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Abstract

Focus of this study is to cover up some gaps and further build up the theory of discrete

fractional calculus. This dissertation starts with brief introduction and definitions to discrete

fractional calculus. Two new definitions of generalized fractional difference operator are intro-

duced namely Hilfer fractional difference operator and substantial fractional difference operator.

A missing property in the literature for delta Laplace transform i.e. delta exponential shift

is established. The delta Laplace transform is presented for the newly introduced Hilfer and

substantial fractional differences. The double Laplace transform in a delta discrete setting is

introduced, and its existence, uniqueness and basic properties are discussed. The delta double

Laplace transform is presented for integer and non-integer order partial differences.

Another goal of this study is to establish the existence and UHR stability for various classes

of fractional difference equations. Conditions are acquired for RL, Caputo, Hilfer and substantial-

type fractional difference equations. Moreover we establish a technique to transforming arbitrary

real order delta difference equations with impulses to corresponding summation equations.

Existence results are built up for impulsive delta fractional difference equation with nonlocal

initial condition and two-point and four-point boundary conditions. The conditions for existence

and UHR stability of the solution to multi-point summation boundary value problem are

established.
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Chapter 1

Introduction

The mathematical field that deals with operators of an arbitrary real or complex order is called

fractional calculus(FC). Some working areas of FC are:

• Hahn h-FC.

• Quantum q-FC.

• (q, h)-FC.

• Stochastic FC.

• Variational FC.

• Fuzzy FC.

• Conformable FC.

Mathematical problems are often solved from recursive set of values by computing the

approximation of differential operators or that a discrete analogue can be considered as difference

equation(DE). Discrete models often arise for solving continuous models using numerical methods.

Computers can work only with discrete data, so continuous equations must be discretized before

they can be solved numerically. Forward or delta difference operator(DO) on isolated time scale
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has been considered for unit graininess. The fractional form of delta difference operator is an

important breakthrough owing to non-locality property. On the basis of various motivations,

delta fractional difference(FD) operators have been generalized and applied in various contexts.

1.1 History of fractional calculus

The fractional calculus(FC) originated parallel to classical calculus. The FC has lasting and

storied past inside the broader mathematical discipline of analysis. Indeed, research into this

area was initiated in 1695 in a scientific letter in which L’Hopital inquired Leibniz about the

interpretation of a one-half derivative. While precise mathematical investigation of this and

related concepts was not realized for almost two centuries. This simple question laid the initial

foundation for the area of FC. At first, it seems that questions regarding fractional operators

were largely academic being as they were separated effectively from any applicative interest. The

“father of an arbitrary order calculus” viewed with respect was Abel (1823). Later, however as

the FC matured, it become clear that the FC could be used effectively in a variety of modeling

situations. Ostensibly, Leibniz could not possibly have envisioned the very bright and important

future for the FC.

Euler (1738), Laplace (1812) and Fourier (1827) are among the many popular mathematicians

who gradually make up the theory of FC. Many mathematicians with best mathematical minds

are using their own specific documentation and frame work to came up with definitions that

encouraged the development of theory of FC. Some other scientists who come up with the middle

of the 20th century are Liouville (1832, 1837), Holmgren (1865), Grunwald (1867), Lȩtnikov(1868),

Riemann (1876), Laurent (1884), Nȩkrassov (1888), Pincherele (1888), Kru̧g (1890), Heaviside
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(1892), Weyl (1917), Hardy and Littlewood (1926), Marchaud (1927), Davis (1936), Erdelyi

(1939), Kober (1940), Zygmund (1945), Riesz (1949), Feller (1952), Levy (1954), and Love (1967).

The topic is novel and around 70 years ago, it has become an object of specialized conferences

and treatises. In June 1974, Ross arranged the initiatory conference on the topic right after

completion of his Ph.D., Oldham and Spanier (1974) put in black and white the first monograph.

The texts in book form with title explicitly devoted to FC are Oldham and Spanier (1974),

Rubin (1975), Mc Bride (1979), Nishimoto (1991), Samko et al. (1993), Miller and Ro̧ss (1993),

Kiryakova (1994), Po̧dlubny (1999), Kilbs et al. (2006), Diethelm (2010). Furthermore, the

treatise by Davis (1936), Gelfand and Shilov (1964), Erdelyi (1965), Caputo (1969), Babenko

(1986), Gorenflo and Vassella (1991), Dzherbashian (1993, 1996), Zaslavsky (2005), Magin

(2006), Sengul (2010), Holm (2011), Rehman (2011), Asif (2011), Goodrich (2012), Brackins

(2014), Saeed (2015), Mctier (2016), Julia (2016), Areeba (2018) and Setniker (2019) contained

a comprehensive examination of FC. Despite the fact that few significant fractional derivatives

were brought forward, the Riemann-Liouville and Caputo derivatives got special attention of

scientists. In the literature, one can discover many definitions of fractional derivatives, for

instance, Caputo, Liouville, Hadamard, Erdélyi-Kober, Weyl, Grunwald-Letnikov, Katugampola,

ψ−Riemann-Liouville, ψ−Caputo, substantial, ψ−Hilfer definitions and many other. Generally,

most of these definitions are not alike with the exception of some those generalize some of

previously introduced definitions. The most significant property of fractional derivatives in

comparison with ordinary derivative is that the fractional derivatives are not local, this fact

allow the execution of memory effects for different phenomenon.
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1.2 Background of discrete fractional calculus and differ-

ence equations

The origin of calculus of finite differences is found from Brook Taylor (1717), rather it was Jacob

Stirling, who found the theory (1730) and introduce the Delta ”∆” symbol for the difference

operator, which is common in use currently. Finite differences trace their origins back to Burgi’s

(1592) and Isaac Newton work. The development on calculus of finite differences in the beginning

of nineteenth century by Lacroix and remarkable work of George Boole, Narlund and Stefensen

appeared later in nineteenth Century. The work of Thomson (1933) and Jordan (1939) related

with classical approach to calculus of finite differences is appreciable. Lagrange and Laplace

discussed the solution of partial DE in the area of probability theory and dynamics. Phillips

and Wiener (1923) and Courant et al., (1928) considered the partial DE for study. By making

use of the Laplace transform, Warschawski (1937) discussed ordinary linear non-homogeneous

DE with constant coefficients. Mickens (2001) discussed linear, nonlinear DE and partial DE

with applications in different areas especially in: physical, social and biological sciences as well

as in economics and warfare.

Practically, each theory of mathematics exhibits its discrete analogue which shape the concept

of theory understandable and ease the task of application. For the function having natural

number domain the process of integer-order difference can be generalized to non-integer order

differences in such a way that it is compatible with classic difference.

Mainly because of vast applications in different areas of FC and due to higher significance level

in last twenty years investigation of fractional difference equations(FDE) has been attracting.

Scientists from different areas believe that differences and sums of fractional order are appropriate
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for modeling the physical problems. On contemporary many studies with non-integer-order

equations are found, especially in viscoelasticity, control theory, signal processing, rheology,

hereditary and solid mechanics, where fractional order derivatives are used.

1.3 Literature survey

In the modern era, focus of mathematician is to construct ambiguity free unified mathematics.

The calculus of finite differences is applied to both continuous and discrete functions. Application

of FC can be found in [76, 131, 143, 155, 165, 195]. Criteria for being fractional derivative is

presented in [143]. Two characteristics properties for not-being fractional operator are showcased

by Tarasov [175, 176]. For modeling purpose, choice of fractional verses ordinary operator

need not to be suitable always; this fact is demonstrated by Ortigueira [150] for two physical

models. The order of the fractional equation is determined that better describes the experimental

data, for different types of fractional operators by using the least squares fitting technique [22].

Fractional calculus in the continuous setting is developed in [17,18,21,26,42–48,69,72,75,80–82,

94,95,121,128–132,135,138,142,146,147,167,174,183,184,189–198].

A glimpse of ordinary DE can be found in [15, 50]. The theory of FC for functions of the

natural numbers, however, is far less developed. Any significant work was not appeared in this

area before 1974 when Diaz and Osler [74] introduced a discrete non-integer order operator. In

1988, Gray and Zhang [105] introduced the type of fractional difference operator(FDO); they

developed Leibniz formula, a limited composition and a version of a powerrule for differentiation.

However, they dealt exclusively with the nabla (backward) difference operator and hence obtained

results distinct from present one, where the delta (forward) difference operator is used exclusively.
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A rigorous intrigue in FC of differences was exhibited by Atici and Eloe [29,30, 32,35], and they

explored characteristics of falling function, a new power law for delta difference operators and

the commutativity of sums and differences of arbitrary order [29]. They also presented advance

composition formulas for sums and differences of non-integer-order in [30]. For non-integer-order,

changes in the domain of function to sums and differences are an important aspect which got

special attention by Atici and Eloe [29,30] for a rigorous and correct dealing of the fractional

composition formulas. Anastassiou [23,24], Bastos et al. [39], Abdeljawad et al. [2, 4, 6, 7, 122],

Cheng [62–64], and Sangul [168] made significant contribution in this area. For DE, Bohner

and Peterson treated the dynamic equations on time scales in [50] and got surprisingly different

results from continuous counterpart. Gronwall’s, Hölder’s, Jensen’s and Opial’s inequalities

were presented on time scales and some application of inequalities in discrete FC can be found

in [33,82,90].

Fractional calculus is extended to time scales in [40,41], and discrete FC in the delta setting

is developed in [34–38,90–92,96–101,118, 119, 122]. A variety of results can be found in [4–7, 13,

27,29–31,50,51,83,89,103,116,117,169,188] which has helped to construct theory of the subject

in the topics of discrete FC. The mathematical models of many real world phenomena can be

represented by impulsive equations [112,134,137,139,141,178] and references therein. Fractional

delta DE with impulse have recently took attention, see [185]. The concept of existence of

solutions for delta difference system of arbitrary order with boundary condition(BC) has been

examined broadly by a lot of researcher, for instance we refer a few of them [16,58–61,68,77,83,84,

89–93,113,136,145,152–154,159,161,169–172,177]. The majority of researchers considered FDE

with an extensive variety of BC, meanwhile among others such as Reunsumrit, Kaewwisetkul and
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Sitthiwirattham considered sum BC with two and three points in [126,162,169,170]. However

Goodrich [102] considered multi-point sum BC with growth. Coon and Bernstein [49, 66, 67]

defined the double Laplace transforms (continuous) and investigated many properties of it.

Debnath [71] modified the properties of double Laplace transforms (continuous) and used it

to solve functional, integral and partial differential equations. Dhunde and Waghmare [73]

discussed convergence, absolute convergence with applications of double Laplace transforms

(continuous) to solve Volterra integro-partial differential equation. For applications of triple,

quadruple and n-dimensional Laplace transforms (continuous), we refer the readers to [28,70,160].

Goodrich and Peterson [103] developed discrete delta Laplace transform analogous to Laplace

transform discussed by Bohner and Peterson [50] in the continuous case to solve difference

and summation equations with initial data by applying the delta Laplace transform. Delta

Laplace transform has also been studied in [29,50,116]. However an important shifting property

is missing in this setting. Only few simple cases have been addressed by implication of the

definition of delta Laplace transform (see Theorem 2.10 and Theorem 2.11) in [103]). Our

proposed shifting property is a modest attempt to fill that void. Bohner et al. [52] extend the

properties of the Laplace transform to the delta Laplace transform on arbitrary time scales and

discussed translation theorems and transforms of periodic functions. Compatible discrete time

Laplace transforms with Laplace transforms was introduced in [149]. Savoye [166] highlighted

the importance of discrete time problems and relationship of Z transform to Laplace transform

on time scale. The qualitative analysis of delay partial DE was given by Zhang in [192].

Hilfer fractional order derivative was introduced in [115]. Furati et al. [86, 87] primarily

studied the existence theory of Hilfer fractional differential equations and also explained the type
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parameter ϕ as interpolation between the Riemann-Liouville(RL) and the Caputos derivatives.

It generate more types of stationary states and gives an extra degree of freedom on the initial

conditions.

Some recent studies involving Hilfer fractional derivatives can be found in [65, 163, 173,

180–182]. Majority of the work in discrete FC developed as analogues of continuous FC.

Extensive work on Hilfer fractional derivative and on its extensions has been done, i.e., Hilfer-

Hadamard [1,19,127,156], K-fractional Hilfer [78], Hilfer-Prabhakar [88], Hilfer-Katugampola

[148] and ψ-Hilfer [12] fractional operators. Abdeljawad defined FD with different types of kernel

having; discrete power law [2,3], with discrete exponential and generalized Mittag-Leffler(ML)

functions [8,11], with discrete exponential and ML functions on generalized hZ time scale [9],

and kernel containing product of both power law and exponential function in [10].

The majority of researchers considered fractional substantial and tempered derivative with

an extensive variety of applications in physics, see for example [43, 55, 56, 85, 133, 171]. Chen

and Deng discussed some useful composition properties of substantial fractional integral and

derivative in [57]. It is believed that substantial FC and tempered FC are equivalent concepts.

Cao et al. [54] presented the fact that the expression of fractional order tempered integral and

derivative is similar to that of fractional order substantial integral and derivative respectively, but

they are different in nature. However tempered derivative becomes a special case of substantial

derivative for non-negative values of parameter σ. These operators arise from unassociated

physical phenomenon. Mathematically, arbitrary order substantial calculus is defined on time

and space but the tempered calculus is different from couple of time and space. However,

arbitrary order tempered integral and derivative are mostly utilized in truncated exponential
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power law phenomenon.

1.4 Motivation

Every integer order differential equation can be transformed into DE, but converse is not true

generally. Consequently, notice the same for non-integer order and if it does happen, then theory

of FDE alone serve the purpose for differential equations as well. Although sizeable literature of

FC is available, only small evolutionary research was available in discrete setting till previous

decade. In the evolution of discrete FC various unpredicted issues and technical problems arise.

