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Abstract

This thesis is devoted to find the Mei symmetries corresponding to the Lagrangian
of spherically symmetric and static metric. For this purpose, Schwarzschild metric is
considered and the criterion for Mei symmetries is analysed. The Lagrangian of the
spherically symmetric and static Schwarzschild metric is used to determine the Euler
Lagrange equations and the determining equations for the Mei symmetries. Solving
the determining equations, four Mei symmetries for the Lagrangian of Schwarzschild
metric are obtained. Moreover, the Lie point symmetries and Noether symmetries are
reviewed. The obtained Mei symmetries are found to be the subest of these Lie point
symmetries. In addition to this, a quick verification of obtained Mei symmetries is also

done.
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Chapter 1

Introduction

In this chapter background of differential equations is reviewed. The theory of sym-
metry groups of ordinary and partial differential equations is discussed with some
examples. The criterion of the Lie point symmetries, Noether symmetries and Mei
symmetries is presented. The basic concepts, definitions and notations related to these

symmetries are presented.

1.1 Brief Background of Differential Equations

The inception of the differential equations is not that straightforward that credits could
be only given to one person. It is because although Sir Isaac Newton, after discovering
calculus in 1665, wrote his first work in 1671 titled as "The method of fluxion and
infinite series" [I] but he did not get it published right away. In 1693, when Got-
tfried Leibniz gave solution of first differential equation, Newton got his previous work
published so it became the official year of inauguration of the differential equations.
Therefore, as history tells, these two giants of Mathematics deserve equal credits for
the birth of differential equations.

The extension of Leibniz’” work was done by Jakob Bernoulli and Johann Bernoulli.

In 1695, Jakob Bernoulli came up with a new form of ordinary differential equation



y + P(x)y = Q(z)y" called as Bernoulli equation. Then to describe waves, a sec-
ond order linear partial differential equation i.e. one-dimensional wave equation, was
proposed by Jean le Rond d’Alembert in 1746. Within ten years Euler created a three-
dimensional version of the wave equation. Leonhard Euler is a household name who
contributed much to Mathematics due to his vast number of influential discoveries. The
areas of Mathematics covered by Euler include infinitesimal calculus, trigonometry, ge-
ometry, number theory and algebra. His famous work carries frequent use of Power
series to solve particular cases of differential equations, Euler’s identity and Euler’s
formula. Another feather to his cap was the invention of calculus of variations which
takes in his most well-known result, The Euler-Lagrange equation (in collaboration
with Joseph Louis Lagrange).

New figures emerged, especially Joseph-Louis Lagrange, Pierre-Simon Laplace and
Adrien-Marie Legendre and Joseph Fourier, best known for their concept of Lagrangian
multiplier, Laplace’s equation and transformation, Legendre polynomials and Leg-
endre transformation, Fourier series respectively. Another renowned Mathematician
Friedrich Bessel generalized Bessel functions which were originally introduced by Daniel
Bernoulli. In the same era a well-known mathematician Augustin-Louis Cauchy talked
about existence and uniqueness of solutions for the first time. The history went on
with great names such as Rudolf Lipschitz, Bernhard Riemann, Carl Friedrich Gauss,
Emmy Noether and George David Birkhoff carrying out different research for the de-
velopment of differential equations [2].

Meanwhile, when Evariste Galois formulated basis for group theory while having quest
to find out the solutions of polynomial equations, a famous Norwegian mathematician
Marius Sophus Lie used groups to find solutions of differential equations afterwards. He
suggested that actually the groups of symmetries of the equations are used in standard

methods to obtain the solutions. To understand symmetries, first we need to explore



transformations and their generators.

1.2 Point Transformations and their Infinitesimal Gen-
erators

A point transformation is a transformation that transforms a point (x,y) into a new
point (Z,7)

T =2(z,y), J=9(,y), (1.1)
where z is independent variable and y is dependent variable. In context of symmetries,
point transformations that are dependent on at least one parameter needed to be

considered.

1.2.1 One-Parameter Groups of Point Transformations

One-parameter group of point transformations are the transformations that depends

on at least one arbitrary parameter ¢ € R

T =1x(z,y,¢), y=9(z,y,e). (1.2)

with the group properties of closure, inverse and identity being satisfied. The identity

transformation is obtained by setting ¢ = 0

t(z,y,0) = x, U(x,y,0) =y. (1.3)

The rotations

T =xcose — ysine, = xsine + ycose, (1.4)

represent a one-parameter group of point transformations as they depend on only one
parameter and also satisfy all the group axioms.

Also one-parameter group of point transformations comprises of scaling such as

£

T = ez, g = €ey. (1.5)



However, translations
i’:x—i‘@l, g):y—l—ag, €1,€2 ER, (16)

represent a two-parameter group of point transformations as this set of translations
depends on two parameters €; and 5. Here one-parameter group of translations in the
y direction can be obtained by setting €; = 0 and similarly, one-parameter group of
translations in the x direction can be obtained by setting e, = 0.

On the other hand, the reflection
T=—ux, 7= —v, (1.7)

does not constitute one-parameter group of point transformations but it is still a point
transformation [3].

Applying Taylor series about € = 0 gives infinitesimal representation of point transfor-

mation
9
=+ ga_f =0 +O(?),
ag (1.8)
) = a_ le= O 2 9
y y+€a€| 0 +O(¢%)

where the coefficients of infinitesimal transformations are set to be the functions [4]

o o9,
& ‘620_ 5(1?7@7 g |€=0_ T](.T,y) (19)

Hence, the infinitesimal generator of transformation is established as

Xzﬁ(aﬁ,y)ngW(w?y) i (1.10)

ox oy’
A group of transformations can be acquired if the infinitesimal generator is known [3].

The generator can be written as

X = (X2) 2 4+ (xy) 2 (1.11)



This infinitesimal generator can be transformed into new coordinates using transfor-
mation law
o,

X =k — =1,... N 1.12
azam a ) ) ) ( )

where 2% are new coordinates and k% = %ka are the new components of tangent
vector X.

The following example is conferred to grasp this concept clearly.

Example

In view of the given generator
0
X=2—+y=—. (1.13)

Introducing new set of coordinates

r(z,y) =Inz, s(z,y) = L (1.14)
Y
The infinitesimal generator in the new coordinates is
0 0
X =(Xr)=— + (Xs)=—. 1.15
(Xr) o+ (Xs) (1.15)
Solving the partial differential equations
or or
Xr = — — 1.16
r é(fc,y)aIJrn(x,y)ay, (1.16)
1
Xr=uz (E) +y(0) =1, (1.17)
and
Js ds
Xs = — —
s=¢&(y)o + n(x,y)ay,
x —x
Xs=—+ (—) = 0. 1.18
REACT (1.18)

Putting eq. (1.17)) and eq. (1.18]) back into eq. (1.15)) yields infinitesimal generator in

new coordinates r and s

X(r,s) = =—. (1.19)



This particular form of generator is known as the normal form or the canonical form
of the infinitesimal generators and the coordinates (r, s) are called normal (canonical)
coordinates. If the condition 7,5, —rys, # 0 is admissible by the canonical coordinates

then the transformation is invertible [5].

1.2.2 r-Parameter Groups of Point Transformations

A group of transformations may depend on multiple (more than one) parameters. It

means contrary to eq. ((1.2)) one may write

&= (2,9, €a), J=(2,9,ca), (1.20)

where o = 1,...,r. If all the axioms of groups are satisfied by all these parameters
and if they do not depend on each other then these point transformations formulate a
r-parameter group (G,).

An infinitesimal generator can be constructed for each parameter ¢, of r-parameter

group of point transformations.

0 0
Xo =8z +Nar, 1.21
Cagym 0 9 (1.21)
where the infinitesimals are
0z
éa(‘ray> = % ) (122)
X leg=0
Yy
Na(z,y) = D (1.23)
X leg=0

The following example is presented to make it clear how to deal with point transfor-
mations that depend on more than one parameters.
Example

Considering the projective transformation of the x — y plane as

e1+ (1+ex)r+e3y
(1+4¢e4) + &5 + 6y’

er+esx + (1 +e9)y
(1+¢e4) +e52+ €6y

&= j = (1.24)



Simplifying eq. (1.24)) yields

§=e1+ 2+ 61+ e3y — £47 — £52° — gy + O(£?), (1.25)

§ = 7+ e +y + g9y — €4y — 57y — £6y> + O(e?). (1.26)

Application of eq. (1.22)) on eq. (1.25)) for each parameter e,(a = 1, ....,9) provides
51 = 17 52 =T, 63 =Y, 54 = -, 55 = _x27
56 = -y, 57 = 07 58 = 07 59 =0.

Similarly, application of eq. (1.23) on eq. (1.26)) for each parameter ¢,(a = 1,....,9)

provides

(1.27)

m = 07 T2 = 07 N3 = 07 Ny = Y, s = —2Y,
(1.28)
=y,  m=1 s = 1, =Y.
Hence, the generators can be listed as
0 0 0
X =— Xy =10— X3 =y—
1 61‘7 2 x@a:’ 3 yaxa
0 0 0 0 0 0
Xy=—1— —y— X5 = —a?=— — ay— Xe = —ay— — 1y =—
0 0 0
X7 =— Xsg=10— Xg=y—.
(1.29)

However, as X is a linear combination of X, and Xy, therefore, there are eight linearly
independent generators in total. Hence in this example an 8-parameter group of point

transformations is easily investigated.

1.2.3 Prolonged Transformations and their Prolonged Genera-
tors

Taking a differential equation into consideration

E=(z,y,9,...,y™) = 0. (1.30)



If we want to apply point transformation eq. (1.2)) on it, we must extend or prolong
this transformation to its derivatives y®*) k = 1,2,...,n as well. Calculating §*

recursively [3] such as

Q(k) d@) d@(k—l) ng(k_l)

_ _ _ , 1.31
dz (k) dz D,z ( )
here D, is the total derivative w.r.t z.
d 0 0 0 0
D,=—=—+9y—+y"— +9¢"” +.. ., 1.32
dr Oz Y dy Y oy’ Y oy" (132)
as eq. ([1.8)) suggests
&=z +el(z,y) + O(?),
§=y+en(e,y) + 0,
§ =y +enM(x,y.y)+ 0, (1.33)
§" =yt en™(z, g,y y™) + O,
where nM) n@® . n™ are given as
ag/ 8?;// ayn
1 - Z7 (2 — (n) — 27 1.34
88 5207 77 88 8207 ? 77 86 —o ( )
By using eq. (1.33)) in eq. (1.31)) we get
R dy dy+edn—+...
I (1) O 2y _ D — 7 _
y e (@)
l+e(E)+...
/ n_,dg
= —_— =y = Ce 1.35
y+€<dx ydx)Jr (1.35)
Comparing ¢ from eq. (1.35) with ¢’ from eq. ([1.33) we get
dn d§
W=y = =D,n—yD,E 1.36
n 7 Y o = Dan —y'Duk (1.36)



Similarly, for 9™ we get

dpn =) dg
) (n) —yt =) 4 1.37
9" =y +6< el EULRRE (1.37)

and by comparing y™ from eq. (1.37) to y™ from eq. (1.33) we get

(n) _ dn™b  de

—y" > =D — y"D,E. 1.38

U T Y U y"Dag (1.38)
Hence we can generalize it to
dnF=1 d

I Y 1) 3 30 S S R (1.39)

dx dx

where n*) is not k—th derivative of 7 rather it is k—th prolongation and one can also
compute the prolongation of n by putting eq. (1.32) in eq. (1.39) as the first two

prolongations are

77(1) =Nzt ?/(ﬁ,y - 5,1) - y/2§7y7 (140)
n® = Naz + Y (2N0y — ) + ?Jl2(77,yy = 28ay) — ?Jlgf,yy +y" (ny — 262 —3Y'Ey).
(1.41)

where (,) denotes partial derivative w.r.t to the function following it.
Now the prolongation of infinitesimal generator is established such that the infinitesimal
transformations are written in the form

&=z +eXax+0(?),

=y +eXy+0(?),

7 =y +eXy +O0(e?), (1.42)

g =y 4 eXy™ 4 O(e2).

and the prolongation of infinitesimal generator is formulated as

o 9,0
X = Ca gttt

o 5 (1.43)

Dy

9



The below presented example marks the procedure of computing prolongation of gen-
erator.

