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Abstract

The concept of centrality of a graph is introduced by Camille Jorden in 19th century

for the analysis of different network models which is widely used in facility location

problems. To measure the non-self-centrality extent of a graph Xu et al. introduced

an eccentricity based graph invariant called Non-self-centrality number (NSC number).

The centrality concept and eccentricity measures of a graph is used in network sciences,

opimization theory, facility location problem, chemical graph theory and many more.

In this thesis we have considered some problems of extremal graph theory with

respect to this distance based graph invariant NSC number. We have considered the

class T(n, p) of all non-self centered tree graphs of order n with p pendant vertices. We

found out the unique maximal graph Dn,p with respect to NSC number among all the

graphs in T(n, p) and also formulated the mathematical expressions for it and hence

gave the upper bound. Further we extended our study to find the maximal graph

among a class of unicyclic graphs Un(3,∆) with some fixed parameters, that is, fixed

degree ∆ and atmost three central vertices. We found the unique graph Ũn,3 which

attains the maximum value of NSC number in this class.
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Chapter 1

Introduction to Graph Theory

In recent years, graph theory has grown in importance as a branch of mathematics, as

it is an important mathematical tool with applications in a wide variety of subjects

like operations research, mathematical chemistry, biochemistry, architecture, geogra-

phy, networking, electrical engineering, physics, social sciences, computer sciences and

many more. Basically graph theory is concerned with the study of mathematical struc-

tures or network of points, that are said to be vertices of graph which are connected

by lines, called edges that shows the pairwise relation between those points.

The origin of graph theory is specifically dated back to 1735, when a Swiss mathe-

matician Leonard Euler was asked to find a possible path over the seven bridges of

Königsberg city which was divided into four regions by river Pregel, to walk around

the city and return back to the starting point (if possible) after crossing each of the

seven bridges only once. The problem was called Königsberg bridge problem. Königs-

berg bridge problem could be stated in the terminology of the modern graph theory as

follows;

If there exist a path along the edges of a multigraph, that transverses each of the edge

once and only once, then there exist atmost two vertices that have odd degree. More-

over, if that path starts and ends at a same vertex in that graph, then no vertex will

have odd degrees[1].

Euler sketched this problem by a graph in which the four regions were represented by

points and the bridges connecting them were considered as edges. He stated that the
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desired path doesn’t exist in this problem and proved the first theorem in graph theory.

1.1 Graphs and basic definitions

A graph G, is an ordered pair G = (VG, EG) of vertex set denoted by VG and edge set

denoted by EG. If there is an edge between two vertices vi and vj then the edge is

denoted by vivj or vjvi, where vi, vj are called the end points of the edge. In a graph,

the cardinality of the vertex set VG is called order of that graph, where cardinality of

the egde set EG is called size of that graph. Two vertices vi, vj ∈ VG in a graph are

called adjacent in G if there exist an edge between vi and vj in graph G; that is, for

some u, v ∈ VG, we have uv ∈ EG; otherwise, they are non-adjacent. Any two vertices

in G are neighbors of each other if they are adjacent in G. For any vertex v ∈ VG, the
set of neighbours of v is denoted by

ΓG(v) := {u ∈ VG | uv ∈ EG}.

An edge that connects a vertex to itself is said to be a loop. When two or more edges

share the same ends then these edges are said to be multiple or parallel edges. A graph

without a loop and a parallel edge is called a simple graph. By allowing loops and

parallel edges we can generalize simple graphs to multigraphs. In the Figure 1.1, two

edges are placed parallel that connects the common ends v4 and v5. Their is also a

loop at vertex v4.

v1 
v1 

v2 v
3

v4

v
5

v2

v
3

v4

v
5

(a) (b)

Figure 1.1: Simple and multi graphs
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Definition 1.1.1. For some vi ∈ VG, the set ΓG(vi) = {vj ∈ G | vivj ∈ G} is called

neighbor of vi in G. Degree of vi ∈ G, denoted by dG(vi), is defined as

dG(vi) = |ΓG(vj)|.

A vertex of degree 0 is called an isolated vertex. If dG(vi) = 1 then v is said to be a

leaf or a pendant vertex. For a graph G, the minimum and maximum degree is defined

as:

δ(G) = min{dG(vi) | vi ∈ G}.

∆(G) = max{dG(vi) | vi ∈ G},

A very famous lemma of graph theory is given below.

Theorem 1.1.1 ([2]). For any graph G∑
v∈VG

dG(v) = 2|EG|.

Moreover, G has even number of vertices with odd degree.

Above theorem is also known as degree sum formula that shows that the number

of odd degree vertices in a graph is always even.

Definition 1.1.2. A vertex v ∈ VG of a graph G of order n is called universal vertex

or dominating vertex if v is adjacent to all other vertices in G. And nn−1(G) denotes

the number of universal vertices in a graph G.

Definition 1.1.3. Let G = (VG, EG) be a given graph with u, v ∈ VG. A path from

u to v is defined as a finite sequence of edges {vivi+1 | i = 1, 2, ...,m − 1} such that

vi 6= vj for all i 6= j.

A path Pn has (n− 1) edges, that is, |VPn|= |EPn|+1.

If their exists a path between any two arbitrary vertices of a graph G, then G is said

to be a connected graph otherwise disconnected.
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Definition 1.1.4. A trail in a graph is defined as a finite sequence of edges, such that

all edges are distinct.

Definition 1.1.5. A cycle Cl is a closed trail {v1, v2, ..., vl−1, vl} with l ≥ 3, in which

v1 = vl and all other vertices are different.

Definition 1.1.6. A graph G is called acyclic if it contains no cycle. A connected,

acyclic graph is called a tree graph. Acyclic graph is also called a forest.

Theorem 1.1.1 ([2]). For any graph T , the following statements are equivalent:

i) T is a tree.

ii) For some u, v ∈ ET there is a unique path connecting u and v.

iii) T is acyclic with |ET |= |VT |−1.

A graph G is a rooted graph if a single vertex v ∈ VG can be distinguished as its

root.

Definition 1.1.7. The length of a shortest path between two vertices vi, vj ∈ VG is

the distance between vi and vj which is denoted by dG(vi, vj). Eccentricity of a vertex

vi ∈ VG is defined as:

ε(vi) = max
vj∈VG

dG(vi, vj).

Definition 1.1.8. Diameter of a graph G is the maximum eccentricity of a vertex

among all eccentricities of vertices in G. It is denoted by d(G). If εG(vi) = d(G) then

vi is called peripheral vertex in G.

Definition 1.1.9. The minimum eccentricity among all the vertices in G is the radius

of the graph G, denoted by r(G). The vertices with eccentricity ε(vi) = r(G) are the

central vertices. In general, we have d(G) ≤ 2r(G).

Definition 1.1.10. The center of a graph G, denoted by C(G) is a subgraph of G

induced by central vertices of G.

Center of a complete graph Kn is the graph itself since for all vi ∈ Kn, ε(vi) = 1 =

r(Kn) = d(Kn). Similarly center of a path Pn is either K1 or K2
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If for all vi ∈ VG, ε(vi) = r(G) = d(G) then the graph G is self-centered, that is,

all vertices are central. If r(G) 6= d(G) then graph is non-self-centered. Xu.et al. [3]

introduced an efficient graph invariant that indicates the non-self centrality of a graph

that is named as non-self centrality number.

Definition 1.1.11. The non-self centrality number of a graph G (henceforth NSC

number) is defined as:

N(G) =
∑

1≤i<j≤k

lilj(εi − εj), (1.1)

where εi, 1 ≤ i ≤ k, are the distinct eccentricities of G such that ε1 > ε2 > · · · > εk

with l1, l2, . . . , lk as their respective multiplicities. NSC number of a graph can also be

defined as

N(G) =
∑
vi 6=vj

|εi − εj|,

where the summation is over all the unordered pairs of vertices of graph G.

1.2 Subgraphs and Isomorphic Graphs

Sometimes we need to deal with a smaller part of a graph to determine its properties

in order to determine a solution. The solution can be found out by determining the

properties of those parts of graph and combining them. For instance any property that

can be found out by the degree of a vertex vi (that is, number of neighbors of the vertex

vi) or a property that can be determined by set of independent sets in that graph. In

such circumstances we need to study subgraphs.

1.2.1 Subgraphs

A graph H = (VH , EH) is said to be a subgraph of the graph G = (VG, EG), if VH ⊆ VG

and EH ⊆ EG.

Definition 1.2.1. If G = (VG, EG) is a graph with H = (VH , EH) its subgraph then

H is called a spanning graph if VG = VH .
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Graph Subgraph Spanning graph Induced graph

(a) Subgraph

Figure 1.2: Subgraphs

For some EH ⊆ EG, H = (VH , EH) is called edge induced subgraph by EH where

v ∈ VH if and only if v appears in an edge in EH .

Similarly, if S ⊂ VG and VG−S = VH then, H = (VH , EH) is a vertex induced subgraph

by vertices VH obtained by deleting all vertices of S and uv ∈ EH if {u, v} ∈ VH .

1.2.2 Isomorphic Graphs

Any two simple graphs G1 and G2 are said to be isomorphic graphs if there exist a

bijection ψ : VG1 → VG2 such that for all u, v ∈ VG1 , uv ∈ EG1 iff ψ(u)ψ(v) ∈ EG2 . All

isomorphic graphs have same physical and chemical properties. Infact for any arbitrary

graph there may exist infinitely many isomorphic graphs. In Figure 1.3, the graphs G

and G′ are isomorphic.

1

2

3

4

5

6

7

8

a b

cd

e f

gh

(a)
(b)

(a) Isomorphic

Figure 1.3: Isomorphic graphs
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1.3 Some Special Graphs

In this section, we define some classes of graphs.

A graph G = (VG, EG) with only one vertex is trivial graph; otherwise, it is non-trivial.

Definition 1.3.1. A complete graph Kn on n-vertices, is a graph such that every two

vertices in G are adjacent, that is, a vertex v in Kn is adjacent to all other (n − 1)

vertices. Hence we have dG(v) = (n− 1) for all v ∈ VKn , Kn is self centered graph.

Definition 1.3.2. A graph G with every vertex of same degree is called a regular

graph. If for all vertices v ∈ V (G), dG(v) = r then G is a r-regular graph. A very

well-known Petersen graph of order 10 is a 3-regular graph.

