarzschild metric is used to determine the Euler

Lagrange equations and the determining equations for the Mei symmetries. Solving

the determining equations, four Mei symmetries for the Lagrangian of Schwarzschild

metric are obtained. Moreover, the Lie point symmetries and Noether symmetries are

reviewed. The obtained Mei symmetries are found to be the subest of these Lie point

symmetries. In addition to this, a quick veri�cation of obtained Mei symmetries is also

done.
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Chapter 1

Introduction

In this chapter background of di�erential equations is reviewed. The theory of sym-

metry groups of ordinary and partial di�erential equations is discussed with some

examples. The criterion of the Lie point symmetries, Noether symmetries and Mei

symmetries is presented. The basic concepts, de�nitions and notations related to these

symmetries are presented.

1.1 Brief Background of Di�erential Equations

The inception of the di�erential equations is not that straightforward that credits could

be only given to one person. It is because although Sir Isaac Newton, after discovering

calculus in 1665, wrote his �rst work in 1671 titled as "The method of �uxion and

in�nite series" [1] but he did not get it published right away. In 1693, when Got-

tfried Leibniz gave solution of �rst di�erential equation, Newton got his previous work

published so it became the o�cial year of inauguration of the di�erential equations.

Therefore, as history tells, these two giants of Mathematics deserve equal credits for

the birth of di�erential equations.

The extension of Leibniz' work was done by Jakob Bernoulli and Johann Bernoulli.

In 1695, Jakob Bernoulli came up with a new form of ordinary di�erential equation
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y
′
+ P (x)y = Q(x)yn called as Bernoulli equation. Then to describe waves, a sec-

ond order linear partial di�erential equation i.e. one-dimensional wave equation, was

proposed by Jean le Rond d'Alembert in 1746. Within ten years Euler created a three-

dimensional version of the wave equation. Leonhard Euler is a household name who

contributed much to Mathematics due to his vast number of in�uential discoveries. The

areas of Mathematics covered by Euler include in�nitesimal calculus, trigonometry, ge-

ometry, number theory and algebra. His famous work carries frequent use of Power

series to solve particular cases of di�erential equations, Euler's identity and Euler's

formula. Another feather to his cap was the invention of calculus of variations which

takes in his most well-known result, The Euler-Lagrange equation (in collaboration

with Joseph Louis Lagrange).

New �gures emerged, especially Joseph-Louis Lagrange, Pierre-Simon Laplace and

Adrien-Marie Legendre and Joseph Fourier, best known for their concept of Lagrangian

multiplier, Laplace's equation and transformation, Legendre polynomials and Leg-

endre transformation, Fourier series respectively. Another renowned Mathematician

Friedrich Bessel generalized Bessel functions which were originally introduced by Daniel

Bernoulli. In the same era a well-known mathematician Augustin-Louis Cauchy talked

about existence and uniqueness of solutions for the �rst time. The history went on

with great names such as Rudolf Lipschitz, Bernhard Riemann, Carl Friedrich Gauss,

Emmy Noether and George David Birkho� carrying out di�erent research for the de-

velopment of di�erential equations [2].

Meanwhile, when Evariste Galois formulated basis for group theory while having quest

to �nd out the solutions of polynomial equations, a famous Norwegian mathematician

Marius Sophus Lie used groups to �nd solutions of di�erential equations afterwards. He

suggested that actually the groups of symmetries of the equations are used in standard

methods to obtain the solutions. To understand symmetries, �rst we need to explore
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transformations and their generators.

1.2 Point Transformations and their In�nitesimal Gen-

erators

A point transformation is a transformation that transforms a point (x, y) into a new

point (x̂, ŷ)

x̂ = x̂(x, y), ŷ = ŷ(x, y), (1.1)

where x is independent variable and y is dependent variable. In context of symmetries,

point transformations that are dependent on at least one parameter needed to be

considered.

1.2.1 One-Parameter Groups of Point Transformations

One-parameter group of point transformations are the transformations that depends

on at least one arbitrary parameter ε ∈ R

x̂ = x̂(x, y, ε), ŷ = ŷ(x, y, ε). (1.2)

with the group properties of closure, inverse and identity being satis�ed. The identity

transformation is obtained by setting ε = 0

x̂(x, y, 0) = x, ŷ(x, y, 0) = y. (1.3)

The rotations

x̂ = x cos ε− y sin ε, ŷ = x sin ε+ y cos ε, (1.4)

represent a one-parameter group of point transformations as they depend on only one

parameter and also satisfy all the group axioms.

Also one-parameter group of point transformations comprises of scaling such as

x̂ = eεx, ŷ = eεy. (1.5)
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However, translations

x̂ = x+ ε1, ŷ = y + ε2, ε1, ε2 ∈ R, (1.6)

represent a two-parameter group of point transformations as this set of translations

depends on two parameters ε1 and ε2. Here one-parameter group of translations in the

y direction can be obtained by setting ε1 = 0 and similarly, one-parameter group of

translations in the x direction can be obtained by setting ε2 = 0.

On the other hand, the re�ection

x̂ = −x, ŷ = −y, (1.7)

does not constitute one-parameter group of point transformations but it is still a point

transformation [3].

Applying Taylor series about ε = 0 gives in�nitesimal representation of point transfor-

mation

x̂ = x+ ε
∂x̂

∂ε
|ε=0 +O(ε

2),

ŷ = y + ε
∂ŷ

∂ε
|ε=0 +O(ε

2),

(1.8)

where the coe�cients of in�nitesimal transformations are set to be the functions [4]

∂x̂

∂ε
|ε=0= ξ(x, y),

∂ŷ

∂ε
|ε=0= η(x, y). (1.9)

Hence, the in�nitesimal generator of transformation is established as

X = ξ(x, y)
∂

∂x
+ η(x, y)

∂

∂y
. (1.10)

A group of transformations can be acquired if the in�nitesimal generator is known [3].

The generator can be written as

X = (Xx)
∂

∂x
+ (Xy)

∂

∂y
. (1.11)
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This in�nitesimal generator can be transformed into new coordinates using transfor-

mation law

X = kα
′ ∂

∂zα′ , α = 1, ....., N, (1.12)

where zα
′
are new coordinates and kα

′
= ∂zα

′

∂zα
kα are the new components of tangent

vector X.

The following example is conferred to grasp this concept clearly.

Example

In view of the given generator

X = x
∂

∂x
+ y

∂

∂y
. (1.13)

Introducing new set of coordinates

r(x, y) = ln x, s(x, y) =
x

y
. (1.14)

The in�nitesimal generator in the new coordinates is

X = (Xr)
∂

∂r
+ (Xs)

∂

∂s
. (1.15)

Solving the partial di�erential equations

Xr = ξ(x, y)
∂r

∂x
+ η(x, y)

∂r

∂y
, (1.16)

Xr = x

(
1

x

)
+ y(0) = 1, (1.17)

and

Xs = ξ(x, y)
∂s

∂x
+ η(x, y)

∂s

∂y
,

Xs =
x

y
+ y

(
−x
y2

)
= 0. (1.18)

Putting eq. (1.17) and eq. (1.18) back into eq. (1.15) yields in�nitesimal generator in

new coordinates r and s

X(r, s) =
∂

∂r
. (1.19)
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This particular form of generator is known as the normal form or the canonical form

of the in�nitesimal generators and the coordinates (r, s) are called normal (canonical)

coordinates. If the condition rxsy−rysx 6= 0 is admissible by the canonical coordinates

then the transformation is invertible [5].

1.2.2 r-Parameter Groups of Point Transformations

A group of transformations may depend on multiple (more than one) parameters. It

means contrary to eq. (1.2) one may write

x̂ = (x, y, εα), ŷ = (x, y, εα), (1.20)

where α = 1, ..., r. If all the axioms of groups are satis�ed by all these parameters

and if they do not depend on each other then these point transformations formulate a

r-parameter group (Gr).

An in�nitesimal generator can be constructed for each parameter εα of r-parameter

group of point transformations.

Xα = ξα
∂

∂x
+ ηα

∂

∂y
, (1.21)

where the in�nitesimals are

ξα(x, y) =
∂x̂

∂εα

∣∣∣∣
εβ=0

, (1.22)

ηα(x, y) =
∂ŷ

∂εα

∣∣∣∣
εβ=0

. (1.23)

The following example is presented to make it clear how to deal with point transfor-

mations that depend on more than one parameters.

Example

Considering the projective transformation of the x− y plane as

x̂ =
ε1 + (1 + ε2)x+ ε3y

(1 + ε4) + ε5x+ ε6y
, ŷ =

ε7 + ε8x+ (1 + ε9)y

(1 + ε4) + ε5x+ ε6y
. (1.24)
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Simplifying eq. (1.24) yields

x̂ = ε1 + x+ ε2x+ ε3y − ε4x− ε5x2 − ε6xy +O(ε2), (1.25)

ŷ = ε7 + ε8x+ y + ε9y − ε4y − ε5xy − ε6y2 +O(ε2). (1.26)

Application of eq. (1.22) on eq. (1.25) for each parameter εα(α = 1, ...., 9) provides

ξ1 = 1, ξ2 = x, ξ3 = y, ξ4 = −x, ξ5 = −x2,

ξ6 = −xy, ξ7 = 0, ξ8 = 0, ξ9 = 0.
(1.27)

Similarly, application of eq. (1.23) on eq. (1.26) for each parameter εα(α = 1, ...., 9)

provides

η1 = 0, η2 = 0, η3 = 0, η4 = −y, η5 = −xy,

η6 = −y2, η7 = 1, η8 = x, η9 = y.
(1.28)

Hence, the generators can be listed as

X1 =
∂

∂x
, X2 = x

∂

∂x
, X3 = y

∂

∂x
,

X4 = −x
∂

∂x
− y ∂

∂y
, X5 = −x2

∂

∂x
− xy ∂

∂y
, X6 = −xy

∂

∂x
− y2 ∂

∂y
,

X7 =
∂

∂y
, X8 = x

∂

∂y
, X9 = y

∂

∂y
.

(1.29)

However, as X4 is a linear combination of X2 and X9, therefore, there are eight linearly

independent generators in total. Hence in this example an 8-parameter group of point

transformations is easily investigated.

1.2.3 Prolonged Transformations and their Prolonged Genera-

tors

Taking a di�erential equation into consideration

E = (x, y, y′, . . . , y(n)) = 0. (1.30)
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If we want to apply point transformation eq. (1.2) on it, we must extend or prolong

this transformation to its derivatives y(k), k = 1, 2, . . . , n as well. Calculating ŷ(k)

recursively [3] such as

ŷ(k) =
dŷ

dx̂(k)
=
dŷ(k−1)

dx̂
=
Dxŷ

(k−1)

Dxx̂
, (1.31)

here Dx is the total derivative w.r.t x.

Dx =
d

dx
=

∂

∂x
+ y′

∂

∂y
+ y′′

∂

∂y′
+ y′′′

∂

∂y′′
+ . . . , (1.32)

as eq. (1.8) suggests

x̂ = x+ εξ(x, y) +O(ε2),

ŷ = y + εη(x, y) +O(ε2),

ŷ′ = y′ + εη(1)(x, y, y′) +O(ε2),

...

ŷ(n) = y(n) + εη(n)(x, y, y′, . . . , y(n)) +O(ε2),

(1.33)

where η(1), η(2), . . . , η(n) are given as

η(1) =
∂ŷ′

∂ε

∣∣∣∣
ε=0

, η(2) =
∂ŷ′′

∂ε

∣∣∣∣
ε=0

, . . . , η(n) =
∂ŷn

∂ε

∣∣∣∣
ε=0

. (1.34)

By using eq. (1.33) in eq. (1.31) we get

ŷ′ = y′ + εη(1) +O(ε2) = Dx(ŷ) =
dŷ

dx̂
=
dy + εdη + . . .

dx+ εdξ + . . .
,

=
y′ + ε

(
dη
dx

)
+ . . .

1 + ε
(
dξ
dx

)
+ . . .

,

= y′ + ε

(
dη

dx
− y′ dξ

dx

)
+ . . . . (1.35)

Comparing ŷ′ from eq. (1.35) with ŷ′ from eq. (1.33) we get

η(1) =
dη

dx
− y′ dξ

dx
= Dxη − y′Dxξ. (1.36)
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Similarly, for ŷ(n) we get

ŷ(n) = y(n) + ε

(
dη(n−1)

dx
− yn dξ

dx

)
+ . . . , (1.37)

and by comparing y(n) from eq. (1.37) to y(n) from eq. (1.33) we get

η(n) =
dη(n−1)

dx
− yn dξ

dx
= Dxη

(n−1) − ynDxξ. (1.38)

Hence we can generalize it to

η(k) =
dη(k−1)

dx
− yk dξ

dx
= Dxη

(k−1) − y(k)Dxξ, k = 1, . . . , n (1.39)

where η(k) is not k−th derivative of η rather it is k−th prolongation and one can also

compute the prolongation of η by putting eq. (1.32) in eq. (1.39) as the �rst two

prolongations are

η(1) = η,x + y′(η,y − ξ,x)− y′2ξ,y, (1.40)

η(2) = η,xx + y′(2η,xy − ξ,xx) + y′2(η,yy − 2ξ,xy)− y′3ξ,yy + y′′(η,y − 2ξ,x − 3y′ξ,y).
(1.41)

where (, ) denotes partial derivative w.r.t to the function following it.

Now the prolongation of in�nitesimal generator is established such that the in�nitesimal

transformations are written in the form

x̂ = x+ εXx+O(ε2),

ŷ = y + εXy +O(ε2),

ŷ′ = y′ + εXy′ +O(ε2),

...

ŷ(n) = y(n) + εXy(n) +O(ε2).

(1.42)

and the prolongation of in�nitesimal generator is formulated as

X(n) = ξ
∂

∂x
+ η

∂

∂y
+ η′

∂

∂y′
+, . . . ,+η(n)

∂

∂y(n)
. (1.43)
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The below presented example marks the procedure of computing prolongation of gen-

erator.