Example Consider the given generator
0 0
X=zy—+y°—. 1.44
War Vg, (1.44)

Now we will find its second prolonged generator. To find second prolonged generator

we need " and n®. From eq. (T.44) we have

£ =y, n=y’ (1.45)

and by using eq. we can compute n™ and n® as
N =D, (y*) — y'Da(zy) = yy' — xy/”, (1.46)
N =D, (yy —2y?) — y'"Da(zy) = —3y'y"x. (1.47)

We can also compute n") directly by using eq. as

1) —

n' =y 2y —y) — vz = yy' — " x, (1.48)

and also 7® by using eq. (1.41)) as
n® =y"(2y — 2y — 3y'z) = —3y'y"x. (1.49)

Hence the prolonged generator is found as

%) 0 0 15)
X® = gpy— 42— ") — — 3y ——. 1.50
Tygo Ty ay+(yy y x)ay, vy (1.50)

1.3 Lie Point Symmetries of Ordinary Differential Equa-
tions

Until now we talked about point transformations. Now we define symmetry group of

transformations and Lie point symmetries of ordinary differential equations .

10



A point transformation that may or may not depend on any parameter is said to be
a symmetry group of transformations if it maps a solution to another solution of
differential equation and preserves its structure.

For example if we consider the ordinary differential equation

E(z,y,9,....4") =0, (1.51)
and apply point transformation from eq. to it, if it provides

E(,9,9,...,9") =0, (1.52)

then this point transformation is a symmetry transformation because it did not change
the eq. . More generally, we can say that an nth eq. order differential equation
E(z,y,v,...,y"™) = 0 is invariant under a symmetry transformation & = #(z,y), 9 =
Gz, y), ..., 9™ =g (z,y, o, ..., y™)if B(Z,9,9,...,9™) =0.

If we consider the symmetry group of transformations that is dependent on at least
one parameter then this symmetry is known as Lie point symmetry named after

Norwegian mathematician Sophus Lie.

Differentiating eq. (1.52) yields

OE

- =0 1.53
Oe |y (1.53)
OE0: OEOy OEJy OE og™
= — — — + .. = . 1.54
(833 9 " 950 agoe T T agm ee )|, (154)
If we choose (22) |.—o= (22) then by using eq. (1.9) we can write
OE OE ,0E OE
—_— —_— ... (n) =0 1.55
$os Ty Tay Tt 5m =0 (1.55)
which is equivalent to
XE = 0. (1.56)

We now can state the criterion to find Lie point symmetries.

11



1.3.1 Criterion to Find Lie Point Symmetries

An ordinary differential equation (ODE)

E(z,y,9,y",...,y™) =0,
admits a group of symmetries with generator X if and only if
XME |.—p= 0,

holds.
In next example we see how XE becomes zero considering E = 0.
Example

Suppose we have a linear differential equation

y' +y=0. (1.57)
The generator is given as
0
X =y—. 1.58
Y, (1.58)
From eq. (1.58) we get
£=0, n=uy. (1.59)

Now we will find prolonged generator. For this we have to find ¥ and n® using

definitions eq. (1.39).

So the second prolonged generator is obtained as

0
ay// :

0 0

If we recheck then XPE =0 as E = 0.

In next example we now elaborate that how this criterion works to find group of

12



symmetries for a second order differential equation.
Example
Consider

E(zr,y.9,y") 1y +y=0. (1.61)
Now we will find the symmetries of the equation eq. (1.61]). The criterion for finding
symmetries is
X@E =0. (1.62)
Firstly we prolong the generator X to X 50 we get

w9 @0

0
X® =¢— 4 n— — . 1.63
€a$+nay+n o7 T (1.63)
Applying the criterion given in eq. ((1.62)) provides
9, 9, 0 0
XPE = (5% + T]@_y + U(l)a—y, +n® ay//) y' =n® +n=0 (1.64)

Using eq. we have

Naw +Y (20,0y = Eaw) + Y (yy = 260y) =Y €y +y"(ny — 260 —3Y'€,) +1 =0, (1.65)
putting 3’ = —y from eq. we get

Naw = Yy + 2080 + 1+ Y (2ay — Eaw +3YEy) + 4 (yy — 262y) — Y°€ 4y = 0. (1.66)

Since &, n are the functions of x and y only therefore we can compare coefficients of

and their powers. Comparing coefficients provides partial differential equations

(") e — Yy + 2y€0 +1 =0, (1.67)
(") 202y — Eae + 3y = O, (1.68)
(Y) : Ny — 260y = 0, (1.69)
(¥?) : €4y =0, (1.70)

13



eq. (1.70) implies

§ = ar(v)y + aq(z).

Finding £ ., from eq. (1.71) and putting back in eq. (1.69) gives

Nyy — 20y =0,

eq. (1.72) implies

Ny = 2a1y + as(z),

= ayy’ + asy + as(w).
Putting value of 1, and  ,, in eq. yields
4aty + 2ay — aiy — ay + 3ya; = 0,
3aly + 2ay — ay + 3ya; = 0.
Comparing powers of y in eq. we get
(y°) : 2a3(x) — az(x) = 0.

(y") : af(2) + ax(z) =0,

from eq. ([1.76]) we get

Qa1 = C1COSX + cosinx.
Putting value of @ from eq. (1.77) into eq. ([1.73)) gives

1N = —cp8in xyz ~+ €9 COS ny + asy + aq.

Now inserting value of 1, and 7, from eq. (1.78)) into eq. (1.67) produce

(—2cy cosw + 2¢y sinx + 2a}) y* + (af + 2ay)y + af + as = 0.

14
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Comparing powers of y in eq. (1.79) yields

(y") : af(@) + as(z) = 0 = ay = 52 + ¢, (1.80)
(y') = az(@) + 2a5(x) = 0, (1.81)

(y?) 1 —2cy cosx + 2¢; sinz + 2a) () = 0,
differentiating eq. w.r.t « and putting value of af from eq. we get
ay (z) + 4aj(x) = 0. (1.82)
If we consider aj(z) = As, aj(z) = A}, af (z) = A then eq. becomes
Al 4+ 445 =0, (1.83)

that gives
Az = c¢5cos2x + cgsin 2, (1.84)
as Az = aj(z) so by putting into eq. (1.84) and solving we get value of a3

1 1
as(z) = 5 Cs 5D 2x — 5C6 CO8 2z + c7. (1.85)

Putting value of a3 into eq. (1.81) we obtain

1
as(x) = —5C5 08 2r — ¢ sin 2x + cg, (1.86)

putting value of respective ay, k = 1,...,4 back in eq. (1.71) and eq. (1.78)) produce

values of £ and n

E(x,y) = (e + ca)y + csa® + crw + ¢, (1.87)
n(z,y) = ay® + (esz + )y + sz + ¢ (1.88)
Here ¢, k= 1,2,...,8 are arbitrary constants.

Hence by using eq. (1.87) and eq. (1.88]) the infinitesimal generator of one-parameter.

15



Lie group of point symmetries of y” + y = 0 is established as

X = [(c1 cosx + e sinx)y — ¢5 cos 2z — g sin 2x + ¢

ox
0
+ [(—01 sin + ¢ cos £)y* + (c58in 22 — ¢ cos 22 + ¢7)y + ¢3cos T + ¢4 sin x} e
Y
(1.89)
and for each ¢; = 1,¢; = 0 we get
0 0 0
Xlzycosxa—x—yzsinxa—y, Xzzysinxa—i-yzcosxa—y,
X3 =cosr—, Xy =sinr—,
y %y 5 (1.90)
X5 = —cos 21:% + ysin 2xa—y, Xg = —sin Qx% — 1 cos 2x8—y,
0 0

X7 X8

Various systems of differential equations are solved by using Lie point symmetry

method [7]-]9).

1.3.2 Symmetry Criterion in Terms of Operator A

In order to define symmetry condition in terms of operator A we first have to define
some facts about the linear operator A.

Suppose we have an ordinary differential equation written as

y(n) = w(x’ y? y,7 tet ’y(n_l))7 (]"91)

we express the associated partial differential equation as

0 0 0
A — « — /_ //_ P S — = 12
f=a"— (8x+y8y+y T +w8y("—1)>f 0, (1.92)

just like symmetry generator X, the linear operator A can be written in its canonical
form therefore if we solve eq. ([1.92)) or transform A in its canonical form, we get its
solution in both ways. We choose the solutions of eq. (1.92) as ¢)* hence

Af = Ay® =0, (1.93)

16



here the first integrals are serving as a link between an ordinary differential equation
y™ = w and partial differential equation A f = 0.
A first integral is a non-constant function ¢(z,y,y/,...,y™ ) which is locally con-

stant on any solution of eq. (1.91)) such that

d¢ a¢ /a¢ " @¢ (n)
— —_— DY n = ]_. 4
= TV 9 +y oy +-t+y 5D 0, (1.94)

holds if y™ = w is substituted.

If we observe eq. (L1.93)), the solutions ¢* of ordinary differential equation are
satisfying the same criterion of first integrals given in eq. it means every solution
of Af = 0 is the first integral ¢ of ODE y™ = w(z,y,...,y"" V). Moreover, every
complete set of n functionally independent solutions ©¥“ corresponds to the general
solution y = y(z,v§) of the ordinary differential equation that can be obtained by

eliminating all derivatives of y from the system [3]

Y@y, oy Y) = 9 (1.95)

Example

Consider the differential equation
v +y=0, (1.96)

it implies
"

y' = —y=w(z,y,y). (1.97)

The corresponding partial differential equation is given as

0 0 0
A = —_— /— —_— _— — 1

where 3y = —y from eq. ([1.97)) is substituted.

We solve it by using method of characteristics and obtained the two solutions such as
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Pt =yt 4y (1.99)
Y? = x — arctan 5 (1.100)

Thus by using eq. (1.99) and eq. (1.100)) we write general solution of eq. ((1.97) as
y = /Ul sin(z — ¢?). (1.101)
Now we can easily see that the linear operator A and the generator X are on same
lines. If we say that X is a symmetry of ordinary differential equation ([1.91)) we must
investigate that which criterion must be fulfilled by X to serve as the symmetry of
partial differential equation A f = 0. As symmetry maps solutions to solutions so X

is also a solution.

