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Abstract

In this thesis, we have used spectral method for solving the Volterra's di�erential
equation. We study the basic theory of this method. The spectral method for the
solution of non-linear Volterra integro-di�erential equation is described in details and
is applied. The solutions are compared and the results are plotted graphically. We
analyze Volterra's population model analytically and numerically by using the spectral
method. An analytic approximation was discussed for Volterra's population model and
then the use of the Pade approximants gives a better approximation. We discuss the
rational Chebyshev polynomial for solving the Volterra's population model numerically.
The Laguerre set of polynomials is also used to solve it.
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Chapter 1

Introduction

1.1 Brief History

Many mathematicians and researchers worked on the
principle of the spectral method for solving problems
numerically that arose in the past few year. Spectral
methods are used in scienti�c computing and applied
mathematics for solving numerically certain di�eren-
tial equations. These methods were used �rstly in
practical �ow simulations. The implementation of
the spectral method usually learns about "how to ap-
proximate a solution of polynomial?."
Now a days, Spectral method is very advanced in
many �elds and numerious methods have been intro-
duced for solving the problems of di�erential equa-
tions. Here we are focusing on the well known method
i-e Chebyshev collocation method. The spectral method
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can be used to solve ordinary di�erential equations,
partial di�erential equations and eigen value prob-
lems arising in the di�erential equations. This method
gives the approximate solution of a polynomial. In
the �eld of mathematics, it takes on a global ap-
proach. It uses basis functions that are non-zero over
the whole domain. The application of spectral meth-
ods for non-linear problems arises in �uid dynamics,
quantum mechanics, weather predictions, heat con-
duction and other �elds.
The main idea of spectral method is to replace exact
derivatives by derivatives of interpolating global poly-
nomial i-e Chebyshev polynomials. Pseudospectral
Chebyshev method is very e�cient method in which
the solution contains Chebyshev collocation points
for error minimization. The assumption of approx-
imate solution needs to satisfy the boundary condi-
tions and the equation at the Chebyshev collocation
points. This method also has the advantage of deal-
ing with a non-linear di�erential equations. Parand
[17] used Pseudospectral method to solve the non-
linear di�erential equations on semi-in�nite intervals.
A spectral method is a powerful method that deals
with the weighted residual method in which approx-
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imate solution can be written in the form of a series
and its residual or error goes to zero only in an ap-
proximate manner.
We de�ned the scalar product as:

(r, s) =

∫ b

a

r(x)s(x)w(x) dx, (1.1)

where r(x) and s(x) are two non-zero vectors of func-
tion which is de�ned on a closed interval [a, b] and
w(x) is a weight function. The truncated series ex-
pansion of a function v(x) is:

vN(x) =

N∑
i=0

aiφi(x), a ≤ x ≤ b. (1.2)

for some suitable basis function φi(x) and the ex-
pansion coe�cient ai must be determined. In this
method, the main concern is to �nd the basis func-
tion then to determine the coe�cient ai. There are
many choices for choosing the basis function, but here
we choose the Chebyshev polynomials as a basis func-
tion. Now, we need to introduce the residual RN that
is zero. For example, if the function v(x) is known
and its approximate function is vN(x) then RN(x) is
de�ned by:

RN(x) = v − vN(x), (1.3)
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vN(x) is an approximate solution then we write the
equation as:

Lv − f1 = 0. (1.4)

As v is the solution which satis�es the boundary con-
dition depending on the linear operator L and the
residual RN(x) is given by:

RN(x) = LvN − f1. (1.5)

In an approximate manner, the residual method RN

of a scalar product should be equal to zero.

(RN , ψi) =

∫ b

a

RN(x)ψi(x)w(x) dx = 0, (1.6)

where the basis functions ψi(x) and the weight w(x)
that is associated to determine the basis functions.
The weight de�nes various method for solving the
di�erential equation i-e the spectral or collocation
method and the Galerkin type method. The set of
collocation points is given to choose the domainD on
which residualR should be equal to zero i-eRN(xi) =
0, where i = 0, 1, 2, ...N . This method is known in
the literature as the "collocation method".
In this thesis, we discuss about the spectral method.
The residual should be zero at various points in spec-
tral method whereas in the Galerkin type method
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residual is exactly zero in the mean . In this chapter,
we have to apply the Spectral method for solving the
ordinary di�erential equations.

1.2 Chebyshev polynomial

The mathematician, "Pafnuty Lvovich Chebyshev"
(1821−1894), was the �rst who introduced the Cheby-
shev polynomial on a domain −1 < x < 1 as:

Tk(x) = cos(k cos−1(x)), k = 0, 1, 2, ... (1.7)

The Chebyshev polynomial of �rst kind Tk(x) can be
represented as a linear combination of two Chebyshev
polynomials of second kind Uk(x):

Tk(x) =
1

2
(Uk(x)− Uk−2(x)). (1.8)

where,

Uk(x) = sin(kcos−1(x)), k = 0, 1, 2, ... (1.9)

for approximating a function, the Chebyshev polyno-
mials of �rst kind Tk are used in spectral method and
the �st several Chebyshev polynomials can be de�ned
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as:

T0(x) = 1,

T1(x) = x,

T2(x) = 2x2 − 1,

T3(x) = 4x3 − 3x, .....

There exists also a recurrence formula:

Tk+1(x) = 2xTk(x)− Tk−1(x). k ≥ 1 (1.10)

A �nite series of Chebyshev polynomials can be writ-
ten as:

fN(x) =

N∑
k=0

akTk(x), (1.11)

with ak is the Chebyshev coe�cient and the polyno-
mial approximation of the highest order is thus N .
Also it has some basic properties:

Tk(−x) = (−1)kTk(x). (1.12)

(Tk, Tj) =

∫ 1

−1

Tk(x)Tj(x)√
1− x2

dx =
π

2
ckδkj, (1.13)

with the kronecker symbol δkj and c0 = 2, ck = 1
for k ≥ 1. The Chebyshev polynomials de�ned the
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boundary conditions as:

Tk(1) = 1,

Tk(−1) = (−1)k.

1.2.1 Example

Consider the one-dimensional homogenous, linear or-
dinary di�erential equation with the boundary con-
ditions.[15]

xtt − (t6 + 3t2)x = 0, x(−1) = x(1) = 1. (1.14)

The exact solution of this problem is:

g(t) = exp([t4 − 1]/4). (1.15)

Apply the spectral method, so to choose the approx-
imate solution that satify the boundary conditions.

x(t) = 1 + (1− t2)(a0 + a1t + a2t
2). (1.16)

The residual of this approximation is:

R(t; a0, a1, a2) = xtt − (t6 + 3t2)x, (1.17)
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R = 2a2 − 2a0 − 6a1t− 12a2t
2−

(t6 + 3t2)(1 + (1− t2)(a0 + a1t + a2t
2)), (1.18)

Now to minimize error, we choose a residual zero at
a set of points equal in number to the coe�cients
in x(t). This is called the "collocation and pseudo-
spectral method". The above equation becomes:

2a2 − 2a0 − 6a1t− 12a2t
2−

(t6 + 3t2)(1 + (1− t2)(a0 + a1t + a2t
2)) = 0, (1.19)

