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Abstract

The aim of this study is to carry out detailed performance analysis of differential trans-

formation method(DTM) for solving linear and non-linear differential equations. DTM

is applied to obtain the analytical solution of linear and non-linear ordinary and partial

differential equations. Also, the method is later applied to obtain the semi-analytical

solution of magneto hydro dynamic (MHD) flow of non-Newtonian fluid between three

parallel plates. The results obtained are compared with available exact and numeri-

cal solutions. The absolute error is computed and presented graphically. Comparison

of the results, confirms that the method is effective, reliable and easy to implement.

However, there are many limitations of this method that are highlighted in this study.

The analysis of results revealed that DTM performs well only in restricted domain

and to achieve strong results in comparison to other methods the number of terms in-

volved in inverse transform should be increased when subintervals increases. Further,

the DTM requires extra conditions for solving boundary value partial differential equa-

tions. Whereas, a polynomial of higher degree containing unknown variable appears in

inverse transform while solving boundary value ordinary differential equations, which

increases the computational cost of the method.
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Chapter 1

Introduction

1.1 Literature Review

In general, its not easy to find the exact solution of the nonlinear differential equations

so the researchers are always keen to find new methods for obtaining analytical solutions

of linear and nonlinear differential equations. Several applications have been developed

for finding numerical solutions of differential equations. Some of the famous one’s are

RK4[1, 2], Euler [1] , DTM etc.

Differential transform method is a semi-analytical method that can effectively solve

non-linear differential equation. Initially, DTM was used to solve linear and nonlinear

IVPs. In 1986 ZHOU[3] proposed this method for solving linear and nonlinear IVPs

in electric circuit analysis. Later Chen and Ho[4] used DTM for solving PDES and

obtained the solution in closed series form for linear and nonlinear IVPs. In [5] multi

step DTM is proposed to increase the interval of convergence for series solution. It is

also used for finding the accurate solution for system of equations. In 2011 Rostam [6]

used DTM to solve nonlinear delay differential equation. By using DTM both analytic

and exact solutions of the nonlinear systems were obtained and it was shown that DTM

is reliable and consume less computational cost. In [7, 11] authors came up with the

idea that the results obtained by DTM can be converted into exact answer. This idea

is also discussed by [8, 9]. By presenting some examples it was illustrated that the

method is reliable, efficient and fast convergent. In [10] authors introduced DTM and

MsDTM as effective and reliable tool so that student at undergraduate level can easily
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solve linear and nonlinear differential equations. The results of DTM and MsDTM were

compared with RK4 to show accuracy and simplicity of the methods. In [12] a reliable

algorithm was introduced to calculate differential transform of difficult nonlinearities i.e

exponential and logarithmic non linearities. The technique is useful to handle nonlinear

terms. In [13, 14] DTM is presented as an approximating technique for solving linear

BVPs. The solution of higher order differential i.e 7th, 8th order is developed in these

papers. After Chen and Ho [4] much work was done on linear and nonlinear 2D and 3D

PDEs. Ayaz [15] proposed some new theorems to solve PDEs of higher dimension and

compared there results with decomposition method. The comparison shown that DTM

is efficient, fast convergent, easy to implement and consumes less computational cost.

In [16] the analytical solution of nonlinear hyperbolic-parabolic PDEs was obtained

using DTM. In [17] wave and heat like equations were solved. The conclusion deduced

was that DTM is such a powerful technique that gives exact solution. The same 2-

D DTM was then used in [18] to solve 2-D nonlinear wave equation and the results

were compared with those obtained by Least Square Method. Again the conclusion

deduced after comparison was that DTM is fast convergent and more accurate. Also, in

[19, 20] nonlinear gas dynamic and Klein-Gordan equations are solved using 2-D DTM.

The approximate solutions of these equations are evaluated in the form of series. The

obtained results reveal that DTM is easy to implement and fast convergent method.

The convergence of DTM is in detail discussed in [33].

In this research, we applied DTM to solve the differential equations involved in MHD

flow of third grade non-Newtonian fluids. Non-Newtonian fluids got much popular-

ity due to there various applications in the field of engineering and industry. Non-

Newtonian fluids includes ketchup, blood, lubricants, paste etc. There are many differ-

ent models in literature that describe the behaviour of non-Newtonian fluids between

parallel plates. In [34] Adomain decomposition method is successfully applied to study

non-Newtonian third grade fluid flow between parallel plates. ADM(Adomain Decom-

position Method) results are compared with numerical solution to show the accuracy

and reliability of the results. In [35] MSDTM is used to study the non-Newtonian third

grade fluid flow between parallel plates. Author obtained the analytical solution of the

2



non-linear differential equations involved and concluded that the method is easily to

implement, reliable, takes less computational cost and results obtained by MSDTM are

highly accurate.

Magnetohydrodynamics gained much attention and popularity due to its various ap-

plications in science and engineering. In [36] author used ADM to obtain analytical

solution of non-linear differential equations involved MHD Couette and Poiseuille flow

of a third grade fluid and after comparing the obtained results with HPM he concluded

that though ADM needs more computational cost but gives more accurate results then

HPM.

Here, we studied the MHD flow of third grade non-Newtonian fluids between three

parallel plates(first and third are stationary while second is moving ).The three cases

of plane Couette flow, plane Poiseuille flow and generalized Couette flow are studied.

The analytical solution of all the non-linear equations is obtained by DTM in section

(4.3). The effect of magnetic field and pressure on velocity are also shown graphically.

1.2 Problem Statement

Non-linear differential equations remains challenging to solve. Many analytical and

numerical methods are available in literature to obtain the approximate solutions for

such problems. differential transform method (DTM) is a semi-analytical method that

provides the analytical and the numerical solution for linear and non-linear differential

equations. Keeping in view the effectiveness and ease of application of DTM many

researchers have attempted to solve several real life D.Es using this method. However,

instead of its significance there are several limitations associated with this method.

The aim of this study is to carry out detailed performance analysis of this method to

highlight the strength and limitations of the method. In view of the problem statement,

the main objective of this study is to carry out the performance analysis of differential

transformation method(DTM) that can help researcher to have better understanding

of the method.

3



1.3 Preliminaries

Most of the problems of both engineering and mathematics are expressed in the form

of differential equations. The equations involving derivatives (variables that changes

due to the other independent variable) are called differential equations. The DEs are

further categorized into two types boundary value problems (BVPs) and initial value

problems (IVPs). BVPs are the ones in which conditions are defined on boundaries.

Where as in IVPs conditions are defined on starting point only.

1.3.1 Ordinary Differential Equations

If an equation contains only ordinary derivatives of one or more dependent variables

with respect to a single independent variable it is said to be an ordinary differential

equation (ODE) [27]. Some examples of ordinary differential equations are given below.

Example: The following are examples of linear partial differential equations that

commonly arise in problems of maths and physics.

Simple Linear Equation: y′′ + y′ = ex

Separable Differential Equation: dz
dx

= G(z)

Non-Linear nth order differential Equation: yn = F (x, y, y′, ...yn−1)

1.3.2 Partial Differential Equations

A partial differential equation [27] is an equation that contains partial derivatives.

In partial differential equations, the unknown function depends on several variables

(like u(x,t) where x is distance and t is time) Some examples of the two and three

dimensional PDES are given below.

Example : The following are examples of linear partial differential equations that

commonly arise in problems of maths and physics.

Linear Heat Equation: wxx = wt

Tricomi equation: xwyy = wxx

Laplace Equation: wxx + wyy = 0

4



Example 2: The following are examples of non-linear partial differential equations.

Sine-Gordan Equation: wtt − wxx + sinw = 0

Now, here we will discuss some basic definitions of fluid mechanics.

1.3.3 Fluid

A fluid is a substance that has tendency to flow and it takes shape of the containing

container.

1.3.4 Incompressible and Compressible Fluid

The fluid whose density doesn’t vary with time are incompressible fluids while whose

density changes with time are compressible fluids.

1.3.5 Viscosity

The resistance observed by the fluid during it’s flow is known as viscosity. Mathemat-

ically, it’s written as

τ ∝ γ̇, (1.1)

here τ = shear stress, γ = rate of deformation/strain.

The S.I unit of viscosity is kg/ms.

1.3.6 Newtonian and Non-Newtonian Fluid

The fluids which obeys newton law of viscosity are known as Newtonian fluids. In such

fluids shear stress is proportional to rate of deformation. While the fluids whose stress

and rate of deformation aren’t linearly proportional are called non-Newtonian fluids.

Example of such fluids is toothpaste, Gel, lubricants, ketch, oil etc.

1.3.7 Steady and Unsteady Flow

A flow in which the properties of fluid doesn’t change with time is called steady flow.

∂

∂t
= 0, (1.2)

5



where as the change in fluid properties with time is called unsteady flow.

∂

∂t
6= 0. (1.3)

1.3.8 Laminar and Turbulent Flow

If the fluid flow is smooth and the path lines of fluid particles doesn’t intersect each

other then such flow is called laminar flow.

If the fluid flow isn’t smooth and the path lines intersect each other then such flow is

turbulent flow.

1.3.9 Continuity Equation

Law of conservation of mass states that, ’mass can neither be created nor destroyed.’

The mass inflow, outflow and change in mass should be balanced. The mathematical

form of this is given as
∂ρ

∂t
+∇.(ρV ) = 0, (1.4)

here V = [u(x, y, z), v(x, y, z), w(x, y, z)] is velocity field wile ρ = density.