In terms of commutator we consider
X, Alyp* = (XA — AX)y,
(1.102)
= X(Ay®) — A(Xy*) = 0.
Since Ay® and [X, A]J)® have the same solutions therefore A and [X, A] are propor-

tional that means

X, Al =A@,y ¢/, .,y )A, (1.103)

If we put values of X and A and solve the commutator and then after comparing

coefficients of 9,, 0, and 9, we get

0
— | —AE= A 1.104
(5)-ac=n (1.104)
9N Xy — A=\ (1.105)
oy )’ 7 '
0
— ) Xy — A = Ny 1.106
(09’) ! ! ! (1100
Putting values from eq. ([1.104)) into eq. (1.105]) and eq. (1.106) we get
dn dg
M) — Ap—f/Ae = 9% 1.107
U n—yAL= o=y (1.107)
dn™® d¢
@ — ApD) _ AL — _ 8 1.108
n N =y A= —— —y' 2 (1.108)
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The prolongations of eta have same formulas so both definitions of symmetry are equiv-

alent. Hence the symmetry condition [X, A] = AA in terms of linear operator A holds.

1.4 Lie Groups and Lie Algebras of Infinitesimal gen-
erators

Before going into details of Lie algebra we define Lie group.

Lie group

A group that is also a finite-dimensional real smooth manifold, in which the group op-
erations of multiplication and inversion are smooth maps, is known to be a Lie group.
Lie groups were introduced by a Norwegian mathematician Sophus Lie who formulated
the theory of continuous transformation groups in order to model the continuous sym-
metries.

To every Lie group one can associate a Lie algebra which completely determine the
local structure of the Lie group. We define the Lie algebra as

Lie Algebra

Lie algebra L is a vector space defined on a field F together with an operation called

the Lie bracket satisfying the properties
1. Bilinearity: [X, fY 4+ ¢Z] = [X, fY] + [X,9Z], VX, Y,Z € L and f,g € F.
2. Skew symmetry: [X,Y]|=-[Y,X], VX, Y,Z € L.
3. Jaccobi identity: [[X,Y], Z|+[[Z, X], Y]+][[Z, Y], X], vV X,Y,Z € L.

From property of skew-symmetry we can say [X,X] = 0 whereas the Lie algebra is
called abelian when [X,Y] = 0.
As an example, the linearly independent basic generators listed in eq. (1.90)), obtained

from general infinitesimal generator of one-parameter Lie group of point symmetries of
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y" +y =0 form a Lie algebra with a commutator defined as
X, Y] =XY - YX, (1.109)

and the commutators for eq. (1.90) are found as

(X4, Xo] =0, X1, X3] = — X5 + X5,
(X1, X4] = 3X7 + X, X1, X5] = X,
(X1, Xg] = =X, Xy, X7 = =Xy,
(X1, Xg] = X, [X2, X3] = X — 3X7,
[X27X4} = _X8 - X57 {X27 X5] = Xla
(X2, Xg] = X, (X2, X7] = =X,
(X2, Xs] = =X, [X3,X4] =0,
(1.110)
(X3, X5] = X4, (X3, Xg] = =X,
(X3, X7] = X, (X3, Xs] = X4,
(X4, X5] = X, (X4, Xs] = Xy,
(X4, X7] = Xy, (X4, Xg] = =X,
X5, X] = 2Xs, (X5, X7] =0,
X5, Xs] = 2Xs, [X6, X7] =0,
(X, Xs] = —2X, (X7, Xs] = 0.

The commutator of two symmetry generators again produce a symmetry. Also, com-
mutators of X, determine the commutators of the extensions. The commutators of
infinitesimal generators of the group of symmetries of heat equation can be found in
[13]. Here we must observe that we express the commutators of symmetry generators
as a linear combination of basic generators such as C7X,,. Here C7 are called structure
constants. In general

X, Ys] = C1X,. (1.111)
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In next example we find the structure constants of 3-parameter Lie group of rotations
and translations.
Example

The generators of the Lie algebra corresponding to 3 parameters ¢, are

The corresponding Lie algebra is

X, Xo] =0, (1.113)
0
(X1, X3] = B = Xy = C%X,, (1.114)
Y
0
(X, X3] = —5 = —X; = 03, X. (1.115)
The structure constants are C; = 1 and Cj; = —1.

Structure constants do not change under coordinate transformations and due to skew

symmetric property of Lie algebra C7, = —Cj,,.

1.5 Systems Involving Lagrangians

The classical mechanics mostly comprises of systems of second order differential equa-
tions. The notation that is frequently used in classical mechanics is ¢ = dg¢®/dt where
time ¢ is independent variable and generalized coordinates ¢® are dependent variables.

Using this notation the system of second order differential equations can be written as
§* = w(t,q",¢"), a,B=1,...,N, (1.116)

which is equivalent to the linear partial differential equation

0 0 0
I R T N
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Asin case of ordinary differential equations the solutions ¢* of eq. (1.117]) translate into
the 2N first integrals of eq. (1.116]) [3,/4]. Considering the infinitesimal transformation

of time and generalized coordinates

t=t+ef(t,q,q), ¢ =q"+en*(t,q,9), (1.118)
the generator and its prolongation in this coordinates can be written as

0 0
X = S(tv Q’B)a + na(ta Q/B)a_qON

. 5 0 b 0 D (1.119)
= &(t — a(t i a(t By —
X5 =85, +n°(tq )8qa+<“ (t.q”,q )aqw
where (“ is given by
dn® ., d§
“ = —¢*—. 1.12
¢ a1 (1.120)

By recursion, successive prolongations X[ of X can be obtained (one can write X for
the prolongations as well if convenient) and symmetries of eq. can be deduced
if

[X,A] = \A, (1.121)
holds.
Once the symmetries are known then the first integrals can be found corresponding to
each symmetry using Lagrangian of the system. Whereas the Lagrangian L is the

difference of kinetic energy 7" and potential energy V defined as
L(t, ¢’ "y =T V. (1.122)

This correspondence between symmetries and first integrals cannot be established for
the number of symmetries less than 2N but it is possible if the system is derivable from

an action [3]

ty
s:/ L(t,¢% ¢%)dt. (1.123)
t

i

Let us take a quick overview of Noether symmetries and Noether theorem to establish

a relationship between Noether symmetries and the first integrals.
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1.5.1 The Noether Symmetries

A Noether symmetry is the Lie point transformation under which the action S is

invariant up to a divergence term g()

N L da(t. g
S:S+g(5):S+/ %dt. (1.124)
t;

The expressions in eq. ([1.123)) and eq. ({1.124]) give the same Euler Lagrange equations

d OL oL

_— — — = 1.125
dt 0¢*  Oq“ ( )

Transformations for which these Euler Lagrange equations are invariant are called

invariant transformations. Details can be read in [16].

We consider the prolonged generator given by eq. (1.119)) and write eq. (1.123]) as

. AN PR
S :/ Lt 6%, 60)di + elet L — €T,
t;

:/f{(L(t,qa,qa)+5XL+...)(dt+5%dt+...)} +e[&ty L — £t L),
t;

:/tf {dee (XL+L%) dt+...} +5{§th—§tiL},
b (1.126)

= / ! [L + 5/(XL -+ LA£) + .. :| dt +ée {fth(tf,qu,q'f) — §tZL(t2,qZ,qz)} y

where % is replaced by operator A. We can manipulate eq. ((1.126)) by using

. ) b d
G = c[etLity.andp) - ctltnand)] = [ 5 (1.127)

t;
so that ([1.126]) reads

. t dg ty t dg
S=S —dt = Ldt —dt
+€/t,- 7 L +€/t,- TR

ty ty
:/ Ldt + 5/ (Ag)dt,
t; t;

comparing first order terms of ¢ we obtain

(1.128)

XL+ LA = Ag(t,q%). (1.129)
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This is the criterion for X to be a Noether symmetry if there exists a ¢ that satisfies
eq. (1.129). The Noether symmetries lead to variational symmetries when g = 0.
After some algebra eq. leads to Noether’s theorem [17]-[19].

Noether’s Theorem

We may write eq. as

oL 8L
5_

oL .
— L=q. 1.1
"5q +<8q.+5 i (1.130)

here eq. (1.119) replaced X and A replaced d/dt. Manipulating eq. ((1.130]) as [6]

oL . oL . OL
0=9-¢5 - L—na——('—cﬁ)—,
d oL 0L oL oL\ .OL
ZE(Q—SL)Jri(a—quqaq)an( 8q)_ndt(8q)_n8_q’ (1.131)
d oL
== [g EL—(n—E&d) o ]

here we used Euler Lagrange equation ({1.125]) in place of coefficient of 7.

Hence the first integral is obtained as
L OL
o=g- e+ -], (1132)

and the statement of Noether’s theorem says [17]:

If the Lie derivative £ of a Lagrangian vanishes

LxL(t,q" ¢") = XL(t,q", ¢") = 0, (1.133)
along the generator
0
X = 1.134
581& T G (1.134)

then X is the symmetry of the action and to each symmetry there exists a corresponding

first integral defined by

oL
o(t,q,¢%) =9g— |EL+ (" — ¢ 5)&] : (1.135)
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and ¢ is a function such that

oL oL 8L :
: a7 1.1

where (¢ = n® — q‘aé . The converse of Noether’s theorem is possible but the level of
computation is not easy as in that case our system also contain the function g. The
computation of first integrals in case of Noether symmetries can be far different from
computation of first integrals in case of Lie symmetries.
However, the extension of the Noether theorem for first order Lagrangian presented
above, can be formulated in order to solve the systems of higher order. If we consider
an nth-order Lagrangian, L(t,q, ¢, ...,q"™), that depends on one independent variable
and one dependent variable, then we can write the Euler-Lagrange equation as

n o a

;(—1)“2—& (%) : ¢'@ = %, (1.137)

then X = £0, + n0, is the Noether symmetry if there exists a function g such that

g—€L+£ Z ( aL)), (1.138)

where
=yl (O‘) g et1=B)e®) (1.139)
B=1 b
The corresponding first integral can be written as
n—1ln—1l—-a
dﬁ oL
¢:g— §L+ Z ) dtﬁ (W)] . (1.140)
a=0 B=0

Now considering the case of an nth-order Lagrangian with one independent variable
and m dependent variables, L(t,qa,qa,...,qé )) a = d"q,/dt", a = 1,...,m, we

write the Euler-Lagrange equation as

< d’ [ 0L
B —
E (—1) 77 ( (ﬁ)) : a=1,...,m. (1.141)

5=0 94a
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then X = £0,+) 1" | N0y, is said to be the Noether symmetry if there exists a function
g such that

g—§L+£ +ZZ 1)°¢] (;é) (1.142)

a=1 =0
where

Cﬂ_n(ﬁ) ii( ) (B+1- 7)5(7 (1'143)

The corresponding first integral is given as

n—1—vy

~ S d® oL
¢p=g— §L+ZZ S (- _qa@(wdtﬁ (WH (1.144)

a=1~v=0 B=0

Finally, we mention a notable property [I8] that enforces the relationship between a
Noether symmetry X and its corresponding first integral ¢: it can be proved that ¢ is

itself a first order invariant of X, i.e.
XW(g) = 0. (1.145)