Definition 1.3.3. A tree T of order n with p pendant vertices is a double broom

with diameter d(T ) = n− p + 1 such that dp−2
2
e pendant vertices are adjacent with a

single vertex of eccentricity d(T ) − 1 and bp−2
2
c pendant vertices are adjacent with a

single central vertex in T . An n-vertex double broom with p pendant vertices has the

eccentricity sequence of the form

ξ(T ) = {ed
p+2
2
e

1 , e2
2, . . . , e

2
k−2, e

b p+2
2
c

k−1 , elkk }, (1.2)

and is denoted by Dn,p. Since center of Dn,p is K1 or K2, we have lk = 1 when d(Dn,p)

is even and lk = 2 when d(Dn,p) is odd.

Definition 1.3.4. A graph G of order n and p+1 pendant vertices is called a p-broom

if G has diameter n− p and the eccentricity sequence of the form

ξ(G) = {ed
p+2
2
e

1 , e2
2, . . . , e

2
s−1, e

3
s, e

2
s+1, . . . , e

2
k−2, e

b p+2
2
c

k−1 , elkk }, (1.3)

where 2 ≤ s ≤ (k− 1) for k ≥ 4. If k < 4 then, the graph will be a double broom. We

denote the class of n-vertex p-brooms by Ppn.

Definition 1.3.5. The complement of a graph G = (VG, EG), denoted by G =

(VG, EG), is defined as a graph with VG = VG and e ∈ EG if and only if e 6∈ EG
The complement of a complete graph is a 0-regular graph.
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Definition 1.3.6. If the vertex set VG of a graph G = (VG, EG) can be partitioned

into two sets say A and B such that every edge vivj ∈ EG connects some vi ∈ A and

some vj ∈ B, then we say G is a bipartite graph with bipartition A and B.

A bipartite graph G with the bipartition A, B is called a complete (p, q)-bipartite if

|A|= p, |B|= q and for all u ∈ A and v ∈ B, we have an edge uv ∈ EG.

Theorem 1.3.1 ([2]). A graph G is bipartite graph if and only if G contain no odd

cycles as its subgraph.

1.4 Adjacency Matrix

Let G = (VG, EG) be a finite simple graph. The adjacency matrix, A = [auv] of G is

a {0, 1}-matrix indexed by vertices of G in which auv = 1 when uv ∈ EG and auv = 0

otherwise.

The eigenvalues of an adjacency matrix A of the graph G are the eigenvalues of G. If

λ1, λ2, ..., λs are the distinct eigenvalues of A, then λ1 ≥ λ2 ≥ ... ≥ λs, where all the

eigenvalues of A are real.

Definition 1.4.1. For any graph G, the graph energy is defined as;

E(G) =
s∑
i=1

|λi|,

that is, energy of the graph G is the sum of the absolute values of all eigenvalues. In

any two graphs say G1 and G2 if the equality E(G1) = E(G2) holds then G1 and G2

are said to be equi-energetic.

1.5 Networks and Connectivity

Networking or network science is also a part of graph theory in which we study the

symmetric and asymmetric relation between nodes which are the representation of

discrete objects. Network science has applications in wide variety of disciplines like

computer sciences, statistical sciences, operations research, finance, engineering, eco-

nomics, social networking and many more. The most important terminology that we
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use in networking is connectivity.

The pattern in which the vertices are connected with each other in a graph defines

different properties of that graph. If we can disconnect a graph by removing a single

vertex vi ∈ G then we say that G has connectivity 1 and the vertex v is a cut point. If

removing two such vertices the graph becomes disconnected then G has connectivity

2.

Definition 1.5.1. A vertex v ∈ VG is a cut-vertex of G if (G−v) has more components

than that of G. Deletion of a vertex v ∈ VG results in deletion of all edges which are

incident on v in G.

Let M ⊆ VG. The set M is called a separating set if (G −M) has more components

than G. In other words, if G is a connected graph then, (G−M) is disconnected.

Definition 1.5.2. If M ⊂ VG then, the vertex connectivity number of a graph G,

which is denoted by κ(G) is defined as;

κ(G) = |M |,

such that (VG −M) is disconnected or trivial, where M is the smallest set for which

(VG −M) is disconnected.

If κ(G) ≥ k in graph G, then G is called a k-connected graph. The graph Kn

(complete graph) is the only graph that have connectivity (n − 1). A disconnected

graph has 0 connectivity. There may exist graphs without a separating set.

Definition 1.5.3. If G is a connected graph and S ⊆ EG then S is said to be an edge

cut, if (G−S) is disconnected. Edge cut is denoted by λ(G). The graph is k-connected

if λ(G) ≥ k.

Edge connectivity is undefined for a trivial graph (one vertex graph). Any two

vertices in G can be disconnected by removing all the edges incident to a single vertex.

Thus we have the relation

λ(G) ≤ δ(G).

9



Also

δ(G) ≤ (n− 1).

This implies δ(G) ≤ (n− 1).

Since deletion of a vertex also deletes all edges incident to it, therefore we have

κ(G) ≤ λ(G).

Definition 1.5.1. A graph G is called maximal connected if it is connected with

respect to the property of connectedness. In other word, G is maximally connected if

connectivity of G is equal to the minimum degree of G.

Definition 1.5.2. A subgraph of a graph G that is connected and also not contained

in some other connected sub-graph of G is called a maximal connected subgraph. Block

is a maximal connected subgraph that contains no cut-vertex.

Definition 1.5.3. An edge e ∈ EG in graph G is a bridge of G if deletion of e increases

the number of components in G.

If G is a connected graph and e is a bridge then, (G−e) is disconnected. If G has m

connected components then, (G−e) has (m+1) connected components. In Figure 1.4,

e = uu
′ and e = vv

′ are bridges in G where u, u′ and v, v′ are in different components.

u u'

v v'

Figure 1.4: A connected graph

In tree graph T = (VT , ET ), every edge e ∈ ET is a bridge.

Theorem 1.5.4 ([2]). Any edge e ∈ EG is a bridge of G iff e is not in a cycle of G.

10



1.6 Extremal Graphs

It’s a branch of mathematics that study how a graph’s global feature affect its local

substructure. It includes a large number of results that explain how certain graph

features like; size, egde, density, chromatic number, girth, guarantee the existence of

particular local substructures, such as weather they contain or do not contain one. In

the area of graph theory, extremal graph is one of the main study. Extremal graphs are

minimal or maximal with respect to some parameters such as edge coloring, degree or

clique number such that, they contain or do not contain a local substructure. A basic

theorem in extremal graph theory given by Mantel in 1907 khown as Mental theorem

which is stated below;

Theorem 1.6.1 ([4]). Any graph G = (VG, EG) with |VG|= n, |EG|= m, if G is a

graph with girth ≥ 4 or no induces 3-cycle, then m ≤ bn2

4
c. Furthermore the equality

holds if G ∼= Kbn
2
c,dn

2
e with m = bn2

2
c.

The generalization of Mantels’s theorem is given by Paul in 1941 by considering the

clique size of graph equal to q.

Theorem 1.6.2 ([5]). An n-vertex complete balanced k-partite graph doesn’t contain

Kq+1 but every n-vertex graph with more edges must contain Kq+1, where Kq+1 is a

complete graph on (q + 1) vertices.

Throughout this dissertation we only consider finite, simple un-directed graphs that

are non-self centered. Our main focus in this thesis is to find the extremal graphs among

all the n vertex trees with fixed pendant vertices with respect to the graph invariant

NSC number and the extremal unicyclic graphs with fixed paremeter w.r.t. the same

graph invariant i.e NSC number.
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Chapter 2

Literature Review

2.1 Background and motivation

Finding the non-self-centrality number of a non-self-centered graph is of great impor-

tance, as it is used in a wide number of fields like in theory of networks, optimiza-

tion theory , facility location problems, chemical graph theory and many more. To

measure the non-self-centrality extent of the non-self-centered graphs Xu et al. [3] in-

troduced two eccentricity based graph invariants named the third Zegreb eccentricity

index E3(G) defined as;

E3(G) =
∑

e=vivj∈EG

|εj − εi| (2.1)

and the Non-self-centrality number (NSC number) defined as;

N(G) =
∑

1≤i<j≤k

lilj|εi − εj| (2.2)

where εi, 1 ≤ i ≤ k, are the distinct eccentricities of G such that ε1 > ε2 > · · · > εk with

l1, l2, . . . , lk as their respective multiplicities [3], where, the summation is applied to all

pairs of vertices in graph G that are unordered [1]. If G has k distinct eccentricities

ε1, ε2, . . . , εk with l1, l2, ..., lk their respective multiplicities, then, the eccentric sequence

of G is the set

ξ(G) = {εl11 , εl22 , ..., ε
lk
k }.
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Since Xu et al. [3] recently introduced this eccentricity based graph invariant and a few

mathematical results on NSC number have been obtained yet. Xu et al. [3] determined

the unique extremal graphs in the family of tree graphs that are Pn path and Sn star

graph which attains the maximum and minimum value among all n-vertex trees and

thus determined the upper and lower bounds on NSC number of tree graphs. For a

graph G to be non-self-centered, the following conditions must hold;

(i) NSC(G) = 0, if G is self-centered.

(ii) For any two graphs G and G′ which are isomorphic, we have NSC(G) = NSC(G
′
).

The third zegreb eccentricity index also appears to be a very reliable indicator of non-

self-centrality but, E3(G) doesn’t satisfies the conditions (i)−(ii). And for any tree

graph T ∈ Tn we have N(Sn) ≤ N(T ) ≤ N(Pn) but E3(Sn) = E3(Pn) = (n − 1) for

all odd order graphs on n ≥ 5. Thus NSC number is a better approach to measure the

non-self-centrality of any graph.

2.2 Some known results on NSC number

In this section, the literature on NSC number of graphs is reviewed.

2.2.1 Extremal tree graphs with respect to NSC number

Let T ∈ Tn be an nth order tree graph and G ∈ Gn be any arbitrary graph of order n,

then we have following known results.

Theorem 2.2.1 ([3]). Let G be any non-trivial connected graph of order n, then,

N(G) ≥ E3(G). The equality holds iff d(G) ≤ 2.

Theorem 2.2.1 ([3]).

(i) If G ∈ Gn of order n with 4 ≤ n ≤ m ≤ (2n − 4), where |EG|= m, then we have

N(G) ≥ (n− 1). The equality holds iff G ∼= Sn, where |ESn|= |EG|= m.

(ii)The NSC number of an almost peripheral graph G of order n ≥ 3 is equal to (n−1).

13



A doublestar denoted by DSn′ ,n′′ is defined as a tree obtained by adding an edge e

between the centers of two star graphs Sn′+1 and Sn′′+1 such that, order of DSn′ ,n′′ is

n = n
′
+ n

′′ .