A natural question arise: which fractional operator is useful among extensive definitions and

what should be the criteria for acceptable operator? Why only Caputo type fractional operators

are preferred for obeying nice properties?.

Miller and Ross, proposed a few standards for being fractional order operators, i.e., zero

property, compatibility, linearity, and law of exponents. In general, not all fractional operators

satisfy the product rule, quotient rule, chain rule, semigroup property and non-singularity

property. Fractional derivatives of non-integer orders do not satisfy the Leibniz rule. Fractional

derivative that satisfies the Leibniz rule coincides with differentiation of the first order. Because

if the linear operator satisfies the Leibniz rule, then the action on the unit is equal to zero.

Following operators are considered as integer-order because they violate non-locality property:

the conformable, the alternative and M , the local derivative of Kolwankar and Gangal, and the

Caputo–Fabrizio with exponential kernels. Derivatives violating non-locality property are of less

importance because they can not be considered as fractional derivatives. This means that all

results obtained for these operators can be derived by using the integer-order operators. It is
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dire need to justify a wrong perception that the theory of continuous case trivially holds in the

discrete setting.

The gaps found in the theory of non-integer-order operators provide motivation to further

work in this area. As compared to ordinary operators, non-integer-order operators may capable

of modeling various physical phenomenon. following are the commonly used FDO: Riemann FD,

Caputo FD, Baliarsingh generalized FD, proportional FD, tempered FD, Atangana–Baleanu FD,

generalized uncertain fractional forward difference, Weyl-Like FD, forward and backward h FDO,

q-fractional difference operator, fractional h–differences with exponential kernel, fractional (q, h)

difference operator, and FDOs with discrete generalized ML kernel. To overcome the variety of

definitions of fractional operators, some general operators need to be introduced. The discrete

analogues are practically important and easier to use in real life problems. A brief discussion on

the need to study discrete analogue operator is given by Abdeljawad [10]. Discrete version of

substantial derivative is a potential candidate to productively describe many physical phenomena.

No literature is available for Hilfer FDO and substantial FDO in the delta fractional setting.

Also formation of FDO is an important aspect in view of mathematical interest and numerical

formulae as well as the applications. This is the motivation behind generalization of the two

existing FDO i.e., Riemann-Liouville and Caputo difference operator in Hilfer’s sense and also

to define substantial difference in delta fractional setting in the (Riemann-Liouville)RL sense.

The exact analytical solutions of initial value problem(IVP) for FDE have been studied by delta

Laplace transform method. This motivates us to introduce the delta double Laplace transforms

with aim to work out problems accompanied by initial conditions for integer and fractional

order partial DE.
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The mathematical models of many real world phenomena can be represented by impulsive

equations. Occurrence of impulse effect shows up as a natural representation of many real world

phenomenon and demonstrates incredible potential for breaking down true applications. These

impulses are concerned due to small outer influences during establishment process. The length

is trivial in comparison with whole length of the subjected phenomena. Therefore it can be

assumed that these outer influences are sudden that is they are in the form of impulses. The use

of mathematical modeling in the form of impulsive DE is natural. Therefore the study of such

sudden effects established potential applications in numerous fields. Fractional delta DE with

impulse have recently received attention in [151,185,186]. There is no literature related to the

existence and uniqueness(EU) theory of solution for fractional delta DE with impulse. Moreover

the discrete counterpart of differential equations picked up significance from applications angle

of consideration. This inspired us to further discuss the topic under consideration.

The mathematical models of many real world phenomena can be represented by multi-point

boundary value problem(BVP). Such models have a large numbers of applications in numerous

areas including: modeling and analyzing problems arising in elasticity, from electric power

networks, electric railway systems, thermodynamics, telecommunication lines, wave propagation

and also in chemistry to analyzing kinetical reaction problems.

The concept of continuity in discrete setting taken from topological spaces. The idea of

Ulam-Hyers(UH) type stability is important to both functional and applied problems; especially

in biology, economics and numerical analysis. It may have potential application in nonlinear

analysis including difference and summation equations. Rassias introduced continuity condition

which produced an acceptable stronger results. In the continuous setting, extensive work on
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Ulam-Hyers-Rassias(UHR) stability for non-integer-order differential equation has been done.

However only a limited work can be found in discrete fractional setting.

1.5 Objective

The theory of discrete FC shows extraordinary potential for breaking down true applications, as

classical calculus is still substantially more frequently utilized in such problems. Main objective

is to cover up some gaps in the theory of discrete FC. Moreover as the theory is less developed,

another purpose of the dissertation is to further build up the theory of discrete FC. Even

though there are different approaches to FC, here we deals with the discrete one based on delta

differences with isolated time scale. However there are many gaps in the theory of discrete FC,

some of the main objectives of dissertation are as follows:

• We will introduce Hilfer and substantial fractional difference operators. We will also

explore well-posedness of Hilfer and substantial IVP.

• We will develop technique of the delta double Laplace transforms with aim to work out

IVP and BVP for integer and fractional order partial DE. We will also introduced the

delta Laplace transforms of Hilfer and substantial fractional difference operators.

• We will examine the well-posedness of fractional order impulsive difference and summation

equations on isolated time scale with distinct kind of initial and BC.

• Existence theory of DE for multi-point fractional boundary value problem(MPFBVP)

with integral BC on isolated time scale will also be discussed.

• We will develop some basic theory of inequalities on delta calculus. We will use Gronwall’s

inequality on discrete time scale for qualitative investigation.
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In the research undertaken, the fractional order difference operators shall be used to develop

basic theory of delta FC. In past, research in this area has been carried out using the fractional

differential operators. To understand the significance of new results, we will compare the results

to the cases for integer order difference operators.

1.6 Organization of dissertation

In Chapter 2, a few basic but important results from discrete calculus are stated.

In Chapter 3, some new fractional difference operators are introduced. A fractional Hilfer

difference operator is introduced in Section 3.1 which interpolate RL and Caputos FD, we also

develop some important properties of newly defined operator. A fractional substantial difference

operator is introduced in Riemann-Liouville sense. Some composition rules and connection

between Riemann-Liouville and substantial differences are developed in Section 3.2.

The motion of Chapter 4 is to introduce the delta double Laplace transform method. The

definition, EU, and series representation of the delta double Laplace transform are given in

Section 4.1. Some basic properties are derived in Section 4.2. We present the delta double

Laplace transform of partial differences in Section 4.3. The delta Laplace transform for fractional

Hilfer difference operator is given in Section 4.4. The exponential shift property of delta Laplace

transform are proposed in Section 4.5, and an application of exponential shift property, delta

Laplace transform for fractional substantial sum and difference operator are presented.

In Chapter 5, fixed point operator(FPO) and Green’s function(GF) to different types of FD

equations are established. In Section 5.1, we shall present the general method of construction of

13



summation equation related to IVP with the following nonlinear FDE with impulse.
c∆ϕ

ax(t) + f(ϕ+ ρ(t), x(ϕ+ ρ(t))) = 0, t ∈ Na+1−ϕ, t 6= a+ nj + 1− ϕ,
∆j−1x+

k −∆j−1xk = (−1)j−1∆jxk, t = a+ nj + 1− ϕ,
xi = (−1)i∆ix(a), i = 0, 1, · · · , r − 1, dϕe = r, k ∈ Nm

1 , j ∈ Nk−1
0 ,

where c∆ϕ
ax(t) is the Caputo difference of x(t) for ϕ > 0.

In Section 5.2, we apply the general construction to several specific BC. Then the GF for

two-point and four-point boundary value problems are derived with some useful properties.

In Section 5.3, first we derive the GF for the following multi-point boundary value problem

with summation condition{
−∆ϑ

ϑ−2y(t) = g(t), t ∈ Nb+1
0

y(ϑ− 2) = 0, y(ϑ+ b+ 1) + λ
∑ϑ+b

s=ϑ−1 y(s) = 0,

where g : Nb+1
0 → R, ϑ ∈ (1, 2], b ∈ N0, and 0 < λ ∈ R, and then we derive some useful

properties of the GF and construct the FPO for the following nonlinear DE of non-integer order

with multi-point summation BC{
−∆ϑ

ϑ−2x(t) = h(ρ(t) + ϑ, x(ρ(t) + ϑ)), t ∈ Nb+1
0 ,

x(ϑ− 2) = p, x(ϑ+ b+ 1) + λ
∑ϑ+b

s=ϑ−1 x(s) = q,

where h : [ϑ− 2, b+ ϑ+ 1]Nϑ−2
× R→ R, ϑ ∈ (1, 2], b ∈ N0 and λ > 0, p, q ∈ R.

Fixed point operator for the followig Cauchy type problem of Hilfer FD system with 0 < ϑ < 1,

0 ≤ ϕ ≤ 1, and η = ϑ+ ϕ− ϑϕ,{
∆ϑ,ϕ
a χ(x) + g(x+ ϑ− 1, χ(x+ ϑ− 1)) = 0, for x ∈ Na+1−ϑ,

∆
−(1−η)
a χ(a+ 1− η) = ζ, ζ ∈ R

is obtained in Section 5.4. Fixed point operator for the following substantial FD system with

initial condition is obtained in Section 5.5,{
s∆ϕ

aχ(x) + f(x+ ϕ− 1, χ(x+ ϕ− 1)) = 0, for x ∈ Na,
s∆ϕ−i+1χ(x0 = a+m− ϕ) = χi, i = 0, 1, · · · ,m− 1,
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where m− 1 < ϕ ≤ m with positive integer m.

In Chapter 6, EU of solutions to different types of FDEs are established. Conditions for

EU of impulsive DE with IC or BC are obtained by applying the Schaefer’s fixed point

theorem(FPT) and the contraction mapping in Section 6.1 and 6.2. In Section 6.3, conditions

for EU for multi point fractional boundary value problem(MPFBVP) are obtained by applying

the Schauder’s FPT and Banach FPT. Conditions for EU of solutions for Hilfer FD system and

substantial FD system are respectively obtained in Section 6.4 and 6.5 by applying the Brouwer

FPT and Banach FPT.

In Chapter 7, UH stability and UHR stability shall be discussed. In Section 7.1, conditions

are acquired under which the nonlinear MPFBVP is UH stable, generalized UH stable, UHR

stable and generalized UHR stable. In Section 7.2, conditions are acquired under which the

nonlinear Hilfer FD system is UH stable, generalized UH stable, UHR stable and generalized

UHR stable. Modification and application of discrete Gronwall’s inequality in delta setting is

also presented. In Section 7.3, conditions are acquired under which the nonlinear substantial FD

system is UH stable, generalized UH stable, UHR stable and generalized UHR stable. Examples

are presented to demonstrate the applicability of the results.

Finally, in Chapter 8, dissertation is summarize.
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Chapter 2

Preliminaries

In this chapter, we present some fundamentals of fractional calculus, special functions and fixed

point theory that are helpful in the following chapters.

2.1 Basics of delta fractional calculus

Some basics from discrete FC are given for later use in this sections. The functions we will

consider are usually defined on the set Na := {a, a+ 1, a+ 2, · · · }, where a ∈ R is fixed. Some

times the set Na is called isolated time scale. Similarly the set Nb
a := {a, a + 1, a + 2, · · · , b}

and [a, b]Na := [a, b] ∩ Na [82] for b = a + k, k ∈ N0. The jump operators σ(t) = t + 1, and

ρ(t) = t− 1 defined to be forward and backward respectively, for t ∈ Na.

Following concepts are discussed in [103, 116]. The collection of regressive functions is

given for x ∈ Na as R = {pi : 1 + pi(x) 6= 0}. The circle plus sum of p1, p2 ∈ R is given by

p1 ⊕ p2 = p1 + p2 + p1p2. The circle minus of p ∈ R is given by 	p(x) = −p(x)
1+p(x)

for x ∈ Na. The

floor function b.c maps a real number to the largest preceding integer. The smallest integer

followed by a number is the ceiling d.e function.
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Definition 2.1.1. [50] Assume f : Na → R. The delta definite integral is defined by∫ c

b

f(x)∆x =
c−1∑
x=b

f(x), b, c ∈ Na and b ≤ c.

Note that the value of integral
∫ c
b
f(x)∆x, depending on the set {b, b + 1, · · · , c− 1}. Also by

the empty sum convention

b−k∑
x=b

f(x) = 0 whenever k ∈ N1.

The delta indefinite integral is defined by∫ ∞
b

f(x)∆x =
∞∑
x=b

f(x).

In the next definition, we consider only delta difference with increment 1, and do not bothered

with different operators that we will not be using here. One can find the details of Definition

2.1.2 in [106,124].

Definition 2.1.2. Assume χ : Na × Na → R be a function of two independent variables. Then

the partial difference of χ(x, y) regarding x, taking y as a constant is defined as,

∆x[χ(x, y)] = χ(x+ 1, y)− χ(x, y).

The partial difference of χ(x, y) regarding y, taking x as a constant is defined as,

∆y[χ(x, y)] = χ(x, y + 1)− χ(x, y).

Partial difference equation is an equation containing partial differences.

Note that ∆xy = ∆y∆x = ∆x∆y = ∆yx. Followed by the rule for integer order difference

operator ∆n = ∆∆n−1, we adopt the symbol for partial differences as follows: ∆n
x = ∆x∆

n−1
x ,

∆m
y = ∆y∆

m−1
y .

The falling function is defined for positive integer n by x n = x(x− 1)(x− 2) · · · (x− n+ 1).
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Definition 2.1.3. The discrete Taylor monomial based at s = a is given as

hn(x, a) =
(x− a)n

n!
for x ∈ Na.

Definition 2.1.4. The generalized falling function is defined in terms of gamma function by

tϑ =
Γ(σ(t))

Γ(σ(t)− ϑ)
t ∈ Na ϑ ∈ R,

provided that the expression in above equation is justifiable. It is convenient to take tϑ = 0

whenever t+ 1 is natural number and t− ϑ+ 1 is zero or negative integer.