Following examples elaborate the method of finding Noether symmetries and their
corresponding first integrals.
Example

Consider a simple Lagrangian

1
L= iy’2 (1.146)
The criterion given in eq. (|1.130)) now reads
/ / 1 /2 ]' /3 /
(e = Y'€a) Y + 59 E€a + 565" = 9 + Y 9,y (1.147)
Comparing powers of 3/ yields the determining equations
(y/o) : g,l‘ = 07
") 10— gy =0,
(1.148)

1

(y,Q) : 55,36 — Nz = 0:
1

(3//3) : §§,y = 0.
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Solving this system of determining equations, we obtain

§=a(z),
]‘ /
n= §a’1y + a2<(L’>,
1, (1.149)
9=1% + ayy + az(w),
1
0= Za'l"Q + ayy + as.
Now putting value of g in g, and comparing yields values of a1, as, a3
a; = €1 + 4T + C5JZ‘2,
as = ¢ + c3, (1.150)

as = Cg.
Hence the infinitesimal generator for Noether symmetries corresponding to the La-

grangian given by eq. (1.146]) is obtained as

0 1 0
X =|c1 + cax + c53? | =— + | =cay + c5xy + co + c3x| —. (1.151)
ox 2 dy

For each ¢, = 0 in eq. ([1.151)) we get five Noether symmetries. az being a constant, is

neglected. These symmetries and their corresponding first integrals are

0 1
X = — = ——y”
1 a$ Cbl 2?/ )
0
Xy =— = —y
2 ay ¢2 v,
X 0 ) ' 1.152
= r— = — X
3 8y 3 Yy Yy, ( . )
o 1 0 1
X — . T - __ / _ /
1=t Y, ¢1=—5y'(y —ay),
0 0 1
X5 = x2% + xya—y b5 = §x2y’2 —zyy.
These five Noether symmetries form a Lie algebra
[Xl,Xg} — 0, [Xl,Xg] — XQ,
(X1, X4] =X, (X1, X5] = 2X4,
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1

[X27 X3] = 07 [X27 X4] - §X27

1
[X2,X5] = X3, [X3,X4] = —§X3, (1'153)
[X37 X5] - 07 [X47 X5] = XS'

The equation of motion corresponding to this Lagrangian admits three other symme-
tries but they are not Noether symmetries. Noether symmetries for other systems can
be studied in [21]-[24].

Example

Now consider a higher order Lagrangian

1

L= §y”2. (1.154)
The E-L equation for the Lagrangian is
y™ = 0. (1.155)

Applying Noether criterion on the above Lagrangian produce

|:77,.1’.’L‘ + 2?/77,xy + y/QT/,yy + ?J”W,y - 2y” (é.,x + ylf,y)
1
- y/ (é,zx + 2y/£,:py + y/2€,yy + yllf,y) ]y" + 5 |:£7$ + y/é:yi| y//2 (1156)
=0at y/g,y + y//g,y’-

Next by comparing the coefficients of powers of 3y’ we obtain the system of determining

equations

19z = 0.

19y =0,

Ny — _g,x = 07

)

)

(y”) PNzt Qy/n,xy + y/2n,yy - y/f,xm — 0y = 0,
3

)

2

) )

€y =
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These determining equations yield

6 = (.T),
3
=5y +az(z),
3 (1.157)
g=dly®+ (561’1”@/ + a’g’) y +as(z,y),
0=9'gy+ gu,
from these equations ai, as, az can be deduced
a; = ¢ + cgx + C7I‘27
Qg = C4 + C50 + ngz + 071’3,
(1.158)
az = —ay'y + ag,
ay = Cg.
a4 is a constant so we neglect it and the infinitesimal generator is obtained as
2 a 3 2 3 a
X =|c; + cer + crx E + 5 CoY + 3craxy + ¢ + c3x + cqx” + csx e (1.159)
L )

and for each ¢ in eq. (1.159)) we get seven Noether symmetries. These symmetries

and their corresponding first integrals are

9 1
X, = — — ol o2
1= 5 hr=—yy +5y,
0
X = 62 =y,
dy
9 " 7
ngl'— ¢3:xy -y,
dy
2 9 2,1 " /
X4=xa— by ="y —2xy" + 2zy,
Y
3 9 3, M2, 1 !
Xy =1"5" ¢s = x7y "y + 6xy — 6y,
o 3 0 1 1 3
Xg = % + §ya_y - —xy’y + §l‘y//2 i §y/y// + §yy/u,
X, = $2£ + 3$y£ b7 = x(3y _ xy/>y/// _ (33/ N xy' . 11'23/”)3/” + 23//2

(1.160)
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and the Lie algebra of these symmetry generators is found as

(X1, X5 =0,

X1, Xy = 2X3,

(X1, Xe] = X,

(X, X3] =0,

(X2, X5] =0,

(X2, X7] = 3Xs,

(X3, X5] =0,

(X3, X7] = 2Xy,

X4, Xe] = 5%,
3

[X57 X()] - _§X57

X, X7] = X.

(X1, X3] = X,
(X1, X5] = 3X4,
(X1, X7] = 2X,
(X, X4] =0,
(X, X¢] = gxm
[X3,X4] =0,
X5, Xo] = 2Xs,
[X4,X5] =0,
X4, X7] = X5,
X5, X7] =0,

(1.161)

If we find Lie point symmetries for the same Lagrangian we get Xg = ya% in addition

to the seven Noether symmetries presented in eq. (1.160). This shows the difference

of Lie point symmetries and Noether point symmetries.

If we put the the required values in eq. (|1.140]) we get the expression for first integrals

1
p=g— 553/’2 + =y Yy —(n —y'E—yE)y"

Hence we can find function g for each Noether symmetry which are

g1 =0,

g2 =0,

93 =0,

ga = 2zy/,

g5 = 6y’ — 6y,
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96:07

g7 = 2y".
At the end of this subsection, we present the Noether symmetries of a Lagrangian for

the system of higher dimension [19).
Example

Consider the Lagrangian of higher order

Lz g2, (1.164)

L(t7 x? y? i‘? y) = 2

The Euler-Lagrange equations given by eq. (1.141]) for the said Lagrangian are
=0, y = 0. (1.165)
The Noether criterion given by eq. ([1.142)) for Lagrangian written in eq. (|1.164)) gives

ny+anh, +ynl, — @ (§ + il + yw] i+ [ni + i’ +

(1.166)
- y (f,t + jjf,x + yg,y):| y = g,t + :tg,x + ygy'
Comparing powers of  and y we get system of partial differential equations
(constant) : g, = 0,
($) : 77,115 — Gz = 07
() 13— 94 =0,
(132) : 7],137 - S,t = 07
(y2) : ni[ - g,t = 07
(1.167)
(CC?)) : _571‘ - 07
(y3) : _g,y - 07
(fL’y) : n}y + n,x - 07
(&%) : =€y =0,
($y2) : _£,$ = 07
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From these determining equations we obtain

§= al(t)v

n' = diz + asy + ag(t),

2

1

n® = —asx + diy + as(t),

g = 5(101132 + a5:€y + agr + a7(y7 t)7

..., . ..o .
0= =aiz" + dgx + =aiy” + dyy + as(t).

2

and by solving eq. (|1.168)) we deduce

2

a, =+ Cgt + Cgt2,

as = c7 + Cgt,

a5 = C4,

ag = ¢5 + cgt.

Hence, we write general infinitesimal generator as

0 0
[cl + cot + cth} —+ l:CgiL' 4 2c3tx 4+ cuy + c5 + c6t] —

ot

ox

+ [ — 4T+ coy + 2c3ty + e + cgtl

(1.168)

(1.169)

(1.170)

From eq. ([{L.170)), corresponding to each ¢, we found eight Noether symmetries for the

Lagrangian given by eq. (1.164))

X, :t2%+2t (:c%—l—y%) ,
X7:a—y,

X2_t%+x8_m+y8 ;
X4=Z/%—l‘a%,
xg_ta%.

Here, first three symmetry generators form a Lie algebra

[Xla XQ] - X17

X1, X3] = 2Xo,
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and the Lie algebra obtained from last four symmetry generators is

[X57 XG] = 07 [X57X7] = 07
[XE); XS] =0, [X67X7] =0, (1173)
[Xﬁa XS] = 07 [X77X8] = 0.

1.5.2 Relation Between Lie and Noether Symmetries

Now we have gained enough knowledge about Lie point symmetries and Noether point
symmetries that we can summarize how they are related. We quickly recall the defi-
nitions of Lie point symmetries and Noether symmetries. A Lie point symmetry of an
ordinary differential equation (ODE) is a point transformation in the space of variables
which preserves the set of solutions of the ODE. In another words Lie point symmetry
is an invariance of the differential equations of motion under the point transformations
however a Noether point symmetry can be defined as an invariance of action integral
under the infinitesimal transformation of time t and generalized coordinates ¢“. From
all the previous discussion, we know that Noether symmetries are the subset of Lie
symmetries and hence after finding the Lie symmetries for the corresponding Fuler
Lagrange equation, one can check if these specific Lie symmetries satisfy the Noether
symmetry criterion given by eq. or not, and if they do so then they are also
Noether symmetries .

Now we show how one can construct a Lagrangian to find Noether symmetries by util-
ising the given symmetry and its corresponding first integral. To do this we use the
relationship of a Lagrangian with the symmetry and its corresponding first integral.
According to Noether, to every symmetry we can associate a first integral given by
eq. . This equation relates first integral ¢, symmetry X, boundary term g and

Lagrangian L [20]. If we consider the equation of motion

i =0. (1.174)
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We can find the Lie symmetries for eq. (1.174]) and also their first integrals using the

method for Lie point symmetry. The symmetries and first integrals are

0
Xl_a7 o1 =q
0
X_ = — =
0
X = 1{— = Y —
5 tat, ¢3 =1tG—q
0 )
X4=ta—q> Gy =1G—q
% _p? 0 b i (1.175)
5 =V 5 qaq’ 5 =1 — @
0 tqg—q
Xs = qg— [
6 q8t7 ¢6 q
0 ta —
X7:qa_7 ¢7=u
q q
0 0 tg—q
Xg = tqg— 22 = -

The Lie algebras corresponding to the symmetry generators given in eq. (1.175]) are

(X1, Xo] =0, Xy, X3] = X,

(X1, Xy = Xo, (X1, X5 = 2X3 + X7,
(X1, X6 =0, [X1,X7] =0,

(X1, Xg] = X, (X, X3] =0,

(X5, X4] =0, Xy, X5] = Xy,

(X, X = X4, (X, X7] = Xo, (1.176)
(X, Xs] = X3 + 2X7, X3, Xy = Xy,

(X3, X5] = X, (X3, Xg] = =X,
[X3,X;] =0, (X3, Xg] =0,

(X4, X5] =0, (X4, Xg] = X3 — X7,
(X4, X7] = Xy, (X4, Xg] = X5,
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[X57X6] - _X87
(X5, Xg] =0,

X6, Xs] =0,

(X5, X7] =0,
[X67X7} - _XG;
X7, Xg] = Xs.