Theorem 2.2.2 ([3]). Let G be an nth order graph on (n ≥ 4), then we have;

(i) N(G) ≥ 2.(n− 2), if G is not an almost peripheral (AP) graph. The equality holds

if and only if almost self centered (ASC) or weak almost peripheral (WAP) graph.

(ii) If T ∈ Tn and T 6∼= Sn, then, N(T ) ≥ 2(n−2) and the equality holds if T ∼= DSn1,n2

with n1 + n2 = n.

A caterpiller ζn of order n is defined as a graph obtained from a path Ps+1 =

v1v2, . . . , vs+1 by attaching am ≥ 0 pendant vertices to vertex vm ∈ Ps+1 for m =

2, 3, . . . , s, where, C(ζn) = K1 or K2 for even and odd s respectively. It is denoted by

P n
s+1(a1, a2, . . . , as) with

∑s
m=2 am = n− s− 1.

Let v s
2

+1 ∈ VC(ζn) for even s and v s+1
2

and v s+3
2
∈ VC(ζn) for odd s respectively with

a2 + as > 0, then, ζn is called a balancedcaterpiller if

|a2 + as − a s
2

+1|≤ 2 for even s and |a2 + as − a s+1
2
− a s+3

2
|≤ 2 for odd s.

A balancedcaterpiller of order n and diameter d is denoted by Bζn,d.

Theorem 2.2.3 ([3]).

(i) For any n order tree T ∈ Tn,d with 4 ≤ d ≤ (n− 2) and d = 2s, we have

N(T ) ≤ ns2 − 4

3
s3 +

s

3
+ (s− 1)

⌊
n− 2s− 2

2

⌋⌈
n− 2s− 2

2

⌉
and equality holds if T ∈ Bζn,2s with a2 + a2s = as+1 or as+1 + 1.

(ii) For any n order tree T ∈ Tn,d with 5 ≤ d ≤ (n− 2) and d = 2s+ 1 we have

N(T ) = n(s2 − s+ 2)− 2

3
(2s2 − 5s+ 6) + (s− 1)

⌊
n− 2s

2

⌋⌈
n− 2s

2

⌉
and equality holds if T ∈ Bζn,2s+1 with a2 + a2s+1 ≤ as+1 + as+2 + 2.
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Theorem 2.2.4 ([3]). Let T ∈ Tn and n ≥ 4, then, we have

N(T ) =


n(n− 2)(n+ 2)

12
, if n ≥ 6 is even

(n− 1)n(n+ 1)

12
, if n ≥ 5 is odd

(2.3)

and the equality holds iff T ∼= Pn.

A starliketree is a graph G of order n, obtained by attaching p paths of length

m1,m2, . . . ,mp to a single vertex such that
∑p

i=1mi = (n−1). Such a graph is denoted

by Tn(m1,m2, . . . ,mp). Ifmi appears li times, then, we will write Tn(ml1
1 ,m

l2
2 , . . . ,m

lp
p ).

Theorem 2.2.5 ([3]). Let T ∈ Tn be a graph of order n. Then,

(i) The NSC number of T is given by

N(T ) ≤


(n− 2)[(n+ 4)(n− 2) + 2]

12
, if n ≥ 6 is even

(n− 3)(n− 1)(n+ 4)

12
, if n ≥ 5 is odd

(2.4)

and the equality holds if T ∼= Tn(12, n− 3).

(ii) If T ∼= Tn(12, n− 3) then we have

N(T ) ≤


(n− 2)(n2 + 2n− 12)

12
+ 1, if n ≥ 6 is even

(n− 3)(n2 + 3n− 16)

12
+ 2, if n ≥ 7 is odd

(2.5)

and the equality holds if T ∼= (1, bn−2
2
c, dn−2

2
e).

Let G be an nth order graph and G1, G2 be the two copies of G. If v1i , v1j ∈ VG1

and v2i , v2j ∈ VG2 then the doublegraph [6] of G denoted by DG is formed by adding

edges between every vertex v1i , v2j and every vertex v1jv2i in DG when their exist an

edge e = vivj ∈ EG.

Theorem 2.2.6 ([3]). Let DG be a double graph of a connected graph G on n ≥ 3.

Then, N(DG) = 0 if δ(G) = max{dG(v) | v ∈ VG} = (n − 1) and N(DG) = 4.N(G)

otherwise.
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2.2.2 Comparison of NSC number and irregularity of graphs

The non-self-centrality number (NSC number) of a graph G is defined in terms of

eccentricities of vertices whereas the irregularity measure of G is based on the vertices’

degrees in G. We denote irregularity of a graph G as Girrt which is defined by

Girrt =
∑
vi 6=vj

|dG(vi)− dG(vj)|. (2.6)

In general the irregularity of a graph and its non-self-centrality is incomparable. Here

we present some results on the non-self-centrality and irregularity of graphs.

Theorem 2.2.7 ([7]).

(i) For any non-self-centered graph G on n ≥ 6 vertices and diameter d(G) ≥ 2, their

exists a graph with Girrt > N(G).

(ii) Let T ∈ Tn and n ≥ 10. If T has diameter d(T ) ≥ 2+
√

26
11

n and δ(T ) = max{dT (v) |
v ∈ VT} = 4 avoiding degree 3. Then, N(T ) > Tirrt.

(iii) Let T ∈ Tn and T 6∼= Pn be a tree graph of diameter 3 then, Tirrt > N(T ).

(iv) Let T ∈ Tn on n ≥ 8 vertices and d(T ) = 4. If c ∈ VC(T ) having m non-pendant

neighbors and 3 ≤ m < dT (c) then, Tirrt > N(T ).

(v) Let U ∈ Un and U 6∼= C6. If d(U) = 3 then Uirrt > N(U).

Further results on the irregularity of a graph is given in (ref 2,5).

2.2.3 Results on some graph products

This section is a review of the literature on NSC number of some graph products.

(i) Join: Let G = (VG, EG), H = (VH , EH) be two connected graphs with VG∩VH = φ,

then join of graph G and H also known as their sum, is the union G ∪ H, such that

G ∪H contains all the edges that join VG and VH .
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Theorem 2.2.8 ([8]). The NSC number of join of m graphs G1, G2, . . . , Gm of order

n1, n2, . . . , nm, respectively, is given by

N(G1 ∪G2 ∪ . . . ∪Gm) =

( m∑
i=1

nni−1(Gi)

)(
n−

m∑
i=1

nni−1(Gi)

)
,

where n =
∑m

i=1 ni.

(ii) Disjunction: The disjunction of two graphs G and H of order n1 and n2,

respectively, denoted by G ∨ H is a graph with the vertex set VG × VH and we have

(ui, uj)(vi, vj) ∈ EG∨H if and only if uivi ∈ EG and ujvj ∈ EH .

Theorem 2.2.9 ([8]). The NSC number of disjunction of two graphs G and H of order

n1, n2 respectively, is given by

N(G ∨H) = nn1−1(G).nn2−1(H){n1n2 − nn1−1(G).nn2−1(H)}.

(iii) Symmetric difference: The symmetric difference (G ⊕H) of graph G and

graph H is a graph with the vertex set VG⊕H = VG × VH and

E(G⊕H) = {(ui, uj)(vi, vj) : uivi ∈ EG or ujvj ∈ EH but not both}.

Theorem 2.2.10 ([8]). The graph G ⊕H of two connected graphs G and H is a self

centered graph, that is, N(G⊕H) = 0.

(iv) Lexicographic product: The lexicographic product of the graphs G and H

of order n1 and n2, respectively, denoted by G[H] also known as their composition is a

graph with the vertex set VG[H] = VG × VH and edge set

EG[H] = {(ui, uj)(vi, vj) iff uivi ∈ EG or(ui = vi ∈ VG and ujvj ∈ EH)}

Theorem 2.2.11 ([8]). The lexicographic product of graph G and H of order n1 and

n2 respectively is given by

N(G[H]) = nn1−1(G).nn2−1(H){n1n2 − nn1−1(G).nn2−1(H)}

if G has universal vertices and N(G[H]) = n2
2.N(G) otherwise.
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(v) Strong product: Let G and H be any two graphs of order n1 and n2 re-

spectively, then the strong product (G � H) of G and H is a graph with vertex set

V(G�H) = VG×VH and the edge set E(G�H), where (ui, uj)(vi, vj) ∈ EG�H if and only if

{ui = vi ∈ VG and ujvj ∈ EH} or {uj = vj ∈ VH and uivi ∈ EG} or {uivi ∈ EG and

ujvj ∈ EH}.

Theorem 2.2.12 ([8]). Let G and H be two graphs respectively, of order n1 and n2,

with r(H) ≥ d(G), then the NSC number of (G�H) is given by

N(G�H) = n2
1.NSC(H).

(vi) Cartesian product:The cartesian product G�H of the graphs G and H is

a graph with vertex set VG × VH and (ui, uj)(vi, vj) ∈ EG�H if {ui = vi ∈ VG and

ujvj ∈ EH} or {uj = vj ∈ VH and uivi ∈ EG}.

Theorem 2.2.13 ([8]). The NSC number of the cartessian product (G�H) of graphs

G with |VG|= n1 and H with |VH |= n2 is given by

N(G�H) = n2
1.NSC(H) + n2

2.NSC(G).

(vii) Rooted product: The rooted product G{H} of graph G of order n1 and a

rooted graph H of order n2 is obtained by taking a copy of G with n1 copies of H and

identifying thr root vertex of to the ith vertex of G, where 1 ≤ i ≤ n1.

Theorem 2.2.14 ([8]). Let H be a rooted graph with rooted vertex vr and |VH |= n2

and G be a graph of order n1, then the NSC number of the rooted product G{H} is

given by

N(G{H}) = n2
2N(G) +

n2
1

2

∑
u,v∈VH

|dH(u, vr)− dH(v, vr)|.

2.3 Applications of eccentricity and centrality mea-
sures

In this section we present some applications of eccentricity measures and the centrality

concept of graphs in some graph theory problems.
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2.3.1 Networking and facility location problem

The concept of centrality of a graph is introduced by Camille Jorden [9] for the anal-

ysis of different network models which is widely used in facility location problems

[10, 11, 12]. For instance, where should we situate a facility in a network that span a

large region. When establishing the location of an emergency institute such as a hospi-

tal or a fire station, we want to reduce the time it takes for that facility to respond to

an emergency. Similarly in selecting location for some service center such as a power

station or post office we would reduce the aggregate of travel time distance, needed

to reach everyone in the region. Same for other general service facilities like railway

lines, superhighways or irrigation pipelines etc. Logically the appropriate allocation

of a facility in a system or a network is at a central vertex. The maximum eccentric-

ities of vertices v′is in a graph of network is the smallest possible for a most efficient

facility. Thus, all these problems can be modeled graphically. Centrality concept and

eccentricity measures could give us the best model for locating facilities.