Definition 2.1.5. The ϑth order Taylor monomial is defined by hϑ(t, s) = (t−s)ϑ
Γ(ϑ+1)

for t, s ∈ Na.

Lemma 2.1.6. If t, s ∈ Na, then
∑
hϑ(t, σ(s))∆s = −hϑ+1(t, s) + C as for some constant C

and ∑
hϑ(t, a)∆t = hϑ+1(t, a) + C.

Definition 2.1.7. [103] Assume p(x) ∈ R and x, y ∈ Na. Then the delta exponential function

is given by

ep(x)(x, y) =

{∏x−1
t=y [1 + p(t)], if x ∈ Ny,∏y−1
t=x [1 + p(t)]−1, if x ∈ Ny−1

a .

By empty product convention
∏y−1

t=y [h(t)] := 1 for any function h.

Example 2.1.8. [103] If p1(x) = c is a constant such that c ∈ R (that is c 6= −1), then delta

exponential function for constant is given by ep1(x, s) = ec(x, s) = [1 + c]x−s for x ∈ Na. In

particular, for the initial point of the domain of definition s = a, we have

ec(x, a) = [1 + c]x−a for x ∈ Na.
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Lemma 2.1.9. [103](Fundamental theorem for the difference calculus) Assume f : Nb
a → R

and F is an antidifference of f on Nb+1
a . Then

b∑
t=a

f(t) =
b∑
t=a

∆F (t) = F (b+ 1)− F (a).

Lemma 2.1.10. [103] Assume p(x) ∈ R. Then ∆xep(x)(x, y) = p(x)ep(x)(x, y).

Lemma 2.1.11. [103][Leibniz formula] Assume f : Na+ϑ × Na → R and ϑ > 0. Then for

x ∈ Na+ϑ,

∆
x−ϑ∑
F=a

f(x,F) =
x−ϑ∑
F=a

∆xf(x,F) + f(x+ 1, x− ϑ+ 1).

Lemma 2.1.12. [103] Assume two functions are defined by ψ, φ : Na → R. Let b1, b2 ∈ Na

such that b1 < b2. Then we have the summation by parts formula,

b2∑
b1

ψ(σ(t))∆φ(t)∆t = ψ(t)φ(t)

∣∣∣∣b2+1

b1

−
b2∑
b1

φ(t)∆ψ(t)∆t.

Lemma 2.1.13. [103] Assume c1, c1 ∈ R and x ∈ Na. Then ec1(x, a)ec2(x, a) = ec1⊕c2(x, a).

Lemma 2.1.14. [103] Assume f, g : Nb
a → R. Then for x ∈ Nb−1

a

∆[f(x)g(x)] = f(σ(x))∆g(x) + [∆f(x)]g(x).

Definition 2.1.15. [103] Assume f : Na → R, ϑ > 0. Then the delta fractional sum of f is

defined by ∆−ϑa f(x) :=
∑x−ϑ

F=a hϑ−1(x, σ(F))f(F) for x ∈ Na+ϑ, where hϑ(t, s) = (t−s)ϑ
Γ(ϑ+1)

is the

ϑth fractional Taylor monomial based at s and t ϑ is the generalized falling function.

Lemma 2.1.16. [103] Assume ϕ ≥ 0 and ϑ > 0. Then ∆−ϑa+ϕ(x − a)ϕ = Γ(ϕ+1)
Γ(ϑ+ϕ+1)

(x − a)ϑ+ϕ

for x ∈ Na+ϑ+ϕ.
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Definition 2.1.17. [31, 144] Assume f : Na → R, ϑ > 0 and m − 1 < ϑ ≤ m, for m ∈ N1.

Then the Riemaan-Liouville FD of f at a is defined by

∆ϑ
af(x) = ∆m∆−(m−ϑ)

a f(x) =
x+ϑ∑
F=a

h−ϑ−1(x, σ(F))f(F) for x ∈ Na+m−ϑ.

Definition 2.1.18. [2, 4] Assume f : Na → R, ϑ > 0 and m− 1 < ϑ ≤ m, for m ∈ N1. Then

the Caputo FD of f at a is defined by

c∆ϑ
af(x) = ∆−(m−ϑ)

a ∆mf(x) =

x−(m−ϑ)∑
F=a

hm−ϑ−1(x, σ(F))∆mf(F)

for x ∈ Na+m−ϑ.

Definition 2.1.19. [50] Assume f : Na → R. Then the delta Laplace transform of f based at

a is defined by

La{f}(y) =

∫ ∞
a

e	y(σ(x), a)f(x)∆x

for all complex numbers y 6= −1 such that this improper integral converges.

The following concepts are also discussed in [103,116].

Definition 2.1.20. [103] A function f is of exponential order(EO) r1 > 0 if there exist a

constant A1 > 0 and the following inequality

|f(x)| 6 A1r
x
1 holds for sufficiently large x ∈ Na.

If f is of EO, then Lx{f}(p) converges absolutely for |p+1| > r1, which ensures the existence

of the Laplace transform. Even though the converse is not true, we restrict ourself to only EO

functions. For f : Na → R, the following are useful expression for the delta Laplace transform
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of f based at a

Lx{f}(p) = F̃ (p) =

∫ ∞
0

f(a+ j)

(p+ 1)j+1
∆j

=
∞∑
j=0

f(a+ j)

(p+ 1)j+1

for all complex numbers p 6= −1 such that this infinite series converges.

Example 2.1.21. If c 6= −1, then for |p+ 1| > |c+ 1| we have

Lx{ec(x, a)}(p) =
1

p− c
.

Lemma 2.1.22. [103] Assume f : Na → R is of EO r > 1 and ϑ > 0. Then

for |y + 1| > r,we have, La+ϑ{∆−ϑa f}(y) =
(y + 1)ϑ

yϑ
F̃a(y).

Lemma 2.1.23. [103] Assume that f : Na → R is of EO r > 0 and m is positive integer. Then

for |y + 1| > r

La{∆mf}(y) = ymF̃a(y)−
m−1∑
j=0

yj∆m−1−jf(a).

Lemma 2.1.24. [103] Assume f : Na → R is of EO r ≥ 1 and m− 1 < ϑ < m with positive

integer m. Then for |y + 1| > r

La+m−ϑ{∆ϑ
af}(y) = yϑ(y + 1)m−ϑF̃a(y)−

m−1∑
j=0

yj∆ϑ−1−j
a f(a+m− ϑ).

Definition 2.1.25. [103] Assume f, g : Na → R. The convolution product is defined by

(f ∗ g)(x, y) =
x−1∑
r=a

f(r)g(x− σ(r) + a) for x ∈ Na.

Note that by the empty sum convention (f ∗ g)(a) = 0.
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Lemma 2.1.26. [103] Assume f, g : Na → R. If both Lxf(x) and Lxg(x) exist, then the delta

Laplace transform of convolution product can be represented as

Lx{(f ∗ g)(x)} = Lx{f(x)}Lx{g(x)} = Lx{(g ∗ f)(x)}.

Lemma 2.1.27. [103] The following hold for delta Laplace of Taylor monomial of degree

n ≥ 0 :

(i) Lx{hn(x, a)}(p) = 1
pn+1 for |p+ 1| > 1,

(ii) Lx{(x− a)n}(p) = n!
pn+1 for |p+ 1| > 1.

Lemma 2.1.28. [117] Assume f : Na → R, m − 1 < ϑ < m, where m and k are positive

integers. Then [∆k(∆−ϑa f)](x) = (∆k−ϑ
a f)(x), for x ∈ Na+ϑ.

Lemma 2.1.29. Suppose that ϑ > 0 and r is a positive integer in such a way that r−1 < ϑ ≤ r.

For arbitrary real number a, y(t) = b1(t−a)ϑ−1 +b2(t−a)ϑ−2 · · ·+br(t−a)ϑ−r for all constants

b1, b2, · · · , br, is a solution of ∆ϑ
a+ϑ−ry(t) = 0 for t ∈ Na+ϑ−r.

Lemma 2.1.30. Let r be a positive integer such that r − 1 < ϑ ≤ r. If g : N0 → R, then the

problem

∆ϑ
ϑ−ry(t) =g(t), t ∈ N0

y(ϑ− r − i) = 0, 0 ≤ i ≤ r − 1

has a solution represented by

y(t) = ∆−ϑ0 g(t) =
t−ϑ∑
s=0

hϑ−1(t, σ(s))g(s), t ∈ Nϑ−r.
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2.2 Special functions

Special functions are particular mathematical functions that play a significant role in the theory

of fractional calculus. To proceed further in this work, we first provide necessary information

about Euler’s gamma function and discrete ML function.

2.2.1 Gamma function

The extension of factorial function for non-integer values is known as gamma function. The

gamma function plays a key role in the development of the theory of FC. In 1729, Euler

defined the integral
∫ 1

0
(ln(1

t
))z−1dt which later published in [79]. By slight modification and

substituting t = e−α, Karl Weierstras introduced new representation which is now known as the

gamma function.

Definition 2.1. The gamma function Γ : (0,∞)→ R is defined as

Γ(z) =

∫ ∞
0

αz−1e−αdα, z > 0. (2.1)

By parts integration of (2.1) yields the fundamental equation

Γ(z + 1) = zΓ(z), z > −1, z 6= 0. (2.2)

The integral defining gamma function is uniformly convergent for all z ∈ [a, b], where 0 < a ≤

b <∞, and hence Γ is a continuous function for all z > 0.

The domain of gamma function can be further extends to non-negative real number by using

reposition of equation (2.2) as follows:

Γ(z) =
Γ(z + 1)

z
, −1 < z < 0.
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Since Γ is not defined on z = 0, therefore it is not possible to define at −1. Further continues in

the same way yields

Γ(z) =
Γ(z + 2)

z(z + 1)
, −2 < z < 0, z 6= −1,

and so forth. Therefore x = 0,−1,−2, · · · are vertical asymptotes of gamma functions.

2.2.2 Mittage-Leffler functions

Gosta Mittag-Leffler (1846-1927) introduced a function as a generalization of exponential

function, known as ML function. The one parameter ML function Eϑ is defined by the power

series

Eϑ(t) =
∞∑
k=0

tk

Γ(kϑ+ 1)
,

where ϑ > 0 is a parameter.

The generalization of one parameter ML function was introduced by Wiman in 1905. The

two parameter ML function is defined by the power series

Eϑ,ϕ(t) =
∞∑
k=0

tk

Γ(kϑ+ ϕ)
,

where ϑ, ϕ > 0 are the parameters.

The discrete ML functions in delta setting are defined by Abdeljawad in [4]

Eϑ,η(λ, z) =
∞∑
k=0

λk
(z + (k − 1)(ϑ− 1))kϑ(z + k(ϑ− 1))η−1

Γ(kϑ+ η)
.

Remark 1. If we set ϕ = 1 in Example 6.4.1 (hence η = 1), and take a = ϑ− 1, then it recovers

Example 17 in [4]. In fact, the solution of the initial Caputo DE

C∆ϑ
ax(t) = λx(t+ ϑ− 1), x(a) = x0, ϑ ∈ (0, 1],
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is given by

x(t) = x0Eϑ(λ, t− a) = x0

∞∑
k=0

λk(t− a+ k(ϑ− 1))kϑ

Γ(ϑk + 1)
.

Observe that the case a = ϑ− 1 reduces as (66) in [4]. That is, the formula (66) in [4] represents

Eϑ(λ, t− (ϑ− 1)). Also, one can see that the substitution ϑ = 1 gives the delta discrete Taylor

expansion of the delta discrete exponential function.

The observations in Remark 1, suggest the following modified definitions those are different

from that appeared in [4].

Definition 2.2.1. For λ ∈ R, |λ| < 1 and ϑ, η, γ, z ∈ C with Re(ϑ) > 0, the discrete Mit-

tag Leffler functions are defined by

Eγ
ϑ,η(λ, z) =

∞∑
k=0

λk
(z + k(ϑ− 1))ϑk+η−1(γ)k

Γ(ϑk + η)k!
, (γ)k = γ(γ + 1) · · · (γ + k − 1)

Eϑ,η(λ, z) = E1
ϑ,η(λ, z) =

∞∑
k=0

λk
(z + k(ϑ− 1))ϑk+η−1

Γ(ϑk + η)
,

Eϑ(λz) = Eϑ,1(λ, z) =
∞∑
k=0

λk
(z + k(ϑ− 1))ϑk

Γ(ϑk + 1)
.

Using xϑ+ϕ = (x− ϕ)ϑ xϕ, note that

Eγ
ϑ,ϑ(λ, z) =

∞∑
k=0

λk
(z + k(ϑ− 1))ϑk+ϑ−1(γ)k

Γ(ϑk + ϑ)k!

=
∞∑
k=0

λk
(z + (k − 1)(ϑ− 1))kϑ(z + k(ϑ− 1))ϑ−1(γ)k

Γ(kϑ+ ϑ)k!
.

Definition 2.2.2. For λ ∈ R, |λ| < 1 and ϑ, η, γ, z ∈ C with Re(ϑ) > 0, the discrete ML

functions are defined by

Eγ
ϑ,η(λ, z) =

∞∑
k=0

λk
(z + k(ϑ− 1) + η − 1)ϑk+η−1(γ)k

Γ(ϑk + η)k!
,

Eϑ,η(λ, z) = E1
ϑ,η(λ, z) =

∞∑
k=0

λk
(z + k(ϑ− 1) + η − 1)ϑk+η−1

Γ(ϑk + η)
,
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Eϑ(λ, z) = Eϑ,1(λ, z) = Eϑ(λ, z) =
∞∑
k=0

λk
(z + k(ϑ− 1))ϑk

Γ(ϑk + 1)
.