Now to choose the collocation points ti, i = 0, 1, 2, 3, ....n
to �nd the n+1 linearly independent equations. Con-
sider ti = (−0.5, 0, 0.5), thus we gives the three lin-
early independent equations:

Eq1 =2a2 − 2a0 − 6a1(−0.5)− 12a2(−0.5)2 − ((−0.5)6

+ 3(−0.5)2)(1 + (1− (−0.5)2)(a0 + a1(−0.5)
+ a2(−0.5)2)),

Eq2 =2a2 − 2a0 − 6a1(0)− 12a2(0)
2 − ((0)6 + 3(0)2)

(1 + (1− (0)2)(a0 + a1(0) + a2(0)
2)),

Eq3 =2a2 − 2a0 − 6a1(0.5)− 12a2(0.5)
2 − ((0.5)6

+ 3(0.5)2)(1 + (1− (0.5)2)(a0 + a1(0.5)

+ a2(0.5)
2)),
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Table 1.1: Comparison of exact and approximate solutions.
t x(t) g(t)
-1 1. 1.
-0.5 0.806935 0.791065
0 0.794064 0.778801
0.5 0.806935 0.791065
1 1. 1.

The coe�cients a0, a1, a2 are determined by solv-
ing:

Eq1 = Eq2 = Eq3 = 0. (1.20)

Hence we get the required values:

a0 =
−784
3807

,

a1 = 0,

a2 =
−784
3807

.

Putting values in approximate solution, so we would
get a required results. The graph of the approximate
and exact solution concludes that the approximate
solution is quite precise as the exact solution in table
[1.1].
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Figure 1.1: This graph indicates the exact and approximate solutions where blue line
shows the exact solution and red line shows the approximate solution of the problem.

1.2.2 Example

Consider the non-linear di�erential equation:

y′′ +
2xy′√
1− aly

= 0, y(0) = 1, y(10) = 0. (1.21)

The value of al = 0.2247. To solve this problem by
Chebyshev polynomials Tn(x) which is de�ned on a
domain [-1,1]. By applying the linear transformation:

y = ax + b. (1.22)

we have a boundary conditions y(−1) = 0 and y(1) =
10. Hence, we get the value of shifted Chebyshev
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polynomials i-e Tn(
y
5 − 1).

By applying the spectral method using mathematica,
it could easily be determine that the graph obtained
from the approximate solution and the given equa-
tion is almost same for increasing the value of n. We
couldn't determine the exact solution, but the exact-
ness of an approximate solution can be determine by
calculating the value with higher n.

1.3 Brief history of Volterra's equation

In 1798, "Thomas Malthus" was the �rst mathemati-
cian who discussed about the concept of population
dynamics [1]. He found that, when population in-
crease exponentially and the sources on which popu-
lation depend increase arithmetically and remain con-
stant.

dP

dt
= εp(t), (1.23)

Later, in 1838 "Verhulst" established Malthus "prin-
ciple of population dynamics" both worked together
for developing the mathematical concept. "Alfred
J.Lotka" [16] works on the theory of population growth
in a species then he introduced the "Lotka-Volterra
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equations" which is also called the "predator-prey
equations". In 1925, the equations was used to ex-
amine the predator-prey interactions in his book "El-
ements of Physical Biology" which shows the great
contribution in the analysis of population growth.
The logistic equation is called the "Law of popula-
tion growth" which was introduced by Lotka. Hence,
the "Logistic equation" which is de�ned as:

dP

dt
= (ε− λp(t))p(t), (1.24)

where P is population at time t, ε is a constant of
proportionality and λ is the carrying capacity.
Later, in 1928, Lotka and Volterra works on the "prin-
ciple of Volterra Integro-di�erential equation". It
is introduced to examine the population growth in
a species. Volterra examine the population growth
model then his work resulted to introduced the well-
known equation which is named as "Volterra integro-
di�erential equation". It is de�ned as:

dp

dt
= a1p− b1p2 − c1p

∫ t̃

0

p(x) dx, p(0) = p0.

(1.25)
where a1 > 0 is the birth rate coe�cient, b1 > 0 is
the crowding coe�cient, c1 > 0 is the toxicity coe�-
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cient. p = p(t̃) is the population at time t̃ and p0 is
the initial population. The integral term in the right
hand side of (1.37) denotes the e�ect of toxin on the
species. Now de�ning the nondimensional variables:

t =
t̃

b1/c1
, u =

p

a1/b1
, (1.26)

to obtain the equation

k
du

dt
= u− u2 − u

∫ t

0

u(x) dx, u(0) = u0. (1.27)

where k = c1/a1b1 is a nondimensional parameter,
which shows a vital role in the behaviour of u(t).
Many researchers put their interest to discover the
numerical and analytical solution of the Volterra pop-
ulation model by A-M Wazwaz[1], F.M.Scudo[2],
R.D.Small[3], and TeBeest[4].
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Chapter 2

Solution in series

2.1 Introduction

Many science, engineering applications and mathe-
matical physics/Biology use Volterra equation to solve
the problem of population model.
Volterra examined the population growth model when
he learned about the hereditary in�uence. It is de-
�ned as "the equation in which both di�erential and
integral operators seems together in the equation is
known as the "Volterra integro-di�erential equations".
The nonlinear Volterra equation is:

k
du

dt
= u− u2 − u

∫ t

0

u(x) dx, (2.1)

Where we choose u(0) = 0.1 is the initial condition
and the parameter k = 0.02, both are positive con-
stants.
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To calculate the approximate solution of the Volterra
population model, we have to consider the series so-
lution method. This solution agrees with the solu-
tion found by the method of Adomian decomposition
which give the same solution of the approximate so-
lution. So that, we must need the initial conditions,
and this could be seen as u(x) is involving and its
derivatives in the above equation.

2.2 Methods for the solution of Volterra population

model:

2.2.1 series solution method

The non-linear Volterra integro-di�erential equation
with the value of k=0.02 is given by,

du

dt
= 50u− 50u2 − 50u

∫ t

0

u(x) dx, (2.2)

Consider the power series solution of the form:

u(t) =

∞∑
m=0

bmt
m. (2.3)
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Now to determine the coe�cients bm, for m ≥ 0 we
have:
∞∑
m=1

mbmt
m−1 = 50(

∞∑
m=0

bmt
m)− 50(

∞∑
m=0

bmt
m)2

− 50(

∞∑
m=0

bmt
m)

∫ t

0

(

∞∑
m=0

bmx
m) dx. (2.4)

so we get the recurrence relation:

(k+1)bk+1 = 50bk−50
k∑

m=0

bmbk−m−50
k−1∑
m=0

bmbk−1−m
k −m

.

putting u(0) = 0.1, so we get the required constants:
b0 = 0.1, b1 = 4.5, b2 = 89.75, b3 = 847.917, b4 =
−1893.85
b5 = −176439., b6 = −2.3469× 106 · · ·
Hence, we �nd the approximate solution.

u(t) = 0.1+4.5t+89.75t2+847.917t3−1893.85t4−17643.t5

−2.346×106t6−4.9029×106t7+3.2994×108t8+O(t9).
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2.2.2 The Decomposition Method

Eq.(2.1) can be written in the decomposition method
[7] as:

Lu(t) = 50u(t)−50u2(t)−50
∫ t

0

u(t)u(x) dx, (2.5)

where u(0) = 0.1, the di�erential and integral opera-
tor L is de�ned by:

L =
d

dt
. (2.6)

L−1(.) =

∫ t

0

(.) dt. (2.7)

As it is an invertible operator so we apply L−1 in
Eq.(2.5), to get the required equation:

u(t) = 0.1+L−1(50u(t)−50u2(t)−50
∫ t

0

u(t)u(x) dx).