2.3.2 Chemical graph theory

The topology of a chemical structure can be represented by a molecular graph [13].

The chemical graph theory’s main aim is to use some algebraic invariants to reduce

the topology of a molecular structure to a single numerical value that characterizes

either the energy of that molecule as a whole or its molecular branching, its structural

fragments or its orbitals and its electronic structure among others.

The topological index (TI) of a chemical structure or molecular graph is the final out-

come of the logical and the mathematical operations that convert the facts stored in

the chemical molecule into a numerical value or a beneficial number which is a graph

invariant that characterizes the molecular properties (both physical and chemical) like

boiling point, melting point, surface tension, molar fraction, molar volume, heat of

vaporization and many more [14] and the structural features like bonding pattern,

branching, symmetry, the neighboring pattern of atoms in that molecule [15, 16, 17].

It also describes the biological behavior of the compound such as lipophilicity, stimu-
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lation of cell growth, toxicity, pH regulation and nutritives[18, 19, 20].

The quantitative relationship between the properties (or activities) of a molecule with

its molecular structure is actually the basis of so called "quantitative structure ver-

sus property (activity) relationship (QSPR, QSAR)" studies. Here the term "prop-

erty" refer to physico-chemical properties, whereas "activity" means the biological and

pharmaceutical activities of that compound [21], where the environmental hazard as-

sessment of a chemical is termed as quantitative structure versus toxicity relationship

(QSTR) [22].

The QSTR focuses on identifying the properties directly from the molecular structure,

where the trail and error method and the random screening for activity in pharma-

ceutical research is both time consuming and uneconomical. By using QSAR/QSPR

the most promising compound is selected for the characteristic or property that is de-

sirable, and thus reduces the number of compounds which needs to be manufactured

during the designing process of new drugs [23, 24, 25]. The QSAR/QSPR studies are

not only the powerful tool for environmental toxicology assessment, but they are also

being used in chemical documentation, virtual screening lead optimization, combina-

torial library design and isomer discrimination [26]. Wiener Herold [27] laid a good

foundation for determining the correlation between molecular structure and its proper-

ties by considering the distances between atoms or more specifically the electron clouds

by introducing the first eccentricity based topological index.

Here we list some of the results on a few eccentricity based topological indices.

Wiener Index. The first index proposed by Herold Wiener [27] in 1947 known as

Wiener Index (WI) was used to analyze the chemical properties specificaly the boiling

point of paraffins (alkanes). Weiner index in a chemical graph is defined as, the sum

of the distances between all pairs of vertices and is given by;

WI(G) =
∑

{vi,vj}⊂VG

dG(vi, vj).

This index can be used to determine the density of a chemical graph as well as the

interaction between the atoms in it.

A similiar index to WI proposed by Klavazar and Gutman [28] in 1996 called Szeged
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index denoted by Sz(G) is given as;

Sz(G) =
∑

v1∈V (G)

nv2(v1)nv1(v2),

where Nv2(v1) = {v3 ∈ V (G) | d(v2, v3) > d(v1, v3)}, and nv2(v1) = |Nv2(v1)|. Some

results on Wiener index and Szeged index are give in [29, 30]. In 2000, based of the

considerable research on WI, and SzI, Khadikar [31] proposed edge Padmakar Ivan

(PIe) defined as;

PIe =
∑

e=v1v2∈E(G)

{n′v2(v1) + n
′

v1
(v2)},

where n′v2(v1) = {e ∈ E(G) | d′(v2, e) > d
′
(v1, e)}, n

′
v2

(v1) = |N ′v2(v1)|. This index is

used in the field of nanotechnology. Further application of PIe index is investigated in

[31, 32].

Eccentric connetivity index. Eccentric connectivity index of a graph G was intro-

duced by Sharma et al. in 1997 [33] which is defined by;

ξc(G) =
∑
vi∈VG

dG(vi)ε(vi).

This molecular descriptor is used to model pharmaceutical, chemical and other proper-

ties of a molecular graph. Since this index is applied to characterize the pharmaceutical

compound and is mainly used in formation of anti-HIV compounds.

Kirchhoff Index. In an electrical network the resistance between any two arbitrary

vertices can be obtained by studying the Laplacian matrix associated to that network

in terms of the eigen values and eigen vectors associated to that matrix. The concept of

resistance distance is widely used in chemical studies [34]. A novel distance function on

graph named Kifchhoff index was proposed by Klein and Randic [34] which is defined

as, the sum of the resistance distances between all the pairs of vertices. mathematically

it is defined as

Kf(G) =
∑
i<j

rij,
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where rij is the resistance between ith and jth vertex. Kirchhoff index can also defined

as;

Kf(G) = n

n−1∑
i=1

1

µi
,

where µ1 ≥ µ2 ≥ . . . ≥ µn−1 = 0 are the eigen values of Laplacian matrix associated

to that graph. As a molecular structure descriptor, the noteworthy applications of

Kirchhoff index in chemistry is given in [35, 36].

Schultz index. Another molecular structure descriptor was introduced by Harry P.

Schultz in 1989 [37] to characterize alkanes by an integer. Schultz named it "Molecu-

lar topological index" (MTI), which later became better known as "Schutlz index" is

defined as;

Sc(G) =
1

2

∑
vi,vj∈V (G)

[dG(vi) + dG(vj)]d(vi, vj).

These molecular descriptors are found to be useful in design of molecules with desired

properties. In [38] Dankelmann et al. established the relashionship betwen Wiener

index and Gutman index or modified Schultz index and also found the upper bound on

it. For more detailed study about this molecular descriptor readers can see the artile

series [39, 40, 41, 42].

Total-Eccentricity Index. The total-eccentricity index of a graph introduced by

Farooq et al. [43] is defined as;

ξt(G) =
∑
vi∈VG

ε(vi).

Some results on total eccentricity index are found in literature [44, 45]. The average

eccentricity index is defined as;

Ave(G) =
1

n

∑
(vi∈VG)

ε(vi).

The relationship between total eccentricity index and average eccentricity index is

Avg(G) = 1
|VG|

ζ(G). Eccentricity based topological indices are widely used in QSPR/QSAR

studies. For further details on applications of eccentricity based indices readers are ref-

fered to [46, 47].
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Detour index. In Graph theory, the concept of detour matrix was introduced by F

Harary [48]. The (i, j) entry of the detour matrix records the length of longest dis-

tance between two pair of vertives vi and vj. This matrix attained some attention

in the chemical literature [49]. Arnic and Trinajstic were the first to introduce De-

tour index defined as the sum of all entries above main diagonal of a detour matrix.

Mathematically given as:

DI =
1

2

∑
vi,vj∈VG

lG(vi, vj).

Lukovits investigated the application of detour index in QSPR studies [50]. Followed

by Lukovits works, Trinajstic et al. investigated the application of detour index in

comparison with Wiener index in analyzing physical properties of molecular structures

A multiple regression analysis has shown that the selected molecular properties which

are size dependent (such as the boiling points of alkanes) has a correlation with both

Wiener and detour index, and thus it is found to be efficient in structure-property

relation modeling of cyclic and acyclic hydrocarbons.
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Chapter 3

Maximal Trees with Fixed Pendant
vertices w.r.t. NSC Number

In this chapter, we determine a tree with largest NSC number in the class of all n-

vertex trees with fixed pendant vertices denoted by T(n, p). Let us denote the set

of pendant vertices of a tree T by P (T ). Consider an n-vertex double broom with p

pendant vertices Dn,p defined in definition 1.3.3 and the class of n-vertex p-brooms Ppn
defined in definition 1.3.4. Here we present some results on graphs Dn,p and Ppn.

3.1 NSC number of Dn,p and B ∈ Ppn

Firstly, we will derive general formulas for the NSC number of Dn,p and B ∈ Ppn and

then compare the results to prove that N(B) < N(Dn,p).

Lemma 3.1.1. Let r = r(Dn,p) and d = d(Dn,p). Then the NSC number of Dn,p is

given by

N(Dn,p) =



(r − 1)(p+ 2)(r − 2) +
(r − 2)(2r2 − 5r + 9)

3
+⌊

p+ 2

2

⌋(⌈
p+ 2

2

⌉
(r − 1) + 1

)
+

⌈
p+ 2

2

⌉
(r) if d is even

(p+ 2)(r − 3)(r − 2) +
2(r − 3)(r2 − 3r + 8)

3
+⌈

p+ 2

2

⌉(⌊
p+ 2

2

⌋
(r − 2) + 2(r − 1)

)
+ 2

⌊
p+ 2

2

⌋
if d is odd.

(3.1)
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Proof. We consider the two cases:

Case 1. When d(Dn,p) is even

In this case, the eccentricity sequence of Dn,p is given by

ξ(Dn,p) = {εd
p+2
2
e

1 , ε22, . . . , ε
2
k−2, ε

b p+2
2
c

k−1 , ε1k}. (3.2)

Using formula (2.2), we obtain

N(Dn,p) = 2

⌈
p+ 2

2

⌉
(k − 3)(k − 2)

2
+

⌈
p+ 2

2

⌉⌊
p+ 2

2

⌋
(k − 2) +

⌈
p+ 2

2

⌉
(k − 1)

+ 2.2
k−4∑
m=1

m(m+ 1)

2
+ 2

⌊
p+ 2

2

⌋
(k − 3)(k − 2)

2
+ (k − 1)(k − 2)

− 2 +

⌊
p+ 2

2

⌋
=

⌈
p+ 2

2

⌉⌊
p+ 2

2

⌋
(k − 2) +

⌈
p+ 2

2

⌉
(k − 3)(k − 2) +

⌈
p+ 2

2

⌉
(k − 1)

+

⌊
p+ 2

2

⌋
(k − 3)(k − 2) +

⌊
p+ 2

2

⌋
+

2(k − 4)(k − 3)(k − 2)

3

+ (k − 2)(k − 1)− 2

Since d(Dn,p) is even therefore k = r + 1. Thus equation (3.3) can be written as

N(Dn,p) =

⌈
p+ 2

2

⌉⌊
p+ 2

2

⌋
(r − 1) + (r − 1)(r − 2)(p+ 2) +

⌈
p+ 2

2

⌉
(r)

+

⌊
p+ 2

2

⌋
+

2(r − 3)(r − 2)(r − 1) + 3(r − 1)r − 6

3

=
(r − 2)(2r2 − 5r + 9)

3
+ (p+ 2)(r − 2)(r − 1) +

⌈
p+ 2

2

⌉
(r)

+

⌊
p+ 2

2

⌋(⌈
p+ 2

2

⌉
(r − 1) + 1

)
.