Example Consider the given generator

X = xy
∂

∂x
+ y2

∂

∂y
. (1.44)

Now we will �nd its second prolonged generator. To �nd second prolonged generator

we need η(1) and η(2). From eq. (1.44) we have

ξ = xy, η = y2, (1.45)

and by using eq. (1.39) we can compute η(1) and η(2) as

η(1) = Dx(y
2)− y′Dx(xy) = yy′ − xy′2, (1.46)

η(2) = Dx(yy
′ − xy′2)− y′′Dx(xy) = −3y′y′′x. (1.47)

We can also compute η(1) directly by using eq. (1.40) as

η(1) = y′(2y − y)− y′2x = yy′ − y′2x, (1.48)

and also η(2) by using eq. (1.41) as

η(2) = y′′(2y − 2y − 3y′x) = −3y′y′′x. (1.49)

Hence the prolonged generator is found as

X(2) = xy
∂

∂x
+ y2

∂

∂y
+ (yy′ − y′2x) ∂

∂y′
− 3y′y′′x

∂

∂y′′
. (1.50)

1.3 Lie Point Symmetries of Ordinary Di�erential Equa-

tions

Until now we talked about point transformations. Now we de�ne symmetry group of

transformations and Lie point symmetries of ordinary di�erential equations .
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A point transformation that may or may not depend on any parameter is said to be

a symmetry group of transformations if it maps a solution to another solution of

di�erential equation and preserves its structure.

For example if we consider the ordinary di�erential equation

E(x, y, y′, . . . , yn) = 0, (1.51)

and apply point transformation from eq. (1.1) to it, if it provides

E(x̂, ŷ, ŷ′, . . . , ŷ(n)) = 0, (1.52)

then this point transformation is a symmetry transformation because it did not change

the eq. (1.51). More generally, we can say that an nth eq. order di�erential equation

E(x, y, y′, . . . , y(n)) = 0 is invariant under a symmetry transformation x̂ = x̂(x, y), ŷ =

ŷ(x, y), . . . , ŷ(n) = ŷ(n)(x, y, y′, . . . , y(n)) if E(x̂, ŷ, ŷ′, . . . , ŷ(n)) = 0.

If we consider the symmetry group of transformations that is dependent on at least

one parameter then this symmetry is known as Lie point symmetry named after

Norwegian mathematician Sophus Lie.

Di�erentiating eq. (1.52) yields

∂E

∂ε

∣∣∣∣
ε=0

= 0, (1.53)

=

(
∂E

∂x̂

∂x̂

∂ε
+
∂E

∂ŷ

∂ŷ

∂ε
+
∂E

∂ŷ′
∂ŷ′

∂ε
+ . . . ,+

∂E

∂ŷ(n)
∂ŷ(n)

∂ε

)∣∣∣∣
ε=0

. (1.54)

If we choose (∂E
∂x̂
) |ε=0= (∂E

∂x
) then by using eq. (1.9) we can write

ξ
∂E

∂x
+ η

∂E

∂y
+ η′

∂E

∂y′
+ · · ·+ η(n)

∂E

∂y(n)
= 0, (1.55)

which is equivalent to

XE = 0. (1.56)

We now can state the criterion to �nd Lie point symmetries.
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1.3.1 Criterion to Find Lie Point Symmetries

An ordinary di�erential equation (ODE)

E(x, y, y′, y′′, . . . , y(n)) = 0,

admits a group of symmetries with generator X if and only if

X(n)E |ε=0= 0,

holds.

In next example we see how XE becomes zero considering E = 0.

Example

Suppose we have a linear di�erential equation

y′′ + y = 0. (1.57)

The generator is given as

X = y
∂

∂y
. (1.58)

From eq. (1.58) we get

ξ = 0, η = y. (1.59)

Now we will �nd prolonged generator. For this we have to �nd η(1) and η(2) using

de�nitions eq. (1.39).

η(1) = y′, η(2) = y′′.

So the second prolonged generator is obtained as

X(2) = y
∂

∂y
+ y′

∂

∂y′
+ y′′

∂

∂y′′
. (1.60)

If we recheck then X(2)E = 0 as E = 0.

In next example we now elaborate that how this criterion works to �nd group of
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symmetries for a second order di�erential equation.

Example

Consider

E(x, y, y′, y′′) : y′′ + y = 0. (1.61)

Now we will �nd the symmetries of the equation eq. (1.61). The criterion for �nding

symmetries is

X(2)E = 0. (1.62)

Firstly we prolong the generator X to X(2) so we get

X(2) = ξ
∂

∂x
+ η

∂

∂y
+ η(1)

∂

∂y′
+ η(2)

∂

∂y′′
. (1.63)

Applying the criterion given in eq. (1.62) provides

X(2)E =

(
ξ
∂

∂x
+ η

∂

∂y
+ η(1)

∂

∂y′
+ η(2)

∂

∂y′′

)
y′′ = η(2) + η = 0. (1.64)

Using eq. (1.41) we have

η,xx+ y
′(2η,xy− ξ,xx)+ y′2(η,yy− 2ξ,xy)− y′3ξ,yy+ y′′(η,y− 2ξ,x− 3y′ξ,y)+ η = 0, (1.65)

putting y′′ = −y from eq. (1.61) we get

η,xx − yη,y + 2yξ,x + η + y′(2η,xy − ξ,xx + 3yξ,y) + y′2(η,yy − 2ξ,xy)− y′3ξ,yy = 0. (1.66)

Since ξ, η are the functions of x and y only therefore we can compare coe�cients of y′

and their powers. Comparing coe�cients provides partial di�erential equations

(y′0) : η,xx − yη,y + 2yξ,x + η = 0, (1.67)

(y′1) : 2η,xy − ξ,xx + 3yξ,y = 0, (1.68)

(y′2) : η,yy − 2ξ,xy = 0, (1.69)

(y′3) : ξ,yy = 0, (1.70)
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eq. (1.70) implies

ξ = a1(x)y + a2(x). (1.71)

Finding ξ,xy from eq. (1.71) and putting back in eq. (1.69) gives

η,yy − 2a′1 = 0, (1.72)

eq. (1.72) implies

η,y = 2a′1y + a3(x),

η = a′1y
2 + a3y + a4(x). (1.73)

Putting value of η,xy and ξ,xx in eq. (1.68) yields

4a′′1y + 2a′3 − a′′1y − a′′2 + 3ya1 = 0,

3a′′1y + 2a′3 − a′′2 + 3ya1 = 0. (1.74)

Comparing powers of y in eq. (1.74) we get

(y0) : 2a′3(x)− a′′2(x) = 0. (1.75)

(y1) : a′′1(x) + a1(x) = 0, (1.76)

from eq. (1.76) we get

a1 = c1 cosx+ c2 sinx. (1.77)

Putting value of a′1 from eq. (1.77) into eq. (1.73) gives

η = −c1 sinxy2 + c2 cosxy
2 + a3y + a4. (1.78)

Now inserting value of η,xx and η,y from eq. (1.78) into eq. (1.67) produce

(−2c2 cosx+ 2c1 sinx+ 2a′1) y
2 + (a′′3 + 2a′2)y + a′′4 + a4 = 0. (1.79)

14



Comparing powers of y in eq. (1.79) yields

(y0) : a′′4(x) + a4(x) = 0 = a4 = c5x+ c6, (1.80)

(y1) : a′′3(x) + 2a′2(x) = 0, (1.81)

(y2) : −2c2 cosx+ 2c1 sinx+ 2a′1(x) = 0,

di�erentiating eq. (1.81) w.r.t x and putting value of a′′2 from eq. (1.75) we get

a′′′3 (x) + 4a′3(x) = 0. (1.82)

If we consider a′3(x) = A3, a
′′
3(x) = A′3, a

′′′
3 (x) = A′′3 then eq. (1.82) becomes

A′′3 + 4A3 = 0, (1.83)

that gives

A3 = c5 cos 2x+ c6 sin 2x, (1.84)

as A3 = a′3(x) so by putting into eq. (1.84) and solving we get value of a3

a3(x) =
1

2
c5 sin 2x−

1

2
c6 cos 2x+ c7. (1.85)

Putting value of a3 into eq. (1.81) we obtain

a2(x) = −
1

2
c5 cos 2x−

1

2
c6 sin 2x+ c8, (1.86)

putting value of respective ak, k = 1, . . . , 4 back in eq. (1.71) and eq. (1.78) produce

values of ξ and η

ξ(x, y) = (c1x+ c2)y + c3x
2 + c7x+ c8, (1.87)

η(x, y) = c1y
2 + (c3x+ c4)y + c5x+ c6. (1.88)

Here ck, k = 1, 2, . . . , 8 are arbitrary constants.

Hence by using eq. (1.87) and eq. (1.88) the in�nitesimal generator of one-parameter.
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Lie group of point symmetries of y′′ + y = 0 is established as

X = [(c1 cosx+ c2 sinx)y − c5 cos 2x− c6 sin 2x+ c8]
∂

∂x

+
[
(−c1 sinx+ c2 cosx)y

2 + (c5 sin 2x− c6 cos 2x+ c7)y + c3 cosx+ c4 sinx
] ∂
∂y
.

(1.89)

and for each ci = 1, cj = 0 we get

X1 = y cosx
∂

∂x
− y2 sinx ∂

∂y
, X2 = y sinx

∂

∂x
+ y2 cosx

∂

∂y
,

X3 = cosx
∂

∂y
, X4 = sinx

∂

∂y
,

X5 = − cos 2x
∂

∂x
+ y sin 2x

∂

∂y
, X6 = − sin 2x

∂

∂x
− y cos 2x ∂

∂y
,

X7 = y
∂

∂y
, X8 =

∂

∂x
.

(1.90)

Various systems of di�erential equations are solved by using Lie point symmetry

method [7]-[9].

1.3.2 Symmetry Criterion in Terms of Operator A

In order to de�ne symmetry condition in terms of operator A we �rst have to de�ne

some facts about the linear operator A.

Suppose we have an ordinary di�erential equation written as

y(n) = w(x, y, y′, . . . , y(n−1)), (1.91)

we express the associated partial di�erential equation as

Af = aα
∂

∂xα
=

(
∂

∂x
+ y′

∂

∂y
+ y′′

∂

∂y′
+ · · ·+ w

∂

∂y(n−1)

)
f = 0, (1.92)

just like symmetry generator X, the linear operator A can be written in its canonical

form therefore if we solve eq. (1.92) or transform A in its canonical form, we get its

solution in both ways. We choose the solutions of eq. (1.92) as ψα hence

Af = Aψα = 0, (1.93)
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here the �rst integrals are serving as a link between an ordinary di�erential equation

y(n) = w and partial di�erential equation Af = 0.

A �rst integral is a non-constant function φ(x, y, y′, . . . , y(n−1)) which is locally con-

stant on any solution of eq. (1.91) such that

dφ

dx
=
∂φ

∂x
+ y′

∂φ

∂y
+ y′′

∂φ

∂y′
+ · · ·+ y(n)

∂φ

∂y(n−1)
= 0, (1.94)

holds if y(n) = w is substituted.

If we observe eq. (1.93), the solutions ψα of ordinary di�erential equation (1.91) are

satisfying the same criterion of �rst integrals given in eq. (1.94) it means every solution

of Af = 0 is the �rst integral φ of ODE y(n) = w(x, y, . . . , y(n−1)). Moreover, every

complete set of n functionally independent solutions ψα corresponds to the general

solution y = y(x, ψα0 ) of the ordinary di�erential equation that can be obtained by

eliminating all derivatives of y from the system [3]

ψα(x, y, . . . , y(n−1)) = ψα0 . (1.95)

Example

Consider the di�erential equation

y′′ + y = 0, (1.96)

it implies

y′′ = −y = w(x, y, y′). (1.97)

The corresponding partial di�erential equation is given as

Af =

(
∂

∂x
+ y′

∂

∂y
− y ∂

∂y′

)
f = 0, (1.98)

where y′′ = −y from eq. (1.97) is substituted.

We solve it by using method of characteristics and obtained the two solutions such as
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ψ1 = y2 + y′2, (1.99)

ψ2 = x− arctan
y

y′
. (1.100)

Thus by using eq. (1.99) and eq. (1.100) we write general solution of eq. (1.97) as

y =
√
ψ1 sin(x− ψ2). (1.101)

Now we can easily see that the linear operator A and the generator X are on same

lines. If we say that X is a symmetry of ordinary di�erential equation (1.91) we must

investigate that which criterion must be ful�lled by X to serve as the symmetry of

partial di�erential equation Af = 0. As symmetry maps solutions to solutions so Xψα

is also a solution.

In terms of commutator we consider

[X,A]ψα = (XA−AX)ψα,

= X(Aψα)−A(Xψα) = 0.
(1.102)

Since Aψα and [X,A]ψα have the same solutions therefore A and [X,A] are propor-

tional that means

[X,A] = λ(x, y, y′, . . . , y(n−1))A. (1.103)

If we put values of X and A and solve the commutator and then after comparing

coe�cients of ∂x, ∂y and ∂
′
y we get(

∂

∂x

)
: −Aξ = λ, (1.104)(

∂

∂y

)
: Xy′ −Aη = λy′, (1.105)(

∂

∂y′

)
: Xy′′ −Aη(1) = λy′′. (1.106)

Putting values from eq. (1.104) into eq. (1.105) and eq. (1.106) we get

η(1) = Aη − y′Aξ = dη

dx
− y′ dξ

dx
, (1.107)

η(2) = Aη(1) − y′′Aξ = dη(1)

dx
− y′′ dξ

dx
. (1.108)
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The prolongations of eta have same formulas so both de�nitions of symmetry are equiv-

alent. Hence the symmetry condition [X,A] = λA in terms of linear operator A holds.

1.4 Lie Groups and Lie Algebras of In�nitesimal gen-

erators

Before going into details of Lie algebra we de�ne Lie group.

Lie group

A group that is also a �nite-dimensional real smooth manifold, in which the group op-

erations of multiplication and inversion are smooth maps, is known to be a Lie group.