(2.8)
Now consider the series as:

u(t) =

∞∑
m=0

um(t). (2.9)
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Now to determine the coe�cients of um(t), putting
the series in Eq.(2.8) will become

∞∑
m=0

um(t) = 0.1 + L−1(50

∞∑
m=0

um(t)− 50

∞∑
m=0

Cm(t)

− 50

∫ t

0

∞∑
m=0

Dm(x, t) dx),

where the Adomian polynomials Cm(t) and Dm(x, t)
denotes the non linear terms u2(t) and u(x)u(t). where,

u2(t) =

∞∑
m=0

Cm(t), (2.10)

and

u(x)u(t) =

∞∑
m=0

Dm(x, t). (2.11)

To introduce the non-linear operator F (u) in the form:

F (u) =

∞∑
m=0

Cm, (2.12)

whereCm are the Adomian polynomial of u0, u1, u2, ...., um
which is de�ned by:

Cm =
1

m!

dm

dλm
[F (λiUi)], m = 0, 1, 2, .... (2.13)
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For Cm(t), we get.

C0(t) = u20(t),

C1(t) = 2u0(t)u1(t),

C2(t) = u21(t) + 2u0(t)u2(t),

C3(t) = 2u1(t)u2(t) + 2u0(t)u3(t), · · ·
For Dm(x, t),

D0(x, t) = u0(x)u0(t),

D1(x, t) = u0(x)u1(t) + u1(x)u0(t),

D2(x, t) = u0(x)u2(t) + u1(x)u1(t) + u2(x)u0(t), · · ·
To determine the coe�cients of u(t) which are u0, u1, u2, ...,
Hence we follow the relation as:

u0(t) = 0.1,

uk+1(t) = L−1(50uk(t)−50Ck(t)−50
∫ t

0

Dk(x, t) dx),

With u0(t) = 0.1, we get the required values:

u0(t) = 0.1,

u1(t) = 4.5t− 0.25t2,

u2(t) = 90t2 − 14.5t3 + 0.41667t4,

u3(t) = 862.5t3 − 449.6t4 + 31.45t5 − 0.1667t6, · · ·
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Putting all values in a series, hence we get the re-
quired approximate solution:

u(t) = 0.1+4.5t+89.75t2+847.917t3−1893.85t4−17643.t5

−2.346×106t6−4.9029×106t7+3.2994×108t8+O(t9).

2.2.3 Example

dU

dt
= x2 − (

1

4
)(
dU

dx
)2, (2.14)

where U(x, 0) = 0. In an operator form Eq.(2.14)
will become

LtU = x2 − 1

4
(LxU)

2, (2.15)

where

Lt =
d

dt

Lx =
d

dx
and

L−1t (.) =

∫ t

0

(.) dt

Apply inverse operator:

U(x, t) = x2t− 1

4
L−1t (LxU)

2, (2.16)
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Consider the decomposition series,

U(x, t) =

∞∑
m=0

Um(x, t), and U(x, 0) = U0. (2.17)

putting values in Eq.(2.16)

∞∑
m=0

Um(x, t) = x2t− 1

4
L−1t (Lx

∞∑
m=0

Um(x, t))
2,

Here U0(x, t) = x2t and
Uk+1(x, t) = −1

4L
−1
t (LxUk(x, t))

2, for k ≥ 0. Then
it follows that:

U0 = x2t,

U1 = −
x2t3

3
,

U2 = −
x2t7

63
, · · ·

Finally, we �nd the solution:

U(x, t) = x2t− x2t3

3
− x2t7

63
+ ... (2.18)
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2.2.4 Converting to non linear ODE

The Volterra's equation convert into a non-linear ODE
which is de�ned as:

y(t) =

∫ t

0

u(x) dx. (2.19)

This leads to the relations:

y
′
(t) = u(t), (2.20)

y
′′
(t) = u

′
(t). (2.21)

so we get the required Volterra's equation in which
the value of k = 0.02:

y
′′
(t) = 50y′(t)− 50(y

′
(t))2 − 50y(t)y

′
(t). (2.22)

with two initial conditions:

y(0) = 0,

y
′
(0) = 0.1,

Now, Volterra equation can be solve by series solution
and the decomposition method. Here we solve the
di�erential equation by Adomian method. Hence the
required equation is.

Lty(t) = 50y′(t)− 50(y′(t))2 − 50y(t)y′(t), (2.23)
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where Lt and L
−1
t is the di�erential and the integral

operator which is de�ned by:

Lt =
d2

dt2
,

L−1t (.) =

∫ t

0

∫ t

0

(.) dt dt.

Apply L−1t on both sides of the Eq.(2.23) will become:

y(t) = 0.1t+ L−1t (50y′(t)− 50(y′(t))2 − 50y(t)y′(t)).
(2.24)

Now consider the decomposition series as:

y(t) =

∞∑
m=0

ym(t), (2.25)

so that it will be easy to determine the components
of ym(t), Hence equation will become:

∞∑
m=0

ym(t) = 0.1t+L−1t (50

∞∑
m=0

ym
′(t)−50

∞∑
m=0

C̃m(t)

− 50

∞∑
m=0

D̃m(t)),
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where C̃m(t) and D̃m(t) are the Adomian polynomi-
als. ∞∑

m=0

(y′(t))2 =

∞∑
m=0

C̃m(t) (2.26)

∞∑
m=0

y(t)y′(t) =

∞∑
m=0

D̃m(t) (2.27)

For �nding the polynomials C̃m(t),we have:

C̃0(t) = (y′0)
2(t),

C̃1(t) = 2y′0(t)y
′
1(t),

C̃2(t) = (y1
′)2(t) + 2y0

′(t)y2
′(t),

C̃3(t) = 2y1
′(t)y2

′(t) + 2y0
′(t)y3

′(t), · · ·

For D̃m(t),

D̃0(t) = y0(t)y0
′(t),

D̃1(t) = y0
′(t)y1(t) + y1

′(t)y0(t),

D̃2(t) = y0
′(t)y2(t) + y1

′(t)y1(t) + y2
′(t)y0(t), · · ·

To determine the coe�cients of y0, y1, y2, · · · of y as
a function of t, we have:

y0(t) = 0.1t, (2.28)
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and

yk+1(t) = L−1t {50yk′(t)−50C̃k(t)−50D̃k(t)}, k ≥ 0.
(2.29)

With y0(t) = 0.1t, so we get the required values:

y1(t) = 2.25t2 − 0.0833t3,

y2(t) = 30t3 − 3.6455t4 + 0.0833t5,

y3(t) = 215.625t4 − 78.85t5 + 5.051t6 − 0.0842t7, · · ·

As we know,
u(t) = y′(t). (2.30)

By using Eq.(2.32) we write the above equation as.

u(t) =

∞∑
m=0

ym
′(t) = y0

′(t)+y1
′(t)+y2

′(t)+..., (2.31)

Putting all values in a series, hence the required ap-
proximate solution:

u(t) = 0.1+4.5t+89.75t2+847.917t3−1893.85t4−17643.t5

−2.346×106t6−4.9029×106t7+3.2994×108t8+O(t9).
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2.3 Pade approximants

It is generally used to determine the rational approx-
imations for functions. we de�ne as:

RN,M(x) =
PN(x)

QM(x)
, (2.32)

where,

PN(x) = p0 + p1x + p2x
2 + p3x

3 + ........ + pNx
N .