1.3.10 Momentum Equation

Newton second law of motion states that∑
F = ma, (1.5)

equation (1.5) can also be written as

ρ
DV

Dt
=

∑
F, (1.6)

whereas
∑
F = Fsurface + Fbody.

The momentum equation for Newtonian fluids is

ρ
dV

dt
= −∇P +∇.τnm + ρg. (1.7)

6



1.3.11 Magnetohydrodynamics

The study concerned with magnetic field behaviour in electrically conducting fluids is

known as Magnetohydrodynamics. The equations representing MHD flow are given in

4.2

1.4 Methods for solving Differential Equation

In general its not possible to find exact solution of all DEs, so the researchers are always

keen to find new methods for obtaining analytical solutions of differential equations.

Several applications have been developed for finding numerical solutions of differential

equations. Some of them are

1. Finite Difference Method

2. RK Method

3. DTM

1.4.1 Finite Difference Method (FDM)

Finite difference method [27] is one of the popular method used to find the numerical

solution differential equation. The following steps are used for solving DEs using FDM

1.First the whole domain is divided into small subintervals called mesh. Then label

the points in the created mesh.

2. Approximate the derivatives by using forward, backward or central difference

method. Now the derivatives will appear as variable with indicies i.e ui,j+1.

3. By substituting the values of i, j and then substituting the given boundary conditions

algebraic equations are obtained that can be solved using iterative methods like Jacobi

Method, Gauss-Seidal etc.

4. By solving the algebraic equation using any iterative method we obtain the solution

of unknown variables.

Finite difference method is also known as discretization method.

7



1.4.2 Runge-Kutta-Method 4 (RK4)

RK4 [27] is an iterative method used to solve 1st order ordinary differential equations.

The following steps are used for solving the ODEs

1. Find the step size h if its not given.

2. Using the step size divide the time interval t.

3. Now using the initial condition y(0) = y0 do N iterations of y for different values of

time t.

1.4.3 Differential Transformation Method (DTM)

Differential transformation method [4] is a simple and easy technique for solving both

mathematical and engineering problems involving complex and high-dimension differ-

ential equation. The following steps are followed to find numerical solution of DEs

using DTM

1. The differential equation is transformed using DTM.

2. Then the value of K and the given conditions are used to find the unknown polyno-

mials.

3. At last, all polynomials are substituted in inverse transform and the result is obtained

in the form of Taylor series. This series can be easy converted into exact solution.

8



Chapter 2

Solving Ordinary Differential
Equations using DTM

Here, first we will discuss about the basic definition, formula, results and theorems of

DTM. Furthermore, the implementation of differential transformation method will be

presented. Also, the analytical solution of some ordinary differential equations will be

obtain using DTM. The analytical solution results will be compared with exact and

numerical method to show the efficiency of DTM.

2.1 Differential Transformation Method (DTM)

Definition 2.1.1. The 1-dimensional transformation [8] of a function w(t) is defined

as

W (K) =
1

K!

dKw(x0)

dxK
. (2.1)

The inverse of w(x) defined in the form of Taylor series given as

w(x) =
∞∑
K=0

W (K)(x− x0)K . (2.2)

Above equation can also be written as

w(x) =
∞∑
K=0

dKw(x0)

K! dxK
(x− x0)K . (2.3)
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The following theorems are proved in [4] and here they will be used later in this chapter

to solve ODEs

Theorem 2.1.2. If w(x)=u(x)+v(x) then differential transform of w(x) is

W(K)=U(K)+V(K).

Proof: From the definition

W(K)=[d
Kw(x)
K!dxK

]x=x0 = 1
K!

[d
K(u(x)+v(x))

dxK
]x=x0

= 1
K!

[d
Ku(x)
dxK

]x=x0 + 1
K!

dKv(x)
dxK

]x=x0 =U(K)+V(K).

Theorem 2.1.3. If w(x)=az(x) then

W(K)=aZ(K), where a=constant.

Proof:From the definition

W(K)=[d
Kw(x)
K!dxK

]x=x0 =a[d
Kz(x)
K!dxK

]x=x0=aZ(K).

Theorem 2.1.4. If w(x)=dNz(x)
dxN

then

W(K)=(K+1)(K+2)...(K+N)Z(K+N).

Proof:From the definition

W(K)=[d
Kw(x)
K!dxK

]x=x0=
dK

K!dxK
[d

Nz(x)
dxN

]x=x0=[d
K+Nz(x)
K!dxK+N ]x=x0

= 1
K!

(K +N)!Z(K +N)=(K+1)(K+2)....(K+N)Z(K+N).

Theorem 2.1.5. If w(x)=v(x)w(x) then

W(K)=
∑K

K1=0 V (K1)W (K −K1).

Theorem 2.1.6. If y(x)=xn then

Y(K)=δ(K − n).

where

δ(K − n) =

{
1, if K = n;

0, if K 6= n.
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Theorem 2.1.7. If y(x)=eλx then

Y(K)= (λ)K

K!
.

Theorem 2.1.8. If y(x)=sin(Ωx+ α) then

Y(K)= (Ω)K

K!
sin(Kπ

2
+ α).

Theorem 2.1.9. If y(x)=cos(Ωx+ α) then

Y(K)= (Ω)K

K!
cos(Kπ

2
+ α).

2.2 Implementation of DTM

DTM is a simple, easy to understand and fast convergent method. Here, in this section

its demonstrated that how this method is applied on differential equations.

Consider a nonlinear IVP

a(x)y′′ + b(x)y′ + y = f(x, y, y′), (2.4)

With initial condition

y(0) = p1, y′(0) = p2. (2.5)

Where f(x,y,y’) is function. Now applying DTM on (2.4) and (2.5)

K∑
K1=0

(K −K1 + 2)(K −K1 + 1)A(K1)Y (K −K1 + 2)

+
K∑

K1=0

(K −K1 + 1)B(K1)Y (K −K1 + 1) + Y (K) = F (x, Y, Y ′) (2.6)

Y (0) = p1, Y (1) = p2. (2.7)

Now put value of K in (2.6) to obtain Y (K) and then use this in below given transfor-

mation

y(x) =
n∑

K=0

Y (K)xK , (2.8)

to obtain the analytical solution of the given equation.
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2.3 Numerical Problems

To check the efficiency and reliability of the method some linear and nonlinear ODEs

are tested.

Example 2.3.1. Consider the linear BVP with boundary conditions

y′′ =
w(Lx− x2)

2EI
, (2.9)

y(0) = 0, y(3) = 0,

here w=15000, L=3 ,I=3/10000, E = 200× 109.

Applying DTM on (2.9) and IVPs results in

(K + 1)(K + 2)Y (K + 2) =
w(Lδ(K − 1)− δ(K − 2))

2EI
, (2.10)

Y (0) = 0. (2.11)

Now by putting K=0,1,2,... in equation (2.10) and then using equation (2.11) in it, we

find

Y (2) = 0, (2.12)

Y (3) = 0.0000625, (2.13)

Y (4) = −1.0417× 10−5, (2.14)

Y (5) = 0, (2.15)

Y (6) = 0, (2.16)

Y (K) = 0 For K = 0, 2, 6, 7, 8, · · · (2.17)

By using equation (2.2) we have

y(x) = Y (1)x+ 0.0000625x3 − 1.0417× 10−5x4. (2.18)

Here it can be seen that we found all the values except Y (1). We will find value as

shown in [13, 14]

Y (1) = −2.8125× 10−4. (2.19)
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At last, the analytical solution obtained is

y(x) = (−2.8125× 10−4)x+ (0.0000625)x3 − (1.0417× 10−5)x4. (2.20)

In table 2.1, the results of equation (2.20) computed at different values of t are presented.

The numerical, exact and DTM solution of the problem are shown in figure (2.1). Here

it can be seen that DTM gives more accurate value then FDM method . This can also

be seen in table 2.2 and figure (2.2) that as the time value increase absolute error for

DTM also increases whereas FDM method gives less error for higher value of time.
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Figure 2.1: FDM, exact and DTM solution of equation 2.9 for h=0.25

Table 2.1: Comparison between DTM, FDM and exact solution
t Exact FDM DTM
0 0 0 0

0.5 -0.00013346 -0.00013672 -0.00013346
1.0 -0.00022917 -0.00023437 -0.00022917
1.5 -0.00026367 -0.00026953 -0.00026367
2.0 -0.00022917 -0.00023438 -0.00022917
2.5 -0.00013346 -0.00013672 -0.00013346
3.0 0 0 4.33680868994202× 10−19
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Table 2.2: Absolute error for FDM and DTM, h=0.5
t FDM DTM(K=10)
0 0 0

0.5 3.255× 10−6 2.7105× 10−20

1.0 5.208× 10−6 5.421012× 10−20

1.5 5.859× 10−6 1.0842× 10−19

2.0 5.208× 10−6 1.6263× 10−19

2.5 3.255e× 10−6 1.8974× 10−19

3.0 0 4.33681× 10−19
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Figure 2.2: Absolute error for FDM and DTM solution of equation 2.9

Example 2.3.2. Consider the linear equation given with initial condition [27]

y′ = y − t2 + 1 (2.21)

y(0) = 0.5. (2.22)

The exact solution is

y(t) = (t+ 1)2 − 0.5et. (2.23)

Applying DTM on (2.21) and (2.22), we obtain

(K + 1)Y (K) = Y (K)− δ(K − 2) + δ(K) (2.24)
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Y (0) = 0.5. (2.25)

Now bu putting K=0,1,2... in (2.24), we get

Y (1) =
3

2!
, Y (2) = 0.75, Y (3) = −0.0833, Y (4) = −0.0208, ... Y (10) = −1.3779e− 06.