Lie groups were introduced by a Norwegian mathematician Sophus Lie who formulated

the theory of continuous transformation groups in order to model the continuous sym-

metries.

To every Lie group one can associate a Lie algebra which completely determine the

local structure of the Lie group. We de�ne the Lie algebra as

Lie Algebra

Lie algebra L is a vector space de�ned on a �eld F together with an operation called

the Lie bracket satisfying the properties

1. Bilinearity: [X, fY+ gZ] = [X, fY] + [X, gZ], ∀ X,Y,Z ∈ L and f,g ∈ F.

2. Skew symmetry: [X,Y]= -[Y,X], ∀ X,Y,Z ∈ L.

3. Jaccobi identity: [[X,Y],Z]+[[Z,X],Y]+[[Z,Y],X], ∀ X,Y,Z ∈ L.

From property of skew-symmetry we can say [X,X] = 0 whereas the Lie algebra is

called abelian when [X,Y] = 0.

As an example, the linearly independent basic generators listed in eq. (1.90), obtained

from general in�nitesimal generator of one-parameter Lie group of point symmetries of
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y′′ + y = 0 form a Lie algebra with a commutator de�ned as

[X,Y] = XY−YX, (1.109)

and the commutators for eq. (1.90) are found as

[X1,X2] = 0, [X1,X3] = −X8 +X5,

[X1,X4] = 3X7 +X6, [X1,X5] = X2,

[X1,X6] = −X1, [X1,X7] = −X1,

[X1,X8] = X2, [X2,X3] = X6 − 3X7,

[X2,X4] = −X8 −X5, [X2,X5] = X1,

[X2,X6] = X2, [X2,X7] = −X2,

[X2,X8] = −X1, [X3,X4] = 0,

[X3,X5] = X4, [X3,X6] = −X3,

[X3,X7] = X3, [X3,X8] = X4,

[X4,X5] = X3, [X4,X6] = X4,

[X4,X7] = X4, [X4,X8] = −X3,

[X5,X6] = 2X8, [X5,X7] = 0,

[X5,X8] = 2X6, [X6,X7] = 0,

[X6,X8] = −2X5, [X7,X8] = 0.

(1.110)

The commutator of two symmetry generators again produce a symmetry. Also, com-

mutators of Xα determine the commutators of the extensions. The commutators of

in�nitesimal generators of the group of symmetries of heat equation can be found in

[13]. Here we must observe that we express the commutators of symmetry generators

as a linear combination of basic generators such as CγXγ. Here C
γ are called structure

constants. In general

[Xα,Yβ] = Cγ
αβXγ. (1.111)
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In next example we �nd the structure constants of 3-parameter Lie group of rotations

and translations.

Example

The generators of the Lie algebra corresponding to 3 parameters εα are

X1 =
∂

∂x
, X2 =

∂

∂y
, X3 = x

∂

∂y
− y ∂

∂x
. (1.112)

The corresponding Lie algebra is

[X1,X2] = 0, (1.113)

[X1,X3] =
∂

∂y
= X2 = C2

13X2, (1.114)

[X2,X3] = −
∂

∂x
= −X1 = C1

23X1. (1.115)

The structure constants are C2
13 = 1 and C1

23 = −1.

Structure constants do not change under coordinate transformations and due to skew

symmetric property of Lie algebra Cγ
αβ = −Cγ

βα.

1.5 Systems Involving Lagrangians

The classical mechanics mostly comprises of systems of second order di�erential equa-

tions. The notation that is frequently used in classical mechanics is q̇ = dqα/dt where

time t is independent variable and generalized coordinates qα are dependent variables.

Using this notation the system of second order di�erential equations can be written as

q̈α = wα(t, qβ, q̇β), α, β = 1, . . . , N, (1.116)

which is equivalent to the linear partial di�erential equation

Af =

(
∂

∂t
+ q̇α

∂

∂qα
+ wα(t, qβ, q̇β)

∂

∂q̇α

)
f = 0. (1.117)
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As in case of ordinary di�erential equations the solutions φα of eq. (1.117) translate into

the 2N �rst integrals of eq. (1.116) [3, 4]. Considering the in�nitesimal transformation

of time and generalized coordinates

t̂ = t+ εξ(t, q, q̇), q̂α = qα + εηα(t, q, q̇), (1.118)

the generator and its prolongation in this coordinates can be written as

X = ξ(t, qβ)
∂

∂t
+ ηα(t, qβ)

∂

∂qα
,

X[1] = ξ(t, qβ)
∂

∂t
+ ηα(t, qβ)

∂

∂qα
+ ζα(t, qβ, q̇β)

∂

∂q̇α
,

(1.119)

where ζα is given by

ζα =
dηα

dt
− q̇αdξ

dt
. (1.120)

By recursion, successive prolongations X[n] of X can be obtained (one can write X for

the prolongations as well if convenient) and symmetries of eq. (1.116) can be deduced

if

[X,A] = λA, (1.121)

holds.

Once the symmetries are known then the �rst integrals can be found corresponding to

each symmetry using Lagrangian of the system. Whereas the Lagrangian L is the

di�erence of kinetic energy T and potential energy V de�ned as

L(t, qβ, q̇β) = T − V. (1.122)

This correspondence between symmetries and �rst integrals cannot be established for

the number of symmetries less than 2N but it is possible if the system is derivable from

an action [3]

S =

∫ tf

ti

L(t, qα, q̇α)dt. (1.123)

Let us take a quick overview of Noether symmetries and Noether theorem to establish

a relationship between Noether symmetries and the �rst integrals.
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1.5.1 The Noether Symmetries

A Noether symmetry is the Lie point transformation under which the action S is

invariant up to a divergence term g(ε)

Ŝ = S+ g(ε) = S+

∫ tf

ti

dg(t, qα, ε)

dt
dt. (1.124)

The expressions in eq. (1.123) and eq. (1.124) give the same Euler Lagrange equations

d

dt

∂L

∂q̇α
− ∂L

∂qα
= 0. (1.125)

Transformations for which these Euler Lagrange equations are invariant are called

invariant transformations. Details can be read in [16].

We consider the prolonged generator given by eq. (1.119) and write eq. (1.123) as

Ŝ =

∫ t̂f

t̂i

L̂(t, q̂α, ˆ̇qα)dt̂+ ε[ξtfL− ξtiL],

=

∫ tf

ti

[
(L(t, qα, q̇α) + εXL+ . . . ) (dt+ ε

dξ

dt
dt+ . . . )

]
+ ε [ξtfL− ξtiL] ,

=

∫ tf

ti

[
Ldt+ ε

(
XL+ L

dξ

dt

)
dt+ . . .

]
+ ε

[
ξtfL− ξtiL

]
,

=

∫ tf

ti

[
L+ ε

∫
(XL+ LAξ) + . . .

]
dt+ ε

[
ξtfL(tf , qf , q̇f )− ξtiL(ti, qi, q̇i)

]
,

(1.126)

where d
dt
is replaced by operator A. We can manipulate eq. (1.126) by using

G = ε
[
ξtfL(tf , qf , q̇f )− ξtiL(ti, qi, q̇i)

]
=

∫ tf

ti

dg

dt
, (1.127)

so that (1.126) reads

Ŝ = S+ ε

∫ tf

ti

dg

dt
dt =

∫ tf

ti

Ldt+ ε

∫ tf

ti

dg

dt
dt,

=

∫ tf

ti

Ldt+ ε

∫ tf

ti

(Ag)dt,

(1.128)

comparing �rst order terms of ε we obtain

XL+ LAξ = Ag(t, qα). (1.129)
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This is the criterion for X to be a Noether symmetry if there exists a g that satis�es

eq. (1.129). The Noether symmetries lead to variational symmetries when g = 0.

After some algebra eq. (1.129) leads to Noether's theorem [17]-[19].

Noether's Theorem

We may write eq. (1.129) as

ξ
∂L

∂t
+ η

∂L

∂q
+ ζ

∂L

∂q̇
+ ξ̇L = ġ. (1.130)

here eq. (1.119) replaced X and A replaced d/dt. Manipulating eq. (1.130) as [6]

0 = ġ − ξ ∂L
∂t
− ξ̇L− η∂L

∂q
− (η̇ − q̇ξ̇)∂L

∂q̇
,

=
d

dt
(g − ξL) + ξ

(
q̇
∂L

∂q
+ q̈

∂L

∂q̇

)
+ ξ̇

(
q̇
∂L

∂q̇

)
− η d

dt

(
∂L

∂q̇

)
− η̇ ∂L

∂q̇
,

=
d

dt

[
g − ξL− (η − ξq̇)∂L

∂q̇

]
,

(1.131)

here we used Euler Lagrange equation (1.125) in place of coe�cient of η.

Hence the �rst integral is obtained as

φ = g −
[
ξL+ (η − ξq̇)∂L

∂q̇

]
, (1.132)

and the statement of Noether's theorem says [17]:

If the Lie derivative L of a Lagrangian vanishes

LXL(t, qα, q̇α) = XL(t, qα, q̇α) = 0, (1.133)

along the generator

X = ξ
∂

∂t
+ ηα

∂

∂qα
, (1.134)

thenX is the symmetry of the action and to each symmetry there exists a corresponding

�rst integral de�ned by

φ(t, q, qα) = g −
[
ξL+ (ηα − q̇αξ) ∂L

∂q̇α

]
, (1.135)
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and g is a function such that

ġ = ξ
∂L

∂t
+ ηα

∂L

∂qα
+ ζα

∂L

∂q̇α
+ ξ̇L, (1.136)

where ζα = η̇α − q̇αξ̇. The converse of Noether's theorem is possible but the level of

computation is not easy as in that case our system also contain the function g. The

computation of �rst integrals in case of Noether symmetries can be far di�erent from

computation of �rst integrals in case of Lie symmetries.

However, the extension of the Noether theorem for �rst order Lagrangian presented

above, can be formulated in order to solve the systems of higher order. If we consider

an nth-order Lagrangian, L(t, q, q̇, . . . , q(n)), that depends on one independent variable

and one dependent variable, then we can write the Euler-Lagrange equation as

n∑
α=0

(−1)α d
α

dtα

(
∂L

∂q(α)

)
, q(α) =

dαq

dtα
, (1.137)

then X = ξ∂t + η∂q is the Noether symmetry if there exists a function g such that

ġ = ξ̇L+ ξ
∂L

∂t
+

n∑
α=0

(−1)αζα
(
∂L

∂q(α)

)
, (1.138)

where

ζα = η(α) −
α∑
β=1

(
α

β

)
q(α+1−β)ξ(β). (1.139)

The corresponding �rst integral can be written as

φ = g −

[
ξL+

n−1∑
α=0

n−1−α∑
β=0

(−1)β(η − q̇ξ)(α) d
β

dtβ

(
∂L

∂q(α+β+1)

)]
. (1.140)

Now considering the case of an nth-order Lagrangian with one independent variable

and m dependent variables, L(t, qα, q̇α, . . . , q
(n)
α ), q

(n)
α = dnqα/dt

n, α = 1, . . . ,m, we

write the Euler-Lagrange equation as

n∑
β=0

(−1)β d
β

dtβ

(
∂L

∂q
(β)
α

)
, α = 1, . . . ,m. (1.141)
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then X = ξ∂t+
∑m

α=1 ηα∂qα is said to be the Noether symmetry if there exists a function

g such that

ġ = ξ̇L+ ξ
∂L

∂t
+

m∑
α=1

n∑
β=0

(−1)βζβα

(
∂L

∂q
(β)
α

)
, (1.142)

where

ζβα = η(β)α −
m∑
α=1

β∑
γ=0

(
β

γ

)
q(β+1−γ)
α ξ(γ). (1.143)

The corresponding �rst integral is given as

φ = g −

[
ξL+

m∑
α=1

n−1∑
γ=0

n−1−γ∑
β=0

(−1)β(ηα − q̇αξ)(γ)
dβ

dtβ

(
∂L

∂q
(γ+β+1)
α

)]
. (1.144)

Finally, we mention a notable property [18] that enforces the relationship between a

Noether symmetry X and its corresponding �rst integral φ: it can be proved that φ is

itself a �rst order invariant of X, i.e.

X[1](φ) = 0. (1.145)

Following examples elaborate the method of �nding Noether symmetries and their

corresponding �rst integrals.

Example

Consider a simple Lagrangian

L =
1

2
y′2. (1.146)

The criterion given in eq. (1.130) now reads

(η,x − y′ξ,x) y′ +
1

2
y′2ξ,x +

1

2
ξ,yy

′3 = g,x + y′g,y. (1.147)

Comparing powers of y′ yields the determining equations

(y′0) : g,x = 0,

(y′1) : η,x − g,y = 0,

(y′2) :
1

2
ξ,x − η,x = 0,

(y′3) :
1

2
ξ,y = 0.

(1.148)
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Solving this system of determining equations, we obtain

ξ = a1(x),

η =
1

2
a′1y + a2(x),

g =
1

4
a′′21 + a′2y + a3(x),

0 =
1

4
a′′′21 + a′′2y + a′3.

(1.149)

Now putting value of g in g,x and comparing yields values of a1, a2, a3

a1 = c1 + c4x+ c5x
2,

a2 = c2 + c3x,

a3 = c6.

(1.150)

Hence the in�nitesimal generator for Noether symmetries corresponding to the La-

grangian given by eq. (1.146) is obtained as

X =

[
c1 + c4x+ c5x

2

]
∂

∂x
+

[
1

2
c4y + c5xy + c2 + c3x

]
∂

∂y
. (1.151)

For each ck = 0 in eq. (1.151) we get �ve Noether symmetries. a3 being a constant, is

neglected. These symmetries and their corresponding �rst integrals are

X1 =
∂

∂x
φ1 = −

1

2
y′2,

X2 =
∂

∂y
φ2 = −y′,

X3 = x
∂

∂y
φ3 = y − xy′,

X4 = x
∂

∂x
+

1

2
y
∂

∂y
φ4 = −

1

2
y′(y − xy′),

X5 = x2
∂

∂x
+ xy

∂

∂y
φ5 =

1

2
x2y′2 − xyy′.