If we consider the Lagrangian for the equation (1.174)

L= _q27

: (1.177)

then we can find Noether symmetries for this Lagrangian. The Noether symmetries

and the corresponding first integrals for this Lagrangian are

0 1
N, = — S
1 at7 (le 2q
0
Ny, = — = —
2 aq? ¢N2 q
0 )
0 0
N, =t>— — = (q — tq)?
4 athaq’ N, = (g — 1q)
0 0
N: = tg— + ¢°— _=q(q — tq).
5= 105, 4 9 Ong = d(q — tg)

The coefficients of X; and X, are the two solutions of eq. so they are called
solution symmetries. One can quickly observe that the three Noether symmetries as
well as their corresponding integrals are not present in contrast of Lie point symmetries
Xg, X7, Xg. These are actually the Lie point symmetries which are not Noether

symmetries (non Noetherian symmetries).

If we solve eq. ([1.136)) for Xg, by putting all required values, assuming g = 0, we get

partial differential equation
oL  t4g—q

q—=- = . )
9q q
solving this and using eq. ({1.174]) we deduce a Lagrangian corresponding to X4

(1.179)

o
L=1m?-L 0.

1.180
i (1.180)
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Similarly for X7 eq. (1.136]) becomes

L OL tq—q
gL + (—qj)— = ——, 1.181
(~ai) 57 =~ (1181)
solving this we get the Lagrangian corresponding to Xy
(ti—a)? ,
L=—F— . 1.182
20l + ¢s(q) ( )
For Xg eq. (1.136]) reads
oL tq—q
qtL+ (¢ — qt)— = ———, 1.183
(¢ - a5 =~ (1183)
and follows from which the Lagrangian for Xg
: 1 : . slg
L= (- )| - 0) ~ @ + 2 |. (1.184)

where s is an arbitrary function. Hence, we can say that these three symmetries

(Xg, X7, Xg) are the Noether symmetries for these particular Lagrangians given by

equations (1.180), (1.182)), (1.184). It means if we consider appropriate Lagrangian the

symmetries can fulfil the criterion for Noether symmetries establishing the fact that
all the symmetries of a given ODE for one specifically given Lagrangian need not to
be Noether symmetries. But by using eq. for the obtained Lie symmetry and
its corresponding first integral one can obviously find an appropriate Lagrangian for
which the symmetry is a Noether symmetry. Another symmetry of interest is the Mei

symmetry.

1.5.3 The Mei symmetries

In 2000, F.X. Mei proposed a new kind of symmetry called as Mei symmetry or the
form invariance [25]. Mei symmetry can be defined as the form invariance of differential
equations of motion when the transformed functions replace dynamical functions (such

as Lagrangian, Birkhoffian, Hamiltonian etc.) under the infinitesimal transformations.
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Also by Noether’s theorem we know that symmetries lead to the first integrals. This is
also true for Mei symmetries as they also provide first integrals known as Mei conserved
quantities. The Lie symmetry method and the Noether symmetry method have grown
so much over time and been used in handling various problems. On the other hand,
so much work and research on the Mei symmetries is still undone and they are still
on their way to be applied on various problems. Our main purpose is to find Mei
symmetries as well as Noether symmetries for a particular Lagrangian later presented
in Section 2.

First we should built the definition and criterion of Mei symmetries to be able to find
them.

Suppose we have a Lagrangian
L= L{t,¢",q%). (1.185)

Consider the one-parameter group of infinitesimal transformations

t=t+ek(t,q%),

(1.186)
" = q* +en’(t,q”),
where a,f =1,...,n and € € R. The corresponding infinitesimal generator is
0 0
X=¢—+n"—. 1.187
it g (1.187)

The Lagrangian from eq. ([1.185) under the transformations given by eq. (|1.186))

becomes
L = L(t,¢", ¢,

o | g 1.188
ZL(tJrsﬁ,qa—ken“q 77)‘ ( )

’ 1+6£

Taylor series expansion of eq. ([1.188)) about € = 0 gives

~

L=L(tq* ¢) +eXV (L) + 0, (1.189)
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where

0 0 : 0
XV == 4= 4+ (7* — £4%) = 1.190
57 T aqa+(” &4 )aq'a’ (1.190)
is the first prolongation of infinitesimal generator X.
Writing Euler Lagrange equation as
E.(L) =0, (1.191)
where E,, is the Euler operator
d 0 0
E.=—-——. 1.192
dt g™  O0q“ ( )

If the eq. (|1.191) remains the same when the new Lagrangian L from eq. (T.189) is

substituted in place of Lagrangian L, i.e.
E.(L) =0, (1.193)

then this invariance is known as the Mei symmetry of Euler Lagrange equation. Hence
we can present the criterion to find Mei symmetries as [26]-|28]
Criterion

If the infinitesimals ¢ and 7 satisfy
E.[X"(L)] =0, a=1,...n, (1.194)

then the corresponding invariance is the Mei symmetry for the Lagrangian in eq.
(1.185)).

Before we use this criterion to find Mei symmetries we should seek the relation between
Mei symmetries and Noether symmetries as it is of great significance in finding Mei

conserved quantities and Noether conserved quantities.

1.5.4 Relation Between Noether and Mei Symmetries

Firstly we present an important theorem [26].

Theorem
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If the infinitesimals £ and n® of the Mei symmetry corresponding to the Lagrangian

given by eq. (L.185)) and the boundary function g(t, ¢%, ¢*) admits the structural equa-

tion
) XD (7, .
XD(L)E +xXW (X“)(L)) + z(t)aa—()q'ag +g=0, (1.195)
qOé
then the Mei symmetry can lead to new conserved quantity
oXW(L) oxXM (L) oXW(L)

= = e (X)) - =g — () Y . 1.196
o= s (x0) - g 0P g s

This theorem help us build a relation between Noether and Mei symmetries. If we
consider integral functional S(q)

S(g) = / “XO(L) (Lt ¢ (1), 4 (1)) dt, (1.197)

1
admitting boundary conditions ¢*(t) |i=o= ¢*(a) and ¢*(t) |i=p= ¢*(b) where a =
1,...,n.

Euler Lagrange equations for eq. can be deduced that has the same form as eq.
(L.194). Also we know that Noether symmetry refers to invariance of action integral
so if

S(¢) = S(q), (1.198)

remains true under infinitesimal transformations given by eq. ([1.186)) then the invari-
ance is known as Noether symmetry. For £ and 7 there exists a boundary function

g(t,q*, 4%) such that

oxXW(r) . oxW(r) . XMLy, .. ...
R A e Ul B (1.199)
+XWLé=—g.

We obtain same equation as eq. and it is known as Noether identity for problem
given by eq. (L.197). From this we can deduce Noether first integral or Noether
conserved quantity which is same as eq. . For detailed discussion one may refer
to [29].
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Chapter 2

The Meil Symmetries for the
Lagrangian of Schwarzschild Metric

Before finding the Mei symmetries for Schwarzschild metric we should have some knowl-

edge about Schwarzchild metric.

2.1 The Schwarzschild Metric

In 1916, a German physicist Karl Schwarzschild gave the fist exact solution of Ein-
stein field equations of general relativity which is known as Schwarzschild metric or
Schwarzchild solution. It actually depicts the gravitational field outside a spherical
mass, provided that the angular momentum of the mass, the electric charge of the
mass and the universal cosmological constant are all zero.

In the Schwarzschild coordinates (¢, 7,0, ¢), with the signature convention (—, +, +, +),
Schwarzschild metric has the form

-1
i (1) s (=) ), @0

r T

where 7 is the Schwarzschild radius of the massive body defined as ry = 26;—2M, G is
gravitational constant, ¢ is the speed of light, ¢ is the time coordinate, r is the radial

coordinate, 6 is the colatitude of a point on 2-sphere, ¢ is the longitude of a point on
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2-sphere.

The Schwarzschild solution is considered to be the most general static and spherically
symmetric solution of the Einstein field equations. Being static metric corresponds
to the time independence of the metric and the invariance of line element under the
transformation of time like coordinates, say 2 — —a°. While spherically symmetric
means metric has no preferable angular direction say, dx® — —dx® is possible without
changing the form of metric, where z® are spatial coordinates. One may study [30] to

have some in-depth knowledge about Schwarzschild solution.

2.2 Review of the Noether Symmetries for the La-
grangian of Schwarzschild Metric

Ibrar Hussain, Fazal M. Mahomed and Asghar Qadir. [31]:

Writing the Lagrangian for Schwarzschild metric by
L=— (1 —~ 277") 2 4 (1 —~ 277") h %+ 1207 + 1% sin® 7. (2.1)
The criterion for Noether symmetries is given as
X(L) + (AEL = Ag, (2.2)

where X! = £0s 4+ ¢ + (7’70‘ — q'%') 0¢“ is the first extended generator, A = 0s +
G*0q“ is a linear operator and L is the Lagrangian.

By putting the required values in eq. (2.2) we get

2mi? om\ : :
772 { _oemim 9 (1 _ _m) mr + 2r6? + 2r sin® 9¢2] 4 2773r2 sin @ cos §¢>

72 r 2
A e b
+ [7']4 — gzﬁé“} [27’2 sin? 9¢} +£, [ _ (1 _ QTm) 24 (1 _ QTm)l i2 422

: , ) : om\ ! : .
+ r? sin? 9¢2] +t&, [ — (1 — Tm) 2+ (1 — Tm) 72+ r20% + 12 sin® 9¢21

+ [ — 6€] [2r°4]
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+7Ey

- [g
- [g

-1
) 72 + 1202 + r? sin? 9@32]

()

-1
+ 9.579 [ — <1 — 2_m) 2 + (1 — 2_m> 72 4+ 120% + r? sin? 6(&2] (2.3)

r r
- 2m om\ ! . -
+ gbg(b |: — (]_ — T) t'2 + (1 — T) 7;'2 + 7"202 + T2 SiIl2 0¢2:|

= g+ 19,479, + 090+ 096
After solving eq. (2.3) and comparing powers of £, 7, 0, ¢ following determining equa-

tions are obtained

(constant) : g5 =0, (2.4a)
: 2
@:2 (1= ) okt g =0, (2.40)
o\ ~!
(7) : 2 <1 - 7m> =g, =0, (2.4c)
(0) : 270", — g = 0, (2.4d)
(¢) : 2r? sin? o’ — g6 =0, (2.4e)
. 2 2 2
(#) 2(1——m)n§+—7§n2—(1—7m>5s=o, (2.4f)
. om\ " m
52 (1-20) oo =0, (2.45)
(6%) : 20 + 2y — r€ = 0, (2.4h)
$%) 207 + 2r cot O + 2rnt, —ré, =0, 2.4i
@ :
. om\ >
@) (1-2) = o, 2.4
i) : (1-— zm nk —r*nd =0, 2.4k
U 0
- 2
tg): | 1— il nt, —r?sin®On = 0, 2.41
r) .
) om\ !
(70) : (1 - Tm) ny+ il =0, (2.4m)
. om\
(7o) : (1 — Tm) %, + r°sin® 0y’ = 0, (2.4n)
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(09) : 0, + sin® O = 0, (2.40)
(#%): € =0, (2.4p)
(i) : & = 0, (2.4q)
(6°): €9 =0, (2.4r)
(¢°) : €6 =0, (2.4s)

Now we solve this system of partial differential equations to get values of £, nt, n? n®, n'.