(3.3)

Case 2. When d(Dn,p) is odd

In this case, the eccentricity sequence of Dn,p is given by

ξ(Dn,p) = {εd
p+2
2
e

1 , ε22, . . . , ε
2
k−2, ε

b p+2
2
c

k−1 , ε2k}. (3.4)
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Again using the formula (2.2), we obtain

N(Dn,p) =

⌈
p+ 2

2

⌉
(k − 3)(k − 2) +

⌈
p+ 2

2

⌉⌊
p+ 2

2

⌋
(k − 2) + 2

⌈
p+ 2

2

⌉
(k − 1)

+ 4
k−4∑
m=1

m(m+ 1)

2
+

⌊
p+ 2

2

⌋
(k − 2)(k − 3) + 2(k − 2)(k − 1)− 4

+ 2

⌈
p+ 2

2

⌉
=

(⌈
p+ 2

2

⌉
+

⌊
p+ 2

2

⌋)
(k − 3)(k − 2) +

⌈
p+ 2

2

⌉⌊
p+ 2

2

⌋
(k − 2)

+ 2

⌈
p+ 2

2

⌉
(k − 1) +

2(k − 2){(k − 3)(k − 4) + 3(k − 1)} − 12

3

+ 2

⌊
p+ 2

2

⌋
= (p+ 2)(k − 3)(k − 2) +

⌈
p+ 2

2

⌉⌊
p+ 2

2

⌋
(k − 2) + 2

⌈
p+ 2

2

⌉
(k − 1)

+ 2

⌊
p+ 2

2

⌋
+

2(k − 3)(k2 − 3k + 8)

3

Since d(Dn,p) is odd therefore k = r. Now above can be written as

N(Dn,p) =
2(r − 3)(r2 − 3r + 8)

3
+ (p+ 2)(r − 3)(r − 2) + 2

⌊
p+ 2

2

⌋
+

⌈
p+ 2

2

⌉(⌊
p+ 2

2

⌋
(r − 2) + 2r − 2

)
.

(3.5)

The proof is complete.

In next lemma, we give NSC number of p-broom in Ppn

Lemma 3.1.2. Let B ∈ Ppn be a p-broom with radius r and eccentricity sequence given

by (1.3). Then NSC number of B is given by

N(B) =



(p+ 2)(r − 2)(r − 1) + l1lk−1(r − 1) + l1(r + s− 1) + lk−1(r − s+ 1)

+ (s− 2)(s− 1) +
(r − 1)(2r2 − 7r + 12)

3
+ (r − s)2 if d is even,

(p+ 2)(r − 3)(r − 2) + l1lr−1(r − 2) + l1(2r + s− 3) + lk−1(r − s+ 1)

(s− 2)(s− 1) +
2(r − 2)(r2)− 4r + 9

3
+ (r − s− 2)(r − s)− 2 if d is odd.

(3.6)
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Proof. We have following two cases for p-broom.

Case 1.When d(B) is even

Then the eccentricity sequence is given by

ξ(B) = {εd
p+2
2
e

1 , ε22, . . . , ε
3
s, . . . , ε

2
k−2, ε

b p+2
2
c

k−1 , ε1k}. (3.7)

Using formula (2.2), we obtain

N(B) = l1(k − 2)(k − 3) + l1lk−1(k − 2) + l1(k + s− 2) + lk−1(k − 2)(k − 3)

+
2(k − 2)(k − 3)(k − 4)

3
+ (k − 2)(k − 1)− 1 + (s− 2)(s− 1)

+ (k − s− 2)(k − s− 1) + lk−1(k − s) + (k − s)

= (l1 + lk−1)(k − 3)(k − 2) + l1lk−1(k − 2) + l1(k + s− 2) + lk−1(k − s)

+
(k − 2)(2k2 − 11k + 21)

3
+ (k − s− 1)2 + (s− 2)(s− 1).

(3.8)

Since d(B) is even therefore we have k = r + 1. Also substituting l1 + lk−1 = p+ 2 we

obtain

N(B) = (p+ 2)(r − 1)(r − 2) + l1lk−1(r − 1) + l1(r + s− 1) + lk−1(r − s+ 1)

+ (s− 2)(s− 1) +
(r − 1)(2r2 − 7r + 12)

3
+ (r − s)2.

Case 2.When d(B) is odd

Then we have the following eccentricity sequence

ξ(B) = {εd
p+2
2
e

1 , ε22, . . . , ε
3
s, . . . , ε

2
k−2, ε

b p+2
2
c

k−1 , ε2k}. (3.9)

By equation (2.2) we have

N(B) = l1(k − 3)(k − 2) + l1lk−1(k − 2) + l1(2k + s− 3) + lk−1(k − 3)(k − 2)

+
2(k − 4)(k − 3)(k − 2)

3
+ (k − 2)(k − 1)− 4 + (s− 2)(s− 1) + (k − s)

+ (k − s− 2)(k − s− 1) + lk−1(k − s+ 1)

= (l1 + lk−1)(k − 2)(k − 3) + l1lk−1(k − 2) + l1(2k + s− 3) +k−1 (k − s+ 1)

+ (s− 2)(s− 1) +
2(k − 2)(k2)− 4k + 9

3
+ (k − s− 2)(k − s)− 2
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When d(B) is odd we have k = r, this implies

N(B) = (p+ 2)(r − 3)(r − 2) + l1lr−1(r − 2) + l1(2r + s− 3) + lk−1(r − s+ 1)

+ (s− 2)(s− 1) +
2(r − 2)(r2)− 4r + 9

3
+ (r − s− 2)(r − s)− 2.

Figure 3.1: Double broom D16,9

Figure 3.2: p-double broom B ∈ P10
16

3.2 Some results on graphs in T(n, p)

We have generalized the formula for NSC number of a double broom Dn,p and a p-

broom B ∈ Ppn in Lemma 3.1.1 and Lemma 3.1.2. Now we use those results to prove

N(Dn,p) > N(B).

Theorem 3.2.1. For n ≥ 4, we have N(Dn,p) > N(B) for any B ∈ Ppn.

Proof. Consider an n-vertex p-broom B ∈ Ppn. We divide the proof into two cases:

Case 1 When d(B) is odd.

In this case, the eccentricity sequence of B is given by equation (3.9). We know that

the d(B) = n− p and d(Dn,p) = n− p+ 1. Hence d(Dn,p) is even with the eccentricity

sequence

ξ(Dn,p) = {(e1 + 1)d
p+2
2
e, e2

1, e
2
2, . . . , e

2
k−2, e

b p+2
2
c

k−1 , e1
k}. (3.10)
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Now using equations (3.7) and (3.10) and formula (2.2), we have

N(Dn,p)−N(B) = 2(s− 2)(k − s− 1) +

⌈
p+ 2

2

⌉
(k − s) +

⌊
p+ 2

2

⌋
(k + s− 4)

+

⌈
p+ 2

2

⌉(⌊
p+ 2

2

⌋
− 1

)
+ 2 > 0.

Therefore, N(Dn,p) > N(B).

Case 2 When d(B) is even.

The eccentricity sequence of B with even diameter is given by equation (3.7), and

eccentric sequence of Dn,p is given in equation (3.4) with ξ(Dn,p) = ξ(B). Thus, we

can easily prove that

N(Dn,p)−N(B) =

⌈
p+ 2

2

⌉
(k − s) + 2(s− 2)(k − s) + (k − s+ 1)(k − s− 2)

+ 2(k − s).

This implies, N(Dn,p) > N(B).

The proof is complete.

It is obvious that corresponding to any n-vertex tree T with p number of pendant

vertices, there is a caterpillar H satisfying ξ(T ) = ξ(H) and vice versa. We can see

that P (T ) ≤ P (H). Let q = p+a, where a ≥ 0, denote the number of pendant vertices

in H that are not pendant vertices in T . Our aim is to construct a tree T1 ∈ T(n, p)

such that N(T ) < N(T1). By using next lemmas, we will construct a sequence of trees

H1, H2, . . . , Hm in T(n, p) such that N(T ) < N(T1) < N(T2) < · · · < N(Tm).

Lemma 3.2.1. Let T ∈ T(n, p) such that T 6∼= Dn,p, T 6∈ Ppn and

ξ(T ) = {εl11 , εl22 , . . . , εlss , . . . , ε
lk
k },

where 2 ≤ s ≤ k − 1 and ls > 3. Then there exists T1 ∈ T(n, p) such that d(T1) =

d(T ) + 2 and N(T1) > N(T ).

Proof. Let H be an n-vertex caterpillar such that ξ(T ) = ξ(H). Also let P be a

diametrical u, v-path in H and uwz be a path of length 2 on P , where w is the neighbor
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of u on P . Since T 6∼= Dn,p and T 6∈ Ppn therefore there exist two pendant vertices x1, x2

other than u and v such that ε(x1) = εs and ε(x2) = εt, where 1 ≤ s, t ≤ (k − 1) and s

and t are the least integers for which ls + lt ≥ 6. Also let y1 and y2 be the neighbors

of x1 and x2, respectively, on P . Now construct a caterpillar H1 such that

H1
∼= {H − {x1y1, x2y2}} ∪ {wx1, x1z, vx2}. (3.11)

Here we have two different cases for ls:

Case 1 When ls = 3.

In this case εs 6= εt. We will prove the result when s − t = 1 and when s − t 6= 1.

Firstly, assume that s− t 6= 1. We have two possibilities, that is, either s = 1 or s > 1.

For s = 1 the eccentricity sequence for H1 is given by

ξ(H1) = {(ε1 + 2)l1−1, (ε1 + 1)2, (ε2 + 1)2, . . . , (εt + 1)lt−1, . . . , (εk + 1)lk}.

Hence by using formula (2.2) we have,

N(H1) = N(H) + (l1 − 1)(t− 2) +
k∑
i=t

li(l1 + t− 2) > 0.

Now for s > 1, H1 has the eccentricity sequence of the form

ξ(H1) = {(ε1 + 2)2, (ε1 + 1)2, (ε2 + 1)2, . . . , (εs + 1)ls−1, (εs+1 + 1)2, . . . ,

(εt + 1)lt−1, . . . , (εk + 1)lk}.

Therefore by using formula (2.2) we have

N(H1) = N(H) +
k∑
i=t

li(s+ t) + 2s(t− s) + 2s > 0.

This implies N(H1) > N(H).

