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Abstract

In this thesis, we present solution of non-linear ordinary differential equation involving

two arbitrary constants. This equation appeared in finding solutions of the Einstein

field equations. Depending on different values of the arbitrary constants involved, we

have nine possible cases. The analytical solutions are obtained in five cases and for the

remaining cases, solutions are obtained numerically.
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Chapter 1

Introduction to Differential Equations

Differential equations were first introduced with the development of the calculus by

Newton and Leibniz. An equation that contains derivative of one or more dependent

variables with respect to one or more independent variables is referred as differential

equation (DE) [1]. Differential equations are used to explain the population growth in

species, also for solving the problems in radioactive decay, flow problems, bank interest,

cooling and heating processes, orthogonal trajectories, etc. They are also employed to

examine the problems involving heat transfer, fluid mechanics and circuit design. In

the field of medicines they are used for modeling the spread of disease and cancer

growth.

Isaac Newton, [2] described following three types of differential equations:

dz

dt
= f(t), (1.1)

dz

dt
= f(t, z), (1.2)

t1
∂z

∂t1
+ t2

∂z

∂t2
= z. (1.3)

In above equations z is an unknown function of t (or t1 and t2) and f is given function.

Many well-known scholars have written articles on the development of the subject. In

the 1680s, Leibniz, Bernoulli brothers and many others began working on differential

equations, after the fluxional equations of Newton during 1670s. The Euler–Lagrange

equation was formulated by Euler and Lagrange in 1750. The study of heat flow was

published in 1822 by Fourier [3], in which he applied Newton’s law of cooling that
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the heat transfer between two consecutive molecules is proportional to the extremely

small temperature difference. In 18th century most generalizations were made in the

Leibnizian tradition [4] which was expanded to multi-variable form, which resulted in

partial differential equations. Poincaré [5] proposed recurrence theorems, initially in

association with that of the three-body problem. New applications have been made for

quantum mathematics, dynamic systems and the theory of relativity.

1.1 Classification of Differential Equations

Differential equations are classified in different categories in order to look for the meth-

ods to find their solutions. DEs are divided into two types ordinary differential equa-

tions and partial differential equations.

Definition 1.1.1. If the dependent variable or variables depend only on a single inde-

pendent variable then such differential equations are called ordinary differential equa-

tions (ODEs).

Ordinary differential equations have played important role in mathematics, com-

puter science and engineering [6]. Furthermore, study of complex processes with ODEs

is a developed area and hence there is a rich literature dedicated to their study [7, 8, 9].

ODEs are applied to model biological processes at different stages. For example, ki-

netics of drugs on a whole body level [10], gene expression [11] and signal processing

on cellular level [12].

Definition 1.1.2. If the dependent variable or variables depends on more than one

independent variables kthen the resulting equations are called the partial differential

equations (PDEs).

Example 1.1.1. (Newton’s law)

Force is equal to mass into acceleration and is given as

f = ma, (1.4)
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where m is mass of particle, a = d2x/dt2 is the particle acceleration and f is force

that acts on the particle. Newton’s law can be represented by an ordinary differential

equation as

m
d2x(t)

dt2
= f
(
t,x(t),

dx(t)

dt

)
, (1.5)

here x(t) is unknown and is the position of a particle at time t in space. By above

equation (1.5), we see that force may depend on time, on the position of the particle

in space and on the velocity of the particle.

Example 1.1.2. (The Heat Equation)

For a solid material the temperature T varies over time and in three dimensions of

space marked by x = (x, y, z), according to equation

∂T (t,x)

∂t
= k

(
∂2T (t,x)

∂x2
+
∂2T (t,x)

∂y2
+
∂2T (t,x)

∂z2

)
, k > 0, (1.6)

where k is a positive constant that describes material’s thermal properties.

The highest derivative appearing in the equation is called order of the differential

equation and power of highest derivative is said to be the degree. For example in

equation (1.5), the order is 2 and degree is 1.

Definition 1.1.3. A linear differential equation of the form

bn(t)
dnz

dtn
+ bn−1(t)

dn−1z

dtn−1
+ · · ·+ b1(t)

dz

dt
+ b0(t)z = 0, (1.7)

is said to be homogeneous, whereas an equation

bn(t)
dnz

dtn
+ bn−1(t)

dn−1z

dtn−1
+ · · ·+ b1(t)

dz

dt
+ b0(t)z = f(t), (1.8)

with f(t) 6= 0, is said to be non-homogeneous.

Definition 1.1.4. A DE is linear in z if we can write it in the form

bn(t)
dnz

dtn
+ bn−1(t)

dn−1z

dtn−1
+ · · ·+ b1(t)

dz

dt
+ b0(t)z = f(t), (1.9)

that is, it satisfies the following conditions

1. Power of dependent variable and all its derivatives is one.
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2. The coefficients bn, . . . , b0 of z, z′, . . . , z(n) depends only on the independent variable

t.

3. No transcendental functions (trigonometric, logarithmic etc.) of z exists.

If any one of these conditions is not satisfied then the DE is said to be non-linear

differential equation.

Differential equations are also divided into two types of problems, which depend on

the basis of conditions, i.e. initial value problems (IVPs) and boundary value problems

(BVPs).

Definition 1.1.5. An initial value problem is one in which all conditions are specified

for same value of the independent variable.

Definition 1.1.6. Boundary value problems are those in which conditions are de-

scribed at more than one values of the independent variable.

An initial value problem may have a unique solution, no solution, or many solutions

depending on the initial conditions. The theorem below gives the conditions sufficient

for the existence and uniqueness of a first order initial value problem.