From the equations (2.4p)-(2.4s) we can easily deduce that ¢ is a function of s only i.e

§=¢(s). (2.5)
Differentiating eq. (2.4b|) w.r.t s and using eq. yields

M5 = 0. (2.6)
Differentiating eq. (2.4c) w.r.t s and using eq. yields

Mys = 0. (2.7)
Differentiating eq. w.r.t s and using eq. yields

nl, =0. (2.8)
Differentiating eq. (2.4¢)) w.r.t s and using eq. yields

nh, = 0. (2.9)
Now by taking derivative of eq. two times w.r.t s we get

£sss = 0, (2.10)
from which, by using eq. , we can deduce

£ =18 + 28 + c3, (2.11)
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where ¢, are some arbitrary constants.

Now differentiating eq. (2.4b) w.r.t r gives
2m\ dm
g,tT - 2 ]' - n,sr + _27]757
r T

and differentiating eq. (2.4c) w.r.t ¢ gives

om\ "
g,tr=2(1—7> M

By comparing eq. (2.12) and eq. (2.13) we obtain

om\ ! 2m 4dm
2(1-—) nit+2(1——>n}sr+—2n,ﬁ=0.
r r r

By differentiating eq. (2.4j)) w.r.t s and manipulating we get

2 om\ !
70 9 70 b

Putting eq. (2.15)) in eq. (2.14) produce

om\ o M 4
l—— 77.915—i__2 SZO'
k) 71 k)

r

If we differentiate eq. (2.4b) w.r.t 6, it reads

2m
g0 = —2 <1 - T) Ms-

and if we differentiate eq. (2.4d)) w.r.t ¢, we get
g0 = 2r°n>,.
By comparing eq. (2.17) and eq. (2.18) we obtain
2m
() gy
70 K I
If we differentiate eq. (2.4k) w.r.t s, it becomes

2m )
(1 - 7) N = 1215
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(2.15)
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(2.17)

(2.18)

(2.19)
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Substituting value of 7%, from eq. (2.20) into eq. (2.19) gives
77,39 =0.
Now differentiating eq. (2.4b)) w.r.t ¢ produce

2m
9o = — (1 - 7) ’7,1s¢'

and differentiating eq. w.r.t ¢ produce
Jtp = r? sin® 977745,5.
Equating eq. and eq. leads to
<1 — 27m> 77,1s¢ + 7% sin” Qnit = 0.

Also by differentiating eq. (2.4l) w.r.t s we get

: 2m
7% sin Qni,t = <1 - 7) 17718(25.

Substituting eq. (2.25)) into eq. (2.24)) yields

Differentiating eq. (2.4d)) w.r.t r gives
9r0 = 47“77,35 + 27“277;.

Equating eq. (2.27) and eq. (2.28)) produce

2m\ ' 2 2.3 3
I—— Nso =T Ngr — 2T77,5 =0.

r
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(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)



If we differentiate eq. (2.4m) w.r.t s, we get

Putting eq. (2.30)) into eq. (2.29), we obtain

om\ ! 9 3
- T Nesg — TN s = 07

The derivative of eq. (2.4c) w.r.t ¢ is

and derivative of eq. (2.4e|) w.r.t r is

Grp = 4r sin’ Qni + 2r? sin? Qnir.

Comparing both equations given by eq. (2.32) and eq. (2.33)) gives

r

om\ L
(1 — _m) 77?5¢ — 2rsin? Qni — r?sin? Hnir =0.

By taking derivative of eq. (2.4n)) w.r.t s, it becomes

2
(1 — _m) 7725¢ = —r?sin?on? .
/ra 2 )

Putting eq. (2.35)) into eq. (2.34) leads to

1—2—m - 2 _rsin?nt =0
r 77,s¢ 77,3_ .

Now differentiating eq. (2.4f) w.r.t s produce

2m 2my\ 2m
_277,s+2 l—— Net — I—— f,sszo-
r r r

Differentiating eq. (2.37) w.r.t 6 and using eq. (2.41)) eq. (2.21)) yields

nie - 0

46

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)



Similarly differentiating eq. (2.37) w.r.t ¢ and using eq. (2.4s) and eq. (2.26)) yields

Mo = 0.
Substituting eq. in eq. gives
n =0,
and substituting eq. in eq. gives
ni, =0.
If we differentiate eq. w.r.t s and utilise eq. (2.40), it becomes
27 — s =0,
and differentiating eq. w.r.t t and utilising eq. (2.4p]), we get
77,25t = 0.
If we put eq. in eq. it becomes

n. =0.

,S

Put value of 7%, from eq. (2.42)) and 7, from eq. (2.44)) in eq. (2.37) to get

which means ¢; in eq. (2.11) is zero and hence (2.11)) becomes

é': C2S + C3.

By means of eq. (2.45)), eq. (2.42) gives

77,25:0-
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(2.40)

(2.41)

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)



By putting equations (2.44)), (2.47) (2.40)) and (2.41)), in equations (2.4b)), (2.4c), (2.4d)

and (2.4¢€)), respectively, we obtain
g,t = Oa g,T = 07

go = 07 9.0 = 07

and by considering eq. (2.4a) we can say ¢ is only a constant so we write

g = Cy.

We differentiate eq. (2.4j) w.r.t r to get

2m\ m 4 om\ > 1 9
411—-— _277T+ l—— nrr_ntrzov
7/7 7/7 k) r I k)

and differentiate eq. (2.4g) w.r.t ¢ use eq. (2.4p) to get

9 om\ " m 9
T =\1==7] 27

Putting eq. (2.51)) in (2.50)) and manipulating gives

2m 2 r? 2m 3
4(1——) n}r+—(1——) 0k, —n% =0.
T m T

Comparing eq. (2.4j)) and (2.52)) to produce
2 3
<1 - —m> nh,+ ol = 0.
/,’h ’ /,’h )

Now we differentiate eq. (2.4k]) w.r.t r

also derivative of eq. (2.4j)) w.r.t 0 is

om\ ? 1 9
1- ) e = Mae-

By differentiating eq. (2.4m]) w.r.t ¢
2m ,
Mg == (1 - ) -
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(2.51)

(2.52)

(2.53)

(2.54)

(2.55)
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and putting back in eq. (2.55) yields

2m
7’277:3” = — (1 — T) n}rg. (2.57)

2 1 3
(1 - —m) nky = = (1 - —m) nh =0, (2.58)

Now taking derivative of eq. (2.41) w.r.t r gives

2 2
(1= 2 ) o 200t — arsiaon — sty 0. (259)

and the derivative of eq. (2.4)) w.r.t ¢ is

om\ >
(1_ ! ) nhy — 1 = 0. (2.60)
By differentiating eq. (2.4n)) w.r.t ¢
2 2mY\ 5 o 4
Nig=—(1- — ) risin o', (2.61)

and putting back into eq. (2.60) gives
2 020 4 2m\
resin®Ony, = — | 1— — ) e (2.62)

Using eq. (2.62) and equating with eq. (2.4l) produce

2m 1 3m
l—— |nty—=(1——)n,=0. 2.63
( , )U,m ” < . )77,¢> ( )
We differentiate eq. (2.58)) w.r.t r and get
2my\ 4 2m 4 1, 6m, 1 amy\ 4
(1 - 7) Moro + 37 r0 + 500 = 570~ 1- i 0. (2.64)

Differentiating eq. (2.53) w.r.t 6 and putting value of 7}, into eq. (2.64) gives

2 1
(1 - —m> Nho—— (1 - 6—m) 0y = 0. (2.65)



Comparing eq. (2.65) with eq. (2.58)) yields

Similarly taking derivative of eq. (2.63)) w.r.t r gives

Substituting eq. into eq. leads to
77?; =0.
and substituting eq. into eq. gives
nﬁ =0.
By taking derivative of eq. w.r.t t it becomes
2% + 2rny — 1€ = 0.
Now using eq. and eq. in results into
ni =0.
If we put into ([2.4]]), it reads into

m, = 0.

20

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)

(2.73)

(2.74)



Differentiating w.r.t 6 and using we obtain

ny =0, (2.75)
and differentiating w.r.t ¢ and using yields

n% = 0. (2.76)
Now substitution of into eq. reads into

15 =0, (2.77)
and substitution of into eq. reads into

1, = 0. (2.78)
By taking derivative of eq. w.r.t r and making use of (2.77)), we write

15 = 0. (2.79)
The Equations given by eq. , eq. , eq. (2.76)) and eq. result into

n® = cs, (2.80)

where c5 is an arbitrary constant.

Making use of eq. (2.46), eq. (2.79) and eq. (2.80) in eq. (2.4g) produce
2m 2m
(1 - —) e =——5cs, (2.81)
from which one can easily deduce
e =0, (2.82)
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By using eq. (2.82)) in (2.46]) we have
s =0, (2.84)

that means

£ =cs. (2.85)
Also by using in eq. we get

n* = 0. (2.86)
By making use of eq. and eq. in eq. we deduce

ny =0. (2.87)

Considering eq. (2.66), eq. (2.69)), eq. (2.74) and eq. (2.87)), we can write

n' = cs. (2.88)
Substituting eq. and eq. in eq. results into
ny = 0. (2.89)
Using eq. and eq. in eq. gives
cot On® + 1’y = 0. (2.90)
Now differentiating eq. w.r.t 6 and using eq. we get
2sin @ cos n43 o + sz’n29n7499 =0. (2.91)

By manipulation eq. (2.91) becomes

2 cot O’y + gy = 0. (2.92)
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By solving eq. (2.92)) gives

n* = ¢ cos ¢ cot @ — cg sin ¢ cot 6 + cq. (2.93)
Derivative of eq. w.r.t ¢ is
— ¢rsin g cot  — cgcos ¢ cot b, (2.94)
which upon substituting in eq. produce
n® = cysin ¢ + cg cos . (2.95)

where c7, cg and cy are also arbitrary constants.
Hence we have determined the values for infinitesimals &, n*, n?, 73, n* and the boundary
function g as

§=0Cn, n' = Cy, n’ =0,

n® = Cysin ¢ + Cy cos ¢,

(2.96)
n* = C5cos ¢ cot @ — Cysin ¢ cot 6 + Cs,

g = Cs,
where (Cy, Cy, C3,Cy, Cs, Cg) = (cs, cg, 7, 8, Co, €4) are some arbitrary constants. Using

the infinitesimals found in eq. (2.96) we can write the generator for Noether symmetries

as
XM = 6’12—1—0224—(03 sin ¢ + Cy cos ¢) 2+(C3 cos ¢ cot  — Cysin ¢ cot 0 + Cf) 9
0s ot 00 o¢’
(2.97)
and for Cy = 0, five Noether symmetries are obtained
0 0
X = — Xo=—
1 85’ 2 at)
X3 = singb% + cos ¢ cot 0%, Xy = Cosgb% — sin ¢ cot 9%, (2.98)
0
X5=—.
ey

33



Here, we can observe that the infinitesimals &, 1 along with the boundary function g
satisfy the equation ([1.199). This equation is obviously same as the structural equa-
tion on the basis of which the relationship of Noether symmetries and Mei
symmetries is established in section . These symmetries form the Lie algebra

(X1, X5 =0, (X, X3] =0,

(X1, X4] =0, (X1, X5 =0,

X, Xs] = 0, X, X4] = 0, (2.99)
(X, X5] =0, (X3, X4] = X5,

X, X5] = — X, X4, X5] = Xs.