(1.152)

These �ve Noether symmetries form a Lie algebra

[X1,X2] = 0, [X1,X3] = X2,

[X1,X4] = X1, [X1,X5] = 2X4,
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[X2,X3] = 0, [X2,X4] =
1

2
X2,

[X2,X5] = X3, [X3,X4] = −
1

2
X3,

[X3,X5] = 0, [X4,X5] = X5.

(1.153)

The equation of motion corresponding to this Lagrangian admits three other symme-

tries but they are not Noether symmetries. Noether symmetries for other systems can

be studied in [21]-[24].

Example

Now consider a higher order Lagrangian

L =
1

2
y′′2. (1.154)

The E-L equation for the Lagrangian is

y(iv) = 0. (1.155)

Applying Noether criterion on the above Lagrangian produce[
η,xx + 2y′η,xy + y′2η,yy + y′′η,y − 2y′′ (ξ,x + y′ξ,y)

− y′
(
ξ,xx + 2y′ξ,xy + y′2ξ,yy + y′′ξ,y

) ]
y′′ +

1

2

[
ξ,x + y′ξ,y

]
y′′2

= g,x + y′g,y + y′′g,y′ .

(1.156)

Next by comparing the coe�cients of powers of y′ we obtain the system of determining

equations

(y′0) : g,x = 0.

(y′) : g,y = 0,

(y′′) : η,xx + 2y′η,xy + y′2η,yy − y′ξ,xx − g,y′ = 0,

(y′′2) : η,y −
3

2
ξ,x = 0,

(y′y′′2) : ξ,y = 0.
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These determining equations yield

ξ = a1(x),

η =
3

2
a′1y + a2(x),

g = a′′1y
′2 +

(
3

2
a′′′1 y + a′′2

)
y′ + a3(x, y),

0 = y′g,y + g,x,

(1.157)

from these equations a1, a2, a3 can be deduced

a1 = c1 + c6x+ c7x
2,

a2 = c4 + c5x+ c6x
2 + c7x

3,

a3 = −a′′′2 y + a4,

a4 = c8.

(1.158)

a4 is a constant so we neglect it and the in�nitesimal generator is obtained as

X =

[
c1 + c6x+ c7x

2

]
∂

∂x
+

[
3

2
c6y + 3c7xy + c2 + c3x+ c4x

2 + c5x
3

]
∂

∂y
, (1.159)

and for each ck in eq. (1.159) we get seven Noether symmetries. These symmetries

and their corresponding �rst integrals are

X1 =
∂

∂x
φ1 = −y′y′′′ +

1

2
y′′2,

X2 =
∂

∂y
φ2 = y′′′,

X3 = x
∂

∂y
φ3 = xy′′′ − y′′,

X4 = x2
∂

∂y
φ4 = x2y′′′ − 2xy′′ + 2xy′,

X5 = x3
∂

∂y
φ5 = x3y′′′2y′′ + 6xy′ − 6y,

X6 = x
∂

∂x
+

3

2
y
∂

∂y
φ6 = −xy′y +

1

2
xy′′2 − 1

2
y′y′′ +

3

2
yy′′′,

X7 = x2
∂

∂x
+ 3xy

∂

∂y
, φ7 = x(3y − xy′)y′′′ − (3y − xy′ − 1

2
x2y′′)y′′ + 2y′2.

(1.160)
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and the Lie algebra of these symmetry generators is found as

[X1,X2] = 0, [X1,X3] = X2,

[X1,X4] = 2X3, [X1,X5] = 3X4,

[X1,X6] = X1, [X1,X7] = 2X6,

[X2,X3] = 0, [X2,X4] = 0,

[X2,X5] = 0, [X2,X6] =
3

2
X2,

[X2,X7] = 3X3, [X3,X4] = 0,

[X3,X5] = 0, [X3,X6] =
1

2
X3,

[X3,X7] = 2X4, [X4,X5] = 0,

[X4,X6] = −
1

2
X4, [X4,X7] = X5,

[X5,X6] = −
3

2
X5, [X5,X7] = 0,

[X6,X7] = X7.

(1.161)

If we �nd Lie point symmetries for the same Lagrangian we get X8 = y ∂
∂y

in addition

to the seven Noether symmetries presented in eq. (1.160). This shows the di�erence

of Lie point symmetries and Noether point symmetries.

If we put the the required values in eq. (1.140) we get the expression for �rst integrals

φ = g − 1

2
ξy′′2 + (η − y′ξ)y′′′ − (η′ − y′′ξ − y′ξ′)y′′. (1.162)

Hence we can �nd function g for each Noether symmetry which are

g1 = 0,

g2 = 0,

g3 = 0,

g4 = 2xy′,

g5 = 6xy′ − 6y,

(1.163)
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g6 = 0,

g7 = 2y′2.

At the end of this subsection, we present the Noether symmetries of a Lagrangian for

the system of higher dimension [19].

Example

Consider the Lagrangian of higher order

L(t, x, y, ẋ, ẏ) =
1

2
(ẋ2 + ẏ2). (1.164)

The Euler-Lagrange equations given by eq. (1.141) for the said Lagrangian are

ẍ = 0, ÿ = 0. (1.165)

The Noether criterion given by eq. (1.142) for Lagrangian written in eq. (1.164) gives[
η1,t + ẋη1,x + ẏη1,y − ẋ (ξ,t + ẋξ,x + ẏξ,y)

]
ẋ+

[
η2,t + ẋη2,x + ẏη2,y

− ẏ (ξ,t + ẋξ,x + ẏξ,y)

]
ẏ = g,t + ẋg,x + ẏg,y.

(1.166)

Comparing powers of ẋ and ẏ we get system of partial di�erential equations

(constant) : g,t = 0,

(ẋ) : η1,t − g,x = 0,

(ẏ) : η2,t − g,y = 0,

(ẋ2) : η1,x − ξ,t = 0,

(ẏ2) : η2,y − ξ,t = 0,

(ẋ3) : −ξ,x = 0,

(ẏ3) : −ξ,y = 0,

(ẋẏ) : η1,y + η2,x = 0,

(ẋ2ẏ) : −ξ,y = 0,

(ẋẏ2) : −ξ,x = 0,

(1.167)
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From these determining equations we obtain

ξ = a1(t),

η1 = ȧ1x+ a5y + a6(t),

η2 = −a5x+ ȧ1y + a4(t),

g =
1

2
ä1x

2 + ȧ5xy + ȧ6x+ a7(y, t),

0 =
1

2

...
a1x

2 + ä6x+
1

2

...
a1y

2 + ä4y + a8(t).

(1.168)

and by solving eq. (1.168) we deduce

a1 = c1 + c2t+ c3t
2,

a4 = c7 + c8t,

a5 = c4,

a6 = c5 + c6t.

(1.169)

Hence, we write general in�nitesimal generator as[
c1 + c2t+ c3t

2

]
∂

∂t
+

[
c2x+ 2c3tx+ c4y + c5 + c6t

]
∂

∂x

+

[
− c4x+ c2y + 2c3ty + c7 + c8t

]
∂

∂y
.

(1.170)

From eq. (1.170), corresponding to each ck, we found eight Noether symmetries for the

Lagrangian given by eq. (1.164)

X1 =
∂

∂t
, X2 = t

∂

∂t
+ x

∂

∂x
+ y

∂

∂y
,

X3 = t2
∂

∂t
+ 2t

(
x
∂

∂x
+ y

∂

∂y

)
, X4 = y

∂

∂x
− x ∂

∂y
,

X5 =
∂

∂x
, X6 = t

∂

∂x
,

X7 =
∂

∂y
, X8 = t

∂

∂y
.

(1.171)

Here, �rst three symmetry generators form a Lie algebra

[X1,X2] = X1, [X1,X3] = 2X2, [X2,X3] = X3. (1.172)
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and the Lie algebra obtained from last four symmetry generators is

[X5,X6] = 0, [X5,X7] = 0,

[X5,X8] = 0, [X6,X7] = 0,

[X6,X8] = 0, [X7,X8] = 0.

(1.173)

1.5.2 Relation Between Lie and Noether Symmetries

Now we have gained enough knowledge about Lie point symmetries and Noether point

symmetries that we can summarize how they are related. We quickly recall the de�-

nitions of Lie point symmetries and Noether symmetries. A Lie point symmetry of an

ordinary di�erential equation (ODE) is a point transformation in the space of variables

which preserves the set of solutions of the ODE. In another words Lie point symmetry

is an invariance of the di�erential equations of motion under the point transformations

however a Noether point symmetry can be de�ned as an invariance of action integral

under the in�nitesimal transformation of time t and generalized coordinates qα. From

all the previous discussion, we know that Noether symmetries are the subset of Lie

symmetries and hence after �nding the Lie symmetries for the corresponding Euler

Lagrange equation, one can check if these speci�c Lie symmetries satisfy the Noether

symmetry criterion given by eq. (1.129) or not, and if they do so then they are also

Noether symmetries .

Now we show how one can construct a Lagrangian to �nd Noether symmetries by util-

ising the given symmetry and its corresponding �rst integral. To do this we use the

relationship of a Lagrangian with the symmetry and its corresponding �rst integral.

According to Noether, to every symmetry we can associate a �rst integral given by

eq. (1.135). This equation relates �rst integral φ, symmetry X, boundary term g and

Lagrangian L [20]. If we consider the equation of motion

q̈ = 0. (1.174)
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We can �nd the Lie symmetries for eq. (1.174) and also their �rst integrals using the

method for Lie point symmetry. The symmetries and �rst integrals are

X1 =
∂

∂t
, φ1 = q̇

X2 =
∂

∂q
, φ2 = q̇

X3 = t
∂

∂t
, φ3 = tq̇ − q

X4 = t
∂

∂q
, φ4 = tq̇ − q

X5 = t2
∂

∂t
+ tq

∂

∂q
, φ5 = tq̇ − q

X6 = q
∂

∂t
, φ6 =

tq̇ − q
q̇

X7 = q
∂

∂q
, φ7 =

tq̇ − q
q̇

X8 = tq
∂

∂t
+ q2

∂

∂q
, φ8 =

tq̇ − q
q̇

.

(1.175)

The Lie algebras corresponding to the symmetry generators given in eq. (1.175) are

[X1,X2] = 0, [X1,X3] = X1,

[X1,X4] = X2, [X1,X5] = 2X3 +X7,

[X1,X6] = 0, [X1,X7] = 0,

[X1,X8] = X6, [X2,X3] = 0,

[X2,X4] = 0, [X2,X5] = X4,

[X2,X6] = X1, [X2,X7] = X2,

[X2,X8] = X3 + 2X7, [X3,X4] = X4,

[X3,X5] = X5, [X3,X6] = −X6,

[X3,X7] = 0, [X3,X8] = 0,

[X4,X5] = 0, [X4,X6] = X3 −X7,

[X4,X7] = X4, [X4,X8] = X5,

(1.176)
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[X5,X6] = −X8, [X5,X7] = 0,

[X5,X8] = 0, [X6,X7] = −X6,

[X6,X8] = 0, [X7,X8] = X8.

If we consider the Lagrangian for the equation (1.174)

L =
1

2
q̇2, (1.177)

then we can �nd Noether symmetries for this Lagrangian. The Noether symmetries

and the corresponding �rst integrals for this Lagrangian are

N1 =
∂

∂t
, φN1 = −

1

2
q̇2

N2 =
∂

∂q
, φN2 = −q̇

N3 = t
∂

∂q
, φN3 = q − tq̇

N4 = t2
∂

∂t
+ tq

∂

∂q
, φN4 = (q − tq̇)2

N5 = tq
∂

∂t
+ q2

∂

∂q
, φN5 = q̇(q − tq̇).

(1.178)

The coe�cients of X1 and X2 are the two solutions of eq. (1.174) so they are called

solution symmetries. One can quickly observe that the three Noether symmetries as

well as their corresponding integrals are not present in contrast of Lie point symmetries

X6, X7, X8. These are actually the Lie point symmetries which are not Noether

symmetries (non Noetherian symmetries).

If we solve eq. (1.136) for X6, by putting all required values, assuming g = 0, we get

partial di�erential equation

q
∂L

∂q̇
= −tq̇ − q

q̇
, (1.179)

solving this and using eq. (1.174) we deduce a Lagrangian corresponding to X6

L = ln
q̇

q
− q̇t

q
+ s(t). (1.180)

35



Similarly for X7 eq. (1.136) becomes

qL+ (−qq̇)∂L
∂q̇

= −tq̇ − q
q̇

, (1.181)

solving this we get the Lagrangian corresponding to X7

L =
(tq̇ − q)2

2q̇q2
+ q̇s(q). (1.182)

For X8 eq. (1.136) reads

qtL+ (q2 − qt)∂L
∂q̇

= −tq̇ − q
q

, (1.183)

and follows from which the Lagrangian for X8

L = (tq̇ − q)
[
1

q2
ln(tq̇ − q)− ln(q̇) +

s(q)

t2

]
, (1.184)

where s is an arbitrary function. Hence, we can say that these three symmetries

(X6,X7,X8) are the Noether symmetries for these particular Lagrangians given by

equations (1.180), (1.182), (1.184). It means if we consider appropriate Lagrangian the

symmetries can ful�l the criterion for Noether symmetries establishing the fact that

all the symmetries of a given ODE for one speci�cally given Lagrangian need not to

be Noether symmetries. But by using eq. (1.136) for the obtained Lie symmetry and

its corresponding �rst integral one can obviously �nd an appropriate Lagrangian for

which the symmetry is a Noether symmetry. Another symmetry of interest is the Mei

symmetry.

1.5.3 The Mei symmetries

In 2000, F.X. Mei proposed a new kind of symmetry called as Mei symmetry or the

form invariance [25]. Mei symmetry can be de�ned as the form invariance of di�erential

equations of motion when the transformed functions replace dynamical functions (such

as Lagrangian, Birkho�an, Hamiltonian etc.) under the in�nitesimal transformations.