Theorem 1.1.1. [1] a. If f is continuous on an open rectangle

R : {a < t < b, c < z < d}, (1.10)

that contains (t0, z0) then the initial value problem

z′ = f(t, z), z(t0) = z0, (1.11)

has at least one solution on some open sub-interval of (a, b) that contains t0.

b. If both f and fz are continuous on R then the initial value problem (1.11) has a

unique solution on some open sub-interval of (a, b) that contains t0.

Example 1.1.3. Consider the initial value problem

z′ =
t2 − z2

1 + t2 + z2
, z(t0) = z0. (1.12)
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Since

f(t, z) =
t2 − z2

1 + t2 + z2
, (1.13)

and

fz(t, z) = − 2z(1 + 2t2)

(1 + t2 + z2)2
, (1.14)

are continuous for all (t, z), therefore, by Theorem 1.1.1 the initial value problem (1.12)

always has a unique solution.

1.2 Some Analytical Methods for Solving Ordinary
Differential Equations

For the 1st order ordinary differential equations, we have some methods which are

further classified on the basis of some criteria i.e. if the variables are separable or not,

if the equation is homogeneous or not, or if it is exact or not. If 1st order ODE is of any

one of these types then we have the well-defined process to solve it. Here we discuss

some of the methods which we will use later in the thesis.

A differential equation of the type

M(t)dt = N(z)dz, (1.15)

is called separable equation. The general solution is obtained by direct integration.

A differential expression

M(t, z)dt+N(t, z)dz, (1.16)

is said to be exact in a region R of (t, z) plane, t is along horizontal axis and z is

along vertical axis, if it correspondence to total differential of some function g(t, z). A

differential equation of the form

M(t, z)dt+N(t, z)dz = 0, (1.17)

is said to be an exact equation if the expression on the L.H.S is an exact differential.

An equation of the form

dz

dt
+ P (t)z = Q(t)zn, n ∈ R, (1.18)
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is referred as the Bernoulli differential equation. For n = 0, 1, the equation is linear

otherwise equation (1.18) can be reduced to a linear equation.

Consider the 1st order linear differential equation

dz

dt
+ P (t)z = R(t). (1.19)

By addingQ(t)z2 on the L.H.S of above equation, we get non-linear differential equation

dz

dt
+ P (t)z +Q(t)z2 = R(t), (1.20)

called the Ricatti equation. In order to reduce to linear equation we use substitution,

i.e. z = z1 + 1
u
, where z1 is particular solution of equation (1.19) and u is unknown

non-zero function of t.

A homogeneous linear differential equation with constant coefficient can be written

as an algebraic equation which is called Auxiliary or Characteristic equation of given

DE. For higher-order differential equations, we have different techniques to obtain the

solution. If it is linear and involves constant coefficients then we have a well-defined

process to solve like complementary function. And for solution of non-homogeneous

differential equation we have different methods, like, method of undetermined coeffi-

cients and variation of parameters method.

In literature, an Euler–Cauchy equation, or Cauchy–Euler equation, or simply Euler’s

equation is a linear ordinary differential equation with variable coefficients of the type

b0t
nd

nz

dtn
+ b1t

n−1d
n−1z

dtn−1
+ · · ·+ bn−1t

dz

dt
+ bnz = f(t), (1.21)

b0, b1, . . . , bn−1, bn are real constants. By transformation, t = es or s = lnt, the equation

can be simplified to a linear differential equation with constant coefficients.

In Chapter 2, we discuss some numerical techniques like Euler’s method and the Runge-

Kutta method for solving ordinary differential equations. We have also discussed the

MATLAB built-in functions like dsolve, ode23 and ode45 in this chapter. In Chapter 3,

we present solution of non-linear ordinary differential equation that involves arbitrary

constants.
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Chapter 2

Numerical Methods for Ordinary
Differential Equations

It is not always possible to find the analytical solution of a differential equation due to

limitation of the available techniques, especially, for non-linear differential equations.

In all such situations one generally looks for numerical methods for finding solutions.

There are many numerical methods for solving ordinary differential equations with

initial conditions. These methods are of two types: single-step methods and multi-step

methods. Some well known single-step methods are Euler’s method and Runge-Kutta

methods. Multi-step methods are Milne’s method and Adams-Bashforth method etc.

All numerical methods generally vary in accuracy and computation cost.

In this chapter, after discussing some basic concepts, we will discuss Euler’s method

and its variations and Runge-Kutta method in subsequent sections.

2.1 Error Analysis of Numerical Methods

While using a numerical method we must be aware of various types of errors that may

occur. The numerical solutions of ODEs involve following types of errors:
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Round-off Error

Round-off error occur by rounding off a number to some finite decimal places. For

example, if the irrational number π = 3.141592 . . . is rounded off to two decimal places

as 3.14, then 3.141592 · · · − 3.14 = 0.001592 . . . is the round-off error.

Truncation Error

These errors occur due to the use of approximate formula in calculation or by truncating

the infinite series. For example, the Taylor series expansion of et is

et = 1 + t+
t2

2!
+ · · ·+ tn

n!
+ . . . . (2.1)

If the infinite series (2.1) is used to calculate r = e0.4, we get

e0.4 = 1 + 0.4 +
(0.4)2

2!
+ · · ·+ (0.4)n

n!
+ . . . . (2.2)

It is not possible to add infinite terms numerically, so if we take the first four terms as

the approximation, we obtain

e0.4 ≈ 1 + 0.4 +
(0.4)2

2!
+

(0.4)3

3!
= r. (2.3)

Then the truncation error = r − r = (0.4)4

4!
+ (0.4)5

5!
+ . . . .