Putting above values inverse transformation given in (2.2), we get

y(t) = 0.5 +
3t

2!
+ 0.75t2 + · · · (2.26)

In table 2.3, the results of equation (2.26) computed at different values of t are presented.

In figure (2.3) the absolute error of RK4 and DTM solution is plotted. Here it can be

seen that in the time interval [0, 2] RK4 is giving more error then DTM . This can also

be seen in table 2.4 in which the absolute error terms are given for different values of

t. So it can said that DTM performs better than RK4. This can also be seen in figure

(2.4) where the analytical, numerical and exact solution w.r.t time are plotted.
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Figure 2.3: Plot of RK4, exact and DTM solution of equation 2.21 for h=0.2
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Figure 2.4: Absolute error of RK4 and DTM solution of equation 2.21

Table 2.3: Comparison between DTM, RK4 and exact solution
t Exact RK4[28] DTM(k=12)
0 0.5 0.5 0.5

0.2 0.8293 0.8293 0.8293
0.4 1.2141 1.2141 1.2141
0.6 1.6489 1.6489 1.6489
0.8 2.1272 2.1272 2.1272
1 2.6409 2.6409 2.6409

1.2 3.1799 3.1799 3.1799
1.4 3.7324 3.7324 3.7324
1.6 4.2835 4.2835 4.2835
1.8 4.8152 4.8152 4.8152
2.00 5.305 5.305 5.305
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Table 2.4: Absolute error for RK4 and DTM, h=0.2
t RK4[28] DTM(K=12)
0 0 0

0.2 6.3484e-08 2.22045e-16
0.4 1.3430e-07 8.8818e-16
0.6 2.1259e-07 1.0925e-13
0.8 2.98178e-07 4.6807e-12
1 3.9047e-07 8.64384e-11

1.2 4.8823e-07 9.3911e-10
1.4 5.8937e-07 7.0756e-09
1.6 6.9058e-07 4.0784e-08
1.8 7.8694e-07 1.91599e-07
2.00 8.7133e-07 7.6605e-07

Nonlinear Case

Example 2.3.3. Consider the nonlinear equation given with initial condition [27]

y′ = −y2 − 4y − 3 0 ≤ t ≤ 1 (2.27)

y(0) = −2. (2.28)

The exact solution of the equation is given below

y(t) = −3 + 2(1 + e−2t)−1. (2.29)

Now by using DTM results on (2.27) and (2.28), we can write

(K+1)Y (K+1) = −
K∑

K1=0

Y (K1)Y (K−K1)−3δ(K)−4Y (K) Where K = 0, 1, 2, 3, .....

(2.30)

with initial condition

Y (0) = −2. (2.31)

By substituting K=0,1,2,.., in (2.30) we obtain

Y (1) = 1, Y (2) = 0, Y (3) = −0.3333, Y (4) = 0, .....Y (29) = 2.6148E − 06, Y (30) = 0.
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By using the inverse transformation rule,

y(t) =
30∑
K=0

Y (K)tK (2.32)

y(t) = −2 + t− 2t3

3!
+ · · · (2.33)

solution of y(t) can be obtained. It can also be written as

y(t) = −3 + 2(
1

2
+
t

2
− t3

3!
+ · · ·) = −3 + 2(1 + e−2t)−1.

This is also the exact solution

This solution computed for different values of t is given in table 2.5 where DTM results

are compared with the exact and RK4 results. Here it can be observed that the increase

in time increases the solution values. Figure (2.5) shows that both methods are per-

forming well. But the absolute error of all methods given in table 2.6 and graphical

representation given in figure (2.6) shows that RK4 gives less error on interval [0.9, 1]

than DTM.
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Table 2.5: Comparison between DTM, RK4 and exact solution.
t Exact RK4 [28] DTM(K=30)
0 -2.000 -2.000 -2.000

0.05 -1.950041625042120 -1.950041627648895 -1.950041625042120
0.1 -1.900332005375044 -1.900332010658292 -1.900332005375044
0.15 -1.851114966376682 -1.85111497449505 -1.851114966376682
0.20 -1.802624679775096 -1.802624690968055 -1.802624679775096
0.25 -1.755081337596291 -1.755081352170451 -1.755081337596291
0.3 -1.708687387548409 -1.708687405859141 -1.708687387548409
0.35 -1.663624455663668 -1.663624478093124 -1.663624455663668
0.40 -1.620051037744775 -1.620051064677779 -1.620051037744775
0.45 -1.578100994749992 -1.578101026549401 -1.578100994749992
0.5 -1.537882842739990 -1.537882879723179 -1.537882842739990
0.55 -1.499479788809765 -1.499479831227742 -1.499479788809757
0.60 -1.462950433001965 -1.462950481022370 -1.462950433001842
0.65 -1.428330033914883 -1.428330087609773 -1.428330033913448
0.7 -1.395632222882837 -1.395632282221719 -1.395632222868887
0.75 -1.364851047612713 -1.364851112460892 -1.364851047497127
0.80 -1.335963229732151 -1.335963299854059 -1.335963228898804
0.85 -1.308930530167070 -1.308930605233928 -1.308930524850357
0.9 -1.283702129800975 -1.283702209401957 -1.283702099362572
0.95 -1.260216948725996 -1.260217032381900 –1.260216790510764

1 -1.238405844044235 -1.238405931222698 -1.238405089943087
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Table 2.6: Error term of RK4, DTM(K=30)
t RK4 [28] DTM(K=30)
0 0 0

0.05 2.6068e-09 2.2204e-16
0.1 5.2832e-09 0
0.15 8.1184e-09 2.2204e-16
0.2 1.1193e-08 0
0.25 1.4574e-08 2.2204e-16
0.3 1.8311e-08 4.4409e-16
0.35 2.2429e-08 0
0.4 2.6933e-08 2.2204e-16
0.45 3.1799e-08 0
0.5 3.6983e-08 4.4409e-16
0.55 4.2418e-08 7.9936e-15
0.6 4.8020-08 1.2279e-13
0.65 5.3695e-08 1.4351e-12
0.7 5.9339e-08 1.3950e-11
0.75 6.4848e-08 1.1559e-10
0.8 7.0122e-08 8.3335e-10
0.85 7.5067e-08 5.3167e-09
0.9 7.9601e-08 3.0438e-08
0.95 8.3656e-08 1.582e-07
1.00 8.7178e-08 7.5410e-07
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Figure 2.5: Plot of Exact,RK4 and
DTM(K=30), h=0.05
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Figure 2.6: Absolute error for RK4
and DTM(K=30), h=0.05
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Example 2.3.4. Consider the nonlinear equation given with initial condition[27]

x′ = 1− x+ x2e2t 0 ≤ t ≤ 0.9 (2.34)

x(0) = 0 (2.35)

The exact solution of the equation is given below

x(t) = e−ttan(et − 1) (2.36)

Now by taking differential transform of (2.34), we can obtain

(K + 1)X(K + 1) = δ(K)−X(K) +
K∑

K2=0

K2∑
K1=0

2K1X(K2 −K1 + 1)X(K −K2 + 1)

K1!

(2.37)

Taking the differential transform of initial condition given in (2.35), we have

X(0) = 0 (2.38)

Now by substituting value of K = 0, 1, 2, · · · in (2.37) we get

X(1) = 1, X(2) = −1

2
X(3) =

1

2!
X(4) =

1

8
X(5) =

9

40
X(6) =

163

6!
· · ·

By using the inverse transformation rule (2.3), the following analytical solution is ob-

tained.

x(t) =
∞∑
K=0

X(K)tK (2.39)

x(t) = t− t2

2!
+
t3

2!
+
t4

8
+

27t5

5!
+

163t6

6!
+ · · · (2.40)
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Table 2.7: Comparison between DTM, RK4 and exact solution,
h=0.1

t Exact RK4[28] DTM(K=75)
0 0 0 0

0.1 0.0955 0.0955 0.0955
0.2 0.1843 0.1843 0.1843
0.3 0.2703 0.2703 0.2703
0.4 0.3591 0.3591 0.3591
0.5 0.4599 0.4599 0.4599
0.6 0.5907 0.5907 0.5907
0.7 0.7973 0.7973 0.7973
0.8 1.2493 1.2488 1.2492
0.9 3.6413 3.4902 3.5476

Table 2.8: Absolute error for RK4 and DTM
t RK4[28] DTM(K=75)
0 0 0

0.1 2.4955e-07 8.3267e-17
0.2 3.4235e-07 0
0.3 1.4908e-07 5.5511e17
0.4 4.4206e-07 1.1102e-16
0.5 1.2644e-06 0
0.6 9.1209e-07 7.771e-16
0.7 1.6848e-06 1.1069e-10
0.8 5.1423e-04 4.1904ee-06
0.9 0.1511 0.0938
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Figure 2.7: Absolute error for
RK4 and DTM(K=75). Where as
h=0.015
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In figure (2.7), it can be seen that the absolute error of both methods is below 0.0938.