36



Also by Noether's theorem we know that symmetries lead to the �rst integrals. This is

also true for Mei symmetries as they also provide �rst integrals known as Mei conserved

quantities. The Lie symmetry method and the Noether symmetry method have grown

so much over time and been used in handling various problems. On the other hand,

so much work and research on the Mei symmetries is still undone and they are still

on their way to be applied on various problems. Our main purpose is to �nd Mei

symmetries as well as Noether symmetries for a particular Lagrangian later presented

in Section 2.

First we should built the de�nition and criterion of Mei symmetries to be able to �nd

them.

Suppose we have a Lagrangian

L = L(t, qα, q̇α). (1.185)

Consider the one-parameter group of in�nitesimal transformations

t̂ = t+ εξ(t, qβ),

q̂α = qα + εηα(t, qβ),
(1.186)

where α,β = 1, . . . , n and ε ∈ R. The corresponding in�nitesimal generator is

X = ξ
∂

∂t
+ ηα

∂

∂qα
. (1.187)

The Lagrangian from eq. (1.185) under the transformations given by eq. (1.186)

becomes

L̂ = L(t̂, q̂α, ˆ̇qα),

= L

(
t+ εξ, qα + εηα,

q̇α + εη̇α

1 + εξ̇

)
.

(1.188)

Taylor series expansion of eq. (1.188) about ε = 0 gives

L̂ = L(t, qα, q̇α) + εX(1)(L) +O(ε2), (1.189)
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where

X(1) = ξ
∂

∂t
+ ηα

∂

∂qα
+ (η̇α − ξ̇q̇α) ∂

∂q̇α
, (1.190)

is the �rst prolongation of in�nitesimal generator X.

Writing Euler Lagrange equation as

Eα(L) = 0, (1.191)

where Eα is the Euler operator

Eα =
d

dt

∂

∂q̇α
− ∂

∂qα
. (1.192)

If the eq. (1.191) remains the same when the new Lagrangian L̂ from eq. (1.189) is

substituted in place of Lagrangian L, i.e.

Eα(L̂) = 0, (1.193)

then this invariance is known as the Mei symmetry of Euler Lagrange equation. Hence

we can present the criterion to �nd Mei symmetries as [26]-[28]

Criterion

If the in�nitesimals ξ and η satisfy

Eα[X
(1)(L)] = 0, α = 1, . . . , n, (1.194)

then the corresponding invariance is the Mei symmetry for the Lagrangian in eq.

(1.185).

Before we use this criterion to �nd Mei symmetries we should seek the relation between

Mei symmetries and Noether symmetries as it is of great signi�cance in �nding Mei

conserved quantities and Noether conserved quantities.

1.5.4 Relation Between Noether and Mei Symmetries

Firstly we present an important theorem [26].

Theorem
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If the in�nitesimals ξ and ηα of the Mei symmetry corresponding to the Lagrangian

given by eq. (1.185) and the boundary function g(t, qα, q̇α) admits the structural equa-

tion

X(1)(L)ξ̇ +X(1)

(
X(1)(L)

)
+ z(t)

∂X(1)(L)

∂qα
q̇αξ̇ + ġ = 0, (1.195)

then the Mei symmetry can lead to new conserved quantity

φ1 =
∂X(1)(L)

∂q̇
ηα+

(
X(1)(L)− ∂X(1)(L)

∂q̇
q̇ − z(t)∂X

(1)(L)

∂t

)
ξ + g. (1.196)

This theorem help us build a relation between Noether and Mei symmetries. If we

consider integral functional S(q)

S(q) =

∫ t2

t1

X(1)(L) (L(t, qα(t), q̇α(t))) dt, (1.197)

admitting boundary conditions qα(t) |t=a= qα(a) and qα(t) |t=b= qα(b) where α =

1, . . . , n.

Euler Lagrange equations for eq. (1.197) can be deduced that has the same form as eq.

(1.194). Also we know that Noether symmetry refers to invariance of action integral

so if

Ŝ(q̂) = S(q), (1.198)

remains true under in�nitesimal transformations given by eq. (1.186) then the invari-

ance is known as Noether symmetry. For ξ and η there exists a boundary function

g(t, qα, q̇α) such that

∂X(1)(L)

∂t
ξ +

∂X(1)(L)

∂qα
ηα +

∂X(1)(L)

∂q̇α
(η̇α − q̇αξ̇)

+X(1)Lξ̇ = −ġ.
(1.199)

We obtain same equation as eq. (1.195) and it is known as Noether identity for problem

given by eq. (1.197). From this we can deduce Noether �rst integral or Noether

conserved quantity which is same as eq. (1.196). For detailed discussion one may refer

to [29].
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Chapter 2

The Mei Symmetries for the

Lagrangian of Schwarzschild Metric

Before �nding the Mei symmetries for Schwarzschild metric we should have some knowl-

edge about Schwarzchild metric.

2.1 The Schwarzschild Metric

In 1916, a German physicist Karl Schwarzschild gave the �st exact solution of Ein-

stein �eld equations of general relativity which is known as Schwarzschild metric or

Schwarzchild solution. It actually depicts the gravitational �eld outside a spherical

mass, provided that the angular momentum of the mass, the electric charge of the

mass and the universal cosmological constant are all zero.

In the Schwarzschild coordinates (t, r, θ, φ), with the signature convention (−,+,+,+),

Schwarzschild metric has the form

ds2 = −
(
1− rs

r

)
c2dt2 +

(
1− rs

r

)−1
dr2 + r2(dθ2 + sin2 θdφ2), (2.0)

where rs is the Schwarzschild radius of the massive body de�ned as rs = 2GM
c2

, G is

gravitational constant, c is the speed of light, t is the time coordinate, r is the radial

coordinate, θ is the colatitude of a point on 2-sphere, φ is the longitude of a point on
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2-sphere.

The Schwarzschild solution is considered to be the most general static and spherically

symmetric solution of the Einstein �eld equations. Being static metric corresponds

to the time independence of the metric and the invariance of line element under the

transformation of time like coordinates, say x0 → −x0. While spherically symmetric

means metric has no preferable angular direction say, dxα → −dxα is possible without

changing the form of metric, where xα are spatial coordinates. One may study [30] to

have some in-depth knowledge about Schwarzschild solution.

2.2 Review of the Noether Symmetries for the La-

grangian of Schwarzschild Metric

Ibrar Hussain, Fazal M. Mahomed and Asghar Qadir. [31]:

Writing the Lagrangian for Schwarzschild metric by

L = −
(
1− 2m

r

)
ṫ2 +

(
1− 2m

r

)−1
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2. (2.1)

The criterion for Noether symmetries is given as

X(1)(L) + (Aξ)L = Ag, (2.2)

where X1 = ξ∂s + ηα∂qα +
(
η̇α − q̇αξ̇

)
∂q̇α is the �rst extended generator, A = ∂s +

q̇α∂qα is a linear operator and L is the Lagrangian.

By putting the required values in eq. (2.2) we get

η2
[
− 2mṫ2

r2
− 2

(
1− 2m

r

)−2
mṙ2

r2
+ 2rθ̇2 + 2r sin2 θφ̇2

]
+ 2η3r2 sin θ cos θφ̇2

+
[
η̇1 − ṫξ̇

] [
−2
(
1− 2m

r

)
ṫ

]
+
[
η̇2 − ṙξ̇

] [
2

(
1− 2m

r

)−1
ṙ

]
+
[
η̇3 − θ̇ξ̇

] [
2r2θ̇

]
+
[
η̇4 − φ̇ξ̇

] [
2r2 sin2 θφ̇

]
+ ξ,s

[
−
(
1− 2m

r

)
ṫ2 +

(
1− 2m

r

)−1
ṙ2 + r2θ̇2

+ r2 sin2 θφ̇2

]
+ ṫξ,t

[
−
(
1− 2m

r

)
ṫ2 +

(
1− 2m

r

)−1
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

]
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+ ṙξ,r

[
−
(
1− 2m

r

)
ṫ2 +

(
1− 2m

r

)−1
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

]

+ θ̇ξ,θ

[
−
(
1− 2m

r

)
ṫ2 +

(
1− 2m

r

)−1
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

]
+ φ̇ξ,φ

[
−
(
1− 2m

r

)
ṫ2 +

(
1− 2m

r

)−1
ṙ2 + r2θ̇2 + r2 sin2 θφ̇2

]
= g,s + ṫg,t + ṙg,r + θ̇g,θ + φ̇g,φ.

(2.3)

After solving eq. (2.3) and comparing powers of ṫ, ṙ, θ̇, φ̇ following determining equa-

tions are obtained

(constant) : g,s = 0, (2.4a)

(ṫ) : 2

(
1− 2m

r

)
η1,s + g,t = 0, (2.4b)

(ṙ) : 2

(
1− 2m

r

)−1
η2,s − g,r = 0, (2.4c)

(θ̇) : 2r2η3,s − g,θ = 0, (2.4d)

(φ̇) : 2r2 sin2 θη4,s − g,φ = 0, (2.4e)

(ṫ2) : 2

(
1− 2m

r

)
η1,t +

2m

r2
η2 −

(
1− 2m

r

)
ξ,s = 0, (2.4f)

(ṙ2) : 2

(
1− 2m

r

)−1
m

r2
η2 − 2η2,r + ξ,s = 0, (2.4g)

(θ̇2) : 2η2 + 2rη3,θ − rξ,s = 0, (2.4h)

(φ̇2) : 2η2 + 2r cot θη3 + 2rη4,φ − rξ,s = 0, (2.4i)

(ṫṙ) :

(
1− 2m

r

)2

η1,r − η2,t = 0, (2.4j)

(ṫθ̇) :

(
1− 2m

r

)
η1,θ − r2η3,θ = 0, (2.4k)

(ṫφ̇) :

(
1− 2m

r

)
η1,φ − r2 sin2 θη4,t = 0, (2.4l)

(ṙθ̇) :

(
1− 2m

r

)−1
η2,θ + r2η3,r = 0, (2.4m)

(ṙφ̇) :

(
1− 2m

r

)−1
η2,φ + r2 sin2 θη4,r = 0, (2.4n)
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(θ̇φ̇) : η3,φ + sin2 θη4,θ = 0, (2.4o)

(ṫ3) : ξ,t = 0, (2.4p)

(ṙ3) : ξ,r = 0, (2.4q)

(θ̇3) : ξ,θ = 0, (2.4r)

(φ̇3) : ξ,φ = 0, (2.4s)

Now we solve this system of partial di�erential equations to get values of ξ, η1, η2, η3, η4.

From the equations (2.4p)-(2.4s) we can easily deduce that ξ is a function of s only i.e

ξ = ξ(s). (2.5)

Di�erentiating eq. (2.4b) w.r.t s and using eq. (2.4a) yields

η1,ss = 0. (2.6)

Di�erentiating eq. (2.4c) w.r.t s and using eq. (2.4a) yields

η2,ss = 0. (2.7)

Di�erentiating eq. (2.4d) w.r.t s and using eq. (2.4a) yields

η3,ss = 0. (2.8)

Di�erentiating eq. (2.4e) w.r.t s and using eq. (2.4a) yields

η4,ss = 0. (2.9)

Now by taking derivative of eq. (2.4f) two times w.r.t s we get

ξ,sss = 0, (2.10)

from which, by using eq. (2.5), we can deduce

ξ = c1s
2 + c2s+ c3, (2.11)
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where ck are some arbitrary constants.

Now di�erentiating eq. (2.4b) w.r.t r gives

g,tr = 2

(
1− 2m

r

)
η1,sr +

4m

r2
η1,s, (2.12)

and di�erentiating eq. (2.4c) w.r.t t gives

g,tr = 2

(
1− 2m

r

)−1
η2,st. (2.13)

By comparing eq. (2.12) and eq. (2.13) we obtain

2

(
1− 2m

r

)−1
η2,st + 2

(
1− 2m

r

)
η1,sr +

4m

r2
η1,s = 0. (2.14)

By di�erentiating eq. (2.4j) w.r.t s and manipulating we get

2

(
1− 2m

r

)
η1,sr = 2

(
1− 2m

r

),−1
η2,st = 0. (2.15)

Putting eq. (2.15) in eq. (2.14) produce(
1− 2m

r

)−1
η2,st +

m

r2
η1,s = 0. (2.16)

If we di�erentiate eq. (2.4b) w.r.t θ, it reads

g,tθ = −2
(
1− 2m

r

)
η1,sθ. (2.17)

and if we di�erentiate eq. (2.4d) w.r.t t, we get

g,tθ = 2r2η3,st. (2.18)

By comparing eq. (2.17) and eq. (2.18) we obtain(
1− 2m

r

)
η1,sθ + r2η3,st = 0. (2.19)

If we di�erentiate eq. (2.4k) w.r.t s, it becomes(
1− 2m

r

)
η1,sθ = r2η3,st. (2.20)
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Substituting value of η3,st from eq. (2.20) into eq. (2.19) gives

η1,sθ = 0. (2.21)

Now di�erentiating eq. (2.4b) w.r.t φ produce

g,tφ = −
(
1− 2m

r

)
η1,sφ. (2.22)

and di�erentiating eq. (2.4e) w.r.t t produce

g,tφ = r2 sin2 θη4,st. (2.23)

Equating eq. (2.22) and eq. (2.23) leads to(
1− 2m

r

)
η1,sφ + r2 sin2 θη4,st = 0. (2.24)

Also by di�erentiating eq. (2.4l) w.r.t s we get

r2 sin2 θη4,st =

(
1− 2m

r

)
η1,sφ. (2.25)

Substituting eq. (2.25) into eq. (2.24) yields

η1,sφ = 0. (2.26)

Di�erentiating eq. (2.4c) w.r.t θ gives

g,rθ = 2

(
1− 2m

r

)−1
η2,sθ. (2.27)

Di�erentiating eq. (2.4d) w.r.t r gives

g,rθ = 4rη3,s + 2r2η3,sr. (2.28)

Equating eq. (2.27) and eq. (2.28) produce(
1− 2m

r

)−1
η2,sθ − r2η3,sr − 2rη3,s = 0. (2.29)
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If we di�erentiate eq. (2.4m) w.r.t s, we get

r2η3,sr = −
(
1− 2m

r

)−1
η2,sθ. (2.30)