Truncation error is divided into two types: The quantity of truncation error that

appears in a numerical approximation in one iteration is called local truncation error

and the cumulative truncation error caused by many iterations is known as global

truncation error.

Absolute Error

If exact value of solution is represented by χ and χ′ is used for approximate value, then

the absolute error between two values is given as

EA = |χ− χ′|. (2.4)
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Relative Error

Relative error is given by the absolute error divided by the exact value

ER =

∣∣∣∣χ− χ′χ

∣∣∣∣. (2.5)

2.2 Euler’s Method and its Variations

The Euler’s method, originated in 1768 by Leonhard Euler, is a single step method and

is also known as tangent line method. It is the simplest numerical method to solve the

initial value problems.

Consider a differential equation
dz

dt
= f(t, z), z(t0) = z0. (2.6)

We want to find successively z1, z2, . . . , zm, where zm is the value of z corresponding

to t = tm, where tm = t0 + mh, m = 1, 2, . . . . Take h very small such that the

curve is nearly a straight line. The Figure 2.1 shows exact solution and the numerical

solutions z1, z2, . . . , zm obtained by Euler’s method and the doted lines represent the

errors between the exact and numerical solution.

Figure 2.1: Exact solution vs Numerical solutions by Euler’s method [13].

Thus in the interval [t0, t1] we approximate the curve by tangent at point (t0, z0).

Equation of tangent line at (t0, z0) is

z − z0 =
dz

dt

∣∣∣∣
(t0,z0)

(t− t0), (2.7)
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z = z0 + (t− t0)f(t0, z0). (2.8)

Hence, the value of z corresponding to t = t1 is

z1 = z0 + (t1 − t0)f(t0, z0), (2.9)

or

z1 = z0 + hf(t0, z0), (2.10)

or

zm = zm−1 + hf(tm−1, zm−1), m = 1, 2, . . . . (2.11)

Euler’s method is not very accurate, so in practice, it is seldom used. The draw backs

of Euler’s method are given as follows:

• Low order of accuracy.

• For maintenance high accuracy, very small h is necessary.

• Computational process is time consuming.

Error for Euler’s Method

Consider

z′ =
dz

dt
= f(t, z), z(t0) = z0. (2.12)

Assume zk is approximate value and z(tk) is exact value at tk. The local truncation

error at (k + 1)th step is

Ek+1 = z(tk+1)− zk+1 − z(tk) + zk. (2.13)

Using equation (2.11) with m = k + 1 in equation (2.13), we get

Ek+1 = z(tk+1)− z(tk)− hf(tk, zk), (2.14)

10



where k = 0, 1, 2, . . . ,m− 1.

For k = 0

E1 = z(t1)− z(t0)− hf(t0, z0), (2.15)

or

E1 = z(t0 + h)− z(t0)− hf(t0, z0). (2.16)

Using Taylor series, we get

E1 = z(t0) + hz
′
(t0) +

h2

2!
z
′′
(c1)− z(t0)− hf(t0, z0). (2.17)

Substituting z′(t0) = f(t0, z0), we get, local truncation error is of order h2 and is given

by

|E1| =

∣∣∣∣h22!
z
′′
(c1)

∣∣∣∣, (2.18)

where c1 ∈ (t0, t1). For k = 1

|E2| =

∣∣∣∣h22!
z
′′
(c2)

∣∣∣∣, (2.19)

where c2 ∈ (t1, t2). Similarly for k + 1 = m, we have

|Em|=
∣∣∣∣h22!

z
′′
(cm)

∣∣∣∣, (2.20)

where cm ∈ (tm−1, tm).

The global truncation error after m steps is

|E1 + E2 + · · ·+ Em|=
∣∣∣∣h22!

z
′′
(c1) +

h2

2!
z
′′
(c2) + · · ·+ h2

2!
z
′′
(cm)

∣∣∣∣, (2.21)

|E1 + E2 + · · ·+ Em|≤
∣∣∣∣h22!

z
′′
(c1)

∣∣∣∣+

∣∣∣∣h22!
z
′′
(c2)

∣∣∣∣+ · · ·+
∣∣∣∣h22!

z
′′
(cm)

∣∣∣∣. (2.22)

Let |z′′(c)| is maximum of |z′′(c1)|, |z′′(c2)|, . . . , |z′′(cm)| then

|E1 + E2 + · · ·+ Em|≤
∣∣∣∣h22!

z
′′
(c)

∣∣∣∣+

∣∣∣∣h22!
z
′′
(c)

∣∣∣∣+ · · ·+
∣∣∣∣h22!

z
′′
(c)

∣∣∣∣, (2.23)
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|E1 + E2 + · · ·+ Em|≤ m

∣∣∣∣h22!
z
′′
(c)

∣∣∣∣, (2.24)

|E1 + E2 + · · ·+ Em|≤
b− a

2
h|z′′(c)|. (2.25)

The global truncation error for Euler’s method is of order h.

In the subsequent subsections we discuss two variations of Euler’s method, namely the

improved Euler method and the modified Euler method.

2.2.1 The Improved Euler Method

In this method, geometrically we draw a tangent at (t0, z0) as in Euler’s method. At

t1, we find the value of z∗1 , by using Euler’s method such that z∗1 = z0 + hf(t0, z0).

Once we find the value of z∗1 then we have two values (t0, z0) and (t1, z
∗
1), then slopes at

Figure 2.2: Graphical representation of the improved Euler method [1].