The absolute error of both methods is performing almost similarly on interval [0, 0.855]

but the DTM error starts increasing on [0.87, 0.9]. So it can be said that absolute error

of DTM increases for higher value of t. This can also be observed in figure (2.8) where

DTM is giving more value for t=0.9 then RK4. In table 2.7 the numerical comparison

is done for h=0.1. Here DTM is performing better than RK4 and this can be observed

in table 2.8 where the absolute error of both methods is compared. So for this example

it can be said that DTM gives less error for higher value of h.

2.4 Performance analysis of DTM for ODEs

In this chapter, the semi-analytical solutions of linear and non-linear ODEs are ob-

tained. The results compared with exact and numerical solutions revealed that DTM

is a effective, reliable, easy to implement and fast convergent method. The conver-

gence of DTM is discussed in detain in [33]. As the results obtained are in Taylor

series form they can be easily converted into exact solution. Unlike RK4, in DTM

the unknown terms are found only once, so whenever we have to compute the solution

at some value of independent variable we only have to substitute the value in inverse

transformation. In RK4 more accurate results are achieved by decreasing the interval

difference value that causes the increase in number of iterations due to which accuracy

of results increases. While DTM accuracy depends only on number of terms. So in

table 2.8 it can be seen that DTM performs well due to large interval difference but

in table (2.3) and figure (2.7) RK4 performance is better as the number iterations are

increased. So to obtain better results of DTM K should be increased every time when

h is decreased. Like other methods DTM also have some limitation. The transforms of

all non-linear variables isn’t directly defined like e−y, lny, siny, cosy etc and another

technique is used before applying DTM to obtain the analytical solution. In BVPs the

conditions are defined on boundary due to which there will exist one or more unknown

polynomials that are found by using the boundary condition defined on x1 in inverse

transform and this consumes much computational cost. Another limitation of DTM is
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that it performs well only in small region specially in case of non-linear problems.
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Chapter 3

Solving Partial Differential Equations
using DTM

In previous chapter, the analytical solution of ordinary differential equations was ob-

tained using DTM. In this chapter, we will be solving PDEs using DTM. At first, the

definition and some important theorems of DTM for solving PDEs will be discussed.

Furthermore, the analytical solution of some PDEs will be obtained using DTM. The

obtained solution will be compared with exact to show the efficiency and reliability of

DTM. The 3-D plots of all results are obtained using Matlab.

3.1 Two-dimensional Differential transformation Method

The 2-dimensional transform[15] of u(x,y) is written as:

U(K,H) =
1

K!H!

∂K+Hu(x0, y0)

∂xK∂yH
. (3.1)

The transformed function is written with upper case where as original one is written

with lower case. The inverse transform of U(K,H) is defined by:

u(x, y) =
∞∑
K=0

∞∑
H=0

U(K,H)xKyH . (3.2)

From (3.1) and (3.2) its concluded that

u(x, y) =
∞∑
K=0

∞∑
H=0

1

K!H!

dKu(x0, y0)

∂xK∂yH
xKyH . (3.3)
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The following theorems have been discussed in [15] and will be used later in this chapter

to solve PDEs.

Theorem 3.1.1. If u(x,y)=∂P+Qw(x,y)
∂xP ∂yQ

, then

U(K,H) = (K + 1)(K + 2) · · · (K + P )(H + 1)(H + 2) · · · (H +Q)U(K + P,H +Q).

Theorem 3.1.2. If u(x,y)=v(x,y)w(x,y), then

U(K,H)=
∑K

P=0

∑H
Q=0 V (P,H −Q)W (K − P,Q).

Theorem 3.1.3. If u(x,y)=xmyn, then

U(K,H)=δ(K −m,H − n)=δ(K −m)δ(H − n)

where

δ(K −m) =

{
1 if K = m

0 if K 6= m

Theorem 3.1.4. If u(x,t)=xncos(αt+ β) then

U(K,H)= (α)H

H!
δ(K − n)cos(Hπ

2
).

Theorem 3.1.5. u(x,y)=∂v(x,y)
∂x

∂w(x,y)
∂x

, then

U(K,H)=
∑K

P=0

∑H
Q=0(P + 1)(K − P + 1)V (P + 1, H −Q)W (K − P + 1, Q).

Proof: From definition we have,

U(0,0)=[∂v(x,y)
∂x

∂w(x,y)
∂x

](x0,y0)=V(1,0)W(1,0),

U(1,0)= 1
1!0!

∂
∂x

[∂v(x,y)
∂x

∂w(x,y)
∂x

](x0,y0)= 1
1!0!

[∂
2v(x,y)
∂x2

∂w(x,y)
∂x

+ ∂2w(x,y)
∂x2

∂v(x,y)
∂x

](x0,y0)

=2V(2,0)W(1,0)+2V(1,0)W(2,0),

U(2,0)= 1
2!0!

∂2

∂x2
[∂v(x,y)

∂x
∂w(x,y)
∂x

](x0,y0)

=3V(3,0)W(1,0)+4V(2,0)W(2,0)+3V(1,0)W(3,0),

U(0,1)=V(1,1)V(1,0)+W(1,0)V(1,1),

U(1,1)=2V(2,1)W(1,0)+2V(2,0)W(1,1)+2V(1,1)W(2,0)+2V(1,0)W(2,1),

In general, we have

U(K,H)=
∑K

P=0

∑H
Q=0(P + 1)(K − P + 1)V (P + 1, H −Q)W (K − P + 1, Q).
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Theorem 3.1.6. If u(x,y)=∂v(x,y)
∂y

∂w(x,y)
∂y

, then

U(K,H)=
∑K

P=0

∑H
Q=0(Q+ 1)(H −Q+ 1)V (P,H −Q+ 1)W (K − P,Q+ 1).

Proof: From definition we have,

U(0,0)=[∂v(x,y)
∂y

∂w(x,y)
∂y

](x0,y0)=V(0,1)W(0,1),

U(1,0)= 1
1!0!

∂
∂x

[∂v(x,y)
∂y

∂w(x,y)
∂y

](x0,y0)= 1
1!0!

[∂
2v(x,y)
∂x∂y

∂w(x,y)
∂y

+ ∂2w(x,y)
∂x∂y

∂v(x,y)
∂y

](x0,y0)

=V(1,1)W(0,1)+V(0,1)W(1,1),

U(2,0)= 1
2!0!

∂2

∂x2
[∂v(x,y)

∂y
∂w(x,y)
∂y

](x0,y0)

=V(0,1)W(2,1)+V(1,1)W(1,1)+V(2,1)W(0,1),

U(0,1)=2V(0,2)V(0,1)+2W(0,1)V(0,2),

U(1,1)=2V(0,2)V(1,1)+2W(0,1)V(1,2)+2U(1,2)V(0,1)+2U(1,1)V(0,2).

In general, we have

U(K,H)= U(K,H)=
∑K

P=0

∑H
Q=0(Q+ 1)(H −Q+ 1)V (P,H −Q+ 1)W (K −P,Q+ 1).

Theorem 3.1.7. If w(x,y)=u(x, y)v(x, y)ω(x, y) then

W(K,H)=
∑K

P=0

∑H
Q=0

∑K−P
T=0

∑H−Q
S=0 U(P,H −Q− S)V (T,Q)ω(K − P − T, S).

Proof: From definition, we have

W(0,0)=U(0, 0)V (0, 0)ω(0, 0),

W(1,0)= 1
1!0!

∂
∂x

[u(x, y)v(x, y)ω(x, y)](x0,y0)

=U(0, 0)V (0, 0)ω(1, 0) + U(0, 0)V (1, 0)ω(0, 0) + U(1, 0)V (0, 0)ω(0, 0),

W(2,0)= 1
2!0!

∂2

∂x2
[u(x, y)v(x, y)ω(x, y)](x0,y0)

=U(0, 0)V (0, 0)ω(2, 0)+U(0, 0)V (1, 0)ω(1, 0)+U(0, 0)V (2, 0)ω(0, 0)+U(1, 0)V (0, 0)ω(1, 0)+

U(1, 0)V (1, 0)ω(0, 0) + U(2, 0)V (0, 0)ω(0, 0),

W(0,1)=U(0, 1)V (0, 0)ω(0, 0) + U(0, 0)V (0, 1)ω(0, 0) + U(0, 0)V (0, 0)ω(0, 1),

W(0,2)=U(0, 0)V (0, 0)ω(0, 2)+U(0, 0)V (0, 1)ω(0, 1)+U(0, 0)V (0, 2)ω(0, 0)+U(0, 1)V (0, 0)ω(0, 1)

+ U(0, 1)V (0, 1)ω(0, 0) + U(0, 2)V (0, 0)ω(0, 0).

In general, we have

W(K,H)=
∑K

P=0

∑H
Q=0

∑K−P
T=0

∑H−Q
S=0 U(P,H −Q− S)V (T,Q)ω(K − P − T, S).
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3.2 Numerical Problems

To check the efficiency and reliability of DTM we will test linear heat, wave , nonlinear

Klein-Gordan and diffusion equation.The obtained results are compared with exact

solution.