Putting eq. (2.30) into eq. (2.29), we obtain(
1− 2m

r

)−1
η2,sθ − rη3,s = 0, (2.31)

The derivative of eq. (2.4c) w.r.t φ is

g,rφ = 2

(
1− 2m

r

)−1
η2,sφ. (2.32)

and derivative of eq. (2.4e) w.r.t r is

grφ = 4r sin2 θη4,s + 2r2 sin2 θη4,sr. (2.33)

Comparing both equations given by eq. (2.32) and eq. (2.33) gives(
1− 2m

r

)−1
η2,sφ − 2r sin2 θη4,s − r2 sin2 θη4,sr = 0. (2.34)

By taking derivative of eq. (2.4n) w.r.t s, it becomes(
1− 2m

r

)
η2,sφ = −r2 sin2 θη4,sr. (2.35)

Putting eq. (2.35) into eq. (2.34) leads to(
1− 2m

r

)−1
η2,sφ − r sin2 θη4,s = 0. (2.36)

Now di�erentiating eq. (2.4f) w.r.t s produce

2m

r2
η2,s + 2

(
1− 2m

r

)
η1,st −

(
1− 2m

r

)
ξ,ss = 0. (2.37)

Di�erentiating eq. (2.37) w.r.t θ and using eq. (2.4r) eq. (2.21) yields

η2,sθ = 0. (2.38)
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Similarly di�erentiating eq. (2.37) w.r.t φ and using eq. (2.4s) and eq. (2.26) yields

η2,sφ = 0. (2.39)

Substituting eq. (2.38) in eq. (2.31) gives

η3,s = 0, (2.40)

and substituting eq. (2.39) in eq. (2.36) gives

η4,s = 0. (2.41)

If we di�erentiate eq. (2.4h) w.r.t s and utilise eq. (2.40), it becomes

2η2,s − rξ,ss = 0, (2.42)

and di�erentiating eq. (2.42) w.r.t t and utilising eq. (2.4p), we get

η2,st = 0. (2.43)

If we put eq. (2.43) in eq. (2.16) it becomes

η1,s = 0. (2.44)

Put value of η2,s from eq. (2.42) and η1,s from eq. (2.44) in eq. (2.37) to get

ξ,ss = 0, (2.45)

which means c1 in eq. (2.11) is zero and hence (2.11) becomes

ξ = c2s+ c3. (2.46)

By means of eq. (2.45), eq. (2.42) gives

η2,s = 0. (2.47)
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By putting equations (2.44), (2.47) (2.40) and (2.41), in equations (2.4b), (2.4c), (2.4d)

and (2.4e), respectively, we obtain

g,t = 0, g,r = 0,

g,θ = 0, g,φ = 0,
(2.48)

and by considering eq. (2.4a) we can say g is only a constant so we write

g = c4. (2.49)

We di�erentiate eq. (2.4j) w.r.t r to get

4

(
1− 2m

r

)
m

r2
η1,r +

(
1− 2m

r

)2

η1,rr − η2,tr = 0, (2.50)

and di�erentiate eq. (2.4g) w.r.t t use eq. (2.4p) to get

η2,tr =

(
1− 2m

r

)−1
m

r2
η2,t. (2.51)

Putting eq. (2.51) in (2.50) and manipulating gives

4

(
1− 2m

r

)2

η1,r +
r2

m

(
1− 2m

r

)3

η1,rr − η2,t = 0. (2.52)

Comparing eq. (2.4j) and (2.52) to produce(
1− 2m

r

)
η1,rr +

3m

r2
η1,r = 0. (2.53)

Now we di�erentiate eq. (2.4k) w.r.t r(
1− 2m

r

)
η1,rθ +

2m

r2
η1,θ − 2rη3,t − r2η3,tr = 0, (2.54)

also derivative of eq. (2.4j) w.r.t θ is(
1− 2m

r

)2

η1,rθ − η2,tθ. (2.55)

By di�erentiating eq. (2.4m) w.r.t t

η2,tθ = −
(
1− 2m

r

)
r2η3,tr. (2.56)
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and putting back in eq. (2.55) yields

r2η3,tr = −
(
1− 2m

r

)
η1,rθ. (2.57)

Using eq. (2.57) and comparing with eq. (2.4k) produce(
1− 2m

r

)
η1,rθ −

1

r

(
1− 3m

r

)
η1,θ = 0, (2.58)

Now taking derivative of eq. (2.4l) w.r.t r gives(
1− 2m

r

)
η1,rφ +

2m

r2
η1,φ − 2r sin2 θη4,t − r2 sin2 θη4,tr = 0. (2.59)

and the derivative of eq. (2.4j) w.r.t φ is(
1− 2m

r

)2

η1,rφ − η2,tφ = 0. (2.60)

By di�erentiating eq. (2.4n) w.r.t t

η2,tφ = −
(
1− 2m

r

)
r2 sin2 θη4,tr. (2.61)

and putting back into eq. (2.60) gives

r2 sin2 θη4,tr = −
(
1− 2m

r

)
η1,rφ. (2.62)

Using eq. (2.62) and equating with eq. (2.4l) produce(
1− 2m

r

)
η1,rφ −

1

r

(
1− 3m

r

)
η1,φ = 0. (2.63)

We di�erentiate eq. (2.58) w.r.t r and get(
1− 2m

r

)
η1,rrθ +

2m

r2
η1,rθ +

1

r2
η1,θ −

6m

r3
η1,θ −

1

r

(
1− 3m

r

)
η1,rθ = 0. (2.64)

Di�erentiating eq. (2.53) w.r.t θ and putting value of η1,rrθ into eq. (2.64) gives(
1− 2m

r

)
η1,rθ −

1

r

(
1− 6m

r

)
η1,θ = 0. (2.65)
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Comparing eq. (2.65) with eq. (2.58) yields

η1,θ = 0. (2.66)

Similarly taking derivative of eq. (2.63) w.r.t r gives(
1− 2m

r

)
η1,rrφ +

2m

r2
η1,rφ +

1

r2
η1,φ −

6m

r3
η1,φ −

1

r

(
1− 3m

r

)
η1,rφ = 0. (2.67)

Di�erentiating eq. (2.53) w.r.t φ and putting values of η1,rrφ into (2.67) gives(
1− 2m

r

)
η1,rφ −

1

r

(
1− 6m

r

)
η1,φ = 0. (2.68)

Comparing eq. (2.68) with eq. (2.63) produce

η1,φ = 0. (2.69)

Substituting eq. (2.66) into eq. (2.4k) leads to

η3,t = 0. (2.70)

and substituting eq. (2.69) into eq. (2.4l) gives

η4,t = 0. (2.71)

By taking derivative of eq. (2.4h) w.r.t t it becomes

2η2,t + 2rη3,tθ − rξ,st = 0. (2.72)

Now using eq. (2.70) and eq. (2.4p) in (2.72) results into

η2,t = 0. (2.73)

If we put (2.73) into (2.4j), it reads into

η1,r = 0. (2.74)
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Di�erentiating (2.4f) w.r.t θ and using (2.66) we obtain

η2,θ = 0, (2.75)

and di�erentiating (2.4f) w.r.t φ and using (2.69) yields

η2,φ = 0. (2.76)

Now substitution of (2.75) into eq. (2.4m) reads into

η3,r = 0, (2.77)

and substitution of (2.76) into eq. (2.4n) reads into

η4,r = 0. (2.78)

By taking derivative of eq. (2.4h) w.r.t r and making use of (2.77), we write

η2,r = 0. (2.79)

The Equations given by eq. (2.73), eq. (2.75), eq. (2.76) and eq. (2.79) result into

η2 = c5, (2.80)

where c5 is an arbitrary constant.

Making use of eq. (2.46), eq. (2.79) and eq. (2.80) in eq. (2.4g) produce(
1− 2m

r

)
c2 = −

2m

r2
c5, (2.81)

from which one can easily deduce

c2 = 0, (2.82)

c5 = 0. (2.83)

51



By using eq. (2.82) in (2.46) we have

ξ,s = 0, (2.84)

that means

ξ = c3. (2.85)

Also by using (2.83) in eq. (2.83) we get

η2 = 0. (2.86)

By making use of eq. (2.84) and eq. (2.86) in eq. (2.4f) we deduce

η1,t = 0. (2.87)

Considering eq. (2.66), eq. (2.69), eq. (2.74) and eq. (2.87), we can write

η1 = c6. (2.88)

Substituting eq. (2.84) and eq. (2.86) in eq. (2.4h) results into

η3,θ = 0. (2.89)

Using eq. (2.84) and eq. (2.86) in eq. (2.4i) gives

cot θη3 + η4,φ = 0. (2.90)

Now di�erentiating eq. (2.4o) w.r.t θ and using eq. (2.89) we get

2 sin θ cos θη43,θ + sin2θη4,θθ = 0. (2.91)

By manipulation eq. (2.91) becomes

2 cot θη4,θ + η4,θθ = 0. (2.92)
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By solving eq. (2.92) gives

η4 = c7 cosφ cot θ − c8 sinφ cot θ + c9. (2.93)

Derivative of eq. (2.93) w.r.t φ is

− c7 sinφ cot θ − c8 cosφ cot θ, (2.94)

which upon substituting in eq. (2.90) produce

η3 = c7 sinφ+ c8 cosφ. (2.95)

where c7, c8 and c9 are also arbitrary constants.

Hence we have determined the values for in�nitesimals ξ, η1, η2, η3, η4 and the boundary

function g as

ξ = C1, η1 = C2, η2 = 0,

η3 = C3 sinφ+ C4 cosφ,

η4 = C3 cosφ cot θ − C4 sinφ cot θ + C5,

g = C6,

(2.96)

where (C1, C2, C3, C4, C5, C6) = (c3, c6, c7, c8, c9, c4) are some arbitrary constants. Using

the in�nitesimals found in eq. (2.96) we can write the generator for Noether symmetries

as

X(1) = C1
∂

∂s
+C2

∂

∂t
+(C3 sinφ+ C4 cosφ)

∂

∂θ
+(C3 cosφ cot θ − C4 sinφ cot θ + C5)

∂

∂φ
,

(2.97)

and for Ck = 0, �ve Noether symmetries are obtained

X1 =
∂

∂s
, X2 =

∂

∂t
,

X3 = sinφ
∂

∂θ
+ cosφ cot θ

∂

∂φ
, X4 = cosφ

∂

∂θ
− sinφ cot θ

∂

∂φ
,

X5 =
∂

∂φ
.

(2.98)
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Here, we can observe that the in�nitesimals ξ, η along with the boundary function g

satisfy the equation (1.199). This equation is obviously same as the structural equa-

tion (1.195) on the basis of which the relationship of Noether symmetries and Mei

symmetries is established in section (1.5.4). These symmetries form the Lie algebra

[X1,X2] = 0, [X1,X3] = 0,

[X1,X4] = 0, [X1,X5] = 0,

[X2,X3] = 0, [X2,X4] = 0,

[X2,X5] = 0, [X3,X4] = X5,

[X3,X5] = −X4 [X4,X5] = X3.

(2.99)

2.3 Evaluation of the Mei Symmetries

First, we �nd the Euler Lagrange equations for the system. These equations are

ẗ = −2
(
1− 2m

r

)−1
mṫṙ

r2
, (2.100)

r̈ =

(
1− 2m

r

)−1
mṙ2

r2
−
(
1− 2m

r

)
mṫ2

r2
+

(
1− 2m

r

)
rθ̇2 +

(
1− 2m

r

)
r sin2 θφ̇2,

(2.101)

θ̈ = −2ṙθ̇

r
+ sin θ cos θφ̇2, (2.102)

φ̈ = −2ṙφ̇

r
− 2 cot θθ̇φ̇. (2.103)

According to [31], the Lie point symmetries of these Euler Lagrange equations (geodesic

equations) are

X1 =
∂

∂s
, X2 =

∂

∂t
,

X3 = sinφ
∂

∂θ
+ cosφ cot θ

∂

∂φ
, X4 = cosφ

∂

∂θ
− sinφ cot θ

∂

∂φ
,

X5 =
∂

∂φ
, X6 = s

∂

∂s
.

(2.104)
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There is one extra Lie symmetry obtained in addition to the Noether symmetries given

in the last section. Next we �nd the Mei symmetries for the same Lagrangian given in

eq. (2.1) to see how they come up in comparison to the Noether and Lie symmetries.

Considering the criterion for the Mei symmetries as

Eα[X
(1)(L)] = 0. (2.105)

Here L is the Lagrangian, whereas Eα = d
ds

∂
∂q̇α
− ∂

∂qα
is the Euler operator and

X(1) = ξ ∂
∂s

+ ηα ∂
∂qα

+ (η̇α − q̇αξ̇) ∂
∂q̇α

is the �rst extended in�nitesimal generator.

Applying �rst extended generator on the Lagrangian given in eq. (2.1) gives

X(1)(L) = η2

[
−2mṫ2

r2
− 2

(
1− 2m

r

)−2
mṙ2

r2
+ 2rθ̇2 + 2r sin2 θφ̇2

]
+ 2η3r2 sin θ cos θφ̇2

+
[
η̇1 − ṫξ̇

] [
−2
(
1− 2m

r

)
ṫ

]
+
[
η̇2 − ṙξ̇

] [
2

(
1− 2m

r

)−1
ṙ

]
+
[
η̇3 − θ̇ξ̇

] [
2r2θ̇

]
+
[
η̇4 − φ̇ξ̇

] [
2r2 sin2 θφ̇

]
.