(t0, z0) and (t1, z
∗
1) are m0 = f(t0, z0) and m1 = f(t1, z

∗
1), respectively. The average of

slopes is given by f(t0,z0)+f(t1,z∗1 )

2
= mave, which is the slope of the parallel dashed lines

shown in Figure 2.2. In the improved Euler method the value, z1, at t1 is obtained by

going along the dashed line through (t0, z0) with the slope mave. From Figure 2.2, z1 is

12



an improvement over z∗1 . Equation of tangent with the average of two slopes at (t0, z0)

is

z − z0 = (t− t0)
(
f(t0, z0) + f(t1, z

∗
1)

2

)
. (2.26)

Putting t = t1 = t0 + h, we get

z1 = z0 +
h

2

(
f(t0, z0) + f(t0 + h, z0 + hf(t0, z0))

)
. (2.27)

For the second approximate value, z2, we have

z2 = z1 +
h

2

(
f(t1, z1) + f(t1 + h, z1 + hf(t1, z1))

)
. (2.28)

In the same way

zm = zm−1 +
h

2

(
f(tm−1, zm−1) + f(tm−1 + h, zm−1 + hf(tm−1, zm−1))

)
. (2.29)

Equation (2.29) is referred as the improved Euler method.

Error for the Improved Euler Method

Using equation (2.29) for m = k + 1 in equation (2.13), we have

Ek+1 = z(tk+1)− z(tk)− h

2

(
f(tk, zk) + f(tk + h, zk + hf(tk, zk))

)
. (2.30)

Using Taylor’s series, we have

z(tk+1) = z(tk) + hz
′
(tk) +

h2

2!
z
′′
(tk) +

h3

3!
z
′′′

(tk) + . . . , (2.31)

and

f(tk + h, zk + hf(tk, zk)) = f(tk, zk) +

(
h
∂

∂t
+ hf(tk, zk)

∂

∂z

)
f

∣∣∣∣
(tk,zk)

+
1

2!

(
h
∂

∂t
+ hf(tk, zk)

∂

∂z

)2

f

∣∣∣∣
(tk,zk)

+
1

3!

(
h
∂

∂t
+ hf(tk, zk)

∂

∂z

)3

f

∣∣∣∣
(tk,zk)

+ . . . ,

(2.32)
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or

f(tk + h, zk + hf(tk, zk)) = f(tk, zk) + hf
′
(tk, zk) +

h2

2!
f
′′
(tk, zk)

+
h3

3!
f
′′′

(tk, zk) + . . . ,

(2.33)

where “ ′ ” represents the derivative with respect to t. Using equation (2.31) and

equation (2.33) in equation (2.30), we get

Ek+1 =

(
z(tk) + hz

′
(tk) +

h2

2!
z
′′
(tk) +

h3

3!
z
′′′

(tk) + . . .

)
− z(tk)

− h

2

(
2f(tk, zk) + hf

′
(tk, zk) +

h2

2!
f
′′
(tk, zk) +O(h3)

)
.

(2.34)

Substituting z′(tk) = f(tk, zk), z′′(tk) = f
′
(tk, zk) and z′′′(tk) = f

′′
(tk, zk) in equation

(2.34) and simplifying, we get

Ek+1 =
h3

3!
z
′′′

(tk)− h3

4
z
′′′

(tk) + . . . , (2.35)

or

Ek+1 =

(
h3

3!
− h3

4

)
z
′′′

(tk) + . . . . (2.36)

The local truncation error is of order h3 and is given by

|Ek+1|=
∣∣∣∣ 1

12
h3z

′′′
(cm)

∣∣∣∣, (2.37)

where cm ∈ (tm−1, tm).

The global truncation error after m steps is given by

|E1 + E2 + · · ·+ Em|≤
b− a

12
|z′′′(c)|h2. (2.38)

Equation (2.38) shows the global truncation error for the improved Euler method is of

order h2.
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2.2.2 The Modified Euler Method

In modified Euler method, we first estimate the value of z at t0 + h
2
, using the tangent

line at (t0, z0) and call this estimated value, z∗1 , which is equal to z0 + h
2
f(t0, z0), then

Figure 2.3: Graphical representation of the modified Euler method.

we estimate the value of slope at t = t0 + h
2
by f(t0 + h

2
, z∗1) then we find the value of

z at t = t1 using tangent line that passes from (t0, z0) and has slope f(t0 + h
2
, z∗1) is

z1 = z0 + hf

(
t0 +

h

2
, z0 +

h

2
f(t0, z0)

)
. (2.39)

or

z2 = z1 + hf

(
t1 +

h

2
, z1 +

h

2
f(t1, z1)

)
, (2.40)

or

zm = zm−1 + hf

(
tm−1 +

h

2
, zm−1 +

h

2
f(tm−1, zm−1)

)
, m = 1, 2, . . . . (2.41)

Equation (2.41) is referred as the modified Euler method. The local truncation error

for the modified Euler method is of order h3 and its global truncation error is of order

h2.