2.3 Evaluation of the Mei Symmetries

First, we find the Euler Lagrange equations for the system. These equations are

o _gf1tm) mit (2.100)
N r r2’ '
—1 ) 12 . .
o (o2 mit ( 2m it 2m () 2mY e
r 72 r) r? r r
(2.101)
. 270 )
0 = —% + sin 0 cos g2, (2.102)
. 27 ..
5= 2 9ot b, (2.103)
r

According to [31], the Lie point symmetries of these Euler Lagrange equations (geodesic

equations) are

0 0

X = ER Xy = 9t
.0 0 0 ) 0

X3 = sin gb% + cos ¢ cot Qa—(b, X4 = cos gb% — sin ¢ cot 98_(,25’ (2.104)
0 0

X5 = a—gb, X6 = S@.
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There is one extra Lie symmetry obtained in addition to the Noether symmetries given
in the last section. Next we find the Mei symmetries for the same Lagrangian given in

eq. (2.1) to see how they come up in comparison to the Noether and Lie symmetries.

Considering the criterion for the Mei symmetries as

E.[XY(L)] = 0. (2.105)

Here L is the Lagrangian, whereas E, = %% — % is the Euler operator and

XM = ¢+ na% + (n® — qag)% is the first extended infinitesimal generator.

Applying first extended generator on the Lagrangian given in eq. (2.1) gives

X(l)(L) =7’ + 21°r% sin 6 cos 0¢°

72 r 72

- 2) el - 2)

+ [7'73 - 95] [2799] + [774 - gz'sg'] [er sin? egé] .

2mi? 2m\ 2 mi? : :
o _2<1__m> m—|—27‘92—i-27“sin29gb2

(2.106)
For ¢! =t eq. yields
d 0 0
[%E . &1 [X(l)(L)} —0. (2.107)

Using eq. (2.106) in eq. (2.107)), solving it further and after cancellation of some alike
terms the coefficients of ¢ , 7 ,9 , gb and their powers are compared to get system of

determining equations as follows

(constant) : n', =0, (2.108a)
i =S (122 (12 ) gm0, a0y
(7): nL, =0, (2.108c)
@) : nt,=0, (2.108d)
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- n}9¢ + cot 97}714) =0,

2m\ m
g’tt B <1 - _> _2§,r =0,
r r

2
o0 T (1 — _m) rsin’ 0¢,. + sin cos 0 5 = 0,
r

26

(2.108e)

(2.108f)
(2.108g)
(2.108h)

(2.1081)



1

(i70) + 00— ~€9 =0, (2.108w)
(19) 1 Ero— 65 =0, (2.108x)
(t0¢) : €9y — cot B4 =0, (2.108y)

where (,) represents partial derivative. Now, putting ¢*> = 7 in eq. (2.105]) yields

[ 49 9 (2.109)

oo o) X <o

Again using eq. (2.106)) in eq. (2.109)), further simplification along with the coefficients

of (t, 7, 0, ng) and their powers’ comparison yields some exactly similar determining

equations as the previously obtained subequations (2.108p])-(2.108y|) and the remaining

ones are listed as

(constant) :

nhs =0, (2.110a)
—1
m
(1-2) s k=0, (2.110b)
om\ " m 9 9
Ly ) (2.110¢)
T
om\ ',
1 - — 7’]99—7“778:0’ (2110(1)
,
om\ " 9n 4
L—— | ny—rsin“On =0, (2.110e)
r
om\ ' m? om\~' , m ., .m ,
2(1—T> gl (1——> M = 3" = 2737
I QTint — 0, (2.110f)
7/1 b
9 2 2 1
2(1__m) m_wm(l__m) m
,
2m\ m
- (1 - 7) 5773 + 15, — 48 =0, (2.110g)
2m\~'m 2 2 2 3
—2 === - L= == | 1gp + 1y = 2117
—n* =0, (2.110h)
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(rt) :

(7¢) :

(i) -

(t9) -

(09) -

2m\ 2m\ 7
-2 (1 — _m) ™ in? On? + (1 — _m) 772¢¢ + 7 sin® O
r r r ’ ’

om\ ! :
+ (1 _ _m> sin @ cos 97729 — sin? 6772 — 2rsin 6 cos 077‘5
/'/n b

— 2rsin? (97774(15 =0,

om\ 2 m om\ om\
r r T r

9 —1
—2 (1 . —m) € o — rsin?fnt =0,
om\ ! m
(1 - 7) M3 + 77277,19 — i} =0,

om\ ! m .
(1 — ) 77,2t¢ + ﬁn}d, — rsin® ant =0,

Next putting ¢> = 0 in eq. ([2.105)), it becomes

(5 &) ow) -

equations ((2.108p))-(2.108y])) as written above. The left out equations are

(constant) : 77,?;5 =0,

(t) : n,?;t =0,

28

(2.110i)

(2.110j)

(2.110K)

(2.1101)
(2.110m)

(2.110n)

2m -1
2 2 3 .2 4
—11—-— tOn<, — - n“0n, = 0. 2.110
Mo < " ) cot O’y — rn, — rsi Mo ( o)

(2.111)

Now by using eq. (2.106) in eq. (2.111)), it is further simplified and the comparison

of coefficients of (£, 7, 9, ¢) and their powers is done that again provides some similar

(2.112a)

(2.112b)



—~
S

(tr)
(i9) :
(#9) :

Mo+ 0% =0,
77725 + 7“77,?;0 - T§7SS =0,

771¢ — sin @ cos Hni, =0,

2
T%]it — (1 — Tm) mniﬂ =0,

om\ 3
2r+ 11— — m|n, =0,
r ;

2
20%0 + 11 + (1 — Tm) r*nt — 4ré =0,

2.3
T+

(2.112¢

(2.112d

)
)
2.112e)
2.112f)

(
(
(2.112g)

(2.112h)

2
773¢¢ + (1 — _m) rsin® O3, 4 sin 6 cos On%) + sin® On® — cos® O’
b 7/1 b b

— 2sin 6 cos 9772) =0,

77,215 + ”77?29 —2r{ s =0,

=P 1 P = 2% = 0,

0% + Ty — T ot O’ — 2r oy — 7sin b cos Oy = 0,

( 2m>_1 ] ,
r—|1—— m|n; =0,
/r-» I’

ni¢ — sin f cos Qnﬁ =0,

2,3
r T],tr+

7]73qu — sin f cos 977,%« = 0.

For last variable ¢* = ¢, eq. (2.6) yields

(2.112i
(2.112j

)
)
(2.112k)
(2.1121)
(2.112m)

(2.112n)

(2.1120)

(2.113)

By using eq. (2.106]) in eq. (2.113]), it is simplified and then equating to zero the

coefficients of (¢,7, 0, gb) and their powers produce some similar equations ((2.108p) —

(2.108y])). Remaining equations are

(constant) : nis =0,

(2.114a)

(2.114b)



(t7)
() -
(7"6’) :

nt 4+t =0, (2.114c¢)
sin @ cos O’ + sin® Oy, = 0, (2.114d)
77,25 + 7 cot 977,35 + 7"77745¢ —718ss =0, (2.114e)
0y — (1 - 277") mn, =0, (2.114f)
0 + {27« + (1 — 277"_1) m] nh =0, (2.114g)
2 cot Oy + e + (1 — 277”) riy =0, (2.114h)
2 3 4 . 4 2m\ o . 9. 4
2m°s + 21 cot On', + 1 4, + rsin cos Oy + (1 — T) r°sin” O,
— 7€, =0, (2.114i)
177275 + r cot Gni + 7"77,% —2r{ 4 =0, (2.114j)
-+ rni + 72 cot 977;1 + rznﬁ,qb —2r%¢ . =0, (2.114k)
77,29 —rcot?On® — rn® + rcot 977?’9 + r77f19¢ —2r€ s =0, (2.1141)
2t 4 | — <1 _ QTm)_l m] =0, (2.114m)
cot Oy + 3 = 0, (2.114n)
cot 97]’47 + 7]’4“9 =0. (2.1140)

Now we solve the above system of partial differential equations to find values of &, n',

n?, n* and 0.

Differentiating eq. (2.108v)) w.r.t ¢ and making use of eq. (2.108r) and eq. (2.108s|) we

get

Er = 0. (2.115)

Using eq. (2.115) in eq. (2.108q)) we get

€, =0. (2.116)
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From eq. (2.116) £; = 0 which makes eq. (2.108p))

£r=0, (2.117)

using eq. (2.117) in eq. (2.108w]) and eq. (2.108x]) we get

£o =0, £ =0. (2.118)

From eq. (2.116)), eq. (2.117) and eq. (2.118]) we now know that £ is a function of s

only i.e.

€= (s). (2.119)
If we differentiate eq. w.r.t s and make use of eq. and eq.
we get

£sss =0, (2.120)

by utilising eq. (2.119), eq. (2.120) can be solved to get value of £

£ =18 + 28 + c3, (2.121)

where ¢y, ¢9, c3 are arbitrary constants.

Next from eq. (2.108a]) we can write n' as
7]1 = (ll(t77‘, 07 ¢)S+CL2(7§,T, 07 ¢) (2122)

where a1, as are some arbitrary functions of mentioned arguments, but from equations

(2.108¢)), (2.108d)) and (2.108¢|) we realize that a; must be the function of ¢ only. Hence

eq. (2.122)) becomes

7= a(t)s + a(t,r.6,6), (2.123)
Now differentiating eq. (2.112d)) w.r.t ¢t and using eq. (2.112b]) and eq. (2.116]) we yield
n% =0, (2.124)
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utilising eq. in eq. (2.110b) it produces
=0, (2.125)
which means a;(t) must be equal to zero and hence n' from eq. translates into
n' = ay(t,r,0,0). (2.126)
From eq. n? can be written as
0 = as(t,r,0,0)s +as(t,r,0,0). (2.127)
Now we differentiate eq. w.r.t r and use eq. and eq. to get
% =0, (2.128)

and after putting value of U,er in eq. (2.110c) and using & ;s = c1, we solve it to get

value of 77,
2 201

= —=(r® —2mr). 2.129
= = (r* = 2mr) (2.129)

If we differentiate eq. (2.108b]) w.r.t 6 and use eq. (2.105) and eq. (2.118)), we obtain

nhy =0, (2.130)
and putting it in eq. (2.110d)) yields
s =0, (2.131)

putting eq. (2.131) in eq. (2.112d) and utilising £ ;s = ¢, produce
n% = 2re, (2.132)
equating eq. (2.129) and eq. (2.132)) generates

¢ =0, (2.133)
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which means ¢ in eq. (2.121)) now becomes
£ =25+ c3. (2.134)

Also if ¢; = 0 then
n; =0, (2.135)

which means a3 must be equal to zero and hence n? in eq. (2.127) becomes

n* = ay(t,r,0.0). (2.136)
Solving eq. (2.112a)) gives
7]3 - a5(t,r, 07 ¢)S+a6(t7ra 97 925), (2137)

but as 7°, = 0 then a5 must equals zero and therefore eq. translates into
n’ = ag(t,r,0,9). (2.138)
Eq. can be solved to get value of n* as
nt = az(t,r,0,0)s +as(t,r,0,0), (2.139)
if we differentiate eq. w.r.t. ¢ and use eq. and eq. to get
nhe =0, (2.140)
which upon putting in eq. gives
s =0, (2.141)
that means a4 in n* must be zero, so eq. now reads

't = as(t,r,0,9). (2.142)
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If we differentiate eq. (2.108m)) w.r.t. r we get

2m 2m 1 o6m 1
(1 - —> Morg + T—Qn,lro + ;n}e - Fﬁ,le - - (1 - —

r

putting eq. (2.148) back into eq. (2.147) and solving gives

2m 1 om

equating eq. and eq. produce
My = 0.
using eq. into eq. we get
1, = 0.