Heat Equation[27]

Example 3.2.1. Consider the boundary-value problem

∂2u

∂x2
=
∂u

∂t
, 0 ≤ t ≤ 0.5, 0 ≤ x ≤ 1 (3.4)

with boundary conditions

u(0, t) = 0, u(1, t) = 0, (3.5)

and I.C

u(x, 0) = sinπx, (3.6)

whose exact solution given as

u(x, t) = sinπxe−π
2t. (3.7)

Taking differential transform of (3.4), we get

(K + 1)(K + 2)U(K + 2, H) = (H + 1)U(K,H + 1). (3.8)

And now applying DTM on (3.5) and (3.6) implies

U(0, H) = 0, U(K, 0) =
πK

K!

sinKπ

2
(For x0 = 0, t0 = 0). (3.9)

Here in above equation we didn’t applied differential transform on u(1, t) = 0 because in

this method only x0 or initial value is needed hence we will not be using this condition

To find the value of U(K,H), we will substitute the values of K,H in (3.9) and then will

use it in (3.8) to get

U(K,H) =
πK+2H

K!H!
sin(K + 2H)

π

2
. (3.10)
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Using the inverse transformation given in equation (3.2), the following solution is ob-

tain

u(x, t) =
∞∑
K=0

xK [U(K, 0)+U(K, 1)t+U(K, 2)t2 +U(K, 3)t3 +U(K, 4)x4 + · · ·] (3.11)

u(x, t) = x[π − π3t+
π5t2

2!
− π7t3

3!
+
π9t4

4!
− · · ·] +

x3

3!
[−π3 +

π5t

1!
− π7t2

2!
+
π9t3

3!
− · · ·] + · · ·

= [πx− π3x3

3!
+

(πx)5

5!
− (πx)7

7!
+ · · ·]− π2t[πx− π3x3

3!
+

(πx)5

5!
− (πx)7

7!
· · ·] +

π4t2

2!
[πx− π3x3

3!

+
(πx)5

5!
− (πx)7

7!
· · ·]− π6t3

3!
[πx− π3x3

3!
+

(πx)5

5!
− (πx)7

7!
· · ·] +

π8t4

4!
[πx− π3x3

3!
+

(πx)5

5!
· · ·] · · ·

= [πx− (πx)3

3!
+

(πx)5

5!
− (πx)7

7!
+ · · ·][1− π2t+

π4t2

2!
− π6t3

3!
+ · · ·] = sinπxe−π

2t.

This is the exact solution.
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Table 3.1: Numerical comparison between Exact, FDM and
DTM

x t exact FDM[27] DTM(K=24=H)
0.2 0 0.5878 0.5878 0.5878

0.1 0.2191 0.2154 0.2191
0.2 0.0816 0.0790 0.0816
0.3 0.0304 0.0289 0.0304
0.4 0.0113 0.0106 0.0113
0.5 0.0042 0.0039 0.0042

0.4 0 0.9511 0.9511 0.9511
0.1 0.3545 0.3486 0.3545
0.2 0.1321 0.1278 0.1321
0.3 0.0492 0.0468 0.0492
0.4 0.0183 0.0172 0.0183
0.5 0.0068 0.0063 0.0068

0.6 0 0.9511 0.9511 0.9511
0.1 0.3545 0.3486 0.3545
0.2 0.1321 0.1278 0.1321
0.3 0.0492 0.0468 0.0492
0.4 0.0183 0.0172 0.0183
0.5 0.0068 0.0063 0.0068

0.8 0 0.5878 0.5878 0.5878
0.1 0.2191 0.2154 0.2191
0.2 0.0816 0.0790 0.0816
0.3 0.0304 0.0289 0.0304
0.4 0.0113 0.0106 0.0113
0.5 0.0042 0.0039 0.0042

1 0 1.2246e-16 0 -1.7008e-13
0.1 4.5643e-17 0 -6.3505e-14
0.2 1.7012e-17 0 -2.3981e-14
0.3 6.3403e-18 0 -9.3259e-15
0.4 2.3631e-18 0 -3.5527e-15
0.5 8.8075e-19 0 1.33227e-15
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Table 3.2: Absolute error of FDM and DTM
x t FDM[27] DTM(K=24=H)

0.2 0 1.4748e-05 0
0.1 0.0037 1.11022e-16
0.2 0.0026 8.32667e-17
0.3 0.0015 2.05842e-14
0.4 7.4208e-04 2.66614e-11
0.5 3.2728e-04 6.8301e-09

0.4 0 4.3484e-05 1.1102e-16
0.1 0.0059 0
0.2 0.0043 5.5511e-17
0.3 0.0024 3.3418e-14
0.4 0.0012 4.3139e-11
0.5 5.3989e-04 1.10513e-08

0.6 0 4.3484e-05 2.22045e-16
0.1 0.0059 2.7756e-16
0.2 0.0043 3.6082e-16
0.3 0.0024 3.3854e-14
0.4 0.0012 4.3138e-11
0.5 5.4716e-04 1.10513e-08

0.8 0 1.4748e-05 9.99201e-16
0.1 0.0037 7.49401e-16
0.2 0.0026 9.7145e-17
0.3 0.0015 2.0581e-14
0.4 7.4208e-04 2.6662e-11
0.5 3.2728e-04 6.83006e-09

1 0 1.2246e-16 1.70208e-13
0.1 1.7012e-17 6.35504e-14
0.2 4.5644e-17 2.39978e-14
0.3 6.3404e-18 9.3322e-15
0.4 2.3631e-18 3.5551e-15
0.5 8.8075e-19 1.3314e-15

The results of exact, FDM and DTM computed at different values of x and t are tabu-

lated in 3.1 and graphically presented in figure (3.1). While the absolute error of FDM

and DTM is given in 3.2 and graphical presentation is shown in figure (3.2). The com-

parison shows that DTM performs better than FDM and gives less error on interval

x=t=[0, 0.8] but give more error when x or t or both are greater than 0.8 .
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Figure 3.1: Plot of FDM, Exact and DTM solution of heat equation for k=0.02, h=0.01
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Figure 3.2: Absolute error of FDM and DTM solution for where k=0.02, h=0.01

Wave Equation[27]
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Example 3.2.2. Consider the boundary-value problem

4
∂2u

∂x2
=
∂2u

∂t2
, 0 ≤ t ≤ 1, 0 ≤ x ≤ 1 (3.12)

with boundary conditions

u(0, t) = 0, u(1, t) = 0, (3.13)

and initial condition

u(x, 0) = sinπx,
∂u

∂t
|t=0= 0, (3.14)

whose exact solution can be expressed as

u(x, t) = sinπxcos2πt. (3.15)

Taking differential transform of (3.12), we can obtain

4(K + 1)(K + 2)U(K + 2, H) = (H + 1)(H + 2)U(K,H + 2). (3.16)

By applying differential transform on (3.13) and (3.14), we achieve

U(0, H) = 0, U(K, 0) =
πK

K!
sin

Kπ

2
, U(K, 1) = 0. (3.17)

To find the value of U(K,H), we will substitute the values of K,H in (3.17) and then

will use it in (3.16) to get

U(K,H) =

{
2H(π)K+H

K!H!
sin(K +H)π

2
, iff H 6= odd;

else 0.
(3.18)

Using the inverse transform given in equation (3.2), we obtain

u(x, t) =
∞∑
K=0

xK [U(K, 0)+U(K, 1)t+U(K, 2)t2 +U(K, 3)t3 +U(K, 4)x4 + · · ·] (3.19)

u(x, t) = (πx− (πx)3

3!
+

(πx)5

5!
· · ·)− t2(2π3x− 2π5x3

3!
+

2π7x5

5!
− · · ·) +

t4

3
(2π5x− 2π7x3

3!
+ · · ·) · · ·

= (πx− (πx)3

3!
+

(πx)5

5!
· · ·)− (2πt)2

2!
(πx− (πx)3

3!
+

(πx)5

5!
· · ·) +

(2πt)4

4!
(πx− (πx)3

3!
+ · · ·) · · ·

= (πx− (πx)3

3!
+

(πx)5

5!
− (πx)7

7!
· · ·)(1− (2πt)2

2!
+

(2πt)4

4!
− (2πt)6

6!
+

(2πt)8

8!
· · ·)
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u(x, t) = sinπxcos2πt. (3.20)

This is exact solution.

The results of exact, FDM and DTM are tabulated in 3.3 and graphically presented in

figure (3.3). While the absolute error of FDM and DTM is given in table 3.4 and graph-

ical presentation is shown in figure (3.4). The comparison shows that for t=[0:0.98]

DTM performs better than FDM and gives less error where as when t=1 FDM per-

formance is better than DTM. So it can be said that DTM performs well for small

values.