QM(x) = 1 + q1x + q2x
2 + q3x

3 + ......... + qMx
M .

Here q0 = 1. It has N +M degree of the polynomial
andN+M+1 unknown coe�cients to be determined.
Consider the approximate solution.

u(t) = 0.1+4.5t+89.75t2+847.917t3−1893.85t4−17643.t5

−2.346×106t6−4.9029×106t7+3.2994×108t8+O(t9).

Apply Pade approximants in the above equation for
�nding the mathematical behaviour of the solution
u(t). It is de�ned as "to convert the approximate
solution into a rational function". Here N =M = 4,
so that it hasN+M degree of the polynomial. Hence
we write as:

R4,4(x) =
P4(x)

Q4(x)
, (2.33)
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[
N

M
] = [

4

4
] =

p0 + p1t + p2t
2 + p3t

3 + p4t
4

1 + q1t + q2t2 + q3t3 + q4t4
, (2.34)

2.4 Analysis

Now to calculate the unknown coe�cients and using
the approximate solution we have:

[
4

4
] =

0.1 + 2.4647t + 25.961t2 + 141.28t3 + 344.t4

1.00000− 20.352t + 277.96t2 − 1308.t3 + 4368.t4
.

This equation relates with the Pade approximants.
For u(0) = 0.1 and k = 0.02, the exact value of umax
can be obtained from the solution of TeBeest[4]:

umax = 1 + κ ln(
κ

1 + κ− u0
), (2.35)

putting values we get:

umax = 0.923471721 (2.36)

and the critical value is:

tcritical = 0.1118454355 (2.37)
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Table 2.1: Exact and approximate value of umax for di�erent values of k.
k Critical t Approx. umax Exact umax

0.02 0.1118454355 0.9038380533 0.923471721
0.04 0.2102464437 0.861240177 0.8737199832
0.1 0.4644767322 0.7651130834 0.7697414490
0.2 0.8168581189 0.6579123080 0.6590503816
0.5 1.6267110031 0.4852823482 0.4851902914

2.5 Graphical Behaviour

Figure 2.1: Pade's Approximants of u(t) as a function of t.
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2.6 Conclusion

The basic idea of this study has been to determine the
approximate solution of Volterra population model.
In this chapter, we used series solution method [5,6]
and the decomposition method [7] in the Volterra
population equation.
When we get the approximate solution of u(t) in a
series form, then we need to examine the mathemat-
ical behaviour of the solution u(t) by using the Pade
approximants. It is a very useful method which con-
vert series solution into a rational function to tell us
about the further information about u(t). Now, to
check the graphical behaviour which shows the Pade
approximants of u(t) for k = 0.02, 0.1, 0.2, 0.5. In �g.
2.1, the curve that will reach a peak, then moves to
the slow exponential decay where u(t) goes to zero as
t approaches to in�nity.
When k increases, the amplitude decreases and the
exponential decay increases in the long run. While
when we decrease the value of k, the amplitude of u(t)
increases and the exponential decay decreases. Then
for di�erent values of k, we determine the approxi-
mate and exact value of Umax. Further, when we �nd
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more values of u(t) for enhancing the e�ciency of se-
ries solution and the decomposition method with the
Pade approximants [21]. This technique shows better
results over series approximation for �nding the be-
haviour of Volterra's population model for small and
large value of k.
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Chapter 3

Numerical Solution using Rational

Chebyshev and Laguerre Polynomials

3.1 Introduction

We shall consider a method to determine the Volterra's
population model with the help of spectral method.
In the last few years, spectral method for ordinary dif-
ferential equations in unbounded domains have been
used with great success in the �eld of applied math-
ematics. Many researchers used spectral method for
the unbounded domain in a di�erent way like:

1. Direct approaches: which includes the Laguerre
polynomials have been proposed by Maday[8], Fu-
naro[9], Shen[20], Guo and Shen in [10].
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2. Indiect approaches: which includes the Rational
Chebychev polynomial that converts the unbounded
domain into a bounded domain and were investi-
gated by Guo [11,12].

Parand [18] applied a numerical approach for �nding
the solution of Volterra's equation and it is based on
the Rational Chebychev polynomial for solving the
unbounded problems. Boyd et al.[14,24] used the
collocation method on a semi in�nite interval then
conducted the result with Rational Chebychev and
Laguerre functions.He also introduced [13] some spec-
tral methods on unbounded intervals by using mutu-
ally orthogonal systems of Rational functions.

3.2 Collocation Algorithm

We need to solve the Volterra equation by using the
collocation method.
Consider the equation Lu(x) = f (x) (where L is
the di�erential operator) hence, by using the various
points we have:
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1. Construct the approximate solution.

f (t) =

n∑
i=0

aiLi(t), (3.1)

2. Insert the series into the given equation.

3. To obtain the residual function.

Res(t, a0, a1, a2, ...) = Lun(x)− f (x). (3.2)

Now we have N + 1 unknown and N + 1 equa-
tions, that can be used to �nd the constants an.

4. Now to choose rooots of order n Rational Cheby-
shev as n collocation points.

5. Solve this system of equations and to �nd the con-
stants an.

In the last step, the main di�culty is to �nd the ini-
tial approximation by solving a system of non-linear
equations. So the best way of �nding the initial ap-
proximation is to solve a system of equations analyt-
ically by using Mathematica or Maple.
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As the Pseudospectral method is useful to determine
the solution of di�erential and integral equations. It
gives us a highly accurate solutions for di�erential
equations. This method reduces the problem of non-
linear equations to the solution of a system of non-
linear algebraic equations.
The main goal is to determine the Collocation points
and the selection of the basis functions. The basis
functions should have three di�erent advantages. It
should give us a complete solution, rapid convergence
and easy to compute.

3.3 Rational Chebyshev functions

The Rational Chebyshev functions are orthogonal with
respect to the weight function w(x) = 1/(

√
x(x+1))

in the interval [0,+∞] and can be de�ned as:

Rn(x) = Tn(
x− 1

x + 1
). (3.3)

The RC function satisfy the recurrence formula:

R0(x) = 1, (3.4)

R1(x) =
x− 1

x + 1
, (3.5)
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Rn+1(x) = 2(
x− 1

x + 1
)Rn(x)−Rn−1(x), where n ≥ 1.

(3.6)
The orthogonality relation is de�ned as:∫ ∞

0

Rn(x)Rm(x)w(x) dx =
cmπ

2
δnm, (3.7)

with

cm =

{
2 for m = 0
1 for m 6= 1

(3.8)

where δnm is the kronecker function.

