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Abstract

In this thesis, we consider the topological category of QV-Closure space and explicitly

characterize local T0 and local T1 objects in this category. Furthermore, we examine

the notion of closedness in L-Cls. We consider the topological category of QV-Closure

space and explicitly characterize local T0 and local T1 objects in this category. Finally

we show that every local T1 QV-Closure Space is Local T0 QV-Closure Space and the

notion of closedness coincides with Local T0 QV-Closure Space.
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Introduction

Just as groups are multi-faceted algebraic structures, categories are algebraic struc-

tures having various complementing natures, such as logical, geometric, combinatorial

and computational. MacLane and Eilenberg [2] proposed a category in 1945 that

they called natural transformations functors. Later, MacLane and Eilenberg pointed

out that the category’s objective was to investigate natural transformations, which

demanded the usage of categories. The study of category theory facilitates commu-

nication between persons working in diverse domains by developing a new language

that is cost-effective in terms of new expression. It also adds new meaning to existing

problems by introducing new theorems and structures that are independent of one an-

other. Category theory has applications in theoretical Computer Science [3], logics [4],

Molecular Biology’s DNA and RNA sequences [5], and homological theory [6].

In the year 1971, Horst Herrlich [7] presented a novel sub-branch of mathematics

termed as "Categorical Topology". It’s a branch of mathematics that straddles general

topology and category theory. On a single signal, categorical thoughts, sensations, and

consequences are applied to topological settings, assisting with the organization of the

massive amount of topological facts.

Classical T0 separation of topology plays a significant role not solely in mathemat-

ics but to get another characterization of locally semi-simple coverings in terms oflight

morphisms in algebraic topology [8], however, additionally in computing wherever, this

conception corresponds to access the values through observations [9]. Moreover, T0 ax-

iom is used where topology on Hausdorff space fails to build models [11] , [10] i.e.,

topological models in lambda calculus and denotational semantics of computer pro-
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gramming language. Furthermore, it is used to classify digital lines in digital topology

([12] and [29]). Due to extensive implementation of the T0 separation axiom, many

mathematicians such as Brummer [14], Marny [15], Hoffmann [16], Harvey [17] and

Baran [18] extended this concept to topological category. Also, relationships between

various generalizations of T0 space are analyzed by Weck-Schwarz [19] in year 1991 and

Baran [20] in 1995. And in 1991, Baran [18] introduced classical local T0 and local T1

of topology in Categorical Topology in terms of initial and discrete structures. Closure

operator has been widely used in calculus ([21] and [22]), algebra ([25], [26], [27]), logic

([23]) and topology ([28], [29]).

In the year 1940, G.Birkhoff [26] noticed that, a complete lattice is a class of all

closed sets of closure space. Many authors investigated his work that is, connection

among closure spaces and complete lattices and we can find its generalization in [30].

G. Aumann [31] studied in the social sciences on contact relations, while B. Ganter

and R. Wille [32] worked in data analysis and knowledge representation on formal

contexts, and both employed comparable ideas. Closure operators have been applied

in quantum logic and physical systems representation theory [33], [34] in recent years.

Considering the huge importance of closure structures, it’s been generalized through

introducing a few appropriate quantales on it [35]. This motivates us to recollect

separation properties of topological category of quantale valued closure spaces.

In this dissertation, the category of Quantale-valued Closure spaces is taken into

consideration. Initially, it has been shown that L-Cls is a topological category and its

relation to Cls is studied and several examples with different quantales are provided.

Furthermore, local T0 and local T1 are explicitly characterized for quantale-valued

closure space and it is shown that every local T1 QV-Closure space implies local T0 QV-

Closure space however, this is not always the case. Moreover, the notion of closedness

are examined in topological category of L-Cls and it is examined that this notion

of closedness, (i.e., {p} is closed) coincides with local T0 QV-Closure space. Finally,

hereditary and productivity of local T0 (resp. local T1) QV-Closure space are examined.

The arrangment of this thesis is done as follows:

In the first chapter, we discuss the basic definitions and concepts of general topology
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such as topological spaces, continuity, initial topology and lower separation axioms (T0

and T1). The prime intension of this chapter is, to define "topological functor". For

this, we must know "functors", and for functors we need to explain "categories". In

third section we go through the definition of "category" and "functors", their examples

and different types. At the end of this chapter we define the topological functor and

its examples.

In the second chapter we study quantale its properties and examples. In the very

next section of this chapter, closure spaces are mentioned which is a generalization of

topological spaces, also we are discussing the continuity and how its initial structure

has been defined. In the third section of this chapter, L -valued closure space and L

-valued topological space, their examples, initial and discrete structures are revised.

Categorical definitions of local T0 and local T1 are introduced by Baran [18] which

is the extension of the classical definition of local T0 and local T1. In 3rd chapter

by using these definitions we characterize local T0 and local T1 quantale valued closure

spaces and notion of closedness. Later on, we made an effort to explore the relationship

between them and some other properties like hereditary and productivity of local T0

and local T1 quantale valued closure spaces.

In the last chapter of our thesis, we summarizes our thesis with all the results and

findings that In L-Cls (the category of Quantale-valued Closure space and continuous

maps), Local T1 implies Local T0 = {p} is closed.
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Chapter 1

Basic Definitions

In this chapter, some prerequisite ideas and concepts are discussed that reader should

familiar with. It mainly includes study related to Topological spaces. All the definitions

of this section are from [36].

1.1 Topological spaces

Topology is an expanse of mathematics relating to properties that are conserved un-

der incessant distortion including outspreading and meandering, not tearing or jutting.

This covers properties such as connectedness, boundaries and continuousness.

Topology was formed as an arena of education, emerging from geometry and set theory

through scrutiny of philosophies and impressions, such as, dimensions and transfor-

mations. These concepts originated through Leibniz, who in the 17th century [37],

perceived Geometria Situs (translating to ‘Math of Place’) and Analysis Stus (trans-

lating to ‘Dismantlement of Place’). The expression ‘Topology’ was derived by Johann

Benedict later in the 1800s. Regardless, it was indistinct till the early 20th century,

that the likelihood of a topological space was fashioned. However, in the midst of 20th

century, topology had emerged as a substantial fragment of mathematics.

In the year 1914, Felix Hausdroff established the term ‘Topological Space’ and intro-

duced the concept of modern day’s terminology, ‘Hausdroff Space’ [38].

Definition 1.1.1. Let X be a non empty set and τ ⊆ P (X), if τ satisfies the following

properties then the pair (X, τ) is called a topological space.
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1. X and φ ∈ τ .

2. Intersection of the elements of every finite subcollection of τ is in τ i.e., V1, V2, V3, ..., Vn

∈ τ ⇒
n⋂
k=1

Vk ∈ τ .