15



2.3 Runge-Kutta Methods

Runge-Kutta (RK) methods are generalizations of Euler’s formula (2.11) in which

slope of function f is replaced by a weighted average, u, of slopes over the interval

tm−1 ≤ t ≤ tm, i.e.

zm = zm−1 + hu, (2.42)

where h is the length of the interval. When u is estimated by using slopes at r points

then u can be written as

u = w1k1 + w2k2 + · · ·+ wrkr, (2.43)

where w1, w2, . . . , wr are weights of the slopes at various points and k1, k2, . . . , kr are

slopes. Using equation (2.43) in equation (2.42), we get

zm = zm−1 + h(w1k1 + w2k2 + · · ·+ wrkr). (2.44)

2nd Order Runge-Kutta Method

The 2nd order RK method has the form

zm = zm−1 + h(w1k1 + w2k2), (2.45)

where

k1 = fm−1, (2.46)

k2 = f(tm−1 + ph, zm−1 + qhfm−1), (2.47)

where p and q are constants. Applying Taylor series on k2, we have

k2 = fm−1 + ph
∂fm−1
∂t

+ qhfm−1
∂fm−1
∂z

+O(h2). (2.48)

Ignoring higher order terms in h, we get

k2 = fm−1 + ph
∂fm−1
∂t

+ qhfm−1
∂fm−1
∂z

. (2.49)
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Using value of k1 and k2 from equations (2.46) and (2.49) in equation (2.45), we get

zm = zm−1 + h

[
fm−1 + w2

(
fm−1 + ph

∂fm−1
∂t

+ qhfm−1
∂fm−1
∂z

)]
, (2.50)

or

zm = zm−1 + hfm−1(w1 + w2) + w2h
2

[
p
∂fm−1
∂t

+ qfm−1
∂fm−1
∂z

]
. (2.51)

The weights w1, w2 and constants p, q are to be determined. The Taylor series expansion

of zm about zm−1 is given as

zm = zm−1 + hz
′

m−1 +
h2

2!
z
′′

m−1 +O(h3), (2.52)

where

z
′

m−1 = fm−1, (2.53)

z
′′

m−1 =
∂fm−1
∂t

+ fm−1
∂fm−1
∂z

. (2.54)

Using values of z′m−1 and z′′m−1 in equation (2.52) and ignoring higher order terms in

h, we get

zm = zm−1 + hfm−1 +
h2

2!

[
∂fm−1
∂t

+ fm−1
∂fm−1
∂z

]
. (2.55)

Comparing coefficients of powers of h in equations (2.51) and (2.55), we have

w1 + w2 = 1, (2.56)

w2p =
1

2
, (2.57)

w2q =
1

2
. (2.58)

Equations (2.56)-(2.58) is a system of three algebraic equations involving fours un-

knowns. Therefore, it has infinite solutions. Choosing w1 = 1
2
, we get w2 = 1

2
and

p = q = 1, then equation (2.45) becomes

zm = zm−1 +
h

2
(k1 + k2), (2.59)

where

k1 = f(tm−1, zm−1), (2.60)

k2 = f(tm−1 + h, zm−1 + hk1). (2.61)
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Equation (2.59) is the improved Euler formula. Setting w1 = 0, we get w2 = 1 and

p = q = 1
2
, then equation (2.45) becomes

zm = zm−1 + hk2, (2.62)

where

k1 = f(tm−1, zm−1), (2.63)

k2 = f(tm−1 +
h

2
, zm−1 +

hk1
2

). (2.64)

Equation (2.62) is the modified Euler formula. The local truncation error for 2nd order

RK method is of order h3 and global truncation error is of order h2.

4th Order Runge-Kutta Method

The 4th order Runge-Kutta (RK4) method has the form

zm = zm−1 + h(w1k1 + w2k2 + w3k3 + w4k4). (2.65)

Following the similar procedure as followed for 2nd order RK method, we get w1 =

w4 = 1
6
and w2 = w3 = 2

6
, therefore equation (2.65) becomes

zm = zm−1 +
h

6
(k1 + 2k2 + 2k3 + k4), (2.66)

where

k1 = f(tm−1, zm−1), (2.67)

k2 = f

(
tm−1 +

h

2
, zm−1 +

k1
2

)
, (2.68)

k3 = f

(
tm−1 +

h

2
, zm−1 +

k2
4

)
, (2.69)

k4 = f(tm−1 + h, zm−1 + k3). (2.70)

The local truncation error for RK4 method is of order h5 and its global truncation

error is of order h4.
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2.3.1 RK4 Method for System of First Order IVP

Consider a system of 1st order IVP consisting of two equations given as

z
′

1 = f1(t, z
1, z2), (2.71)

z
′

2 = f2(t, z
1, z2), (2.72)

a ≤ t ≤ b, z1(a) = α1, z2(a) = α2. RK4 method is given as:

For z1:

z1m+1 = z1m +
1

6
(k11 + 2k12 + 2k13 + k14), (2.73)

where

k11 = hf1(tm, z
1
m, z

2
m), (2.74)

k12 = hf1

(
tm +

h

2
, z1m +

k11
2
, z2m +

k21
2

)
, (2.75)

k13 = hf1

(
tm +

h

2
, z1m +

k12
2
, z2m +

k22
2

)
, (2.76)

k14 = hf1(tm+1, z
1
m + k13, z

2
m + k23). (2.77)

For z2:

z2m+1 = z2m +
1

6
(k21 + 2k22 + 2k23 + k24), (2.78)

where

k11 = hf2(tm, z
1
m, z

2
m), (2.79)

k12 = hf2

(
tm +

h

2
, z1m +

k11
2
, z2m +

k21
2

)
, (2.80)

k13 = hf2

(
tm +

h

2
, z1m +

k12
2
, z2m +

k22
2

)
, (2.81)

k14 = hf2(tm+1, z
1
m + k13, z

2
m + k23). (2.82)

Example 2.3.1. Consider the following system of initial value problem

z
′

1 = z1 + 2z2 = f1, (2.83)

z
′

2 = 4z1 + 3z2 = f2, (2.84)

with z1(0) = 1, z2(0) = 1 and 0 ≤ t ≤ 0.2, h = 0.1.
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For first iteration m = 0, we get

k11 = 0.3000 k21 = 0.7000
k12 = 0.3850 k22 = 0.8650
k13 = 0.4058 k23 = 0.9068
k14 = 0.5219 k24 = 1.1344
z11 = 1.4006 z21 = 1.8963

Table 2.1: Results of RK4 method for m = 0.