3.4 Solving Volterra integro-di�erential equation by

using Rational Chebyshev Polynomial

In this section , we have to apply Rational Cheby-
shev polynomial in the Volterra's equation with the
help of Mathematica. Using Mathematica, we have
to check the behaviour of the graph and the mathe-
matical structure of u(t).
By applying the Spectral method in Volterra's equa-
tion we have:
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1. Consider the approximate solution.

u(t) =

n∑
k=0

akRk(t), (3.9)

2. Put the approximate solution into the Volterra
integro-di�erential equation.

k
du

dt
= u− u2 − u

∫ t

0

u(x) dx, (3.10)

for u(0) = u0 = 0.1 > 0 and k = 0.1. so the
Eq.(3.10) will become:

n∑
k=0

akRk
′(t) =10

n∑
k=0

akRk(t)− 10(

n∑
k=0

akRk(t))
2

− 10

n∑
k=0

akRk(t)

∫ t

0

n∑
k=0

akRk(x) dx,

3. Construct the Residual function:

Res(t) =

n∑
k=0

akRk
′(t)− 10

n∑
k=0

akRk(t) + 10(

n∑
k=0

ak

Rk(t))
2 + 10

n∑
k=0

akRk(t)

∫ t

0

n∑
k=0

akRk(x) dx.
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Now we have n + 1 unknown {an}. To �nd the
unknown coe�cients {an}, we need to �nd n + 1
equations.

4. Find n collocation points by determine the zeros
of Rn+1(t).

5. Substitute the collocation points inRes(tj, a0, a1, a2, .....)=0, j =
0, 1, 2, ...., n − 1 and un(0) = 0.1 for obtaining a
system of n + 1 equations.

6. Solve this system of equations for obtaining an.

Hence, we easily calculate the approximate solution
by putting the values of an.Then by plotting the graph
in mathematica, we would be able to check the be-
haviour of the graph which tell us about the approxi-
mate value of umax and the critical point. For �nding
the exact value of umax, we need to obtain a formula
[4].

umax = 1 + κ ln(
κ

1 + κ− u0
), (3.11)

37



Table 3.1: Values of umax for various levels of approximation.
n Critical t Approx. umax Exact umax

2 0.714864 0.561349 0.76974144907
3 0.379906 0.760597 0.76974144907
4 0.318197 0.809141 0.76974144907
6 0.377294 0.776444 0.76974144907
9 0.445509 0.772758 0.76974144907
10 0.418554 0.777775 0.76974144907
12 0.452044 0.778043 0.76974144907

For di�erent values of n, we have a graphs like this:

Figure 3.1: Graph of Volterra's Population model for n = 2.
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Figure 3.2: Required graph of Volterra's Population model for n = 3.

Figure 3.3: Required graph of Volterra's Population model for n = 4.
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Figure 3.4: Required graph of Volterra's Population model for n = 6.

Figure 3.5: Required graph of Volterra's Population model for n = 9.
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Figure 3.6: Required graph of Volterra's Population model for n = 10.

Figure 3.7: Required graph of Volterra's Population model for n = 12.
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3.5 Laguerre function

We de�ne the Laguerre function, L(n, t), n = 0, 1, 2, ....
as follows,

L(n, t) = e−t/2Ln(t), 0 ≤ t <∞ (3.12)

where Ln(t) is the Laguerre polynomial of order n.
The Laguerre function is simply orthogonal on [0,∞)
and has the property that as t tends to in�nity, L(n, t)
approaches zero for every n. This property is helpful
to determine a problem, by spectral method, where
the solution asymptotically decays to zero, as in the
present case.

3.6 Laguerre polynomial and its properties

The mathematician, Edmond Laguerre (1834-1886),
was the �rst who introduced the second order lin-
ear di�erential equation which is called the Laguerre
equation.

xy
′′
+ (1− x)y′ + ny = 0. (3.13)
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An obtained solution of the equation:

Ln(t) =

n∑
k=0

(−1)kn!tk

(k!)2(n− k)!
, (3.14)

where n = 0, 1, 2, .... and 0 ≤ t <∞
Also the orthogonality relation is de�ned by:∫ t

0

e−tLn(t)Lm(t) dt =

{
0 for m 6= n
1 for m = n

(3.15)

3.7 Collocation Algorithm

To solve the equation Lu(x) = f (x) (where L is the
di�erential operator), we consider the various points:

1. Construct the approximate solution.

f (t) =

n∑
i=0

aiL(i, t), (3.16)

2. Insert the series into the given equation.

3. To obtain the residual function.

Res(t, a0, a1, a2, ...) = Lun(x)− f (x). (3.17)
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Now we have N + 1 unknown and N + 1 equa-
tions, that can be used to �nd the constants an.

4. Now to choose N + 1 collocation points xi, i =
0, 1, 2, ..., N , then substitute in above step to �nd
the N + 1 linearly independent equations.

5. Solve this system of equations by Laguerre poly-
nomial and to �nd the constants an.

3.8 Solving Volterra equation by collocation method

In this program , we have to apply Laguerre polyno-
mial in the Volterra Integro-di�erential equation with
the help of Mathematica. Using Mathematica, we
have to check the behaviour of the graph and math-
ematical structure of u(t). The graph reaches the
maximum points then followed by the slow exponen-
tial decay where u(t)→ 0 and t→∞.

Here we consider the Initial condition of u(0) = 0.1
and k=0.1. For �nding the exact value of umax, we
need to obtain a formula that comes from the paper
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of TeBeest[4].

umax = 1 + κ ln(
κ

1 + κ− u0
), (3.18)

Now we can easily calculate the value of critical point
and Approximate value of umax that is shown in Table
[3.2]. By applying the spectral method in Volterra's
equation we have:

1. Consider the approximate solution.

u(t) =

n∑
k=0

akL(k, t), (3.19)

2. Put the approximate solution into the Volterra
integro-di�erential equation.

k
du

dt
= u− u2 − u

∫ t

0

u(x) dx, (3.20)

for u(0) = u0 = 0.1 > 0 and k = 0.1. so the
Eq.(3.20) will become:
n∑
k=0

akL
′(k, t) =10

n∑
k=0

akL(k, t)− 10(

n∑
k=0

akL(k, t))
2−

10

n∑
k=0

akL(k, t)

∫ t

0

n∑
k=0

akL(k, x) dx,
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3. Construct the Residual function:

Res(t) =

n∑
k=0

akL
′(k, t)− 10

n∑
k=0

akL(k, t) + 10

(

n∑
k=0

akL(k, t))
2 + 10

n∑
k=0

akL(k, t)∫ t

0

n∑
k=0

akL(k, x) dx.

Now we have n + 1 unknowns {an}.To �nd the
unknown coe�cients {an}, we need to �nd n + 1
equations.

4. Find n collocation points by determine the zeros
of Ln+1(t).

5. Substitute the collocation points inRes(tj, a0, a1, a2, .....)=0, j =
0, 1, 2, ...., n − 1 and un(0) = 0.1 for obtaining a
system of n + 1 equations.