3. If {Vi : i ∈ I} is an indexed family of sets, each of its element belongs to τ , then⋃
i∈I

Vi ∈ τ .

Example 1.1.2. Let X = R, the topology on R is given by, τ = {
⋃
α∈I

tα| tα =

(uα, vα);uα, vα ∈ R}.

Definition 1.1.3. Every element of τ is an open set.

Example 1.1.4. The open interval in usual topology is an open set.

Definition 1.1.5. U is called a closed set if complement of U is open in τ .

Example 1.1.6. Closed interval in usual topology is a closed set.

Definition 1.1.7. A collection B of open sets of X is a base for the topology τ if ∀ p
which belongs to U , ∃ G ∈ B with p ∈ G ⊂ U .

Example 1.1.8. The basis of discrete topology is a singleton set.

Definition 1.1.9. A class S of open subsets of X, i.e., S ⊂ τ , is a subbase for the

topology τ on X if finite intersection of members of S form a base for τ .

Example 1.1.10. The class S of all infinite open intervals is a subbase for standard

or usual topology τu.

Definition 1.1.11. A ⊆ X.The closure of A is the intersection of all closed sets which

contain A.

Example 1.1.12. Let X = {6, 7, 8, 9} with topology τ = {∅, {6}, {7, 8}, {6, 7, 8}, X}
and C={7, 9} be a subset of X.

Open sets:- ∅, {6}, {7, 8}, {6, 7, 8}, X.

closed sets:- ∅, {7, 8, 9}, {6, 9}, {9}, X.

Closed sets which contains A:- X,{7, 8, 9}.
C̄ = X ∩ {7, 8, 9} = {7, 8, 9}.
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Definition 1.1.13. Let X and Y be the nonempty sets and τ and σ be their topologies

respectively and g : (X, τ) −→ (Y, σ) be a map then, g is a continuous map if ∀ v ∈ σ,
g−1(v) ∈ τ .

Example 1.1.14. Let τl be lower limit topology on R. τu be usual topology on it also

g : (R, τl) −→ (R, τu) be an identity map , g(y)= y for every y is continous, because

inverse image of (c,d) is (c,d) i.e, itself which is in τl.

Example 1.1.15. Let τl be lower limit topology on R and τu be usual topology on it

also g : (R, τu) −→ (R, τl) be the identity map , g(y)= y for every y. Then g is not a

continous map and the inverse image of [c, d) of τl equal to itself which is not in τu.

Definition 1.1.16. Let X be any set and (Xi, τi)i∈I be the collection of topological

spaces and gi : X −→ Xi be the mappings then τ∗ is an initial topology on X, define

as:

τ∗ =
⋃
i∈I

n⋂
k=1

{g−1
ik (Vik) ; Vik ∈ τ}.

Definition 1.1.17. S ⊆ X. The collection

τS = {S ∩ U | U ∈ τ}.

is topology on S, called the subspace topology.

Example 1.1.18. Let X=R, τ = τu and Z ⊆ R. Then ∀ y ∈ Z

(y − 1

2
, y +

1

2
) ∩ Z = {y}.

That is, {y} is the subspace topology on Z which is induced by τu.

Therefore, subspace topology on Z is a discrete topology.

Definition 1.1.19. Let A and B be two topological spaces.The topology with basis B

is the collection of all sets of the form W × X is product topology. Where W and X

are subsets of A and B respectively.
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Example 1.1.20. The usual topology τu on R2 is the product topology on R×R. Here
we have usual topology on R. We know that basis of standard topology on R is

B = {(s, t)|s, t ∈ R, s < t}.

Therefore, basis on R× R is

B′ = {(s, t)× (u, v)|s, t, u, v ∈ R, s < t, u < v}.

1.2 Separation Axioms

Definition 1.2.1. (X, τ) is called T0 or Kolmogrov space if ∀ p,q ∈ X with p 6= q, ∃
U ∈ τ : p ∈ U, q /∈ U or ∃ V ∈ τ : p /∈ V, q ∈ V.

Example 1.2.2. The upper limit topology on R i.e., τ l is T0 space.

Theorem 1.2.1. The topological space (Y, σ) is T0 ⇐⇒ ∀ p , q ∈ Y with p 6= q ,

{p} 6= {q}.

Theorem 1.2.2. All subspaces of T0 is again T0.

Theorem 1.2.3. Let {(Yi, σi); i ∈ I} be topological space and Y =
∏
i∈I

Yi, {(Yi, σi); i ∈

I} is T0 ⇐⇒ (Y, σ∗) is T0 space. Here, σ∗ is a product topology on Y.

Definition 1.2.3. (X, τ) is called T1 or accessible space if ∀ p,q ∈ X with p 6= q, ∃ U

∈ τ : p ∈ U , q /∈ U and ∃V ∈ τ : p /∈ V , q ∈ V .

Example 1.2.4. The co-finite topology & co-countable topology on R is T1 space.

Example 1.2.5. Standard topology is T1 space.

Theorem 1.2.4. (X, τ) is T1 ⇔ every singleton is closed.

Theorem 1.2.5. All the subspace of T1 is again T1.

Theorem 1.2.6. Let {(Yi, σi); i ∈ I} be topological space and Y =
∏
i∈I

Yi if

{(Yi, σi); i ∈ I} is T1 ⇐⇒ (Y, σ∗) is T1 space. Here , σ∗ is product topology on

Y.

Lemma 1.2.6. Every T1 space is also T0 space but converse is not true.
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1.3 Category Theory

Just as groups are multi-faceted algebraic structures, categories are algebraic struc-

tures having various complementing natures, such as logical, geometric, combinatorial

and computational. MacLane and Eilenberg [2] proposed a category in 1945 that

they called natural transformations functors. Later, MacLane and Eilenberg pointed

out that the category’s objective was to investigate natural transformations, which

demanded the usage of categories. The study of category theory facilitates commu-

nication between persons working in diverse domains by developing a new language

that is cost-effective in terms of new expression. It also adds new meaning to existing

problems by introducing new theorems and structures that are independent of one an-

other. Category theory has applications in theoretical Computer Science [3], logics [4],

Molecular Biology’s DNA and RNA sequences [5], and homological theory [6].

Definition 1.3.1. [1] A Category C is a quadruple C = (Obj, hom, id, ◦) which con-

sists of:

1. C-objects are members of a class Obj.

2. hom is a C-morphisms between C-objects.

3. For every C- object Y, A morphism

A idX−−→ A

is the C-identity.