Now, if s− t = 1 then for s = 1 the eccentricity sequence for H1 is given by

ξ(H1) = {(ε1 + 2)l1−1, (ε1 + 1)2, (ε2 + 1)l2−1, . . . , (εk + 1)lk}. (3.12)

When s > 1, we have

ξ(H1) = {(ε1 + 2)2, (ε1 + 1)2, (ε2 + 1)2, . . . , (εs + 1)ls−1, (εt + 1)lt−1, . . . , (εk + 1)lk}.(3.13)
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Hence by equations (3.12) and (3.13) and formula (2.2) we can easily prove that

N(H1) > N(H).

Case 2 When ls > 3.

In this case εs = εt. We have two possibilities, that is, s = 1 and s > 1. Firstly,

assume that s = 1. Here the eccentricity sequence of H1 is given by

ξ(H1) = {(ε1 + 2)l2−2, (ε1 + 1)2, (ε2 + 1)l2 , . . . , (εk + 1)lk}. (3.14)

Hence by using formula (2.2) we have

N(H1) = N(H) + 2(l1 − 2) +
k∑
i=2

l1(l1 − 2) > 0.

Now for s > 1 we have

ξ(H1) = {(ε1 + 2)2, (ε1 + 1)2, (ε2 + 1)2, . . . , (εs + 1)ls−2, . . . , (εk + 1)lk}. (3.15)

Hence by using formula (2.2) we can easily prove that N(H1) > N(H).

The proof is complete.

Lemma 3.2.1 is applicable if a ≥ 2. By the iterative application of Lemma 3.2.1

we get a caterpillar Hm having diameter (n − p + 1) or (n − p) for even and odd a,

respectively.

In Lemma 3.2.2 we will transform caterpillar F , obtained after applying Lemma 3.2.1,

into a new caterpillar by choosing the pendant vertices with greatest possible eccen-

tricities. The application of Lemma 3.2.2 will give a caterpillar with l1 = dp+2
2
e.

Lemma 3.2.2. Let T ∈ T(n, p) such that T 6∼= Dn,p, T 6∈ Ppn and

ξ(T ) = {εl11 , εl22 , . . . , εlss , . . . , ε
lk
k },

where 2 ≤ s ≤ k − 1, l1(T ) < dp+2
2
e and ls > 3. Then there exist a tree T1 ∈ T(n, p)

such that l1(T1) = l1(T ) + 1 and N(T1) > N(T ).

Proof. Let F be a caterpillar such that ξ(T ) = ξ(F ) and either P (F ) = P (T ) or

P (F ) = P (T ) + 1.
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Consider a diametrical u, v-path P in F and w be the neighbor of u on P . Let x be

a pendant vertex other than u and v such that ε1 6= ε(x) = εs, where 2 ≤ s ≤ (k − 1).

Also let y be the neighbor of x on P . Now construct a caterpillar F1 such that

F1
∼= {F − {xy}} ∪ {wx}. (3.16)

Hence the eccentricity sequence for F1 is given by

ξ(F1) = {εl1+1
1 , ε22, . . . , ε

ls−1
s . . . , εlkk }.

Therefore by using formula (2.2) and simplifying we obtain

N(F1) = N(F ) +
k∑
i=s

li(s− 1)− (l1 + 1)(s− 1). (3.17)

We know that each li can be written as

li = l′i + 2, (3.18)

where l′i is the number of pendant vertices in F . Also, l1(F ) < dp+2
2
e and li = 2 for

each 2 ≤ i ≤ (s− 1). Therefore by (3.18) we have
k∑
i=s

li(s− 1) =
k−1∑
i=s

(l′i + 2)(s− 1) + lk(s− 1)

=
k−1∑
i=s

l′i(s− 1) +
k−1∑
i=s

2(s− 1) + lk(s− 1).

As l1(F ) < dp+2
2
e, which gives

k∑
i=s

l′i ≥
⌈
p+ 2

2

⌉
.

Hence
k∑
i=s

l′i(s− 1)− (l1 + 1)(s− 1) ≥ 0.

So, equation (3.17) can be written as

N(F1) = N(F ) +
k∑
i=s

l′i(s− 1)− (l1 + 1)(s− 1) +
k∑
s

2(s− 1) > 0.

Therefore, N(F1) > N(F ).

This completes the proof.
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In Lemma 3.2.3 we will transform the caterpillar W , obtained by the application

of Lemma 3.2.2, into a new caterpillar by choosing the pendant vertices with smallest

possible eccentricities. The application of Lemma 3.2.3 will give a caterpillar with

lk−1 = dp+2
2
e.

Lemma 3.2.3. Let T ∈ T(n, p) such that T 6∼= Dn,p, T 6∈ Ppn and

ξ(T ) = {εl11 , εl22 , . . . , εlss , . . . , ε
lk
k },

where 2 ≤ s ≤ k − 1, l1(T ) = dp+2
2
e and ls > 3. Then there exist a tree T1 ∈ T(n, p)

such that lk−1(T1) = lk−1(T ) + 1 and N(T1) > N(T ).

Proof. Let W be a caterpillar such that ξ(T ) = ξ(W ) and either P (W ) = P (T ) or

P (W ) = P (T ) + 1.

Consider a diametrical u, v-path P in W and w be the neighbor of u on P . Let x

be a pendant vertex other than u and v such that ε1 6= ε(x) = εs, where 2 ≤ s ≤ k− 2.

Also let y be the neighbor of x on P . Now construct a caterpillar W1 such that

W1
∼= {W − {xy}} ∪ {wx}. (3.19)

Hence the eccentricity sequence for W1 is given by

ξ(W1) = {εl11 , εl22 , . . . , εls−1
s , ε2s+1 . . . , ε

lk−1+1
k−1 , εlkk }.

Therefore by using formula (2.2) and simplifying we obtain

N(W1) = N(W ) + [l1 − lk−1 − 1][k − s− 1] +
s−1∑
i=2

li(k − s− 1)

+ [ls − lk][k − s− 1].

Since l1 = dp+2
2
e, therefore lk−1 < bp+2

2
c. Hence l1 − lk > 1. Also ls > 3 and lk ≤ 2.

Therefore, ls − lk > 0. This implies N(W1) > N(W ).

This finishes the proof.
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3.3 Maximal graph in T(n, p)

Theorem 3.3.1. Among all n vertex tree graphs T ∈ T(n, p) the graph Dn,p has the

maximum NSC number.

Proof. For any arbitrary graph T ∈ T(n, p) their exist a corresponding caterpiller H

with ξ(H) = ξ(T ) such that P (H) ≥ P (T ) say P (H) = q = p + a, where a ≥ 0. If

a ≥ 2, then, Lemma 3.2.1 can be applied ba
2
c times to get a caterpiller, say H ′ with

P (H
′
) ≤ p+ 1. Now applying Lemma 3.2.2 and Lemma 3.2.3, H ′ can be transformed

to H
′′ such that either H ′′ ∼= Dn,p if P (H

′′
) = p or H ′′ ∈ Ppn if P (H

′′
) = p + 1

satisfying N(H) < N(H
′
) < N(H

′′
). Thus, Theorem 3.2.1 implies H ′′ ∼= Dn,p attains

the maximum value w.r.t NSC number in the class T(n, p). The proof is complete.

3.4 Conclusion

We considered the problem of finding maximal graphs with respect to NSC number

in the class T(n, p) of all n order tree graphs on n ≥ 4 with p pendant vertice. We

found the unique graph Dn,p which attains the maximum value of NSC number in

class T(n, p). We formulated the general mathematical formula for the maximum NSC

number for T ∈ T(n, p) given by

N(T ) ≤



(p+ 2)(r − 2)(r − 1) +
(r − 2)(2r2 − 5r + 9)

3
+⌊

p+ 2

2

⌋(⌈
p+ 2

2

⌉
(r − 1) + 1

)
+

⌈
p+ 2

2

⌉
(r) if d(T ) is even,

(p+ 2)(r − 3)(r − 2) +
2(r − 3)(r2 − 3r + 8)

3
+⌈

p+ 2

2

⌉(⌊
p+ 2

2

⌋
(r − 2) + 2(r − 1)

)
+ 2

⌊
p+ 2

2

⌋
if d(T ) is odd.

(3.20)

34



Chapter 4

Maximal graph w.r.t. NSC number in
the class of unicyclic graphs with
some fixed parameters

In this chapter, we determine a unicyclic graph with largest NSC number in a class

of n-vertex unicyclic graphs with some fixed parameters, that is, fixed degree ∆ and

atmost three central vertices. We denote this class by Un(3,∆).

4.1 Preliminaries

We use the notation Un for the class of n-vertex unicyclic graphs and the notation Un,l
for n-vertex graphs containing cycle Cl.

Theorem 4.1.1 ([51]). Center of a unicyclic graph U is contained in a block of U . This

implies, for any unicyclic graph U ∈ Un containing unique cycle Cl, either C(U) = K1

or K2 or C(U) ⊂ Cl.

We are considering the class Un(3,∆) that contains the graphs with atmost three

central vertices. It is obvious to see that corresponding to any n-vertex unicyclic graph

U ∈ Un with center either K1 or K2, we can find a caterpiller T ∈ Tn with center K1 or

K2 and all pendant vertices on a unique diametrical path, such that, d(U) = d(T ) = d,

ξ(U) = ξ(T ) and hence N(U) = N(T ). When U is a graph with eccentricity sequence

35



given by

ξ(U) = {εl11 , εl22 , . . . , ε
lk−1

k−1 , ε
lk
k }, (4.1)

where lk = 1 or 2 and diameter d(U) = d, we can obtain the corresponding caterpiller

by taking a diametrical path , say u, v-path of length d and adding pendant vertices

on u, v-path for lm ≥ 3 in (4.1) for all m ∈ {1, 2, . . . , k − 1}. In a similar way, for

any graph U ∈ Un,l with 3 central vertices we can find a uicyclic graph U1 ∈ Un,3 with

center C(U1) = K3 = C3 and all pendant vertices on a unique diametrical path in U1

such that, ξ(U) = ξ(U1). Hence N(U) = N(U1). Thus we consider the corresponding

caterpiller T for graphs in U ∈ Un(3,∆) with 1 or 2 central vertices and consider the

corresponding graph U1 for U ∈ Un(3,∆) with 3 central vertices for our convenience in

proving the results.

Now, we define some special graphs in Un(3,∆).

A cyclic broom denoted by Ũn,3, is a unicyclic graph of order n with maximum

degree ∆ and diameter d = n−∆ + 1 such that, ∆− 3 pendant vertices are adjacent

to a single vertex ,say v, of eccentricity d − 1. Also Ũn,3 has a cycle C3 at vertex v,

such that, deg(v) = ∆. The eccentricity sequence of cyclic broom is of the form

ξ(Ũn,3) = {ε∆1 , ε22, ε23 . . . , ε2k−1, ε
lk
k }, (4.2)

where lk = 1 or 2 respectively for cyclic broom with even and odd diameter.