(2.106)

For q1 = t eq. (2.105) yields [
d

ds

∂

∂ṫ
− ∂

∂t

] [
X(1)(L)

]
= 0. (2.107)

Using eq. (2.106) in eq. (2.107), solving it further and after cancellation of some alike

terms the coe�cients of ṫ , ṙ ,θ̇ , φ̇ and their powers are compared to get system of

determining equations as follows

(constant) : η1,ss = 0, (2.108a)

(ṫ) : − m

r2
η2,s −

(
1− 2m

r

)
η1,st +

(
1− 2m

r

)
ξ,ss = 0, (2.108b)

(ṙ) : η1,sr = 0, (2.108c)

(θ̇) : η1,sθ = 0, (2.108d)
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(φ̇) : η1,sφ = 0, (2.108e)

(ṫ2) : − 2m

r2
η2,t −

(
1− 2m

r

)
η1,tt +

(
1− 2m

r

)2
m

r2
η1,r

+ 4

(
1− 2m

r

)
ξ,st = 0, (2.108f)

(ṙ2) :

(
1− 2m

r

)
η1,rr +

3m

r2
η1,r = 0, (2.108g)

(θ̇2) : η1,θθ +

(
1− 2m

r

)
rη1,r = 0, (2.108h)

(φ̇2) : η1,φφ +

(
1− 2m

r

)
r sin2 θη1,r + sin θ cos θη1,θ = 0, (2.108i)

(ṫṙ) :
2m

r3
η2 + 2

(
1− 2m

r

)−1
m2

r4
η2 − m

r2
η2,r −

m

r2
η1,s

−
(
1− 2m

r

)
η1,tr + 2

(
1− 2m

r

)
ξ,sr = 0, (2.108j)

(ṫθ̇) : − m

r2
η2,θ −

(
1− 2m

r

)
η1,tθ + 2

(
1− 2m

r

)
ξ,sθ = 0, (2.108k)

(ṫφ̇) : − m

r2
η2,φ −

(
1− 2m

r

)
η1,tφ + 2

(
1− 2m

r

)
ξ,sφ = 0, (2.108l)

(ṙθ̇) : −
(
1− 2m

r

)
η1,rθ +

1

r

(
1− 3m

r

)
η1,theta = 0, (2.108m)

(ṙφ̇) : −
(
1− 2m

r

)
η1,rφ +

1

r

(
1− 3m

r

)
η1,φ = 0, (2.108n)

(θ̇φ̇) : − η1,θφ + cot θη1,φ = 0, (2.108o)

(ṫ3) : ξ,tt −
(
1− 2m

r

)
m

r2
ξ,r = 0, (2.108p)

(ṫ2ṙ) :

(
1− 2m

r

)
ξ,tr −

m

r2
ξ,t = 0, (2.108q)

(ṫ2θ̇) : ξ,tθ = 0, (2.108r)

(ṫ2φ̇) : ξ,tφ = 0, (2.108s)

(ṫṙ2) :

(
1− 2m

r

)
ξ,rr +

m

r2
ξ,r = 0, (2.108t)

(ṫθ̇2) : ξ,θθ +

(
1− 2m

r

)
rξ,r = 0, (2.108u)

(ṫφ̇2) : ξ,φφ +

(
1− 2m

r

)
r sin2 θξ,r + sin θ cos θξ,θ = 0, (2.108v)
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(ṫṙθ̇) : ξ,rθ −
1

r
ξ,θ = 0, (2.108w)

(ṫṙφ̇) : ξ,rφ −
1

r
ξ,φ = 0, (2.108x)

(ṫθ̇φ̇) : ξ,θφ − cot θξ,φ = 0, (2.108y)

where (,) represents partial derivative. Now, putting q2 = r in eq. (2.105) yields[
d

ds

∂

∂ṙ
− ∂

∂r

] [
X(1)(L)

]
= 0. (2.109)

Again using eq. (2.106) in eq. (2.109), further simpli�cation along with the coe�cients

of (ṫ, ṙ, θ̇, φ̇) and their powers' comparison yields some exactly similar determining

equations as the previously obtained subequations (2.108p)-(2.108y) and the remaining

ones are listed as

(constant) : η2,ss = 0, (2.110a)

(ṫ) :

(
1− 2m

r

)−1
η2,st +

m

r2
η1,s = 0, (2.110b)

(ṙ) : −
(
1− 2m

r

)−1
m

r2
η2,s + η2,sr − ξ,ss = 0, (2.110c)

(θ̇) :

(
1− 2m

r

)−1
η2,sθ − rη3,s = 0, (2.110d)

(φ̇) :

(
1− 2m

r

)−1
η2,sφ − r sin2 θη4,s = 0, (2.110e)

(ṫ2) : 2

(
1− 2m

r

)−1
m2

r4
η2 +

(
1− 2m

r

)−1
η2,tt −

m

r2
η2,r − 2

m

r3
η2

+ 2
m

r2
η1,t = 0, (2.110f)

(ṙ2) : 2

(
1− 2m

r

)−2
m2

r4
η2 + 2

(
1− 2m

r

)−1
m

r3
η2

−
(
1− 2m

r

)
m

r2
η2,r + η2,rr − 4ξ,sr = 0, (2.110g)

(θ̇2) : − 2

(
1− 2m

r

)−1
m

r
η2 +

(
1− 2m

r

)
η2,θθ + rη2,r − 2rη3,θ

− η2 = 0, (2.110h)
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(φ̇2) : − 2

(
1− 2m

r

)−1
m

r
sin2 θη2 +

(
1− 2m

r

)−1
η2,φφ + r sin2 θη2,r

+

(
1− 2m

r

)−1
sin θ cos θη2,θ − sin2 θη2 − 2r sin θ cos θη3

− 2r sin2 θη4,φ = 0, (2.110i)

(ṙṫ) : − 2

(
1− 2m

r

)−2
m

r2
η2,t +

(
1− 2m

r

)−1
η2,tr − 2

(
1− 2m

r

)−1
ξ,st

+
m

r2
η1,r = 0, (2.110j)

(ṙθ̇) : −
(
1− 2m

r

)−2
m

r2
η2,θ +

(
1− 2m

r

)−1
η2,rθ −

1

r

(
1− 2m

r

)−1
η2,θ

− 2

(
1− 2m

r

)−1
ξ,sθ − rη3,r = 0, (2.110k)

(ṙφ̇) : −
(
1− 2m

r

)−2
m

r2
η2,φ +

(
1− 2m

r

)−1
η2,rφ −

1

r

(
1− 2m

r

)−1
η2,φ

− 2

(
1− 2m

r

)−1
ξ,sφ − r sin2 θη4,r = 0, (2.110l)

(ṫθ̇) :

(
1− 2m

r

)−1
η2,tθ +

m

r2
η1,θ − rη3,t = 0, (2.110m)

(ṫφ̇) :

(
1− 2m

r

)−1
η2,tφ +

m

r2
η1,φ − r sin2 θη4,t = 0, (2.110n)

(θ̇φ̇) :

(
1− 2m

r

)−1
η2θφ −

(
1− 2m

r

)−1
cot θη2,φ − rη3,φ − r sin2 θη4,θ = 0. (2.110o)

Next putting q3 = θ in eq. (2.105), it becomes(
d

ds

∂

∂θ̇
− ∂

∂θ

)(
X(1)(L)

)
= 0. (2.111)

Now by using eq. (2.106) in eq. (2.111), it is further simpli�ed and the comparison

of coe�cients of (ṫ, ṙ, θ̇, φ̇) and their powers is done that again provides some similar

equations ((2.108p)-(2.108y)) as written above. The left out equations are

(constant) : η3,ss = 0, (2.112a)

(ṫ) : η3,st = 0, (2.112b)
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(ṙ) : η3,s + rη3,sr = 0, (2.112c)

(θ̇) : η2,s + rη3,sθ − rξ,ss = 0, (2.112d)

(φ̇) : η3,sφ − sin θ cos θη4,s = 0, (2.112e)

(ṫ2) : r2η3,tt −
(
1− 2m

r

)
mη3,r = 0, (2.112f)

(ṙ2) : r2η3,rr +

[
2r +

(
1− 2m

r

)−1
m

]
η3,r = 0, (2.112g)

(θ̇2) : 2η2θ + rη3,θθ +

(
1− 2m

r

)
r2η3,r − 4rξ,sθ = 0, (2.112h)

(φ̇2) : η3,φφ +

(
1− 2m

r

)
r sin2 θη3,r + sin θ cos θη3,θ + sin2 θη3 − cos2 θη3

− 2 sin θ cos θη4,φ = 0, (2.112i)

(θ̇ṫ) : η2,t + rη3,tθ − 2rξ,st = 0, (2.112j)

(θ̇ṙ) : − η2 + rη2,r + r2η3,rθ − 2r2ξ,sr = 0, (2.112k)

(θ̇φ̇) : η2,φ + rη3,θφ − r cot θη3,φ − 2rξ,sφ − r sin θ cos θη4,θ = 0, (2.112l)

(ṫṙ) : r2η3,tr +

[
r −

(
1− 2m

r

)−1
m

]
η3,t = 0, (2.112m)

(ṫφ̇) : η3,tφ − sin θ cos θη4,t = 0, (2.112n)

(ṙφ̇) : η3,rφ − sin θ cos θη4,r = 0. (2.112o)

For last variable q4 = φ, eq. (2.6) yields[
d

ds

∂

∂φ̇
− ∂

∂φ

] [
X(1)(L)

]
= 0. (2.113)

By using eq. (2.106) in eq. (2.113), it is simpli�ed and then equating to zero the

coe�cients of (ṫ, ṙ, θ̇, φ̇) and their powers produce some similar equations ((2.108p) −

(2.108y)). Remaining equations are

(constant) : η4,ss = 0, (2.114a)

(ṫ) : η4,st = 0, (2.114b)
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(ṙ) : η4,s + rη4,sr = 0, (2.114c)

(θ̇) : sin θ cos θη4,s + sin2 θη4,sθ = 0, (2.114d)

(φ̇) : η2,s + r cot θη3,s + rη4,sφ − rξ,ss = 0, (2.114e)

(ṫ2) : r2η4,tt −
(
1− 2m

r

)
mη4,r = 0, (2.114f)

(ṙ2) : r2η,rr +

[
2r +

(
1− 2m

r

−1)
m

]
η4,r = 0, (2.114g)

(θ̇2) : 2 cot θη4,θ + η4,θθ +

(
1− 2m

r

)
rη4,r = 0, (2.114h)

(φ̇2) : 2η2,φ + 2r cot θη3,φ + rη4,φφ + r sin θ cos θη4,θ +

(
1− 2m

r

)
r2 sin2 θη4,r

− 4rξ,sφ = 0, (2.114i)

(φ̇ṫ) : η2,t + r cot θη3,t + rη4,tφ − 2rξ,st = 0, (2.114j)

(φ̇ṙ) : − η2 + rη2,r + r2 cot θη3,r + r2η4,rφ − 2r2ξ,sr = 0, (2.114k)

(φ̇θ̇) : η2,θ − r cot2 θη3 − rη3 + r cot θη3,θ + rη4,θφ − 2rξ,sθ = 0, (2.114l)

(ṫṙ) : r2η4,tr +

[
r −

(
1− 2m

r

)−1
m

]
η4,t = 0, (2.114m)

(ṫθ̇) : cot θη4,t + η4,tθ = 0, (2.114n)

(ṙθ̇) : cot θη4,r + η4,rθ = 0. (2.114o)

Now we solve the above system of partial di�erential equations to �nd values of ξ, η1,

η2, η3 and η4.

Di�erentiating eq. (2.108v) w.r.t t and making use of eq. (2.108r) and eq. (2.108s) we

get

ξ,tr = 0. (2.115)

Using eq. (2.115) in eq. (2.108q) we get

ξ,t = 0. (2.116)
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From eq. (2.116) ξ,tt = 0 which makes eq. (2.108p)

ξ,r = 0, (2.117)

using eq. (2.117) in eq. (2.108w) and eq. (2.108x) we get

ξ,θ = 0, ξ,φ = 0. (2.118)

From eq. (2.116), eq. (2.117) and eq. (2.118) we now know that ξ is a function of s

only i.e.

ξ = ξ(s). (2.119)

If we di�erentiate eq. (2.108b) w.r.t s and make use of eq. (2.108a) and eq. (2.110a)

we get

ξ,sss = 0, (2.120)

by utilising eq. (2.119), eq. (2.120) can be solved to get value of ξ

ξ = c1s
2 + c2s+ c3, (2.121)

where c1, c2, c3 are arbitrary constants.