4. composition law is associated with every C-morphism A g−→ B and every C-

morphism B f−→ C, a C-morphism A f◦g−−→ C is composition of f and g if,

a) Associative Property: Associativity holds in composition. i.e., for each

morphisms A g−→ B , B f−→ C and C f ′−→ A the following equation holds,

f ′ ◦ (f ◦ g) = (f ′ ◦ f) ◦ g.
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b) Identity Property: for each morphism

A g−→ B,

then we get,

idB ◦ g = g and g ◦ idA = g.

Example 1.3.2. C= Set: Objects are class of all sets and hom(X, Y ) = {g|g : X →
Y functions}, idX is an identity map and ◦ is composition.

Example 1.3.3. C= Top: All topological spaces are its objects, continuous maps are

its morphisms, ◦ is composition between them and id(X,τ) is identity morphism on Top.

Example 1.3.4. C=POSET: Partial ordered sets are its objects, all order that are

preserved between partial order sets are its morphisms.

Example 1.3.5. C=Grp, groups are its objects and morphism is group homomrphism.

Definition 1.3.6. ([1])

(i) A category D is the subcategory of C if:

(a) Obj(D) ⊆ Obj(C),

(b) for every A, A′ ∈ Obj(C′), homC′(A,A′) ⊆ homC(A,A′),

(c) for every C′-object A, the C-identity on A is C′-identity on A,

(d) Composition law of C′ is the restriction of the composition law of C to the

morphisms of C′.

(ii) C′ is a full subcategory of C if, for every A′, A ∈ Obj(C′), homC′(A,A′) =

homC(A,A′).

Definition 1.3.7. ([1]) Let C be a Category and g : X −→ Y be a morphism between

objects of C. If ∀ f, h : W −→ X are morphisms of C, if

g ◦ f = g ◦ h⇒ g = f

then, g is Monomorphism.
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Example 1.3.8. Let C=Set, ∀ X,Y ∈ Obj(Set). g : X −→ Y is a monomorphism ⇔
g is 1 : 1.

Example 1.3.9. Let C=Top , ∀ (X, τ), (Y, τ) ∈ Obj(Top) , g : (X, τ)−→ (X, τ ′) is

monomorphism ⇔ g is continuous map and 1 : 1.

Definition 1.3.10. ([1]) Let C be a Category. f : X −→ Y and ∀ g , h : Y −→ Z ∈
Mor(C),

g ◦ f = h ◦ f ⇒ g = h.

then g is called Epimorphism.

Example 1.3.11. Let C=Set

g : X −→ Y

is Epimorphism ⇔ g is Onto

Example 1.3.12. Let C = Top

g : (X, τ) −→ (Y, τ ′)

is Epimorphism ⇔ g is Continuous map and onto.

Definition 1.3.13. ([1]) Let C be any Category and ∀ E , F ∈ Obj(C) and f : E −→ F

∈ hom(C) , if ∃ morphism g : F −→ E Such that, f ◦ g = 1E and g ◦ f = 1F .

Then, f is an Isomorphism of g.

Example 1.3.14. In C=Top, g : (X, τ) −→ (Y, τ ′) is called isomorphism ⇐⇒ g is

homomorphism.

Definition 1.3.15. ([1]) If g : A −→ B is monomorphism and epimorphism then , g

is called Biomorphism

Example 1.3.16. In Top

g : (X, τ)→ (y, τ ′)
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is Biomorphism ⇐⇒ g is bijective and Continous.

Definition 1.3.17. ([1]) Let E and C be Categories. U : C −→ E is called a functor

if

(i) ∀ X ∈ Obj(C) ⇒ U(X) ∈ Obj(E)

(ii) f : X −→ Y ∈ hom(C) ⇒ U(f) : U(X) −→ U(Y ) ∈ hom(E).

(iii) U maintains identity morphism; i.e,

U(1A) = 1U(A)

(iv) U maintains composition; i.e, If X g−→ Y
f−→ Z ∈ hom(C)

then,

U(f ◦ g) = U(f) ◦ U(g).

Example 1.3.18. Let U be functor , U : Top −→ Set is defined as: U(X, τ) = X and

g : (X, τ) −→ (Y, σ) is a map, U(g) = g is a functor.

Definition 1.3.19. ([1]) Let U : C→ E be a functor, if ∀ A,B ∈ Obj((C) and

∀ g, f : A→ B ∈ hom(C)

U(g) = U(f) ⇒ g = f.

Then U is called faithfull functor.

Example 1.3.20. U : Top → Set is faithfull functor.

Definition 1.3.21. ([1]) Let U : C −→ E be a functor, if ∀ A, B ∈ Obj(C) and

∀ g : U(A)→ U(B) morphism ∃ f : A −→ B morphism such that

U(g) = f .

then U is called a full functor.
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Definition 1.3.22. ([1]) Let U : C −→ E be a full functor. If ∀ f : A −→ A in

hom(C) and U(f) = 1A = 1U(A) and f is isomorphism. ⇒ f is identity, then it is called

an Amnestic functor.

Definition 1.3.23. ([1]) If U : C −→ E is a faithfull and amnestic then U is called

concrete functor.

Example 1.3.24. U : Top −→ Set is amnestic and faithful functor therefore it is

also concrete functor but not full functor because in Top morphisms may not preserve.

Example 1.3.25. U : Grp −→ Set is amnestic and faithfull therefore it is concrete

functor.

1.4 Categorical topology

In the year 1971, Horst Herrlich [7] presented a novel sub-branch of mathematics termed

as "Categorical Topology". It’s a branch of mathematics that straddles general topol-

ogy and category theory. On a single signal, categorical thoughts, sensations, and

consequences are applied to topological settings, assisting with the organization of the

massive amount of topological facts.

Definition 1.4.1. ([1]) Let C and E be the two Categories and U : C→ E be a functor,

if U satisfies the followings, then U is called Topological functor.

(i) U is concrete functor. i.e, U is amnestic and faithfull functor.

(ii) U consists of fibers i.e; ∀ B ∈ Obj(E) ; U−1(B) is a set and U−1(B) = {X ∈
obj(C);U(X) = B}.

(iii) Existance of initial lift i.e., A source S = (X
fi−→ Xi)i∈I is U−initial if for every

source τ = (Y
gi−→ Xi)i∈I in C along the same co-domain same as S and every

E-morphism UY
h−→ UX along Uτ = US◦h, ∃ a single C−morphism Y

h̄−→ X along

τ = S ◦ h̄ and h= Uh̄.
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X

Y Xi

fih̄

gi

UX

UY UXi

UfiUh̄=h

Ugi

Example 1.4.2. U: Top → Set is a topological functor, and its initial lift is its initial

topology.