2.3 Ulam-Hyers-Rassias stability

The definitions of Ulam stability for FDE was introduced in [61]. Consider the system{
−∆ϑ

ϑ−2x(t) = h(ρ(t) + ϑ, x(ρ(t) + ϑ)), t ∈ Nb+1
0 ,

x(ϑ− 2) = p, x(ϑ+ b+ 1) + λ
∑ϑ+b

s=ϑ−1 x(s) = q,
(2.3)

where h : [ϑ− 2, b+ ϑ+ 1]Nϑ−2
× R→ R, ϑ ∈ (1, 2], b ∈ N0 and λ > 0, p, q ∈ R. Consider the

following inequalities:

∣∣∣∆ϑ
ϑ−2y(t) + h(ρ(t) + ϑ, y(ρ(t) + ϑ))

∣∣∣ ≤ ε, t ∈ [0, b+ 1]N0 , (2.4)

∣∣∣∆ϑ
ϑ−2y(t) + h(ρ(t) + ϑ, y(ρ(t) + ϑ))

∣∣∣ ≤ εð(ρ(t) + ϑ), t ∈ [0, b+ 1]N0 , (2.5)

where ð : [ϑ− 2, b+ ϑ+ 1]Nϑ−2
→ R+.

Definition 2.3.1. If there exists a real number dh > 0 such that for each ε > 0 and for every

solution y(t) ∈ K of inequality (2.4), then a solution x(t) ∈ K of system (2.3) satisfying

∣∣∣x(t)− y(t)
∣∣∣ ≤ εdh, t ∈ [ϑ− 2, b+ ϑ+ 1]Nϑ−2

, (2.6)

is UH stable. The solution of system (2.3) is generalized UH stable if we substitute the function

℘h(ε) for the constant εdh in inequality (2.6), where ℘h(ε) ∈ C(R+, R+) and ℘h(0) = 0.

Definition 2.3.2. If there exists a real number dh,ð > 0 such that for each ε > 0 and for every

solution y(t) ∈ K of inequality (2.5), then a solution x(t) ∈ K of system (2.3) satisfying

∣∣∣x(t)− y(t)
∣∣∣ ≤ εð(t)dh,ð, t ∈ [ϑ− 2, b+ ϑ+ 1]Nϑ−2

, (2.7)
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is UHR stable with respect to function ð. The solution of system (2.3) is generalized UHR stable

if we substitute the function Φ(t) for the function εð(t) in inequalities (2.5) and (2.7).

2.4 Gronwall type inequalities

Gronwall’s inequality is a bound to the solution of difference and summation equations with

different available versions. Also it provides estimation and comparison principle which are

helpful for uniqueness and stability of solution for IVP. First it was introduced by Gronwall in

1919 and later by Bellman in 1943. Its discrete analogue was introduced in [33] and generalized

in [20, 36]. Here, we present Gronwall’s inequality for discrete calculus with the delta DO

in modified form. An application of Gronwall’s inequality has been given for the stability of

solution to fractional order Hilfer DE with different initial conditions. For this purpose, first we

develop a Gronwall’s inequality for the delta difference operator. Then a simple utilization of

Gronwall’s inequality leads to stability for Hilfer DE. Choose χ and φ such that

χ(x) ≤ χ(a)hη−1(x, a+ 1− η) + ∆−ϑa+1−ϑ℘(x+ ϑ)χ(x+ ϑ), (2.8)

φ(x) ≥ φ(a)hη−1(x, a+ 1− η) + ∆−ϑa+1−ϑ℘(x+ ϑ)φ(x+ ϑ). (2.9)

Lemma 2.4.1. Assume u and w satisfy (2.8) and (2.9), respectively. If φ(a) ≥ χ(a), then

φ(x) ≥ χ(x) for x ∈ Na.

Proof. We give the proof by induction principle. Assume φ(F) − χ(F) ≥ 0 holds for F =
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a, a+ 1, · · · , x− 1. Then we have

φ(x)− χ(x) ≥hη−1(x, a+ 1− η)(φ(a)− χ(a)) + ∆−ϑa+1−ϑ℘(x+ ϑ)φ(x+ ϑ)

−∆−ϑa+1−ϑ℘(x+ ϑ)χ(x+ ϑ)

=hη−1(x, a+ 1− η)(φ(a)− χ(a))

+
x−ϑ∑

F=a+1−ϑ

(x− σ(F))ϑ−1

Γ(ϑ)
℘(F + ϑ)(φ(F + ϑ)− χ(F + ϑ)),

where the last summation is valid for x ∈ Na+ϑ. Now, we shifted the domain of summation to

Na.

φ(x)− χ(x) ≥hη−1(x, a+ 1− η)(φ(a)− χ(a))

+
x∑

F=a+1

(x+ ϑ− σ(F))ϑ−1

Γ(ϑ)
℘(F)(φ(F)− χ(F)).

By given assumption, we have

φ(x)− χ(x) ≥℘(x)(φ(x)− χ(x)) for F = a, a+ 1, · · · , x− 1.

This implies that (1− ℘(x))(φ(x)− χ(x)) ≥ 0 and for |℘(x)| < 1, which is desired result.

Following the approach for nabla fractional difference in [36], let Ev℘ = ∆−ϑa+1−ϑψ(x)℘(x).

For constant ℘, one can use Ev℘ to express Mittag-Leffler function.

Theorem 2.2. Assume η = ϑ + ϕ − ϑϕ with 0 < ϑ < 1 and 0 ≤ ϕ ≤ 1. The solution of

summation equation

χ(x) =χ(a)hη−1(x, a+ 1− η) + ∆−ϑa+1−ϑψ(x+ ϑ− 1)χ(x+ ϑ− 1)

is given by χ(x) =
χ(a)

Γ(η)

∞∑
`=0

E`
v(x+ η − a− 1 + `(ϑ− 1))η−1.

Proof. By method of successive approximation, the following is obtained:

χk(x) =χ0(x) + ∆−ϑa+1−ϑψ(x+ ϑ− 1)χk−1(x+ ϑ− 1), k = 1, 2, 3, · · · ,
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where χ0(x) = χ(a)hη−1(x, a+ 1− η).

For k = 1, we have

χ1(x) =χ(a)hη−1(x, a+ 1− η) + ∆−ϑa+1−ϑψ(x+ ϑ− 1)χ0(x+ ϑ− 1)

=
χ(a)

Γ(η)
E0
v(x+ η − a− 1)η−1 +

χ(a)

Γ(η)
E1
v(x+ η − a− 1 + ϑ− 1)η−1.

Proceed inductively, we obtained

χk(x) =
χ(a)

Γ(η)

k∑
`=0

E`
v(x+ η − a− 1 + `(ϑ− 1))η−1, k = 1, 2, 3, · · ·

and letting k →∞ then, we have χ(x) =
χ(a)

Γ(η)

∞∑
`=0

E`
v(x+ η − a− 1 + `(ϑ− 1))η−1.

Next, we derived a Gronwall’s inequality in delta discrete setting.

Theorem 2.3. Let η = ϑ + ϕ − ϑϕ, with 0 < ϑ < 1 and 0 ≤ ϕ ≤ 1. Assume |ψ(x)| < 1 for

x ∈ Na. If χ and ψ are nonnegative real valued functions satisfying

χ(x) ≤χ(a)hη−1(x, a+ 1− η) + ∆−ϑa+1−ϑψ(x+ ϑ− 1)χ(x+ ϑ− 1),

then we have χ(x) ≤χ(a)

Γ(η)

∞∑
`=0

E`
v(x+ η − a− 1 + `(ϑ− 1))η−1.

Proof. Consider φ(x) = χ(a)
Γ(η)

∑∞
`=0 E

`
v(x+ η − a− 1 + `(ϑ− 1))η−1.

The proof of theorem follows from Lemma 2.4.1 and Theorem 7.1.

For η = 1, a special case is obtained as follow.

Corollary 2.4.2. Let 0 < ϑ < 1 and 0 ≤ ϕ ≤ 1. Assume 0 < ψ(x) < 1 for x ∈ Na. If χ is

nonnegative real-valued function satisfying

χ(x) ≤χ(a) + ∆−ϑa+1−ϑψ(x+ ϑ− 1)χ(x+ ϑ− 1),

then we have χ(x) ≤χ(a)ev(x, a),

where ev(x, a) is the delta exponential function.
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Proof. Following Theorem 7.2 that

χ(x) ≤ χ(a)
∞∑
`=0

E`
v(1).

We claimed that
∑∞

`=0 E
`
v(1) = ev(x, a). To justify our claim, we utilized the uniqueness of

solution of following IVP, ∆χ(x) = ψ(x)χ(x), χ(a) = 1. A unique solution χ(x) = ev(x, a)

of IVP is given in [103] for regressive function ψ(x). Thus, we have to show that
∑∞

`=0E
`
v(1)

satisfies the IVP ∆χ(x) = ψ(x)χ(x), χ(a) = 1. Indeed,

∆
∞∑
`=0

E`
v(1) =

∞∑
`=0

∆E`
v(1)

=
∞∑
`=1

∆Ev(E
`−1
v (1))

=
∞∑
`=1

∆∆−1
a (ψ(x)E`−1

v (1)) = ψ(x)
∞∑
`=0

E`
v(1).

We have
∑∞

`=0E
`
v(1)(a) = 1 +

∑∞
`=1 E

`
v(1)(a) = 1, by Definition 2.1.5 and empty sum convention.

Then the proof complete.
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Chapter 3

New fractional difference operators

The classical method of obtaining fractional operators relies on iterating an integral to find

the integral of the nth order and then exchanging n with any real number. The corresponding

derivatives are described after that. We start by introducing a generalized difference operator

analogous to Hilfer fractional derivative [115]. To keep the interpolative property of Hilfer

fractional difference operators, we carefully choose the starting points of fractional sums. Some

important composition properties are developed and utilized to construct fixed point operator

for a new class of Hilfer fractional nonlinear difference equation with initial conditions involving

Reimann-Liouville fractional sum.

Hilfer’s definition in continuous fractional calculus is illustrated as follows: the frac-

tional derivative of order 0 < ϑ < 1 and type 0 ≤ ϕ ≤ 1 is

Dϑ,ϕ
a f(x) =

(
Iϕ(1−ϑ)
a

d

dx

(
I(1−ϕ)(1−ϑ)
a f

))
(x).

The special cases are Riemann-Liouville fractional derivative for ϕ = 0 and the Caputo frac-

tional derivative for ϕ = 1. Furati et al. [86, 87] primarily studied the existence theory of

Hilfer fractional differential equations and also explained the type parameter ϕ as interpolation

between the RL and the Caputo derivatives. It generates more types of stationary states and
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gives an extra degree of freedom on the initial condition. Also we develop some important

properties of newly defined operator.

3.1 Hilfer fractional difference

Findings of this section appeared in [109]. In this section, we give the general definition of

the Hilfer like fractional difference operator. Motivated by the concept of Hilfer fractional

derivative [115], and to keeping the interpolative property, we present the following definition.

Assume f : Na → R, then the FD of order m − 1 < ϑ < m, for m ∈ N1 is given by

∆ϑ,ϕ
a f(x) = ∆

−ϕ(m−ϑ)
a+(1−ϕ)(m−ϑ)∆

m∆
−(1−ϕ)(m−ϑ)
a f(x), for x ∈ Na+m−ϑ, where 0 ≤ ϕ ≤ 1 is the

type of difference operator. Observe that starting point of domain for ∆
−(1−ϕ)(m−ϑ)
a f(x) is

a+ (1− ϕ)(m− ϑ), whereas integer-order differences keep the same domain [116]. The starting

point of the last sum is compatible with the starting point for the domain of the function

∆m∆
−(1−ϕ)(m−ϑ)
a f(x), which is a+ (1− ϕ)(m− ϑ). This allows us the successive composition of

operators in above expression and the final domain of ∆ϑ,ϕ
a f(x) is Na+m−ϑ. To get some nice

properties, we restrict 0 < ϑ < 1 in further analysis.

Definition 3.1.1. Assume f : Na → R. The fractional difference of order 0 < ϑ < 1 and type

0 ≤ ϕ ≤ 1 is defined by

∆ϑ,ϕ
a f(x) = ∆

−ϕ(1−ϑ)
a+(1−ϕ)(1−ϑ)∆∆−(1−ϕ)(1−ϑ)

a f(x)

for x ∈ Na+1−ϑ.

The special cases are Riemann-Liouville fractional difference [31, 144] for ϕ = 0 and Caputo

fractional difference [2, 4] for ϕ = 1.
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3.1.1 Properties of Hilfer fractional difference operator

First we develop some composition properties to construct a FPO for a new class of Hilfer

nonlinear FDE with initial conditions involving RL fractional sum.

Lemma 3.1.2. Assume f : Na → R is defined, 0 < ϑ < 1 and 0 ≤ ϕ ≤ 1, for x ∈ Na+1

(i) ∆−ϑa+1−ϑ[∆ϑ,ϕ
a f(x)] = ∆

−(ϑ+ϕ−ϑϕ)
a+(1−ϕ)(1−ϑ)∆∆

−(1−ϕ)(1−ϑ)
a f(x),

(ii) ∆−ϑa+1−ϑ[∆ϑ,ϕ
a f(x)] = ∆

−(ϑ+ϕ−ϑϕ)
a+(1−ϕ)(1−ϑ)∆

ϑ+ϕ−ϑϕ
a f(x),

(iii) ∆ϑ,ϕ
a+ϑ[∆−ϑa f(x)] = ∆

−ϕ(1−ϑ)
a+(1−ϕ+ϑϕ)∆

ϕ(1−ϑ)
a f(x),

(iv) ∆ϑ,ϕ
a+ϑ[∆−ϑa f(x)] = f(x)−∆

−(1−ϕ(1−ϑ))
a f(a+ 1−ϕ(1− ϑ))× hϕ(1−ϑ)−1(x, a+ 1−ϕ(1− ϑ)).