Replacing the cycle C3 in Ũn,3 with 2 pendant vertices, we get a tree graph called

broom [52], denoted by B∆
n,0 with the same eccentricity sequence given in (4.2), where

1-broom [52], denoted by B∆
n,1 is again a tree of order n with ∆ + 1 pendant vertices

and eccentricity sequence of the form

ξ(B∆
n,1) = {ε∆1 , ε22, .., ε2i−1, ε

3
i , ε

2
i+1, . . . , ε

2
k−1, ε

lk
k },

where, 2 ≤ i ≤ k − 1.

Firstly, we give the general expression for the NSC number of n-vertex cyclic broom,

then present some lemmas on unicyclic graphs U ∈ Un(3,∆).
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Theorem 4.1.2. Let Ũn,3 ∈ Un(3,∆) be a graph of diameter d. Then the NSC number

of Ũn,3 is given by;

N(Ũn,3) =


(

2∆2(∆− n− 3) + 2∆(3n+ 2) + n(n2 − 1)

12

)
if d is even,(

∆2(2∆− 3n− 6) + 2∆(3n+ 2) + n2(n− 4)

12

)
if d is odd.

(4.3)

Proof. We have following two cases:

Case 1: When d(Ũn,3) is even

In this case the eccentricity sequence of Ũn,3 is given by (4.2) with lk = 1 Using

definition (2.2) and simplifying, we obtain

N(Ũn,3) = ∆(k − 1)2 + (k − 2)(k − 1)

(
2k − 3

3

)
. (4.4)

For lk = 1 equation (4.2) implies n = 2(k − 2) + ∆ + 1. It holds that k =

(
n+3−∆

2

)
.

So equation (4.4) becomes,

N(Ũn,3) =
2∆2(∆− n− 3) + 2∆(3n+ 2) + n(n2 − 1)

12
.

Case 2: When d(Ũn,3) is odd

Then the eccentricity sequence of Ũn,3 is given by (4.2) with lk = 2. Using definition

(2.2) and simplifying, we obtain

N(Ũn,3) =

(
(k − 1)k∆ +

2(k − 2)(k − 1)k

3

)
. (4.5)

Since n = 2(k − 1) + ∆, it holds that k =

(
n+2−∆

2

)
. So equation (4.5) becomes

N(Ũn,3) =
∆2(2∆− 3n− 6) + 2∆(3n+ 2) + n2(n− 4)

12
.

This completes the proof.

Remark. The n-vertex graphs B∆
n,0 and Ũn,3 have same NSC number. Since ξ(B∆

n,0) =

ξ(Ũn,3), it holds that N(B∆
n,0) = N(Ũn,3).
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(a)
(b)

Figure 4.1: Graphs with same NSC number

4.2 Some graph transformations

Lemma 4.2.1. Let U ∈ Un be a unicyclic graph with atmost 3 central vertices and the

eccentricity sequence of U given by

ξ(U) = {εl11 , εl22 , . . . , ε
lk
k }. (4.6)

If n ≥ 2(k−1)+ lk+2 (or equivalently n ≥ 2k+ lk), then, there exists a unicyclic graph

U
′ ∈ Un with either d(U

′
) = d(U) + 2 or r(U ′) = r(U) + 1 such that N(U

′
) > N(U).

Proof. For our convenience, we consider the corresponding graph say U1, where U1
∼= T

(caterpiller) when |VC(U)|= 1 or 2 and U1
∼= Un,3 (unicyclic graph) when |VC(U)|= 3

discussed in Section 4.1 satisfying N(U) = N(U1). Let P be a diametrical u, v-path in

U . If n < 2k+ lk. then U may have atmost one pendant vertex other than u, v. So we

consider all graphs of order n ≥ 2k + lk. Also, let x1, x2 be two pendant vertices other

than u, v with y1, y2 be the neighbors of x1 and x2 respectively on P with ε(x1) = εi

and ε(x2) = εj. Here we choose x1 with ε(x1) = εi and x2 with ε(x2) = εj such that,

i, j are the least integers for which li + lj ≥ 6 and j > i. Now construct U ′ defined as

U
′ ∼= {U1 − {x1, x2}} ∪ {ux1, vx2}. (4.7)

Then, the eccentricity sequence for U ′ is given by

ξ(U
′
) = {(ε1 + 2)2, (ε1 + 1)l1 , εl21 , . . . , ε

li−1
i−1 , . . . , ε

lj−1
j−1 , . . . , ε

lk
k−1}, (4.8)
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where lm = 2 for m ∈ {1, . . . , (j − 1)}\{i}. Using (2.2) the NSC of U ′ is given by

N(U
′
) = N(U1)− 2(i+ j)−

j−1∑
m=i+1

lm(j −m)−
k∑

m=i+1

lm(m− i)

+ 2
k∑

m=1

mlm + (1− li)(j − i)−
i−1∑
m=1

lm(i+ j − 2m)−
k∑

m=j+1

lm(m− j)

= N(U1) +
i−1∑
m=1

lm(4m− i− j) +

j−1∑
m=i+1

lm(2m+ i− j) +
k∑

m=j+1

lm(i+ j)

+ {(2ili − 2i) + (2jlj − 2j)}+ (j − i)(1− li − lj).

We have following two possibilities:

(i) If εi 6= εj, then li = 3. Thus substituting lm = 2 for m ∈ {1, . . . , (j − 1)}\{i} and
after simplification we get

N(U
′
) = N(U1) +

k∑
m=j+1

lm(i+ j) + 2i{(li − 2) + (j − i)}

+ (i+ j)(lj − 2).

(4.9)

(ii) If li > 3, then i = j. Hence the eccentricity sequence in equation (4.8) reduces to

ξ(U
′
) = {(ε1 + 2)2, (ε1 + 1)l1 , εl21 , . . . , ε

li−2
i−1 , . . . , ε

lk
k−1}, (4.10)

where lm = 2 for all m ∈ {1, 2, ..., (i− 1)} in equation (4.10). Therefore, using formula

(2.2) and simplifying, we obtain

N(U
′
) = N(U1) +

i−1∑
m=1

lm(4m− 2i) + i(2li − 4) + 2i
k∑

m=i+1

lm.

Here, note that
i−1∑
m=1

lm(4m− 2i) = 0.

Thus

N(U
′
) = N(U1) + i(2li − 4) + 2i

k∑
m=i+1

lm. (4.11)
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Since
k∑

m=j+1

lm(i+ j) + 2i{(li − 2) + (j − i)}+ (i+ j)(lj − 2) > 0

and

i(2li − 4) + 2i
k∑

m=i+1

lm > 0.

Thus from equations (4.9) and (4.11) we have

N(U
′
) > N(U1) = N(U).

The proof is complete.

Lemma 4.2.2. Let U ∈ Un(3,∆) with diameter d(U). Let Λ be the set of all pendant

vertices in U . If |Λ|≥ ∆ + 2, then there exists U ′ ∈ Un(3,∆) such that N(U
′
) > N(U)

and d(U
′
) > d(U).

Proof. Consider an arbitrary unicyclic graph U ∈ Un(3,∆) with eccentricity sequence

ξ(U) = {εl11 , εl22 , εl33 , ..., ε
lk
k } (4.12)

and a diametrical u, v-path in U . We consider respectively the corresponding caterpiller

when |VC(U)|= 1 or 2 and the corresponding unicyclic graph with center C3 when

|VC(U)|= 3 discussed in Section 4.1, for convenience in proving the result. We have

following two possibilities; either l1 ≥ ∆ or l1 < ∆.

Case 1:When l1 ≥ ∆

Then we have further two possibilities.

Subcase I: When C(U) = K2 or K3.

Consider xi the central vertex with yi its neighbor in U1. Construct a graph U ′ defined

as

U
′

= {U1 − {v1, v2}} ∪ {x1v1y1, x2v2y2} (4.13)

where {v1, v2} ∈ ΛU1 .
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(i) If ε(v1) = ε(v2) = εi (say), we choose vi such that 1 ≤ i ≤ (k−1) and i is the largest

positive integer for which for which li > 3 and lm = 2 for all m ∈ {i+1, i+2, ..., k−1}.
Then the eccentricity sequence of U ′ will be;

ξ(U
′
) = {(ε1 + 2)l1 , (ε1 + 1)l2 , εl31 , ..., ε

li−2
i−1 , ..., ε

lk−1

k−3 , ε
2
k−2, ε

lk
k−1} (4.14)

where d(U1) + 2 = d(U
′
) and r(U1) + 1 = r(U

′
). Now using definition of NSC we have:

N(U
′
) = N(U1) +

[ i−1∑
m=1

2lm(k − i)− 2lk(k − i)
]

+
k−1∑
m=1

lmlk

+ 2(k − i)(li − 2) + lkli.

Thus N(U
′
) > N(U1) = N(U).

(b) If ε(v1) 6= ε(v2). Consider ε(v1) = εi and ε(v2) = εj, where i < j for some

i+ 1 ≤ j ≤ k − 1, li ≥ lj and i, j are the largest positive integers for which li + lj ≥ 6.

In this case, we have lj = 3 and lm = 2 for all m ∈ {i + 1, i + 2, . . . , k − 1} \ j. Thus

eccentricity sequence of U ′ will be

ξ(U
′
) = {(ε1 + 2)l1 , (ε1 + 1)l2 , εl31 , ..., ε

li−1
i−2 , ..., ε

lj−1
j−2 , ..., ε

2
k−2, ε

lk
k−1}. (4.15)

Again we have

N(U
′
) = N(U) +

i∑
m=1

lm{(k − j) + (k − i) + lk}+ 2j(k − j) + 2i{(k − i)− 2}

+ 2i(j − i) + 2(k − i− 1)(lk − 1) + lk(j − i+ 2) + (j − i).

This implies

N(U
′
) > N(U).

Subcase II: When C(U) = K1

Let U1 be the corresponding caterpiller with ΛU1 the set of all pendant vertices in

U1,where, ΛU1 ≥ (∆ + 2), C(U1) = K1 and x ∈ VU1 ∩C(U1), satisfying ξ(U) = ξ(U1).

Then construct U ′ defined by;

U
′
= {U1 − {v1, v2}} ∪ {xv1y1, xv2y2},

where v1, v2 ∈ Λ.