Example 1.4.3. U: Grp → Set is not topological functor since initial lift doesnot

exist in group. In other words, the subset of a group may not always be its subgroup.
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Chapter 2

Quantale Value Closure Spaces

2.1 Quantale structures

Definition 2.1.1. ([35]) Let X 6= φ, ≤ be the relation on X. if it satisfies the followings:

(i) Anti symmetry: ∀ s, t ∈ X, s ≤ t∧ t ≤ s ⇒ s = t.

(ii) Reflexivity: ∀ s ∈ X, s ≤ s.

(iii) Transitivity: ∀ s, t, u ∈ X, s ≤ t ∧ t ≤ u⇒ s ≤ u.

Then, ≤ on X is called partial order.

Moreover, if ≤ is a partial order on X, then the pair (X,≤) is called partially ordered

set or poset.

Example 2.1.2. R is a poset by ≤ order.

Definition 2.1.3. ([39]) All subsets of X, which is poset (X,≤) have infimum (
∧

) and

supremum (
∨

), then (X,≤) is called a complete lattice. The bottom and top elements

are denoted by ⊥ and > respectively.

Example 2.1.4. All finite posets are complete lattice.

Definition 2.1.5. ([39]) The qudruple (L,≤, ∗, k) is an unital quantale, if

(i) (L, ∗) is amonoid structure, where ∗ is an operation, and k is an identity element.

(ii) ∀ β, αi ∈ L,

(
∨
i∈I

αi) ∗ β =
∨
i∈I

(αi ∗ β).
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And

β ∗ (
∨
i∈I

αi) =
∨
i∈I

(β ∗ αi).

Definition 2.1.6. [39]

i. The qudruple (L,≤, ∗, k) is a commutative quantale, if (L, ∗) is a commutative

monoid.

ii. The qudruple (L,≤, ∗, k) is an integral quantale if α ∗ > = > ∗ α.

Definition 2.1.7. In quantale, if s ∈ L and s 6= >, then s is prime element if

a ∧ b ≤ s⇒ a ≤ s or b ≤ s. ∀a, b ∈ L.

Specifically, when s = ⊥ then it is called prime bottom element.

Example 2.1.8. ([40]) L = ([0,∞],≥,+, 0) is an Lawvere’s quantale with + as

binary operation and 0 is an identity element.

Example 2.1.9. L = ([0, 1],≤, ∗, k) is an integral and commutative quantale. Where

∀ a,b ∈ [0, 1], a ∗ b =min{a, b} and an identity element k = 0.

Example 2.1.10. L=([0, 1] ∪ {⊥ = −1,> =∞},≤, ., 1) is a quantale.

Example 2.1.11. ([40]) L = 2 = ({⊥,>},≤,∧,⊥) is a quantale.

Example 2.1.12. L = ([0, 1],≤, ∗, 1) is a quantale, where ∀x, y ∈ [0, 1], x ∗ y = x.y.

2.2 Closure Spaces

In the year 1940, G.Birkhoff [26] noticed that, a complete lattice is a class of all closed

sets of a closure space. Many authors investigated his work that is, connection among

closure spaces and complete lattices and we can find its generalization in [30]. G.

Aumann [31] studied in the social sciences on contact relations, while B. Ganter and

R. Wille [32] worked in data analysis and knowledge representation on formal contexts,

and both employed comparable ideas. Closure operators have been applied in quantum

logic and physical systems representation theory [33], [34] in recent years.
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Definition 2.2.1. ([41]) Let X 6= φ,and cl ⊆ P(X). If cl satisfies the following, then

cl is called closure structure and the pair (X, cl) is called closure space.

(i) φ , X ∈ cl.

(ii) ∀ i ∈ I, ∀ Ui ∈ cl ⇒
⋃
i∈I

Ui ∈ cl.

Definition 2.2.2. ([41]) Let (X, cl),(X ′, cl′) be closure spaces. A function g : (X, cl) −→
(X ′, cl′) is continuous if U ∈ cl′ ⇒ g−1(U) ∈ cl.

Remark 2.2.1. [42]

(i) Cls is the category, closure spaces are its objects and continuous maps are its

morphisms.

(ii) Top is embedded in Cls as full subcategory.

Theorem 2.2.1. ([43]) A source {gi : (X, cl) −→ (X ′i, cl
′
i),∀i ∈ I} is an initial in Cls

iff cl= {U ⊂ X : U = ∪i∈I g−1
i (Ui), Ui ∈ cli}.

Example 2.2.3. Let X={1, 2, 3, 4}, cl={φ, {1, 2}, {2, 3}, {1, 3, 2}, X} is the closure

space. Note that cl is not a topology since {1, 2} ∩ {2, 3} is not in cl.

2.3 Quantale Valued Closure Spaces

In 2017, H.Lai and W. Tholen [35] generalized Closure Spaces by introducing a suitable

quantale on it.

Definition 2.3.1. ([35]) A map c : P (X) −→ (L,≤, ∗, k)X is an L−Valued closure

structure on X which satisfies,

(i) (Reflexivity) ∀ y ∈ U ⊆ X ; k 6 (cU)(y).

(ii) (Transitivity) ∀ U,V ⊆ X , y ∈ X.

(
∧
x∈U

(cU)(x)) ∗ (cV )(y) ≤ (cU)(y).
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Then, (X,c) is an L-valued closure space.

Definition 2.3.2. ([35]) An L-valued topological structure on X is a map c : PX −→
(L,≤, ∗, k)X satisfies:

(i) c is an L-valued closure structure on X.

(ii) ∀ y ∈ X and ∅, the empty set:

(cφ)(y) = ⊥.

(iii) ∀ y ∈ X and ∀ U,V ⊆ X:

c(U ∪ V )(y) = (cU)(y)
∨

(cV )(y).

Then, (X,c) is called an L-valued topological space.

Definition 2.3.3. [35] A map g : (X, c) −→ (X ′, c′) is continuous if (cU)(y) ≤
c′(gU)(gy), ∀ U ⊆ X and y ∈ X.

Remark 2.3.1. [35]

(i) L-Cls (resp. L-Top) is the category with L-valued closure spaces (resp. L -valued

topological spaces) as objects and contractive maps as its morphisms.

(ii) L-Top is the full subcategory of L-Cls.

Example 2.3.4. [35] For terminal quantale 1, 1-Cls∼=1-Top ∼= Set.

Example 2.3.5. [35] Consider L=(2,≤,∧,>), where 2={⊥ < >}. Then 2-Cls ∼=
Cls and 2-Top ∼= Top.

Example 2.3.6. [40] If quantale L = (([0,∞],≥),+, 0) (Lawvere’s quantale), then

L-Top ∼= App, where App is the category of approach spaces and contraction maps

[48]. Moreover, we have L-Cls ∼= Cls′, where Cls′ is the category considered in [49].