Proof. (i) On the left hand side, if we use Definition 3.1.1 and (Theorem 5 [116]), then we obtain

∆−ϑa+1−ϑ[∆ϑ,ϕ
a f(x)] =∆−ϑa+1−ϑ[∆

−ϕ(1−ϑ)
a+(1−ϕ)(1−ϑ)∆∆−(1−ϕ)(1−ϑ)

a f(x)]

=∆
−(ϑ+ϕ−ϑϕ)
a+(1−ϕ)(1−ϑ)∆∆−(1−ϕ)(1−ϑ)

a f(x).

(ii) On the left hand side, use (i) and first part of (Lemma 6 [116]),

∆−ϑa+1−ϑ[∆ϑ,ϕ
a f(x)] =∆

−(ϑ+ϕ−ϑϕ)
a+(1−ϕ)(1−ϑ)∆∆−(1−ϕ)(1−ϑ)

a f(x)

=∆
−(ϑ+ϕ−ϑϕ)
a+(1−ϕ)(1−ϑ)∆

ϑ+ϕ−ϑϕ
a f(x).

(iii) Using Definition 3.1.1 and (Theorem 5 [116]), we get

∆ϑ,ϕ
a+ϑ[∆−ϑa f(x)] =∆

−ϕ(1−ϑ)
a+ϑ+(1−ϕ)(1−ϑ)∆∆

−(1−ϕ)(1−ϑ)
a+ϑ [∆−ϑa f(x)]

=∆
−ϕ(1−ϑ)
a+(1−ϕ+ϑϕ)∆∆−(1−ϕ+ϑϕ)

a f(x)

=∆
−ϕ(1−ϑ)
a+(1−ϕ+ϑϕ)∆

ϕ(1−ϑ)
a f(x).

In preceding step, we also used first part of (Lemma 6 [116]).
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(iv) Consider the left hand side, use (iii) and second part of (Theorem 8 [116]),

∆ϑ,ϕ
a+ϑ[∆−ϑa f(x)] =∆

−ϕ(1−ϑ)
a+(1−ϕ+ϑϕ)∆

ϕ(1−ϑ)
a f(x)

=∆
−ϕ(1−ϑ)
a+1−ϕ(1−ϑ)∆

ϕ(1−ϑ)
a f(x)

=f(x)−∆−(1−ϕ(1−ϑ))
a f(a+ 1− ϕ(1− ϑ))

× hϕ(1−ϑ)−1(x, a+ 1− ϕ(1− ϑ)).

For nonempty set NT
a , the set of all real-valued bounded functions B(NT

a ) is a normed space

with ||f || = supx∈NTa {f(x)}. We consider a weighted space of bounded functions Bλ(NT
a ) := {f :

NT
a → R; |(x− a− ϑ)λf(x)| < M} with 0 ≤ λ < ϑ and M > 0. The weighted space of bounded

functions is considered for finding left inverse property, but further analysis is not influenced by

this space.

Lemma 3.1.3. Let f ∈ Bλ(NT
a ) be given and 0 < λ ≤ 1. Then ∆−ϑa f(a+ϑ) = 0 for 0 ≤ λ < ϑ.

Proof. Since f ∈ Bλ(NT
a ), we have |(x− a− ϑ)λf(x)| < M, for some positive integer M and for

each x ∈ NT
a . Therefore it follows

|∆−ϑa f(x)| <M [∆−ϑa (y − a− ϑ)−λ](x)

≤MΓ(1− λ)
(x− a− ϑ)ϑ−λ

Γ(ϑ− λ+ 1)
.

In the preceding step, we used the fact ∆−ϑa (x− a)−λ = (x− a)ϑ−λ Γ(1−λ)
Γ(ϑ−λ+1)

. The desired result

is achieved by applying limit process x→ a+ ϑ.

Next, we state the left inverse property.

Lemma 3.1.4. Assume 0 < ϑ < 1, 0 ≤ ϕ ≤ 1 and η = ϑ+ ϕ− ϑϕ, then for f ∈ B1−η(N
T
a ),

∆ϑ,ϕ
a+ϑ[∆−ϑa f(x)] = f(x).

Proof. Since 0 ≤ 1−η < 1−ϕ(1−ϑ). Thus Lemma 3.1.3 gives ∆
−(1−ϕ+ϑϕ)
a f(a+1−ϕ+ϑϕ) = 0.

Hence the result follows from the part (iv) of Lemma 3.1.2.
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3.2 Substantial fractional difference

Findings of this section appeared in [108]. Substantial fractional order integral and derivative

were introduced by Chen and Deng [57] in recent form. The definition in RL sense is as follows:

Assume that a function f is (m−1)-times continuously differentiable on interval (a,∞) and mth

order derivatives are integrable on some finite subinterval of [a,∞), where m− 1 < ϑ < m for a

positive integer m. Furthermore assume σ to be a constant, then Dϑ
s f(x) = Dm

s

[
I

(m−ϑ)
s f(x)

]
,

where Dm
s =

( ∂
∂x

+ σ
)m
, and I(m−ϑ)

s =

∫ y=x

y=a

(x− y)m−ϑ−1

Γ(m− ϑ)
e−σ(x−y)f(y)dy.

Before giving the formal definition of difference operator, we define the product ec1(x, a)ec2(y, a)

for x, y ∈ Na as a solution of the delta partial difference Cauchy problem

c2∆xχ(x, y)− c1∆yχ(x, y) = 0,

with χ(x, a) =ec1(x, a), χ(a, y) = ec2(y, a),

where c1, c2 ∈ R for the set Rofregressivefunctions. Note that the product of two exponential

functions in continuous calculus enjoy the exponent law, i.e. ec1xec2y = ec1x+c2y. This is the

key motivation behind the product of two delta exponential functions in discrete calculus.

Surprisingly, the analogous result does not hold in general for the discrete case. However

ec(x, 0)ec(y, 0) = ec(x+ y, 0) holds for x, y ∈ N0.

Lizama [140] considered abstract fractional difference equations with the kernel of Poisson

distribution. To define fractional substantial sum, here we shall use the same kernel in discrete

setting, specifically by using the delta exponential and Taylor monomial on discrete time scale

as in [10].

Definition 3.2.1. Assume f : Na → R, 0 < ϑ ∈ R and a constant −p ∈ R. Then the fractional
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substantial sum of f of order ϑ is defined by

s∆−ϑa f(x) :=
∑x−ϑ

F=a hϑ−1(x, σ(F))e−p(x−F, 0)f(F), for x ∈ Na+ϑ.

Definition 3.2.2. Assume f : Na → R, m− 1 < ϑ < m with positive integer m and a constant

−p ∈ R. Then for x ∈ Na+m−ϑ the fractional substantial difference of f of order ϑ is defined

by s∆ϑf(x) := s∆m[s∆
−(m−ϑ)
a+ϑ f(x)], where s∆m = (∆x+p

1−p )m, and ∆x is delta partial difference

with respect to x.

Remark 2. Note that for p = 0, substantial sum and difference operators reduce to RL sum

(Definition 2.1.15), and RL difference (Definition 2.1.17), respectively.

3.2.1 Properties of substantial fractional sum and difference opera-
tor

Lemma 3.2.3. (Composition of fractional Sums) Assume f : Na → R and ϑ, ϕ are positive real

numbers. Then for x ∈ Na+ϑ+ϕ, we have

[s∆−ϑa+ϕ(s∆−ϕa f)](x) = ( s∆−(ϑ+ϕ)
a f)(x) = [ s∆−ϕa+ϑ(s∆−ϑa f)](x).

Proof. For x ∈ Na+ϑ+ϕ, consider the left hand side

[s∆−ϑa+ϕ(s∆−ϕa f)](x) =
x−ϑ∑

F=a+ϕ

hϑ−1(x, σ(F))e−p(x−F, 0)(s∆−ϕa f)(F)

=
x−ϑ∑
F=ϕ

hϑ−1(x, σ(F))e−p(x−F, 0)
F−ϑ∑
w=0

hϕ−1(F, σ(w))

× e−p(F − w, 0)f(w)

=
x−ϑ∑
F=ϕ

F−ϑ∑
w=0

e−p(x− w, 0)
(x− σ(F))ϑ−1

Γ(ϑ)

(F − σ(w))ϕ−1

Γ(ϕ)
f(w)

=
1

Γ(ϑ)Γ(ϕ)

x−(ϑ+ϕ)∑
w=0

e−p(x− w, 0)
x−ϑ∑

F=w+ϕ

(x− σ(F))ϑ−1

× (F − σ(w))ϕ−1f(w).
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Let F − σ(w) = y,

[s∆−ϑa+ϕ(s∆−ϕa f)](x) =
1

Γ(ϑ)Γ(ϕ)

x−(ϑ+ϕ)∑
w=0

e−p(x− w, 0)

×
x−ϑ−w−1∑
y=ϕ−1

(x− y − w − 2)ϑ−1(y)ϕ−1f(w)

[s∆−ϑa+ϕ(s∆−ϕa f)](x) =
1

Γ(ϕ)

x−(ϑ+ϕ)∑
w=0

e−p(x− w, 0)

×
[ 1

Γ(ϑ)

x−ϑ−w−1∑
y=ϕ−1

(x− w − 1− σ(y))ϑ−1(y)ϕ−1
]
f(w).

By using Definition 2.1.15, we get

[s∆−ϑa+ϕ(s∆−ϕa f)](x) =
1

Γ(ϕ)

x−(ϑ+ϕ)∑
w=0

e−p(x− w, 0)
[
∆−ϑϕ−1x

ϕ−1
]
x→x−w−1

f(w).

By Lemma 2.1.16, we have ∆−ϑϕ−1x
ϕ = Γ(ϕ)

Γ(ϑ+ϕ)
xϑ+ϕ−1, which yields the following

[s∆−ϑa+ϕ(s∆−ϕa f)](x) =

x−(ϑ+ϕ)∑
w=0

e−p(x− w, 0)
[ 1

Γ(ϑ+ ϕ)
(x− w − 1)ϑ+ϕ−1

]
f(w)

=

x−(ϑ+ϕ)∑
w=0

hϑ+ϕ−1(x, σ(w))e−p(x− w, 0)f(w)

=( s∆−(ϑ+ϕ)
a f)(x)

for x ∈ Na+ϑ+ϕ. We may interchange ϑ and ϕ to get

[s∆−ϕa+ϑ(s∆−ϑa f)](x) = ( s∆−(ϑ+ϕ)
a f)(x).

Lemma 3.2.4. (Left inverse property) Assume f : Na → R and ϑ > 0 and for positive integer

m, m− 1 < ϑ < m. Then for x ∈ Na+ϑ,

[s∆ϑ(s∆−ϑa f)](x) = f(x). (3.1)
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Proof. First, we prove the identity (3.1) for integer m by induction. Consider the base case for

m = 1, s∆{s∆−1
a f(x)} =

(∆x + p

1− p
)[ x−1∑

F=a

h0(x, σ(F))e−p(x−F, 0)f(F)
]
.

Since h0(x, σ(F)) = 1, we have

s∆{s∆−1
a f(x)} =

∆x

1− p

[ x−1∑
F=a

e−p(x−F, 0)f(F)
]

+
p

1− p

[ x−1∑
F=a

e−p(x−F, 0)f(F)
]
.

Now, applying Leibniz formula Lemma 2.1.11 on first bracket, we obtain

s∆{s∆−1
a f(x)} =

1

1− p

[ x−1∑
F=a

∆xe−p(x−F, 0)f(F) + e−p(x+ 1− x, 0)f(x)
]

+
p

1− p

[ x−1∑
F=a

e−p(x−F, 0)f(F)
]

=
1

1− p

[ x−1∑
F=a

−pe−p(x−F, 0)f(F) + (1− p)1−0f(x)
]

+
p

1− p

[ x−1∑
F=a

e−p(x−F, 0)f(F)
]

= f(x).

Assume the statement in Equation (3.1) is true for m. For induction step consider

s∆m+1 s∆−(m+1)
a f(x) = s∆m+1{ s∆−1

a+m
s∆−ma }f(x)

= s∆m{s∆ s∆−1
a+m} s∆−ma f(x)

= s∆m s∆−ma f(x) = f(x).

For positive integer m and m− 1 < ϑ ≤ m, we have

s∆ϑ[s∆−ϑa f(x)] = s∆m{s∆−(m−ϑ)
a+ϑ }[s∆−ϑa f(x)].

Finally, using Lemma 3.2.3, we arrive at

s∆ϑ[s∆−ϑa f(x)] = s∆m{s∆−ma f(x)} = f(x).
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Lemma 3.2.5. (Composition of sum with difference) Assume f : Na → R, ϑ > 0 and k ∈ N0.

Then for x ∈ Na+ϑ

[ s∆−ϑa ( s∆kf)](x) =
k∑
j=0

(
k

j

)
(−p)k−j s∆j−ϑf(x)− e−p(x− a+ 1, 0)

×
k−1∑
i=0

i−1∑
j=0

(
i

j

)
(−p)jhϑ−j+1(x, a) s∆k−i+1f(a).

(3.2)

Further, ϕ > 0 such that for positive integer m, m− 1 < ϕ ≤ m. Then for x ∈ Na+m−ϕ+ϑ

[ s∆−ϑa+m−ϕ( s∆ϕf)](x) =
m∑
j=0

(
m

j

)
(−p)m−j s∆−(ϑ−ϕ+m−j)f(x)

− e−p(x− a+ 1, 0)
m−1∑
i=0

i−1∑
j=0

(
i

j

)
(−p)j

× hϑ−j+1(x, a) s∆ϕ−i+1f(a+m− ϕ).

(3.3)

Proof. Case I: Suppose ϑ 6∈ Nk−1
1 . First note by Lemma 2.1.14 that

∆F

[
hϑ−1(x,F)e−p(x−F+1, 0)

]
= hϑ−1(x, σ(F))

[
pe−p(x−F, 0)

]
−hϑ−2(x, σ(F))

[
e−p(x−F+1, 0)

]
.