Table 3.3: Numerical comparison between exact, FDM and
DTM

x t exact FDM[27] DTM(K=27=H)
0.2 0 0.5878 0.5878 0.5878

0.2 0.1816 0.1903 0.1816
0.4 -0.4755 -0.4645 -0.4755
0.6 -0.4755 -0.4912 -0.4755
0.8 0.1816 0.1464 0.1816
1 0.5878 0.5860 0.5878

0.4 0 0.9511 0.9511 0.9511
0.2 0.2939 0.3080 0.2939
0.4 -0.7694 -0.7516 -0.7694
0.6 -0.7694 -0.7947 -0.7694
0.8 0.2939 0.2369 0.2939
1.0 0.9511 0.9482 0.9511

0.6 0 0.9511 0.9511 0.9511
0.2 0.2939 0.3080 0.2939
0.4 -0.7694 -0.7516 -0.7694
0.6 -0.7694 -0.7947 -0.7694
0.8 0.2939 0.2369 0.2939
1.0 0.9511 0.9482 0.9511

0.8 0 0.5878 0.5878 0.5878
0.2 0.1816 0.1903 0.1816
0.4 -0.4755 -0.4645 -0.4755
0.6 -0.4755 -0.4912 -0.4755
0.8 0.1816 0.1464 0.1816
1.0 0.5878 0.5860 0.5878
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Table 3.4: Absolute error of FDM and DTM
x t FDM[27] DTM(K=27, h=27)

0.2 0 1.47478e-05 0
0.2 0.0087 5.5511e-17
0.4 0.0110 1.6653e-16
0.6 0.0157 2.6201e-14
0.8 0.0352 8.0940e-11
1.0 0.0018 4.1185e-08

0.4 0 4.3484e-05 1.11022e-16
0.2 0.0141 2.2204e-16
0.4 0.0178 2.2204e-16
0.6 0.0253 4.22995e-14
0.8 0.0570 1.3096e-10
1.0 0.0029 6.6639e-08

0.6 0 4.3484e-05 1.11022e-16
0.2 0.0141 1.6653e-16
0.4 0.0178 2.22044e-16
0.6 0.0253 4.36317e-14
0.8 0.0570 1.30969e-10
1.0 0.0029 6.66386e-08

0.8 0 1.4748e-05 1.11022e-16
0.2 0.0087 3.05311e-16
0.4 0.0110 4.44089e-16
0.6 0.0157 2.92543e-14
0.8 0.0352 8.09539e-11
1.0 0.0018 4.1185e-08

1 0 1.2246e-16 3.2162e-16
0.2 3.7844e-17 3.78437e-17
0.4 9.9076e-17 1.2332e-15
0.6 9.9076e-17 6.5622e-15
0.8 3.7844e-17 2.9348e-14
1.0 1.2246e-16 9.8266e-14
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Figure 3.3: Plot of FDM, Exact and DTM solution of wave equation for 0<x<1 and
0<t<1 where k=0.01, h=0.01
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Figure 3.4: Absolute error of FDM and DTM solution for 0<x<1 and 0<t<1 where
k=0.01, h=0.01

Nonlinear Case
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Example 3.2.3. Consider the nonlinear Klein Gordan equation[25]

∂2u

∂t2
− ∂2u

∂x2
+ u2 = −xcost+ x2cos2t, −1 ≤ t ≤ 1, −1 ≤ x ≤ 1 (3.21)

with I.C

u(x, 0) = x,
∂u(x, t)

∂t
|t=0= 0, (3.22)

whose exact solution is

u(x, t) = xcost. (3.23)

Taking differential transform of (3.21) and (3.22), implies

(H + 1)(H + 2)U(K,H + 2)− (K + 1)(K + 2)U(K + 2, H)+

K∑
P=0

H∑
Q=0

U(P,H −Q)U(K − P,Q) = −
K∑
P=0

H∑
Q=0

δ(K − P )δ(P − 1, Q)
cos(H −Q)π

2

(H −Q)!

+
K=0∑
P=0

H∑
Q=0

δ(P − 2, Q)
K−P∑
T=0

H−Q∑
S=0

δ(T )δ(K − P − T )

S! (H −Q− S)!
cos

πS

2
cos(H −Q− S)

π

2
. (3.24)

U(K, 0) = δ(K − 1), U(K, 1) = 0 (3.25)

Putting values of K and H in (3.24) then using (3.25) in it, we obtain

U(K,H) =

{
δ(K−1)
H!

sin(K +H)π
2

if K = 1

0 otherwise
. (3.26)

Using (3.26) in the inverse transform given in (3.2), we get

u(x, t) = x(1− t2

2!
+
t4

4!
− t6

6!
+
t8

8!
+ · · ·) (3.27)

u(x, t) = xcost. (3.28)

This is same as exact solution.

The results of exact and DTM computed at different values of x and t are tabulated in

3.5 and graphically presented in figure (3.5). While the absolute error of DTM is given

in 3.6 and graphical presentation is shown in figure (3.6). The comparison shows that

DTM performs effectively and gives negligible error.
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Table 3.5: Comparison between Exact and DTM
t x exact DTM(K=1, H=50)

0.01 -1 -1 -1
-0.8 -0.8 -0.8
-0.6 -0.6 -0.6
-0.4 -0.4 -0.4
-0.2 -0.2 -0.2
0 0 0
0.2 0.2 0.2
0.4 0.4 0.4
0.6 0.6 0.6
0.8 0.8 0.8
1 1 1

0.1 -1 -0.995 -0.995
-0.8 -0.7960 -0.7960
-0.6 -0.5970 -0.5970
-0.4 -0.3980 -0.3980
-0.2 -0.1990 -0.1990
0 0 0
0.2 0.1990 0.1990
0.4 0.3980 0.3980
0.6 0.5970 0.5970
0.8 0.7960 0.7960
1 0.995 0.995

0.9 -1 -0.6216 -0.6216
-0.8 -0.4973 -0.4973
-0.6 -0.3730 -0.3730
-0.4 -0.2486 -0.2486
-0.2 -0.1243 -0.1243
0 0 0
0.2 0.1243 0.1243
0.4 0.2486 0.2486
0.6 0.3730 0.3730
0.8 0.4973 0.4973
1 0.6216 0.6216
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Table 3.6: Absolute error value of DTM
t x DTM(K=1, H=50)

0.01 -1 0
-0.8 1.1102e-16
-0.6 0
-0.4 5.5511e-17
-0.2 2.7756e-17
0 0
0.2 2.7756e-17
0.4 5.5511e-17
0.6 0
0.8 1.1102e-16
1 0

0.1 -1 0
-0.8 0
-0.6 1.1102e-16
-0.4 1.1102e-16
-0.2 5.5511e-17
0 0
0.2 5.5511e-17
0.4 1.1102e-16
0.6 1.1102e-16
0.8 0
1 0

0.9 -1 0
-0.8 0
-0.6 5.5511e-17
-0.4 5.5511e-17
-0.2 2.7756e-17
0 0
0.2 2.7756e-17
0.4 5.5511e-17
0.6 5.5511e-17
0.8 0
1 0
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Figure 3.5: Plot of Exact and DTM solution of Klein equation for -1<x<1 and 0<t<1
where k=0.02, h=0.01
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Example 3.2.4. Consider the nonlinear diffusion equation[26]

ut = (u2ux)x, 0 ≤ t ≤ 1, 0 ≤ x ≤ 1. (3.29)

with I.C

u(x, 0) =
x+ a

2c
. (3.30)

whose exact solution is

u(x, t) =
x+ a

2
√
c2 − t

. (3.31)

Taking differential transform of (3.29) and (3.30), implies

U(K, 0) =
δ(K − 1) + δ(K)

2c
, wherec = a = 1 (3.32)

(H+ 1)U(K,H+ 1) =
K∑
P=0

K−P∑
T=0

H∑
Q=0

H−Q∑
S=0

U(P,H−Q−S)U(T,Q)U(K−P −T + 2, S)

+2
K∑
P=0

K−P∑
T=0

H∑
Q=0

H−Q∑
S=0

(T+1)(K−P−T+1)U(P,H−Q−S)U(T+1, Q)U(K−P−T+1, S).

(3.33)

Putting values of K and H in (3.33) and then by using (3.34) in (3.33), we get

U(K,H) =

{
1.3.5...(2H−1)
2H+1H!c2H+1 if K = 0, 1, H = 1, 2, 3, ...

0 otherwise
. (3.34)

Using (3.34) in the inverse transformation rule given in (3.2), we get

u(x, t) =
(x+ a)

2
(
1

c
+

t

2c3
+

3t2

2! 4
+

15t3

3! 8
· · ·). (3.35)

After simplification (3.35) becomes,

u(x, t) =
(x+ a)

2
√
c2 − t

. (3.36)

This is same as exact solution.

The results of exact and DTM computed at different values of x and t are tabulated in

3.7 and graphically presented in figure (3.7). While the absolute error of DTM is given
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in 3.8 and graphical presentation is shown in figure (3.8). The comparison shows that

DTM performs well and gives negligible error for t=[0.01, 0.1] and x=[0.1, 0.5, 0.9]

but for t=0.9 an increase in error value can be seen. So it can be concluded that DTM

gives more error for higher values.

Table 3.7: Comparison between Exact and DTM
t x exact DTM(K=1,2, H=20 )

0.01 0.1 0.5528 0.5528
0.5 0.7538 0.7538
0.9 0.9548 0.9548

0.1 0.1 0.5798 0.5798
0.5 0.7906 0.7906
0.9 1.0014 1.0014

0.9 0.1 1.7393 1.6758
0.5 2.3717 2.2851
0.9 3.0042 2.8945

Table 3.8: Absolute error for DTM
t x DTM(K=1, H=20)

0.01 0.1 1.1102e-16
0.5 1.1102e-16
0.9 0

0.1 0.1 1.1102e-16
0.5 1.1102e-16
0.9 2.22045e-16

0.9 0.1 0.0636
0.5 0.0866
0.9 0.10968
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Figure 3.7: Plot of Exact and DTM solution of wave equation for 0<x<1 and 0<t<1
where k=0.1, h=0.1
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Figure 3.8: Absolute error of DTM solution for 0<x<1 and 0<t<1 where k=0.1, h=0.1
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3.3 Performance analysis of DTM for PDEs

In this chapter, the semi-analytical solutions of linear and non-linear PDEs are ob-

tained. The results compared with exact and numerical solutions revealed reliability,

ease of implementation and fast convergence of the method. Unlike FDM, the accu-

racy of DTM results depends only on K. The increase in K causes the decrease in error

due to which more accurate results are achieved. Here, the comparison of DTM with

FDM also revealed that if exact solution includes a trigonometric function then FDM

performs better on boundary conditions. This can be seen in table 3.2 and 3.6 that

only at t=1 FDM performs better than DTM this is because DTM gives approximate

solution.