Definition 2.3.7. [35] Let (Xi, ci) be L-valued closure space and ((Y, c)
gi−→ (Xi, ci))i∈I ,

∀ x ∈ X and A ⊆ X then,
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(cA)(x) =
∧
i∈I ci(giA)(gix),

is an initial structure on X.

Definition 2.3.8. [35] Let X be a non empty set and (X,c) be an L-valued closure

space.

(i) The discrete L-valued closure structure on X is given by, if ∀y ∈ X, ∀U ⊆ X then,

(cdiscU)(y) =

{
k, y ∈ U
⊥, y /∈ U.

(ii) The indiscrete L-valued closure structure on X is given by (cindU)(y)=>.

18



Chapter 3

Notion Of Closedness In Topological
Category Of Quantale Valued Closure
Space

3.1 Local T0 Quantale Valued Closure Spaces

Definition 3.1.1. ([44]) Let (Y, τ) be a topological space and p ∈ Y . (Y, τ) is called

local T0 or T0 at p (in classical sense) if ∀ y ∈ X with y 6= p, ∃ U ⊆ τ of p not containing

y or ∃ V ⊆ τ of y not containing p.

Example 3.1.2. The topology τ = {∅, {a}, X} on X={a, b, c} is not T0 but T0 at a.

Moreover, it is neither at b nor at c.

Theorem 3.1.3. ([44]) Let (Y, τ) be a topological space. (Y, τ) is T0 iff (Y, τ) is T0 at

p, ∀ p ∈ X.

In year 1991, Baran ([18]) introduced classical local T0 of topology in Categorical

Topology in terms of initial and discrete structures.

Definition 3.1.4. ([18]) Let E be any set and a point p ∈ E. A Wedge product E
∨
pE

of E at point p is the two disjoint copies of E at point p.

A point y in E
∨
pE is y1 (resp. y2) if it is in 1st component (resp. 2nd component).

Also E2 is the cartesian product of E.
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Definition 3.1.5. ([18]) Let Ap : E
∨
pE −→ E2 be the principal p axis map, defined

by

yi 7 −→ Ap(yi) =

{
(y, p), i = 1
(p, y), i = 2.

Definition 3.1.6. ([18]) Let Sp : E
∨
pE −→ E2 be the Skewed p axis map, defined

by

yi 7 −→ Sp(yi) =

{
(y, y), i = 1
(p, y), i = 2.

Definition 3.1.7. ([18]) Suppose ∇p : E
∨
pE −→ E2 is the fold map at p, defined by

yi 7 −→ ∇p(yi) = y, ∀ i = 1, 2.

Definition 3.1.8. ([18]) Suppose (E, τ) is a top. space. (E, τ) is called local T0 or

(T0 at p) iff the initial topology on E
∨
pE induced by {E

∨
pE

Ap−→ E2 and E
∨
pE

∇p−→
UD(E) } is disc. top. space.

Theorem 3.1.1. ([44]) Suppose (E, τ) is a top. space. (E, τ) is local T0 in (classical

sense) iff (E, τ) is local T0.

Now, considering categorically, we have following definition given in ([18]).

Definition 3.1.9. ([18]) Suppose U : C −→ Set is a top. functor F ∈ Obj(C) with

U(F)=E and p∈ E.

E is local T0 ⇐⇒ initial lift of {E
∨
pE

Ap−→ E2 and E
∨
pE

∇p−→ UD(E) } is discrete.

Theorem 3.1.10. Let (X,c) be an L-valued closure space and p ∈ X. (X,c) is local T0

⇐⇒ ∀ x ∈ X with x 6= p , ∃ U ⊆ X with x ∈ U , p /∈ U and ∃ V ⊆ X with p ∈ V , x

/∈ V such that,

⊥ =
∧
{c(U)(p), c(V )(x), k},
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where k is an identity element.

Proof: Let (X,c) be a local To and ∀ x ∈ X with x 6= p. Let B ⊆ X
∨
p X and x1 ∈

X
∨
p X with x1 /∈ B.

Note that,

cdisc(∇pB)(∇px1) = cdisc(∇pB)(x) = k,

where k is an identity element.

k ≤ c(proj1ApB)(proj1Apx1) = c(proj1ApB)(x) = c(V )(x).

Since x ∈ (proj1ApB).

And

c(proj2ApB)(proj2Apx1) = c(proj2ApB)(p) = c(U)(p).

Since x1 /∈ B and (X,c) is To, by definition 2.3.7

c(B)(x1) =
∧
{c(proj1ApB)(proj1Apx1), c(proj2ApB))(proj2Apx1), cdisc(∇pB)(∇px1)}.

⊥ =
∧
{c(proj1ApB)(x), c(proj2ApB)(p), k},

⊥ =
∧
{c(proj1ApB)(x), c(proj2ApB)(p), k},

⊥ =
∧
{c(V )(x), c(U)(p), k}.

Conversely: Let c be an initial structure induced by Ap : X
∨
pX −→ (X2, c2) and

∇p: X
∨
pX −→ (X,cdisc), where c2 is a product structure on X2 and proji : X2 −→

X , i=1,2 are projection maps, and cdisc is a discrete structure on X.

Let w ∈ X
∨
pX and B be a non empty subset of X

∨
pX. ∀ x ∈ X with x 6= p , ∃ U

⊆ X with x ∈ U , p /∈ U and ∃ V ⊆ X with p ∈ V , x /∈ V such that

⊥ =
∧
{c(U)(p), c(V )(x), k}.

Case I: If ∇pw = p ∈ ∇pB for some p ∈ X, then w= p1 = p2 ∈ B,

it follows from definition 2.3.7,

(cB)(w) = k.
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Case II: If ∇pw=p /∈ ∇pB, by definition 2.3.6,

(cdis∇pB)(∇pw) = ⊥.

And consequently,

(cB)(w) =
∧
{(c(proj1ApB))(proj1Apw), (c(proj2ApA))(proj2Apw), (cdis(∇pA))(∇pw)},

(cB)(w) = ⊥.

Case III: If ∇pw = x for some x ∈ X with x 6= p, it follows that, w = x1 or w = x2.

a. If w = x1 = x2 ∈ B , then ∇pw ∈ ∇pB and projiApw ∈ projiApB for i=1,2 ,

by definition 2.3.7

(cB)(w) =
∧
{(c(projiApB))(projiApw), (cdis(∇pA))(∇pw)},

(cB)(w) = k.

b. If w= x1, x2 /∈ B, then ∇pw /∈ ∇pB , by definition 2.3.7

(cB)(w) = ⊥.

c. If w = x1 /∈ B but x2 ∈ B ,by def 2.3.8

(cdis∇pB)(∇pw) = k.