Next from eq. (2.108a) we can write η1 as

η1 = a1(t, r, θ, φ)s+ a2(t, r, θ, φ). (2.122)

where a1, a2 are some arbitrary functions of mentioned arguments, but from equations

(2.108c), (2.108d) and (2.108e) we realize that a1 must be the function of t only. Hence

eq. (2.122) becomes

η1 = a1(t)s+ a2(t, r, θ, φ), (2.123)

Now di�erentiating eq. (2.112d) w.r.t t and using eq. (2.112b) and eq. (2.116) we yield

η2,st = 0, (2.124)
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utilising eq. (2.124) in eq. (2.110b) it produces

η1,s = 0, (2.125)

which means a1(t) must be equal to zero and hence η1 from eq. (2.123) translates into

η1 = a2(t, r, θ, φ). (2.126)

From eq. (2.110a) η2 can be written as

η2 = a3(t, r, θ, φ)s+ a4(t, r, θ, φ). (2.127)

Now we di�erentiate eq. (2.108b) w.r.t r and use eq. (2.125) and eq. (2.117) to get

η2,sr = 0, (2.128)

and after putting value of η2,sr in eq. (2.110c) and using ξ,ss = c1, we solve it to get

value of η2,s

η2,s = −
2c1
m

(r2 − 2mr). (2.129)

If we di�erentiate eq. (2.108b) w.r.t θ and use eq. (2.105) and eq. (2.118), we obtain

η2,sθ = 0, (2.130)

and putting it in eq. (2.110d) yields

η3,s = 0, (2.131)

putting eq. (2.131) in eq. (2.112d) and utilising ξ,ss = c1, produce

η2,s = 2rc1, (2.132)

equating eq. (2.129) and eq. (2.132) generates

c1 = 0, (2.133)
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which means ξ in eq. (2.121) now becomes

ξ = c2s+ c3. (2.134)

Also if c1 = 0 then

η2,s = 0, (2.135)

which means a3 must be equal to zero and hence η2 in eq. (2.127) becomes

η2 = a4(t, r, θ.φ). (2.136)

Solving eq. (2.112a) gives

η3 = a5(t, r, θ, φ)s+ a6(t, r, θ, φ), (2.137)

but as η3,s = 0 then a5 must equals zero and therefore eq. (2.137) translates into

η3 = a6(t, r, θ, φ). (2.138)

Eq. (2.114a) can be solved to get value of η4 as

η4 = a7(t, r, θ, φ)s+ a8(t, r, θ, φ), (2.139)

if we di�erentiate eq. (2.108b) w.r.t. φ and use eq. (2.105) and eq. (2.118) to get

η2,sφ = 0, (2.140)

which upon putting in eq. (2.110e) gives

η4,s = 0, (2.141)

that means a4 in η
4 must be zero, so eq. (2.139) now reads

η4 = a8(t, r, θ, φ). (2.142)
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If we di�erentiate eq. (2.108m) w.r.t. r we get(
1− 2m

r

)
η1,rrθ +

2m

r2
η1,rθ +

1

r2
η1,θ −

6m

r3
η1,θ −

1

r

(
1− 3m

r

)
η1,rθ = 0, (2.143)

also di�erentiating eq. (2.108g) w.r.t. θ yields(
1− 2m

r

)
η1,rrθ = −

3m

r2
η1,rrθ, (2.144)

putting eq. (2.144) back into eq. (2.143) and solving gives(
1− 2m

r

)
η1,rθ −

1

r

(
1− 6m

r

)
η1,θ = 0, (2.145)

equating eq. (2.145) and eq. (2.108m) produce

η1,θ = 0. (2.146)

Next, if we di�erentiate eq. (2.108n) w.r.t r we obtain(
1− 2m

r

)
η1,rrφ +

2m

r2
η1,rφ +

1

r2
η1,φ −

6m

r3
η1,φ −

1

r

(
1− 3m

r

)
η1,rφ = 0, (2.147)

also di�erentiating eq. (2.108g) w.r.t. φ yields(
1− 2m

r

)
η1,rrφ = −

3m

r2
η1,rrφ, (2.148)

putting eq. (2.148) back into eq. (2.147) and solving gives(
1− 2m

r

)
η1,rφ −

1

r

(
1− 6m

r

)
η1,φ = 0, (2.149)

equating eq. (2.149) and eq. (2.108n) produce

η1,φ = 0. (2.150)

using eq. (2.146) into eq. (2.108h) we get

η1,r = 0. (2.151)
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With the help of equations (2.146),(2.151) and (2.151) we can say a2 is function of t

only, then eq. (2.126) becomes

η1 = a2(t). (2.152)

By using eq. (2.118) and eq. (2.146) in eq. (2.108k) we get

η2,θ = 0. (2.153)

Now using eq. (2.118) and eq. (2.150) in eq. (2.108l) gives

η2,φ = 0. (2.154)

Putting eq. (2.146) and eq. (2.153) in eq. (2.110m) yields

η3,t = 0. (2.155)

Putting eq. (2.150) and eq. (2.154) in eq. (2.110n) yields

η4,t = 0. (2.156)

Making use of eq. (2.118) and eq. (2.153) in eq. (2.110k), we get

η3,r = 0. (2.157)

Making use of eq. (2.118) and eq. (2.154) in eq. (2.110l), we get

η4,r = 0. (2.158)

(2.112j) can be solved by utilising eq. (2.116) and eq. (2.155) to get

η2,t = 0. (2.159)

By realising equations (2.153),(2.154) and (2.159), η2(a4) must be function of r only

therefore eq. (2.136) becomes

η2 = a4(r). (2.160)
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Now if we use eq. (2.117) and eq. (2.157) in eq. (2.112k), we get

− η2 + rη2,r = 0, (2.161)

as η2 is a function of r only so by substituting a4 = rm, eq. (2.161) can be solved to

get

η2 = c4r, (2.162)

where c4 is an arbitrary constant.

By putting eq. (2.117) and the value of η2 from eq. (2.162) in (2.110g) we obtain

c4 = 0, (2.163)

which means eq. (2.162) gives

η2 = 0, (2.164)

substituting value of η2 from eq. (2.164) into eq. (2.110f) we get

η1,t = 0. (2.165)

The equations (2.146), (2.150), (2.151) and (2.165) suggest η1 is just a constant i.e.

η1 = c5. (2.166)

substituting eq. (2.164) into eq. (2.110h) gives

η3,θ = 0. (2.167)

Using value of η2 in eq. (2.110i) gives

η3 = − tan θη4,φ, (2.168)

If we take derivative of eq. (2.168), we obtain

η3,φ = − tan θη4,φφ, (2.169)
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using eq. (2.164) and eq. (2.169) in eq. (2.110o) to get

η4,φφ + sin θ cos θη4,θ. (2.170)

If we put equations (2.118), (2.154), (2.158) and (2.170) in eq. (2.114i), we are left

with

η3,φ = 0, (2.171)

As η3 is zero w.r.t all the variables therefore it must be equal to a constant i.e.

η3 = c6. (2.172)

Using eq. (2.172) in eq. (2.110o) gives

η4,θ = 0, (2.173)

also by putting eq. (2.172) in eq. (2.168) we get

η4,φ = −c6 cot θ, (2.174)

if we put eq. (2.172) and eq. (2.175) in eq. (2.112i), it produces

c6 = 0, (2.175)

by means of which eq. (2.172) becomes

η3 = 0, (2.176)

and eq. (2.174) also becomes

η4,φ = 0, (2.177)

keeping the equations (2.156),(2.158),(2.173) and (2.177) in view we can iterate

η4 = c7. (2.178)
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So we have found all the required in�nitesimals and if we assume (c2, c3, c5, c7) =

(C1, C2, C3, C4) then we can write

ξ = C1s+ C2, η1 = C3,

η2 = 0, η3 = 0, η4 = C4.
(2.179)

Hence the generator can be written as

X(1) = (C1s+ C2)
∂

∂s
+ C3

∂

∂t
+ C4

∂

∂φ
, (2.180)

For Ck = 0 we get four symmetries

X1 = s
∂

∂s
, X2 =

∂

∂s
,

X3 =
∂

∂t
, X4 =

∂

∂φ
.

(2.181)

These four symmetries are the required Mei symmetries.

We see that out of these four Mei symmetries, three symmetries X2,X3,X4 are same

as three Noether symmetries X1,X2,X5 particularly found in eq. (2.98) corresponding

to the Lagrangian given by eq. (2.1). These three symmetries actually satisfy the

equation (1.199) but X1 does not satisfy this equation (1.199) therefore, it is not a

Noether symmetry. And similarly, the Noether symmetries X3,X4 do not satisfy the

equation (1.194) and hence they are not Mei symmetries. This observation marks the

di�erence between both symmetries.

One can also observe that the four Mei symmetries obtained for Lagrangian given in

eq. (2.1) are the subset of the Lie point symmetries as obtained in eq. (2.104) for

the system of equations of motion given by eq. (2.100)-(2.103). The obtained Mei

symmetries satisfy the Lie algebra

[X1,X2] = −X2, [X1,X3] = 0,

[X1,X4] = 0, [X2,X3] = 0,

[X2,X4] = 0, [X3,X4] = 0.

(2.182)

.
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2.4 Veri�cation of the Mei Symmetries

One may verify if the obtained symmetries ful�l the criterion of Mei symmetries given

by eq. (2.105). By making use of obtained values of in�nitesimals given by eq. (2.179)

we write X(1)(L) as

X(1)(L) = 2C1

(
1− 2m

r

)
ṫ2−2C1

(
1− 2m

r

)−1
ṙ2−2C1r

2θ̇2−2C1r
2 sin2 θφ̇2. (2.183)

We apply the Euler operator for each dependent variable one by one as required by

criterion given in eq. (2.105).

For q1 = t criterion given by eq. (2.105) gives(
d

ds

∂

∂ṫ
− ∂

∂t

)
(X(1)(L)) = 0, (2.184)

using eq. (2.183), the left hand side of eq. (2.184) gives

d

ds

(
4

(
1− 2m

r

)
C1ṫ

)
=

8m

r2
C1ṫṙ −

8m

r2
C1ṫṙ = 0, (2.185)

that means criterion holds true for q1 = t.

For q2 = r criterion given by eq. (2.105) produce(
d

ds

∂

∂ṙ
− ∂

∂r

)
(X(1)(L)) = 0. (2.186)

On putting eq. (2.183) in eq. (2.186) we get

d

ds

(
−4C1

(
1− 2m

r

)−1
ṙ

)
−
(
4C1

m

r2
ṫ2 + 4C1

(
1− 2m

r

)−2
m

r2
ṙ2 − 4C1rθ̇

2

− 4C1r sin
2 θφ̇2

)

= 8C1ṙ
2

(
1− 2m

r

)−2
m

r2
− 4C1

(
1− 2m

r

)−1
r̈ − 4C1

m

r2
ṫ2 − 4C1

(
1− 2m

r

)−2
m

r2
ṙ2

+ 4C1rθ̇
2 + 4C1r sin

2 θφ̇2,

(2.187)
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putting value of r̈ from eq. (2.101)

= 8C1ṙ
2

(
1− 2m

r

)−2
m

r2
− 4C1

(
1− 2m

r

)−2
m

r2
ṙ2 + 4C1

m

r2
ṫ2 − 4C1rθ̇

2 − 4C1r sin
2 θφ̇2

− 4C1
m

r2
ṫ2 − 4C1

(
1− 2m

r

)−2
m

r2
ṙ2 + 4C1rθ̇

2 + 4C1r sin
2 θφ̇2 = 0.

(2.188)

It goes to zero and hence criterion holds for q2 = r.

And for q3 = θ criterion becomes(
d

ds

∂

∂θ̇
− ∂

∂θ

)
(X(1)(L)) = 0, (2.189)

solving left hand side, we get

d

ds

(
−4r2C1θ̇

)
−
(
−4r2 sin θ cos θC1φ̇

2
)

= −8C1rṙθ̇ + 8C1rṙθ̇ − 4C1r
2 sin θ cos θφ̇2 + 4C1r

2 sin θ cos θφ̇2 = 0,

(2.190)

hence it also holds for q3 = θ.

Also for q4 = φ (
d

ds

∂

∂φ̇
− ∂

∂φ

)
(X(1)(L)) = 0, (2.191)

the left hand side gives

d

ds

(
−4r2 sin2 θC1φ̇

)
= −8C1r sin

2 θṙφ̇− 8C1r
2 sin θ cos θθ̇φ̇+ 8C1r sin

2 θṙφ̇+ 8C1r
2 sin θ cos θθ̇φ̇ = 0,

(2.192)

which tells criterion in eq. (2.105) holds true for q4 = φ as well. Hence eq. (2.181)

presents four symmetries for the Lagrangian in eq. (2.1) of Schwarzschild metric.
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Chapter 3

Summary

In this thesis, from the extensive history of di�erential equations, the major devel-

opments with time are brie�y revisited. The solutions of these di�erential equations

always served as a gateway to further exploration. To acquire and comprehend these

solutions of the di�erential equations, symmetry methods has become a very powerful

and extra ordinary technique in the recent times. This work commence with the inves-

tigation of the symmetries including Lie Point symmetries, Noether symmetries and

Mei symmetries. The study naturally includes the Ordinary di�erential equations. The

de�nition of symmetry groups of point transformations and their in�nitesimal gener-

ators, is presented. The method to prolong in�nitesimal generators is discussed. The

criterion of Lie point symmetries is studied and applied to some well known di�eren-

tial equations of �rst and higher orders as well. The evaluation of Lie algebras and Lie

brackets of the basic symmetry generators is performed. After de�ning the Lagrangian,

Noether symmetries and Mei symmetries are de�ned along with their respective crite-

rion. The theorems (without proofs) related to �rst integrals or conserved quantities of

Noether symmetries and Mei symmetries are quoted and used in examples in order to

�nd them. With the help of already established facts, the relationship of Lie symmetry

with Noether symmetry and relationship of Noether symmetry with Mei symmetry is

accomplished.
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Chapter 2 primarily focuses on �nding the Mei symmetries for the Lagrangian of spher-

ically symmetric and static metric. This chapter begins with the review of Noether

symmetries for the Lagrangian of spherically symmetric and static metric from the

paper [31]. In this review, the Schwarzschild solution being the most important so-

lution of Einstein �eld equations is considered. After revisiting the criterion to �nd

Noether symmetries, the Lagrangian for Schwarzschild metric is presented. Firstly,

considering the criterion for Noether symmetries, the linear operator A along with

the prolonged in�nitesimal generator is used to establish the system of determining

equations, which are then solved to �nd the unknown in�nitesimals (ξ, η1, η2, η3, η4)

and the boundary function g. One out of these �ve in�nitesimals appeared to be zero

while others four, depending upon �ve arbitrary constants, lead to �ve Noether sym-

metries with the boundary function found to be a constant. Secondly, the Lie point

symmetries obtained in the paper are presented. After this the main task to �nd Mei

symmetries corresponding to the Lagrangian of Schwarzschild metric is executed. To

�nd the Mei symmetries, the Euler Lagrange equations are compiled one by one for

the four Schwarzschild coordinates (t, r, θ, φ). Taking the criterion of Mei symmetries

into account, the in�nitesimal generator is prolonged and the system of determining

equations for all the dependent variables is obtained. This system is then solved in-

dependently to evaluate the values of the �ve in�nitesimals (ξ, η1, η2, η3, η4). Two out

of which are found to be zero and the remaining three depend on four arbitrary con-

stants, corresponding to which we found four Mei symmetries. We observed that the

three of the Mei symmetries are just the same as three of the Noether symmetries for

the same Lagrangian. No explicit relationship between these two symmetries could be

found. However, the obtained Mei symmetries are found to be the subset of Lie point

symmetries. In the end, the veri�cation of the obtained Mei symmetries is also done

in order to endorse the criterion.
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