41



(i) If ε(v1) = ε(v2) = εi such that i is the largest positive integer for which li ≥ 4 and

i = k − 1, then eccentricity sequence of U ′ becomes;

ξ(U
′
) = {(ε1 + 2)l1 , (ε1 + 1)l2 , εl31 , ..., (εk−4)lk−2, (εk−3)2, ε

(lk−1)−2
k−2 , εlkk−1}. (4.16)

Substituting ξ(U ′) in (2.2) we have;

N(U
′
) = N(U1) +

k−2∑
m=1

lm{lk−1 + lk − 2}+ 2(lk−1 − 2) + 2lk.

If ε(v1) = ε(v2) = εi with i < (k − 1), where i is the largest positive integer for which

lm > 4, then, the eccentricity sequence of U ′ is again of the form (4.14). Thus it holds

that N(U
′
) > N(U1) > N(U). The result is true in this case.

(ii) If ε(v1) 6= ε(v2), say, ε(v1) = εi and ε(v2) = εj with either i < j, j < (k − 1)

or i < (k − 1), j ≤ (k − 1) where i, j are the largest positive integers for which

li + lj ≥ 8. The eccentric sequence of U ′ is again of the form (4.15). Again we get

N(U
′
) > N(U1) = N(U).

Thus the result holds in above all cases.

Case 2: When l1 < ∆

Since U ∈ Un(3,∆) thus there exist atleast one lm in equation (4.12) such that lm = ∆.

Let lq = ∆ and lm ≥ 2 for m ∈ {1, 2, 3, ..., (q − 1)}. By applying Lemma 4.2.1, such

graphs can be transformed to a graph say U ′ with eccentricity sequence of the form

ξ(U
′
) =


{ε21, ε22, ..., ε2q−1, ε

∆
q , ..., ε

lk
k }, if

q−1∑
m=1

lm is even,

{ε21, ε22, ..., ε3p, ..., ε2q−1, ε
∆
q , ..., ε

lk
k }, if

q−1∑
m=1

lm is odd.

(4.17)

Now we can get a graph say, U ′′ discussed below in subcase (1) equation (4.18), subcase

(2) equation (4.21) from U
′ , with l1 = ∆ such that N(U

′′
) > N(U

′
).

Subcase I:When
∑q−1

m=1 lm is even.

Let u, v-diametrical path in U
′ with w be the unique neighbor of u in U

′ . Define

S ⊂ VU ′ such that, S = {vi ∈ S and ε(vi) = εq}. Now, construct U
′′ defined by

U
′′

= {U ′ − {v1, v2, . . . , v(∆−2)}} ∪ {wv1, wv2, ..., wv(∆−2)} (4.18)
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So the eccentricity sequence of U ′′ will be

ξ(U
′′
) = {εl1+(∆−2)

1 , εl22 , ..., ε
lq−(∆−2)
q , ..., εlkk } (4.19)

Using definition of NSC we have

N(U
′′
) = N(U

′
) + (∆− 2)

k∑
m=q+1

lm(2m− q − 1) > 0. (4.20)

Subcase II: When
∑q−1

m=1 lm is odd.

Let p ∈ VU ′ with ε(p) = εp ,lp = 3 and vi ∈ VU ′ for i ∈ {1, 2, . . . , (∆ − 3)} with

ε(vi) = εq, lq = ∆. Then define U ′′ by

U
′′

= {U ′ − {p, q1, q2, ..., q(∆−3)}} ∪ {wp,wq1, wq2, ..., wq(∆−3)}, (4.21)

where w is the unique neighbor of u in U
′ . Then, the eccentricity sequence of U ′′

becomes

ξ(U
′′
) = {εl1+∆−2

1 , ε22, ..., ε
lp−1
p , ..., εlq−(∆−3)

q , ..., εlkk } (4.22)

Again using definition of NSC we obtain

N(U
′′
) = N(U

′
) +

[
∆{−p+ 1−∆(q − 1) + 3q − 3}+ ∆{3(p− 1)

+ lq(q − 1)} − 2{3(p− 1) + lq(q − 1)}
]

+

p−1∑
m=2

lm{∆(2m− q − 1)

− 4m+ 3q − p+ 2}+

q−1∑
m=p+1

lm{∆(2m− q − 1)− 6m+ 3q + p+ 2}

+
k∑

m=q+1

lm{∆(q − 1)− 3(q − 1) + (p− 1)}

= N(U
′
) + ∆(p− 1) + 2p(q − p) + 2 +

[ k∑
m=q+1

lm{(∆− 3)(q − 1) + (p− 1)}

− 2q

]
> 0
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Thus the result holds in all cases. We have N(U
′′
) > N(U

′
) > N(U1) = N(U). Since

l1 = ∆ in U ′′ so Case I of Lemma 4.2.2 can be applied to get the desired graph. This

completes the proof.

Lemma 4.2.3. Let U ∈ Un(3,∆) and diameter d(U). Let Λ be the set of all pendant

vertices in U . If U 6∼= Ũn,3 and |Λ|< ∆ + 2, then there exists U ′ ∈ Un(3,∆) such that

N(U
′
) > N(U).

Proof. Consider U ∈ Un(3,∆). Then, either |Λ|= ∆ or |Λ|= (∆ + 1). We have further

two cases:

Case 1: When lk = 1 or 2

In this case either l1 = ∆ or l1 6= ∆.

i) When l1 = ∆ and |Λ|= ∆, then, U ∼= B∆
n,0 with d(U) = (n −∆ + 1) and U ∼= B∆

n,1

with d(U) = (n−∆) when |Λ|= (∆+1). Thus N(B∆
n,0) > N(B∆

n,1) result holds directly

from Lemma (3) [52].

ii) When l1 6= ∆, let lj = ∆ for some j ∈ {2, 3, . . . , (k − 1)}. Since U ∈ Un(3,∆).

Also lm = 2 for all m ∈ {1, 2, .., (k − 1)} \ {j} when |Λ|= ∆ and lm = 2 for all

m ∈ {1, 2, ..., (k − 1)} | {i, j} when |Λ|= (∆ + 1), where li = 3 for 2 ≤ i < j ≤ (k − 1)

or 2 ≤ j < i ≤ (k − 1).

Now,

If i > j with |Λ|= ∆ or |Λ|= (∆+1), apply transformation (4.18) to get U ′ with l1 = ∆

such that U ′ ∼= B∆
n,0 or B∆

n,1 satisfying N(U
′
) > N(U).

If i < j, then we apply equation (4.21) to get U ′ with l1 = ∆, such that U ′ ∼= B∆
n,0 or

B∆
n,1 for |Λ|= ∆ and |Λ|= (∆ + 1) respectively, satisfying N(U

′
) > N(U).

Case 2: When lk = 3

i) When l1 = ∆, we have the following eccentricity sequence for U ;

ξ(U) =

{
{ε∆1 , ε22, ..., ε2i−1, ε

3
i , ε

2
i+1, ..., ε

lk
k }, if |Λ|= (∆ + 1)

{ε∆1 , ε22, ..., ε2i−1, ε
2
i , ε

2
i+1, ..., ε

lk
k }. if |Λ|= (∆)

(4.23)

For |Λ|= ∆ + 1. Let p ∈ VU with ε(p) = εi < ε1 and x ∈ C(U) but x 6∈ uv-diametrical

path. We have l1 = ∆, lk = 3 and lm = 2 for all m ∈ {2, 3, , , , (k − 1)} \ {i} . Define
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U
′ ∼= B∆

n,0 given by;

U
′ ∼= B∆

n,0 = {U − {p, x}} ∪ {vx, xp} (4.24)

This implies

ξ(U
′
) = {ε∆1 , ε22..., ε

li−1
i , ..., εlk−1

k , ε2k+1}.

Using 2.2 and simplifying we get

N(U
′
) = N(U) + ∆(k − i+ 2) +

i−1∑
m=1

(k − i+ 2) + 2(2k − 2i+ 3).

For |Λ|= ∆ and x ∈ C(U) but x does not lie on uv-diametrical path. We have l1 = ∆,

lk = 3 and lm = 2 for all m ∈ {2, 3, , , , (k − 1)} . Define U ′ ∼= B∆
n,0 given by;

U
′

= {U − {x}} ∪ {vx}. (4.25)

Then, the eccentricity sequence of U ′ will be

ξ(U
′
) = {ε∆1 , ε22..., ε2i , ..., ε

lk−1
k , ε1k+1}.

This gives

N(U
′
) = N(U) +

k∑
m=1

lm + (lk − 2),

where

lk =

{
2, if d(U) is odd,

1, if d(U) is even.
(4.26)

Hence

N(U
′
) > N(U).

ii) When l1 6= ∆ let lj = ∆. We have again subcase (2) of case (II), lemma 4.2.2. Thus

the result holds in all cases.

This completes the proof
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4.3 Maximal graph in Un(3,∆)

Theorem 4.3.1. Among all n-vertex unicyclic graphs U ∈ Un(3,∆) (on n ≥ 4), the

graph Ũn,3 has the maximum NSC number.

Proof. Consider an arbitrary graph U ∈ Un(3,∆). It is obvious to see that there exist

a corresponding caterpiller T ∈ Tn or respectively a unicyclic graph Un,3 ∈ Un such

that either ξ(T ) = ξ(U) or ξ(Un,3) = ξ(U). When U ∼= T , applying Lemma 4.2.2 and

Lemma 4.2.3, T can be transformed to a graph T ′ such that T ′ ∼= B∆
n,0 or T ′ ∼= B∆

n,1

satisfying N(U) = N(T ) < N(T
′
).When U ∼= Un,3, applying Lemma 4.2.2 and Lemma

4.2.3, again we can get a graph U ′ ∼= Ũn,3 or U
′ 6∼= Ũn,3 but with eccentricity sequence of

the form (4.3), such that N(U
′
) = N(B∆

n,0) or N(U
′
) = N(B∆

n,1). Thus from Remmark

4.1 and Lemma (3) [52], it holds that Ũn,3 attains the maximum NSC number among

all graphs in Un(3,∆). This completes the proof.

4.4 Conclusion

In this chapter, we defined a class Un(3,∆) of n-vertex unicyclic graphs on n ≥ 4. We

find the unicyclic graph in Un(3,∆) with maximum non-self-centrality number, that

is the unique graph Ũn,3. We also formulated the general mathematical expression for

NSC number of graph Ũn,3 given by

N(U) ≤


(

2∆2(∆− n− 3) + 2∆(3n+ 2) + n(n2 − 1)

12

)
if d is even,(

∆2(2∆− 3n− 6) + 2∆(3n+ 2) + n2(n− 4)

12

)
if d is odd.

(4.27)

It will be an interesting problem to find the maximal graph in general class of unicyclic

graphs Un with no fixed parameters.
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