6. Solve this system of equations for obtaining an.
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Table 3.2: Values of umax for solving IDE.
n Critical t Approx. umax Exact umax

4 0.931667 0.497345 0.76974144907
9 0.596209 0.659436 0.76974144907
11 0.533264 0.695352 0.76974144907
13 0.486188 0.722821 0.76974144907
14 0.466777 0.734172 0.76974144907
22 0.368095 0.788988 0.76974144907
24 0.3533 0.7695944 0.76974144907

For di�erent values of n, we have a graph:

Figure 3.8: Graph obtained for solving the Volterra's integro-di�erential equation by
using Laguerre polynomial for n = 4.
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Figure 3.9: Graph obtained for solving the Volterra's integro-di�erential equation by
using Laguerre polynomial for n = 9.

Figure 3.10: Graph obtained for solving the Volterra's integro-di�erential equation by
using laguerre polynomial for n = 11.
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Figure 3.11: Graph obtained for solving the Volterra's integro-di�erential equation by
using laguerre polynomial for n = 13.

Figure 3.12: Graph obtained for solving the Volterra's integro-di�erential equation by
using Laguerre polynomial for n = 14.
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Figure 3.13: Graph obtained for solving the Volterra's integro-di�erential equation by
using Laguerre polynomial for n = 22.

Figure 3.14: Graph obtained for solving the Volterra's integro-di�erential equation by
using Laguerre polynomial for n = 24.
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3.9 Conclusion

The results of the present work examine the mathe-
matical structure of u(t). We compare the numerical
results of all the methods that was easily calculated
by using Mathematica. The main goal of this study
has been to construct an approximation for the solu-
tion of nonlinear Volterra's integro-di�erential equa-
tion in a semi-in�nite interval. In this chapter, we
solve the problems on semi-in�nite domain without
any domain truncation and shifting the problem to a
�nite domain by using collocation method [15]. By
applying the Rational Chebyshev and Laguerre poly-
nomial function into the Volterra integro-di�erential
equation, the graph obtained from the results shows
that both of the presented approaches have good re-
liability and e�ciency.
We also conclude that the approximate value and the
exact value of umax for k = 0.1 is approximately same
for two or three decimal places by using these method.
When the value of k is small, the population is rel-
atively insensitive to toxins and when k is large, the
population of this type is sensitive to toxins. Hence,
the order of these collocation approaches can be in-
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creased by �nding the further values of u(t).
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Chapter 4

Analysis and Solution of the Problem

4.1 Volterra's Population Equation

The growth of a species within a closed system is
modeled by the following Volterra's equation

κ
du

dt
= u− u2 − u

∫ t

0

u(s)ds, u(0) = u0, (4.1)

where κ = c/(ab) is a dimensionless parameter with
a, b, c respectively represent the birth rate, the in-
traspace competition coe�cient and the toxicity co-
e�cient. Each of these parameters is positive. Also
t is a scaled time and u(t) is a population variable
(4.1).
It is easy to see that if, u0 > 0, then u(t) > 0
for t > 0, because otherwise, at a point where u(t)
changes sign, the derivative would be negative while
the right hand side of (4.1) would vanish at this point.
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Small [3] used time scaling to �nd the following ana-
lytical solution valid for κ << 1, u0 < 1,.

us(t) = e−t − 1 +
1

1 + (1/u0 − 1)e−t/κ
(4.2)

Small's solution, for κ = 0.07, u0 = 0.2, is presented
graphically in Fig.4.1. Although it was derived for
κ << 1, the �gure is an elegant representation of the
qualitative features of the population function, u(t),
even for larger κ. We de�ne a global accuracy index

of an approximate solution ua(t) as

αa =

∫∞
0 ua(t)dt∫∞
0 u(t)dt

. (4.3)

We shall �nd later, [see Eq. (4.14) ], that when
κ << 1,

∫∞
0 u(t)dt = κ + 1. This index for Small's

solution (4.2), shown in Fig.4.1, is found to be 0.8293,
which indicates a global error of a little more than 17
percent. However for κ = 0.01, u0 = 0.2, this error
reduces to less than 3 percent.

Wazwaz [1] used Adomian Decomposition Method
to �nd a solution in the form of a power series. How-
ever, the series converges within a �nite interval and
a function which vanishes at in�nity cannot be ade-
quately represented, on the whole domain, by a trun-
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Figure 4.1: Small's solution for κ = 0.07, u0 = 0.2

cated power series. A useful technique to overcome
this problem is to represent the solution in the form
of a rational function. Wazwaz [1] followed this path
by resorting to Padé approximants. Parand et al. [21]
employed sinc as well as rational Legendre functions
in their solutions by the spectral methods. These so-
lutions successfully mimic the qualitative features but
su�er from lack of precision, especially for large times.
In the present work, we make use of a result of TeBeest
[4], to precisely determine the integral,

I =

∫ ∞
0

u(s)ds, (4.4)

which provides us with an exact parameter to be used
as a yardstick to measure accuracy of an approximate
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solution. It also leads to an accurate estimate of a de-
cay constant for large time. The solution is obtained
in a few simple steps and describes the population
function u(t) on the entire domain. For large times,
the population is found to decay exponentially.

4.2 Padé Approximation

Let f : R→ R, f ∈ C(r+s), and R, S be respectively
polynomials of degree r and s. If

f (x)− R(x)

S(x)
= O(xr+s+1), (4.5)

then the rational function R(x)/S(x) is said to be
a Padé Approximant of order r, s for f (x). We de-
note it by P[r,s]f (x). Polynomials R(x) and S(x) are
found by equating coe�cients of powers of xk, k =
0, 1, .., r+ s, to zero in S(x)f (x)−R(x) which leads
to a system of r + s linear equations in as many un-
knowns.
Example Let f (x) = ln(1 + x). The function has a
Maclaurin series representation

ln(1 + x) =

∞∑
k=1

(−1)k+1 xk

k
, −1 < x ≤ 1. (4.6)
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As an illustration, we shall seek P[2,2] ln(1 + x). As-
sume

ln(1 + x) =
a0 + a1x + a2x

2

1 + b1x + b2x2
+O(x5), (4.7)

which leads to

(x−x2/2+x3/3−x4/4)(1+b1x+b2x2)−(a0+a1x+a2x2) = O(x5)
(4.8)

Equating coe�cient of each power xk, k = 0, 1, .., 4 in
(4.8), we �nd the following system for the parameters,
a0, a1, a2, b1, b2,

0 = a0,

1 = a1,

b1 −
1

2
= a2,

b2 −
b1
2
− 1

3
= 0,

−b2
2
+
b1
3
− 1

4
= 0.

Solving the system, staring from the lower end, we
�nd,

a0 = 0, a1 = 1, a2 =
1
2, b1 = 1, b2 =

1
6.
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Thus

P[2,2] ln(1 + x) =
x + x2

2

1 + x + x2

6

. (4.9)

It is remarkable that, more often than not, a Padé
approximant is nearer the truth compared with the
polynomial used for its derivation. For example, the
series in (4.6) diverges for x = 2, but from (4.9), we
�nd

P[2,2] ln(1 + x) |x=2= 1.091,

which di�ers from ln 3 = 1.099 by less than one per-
cent.