In case of PDEs also, DTM have some limitations. Just like ODEs, in PDEs also the

transformation of only limited variables are defined. There are many variables which

are combination of more than two functions and there transformation aren’t defined

due to which its very challenging to solve them. So it’s needed that the transformation

of more complex variables should be defined. In PDEs extra conditions are needed for

obtaining the solution of BVPs by DTM where as the solution of BVPs with limited

conditions cannot be obtained as the number of unknown variables will be greater than

the conditions.
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Chapter 4

Study of MHD flow of third grade
non-Newtonian fluid between three
parallel plates using DTM

So far, we have computed the analytical solution of ODEs and PDEs using DTM. Now

here, we will study the MHD flow of third grade fluid between three parallel plates.

We applied DTM to compute the analytical solution of the equations involved in the

model. We also compared the solution with ADM to show reliability and efficiency of

the method. The effect of magnetic field and pressure gradient on the velocity are also

graphically analyzed.

4.1 Problem Formulation and Governing Equations

Consider a uni-directional fully developed third grade (non-Newtonian) fluid flow be-

tween three infinitely parallel plates in the presence of transverse magnetic field. The

governing equations of an incompressible and isothermal fluid flow are:

∇.V = 0, (4.1)

ρ(
∂V

∂t
+ (V.∇)V ) = ρf +∇.T + J ×B, (4.2)

here, J is electric current density, whereas B = B0 + b is the total magnetic field, B0

and b are imposed magnetic field and induced magnetic fields respectively. By using
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Ohm’s law, J is is defined as

J = σ(E + V ×B), (4.3)

here σ is electric conductivity. Now by taking the cross product of equation (4.2) with

B, we obtain

J ×B = −σB2V. (4.4)

Using equation (4.3) in equation (4.1) implies

ρ(
∂V

∂t
+ (V.∇)V ) = ρf +∇.T − σB2V, (4.5)

here the Cauchy stress tensor for third grade fluid is,

T = −pI + µA1 + α1A2 + α2A
2
1 + β1A3 + β2(A1A2 + A2A1) + β3(trA2)A1, (4.6)

where as

A1 = (∇V )T +∇V, An =
DAn−1

Dt
+ An−1∇V + (∇V )TAn−1, n = 2, 3, 4 · · · (4.7)

In this problem it is assumed that for uni-dimensional flow velocity field will be

V = (v(y), 0, 0). (4.8)

By using equation (4.8) and steady state condition in equation (4.2), we obtain

−∂p
∂x

+ µ
∂2v

∂2y
+ 6(β2 + β3)

∂2v

∂2y
(
∂v

∂y
)2 − σB2

0v = 0, (4.9)

−∂p
∂y

+
∂

∂y
(2α1 + α2)(

∂v

∂y
)2 = 0, (4.10)

here σ = electric conductivity, B0 = applied magneticfield, dp
dx

= pressure gradient

∂p

∂z
= 0. (4.11)

Now introducing generalized pressure [36]

p̂ = −p(x, y) +
∂

∂y
(2α1 + α2)(

∂v

∂y
)2, (4.12)
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and by using it in equation (4.10), we have

∂p̂

∂y
= 0, (4.13)

and this shows that p̂ = p̂(x). Using this in equation (4.9), implies

−∂p̂
∂x

+ µ
∂2v

∂2y
+ 6β

∂2v

∂2y
(
∂v

∂y
)2 − σB2

0v = 0, (4.14)

here β = β3 + β2 = non Newtonian parameter, m = σB2
0/µ = magnetic parameter

4.1.1 Plane Couette Flow

Consider the MHD flow of a non-Newtonian third grade fluid between three parallel

plates as shown in figure (4.1).

Figure 4.1: Schematic digram of Couette flow

The first and last plate are stationary while the middle one is moving with constant

velocity V. The pressure gradient is zero while the properties of fluid vary only along

y-axis. So in absence of pressure gradient the equation becomes

v′′i +
6β

µ
(v′i)

2v′′i −m2vi = 0, i = 1, 2 (4.15)

with the B.Cs:

v1(0) = 0, v1(h) = V, (4.16)

v2(0) = 1, v2(h) = 0. (4.17)
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Here, i=1 represent the fluid flow between first and second plate while i=2 represent

fluid flow between second and third fluid. By introducing following non-dimensional

parameters

v∗ =
v

V
, y∗ =

y

h
, β∗ =

β

µh2/V 2
, m∗2 =

σB0
2

µ/h2
, (4.18)

and then by dropping the ’*’, the equation (4.15) becomes

v′′i + 6βv′i
2vi
′′ −m2vi = 0, i = 1, 2 (4.19)

with boundary conditions

v1(0) = 0, v1(1) = 1, (4.20)

v2(0) = 1, v2(1) = 0, (4.21)

4.1.2 Plane Poiseuille Flow.

Now consider the steady laminar pressure driven flow of the third grade fluid between

the three stationary parallel plates as shown in figure (4.2).

Figure 4.2: Schematic digram of Poiseuille flow

Let the separation between plates(1, 2 and 2, 3) be 2h and plates are at y=-h and

y=h. Thus, the equation in presence of constant pressure gradient and magnetic field

becomes

vi
′′ + 6

β

µ
v′i

2
vi
′′ −m2vi =

dp̂

µdx
, i = 1, 2 (4.22)
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with the boundary conditions:

v1(−h) = 0, v1(h) = 0, (4.23)

v2(−h) = 0, v2(h) = 0. (4.24)

Introducing the non-dimensional parameters

v∗ =
v

V
, y∗ =

y

h
, β∗ =

βV 2

µh2
, m∗2 =

σB0
2

µ/h2
, p∗ =

p̂

µV/h
, (4.25)

after dropping ’*’, equation (4.22) becomes

vi
′′ + 6βv′i

2
vi
′′ −m2vi =

dp

dx
, i = 1, 2 (4.26)

v1(−1) = 0, v1(1) = 0, (4.27)

v2(−1) = 0, v2(1) = 0, (4.28)

4.1.3 Generalized Couette Flow

Here, in this case we assume the motion of third grade non-Newtonian fluid flow pro-

duced due to the movement of the middle plate and the constant pressure gradient as

shown in figure (4.3).

Figure 4.3: Schematic digram of generalized Couette flow
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The boundary conditions mentioned in subsection (4.1.1) will be used here and the

governing equation will be

vi
′′ + 6

β

µ
v′i

2
vi
′′ −m2vi =

dp̂

µdx
, i = 1, 2. (4.29)

Using the non-dimensional parameters given in (4.1.1), equation (4.29) becomes

vi
′′ + 6βv′i

2
vi
′′ −m2vi =

dp

dx
, i = 1, 2. (4.30)

with boundary conditions

v1(0) = 0, v1(1) = 1, (4.31)

v2(0) = 1, v2(1) = 0. (4.32)

All the equations given in subsections 4.1.1, 4.1.2 and 4.1.3 will be solved using DTM.

4.2 Solution of problems by DTM

Here, the equations given in 4.1.1-4.1.3 are solved using DTM.

4.2.1 Plane Couette Flow

Applying DTM on equation (4.19) and corresponding boundary conditions (4.20) and

(4.21), we get

(K+1)(K+2)V i(K+2)+6β
K∑

K2=0

K2∑
K1=0

(K1+1)(K1+2)(K2−K1+1)(K−K2+1)V i(K+2)

V i(K2 −K1 + 1)V i(K −K2 + 1)−m2V i(K) = 0, K = 1, 2, · · · (4.33)

V1(0) = 0, V1(1) = a, (4.34)

V2(0) = 1, V2(1) = b. (4.35)

Now by using value of K and the boundary conditions (4.34) and (4.35) in equation

(4.33), the unknown variables of form V 1(K) and V 2(K) are computed. The variables

are substituted in (2.2), to get analytical solution. Values of a and b are computed as

shown in [13]. The obtained analytical solution is tabulated in table 4.1
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y ADM[36] DTM(K=7)
0 0 0

0.1 0.099988449889147 0.0999995875009634
0.20 0.199977599796053 0.199999200001973
0.3 0.299968149736175 0.299998862503055
0.40 0.399960799720373 0.399998600004188
0.5 0.499956249752604 0.499998437505290
0.60 0.599955199827626 0.599998400006187
0.7 0.699958349928699 0.699998512506598
0.80 0.799966400025280 0.799998800006110
0.9 0.899980050070727 0.899999287504158
1 1 1

Table 4.1: Comparison of results obtained for plane Couette flow when i=1, m=0.01
and β=0.5.
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Figure 4.4: Comparison of results obtained for plane Couette flow for i=1, β = 0.5 and
m=0.01.
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4.2.2 Plane Poiseuille Flow