And

c(proj1ApB))(proj1Apw) = c(proj1ApB)(p),

c(proj2ApB))(proj2Apw) = c(proj2ApB)(x).

It follows that,

(cB)(w) =
∧
{c(projiApB)(projiApw), cdis(∇pA)(∇pw)},

(cB)(w) = ⊥.

Therefore , ∀ w ∈ X
∨
p X and B ⊆ X

∨
p X, we have,
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(cB)(w) =

{
k, w ∈ B
⊥, w /∈ B.

By definition 2.3.8, c is an L-valued discrete structure on X
∨
pX, and by definition

of local To.

Thus, (X, c) is local To.

Theorem 3.1.11. Let (X,c) be an L−valued closure space and p ∈ X, where L is an

integral quantale and L has a prime bottom element. (X,c) is local To ⇐⇒ ∀ x ∈ X

with x 6= p , ∃ U ⊆ X with x ∈ U , p /∈ U and ∃ V ⊆ X with p ∈ V , x /∈ V such that

c(U)(p) = ⊥ or c(V )(x) = ⊥.

where ⊥ is a bottom element.

Proof. : It follows from theorem 3.1.10 and definition of integral quantale and prime

bottom element.

3.2 Local T1 Quantale Valued Closure Spaces

Definition 3.2.1. ([44]) Suppose (Y, τ) is a topological space and p ∈ Y. (Y, τ) is

called local T1 or T1 at p (in classical sense) iff ∀ y ∈ Y with y 6= p, ∃ U ⊆ τ of p not

containing y and ∃ V ⊆ τ of y not containing p.

Example 3.2.2. The topology τ = {∅, {1}, {2}, {1, 2}, {3, 4}, {1, 3, 4}, {2, 3, 4}, X} on
X={1,2,3,4} is not T1 space but T1 at 1.

Theorem 3.2.3. ([44]) Let (Y, τ) be a topological space. (Y, τ) is T1 iff (Y, τ) is T1 at

p, ∀ p ∈ Y.

In 1991, Baran [18] introduced classical local T1 of topology in Categorical Topology

in terms of initial and discrete structures.
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Definition 3.2.4. ([18]) Suppose (E, τ) is a top. space. (E, τ) is called local T1 or (T1

at p) iff the initial top. on E
∨
pE induced by {E

∨
pE

Sp−→ E2 and E
∨
pE

∇p−→ UD(E)

} is disc. top. space.

Theorem 3.2.5. ([44]) Let (Y, τ) be a topological space. (Y, τ) is local T1 in (classical

sense) iff (Y, τ) is local T1.

Now, considering categorically, we have following def given in [18].

Definition 3.2.6. ([18]) Suppose U : C −→ Set is a top. functor F ∈ Obj(C) with

U(F)=E and p∈ E.

E is local T1 ⇐⇒ initial lift of {E
∨
pE

Sp−→ E2 and E
∨
pE

∇p−→ UD(E) } is discrete.

Theorem 3.2.7. Let (X, c) be an L-valued closure space and p ∈ X. (X, c) is local T1

⇐⇒ ∀ x ∈ X with x 6= p, ∃ U ⊆ X with x ∈ U , p /∈ U and ∃V ⊆ X with p ∈ V ,

x /∈ V such that

c(U)(p) ∧ k = ⊥ = c(V )(x) ∧ k.

Proof. Suppose, (X, c) is local T1 and ∀ x ∈ X with x 6= p. Let B ⊆ X
∨
p X and

x1 ∈ X
∨
p X with x1 /∈ B.

Note that

cdisc(∇pB)(∇px1) = cdisc(∇pB)(x) = k.

Where k is an identity element.

k ≤ c(proj1SpB)(proj1Spx1) = c(proj1SpB)(x) = c(V )(x).

Since x ∈ proj1SpB.

And

, c(proj2SpB)(proj2Spx1) = c(proj2SpB)(x),

since x1 /∈ B and (X,c) is local T1, by definition 2.3.7,

c(B)(x1) =
∧
{c(proj1SpB)(proj1Spx1), c(proj2SpB)(proj2Spx1), cdisc(∇pB)(∇px1)},

⊥ =
∧
{c(proj1SpB)(x), (c(proj2SpB)(x), k},
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⊥ =
∧
{c(V )(x), k},

and consequently,

c(V )(x) ∧ k = ⊥.

Similarly, let B ⊆ X
∨
p X and x2 ∈ X

∨
p X with x2 /∈ B,then we have

⊥ =
∧
{c(U)(p), k},

and consequently,

c(U)(p) ∧ k = ⊥.

Conversely: Let c be an initial structure induced by Sp : X
∨
pX −→ (X2, c2) and ∇p:

X
∨
pX −→ (X,cdisc), where c2 is a product structure on X2 and proji : X2 −→ X ,

i=1,2 are projection maps and cdisc is a discrete structure on X.

Let w ∈ X
∨
pX and B be the non empty subset of X

∨
pX and ∀ x ∈ X with x 6= p

∃ U ⊆ X with x ∈ U , p /∈ U and ∃ V ⊆ X with p ∈ V , x /∈ V such that,

c(U)(p) ∧ k = ⊥ = c(V )(x) ∧ k.

Case I: If ∇pw = p ∈ ∇pB then, w= p1 = p2 ∈ B,

it follows from definition 2.3.8,

(cB)(w) = k.

Case II: If ∇pw=p /∈ ∇pB,by definition 2.3.8

(cdis∇pB)(∇pw) = ⊥.

And consequently,

(cB)(w) =
∧
{c(proj1SpB)(proj1Spw), c(proj2SpB)(proj2Spw), cdis(∇pA)(∇pw)},

(cB)(w) = ⊥.

Case III: If ∇pw = x for some x ∈ X with x 6= p, it follows that, w = x1 or w=x2
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a. If w = xi ∈ B for i = 1, 2 , then ∇pw ∈ ∇pB and projiSpw ∈ projiSpB forx (X, c) ,

by definition 2.3.8,

(cB)(w) =
∧
{c(projiSpB)(projiSpw), cdis(∇pA)(∇pw)},

(cB)(w) = k.

b. If w= xi /∈ B for i = 1, 2 , then ∇pw /∈ ∇pB , by definition 2.3.8

cdis(∇pB)(∇pw) = cdis(∇pB)(x) = ⊥,

and consequently,

(cB)(w) = ⊥.

c. If w = x1 /∈ B but x2 ∈ B , by definition 2.3.8

cdis(∇pB)(∇pw) = cdis(∇pB)(x) = k.

And

c(proj1SpB)(proj1Spw) = c(proj1SpB)(x) = c(V )(x),

c(proj2SpB)(proj2Spw) = c(proj2SpB)(x) = c(U)(p).