For second iteration m = 1, we get

k11 = 0.5193 k21 = 0.1291
k12 = 0.6582 k22 = 1.4024
k13 = 0.6952 k23 = 1.4711
k14 = 0.8828 k24 = 1.8475
z12 = 2.0845 z22 = 3.3502

Table 2.2: Results of RK4 method for m = 1.

2.3.2 RK4 Method for Higher Order IVP

Consider the 2nd order IVP given as

y
′′

= f(t, y, y
′
), y(a) = α, y

′
(a) = β. (2.85)

Defining y′ = z. The above 2nd order equation (2.85) is converted to system of following

two 1st order IVP

y
′

= z, (2.86)

z
′

= f(t, y, z), (2.87)

y(a) = α, z(a) = β. (2.88)

This is a system of two equations with two unknowns which can be solved by the

method describe in section (2.3.1).
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Example 2.3.2. Consider the 2nd order initial value problem

y
′′ − 2y

′
+ 2y = et cos t,

y(0) = 1, y
′
(0) = 2, and 0 ≤ t ≤ 0.2, h = 0.1.

(2.89)

For first iteration m = 0, we get

k11 = 0.2000 k21 = 0.3000
k12 = 0.2150 k22 = 0.3150
k13 = 0.2158 k23 = 0.3150
k14 = 0.2315 k24 = 0.3298
z11 = 1.2155 z21 = 2.3150

Table 2.3: Results of RK4 method for m = 0.

For second iteration m = 1, we get

k11 = 0.1216 k21 = 0.3299
k12 = 0.2480 k22 = .3556
k13 = 0.2493 k23 = 0.3455
k14 = 0.2661 k24 = 0.3588
z12 = 1.4459 z22 = 2.6635

Table 2.4: Results of RK4 method for m = 1.

Example 2.3.3. In this example, we find numerical solutions of the initial value prob-

lem z
′

= z − t, z(0) = 2 with step size h = 0.1 in interval 0 ≤ t ≤ 1, by using Euler’s

method and RK4 method and compare the results with the exact solution given by

z(t) = et + t+ 1. The results are shown in Tables 2.5 and 2.6.
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m tm z(tm) (exact solution) zm (by RK4 method) zm (by Euler’s method)
1 0.0 2.0000 2.0000 2.0000
2 0.1 2.2052 2.2052 2.2000
3 0.2 2.4214 2.4214 2.4100
4 0.3 2.6499 2.6499 2.6310
5 0.4 2.8918 2.8919 2.8641
6 0.5 3.1487 3.1488 3.1105
7 0.6 3.4221 3.4222 3.3716
8 0.7 3.7138 3.7138 3.6488
9 0.8 4.0255 4.0256 3.9436
10 0.9 4.3596 4.3597 4.2580
11 1.0 4.7183 4.7184 4.5938

Table 2.5: Exact solution and numerical solutions obtained by RK4 and Euler’s meth-
ods.

m tm |Em| (for RK4 method) |Em| (for Euler’s method)
1 0.0 0.0000 0.0000
2 0.1 0.0000 0.0052
3 0.2 0.0000 0.0114
4 0.3 0.0000 0.0189
5 0.4 0.0001 0.0277
6 0.5 0.0001 0.0382
7 0.6 0.0001 0.0505
8 0.7 0.0000 0.0650
9 0.8 0.0001 0.0819
10 0.9 0.0001 0.1016
11 1.0 0.0001 0.1245

Table 2.6: Absolute error for RK4 and Euler’s methods.

Notice that the absolute errors in case of RK4 method are much less than the

absolute errors as in Euler’s method.
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2.4 MATLAB

MATLAB stands for Matrix Laboratory. MATLAB is a high-level language and inter-

active computing system for numerical computation and programming. MATLAB is

used for developing algorithms, analyzing data, handling graphics and also to create

models. There are many built-in functions in MATLAB that are used to solve ordinary

differential equations.

dsolve:

dsolve is a built-in function used to find exact solutions of ordinary differential equa-

tions. It is applicable for both IVPs and BVPs (of ODEs). The basic syntax is given

as:

dsolve(′eq1′, ′eq2′, . . . , ′cond1′, ′cond2′, . . . , ′v′),

where "eq1" and "eq2" stand for ordinary differential equations, "cond1" and "cond2"

stand for initial or boundary conditions and "v" stands for independent variable. If

the independent variable is not specified then MATLAB takes "t" as the independent

variable by default. In specifying the equation the letter D denotes differentiation. If

z is the dependent variable and t is the independent variable, Dz stands for dz
dt
. A

second derivative is typed as D2 , third derivative as D3, and so on. We write initial

conditions z(a) = A as ′z(a) = A′ and z′(a) = A as ′Dz(a) = A′. For example, consider

the differential equation
dz

dt
= zt, z(1) = 1.

The dsolve syntax is written as:

dsolve(′Dz = z ∗ t′, ′z(1) = 1′, ′t′).

Consider a 2nd order differential equation

z
′′
(t) + 8z′(t) + 2z(t) = cos(t), z(0) = 0, z′(0) = 1.

The dsolve syntax is:

dsolve(′D2z + 8 ∗Dz + 2 ∗ z = cos(t)′, ′z(0) = 0, Dz(0) = 1′, ′t′).