Now using Definition 3.2.1 and applying summation by parts formula (Lemma 2.1.12), we have

s∆−ϑa
[
s∆kf(x)

]
=

x−ϑ∑
F=a

hϑ−1(x, σ(F))e−p(x− σ(F), 0)
[
s∆kf(F)

]
=hϑ−1(x,F)e−p(x−F + 1, 0) s∆k−1f(F)

∣∣∣x−ϑ+1

F=a

−
x−ϑ∑
F=a

[
phϑ−1(x, σ(F))e−p(x−F, 0)

− hϑ−2(x, σ(F))e−p(x−F + 1, 0)
]s

∆k−1f(F)

=1.e−p(ϑ, 0) s∆k−1f(x− ϑ+ 1)− hϑ−1(x, a)e−p(x− a+ 1, 0)

× s∆k−1f(a)− p
x−ϑ∑
F=a

hϑ−1(x, σ(F))e−p(x−F, 0)s∆k−1f(F)

+
x−ϑ∑
F=a

hϑ−2(x, σ(F))e−p(x−F + 1, 0)s∆k−1f(F).
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Combining the first term with last sum, we have

s∆−ϑa
[
s∆kf(x)

]
= s∆−(ϑ−1)

a

[
s∆k−1f(x)

]
− p s∆−ϑa

[
s∆k−1f(x)

]
− hϑ−1(x, a)e−p(x− a+ 1, 0) s∆k−1f(a)

=
(
− p s∆−ϑa + s∆−(ϑ−1)

a

)[
s∆k−1f(x)

]
− e−p(x− a+ 1, 0)hϑ−1(x, a) s∆k−1f(a).

Another application of summation by parts formula

s∆−ϑa
[
s∆kf(x)

]
=
(
p2 s∆−ϑa − 2p s∆−(ϑ−1)

a + s∆−(ϑ−2)
a

)[
s∆k−2f(x)

]
− e−p(x− a+ 1, 0)hϑ−1(x, a) s∆k−1f(a)

− e−p(x− a+ 1, 0)
{
− phϑ−1(x, a) + hϑ−2(x, a)

}
s∆k−2f(a).

Again using summation by parts, we get

s∆−ϑa
[
s∆kf(x)

]
=
(
− p3 s∆−ϑa + 3p2 s∆−(ϑ−1)

a − 3p s∆−(ϑ−2)
a + s∆−(ϑ−3)

a

)
×
[
s∆k−3f(x)

]
− e−p(x− a+ 1, 0)hϑ−1(x, a) s∆k−1f(a)

− e−p(x− a+ 1, 0)
{
− phϑ−1(x, a) + hϑ−2(x, a)

}
s∆k−2f(a)

− e−p(x− a+ 1, 0)
{
p2hϑ−1(x, a)− 2phϑ−2(x, a) + hϑ−3(x, a)

}
× s∆k−3f(a).

Further (k − 3) times application of summation by parts gives

[ s∆−ϑa ( s∆kf)](x) =
k∑
j=0

(
k

j

)
(−p)k−j s∆j−ϑf(x)− e−p(x− a+ 1, 0)

×
k−1∑
i=0

i−1∑
j=0

(
i

j

)
(−p)jhϑ−j+1(x, a) s∆k−i+1f(a)

where by assumption hϑ−j+1(x, a) is well defined for ϑ 6∈ Nk−1
1 .

Case II: Now Suppose ϑ ∈ Nk−1
1 . Then k − ϑ ∈ N1, we have for x ∈ Na+ϑ,

[ s∆−ϑa ( s∆kf)](x) ={ s∆k−ϑ s∆
−(k−ϑ)
a+ϑ } s∆−ϑa s∆kf(x)

= s∆k−ϑ{ s∆−(k−ϑ)
a+ϑ

s∆−ϑa } s∆kf(x)

= s∆k−ϑ[ s∆−ka s∆kf(x)
]
.
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By Case I and Equation (3.2), we arrive at

[ s∆−ϑa ( s∆kf)](x) = s∆k−ϑ
[ k∑
j=0

(
k

j

)
(−p)k−j s∆j−kf(x)− e−p(x− a+ 1, 0)

×
k−1∑
i=0

i−1∑
j=0

(
i

j

)
(−p)jhk−j+1(x, a) s∆k−i+1f(a)

]
.

Using Lemma 3.1.2 and Lemma 2.1.16, we get

[ s∆−ϑa ( s∆kf)](x) =
k∑
j=0

(
k

j

)
(−p)k−j s∆j−ϑf(x)− e−p(x− a+ 1, 0)

×
k−1∑
i=0

i−1∑
j=0

(
i

j

)
(−p)jhϑ−j+1(x, a) s∆k−i+1f(a).

Now consider the Equation (3.3) for x ∈ Na+m−ϕ+ϑ, where m is positive integer such that

m− 1 < ϕ ≤ m and define g(x) := s∆
−(m−ϕ)
a f(x) on Na+m−ϕ, then by Lemma 3.2.4 we have

s∆−ϑa+m−ϕ( s∆ϕf)(x) = s∆−ϑa+m−ϕ
s∆mg(x).

By using Equation (3.2)

s∆−ϑa+m−ϕ( s∆ϕf)(x) =
m∑
j=0

(
m

j

)
(−p)m−j s∆j−ϑg(x)− e−p(x− a+ 1, 0)

×
m−1∑
i=0

i−1∑
j=0

(
i

j

)
(−p)jhϑ−j+1(x, a) s∆m−i+1g(a+m− ϕ)

=
m∑
j=0

(
m

j

)
(−p)m−j s∆j−ϑ s∆−(m−ϕ)

a f(x)

− e−p(x− a+ 1, 0)
m−1∑
i=0

i−1∑
j=0

(
i

j

)
(−p)jhϑ−j+1(x, a)

× s∆m−i+1 s∆−(m−ϕ)
a f(a+m− ϕ)

=
m∑
j=0

(
m

j

)
(−p)m−j s∆−(ϑ−ϕ+m−j)f(x)− e−p(x− a+ 1, 0)

×
m−1∑
i=0

i−1∑
j=0

(
i

j

)
(−p)jhϑ−j+1(x, a) s∆ϕ−i+1f(a+m− ϕ).
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Lemma 3.2.6. (Relation between Riemann-Liouville and substantial fractional operators) As-

sume f : Na → R, m− 1 < ϑ < m with positive integer m and a constant −p ∈ R. Then

(i) s∆−ϑa f(x) = e−p(x, 0)∆−ϑa [e−p(−x, 0)f(x)] for x ∈ Na+ϑ where s∆−ϑa is substantial frac-

tional sum operator and ∆−ϑa is Riemann-Liouville fractional sum operator.

(ii) s∆ϑf(x) = e−p(x, 0)∆ϑ
a+ϑ[e−p(−x, 0)f(x)] for x ∈ Na+m−ϑ where s∆ϑ is substantial frac-

tional difference operator and ∆ϑ
a+ϑ is Riemann-Liouville fractional difference operator.

Proof. (i) Note that e−p(x−F, 0) = e−p(x, 0)e−p(−F, 0). For x ∈ Na+ϑ, consider

s∆−ϑa f(x) =
x−ϑ∑
F=a

hϑ−1(x, σ(F))e−p(x−F, 0)f(F)

=e−p(x, 0)
x−ϑ∑
F=a

hϑ−1(x, σ(F))e−p(−F, 0)f(F)

By Definition 2.1.15

s∆−ϑa f(x) = e−p(x, 0)∆−ϑa [e−p(−x, 0)f(x)].

(ii) For x ∈ Na+m−ϑ, consider

s∆ϑf(x) = s∆m[ s∆
−(m−ϑ)
a+ϑ f(x)]

=(
∆x + p

1− p
)m

x+ϑ−m∑
F=a+ϕ

hm−ϑ−1(x, σ(F))e−p(x−F, 0)f(F)

=(
∆x + p

1− p
)m−1

[
(
∆x + p

1− p
)
x+ϑ−m∑
F=a+ϕ

hm−ϑ−1(x, σ(F))e−p(x−F, 0)f(F)
]

s∆ϑf(x) =(
∆x + p

1− p
)m−1

[ ∆x

1− p

{
e−p(x, 0)

x+ϑ−m∑
F=a+ϕ

hm−ϑ−1(x, σ(F))e−p(−F, 0)f(F)
}

+
p

1− p
s∆
−(m−ϑ)
a+ϑ f(x)

]
.

By using Lemma 2.1.14 and Lemma 2.1.10, we have

s∆ϑf(x) =(
∆x + p

1− p
)m−1

[ 1

1− p

{
e−p(σ(x), 0)∆1

x

x+ϑ−m∑
F=a+ϕ

hm−ϑ−1(x, σ(F))

× e−p(−F, 0)f(F)− p s∆
−(m−ϑ)
a+ϑ f(x)

}
+

p

1− p
s∆
−(m−ϑ)
a+ϑ f(x)

]
,
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using the fact e−p(σ(x),0)

1−p = e−p(x, 0) and Definition 2.1.15, we obtain

s∆ϑf(x) =(
∆x + p

1− p
)m−1

[
e−p(x, 0)∆1

x∆
−(m−ϑ)
a+ϑ

{
e−p(−F, 0)f(F)

}]
.

By Lemma 2.1.28

s∆ϑf(x) =(
∆x + p

1− p
)m−1

[
e−p(x, 0)∆

−(m−ϑ−1)
a+ϑ

{
e−p(−F, 0)f(F)

}]
= s∆m−1

[
s∆
−(m−ϑ−1)
a+ϑ f(x)

]
.

Repetition the same processm− 1 times, we obtain

s∆ϑf(x) = e−p(x, 0)∆ϑ
a+ϑ[e−p(−x, 0)f(x)].

Remark 3. One can find the relation between substantial and Caputo difference by making use

of relation between substantial and RL difference Lemma 3.2.6, along with the relation given

in [4, Theorem 14] for Caputo and RL difference.
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Chapter 4

Delta Laplace and double Laplace
transform

In this chapter, we introduced the delta double Laplace transform similar to the one presented

by Bernstein [49] in such a way that properties and expressions bear a resemblance to that

appearing in Debnath [71] for the continuous calculus. The double convolution product that

we introduce in this chapter, resemble with the convolution product defined for delta calculus

in [50,103], but it differs from the one defined by Atici in [29]. We consider the problem with

constant coefficients in two independent variables and solve partial difference equations with

initial data by applying the delta double Laplace transform. Findings of Sections 4.1 4.2 and

4.3 are appeared in [111].

4.1 The delta double Laplace transforms

In this section, we give abstract definition of the delta double Laplace transform. For convenience,

we simplify definition to series representation following the pattern by Goodrich and Peterson

[103] for the delta Laplace transform. Also conditions for existence, uniqueness and linearity of

the delta double Laplace transform has also been revealed.

Definition 4.1.1. Assume f : Na × Na → R. Then the delta double Laplace transform of f
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based at (a, a) is the successive application of the delta Laplace transform on x and y in any

order

L2[f(x, y)](p, q) = Lx[Ly{f(x, y); y → q};x→ p]

= Ly[Lx{f(x, y);x→ p}; y → q]

= Ly[F̃ (p, y); y → q]

= ˜̃F (p, q),

where Lx and Ly are the delta Laplace transforms (single) based at a with respect to x and y,

respectively and that L2 is the delta double Laplace transform based at (a, a). The delta double

Laplace transform of a function f(x, y) of two variables x and y is defined in p-q plane provided

that the following double sum converges

L2{f}(p, q) =

∫ ∞
a

∫ ∞
a

e	p(σ(x), a)e	q(σ(y), a)f(x, y)∆x∆y

for all complex numbers p 6= −1 and q 6= −1.

One can easily verify by using Lemma 4.1.2 that LxLy = LyLx. Later in Theorem 4.2,

we will prove that the double infinite series is absolutely convergent. It is well known that

absolutely convergent series behave nicely and change in the order of summation
∑∞

k=0

∑∞
j=0 is

allowed. Therefore, we can use LxLy = LyLx.

Lemma 4.1.2. Assume f : Na × Na → R.Then

L2[f(x, y)] =
∞∑
k=0

∞∑
j=0

f(a+ j, a+ k)

(p+ 1)j+1(q + 1)k+1

for all complex numbers p 6= −1 and q 6= −1 such that the infinite series converges.

Proof. By using the definition of the delta double Laplace transform, we have

L2{f}(p, q) =

∫ ∞
a

∫ ∞
a

e	p(σ(x), a)e	q(σ(y), a)f(x, y)∆x∆y.

45



Now by the definition of delta integral from discrete calculus, we get

L2{f}(p, q) =
∞∑
y=a

∞∑
x=a

e	p(σ(x), a)e	q(σ(y), a)f(x, y)

=
∞∑
y=a

∞∑
x=a

(1	 p)σ(x)−a(1	 q)σ(y)−af(x, y)

=
∞∑
y=a

∞∑
x=a

f(x, y)

(p+ 1)x+1−a(q + 1)y+1−a .

In preceding steps, we used the definition of delta exponential function and the fact that

1	 p = 1
1+p

and 1	 q = 1
1+q

, since p and q are regressive functions. In the following step, we let

x− a = j and y − a = k to re-index the sums as follow:

L2[f(x, y)] =
∞∑
k=0

∞∑
j=0

f(a+ j, a+ k)

(p+ 1)j+1(q + 1)k+1
.

Theorem 4.1. Assume that the functions f(x, y) : Na × Na → R, g(x) : Na → R and

h(y) : Na → R such that the delta double Laplace transforms exists, then the following holds:

(i) L2{g(x)}(p, q) = 1
q
Lx{g(x)}(p),

(ii) L2{h(y)}(p, q) = 1
p
Ly{h(y)}(q),

(iii) f(x, y) = g(x)h(y), impliesL2{f(x, y)}(p, q) = Lx{g(x)}(p)Ly{h(y)}(q).