By definition 2.3.7

(cB)(w) =
∧
{c(projiSpB)(projiSpw), cdis(∇pB)(∇pw)},

(cB)(w) =
∧
{c(V )(x), k} = ⊥.

Also,

c(V )(x) ∧ k = ⊥.

Similar to above, if w =x2 /∈ B but x1 ∈ B, then we have

c(U)(p) ∧ k = ⊥.

Therefore , ∀ w ∈ X
∨
p X and B ⊆ X

∨
p X, we have,
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(cB)(w) =

{
k, w ∈ B
⊥, w /∈ B.

by definition 2.3.8, c is an L-valued discrete structure on X
∨
pX and by definition of

local T1.

Thus, (X,c) is local T1.

Theorem 3.2.8. Let (X,c) be an L−valued closure space and p ∈ X, where L is an

integral quantale. (X,c) is local T1 ⇐⇒ ∀ x ∈ X with x 6= p, ∃ U ⊆ X with x ∈ U ,
p /∈ U and ∃ V ⊆ X with p ∈ V , x /∈ V such that,

c(U)(p) = ⊥ = c(V )(x),

where ⊥ is a bottom element.

Proof. It follows from theorem 3.2.7 and definition of integral quantale.

3.3 Notion Of Closedness in Quantale Valued Closure
Spaces

Definition 3.3.1. ([46]) Let (Y, τ) be topological space and p ∈ Y. {p} is closed set

(in classical sense) iff {p}c is open set. i.e. {p}c ∈ τ .

In 1991, Baran [18] introduced classical notion of closedness of general topology

in Categorical Topology in terms of initial and discrete structures. Therefore, infinite

wedge product has been introduced for this purpose.

Definition 3.3.2. ([46]) Let E be any set and a point p ∈ E. The infinite Wedge

product
∨∞
p E of E at point p is, the infinite disjoint copies of E at point p.

Definition 3.3.3. ([46]) Let A∞p :
∨∞
p E −→ E∞ be the Infinite principal p axis map,

defined by

yi 7 −→ A∞p (yi) = (p, p, ..., y, ...) , ∀ i ∈ I.

27



Definition 3.3.4. ([46]) Let ∇∞p :
∨∞
p E −→ E∞ be an Infinite fold map at p, defined

by

yi 7 −→ ∇∞p (yi) = y, ∀ i ∈ I.

Definition 3.3.5. ([46]) Let (E, τ) be a topological space and p ∈ E. {p} is called closed

set⇐⇒ the initial top. on
∨∞
p E induced by {

∨∞
p E

A∞
p−−→ E∞ and

∨∞
p E

∇∞
p−−→ (E, τdisc)}

is discrete top.

Theorem 3.3.6. ([45]) Let (E, τ) be topological space and p ∈ E. {p} is a closed set

(in classical sense) ⇐⇒ {p} is closed set.

Now considering categorical counterpart, we have following definition of closed ob-

jects given in [46].

Definition 3.3.7. ([46]) Suppose U : C −→ Set is a top. functor, F ∈ Obj(C) with

U(F ) = E and p ∈ E.

{p} is closed ⇐⇒ the initial lift of {
∨∞
p E

A∞
p−−→ E∞ and

∨∞
p E

∇∞
p−−→ UD(E) = E} is

discrete.

Theorem 3.3.8. Let (X, c) be an L-valued closure space. {p} is closed ⇐⇒ ∀ x ∈ X
with x 6= p, ∃ U ⊆ X with x ∈ U , p /∈ U and ∃ V ⊆ X with p ∈ V , x /∈ V such that,

⊥ =
∧
{c(U)(p), c(V )(x), k}

Proof. Let (X, c) be an L-valued closure space, p ∈ X , suppose {p} is closed ,so for

all x in X with x 6= p. let {xj} ⊆ B ⊆
∨∞
p X and w = xi ∈

∨∞
p X.

Note that,

(cdis∇∞p B)(∇∞p x1) = k.

Since, x ∈ ∇∞p B.

c(projiA
∞
p B)(projiA

∞
p w) =c(projiA

∞
p B)(x)

c(projjA
∞
p B)(projjA

∞
p w) =c(projjA

∞
p B)(p)

c(projkA
∞
p B)(projkA

∞
p w) =c(projkA

∞
p B)(p).
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Also,

k ≤ c(projkA
∞
p B)(projkA

∞
p w) = c(projkA

∞
p B)(p) = c(U)(p),

as p ∈ projkA∞p B
Since w = xi /∈ B and {p} is closed, by definition 2.3.7,

(cB)(w) =
∧
{cdis(∇∞p B)(∇∞p w), c(projiA

∞
p B)(projiA

∞
p w), c(projjA

∞
p B)(projjA

∞
p w),

c(projkA
∞
p B)(projkA

∞
p w)},

⊥ =
∧
{k, c(U)(p), c(V )(x)}.

Conversely: Let c be an initial structure on wedge
∨∞
p X induced by A∞p :

∨∞
p X −→

(X∞, c∗) and ∇∞p :
∨∞
p X −→ (X,cdisc), where c∗ is a product L− closure structure

induced by projk : X∞ −→ X ∀(k ∈ I) projection map and cdisc is the discrete L-

closure structure.

Suppose, w ∈
∨∞
p X and B ⊆

∨∞
p X.

Case I: If ∇∞p w=p ∈ ∇∞p B for some p ∈ X , w = p1 = p ∈
∨∞
p X.

It follows that,

(cB)(w) = k,

where k is an identity element.

Case II: If ∇∞p w = p /∈ ∇∞p B, then

cdis(∇∞p B)(∇∞p w) = ⊥.

Since, cdisc is the discrete L-closure structure, and consequently,

(cB)(w) = ⊥.

Case III: Let ∇∞p w = x for some x ∈ X, then we have w = xi, (∀i ∈ I).

a. If w = xi ∈ B, then ∇∞p w ∈ ∇∞p B and projiA∞p w ∈ projiA∞p B, it follows that

(cB)(w) = k.
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b. If w = xi /∈ B, then ∇∞p w /∈ ∇∞p B and consequently,

cdis(∇∞p B)(∇∞p w) = ⊥,

and

(cB)(w) = ⊥.

c. If w = xi /∈ B but xj ∈ B with i 6= j. For i 6= k 6= j, by definition 2.3.8.

cdis(∇∞p B)(∇∞p w) = cdis(∇∞p B)(x) = k.

Since, x ∈ ∇∞p B.

c(projiA
∞
p B)(projiA

∞
p w) =c(projiA

∞
p B)(x),

c(projjA
∞
p B)(projjA

∞
p w) =c(projjA

∞
p B)(p),

And

c(projkA
∞
p B)(projkA

∞
p w) = c(projkA

∞
p B)(p).