64

(2.143)

(2.144)

(2.145)

(2.146)

(2.147)

(2.148)

(2.149)

(2.150)

(2.151)



With the help of equations ([2.146),(2.151)) and (2.151) we can say ay is function of ¢

only, then eq. (2.126) becomes
n' = as(t). (2.152)

By using eq. and eq. in eq. (2.108K) we get

ny = 0. (2.153)
Now using eq. and eq. in eq. gives

= 0. (2.154)
Putting eq. and eq. in eq. yields

n} =0. (2.155)
Putting eq. and eq. in eq. yields

n3=0. (2.156)
Making use of eq. and eq. in eq. (2.110K), we get

iy = 0. (2.157)
Making use of eq. and eq. in eq. (2.1101), we get

1 = 0. (2.158)
can be solved by utilising eq. and eq. to get

ns=0. (2.159)

By realising equations (2.153),(2.154) and (2.159), 1*(a4) must be function of r only

therefore eq. (2.136]) becomes
n* = ayu(r). (2.160)



Now if we use eq. (2.117)) and eq. (2.157)) in eq. (2.112kl), we get
. 772 _|_ rn?r = 07 (2161)

as 1 is a function of r only so by substituting ay = r™, eq. (2.161)) can be solved to
get
0 = cyr, (2.162)

where ¢4 is an arbitrary constant.

By putting eq. (2.117) and the value of n* from eq. (2.162) in (2.110g)) we obtain

¢y =0, (2.163)

which means eq. (2.162)) gives
n® =0, (2.164)

substituting value of n? from eq. (2.164)) into eq. (2.110f) we get

ny = 0. (2.165)

The equations (2.146)), (2.150), (2.151)) and (2.165]) suggest n' is just a constant i.e.

n' = cs. (2.166)
substituting eq. into eq. gives
1y = 0. (2.167)
Using value of 1? in eq. gives
n° = —tan ', (2.168)
If we take derivative of eq. (2.168), we obtain

1%, = —tan Oy, (2.169)
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using eq. (2.164) and eq. (2.169) in eq. (2.1100) to get

77,4¢¢ + sin 6 cos Oy (2.170)

If we put equations (2.118)), (2.154), (2.158) and (2.170)) in eq. (2.1141), we are left
with

3 =0, (2.171)

As n? is zero w.r.t all the variables therefore it must be equal to a constant i.e.

= cs. (2.172)
Using eq. (2.172) in eq. (2.1100]) gives
e =0, (2.173)

also by putting eq. (2.172)) in eq. (2.168) we get

1y = —cg cot b, (2.174)

if we put eq. (2.172)) and eq. (2.175) in eq. (2.112i)), it produces

g =0, (2.175)

by means of which eq. (2.172)) becomes

=0, (2.176)
and eq. (2.174)) also becomes
1 =0, (2.177)

keeping the equations (2.156)),(2.158)),(2.173) and (2.177)) in view we can iterate

nt = ecr. (2.178)
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So we have found all the required infinitesimals and if we assume (co,c3,c5,¢7) =

(Cy,Cy, C3,Cy) then we can write

§=Crs+ Cy, n' = Cs,
(2.179)
i’ =0, n’ =0, it = Ci.
Hence the generator can be written as
0 0 0
XW = (Cys+ Co) =+ Cy— + Cy=- 2.180
(Cus + o) + Cogy + Gz (2.180)
For C} = 0 we get four symmetries
0 0
X1 = Sa—, XQ = 8_7
5 5 (2.181)
X3 = 0 Xy = 0
ST ot T 0g

These four symmetries are the required Mei symmetries.

We see that out of these four Mei symmetries, three symmetries X, X3, X, are same
as three Noether symmetries Xy, X5, X5 particularly found in eq. corresponding
to the Lagrangian given by eq. . These three symmetries actually satisfy the
equation but X; does not satisfy this equation therefore, it is not a
Noether symmetry. And similarly, the Noether symmetries X3, X4 do not satisfy the
equation (1.194)) and hence they are not Mei symmetries. This observation marks the
difference between both symmetries.

One can also observe that the four Mei symmetries obtained for Lagrangian given in

eq. (2.1) are the subset of the Lie point symmetries as obtained in eq. ([2.104]) for
the system of equations of motion given by eq. (2.100)-(2.103). The obtained Mei

symmetries satisfy the Lie algebra

[le X?] - _X27 [le X3] - 07
[Xh X4] - O, [XQ, X3] - 0, (2182)
[X27 X4] = OJ [X37 X4] == O
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2.4 Verification of the Mei Symmetries

One may verify if the obtained symmetries fulfil the criterion of Mei symmetries given

by eq. (2.105). By making use of obtained values of infinitesimals given by eq. (2.179))
we write XM(L) as

2m

. om\ ! : .
XO(L) =20, (1 - —) 220, (1 - —m) 72— 20, r260% — 20, r* sin® 042, (2.183)
T T

We apply the Euler operator for each dependent variable one by one as required by

criterion given in eq. (2.105]).
For ¢! =t criterion given by eq. (2.105) gives

do 0
—— = = ) (XP(1L) =0 2.184
(G~ ) xO@y =o (2.18)
using eq. (2.183)), the left hand side of eq. (2.184]) gives
d 2m . 8m .. 8m _ ..
that means criterion holds true for ¢* = t.
For ¢* = r criterion given by eq. (2.105)) produce
d o 0
—— — — ) (X)) = 0. 2.186
(ds or 8r) ( (L) ( )

On putting eq. (2.183)) in eq. (2.186)) we get

d om\ ' m om _Qm.2 -
— | —-4C, (1 - — r| —(4C,—=t* +4C; (1 — — —7r° —4Cr0
ds r 72 r 72

— 4C,r sin? 9@52)
.9 om\ > m om\ m .o 2m _Zm,2
=8Cr“(1—— — —4C; (1 — — P —4C,—t* —4C; |1 — — —7
r r? r r? r 72
+ 401762 + 4C,r sin® 6972,
(2.187)
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putting value of 7 from eq. (2.101])

om\ om\ : : .
= 8Cy7? (1 - —m) = _uc (1 = —m) T2 440 22 — 40 rf® — AC, 7 sin’ 042
r r r r r

, om\ . :
— 40, =i — 4C, <1 = —m> T 4+ 4C P02 + 4Cyr sin® 062 = 0,
T r

ﬁ?”
(2.188)
It goes to zero and hence criterion holds for ¢ = r.
And for ¢® = 0 criterion becomes
d o0 0
—— = — | (XY(1W) =0 2.189
(o7~ 30) XV =0, (2.180)
solving left hand side, we get
d 2 4 2 12
< (—47" cw) - <—47“ sin 6 cos 0C, )
ds (2.190)

= —8C, 770 + 8C 770 — 4C,r? sin 0 cos 9@2 + 4C,7? sin 6 cos 9@1}2 =0,

hence it also holds for ¢ = 6.

Also for ¢* = ¢
d 0 0
(G35~ 55) XOmn =0 2101

the left hand side gives

d . ;
I (—4r2 sin? QC’lgb)
— —8C,rsin’ 0r¢ — 8C12 sin 0 cos B¢ + 8Cr sin® O7¢) + 8C1 72 sin 6 cos B¢ = 0,

(2.192)

which tells criterion in eq. (2.105) holds true for ¢* = ¢ as well. Hence eq. (2.181))
presents four symmetries for the Lagrangian in eq. (2.1) of Schwarzschild metric.
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Chapter 3

Summary

In this thesis, from the extensive history of differential equations, the major devel-
opments with time are briefly revisited. The solutions of these differential equations
always served as a gateway to further exploration. To acquire and comprehend these
solutions of the differential equations, symmetry methods has become a very powerful
and extra ordinary technique in the recent times. This work commence with the inves-
tigation of the symmetries including Lie Point symmetries, Noether symmetries and
Mei symmetries. The study naturally includes the Ordinary differential equations. The
definition of symmetry groups of point transformations and their infinitesimal gener-
ators, is presented. The method to prolong infinitesimal generators is discussed. The
criterion of Lie point symmetries is studied and applied to some well known differen-
tial equations of first and higher orders as well. The evaluation of Lie algebras and Lie
brackets of the basic symmetry generators is performed. After defining the Lagrangian,
Noether symmetries and Mei symmetries are defined along with their respective crite-
rion. The theorems (without proofs) related to first integrals or conserved quantities of
Noether symmetries and Mei symmetries are quoted and used in examples in order to
find them. With the help of already established facts, the relationship of Lie symmetry
with Noether symmetry and relationship of Noether symmetry with Mei symmetry is

accomplished.
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Chapter 2 primarily focuses on finding the Mei symmetries for the Lagrangian of spher-
ically symmetric and static metric. This chapter begins with the review of Noether
symmetries for the Lagrangian of spherically symmetric and static metric from the
paper [31I]. In this review, the Schwarzschild solution being the most important so-
lution of Einstein field equations is considered. After revisiting the criterion to find
Noether symmetries, the Lagrangian for Schwarzschild metric is presented. Firstly,
considering the criterion for Noether symmetries, the linear operator A along with
the prolonged infinitesimal generator is used to establish the system of determining
equations, which are then solved to find the unknown infinitesimals (&, 1%, n? n?,n%)
and the boundary function g. One out of these five infinitesimals appeared to be zero
while others four, depending upon five arbitrary constants, lead to five Noether sym-
metries with the boundary function found to be a constant. Secondly, the Lie point
symmetries obtained in the paper are presented. After this the main task to find Mei
symmetries corresponding to the Lagrangian of Schwarzschild metric is executed. To
find the Mei symmetries, the Euler Lagrange equations are compiled one by one for
the four Schwarzschild coordinates (¢,7, 6, ¢). Taking the criterion of Mei symmetries
into account, the infinitesimal generator is prolonged and the system of determining
equations for all the dependent variables is obtained. This system is then solved in-
dependently to evaluate the values of the five infinitesimals (£, 7%, 0%, 7%, n?). Two out
of which are found to be zero and the remaining three depend on four arbitrary con-
stants, corresponding to which we found four Mei symmetries. We observed that the
three of the Mei symmetries are just the same as three of the Noether symmetries for
the same Lagrangian. No explicit relationship between these two symmetries could be
found. However, the obtained Mei symmetries are found to be the subset of Lie point
symmetries. In the end, the verification of the obtained Mei symmetries is also done

in order to endorse the criterion.
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