Proof. Under the assumption stated above and by Lemma 4.1.2:

(i) For p 6= −1, q 6= 0,−1, we have

L2{g(x)}(p, q) =
∞∑
k=0

∞∑
j=0

g(a+ j)

(p+ 1)j+1(q + 1)k+1

=
∞∑
k=0

1

(q + 1)k+1

∞∑
j=0

g(a+ j)

(p+ 1)j+1

=
1

q
Lx{g(x)}(p).
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(ii) The proof is similar to part (i) for p 6= 0,−1, q 6= −1.

(iii) For p 6= −1, q 6= −1, we have

L2{f(x, y)}(p, q) =
∞∑
k=0

∞∑
j=0

g(a+ j)h(a+ k)

(p+ 1)j+1(q + 1)k+1

=
∞∑
j=0

g(a+ j)

(p+ 1)j+1

∞∑
k=0

h(a+ k)

(q + 1)k+1

= Lx{g(x)}(p)Ly{h(y)}(q).

Example 4.1.3. (i) If f(x, y) = 1 for x, y ∈ Na, then L2{1} = 1
pq
,

(ii) If f(x, y) = (x− a)m(y − a)n for x, y ∈ Na, then L2{(x− a)m(y − a)n} = m!n!
pm+1qn+1 .

(i) By Lemma 4.1.2

L2{1} =
∞∑
k=0

∞∑
j=0

1

(p+ 1)j+1(q + 1)k+1

=
∞∑
k=0

1

(q + 1)k+1

∞∑
j=0

1

(p+ 1)j+1

=
1

pq
, for p, q 6= 0,−1.

(ii) By using Theorem 4.1 part (iii), we get

L2{(x− a)m(y − a)n} = Lx{(x− a)m}Ly{(y − a)n}.

By using Lemma 2.1.27 on the right hand side of above equation

L2{(x− a)m(y − a)n} =
m!

pm+1
Ly{(y − a)n}

=
m!

pm+1

n!

qn+1
.

If we choose either m = 0 or n = 0, then as a special case of above equation

L2{(y − a)n} =
n!

pqn+1
, for p, q 6= 0,−1,

L2{(x− a)m} =
m!

pm+1q
, for p, q 6= 0,−1.
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Coon and Bernstein [49,66] defined the double Laplace transforms and discussed convergence

and existence for continuous case. We present now discrete analogue of the double Laplace

transforms.

Definition 4.1.4. Let f(x, y) : Na × Na → R, be a function of EO r1, r2 > 0 with respect

to x and y respectively. If there exists a constant A > 0 and m,n ∈ N0 such that for each

x ∈ Na+m and y ∈ Na+n, then inequality |f(x, y)| 6 Arx1r
y
2 holds, where A = max{A1, A2} for

|f(x, a)| 6 A1r
x
1 and |f(a, y)| 6 A2r

y
2.

Theorem 4.2. If a function f(x, y) : Na × Na → R is of EO r1, r2 > 0, then the delta double

Laplace transform L2{f}(p, q) converges absolutely for p and q provided that|p+ 1| > r1, and

|q + 1| > r2.

Proof. Assume f(x, y) : Na×Na → R is of EO r1, r2 > 0. Then there exists a constant A > 0 and

m,n ∈ N0 such that for each x ∈ Na+m and y ∈ Na+n, |f(x, y)| 6 Arx1r
y
2 . Thus for |p+ 1| > r1,

|q + 1| > r2 we consider the following:

∞∑
k=n

∞∑
j=m

∣∣∣ f(a+ j, a+ k)

(p+ 1)j+1(q + 1)k+1

∣∣∣ ≤ ∞∑
k=n

∞∑
j=m

Arj+a1 rk+a
2

|p+ 1|j+1|q + 1|k+1

=
Ara1r

a
2

|p+ 1| |q + 1|

∞∑
k=n

∞∑
j=m

( r1

|p+ 1|

)j( r2

|q + 1|

)k
=

Ara1r
a
2

|p+ 1| |q + 1|

(
r1
|p+1|

)m(
1− r1

|p+1|

)
(

r2
|q+1|

)n(
1− r2

|q+1|

)
=

Ara+m
1 ra+n

2

|p+ 1|m |q + 1|n
[
(|p+ 1| − r1) (|q + 1| − r2)

]
<∞.

Since |p+ 1| > r1 and |q + 1| > r2, therefore |p+ 1| − r1 > 0, |q + 1| − r2 > 0. Hence the delta

double Laplace transform of f converges absolutely.
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Theorem 4.2 ensures the existence of the delta double Laplace transform. In general, the converse

does not hold. We should consider functions f of some EO r > 0, to ensure the delta double

Laplace transform of f does converge somewhere in the complex plane outside the both closed

balls of radius r1 and r2, centered at −1, that is we can choose r = max{r1, r2} for |p+ 1| > r1,

|q + 1| > r2.

Theorem 4.3. Suppose f, g : Na × Na → R. If the delta double Laplace transform of f, g

converges for |p + 1| > r1, |q + 1| > r2, where r1, r2 > 0, and let c1, c2 ∈ C. Then the

delta double Laplace transform of c1f + c2g converges for |p + 1| > r1, |q + 1| > r2, and that

L2{c1f + c2g}(p, q) = c1L2{f}(p, q) + c2L2{g}(p, q) converges for |p+ 1| > r1, |q + 1| > r2.

Proof. Since f, g : Na × Na → R and the delta double Laplace transform of f, g converges for

|p+ 1| > r1, |q + 1| > r2, where r1, r2 > 0. We have that for |p+ 1| > r1, |q + 1| > r2,

c1L2{f}(p, q) + c2L2{g}(p, q) = c1

∞∑
k=0

∞∑
j=0

f(a+ j, a+ k)

(p+ 1)j+1(q + 1)k+1

+ c2

∞∑
k=0

∞∑
j=0

g(a+ j, a+ k)

(p+ 1)j+1(q + 1)k+1

=
∞∑
k=0

∞∑
j=0

(c1f + c2g)(a+ j, a+ k)

(p+ 1)j+1(q + 1)k+1

= L2{c1f + c2g}(p, q).

Theorem 4.3 exposed the linearity property of the delta double Laplace transform and

Theorem 4.4 revealed the uniqueness.

Theorem 4.4. Let f, g : Na × Na → R and r1 > 0, r2 > 0. If L2{f}(p, q) = L2{g}(p, q),

provided |p+ 1| > r1, |q + 1| > r2, with p, q 6= 0,−1, then f(x, y) = g(x, y) for all x, y ∈ Na.
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Proof. By hypothesis, we have

L2{f}(p, q) = L2{g}(p, q)

for |p+ 1| > r1, |q + 1| > r2. This implies that

∞∑
k=0

∞∑
j=0

f(a+ j, a+ k)

(p+ 1)j+1(q + 1)k+1
=
∞∑
k=0

∞∑
j=0

g(a+ j, a+ k)

(p+ 1)j+1(q + 1)k+1

for |p + 1| > r1, |q + 1| > r2. Since by Theorem 4.2, the double infinite series is absolute

convergent, therefore comparison of both sides of above equation imply that

f(a+ j, a+ k) = g(a+ j, a+ k), for all j, k ∈ N0.

For each fix j and for all y ∈ Na, this implies that

f(a+ j, y) = g(a+ j, y).

For each fix k, we get

f(x, y) = g(x, y), for all x, y ∈ Na.

4.2 Properties of the delta double Laplace transform

In this section, following by Bohner et al. [52] we prove some properties of the delta double

Laplace transform. We also define double convolution product of discrete functions following

convolution product (single) of discrete functions introduced by Goodrich and Peterson [103].

We present the delta double Laplace transform of double convolution product for later use to

solve difference equations.
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Theorem 4.5. Assume that f : Na × Na → R and L2[f(x, y)] exists. If L2[f(x, y)] = ˜̃F (p, q),

then

L2[f(x− α, y − β)H(x− α, y − β)] = e	p(α, 0)e	q(β, 0)

[
˜̃F (p, q)

−
c−a−1∑
s=0

c−a−1∑
F=0

f(a+ F, a+ s)

(p+ 1)F+1(q + 1)s+1

]
where H(x, y) is the Heaviside unit step function defined by,

H(x− α, y − β) =

{
0, if x− α, y − β ∈ Nc−1

a ,

1, if x− α, y − β ∈ Nc.

Proof. We have by Lemma 4.1.2,

L2[f(x− α, y − β)H(x− α, y − β)] =
∞∑
k=0

∞∑
j=0

f(a− α + j, a− β + k)H(a− α + j, a− β + k)

(p+ 1)j+1(q + 1)k+1

=
∞∑

k=β+c−a

∞∑
j=α+c−a

f(a− α + j, a− β + k)

(p+ 1)j+1(q + 1)k+1
.

Re-indexing by j − α = F and k − β = s,

L2[f(x− α, y − β)H(x− α, y − β)] =
∞∑

s=c−a

∞∑
F=c−a

f(a+ F, a+ s)

(p+ 1)α+F+1(q + 1)β+s+1

=
1

(p+ 1)α(q + 1)β

[ ∞∑
s=0

∞∑
F=0

f(a+ F, a+ s)

(p+ 1)F+1(q + 1)s+1

−
c−a−1∑
s=0

c−a−1∑
F=0

f(a+ F, a+ s)

(p+ 1)F+1(q + 1)s+1

]
=e	p(α, 0)e	q(β, 0)

[
˜̃F (p, q)

−
c−a−1∑
s=0

c−a−1∑
F=0

f(a+ F, a+ s)

(p+ 1)F+1(q + 1)s+1

]
.

In the last step, we use Lemma 4.1.2 with the fact e	p(α, 0) = 1
(p+1)α

and e	q(β, 0) = 1
(q+1)β

.

Theorem 4.5 gives a different result from its continuous counterpart stated in [71]. We state the

useful shifting Theorem 4.6 for discrete setting.

Theorem 4.6. Assume that f : Na × Na → R and L2[f(x, y)] exists. If L2[f(x, y)] = ˜̃F (p, q),

then
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(i) L2[f(x− (c− a), y − (c− a))H(x, y)] = 1
[(p+1)(q+1)]c−a

˜̃F (p, q),

(ii) L2[f(x+ (c− a), y + (c− a))] = [(p+ 1)(q + 1)]c−a
[

˜̃F (p, q)

−
∑c−a−1

s=0

∑c−a−1
F=0

f(a+F,a+s)
(p+1)F+1(q+1)s+1

]
,

where H(x, y) is the Heaviside unit step function defined by

H(x, y) =

{
0, if x, y ∈ Nc−1

a ,

1, if x, y ∈ Nc.

Proof. (i) We have by Lemma 4.1.2, L2[f(x− (c− a), y − (c− a))H(x, y)]

=
∞∑
k=0

∞∑
j=0

f(j + 2a− c, k + 2a− c)H(a+ j, a+ k)

(p+ 1)j+1(q + 1)k+1

=
∞∑

k=c−a

∞∑
j=c−a

f(j + 2a− c, k + 2a− c)
(p+ 1)j+1(q + 1)k+1

.

Re-indexing by F = j + a− c and s = k + a− c,

=
∞∑
s=0

∞∑
F=0

f(a+ F, a+ s)

(p+ 1)F+c−a+1(q + 1)s+c−a+1

=
1

[(p+ 1)(q + 1)]c−a

∞∑
s=0

∞∑
F=0

f(a+ F, a+ s)

(p+ 1)F+1(q + 1)s+1

=
1

[(p+ 1)(q + 1)]c−a
˜̃F (p, q).

(ii) By using of Lemma 4.1.2 and re-indexing by F = j + c− a and s = k + c− a,

L2[f(x+ (c− a), y + (c− a))] =
∞∑
k=0

∞∑
j=0

f(j + c, k + c)

(p+ 1)j+1(q + 1)k+1

=
∞∑

s=c−a

∞∑
F=c−a

f(a+ F, a+ s)

(p+ 1)F+a−c+1(q + 1)s+a−c+1

= [(p+ 1)(q + 1)]c−a
∞∑

s=c−a

∞∑
F=c−a

f(a+ F, a+ s)

(p+ 1)F+1(q + 1)s+1

= [(p+ 1)(q + 1)]c−a
[

˜̃F (p, q)−
c−a−1∑
s=0

c−a−1∑
F=0

f(a+ F, a+ s)

(p+ 1)F+1(q + 1)s+1

]
.
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Theorem 4.7. Assume that f(x, y) is periodic with periods T1, T2 ∈ N1 and L2[f(x, y)] exists,

then

L2[f(x, y)] =
1

[1− e	p(T1, 0)e	q(T2, 0)]

T1−1∑
j=0

T2−1∑
k=0

f(a+ j, a+ k)

(p+ 1)j+1(q + 1)k+1
.

Proof. Under the assumption, we have by Lemma 4.1.2,

L2[f(x, y)] =
∞∑
k=0

∞∑
j=0

f(a+ j, a+ k)

(p+ 1)j+1(q + 1)k+1

=

T2−1∑
k=0

T1−1∑
j=0

f(a+ j, a+ k)

(p+ 1)j+1(q + 1)k+1
+

∞∑
k=T2

∞∑
j=T1

f(a+ j, a+ k)

(p+ 1)j+1(q + 1)k+1

=

T2−1∑
k=0

T1−1∑
j=0

f(a+ j, a+ k)

(p+ 1)j+1(q + 1)k+1

+
∞∑
v=0

∞∑
u=0

f(a+ u+ T1, a+ v + T2)

(p+ 1)T1+u+1(q + 1)T2+v+1
.