4.3 Qualitative Analysis of the Problem

Let u0 < 1. It is clear that the population u(t) will
initially increase. It will do so until t = tc, to a
level less than unity, where the derivative vanishes.
It will have a local maximum at tc beyond which it
starts to decrease. A question arises as to whether it
might have a local minimum at a point, t1 > tc, and
start rising again. The answer to this point is in the
negative because in that case,

u′(t1) = 0, u′′(t1) = −(1/κ)u2(t1) < 0,
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therefore a local minimum cannot occur at t1. Hence
u(t) decreases for all t > tc. On the other hand if
u0 ≥ 1 then u(t) starts to decrease immediately and,
because of the above observation, continues to do so
subsequently.
Since u(t) is a decreasing function of time and is
bounded below by zero,

lim
t→∞

u(t) = l ≥ 0.

However lmust vanish, otherwise the integral,
∫∞
0 u(t)dt,

will diverge and the limiting process in the Volterra
equation (4.1) gives

κ lim
t→∞

du

dt
= = l − l2 − l.∞,
= −∞,

which contradicts the fact that u(t) > 0 for t ≥ 0.
Divide the Volterra equation (4.1) with u and con-
sider the limit when t→∞. We have

κ lim
t→∞

1

u

du

dt
= 1− I.

where I was de�ned in (4.,4). Since u(t) > 0 and
du/dt < 0, the limit on the left side will be less than
or equal to zero. Hence

I ≥ 1. (4.10)
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TeBeest [4], de�ned the accumulated toxicity vari-

able,

y(t) =

∫ t

0

u(s)ds.

The chain rule, applied to u(t) leads to

du

dt
=
du

dy

dy

dt
,

= u
du

dy
. (4.11)

Volterra's problem, in the new independent variable,
y, reduces to the linear di�erential equation,

κ
du

dy
= 1− u− y, u(0) = u0,

to which TeBeest found the solution

u(y) = (1 + κ− y)− (1 + κ− u0)e−y/κ, (4.12)

and he noted that for, u0 < 1, the population reaches
its maximum value of umax at yc where

umax = 1 + κ ln(
κ

1 + κ− u0
),

yc = κ ln(
1 + κ− u0

κ
).

Since du/dy and du/dt vanish together [see (4.11)],
maximum value of u as a function of t will also equal
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umax. The curious fact yc = 1 − umax is explained
by noting that when u(t) = umax, Eq. (4.1) leads to
0 = 1− umax − yc.
Since y(t) is an increasing function of t, there are

only two possibilities as t→∞, namely,

1. y diverges to ∞,
2. y approaches a �nite limit.

The �rst option must be excluded because, if this was
to happen, the left side of Eq.(4.12) would be �nite
while the right side approaches −∞. Let

lim
t→∞

y(t) = I(u0, κ),

a �nite positive number. We shall omit the argu-
ments, κ and u0 and just write I to denote the
limiting accumulated toxicity. An important feature
of Eq.(4.12) is that as t becomes large, y approaches
I and

lim
t→∞

u(y(t)) = 0.

Thus for given u0, κ, I can be precisely determined
by solving the equation,

1 + κ− I = (1 + κ− u0)e−I/κ, (4.13)
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which follows from (4.12) in the limit t→∞.

It follows from (4.13) that,

1. if u0 < 1 + κ, I < 1 + κ,

2. if u0 = 1 + κ, I = 1 + κ,

3. if u0 > 1 + κ, I > 1 + κ,

and if κ << 1, then

I = κ + 1. (4.14)

Combining (4.10) and (4.14), we have 1 ≤ I ≤ 1+κ.
It is remarkable that, in case of u0 = 1+κ, the func-
tion, u(t) = (1 + κ)e−t, is the exact solution of the
problem.

4.3.1 Behavior for Large Time

We can write∫ t

0

u(s)ds =

∫ ∞
0

u(t)dt−
∫ ∞
t

u(s)ds,

= I −
∫ ∞
t

u(s)ds. (4.15)
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Figure 4.2: Population u as a function of the accumulated toxicity y. The dashed line
indicates position of umax.

Substitution of (4.15) in (4.1) leads to

κ
du

dt
= u− Iu− {u2 + u

∫ ∞
t

u(s)ds}.

For large t, terms enclosed by braces can be dropped
and we conclude that, asymptotically, the solution
behaves as

u(t) = Ae−bt (4.16)

where A is a constant and b = (I − 1)/κ.

4.4 Solution of the Problem

As an illustration, we shall solve the problem, in
some detail, for the pair κ = 0.3, u0 = 0.7. Later
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we shall also brie�y describe solution for the case
κ = 0.4, u0 = 1.3. The calculations are completed
in �ve steps.

1. Solve Eq.(4.13) for I. Newton-Raphson method
quickly produces the result, I = 1.29191, hence
b = (I − 1)/κ = 0.973035.

2. Assume a solution, valid for short times, in the
form

u(t) =

∞∑
n=0

ant
n.

Substitute in Eq.(4.1) and determine the coe�-
cients recursively. We �nd, a0 = u0, a1 = (a0 −
a20)/κ and an, n ≥ 2 are given by the following
recurrence relation,

κan+1 =
an −

∑n
p=0 apan−p −

∑n−1
p=0

apan−p−1
p+1 , n = 1, 2, ...

For the example at hand, the �rst seven coe�-
cients are listed below.

a0 = 0.7, a1 = 0.7, a2 = −1.28333, a3 =
−0.790741, a4 = 2.55478, a5 = −0.0808745, a6 =
−4.36321

64



3. Assume a solution, valid for all t > 0, in the form

u(t) = e−bt
∞∑
n=0

cnt
n, (4.17)

Evaluate cn, n = 0, 1, 2, .., by equating the above
series with the one in the last step and comparing
powers of t. Thus

c0 + c1t + c2t
2 + ... = ebt(a0 + a1t + a2t

2 + ...)

= (1 + bt + b2/2t2 + ...)(a0 + a1t + a2t
2 + ...)

= a0 + (a0b + a1)t + (a0b
2/2 + a1b + a2)t

2 + ...

Hence c0 = a0, c1 = a0b + a1, ..., and in general

cn =
∑n

p=0 apb
n−p/(n− p)!

For our example, �rst seven coe�cients are as fol-
lows,

c0 = 0.7, c1 = 1.38112, c2 = −0.27083, c3 =
−1.60061, c4 = 1.31146, c5 = 1.86487, c6 =
−3.39591.

4. In the �nal step, we truncate the series,
∑∞

n=0 cnt
n,

say, after 2k terms. To �nd an expression which
is valid for all t and which for large t behaves
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like Ae−bt, all we need is to replace the polyno-
mial

∑2k
n=0 cnt

n by its equivalent Padé approxi-
mant P [k, k]. The desired approximate solution
representing the solution for 0 ≤ t <∞ is uk(t) =
P [k, k]e−bt.