Applying DTM on equation (4.26) and corresponding boundary conditions (4.27) and

(4.28), we get

(K + 1)(K + 2)V i(K + 2) + 6β
K∑

K2=0

K2∑
K1=0

(K1 + 1)(K1 + 2)(K2−K1 + 1)(K −K2 + 1)

V i(K + 2)V i(K2 −K1 + 1)V i(K −K2 + 1)−m2V i(K) = δ(K)
dp

dx
. (4.36)

Here i=1, 2 and K = 1, 2 · · ·

V1(0) = 0, V1(1) = A, (4.37)

V2(0) = 0, V2(1) = B. (4.38)

Now by using the value of K and boundary conditions (4.37) and (4.38) in equation

(4.36), we will obtain the unknown variables. By substituting the variables in (2.2),

the analytical solution of v1(y) is obtained. Boundary conditions given for v1(y) and

v2(y) are the same so the analytical solution will also be the same. Value of A that is

equal to B is computed as shown in [13]. The comparison between results of ADM and

DTM is tabulated in table 4.2.

y ADM[36] DTM(K=7)
0 0.0488769220014881 0.0488453909445173

0.1 0.0483794607669509 0.0483404127868781
0.20 0.0468882053910040 0.0468401983122849
0.3 0.0444065145285811 0.0443483935117025
0.40 0.0409399000045561 0.0408712593999515
0.5 0.0364959043077160 0.0364177162270056
0.60 0.0310839418703092 0.0309993525659633
0.7 0.0247151169211607 0.0246303958245323
0.80 0.0174020343540525 0.0173276407268707
0.9 0.009158623706779 0.00911033231262392
1 0 0

Table 4.2: Comparison of results obtained for plane Poiseuille when i=1,2, m=0.01,
dp
dx

= −0.1 and β=2.
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Figure 4.5: Comparison of results obtained for Poiseuille flow for i=1, β = 2, dp
dx

= −0.1
and m=0.1.

4.2.3 Generalized Couette Flow

Applying DTM on equation (4.30) and corresponding boundary conditions (4.31) and

(4.32), we get

(K + 1)(K + 2)V i(K + 2) + 6β
K∑

K2=0

K2∑
K1=0

(K1 + 1)(K1 + 2)(K2−K1 + 1)(K −K2 + 1)

V i(K + 2)V i(K2 −K1 + 1)V i(K −K2 + 1)−m2V i(K) = δ(K)
dp

dx
. (4.39)

Here i=1, 2 and K = 1, 2 · · ·

V1(0) = 0, V1(1) = A, (4.40)

V2(0) = 1, V2(1) = B. (4.41)

By using K and boundary conditions given in equation (4.40) and (4.41) in (4.39),

we will find the unknown variables. Substitution of the variables in (2.2), gives the

analytical solution of v1(y) and v2(y). Values of A and B are computed by method

shown in [13]. The comparison between DTM and ADM results is given in table 4.3.
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y ADM[36] DTM(K=5)
0 0 0

0.1 0.123139106940344 0.123137043936472
0.20 0.241214850497521 0.241216389399580
0.3 0.354196813899843 0.354205055300158
0.40 0.462054936238774 0.462070852788963
0.5 0.564759659521834 0.564782454114820
0.60 0.662282068615257 0.662309461482768
0.7 0.754594024076398 0.754622475912209
0.80 0.841668287875887 0.841693166095052
0.9 0.923478642009538 0.923494337253860
1 1 1

Table 4.3: Comparison of results obtained for Generalized Couette flow when i=1,
m=0.01 and β=0.5.
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Figure 4.6: Comparison of results obtained for Generalized Couette flow for i=1, β =
0.01, dp

dx
= −0.55 and m=0.025.

4.3 Results and Discussion

Here, we studied the MHD flow of third grade non-Newtonian fluid. DTM is used

to obtain the analytical solution of differential equations involved. Three cases Cou-

ette flow, Poiseuille flow and generalized Couette flow are discussed. The comparison
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between DTM and ADM[36] solutions of all three cases is graphically represented in

figures (4.4), (4.5) and (4.6) respectively. The results obtained using DTM shows good

agreement with solution of ADM for restricted values of all parameters. Further, the

effect of the dimensionless parameters ’m and dp/dx’ on fluid velocity are examined.

Figures (4.7), (4.8), (4.11), (4.15) and (4.16) shows the effect of magnetic field on the

fluid velocity. It can be seen that the increase in magnetic field causes decrease in

velocity. This is because the applied magnetic field produces a drag force due to which

decrease in velocity is caused. The effect of pressure gradient on velocity of Poiseuille

and generalized Couette flow is graphically presented in figure (4.12), (4.17) and (4.18).

From the results it can be observed that velocity increases with the increase in pressure

gradient.

Further, the wall shear stress is computed for all three cases and the effect of magnetic

field and pressure on it are graphically presented. Here, its observed that the magnetic

field is directly proportional to shear stress near moving wall while inversely propor-

tional to shear stress at static wall, as shown in figures (4.9), (4.10) , (4.13),(4.19),

(4.20). Whereas, the increase in shear stress near stationary wall is noted due to in-

crease in pressure gradient, as shown in (4.14), (4.21) and (4.22). Based on the above

analysis it can be conclude that the values of shear stress is directly proportional to

magnetic and inversely proportional to pressure gradient in case of moving wall. While

in case of static wall magnetic field is inversely and pressure gradient is directly pro-

portional to shear stress.
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Figure 4.7: Plot of the v1(y) for β = 0.01 while m vary for plane Couette flow.
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Figure 4.8: Plot of the v2(y) for β = 0.01 while m vary for plane Couette flow.
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Figure 4.9: Plot of the values of stress for i=1, β = 0.01 while m vary for plane Couette
flow.
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Figure 4.10: Plot of the values of stress for i=2, β = 0.01 while m vary for plane
Couette flow.

57



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

y

v

 

 

m=0.5
m=1
m=1.5
m=2

Figure 4.11: Plot of plane Poiseuille flow velocity v1(y) = v2(y) for β = 1.2, dp
dx

= −0.1
and K=6 while m vary.
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Figure 4.12: Plot of plane Poiseuille flow velocity v1(y) = v2(y) for β = 1, m=1 and
K=6 while dp
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vary.
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Figure 4.13: Plot of plane Poiseuille flow stress for β = 1.2, dp
dx

= −0.1 and K=6 while
m vary.
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Figure 4.14: Plot of stress for plane Poiseuille flow when β = 1, m=1 and K=6 while
dp
dx

vary.
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Figure 4.15: Plot of generalized Couette flow velocity for i=1, β = 0.05, dp
dx

= −0.75
and K=7 while m vary.
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Figure 4.16: Plot of generalized Couette flow velocity for i=2, β = 0.05, dp
dx

= −0.75
and K=7 while m vary.
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Figure 4.17: Plot of generalized Couette flow velocity for i=1, β = 0.1, m=0.1 and
K=7 while dp

dx
vary.
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Figure 4.18: Plot of generalized Couette flow velocity for i=2,β = 0.1, m=0.1 and K=7
while dp

dx
vary.
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Figure 4.19: Plot of generalized Couette flow stress for i=1, β = 0.05, dp
dx

= −0.75 and
K=7 while m vary.
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Figure 4.20: Plot of generalized Couette flow stress for i=2, β = 1.2, dp
dx

= −0.1 and
K=7 while m vary.
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Figure 4.21: Plot of generalized Couette flow stress for i=1, β = 0.1, m=0.1 and K=7
while dp

dx
vary.
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Figure 4.22: Plot of generalized Couette flow stress for i=2, β = 1, m=1 and K=7
while dp

dx
vary.

4.4 Performance analysis of DTM for non-linear ODEs

In this chapter, the semi-analytical solutions of non-linear ODEs involved in MHD

flow of non-Newtonian fluids are obtained. The results are compared with numerical

solution to show the effectiveness and reliability of method. Here, DTM results are in

good agreement with ADM results, for small values of m, dp/dx and β. Here, while
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solving the BVPs an unknown variable appears in inverse transform whose value was

obtained using Matlab, many times we got more than one real roots and to achieve

desired result all real roots were checked by substituting them one by one in inverse

transform . But this consumes much computational cost and to resolve this problem

it’s really important to find that which one root should be used to get good results.
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Chapter 5

Conclusions

In this study, at first the analytical solution and absolute error of both ODEs and

PDEs are obtained using DTM. The results obtained are compared with exact and

numerical solution. The comparison revealed the easy implementation and reliability of

the method. After doing the analysis of obtained results, we deduce that DTM performs

well for large interval difference of independent variable. So to achieve more accurate

results number of terms should be increased when interval difference is decreased.

Whereas in case of PDEs DTM doesn’t performs well at t=1 if the exact solution

involve a trigonometric function because DTM gives approximate solution. It is also

observed that, when the BVPs are solved by DTM an unknown expression is followed

till the end and much computational cost is consumed to compute unknown variable

using boundary condition especially when more than one real root is obtained. It’s

difficult to know which root will give best result. However, for PDEs we don’t have to

find the unknown variable as DTM solve only those PDEs that have extra conditions

and all of there unknown variables are found using those conditions. The analysis of all

the results also revealed that DTM performs well only in restricted domain. Another

limitation of DTM is that transformations are defined for only specific variables due

to which it’s not easy to solve those whose direct transforms aren’t defined. Thus, to

increase the efficiency of method much more research work is needed to address all

these limitations.
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