23



dsolve is also used for solving system of ordinary differential equations. The syntax is

same as described above. For a system, we write differential equations separated by

comas in a single quote. For example, consider system of 1st order differential equations

t′ = t+ 2z − u,

z′ = t+ u, (2.90)

u′ = 4t− 4z + 5u.

The dsolve syntax for the above system of equations is:

dsolve(′Dt = t+ 2 ∗ z − u′, ′Dz = t+ u′, ′Du = 4 ∗ t− 4 ∗ z + 5 ∗ u′).

ode23 and ode45:

If dsolve fails to find exact solution then one may use built-in functions like ode23 and

ode45 to find numerical solution of initial value problems. ode23 is a single step solver.

It is coded in MATLAB by combining 2nd and 3rd order Runge- Kutta methods. The

built-in function ode45 is used for numerical solution of 4th and 5th order Runge-Kutta

method. The syntax is given as:

[t, z] = solver(odefun, tspan, z0),

where "[t,z]" is the output. Here "t" and "z" are the arrays that represent values of

the independent and dependent variables, respectively. "solver" stands for MATLAB

algorithm like ode23 and ode45 . "ode fun" represent the differential equation, "tspan"

is the vector defining the beginning and end limits of integration and "z0" stands for

initial conditions.

For example, consider first order ODE
dz

dt
= tz2 + z, z(0) = 1, on the interval t ∈ [0, 0.5].

For this create an m-file as:

function dzdt = p1(t, z)

dzdt = tz2 + z;

end
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Then type the code in command window:

tspan = [0 0.5];

z0 = 1;

[t, z] = ode45(@p1, tspan, z0)

Finally run the file to obtain the required solution. One can use plot command to view

the output i.e. plot(t, z). We can also display the results by using the disp command

i.e. disp([t, z]).

For the nth-order ODE: z(n) = f(t, z, z′, . . . , z(n−1)), set z1 = z, z2 = z
′
, . . . , zn = z(n−1).

The result of this substitution will be an equivalent system of n first order ODEs

z
′

1 = z2,

z
′

2 = z3,
... (2.91)

z
′

n = f(t, z1, z2, . . . , zn).

For example, consider a 2nd order differential equation

z
′′
(t) + 8z′(t) + 2z(t) = cos(t), z(0) = 0, z′(0) = 1.

Taking z1(t) = z(t) and z2(t) = z′(t), we have the system

z
′

1(t) = z2(t),

z
′

2(t) = −8z2(t)− 2z1(t) + cos(t).

Now create an m-file as:

function dzdt = p2(t, z)

dzdt(1) = z(2);

dzdt(2) = −8 ∗ z2(t)− 2 ∗ z1(t) + cos(t);

dzdt = dzdt(1) + dzdt(2);

end
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Then type the code in command window:

tspan = [0 5];

[t, z] = ode45(@p2, tspan, [0 1])

Finally run the file to obtain the required solution. For solving the system of ordinary

differential equations, we follow the same code as we discussed above in example of 2nd

order differential equation.
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Chapter 3

Solution of Non-linear Ordinary
Differential Equation Involving
Arbitrary Constants

Differential equations appear as mathematical models of many physical problems. In

general relativity solutions of the Einstein field equations, which are essentially a system

of non-linear differential equations, lead to models of space-time geometry. An attempt

to find spherically symmetric static solutions of the field equations led to the following

non-linear ordinary differential equation involving two arbitrary constants.

dy

dx
=

y√
y2 + c1y + c2y4

, y(0) = 0. (3.1)

In this chapter we present solutions of the above initial value problem (3.1). We

consider different cases depending on the values of arbitrary constants and they are as

follows:
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Case Values of arbitrary constants
Case 1 c1 = 0 = c2
Case 2 c1 = 0, c2 > 0
Case 3 c1 = 0, c2 < 0
Case 4 c1 > 0, c2 = 0
Case 5 c1 < 0, c2 = 0
Case 6 c1 > 0, c2 > 0
Case 7 c1 > 0, c2 < 0
Case 8 c1 < 0, c2 > 0
Case 9 c1 < 0, c2 < 0

Table 3.1: Different cases depending on the values of arbitrary constants.

Case 1: c1 = 0, c2 = 0.

In this case, the IVP (3.1) has following solution

y = x. (3.2)

Case 2: c1 = 0, c2 > 0.

Taking c2 = k2 (k 6= 0), we have the IVP (3.1) as

dy

dx
=

1√
1 + k2y2

, y(0) = 0. (3.3)

In this case the substitution, ky = tan θ, leads to the following solution

1

2k

(
ky
√
k2y2 + 1 + ln |

√
k2y2 + 1 + ky|

)
= x. (3.4)

Case 3: c1 = 0, c2 < 0.

Taking c2 = −k2 (k 6= 0), the IVP (3.1) becomes

dy

dx
=

1√
1− k2y2

, y(0) = 0. (3.5)

In this case the substitution, ky = sin θ, leads to the following solution

1

2k

(
sin−1(ky) + ky

√
1− k2y2

)
= x. (3.6)
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Case 4: c1 > 0, c2 = 0.

Taking c1 = k2 (k 6= 0) and c2 = 0, the IVP (3.1) becomes

dy

dx
=

y√
y2 + k2y

, y(0) = 0. (3.7)

In this case the substitution

y +
1

2
k2 =

1

2
k2 sec θ, (3.8)

leads to the solution√
y2 + k2y +

k2

2
ln
∣∣∣2y + k2 + 2

√
y2 + k2y

k2

∣∣∣ = x. (3.9)

Case 5: c1 < 0, c2 = 0.