Since, p ∈ projkA∞p B and by definition 2.3.4, then we get

k ≤ c(projkA
∞
p B)(p).

It follows from definition 2.3.7,

(cB)(w) =
∧
{cdis(∇∞p B)(∇∞p w), c(projiA

∞
p B)(projiA

∞
p w), c(projjA

∞
p B)(projjA

∞
p w),

c(projkA
∞
p B)(projkA

∞
p w)},

=
∧
{k, c(U)(p), c(V )(x)}.

where U = projiA
∞
p B and V = projjA

∞
p B.

By our assumption,

⊥ =
∧
{k, c(U)(p), c(V )(x)}.

And consequently,

(cB)(w) = ⊥.

Similar to above, if w = xj /∈ B but xi ∈ B with i 6= j. For i 6= k 6= j, it follows that

(cB)(w) = ⊥.
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Then w ∈
∨∞
p X and all non-empty subset B of

∨∞
p X, we have

(cB)(w) =

{
k, w ∈ B
⊥, w /∈ B.

by definition 2.3.8, c is the discrete L-closure structure and by definition 3.3.7 {p} is

closed.

3.4 Relationship among local T0, local T1 and notion
of closedness in category L-Cls

Lemma 3.4.1. Every local T1 QV-closure space is local T̄0 QV-closure space but con-

verse is not true.

Proof. It follows from Theorems 3.1.10 and 3.2.7.

Example 3.4.2. Let X = {a, b, c} and P (X) = {φ, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, X}.
Consider a quantale L = (([0, 1],≤), ., 1), here [0, 1] is real a unit interval with ≤ as

partial order, ”.” the product i.e., the quantale operation and 1 is an identity ele-

ment. Let c : P (X) −→ LX be a map defined by, ∀x ∈ X, and ∀ φ 6= U ⊂ X.

c(U)(x) = 1 if x ∈ U and c({b})(c) = c({a, b})(c) = c({c})(b) = c({a, c})(b) = 1
2
,

c({b})(a) = c({c})(a) = c({b, c})(a) = 0.

Clearly, (X, c) be a QV-closure space. Note that, it is local T0 at a but not local T1 at

a.

Theorem 3.4.1. Let (X, c) be L-valued closure space then following are equivalent,

(i) (X,c) is local T0.

(ii) Every singleton set is closed.

Proof. It follows from theorems 3.1.10 and 3.3.8.
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3.5 Epireflective Properties of Local T0 and Local T1

Quantale valued Closure Spaces

The Category LT0 L−Cls resp (LT1 L−Cls) whose objects are Local T0 (resp. Local

T1) Quantale-Valued Closure Spaces and Morphisms are Continuous maps is the full

subcategory of L-Cls and isomorphic closed.

Theorem 3.5.1. Let (X, c) be L-valued closure space . A ⊂ X and p ∈ X. If (X, c) is

local T̄0 (resp. local T1), then (A, cA) is also local T̄0 (resp. local T1).

Proof. Let f : A ↪→ X be the inclusion map defined by f(x) = x and cA be the initial

lift of f : A ↪→ (X, c). Suppose U ⊂ A with x ∈ U , p /∈ U and ∃ V ⊂ A with p ∈ V ,

x /∈ V . Since, cA is an initial lift of f .

cA(U)(p) = c(f(U))(f(p)) = c(U)(p),

and

cA(V )(p) = c(f(V ))(f(x)) = c(V )(x).

Since, (X, c) is local T1 (resp. local T̄0) . Then by theorem 3.1.10

c(U)(p) = ⊥.

or (resp. and)

c(V )(x) = ⊥.

It follows that,

cA(U)(p) = ⊥,

or (resp. and)

cA(V )(x) = ⊥.

Hence (A, cA) is local T̄0 (resp. local T1).

Theorem 3.5.2. Let (Xi, ci) ∀i ∈ I be an L-valued closure spaces. X =
∏

i∈I Xi and

p = (p1, p2, p3, ...) ∈ X. Where pi ∈ Xi, ∀i ∈ I. If (Xi, ci)∀i ∈ I is local T0 (resp. local

T1), then the product space, (X, c) is also local T0 (resp. local T1).
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Proof. Let {(Xi, ci);∀i ∈ I} be local T̄0(resp. local T1) L-valued closure spaces and

X = (x1, x2, ..., xn, ...) ∈ X.

Since, ∃ j ∈ I such that xj 6= pj.

By assumption (Xi, ci) is local T̄0 (resp. local T1), ∃ Uj ⊂ Xj with xj ∈ Uj and

∃ Uj ⊂ Xj with pj ∈ Vj and xj /∈ Vj .

cj(Uj)(pj) = ⊥,

or (resp. and)

cj(Vj)(xj) = ⊥.

If

cj(Uj)(pj) = ⊥.

By definition of initial lift.

c∗(U)(p) =
∧
i∈I

{ci(projiU)(projip)}.

c∗(U)(p) =
∧
{c1(U1)(p1), c2(U2)(p2), ...}

= ⊥.

Similarly, if c∗(V )(x) = ⊥. Then the product L-valued closure spaces is local T0 (resp.

local T1).
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Chapter 4

Conclusion

In this dissertation, the category of Quantale-valued Closure spaces is taken into con-

sideration. Initially, it has been shown that L-Cls is a topological category and its

relation to the category Cls of classical Closure spaces and continuous maps is studied

and several examples with different quantales are provided. Furthermore, local T0 and

local T1 are explicitly characterized for quantale-valued closure space and it is shown

that every local T1 QV-Closure space implies local T0 QV-Closure space but converse

is not true in general. In addition, the notion of closedness are examined in topological

category of L-Cls and it is examined that this notion of closedness, (i.e., {p} is closed)
coincides with local T0 QV-Closure space. Finally, hereditary and productivity of local

T0 (resp. local T1) QV-Closure space are examined.

Comparing our results with other topological categories, we have followings.

(i) In CHY (Category of Cauchy spaces) [50], Local T0 = Local T1 = {p} is closed
[51].

(ii) In Born (the category of Bornological spaces and bounded maps) [7] , all objects

are Local T0, Local T1 and every set {p} is closed [52].

(iii) In Top [45], Local T1 = {p} is closed implies Local T0 [45].

(iv) In L-GS (the category of Quantale-valued Gauge spaces) [53], Local T1 implies

Local T0 = {p} is closed [47].
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In our thesis, we found the following results.

In L-Cls (the category of Quantale-valued Closure space and continuous maps), by

Theorems 3.1.10, 3.2.7 and 3.3.8, Local T1 implies Local T0 = Every singleton is closed.
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