Let P[k,k]f (t) denote the Padé [k, k] approximant for
the function f. Also let uk(t) denote the k − th ap-
proximation to the population function and let,

g(t) =

2k∑
i=0

cit
i,

then the approximate solution can be expressed, in a
compact form, as

uk(t) = e−btP[k,k](e
btg(t)). (4.18)

It is convenient to use the Mathematica command
PadeApproximant to e�ciently �nd the part P[k,k](e

btg(t))
on the right side of (4.18).
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4.5 Padé Approximants

Using the theory described in the last section, we �nd
u4(t) in the following form

u4(t) = e−bt
0.7 + 2.29833t + 3.27123t2 + 2.40193t3 + 0.773072t4

1.0 + 1.31029t + 2.47484t2 + 1.34192t3 + 0.536816t4

Fig.4.3 depicts the curve representing the above so-
lution together with, u10(t) = e−btR10(t)

S10(t)
. The polyno-

mials R, S are found to be

R10(t) = 0.7 + 3.90012t + 11.5718t2 + 22.9791t3 +
33.0982t4 + 35.6889t5 + 28.9452t6 + 17.3468t7 +
7.32891t8 + 1.96809t9 + 0.255022t10

S10(t) = 1.0 + 3.59857t + 9.818t2 + 17.1349t3 +
23.629t4 + 24.0363t5 + 19.1182t6 + 11.1119t7 +
4.67529t8 + 1.23225t9 + 0.166902t10.

Curves representing the two solutions are seen to over-
lap. This is an indication of the robustness of the
scheme for �nding the approximate solution. A mea-
sure of accuracy of an approximation, the global ac-
curacy index, αk was de�ned as,

αk =
Ik
I
, k = 3, 4, ..,
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Table 4.1: Accuracy Index of Approximate Solutions
κ = 0.3, u0 = 0.7, I = 1.29191055
k Ik αk

3 1.30843 1.01279
4 1.28904 0.99778
6 1.29158 0.99974
8 1.29182 0.99993
10 1.29186 0.999960

where Ik and I respectively denote the total accu-
mulated toxicity associated with uk(t) and the exact
solution u(t) i.e.

Ik =

∫ ∞
0

uk(t)dt, I =

∫ ∞
0

u(t)dt.

In Table 4.1, values of this index for some representa-
tive approximate solutions are listed. It is remarkable
that even for, u3(t), this index di�ers from unity by
a little more than one percent.

In Table 4.2, values of u4(t), and u10(t) are tabu-
lated. It was noted above that, for large t, the so-
lution should behave like Ae−bt. Considering t = 15
to be su�ciently large, we �nd u10(15) = 7.11495 ×
(10)−7, which leads to A = 1.55213. Values of the ex-
pression Ae−bt are also listed in the Table. It appears
that even for t = 2 the exponential approximation
su�ers from an error of about 4 parts in 200.
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Table 4.2: Comparison of approximate solutions

κ = 0.3, u0 = 0.7, A = 1.55213, b = 0.973035
t u4(t) u10(t) Ae−bt

0 0.7 0.7 1.55213
2 0.217294 0.218161 0.221697
4 0.0313713 0.0318674 0.031666
6 0.0044455 0.0045577 0.004523
8 0.0006299 0.0006499 0.000646
10 0.00008940 0.00009266 0.00009228
12 0.0000127 0.0000132 0.00001318
14 1.80713× 10−6 1.8839× 10−6 1.8826× 10−6

16 2.5726× 10−7 2.6872× 10−7 2.68899× 10−7
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Figure 4.3: Approximate solutions u4(t) (dashed) and u10(t) (solid).
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Figure 4.4: With u0 = 1.3, κ = 0.4, the approximate solution u4(t).

4.6 Exponentially Decaying Solution

Now we consider an example with κ = 0.4, u0 =
1.3. In this case, total accumulated toxicity, I =∫∞
0 u(t)dt, found by solving Eq. (4.13) is found to
be 1.3969572, which leads to the decay constant b =
0.99239. An approximate solution u4(t) is found in
the following form

u4(t) = e−bt
1.3 + 3.97751t + 4.76402t2 + 2.63096t3 + 0.559905t4

1.0 + 2.81723t + 3.35862t2 + 1.82588t3 + 0.393277t4
(4.19)

This solution is presented in Fig.4.4. The global ac-
curacy index for the above solution is found to be
1.00001, which amounts to it being exact for most
purposes. Using u4(12) as a reference for large t, we
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Table 4.3: Comparison of approximate solutions

κ = 0.4, u0 = 1.3, A = 1.42803, b = 0.99239
t u4(t) Ae−bt

0 1.3 1.42803
1 0.522096 0.529354
2 0.195599 0.196226
4 0.0269797 0.026634
6 0.003708 0.003705
8 0.0005094 0.0005091
10 0.00006998 0.00006996
12 9.61275× 10−6 9.61275× 10−6

14 1.3205× 10−6 1.3209× 10−6

16 1.8141× 10−7 1.8150× 10−7

�nd A = 1.42803. In Table 4.3, values of u4(t), Ae
−bt

are listed. It is remarkable that for t ≥ 2, the error
committed by the expressionAe−bt is less than 7 parts
in 2000.

4.7 Comments on a Recent Paper

In a recent paper [22], the authors have solved the
Volterra's population problem by the spectral method.
They have used the modi�ed Bessel functions of the
�rst kind as the basis and the zeros of the rational
Chebyshev polynomials as collocation points. They
have claimed to have obtained results possessing high
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accuracy. We shall show that their claims are false
since, by using their technique, it is impossible to ob-
tain any result with reasonable accuracy.

1. In their solution of the problem, by an application
of the spectral method, Parand et al. [22] assume
the population function u(t) of the form

u(t) =
n∑
k=0

akIk(x), (4.20)

where Ik(x) denotes the modi�ed Bessel function
of the �rst kind of order k. The function Ik(x)
has the property,

lim
x→∞

Ik(x) =∞, k > 0.

It is obvious, that the assumed solution of the
problem will approach ∞ or −∞ depending on
the sign of the last term, an, in the summation
(7). This violates the expected behavior of u(t)
which must decay to zero as t tends to in�nity.
Strangely enough, the authors, in Fig.4.1, of their
paper [3] claim that their solution does follow the
expected theoretical behavior. They also make
apparently false claim, in Table 4.1, that their
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curves attain the maximum value almost exactly
at the respective points as predicted by the theory.

2. We have discussed in Section 2, above that the in-
tegral of the population function I =

∫∞
0 u(t)dt,

is �nite and for given values of κ and u0, can be
calculated precisely by using Eq.(4.6). Since the
solution of Parand et al. [22] fails to have the cor-
rect asymptotic behavior, its integral will diverge
and the solution will lack one of the essential fea-
tures predicted by theory. This makes their claims
of accuracy, even for large t, extremely doubtful.

3. For the spectral method to yield good results, the
choice of a suitable basis and collocation points
must be made so as to minimize the error of ap-
proximation. If the solution is assumed to be of
the form, u(t) =

∑n
k=0ϕk(t), where {ϕk(t)}∞k=0

is a suitable basis, then the error will be mini-
mized only if the collocation points are chosen to
the zeros of the function, ϕn+1(t) . Since the au-
thors failed to follow this path, their results are
not likely to possess the accuracy depicted by the
Tables in [4.3].
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4.8 Conclusion

In view of the above remarks, it is evident that claims
made by Parand et al. in [22] are not supported math-
ematically by the algorithm presented by them. We
suggest that they should consider a voluntary redac-
tion of their paper.
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