Taking c1 = −k2 (k 6= 0) and c2 = 0, the IVP (3.1) becomes

dy

dx
=

y√
y2 − k2y

, y(0) = 0. (3.10)

Taking the substitution

y − 1

2
k2 =

1

2
k2 sec θ, (3.11)

we get the following solution

√
y2 − k2y − k2

2
ln
∣∣∣2y − k2 + 2

√
y2 − k2y

k2

∣∣∣ = x. (3.12)

Case 6: c1 > 0, c2 > 0.

In this case, taking c1 = 1 and c2 = 1, the IVP (3.1) becomes

dy

dx
=

y√
y2 + y + y4

, y(0) = 0. (3.13)

For y ∈ [−0.682, 0) we have complex values of
√
y2 + y + y4, therefore, solution does

not exist for this range. The solution lies in (−∞,−0.682) ∪ (0,∞). Obtaining an-

alytical solution of IVP (3.13) is not that trivial. So, we obtain numerical solution
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using MATLAB built-in functions ode23, ode45 and by RK4 method and the results

are shown in Table 3.2. The graphs of the solution for y ∈ (−∞,−0.682) and (0,∞)

are shown in Figures 3.1 and 3.2 respectively.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−10
0

x

y

Figure 3.1: Numerical solution of the IVP for case 6, when y ∈ (−∞,−0.682).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10
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x

y

Figure 3.2: Numerical solution of the IVP for case 6, when y ∈ (0,∞).
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xm ym (by ode23) ym (by ode45) ym (by RK4 method)
0 -1.0000 -1.0000 -1.0000
0.0502 – -1.0485 –
0.0800 -1.0758 – –
0.1005 – -1.0941 –
0.1507 – -1.1374 –
0.2000 – – -1.1780
0.2010 – -1.1787 –
0.2442 -1.2130 – –
0.2760 – -1.2374 –
0.3510 – -1.2932 –
0.4000 – – -1.3283
0.4260 – -1.3464 –
0.4751 -1.3802 – –
0.5010 – -1.3975 –
0.5760 – -1.4468 –
0.6000 – – -1.4622
0.6510 – -1.4944 –
0.7260 – -1.5405 –
0.7751 -1.5701 – –
0.8000 – – -1.5848
0.8010 – -1.5853 –
0.8760 – -1.6289 –
0.9510 – -1.6714 –
1.0000 – – -1.6986
1.5510 – -1.9798 –
3.0000 -2.5834 -2.5833 -2.5833

Table 3.2: Results of IVP (3.13) by using ode23, ode45 and RK4 method.

Notice that ode23 involves least and ode45 most number of intermediate points to ob-

tained result at the boundary point, which differ slightly in the fourth decimal place. As

ode45 is fifth and ode23 is third order method, therefore, ode45 is more accurate. The

solution obtained by RK4 matches with the one obtained by ode45 with lesser number

of intermediate points involved, therefore, we have chosen RK4 for our calculations in

the remaining cases.
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Case 7: c1 > 0, c2 < 0.

Taking c1 = 1 and c2 = −1, the IVP (3.1) is given as

dy

dx
=

y√
y2 + y − y4

, y(0) = 0. (3.14)

For y ∈ (−∞, 0) ∪ [1.325,∞) we have complex values of
√
y2 + y − y4. Therefore, the

solution lies in (0, 1.324] only. The numerical solution obtained using RK4 method is

shown in Figure 3.3.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
10

−2

10
−1

10
0

x

y

Figure 3.3: Numerical solution of the IVP for case 7, when y ∈ (0, 1.324].

Case 8: c1 < 0, c2 > 0.

Taking c1 = −1 and c2 = 1, the IVP (3.1) is given as

dy

dx
=

y√
y2 − y + y4

, y(0) = 0. (3.15)

For y ∈ (0, 0.682] we have complex values of
√
y2 − y + y4. Therefore, the solution lies

in (−∞, 0) ∪ (0.682,∞). The graphs of the solution for y ∈ (−∞, 0) and (0.682,∞)

are shown in Figures 3.4 and 3.5 respectively.
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Figure 3.4: Numerical solution of the IVP for case 8, when y ∈ (−∞, 0).
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Figure 3.5: Numerical solution of the IVP for case 8, when y ∈ (0.682,∞).

Case 9: c1 < 0, c2 < 0.

Taking c1 = −1 and c2 = −1, the IVP (3.1) is given as

dy

dx
=

y√
y2 − y − y4

, y(0) = 0. (3.16)
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For y ∈ (−∞,−1.324)∪(0,∞) we have complex values of
√
y2 − y − y4. Therefore, the

solution lies in [−1.324, 0) only. The numerical solution obtained using RK4 method

is shown in Figure 3.6.
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Figure 3.6: Numerical solution of the IVP for case 9, when y ∈ [−1.324, 0).
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Chapter 4

Conclusion

In this thesis, solution of non-linear ordinary differential equation of first order is

discussed for different values of the constants involved.

In Chapter 1, we have given a brief introduction of ordinary differential equations and

also discussed some analytical methods for solving ODEs. In Chapter 2, some numerical

methods like Euler’s method & it’s variations and Runge-Kutta methods for solving

IVPs of ordinary differential equations are discussed. A brief review of MATLAB

built-in functions is also given. In Chapter 3, we investigate the solution of 1st order

non-linear ordinary differential equation involving two arbitrary constants. We have

nine cases based on different values of the parameters. For five cases exact analytical

solutions are obtained. For remaining four cases we obtain numerical solutions. The

ranges of validity of the solutions are also discussed.
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