In last step, we used j = T1 + u and k = T2 + v to re-index second double summation. In second

double summation, periodicity of f implies that

L2[f(x, y)] =

T2−1∑
k=0

T1−1∑
j=0

f(a+ j, a+ k)

(p+ 1)j+1(q + 1)k+1
+
∞∑
v=0

∞∑
u=0

f(a+ u, a+ v)

(p+ 1)T1+u+1(q + 1)T2+v+1

=

T2−1∑
k=0

T1−1∑
j=0

f(a+ j, a+ k)

(p+ 1)j+1(q + 1)k+1

+
[ 1

(p+ 1)

]T1[ 1

(q + 1)

]T2 ∞∑
v=0

∞∑
u=0

f(a+ u, a+ v)

(p+ 1)u+1(q + 1)v+1

=

T2−1∑
k=0

T1−1∑
j=0

f(a+ j, a+ k)

(p+ 1)j+1(q + 1)k+1

+ e	p(T1, 0)e	q(T2, 0)
∞∑
v=0

∞∑
u=0

f(a+ u, a+ v)

(p+ 1)u+1(q + 1)v+1

=

T2−1∑
k=0

T1−1∑
j=0

f(a+ j, a+ k)

(p+ 1)j+1(q + 1)k+1
+ e	p(T1, 0)e	q(T2, 0)L2[f(x, y)]

=
1

[1− e	p(T1, 0)e	q(T2, 0)]

T2−1∑
k=0

T1−1∑
j=0

f(a+ j, a+ k)

(p+ 1)j+1(q + 1)k+1
.
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Definition 4.2.1. Let f, g : Na × Na → R. The double convolution product is defined by,

(f ∗ ∗g)(x, y) =
x−1∑
r=a

y−1∑
s=a

f(r, s)g(x− σ(r) + a, y − σ(s) + a) for x, y ∈ Na

with empty sums convention (f ∗ ∗g)(a, a) = 0.

Lemma 4.2.2. Let f, g : Na×Na → R. The double convolution product is commutative, namely

(f ∗ ∗g)(x, y) = (g ∗ ∗f)(x, y) for x, y ∈ Na.

Proof. By Definition 4.2.1 and the change of variables x− r − 1 + a = u and y − s− 1 + a = v

(g ∗ ∗f)(x, y) =
x−1∑
r=a

y−1∑
s=a

g(r, s)f(x− σ(r) + a, y − σ(s) + a) for x, y ∈ Na,

=
x−1∑
u=a

y−1∑
v=a

g(x− σ(u) + a, y − σ(v) + a)f(u, v),

= (f ∗ ∗g)(x, y), for x, y ∈ Na.

Theorem 4.8. (Convolution theorem) Let f, g : Na × Na → R. If both L2[f(x, y)], and

L2[g(x, y)] exist, then the delta double Laplace transform of double convolution product is

L2{(f ∗ ∗g)(x, y)} = L2{f(x, y)}L2{g(x, y)}.

Proof. Under the assumption of Theorem we have by Lemma 4.1.2, and the fact (f ∗∗g)(a, a) = 0

L2{(f ∗ ∗g)(x, y)} =
∞∑
k=0

∞∑
j=0

(f ∗ ∗g)(a+ j, a+ k)

(p+ 1)j+1(q + 1)k+1

=
∞∑
k=1

∞∑
j=1

(f ∗ ∗g)(a+ j, a+ k)

(p+ 1)j+1(q + 1)k+1

=
∞∑
k=1

∞∑
j=1

1

(p+ 1)j+1(q + 1)k+1

×
a+k−1∑
r=a

a+j−1∑
s=a

f(r, s)g
(
a+ j − σ(r) + a, a+ k − σ(s) + a

)
.
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In last step, we used the Definition 4.2.1, next making the change of variables r → a+ r and

s→ a+ s gives us that

L2{(f ∗ ∗g)(x, y)} =
∞∑
k=1

∞∑
j=1

k−1∑
r=0

j−1∑
s=0

f(a+ r, a+ s)g(a+ j − σ(r), a+ k − σ(s))

(p+ 1)j+1(q + 1)k+1

=
∞∑
k=1

k−1∑
r=0

∞∑
j=1

j−1∑
s=0

f(a+ r, a+ s)g(a+ j − σ(r), a+ k − σ(s))

(p+ 1)j+1(q + 1)k+1

=
∞∑
r=0

∞∑
k=1

∞∑
s=0

∞∑
j=1

f(a+ r, a+ s)g(a+ j − σ(r), a+ k − σ(s))

(p+ 1)j+1(q + 1)k+1

=
∞∑
r=0

∞∑
F2=0

∞∑
s=0

∞∑
F1=0

f(a+ r, a+ s)g(a+ F1, a+ F2)

(p+ 1)F1+r+2(q + 1)F2+s+2

=
∞∑
s=0

∞∑
r=0

f(a+ r, a+ s)

(p+ 1)r+1(q + 1)s+1

∞∑
F2=0

∞∑
F1=0

g(a+ F1, a+ F2)

(p+ 1)F1+1(q + 1)F2+1

= L2{f(x, y)}L2{g(x, y)}.

In previous steps, we interchange the order of first pairs and second pairs of summation and

change variables j − r − 1 = F1 and k − s− 1 = F2.

Corollary 4.2.3. Let f, g : Na × Na → R. If f(x, y) = χ1(x)ψ1(y), and g(x, y) = χ2(x)ψ2(y)

and the delta Laplace transforms exists, then

L2{(f ∗ ∗g)(x, y)} = Lx{(χ1 ∗ χ2)(x)}Ly{(ψ1 ∗ ψ2)(y)},

where the product on right and left hand sides are given by Definition 4.2.1 and Definition 2.1.25,

respectively.

Proof. By double convolution theorem, we have

L2{(f ∗ ∗g)(x, y)} = L2{f(x, y)}L2{g(x, y).}

Since L2[f(x, y)] = L2[χ1(x)ψ1(y)] = Lx[χ1(x)]Ly[ψ1(y)],
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and L2[g(x, y)] = L2[χ2(x)ψ2(y)] = Lx[χ2(x)]Ly[ψ2(y)],

Consider L2{(f ∗ ∗g)(x, y)} = Lx[χ1(x)]Ly[ψ1(y)]Lx[χ2(x)]Ly[ψ2(y)]

= Lx[χ1(x)]Lx[χ2(x)]Ly[ψ1(y)]Ly[ψ2(y)]

= Lx{(χ1 ∗ χ2)(x)}Ly{(ψ1 ∗ ψ2)(y)}.

Last step followed from single convolution Lemma 2.1.26.

4.3 Delta double Laplace transform of partial differ-

ences

In this section, we examine the action of the delta double Laplace transform on first order

partial differences. The results developed for first order partial differences are further used to

establish properties of the delta double Laplace transform of generalized order partial difference,

similar to that appeared in [25] for fractional order partial derivatives. We usually consider

functions χ : Na × Na → R of EO r1, r2 > 0 with respect to x and y, respectively, ensuring that

delta and the delta double Laplace transform of χ(x, y) and its partial differences exist.

Lemma 4.3.1. Assume χ : Na × Na → R such that the delta Laplace transforms exists for

constants p 6= −1, q 6= −1.Then

Lx∆x[χ(x, y)] = pLx{χ(x, y)} − χ(a, y), (4.1)

Ly∆y[χ(x, y)] = qLy{χ(x, y)} − χ(x, a), (4.2)

Lx∆y[χ(x, y)] = ∆yLxχ(x, y), (4.3)

Ly∆x[χ(x, y)] = ∆xLyχ(x, y). (4.4)

Proof. By definition of the delta Laplace transform on x,

Lx∆x[χ(x, y)] =

∫ ∞
a

e	p(σ(x), a)∆xχ(x, y)∆x.
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Apply summation by parts Theorem 2.1.12 on x, and using the fact

∆x[e	p(σ(x), a)] = 	pe	p(x, a), we have that

Lx∆x[χ(x, y)] = e	p(x, a)χ(x, y)

∣∣∣∣∞
x=a

−
∫ ∞
a

χ(x, y)[	pe	p(x, a)]∆x.

Use the the fact e	p(x, a) = 1
(p+1)x−a

and 	p = −p
(p+1)

,

Lx∆x[χ(x, y)] =
1

(p+ 1)x−a
χ(x, y)

∣∣∣∣∞
x=a

−
∫ ∞
a

χ(x, y)

(
−p

(p+ 1)

)
e	p(x, a)∆x.

Since (p+ 1)e	p(σ(x), a) = e	p(x, a),

Lx∆x[χ(x, y)] = [0− χ(a, y)] + p

∫ ∞
a

χ(x, y)e	p(σ(x), a)∆x

= −χ(a, y) + pLx{χ(x, y)}

= pLx{χ(x, y)} − χ(a, y).

Let Lxχ(x, y) = ũ(p, y). Consider the left hand side of equation (4.3) and use the definition of

delta difference

Lx∆y[χ(x, y)] = Lx[χ(x, y + 1)− χ(x, y)].

By using linearity property of the delta Laplace transform, we get

Lx∆y[χ(x, y)] = Lxχ(x, y + 1)−Lxχ(x, y)

= ũ(p, y + 1)− ũ(p, y). (4.5)

Now consider the right hand side of equation (4.3) and use Lxχ(x, y) = ũ(p, y)

∆yLx[χ(x, y)] = ∆yũ(p, y).

By using the definition of delta difference, we get

∆yLx[χ(x, y)] = ũ(p, y + 1)− ũ(p, y). (4.6)
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Equality holds in equation (4.3) from equations (4.5) and (4.6). Proof of equations (4.2), (4.4)

is similar to those of equations (4.1), (4.3), respectively.

Theorem 4.9. Assume χ : Na × Na → R such that the delta double Laplace transforms exists

for constants p 6= −1, q 6= −1.Then

(i) L2∆x[χ(x, y)] = pL2{χ(x, y)} −Ly{χ(a, y)},

(ii) L2∆y[χ(x, y)] = qL2{χ(x, y)} −Lx{χ(x, a)}.

Proof. Since by definition the delta double Laplace transform is the successive application of

the delta Laplace transform on x and y in any order, therefore L2 = LxLy = LyLx.

(i) Consider

L2∆x[χ(x, y)] = Ly[Lx∆xχ(x, y)].

By using equation (4.1) of Lemma 4.3.1 , we get

L2∆x[χ(x, y)] = Ly[pLx{χ(x, y)} − χ(a, y)].

Use linearity property of the delta Laplace transform for Ly,

L2∆x[χ(x, y)] = pL2{χ(x, y)} −Lyχ(a, y)].

(ii) The proof is similar to that of part (i).

Note that for constant a, ∆x{χ(a, y)} = χ(a, y)−χ(a, y) = 0. We adopt the following symbols

in our result which are non zero in general ∆x{χ(a, y)} = ∆x{χ(x, y)}
∣∣∣∣
x=a

, ∆y{χ(x, a)} =

∆y{χ(x, y)}
∣∣∣∣
y=a

that is first we take difference and then evaluate at a.

Lemma 4.3.2. Assume χ : Na×Na → R such that delta Laplace transforms exist for constants

p 6= −1, q 6= −1.Then
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(i) Lx∆
2
x[χ(x, y)] = p2Lx{χ(x, y)} − pχ(a, y)−∆x{χ(a, y)},

(ii) Ly∆
2
y[χ(x, y)] = q2Ly{χ(x, y)} − qχ(x, a)−∆y{χ(x, a)},

(iii) Lx∆xy[χ(x, y)] = pLx∆y{χ(x, y)} −∆y{χ(a, y)},

(iv) Ly∆xy[χ(x, y)] = qLy∆x{χ(x, y)} −∆x{χ(x, a)}.

Theorem 4.10. Assume χ : Na ×Na → R, such that delta double Laplace transforms exists for

constants p 6= −1, q 6= −1.Then

(i) L2∆2
x[χ(x, y)] = p2L2{χ(x, y)} − pLy{χ(a, y)} −Ly∆x{χ(a, y)},

(ii) L2∆2
y[χ(x, y)] = q2L2{χ(x, y)} − qLx{χ(x, a)} −Lx∆y{χ(x, a)},

(iii) L2∆xy[χ(x, y)] = pqL2[χ(x, y)]− qLy{χ(a, y)} − pLx{χ(x, a)}+ χ(a, a).

Proof. (iii) Consider

L2∆xy[χ(x, y)] = LxLy∆xy[χ(x, y)].

Using Lemma 4.3.2 part (iv), we have

L2∆xy[χ(x, y)] = Lx[qLy∆x{χ(x, y)} −∆x{χ(x, a)}].

By linearity property of delta Laplace transform for Lx and the fact that LxLy = LyLx,

L2∆xy[χ(x, y)] = qLy[Lx∆x{χ(x, y)}]−Lx[∆x{χ(x, a)}].

Equation (4.1) of Lemma 4.3.1 and linearity property of delta Laplace transform for Ly imply

that

L2∆xy[χ(x, y)] = pqL2{χ(x, y)} − qLyχ(a, y)− pLx{χ(x, a)}+ χ(a, a).
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Now, we generalized the results for non negative integer m and n.

Lemma 4.3.3. Assume χ : Na × Na → R such that the delta Laplace transforms exists for

constants p 6= −1, q 6= −1.Then

(i) Lx∆
n
x[χ(x, y)] = pnLx{χ(x, y)} −

∑n−1
k=0 p

n−1−k∆k
xχ(a, y),

(ii) Ly∆
m
y [χ(x, y)] = qmLy{χ(x, y)} −

∑m−1
j=0 qm−1−j∆j

yχ(x, a),

(iii) Lx∆
nm
xy [χ(x, y)] = pnLx∆

m
y {χ(x, y)} −

∑n−1
k=0 p

n−1−k∆k
x∆

m
y χ(a, y),

(iv) Ly∆
nm
xy [χ(x, y)] = qmLy∆

n
x{χ(x, y)} −

∑m−1
j=0 qm−1−j∆n

x∆j
yχ(x, a).

Proof. (i) We prove this part by induction on n. The case for n = 1 has been proved in

Lemma 4.3.1. Assume that the result is true for n ≥ 1,

Lx∆
n
x[χ(x, y)] = pnLx{χ(x, y)} −

n−1∑
k=0

pn−1−k∆k
xχ(a, y).

We will establish result for n+ 1, start with the following

Lx∆
n+1
x [χ(x, y)] = Lx[∆x∆

n
xχ(x, y)].

Let φ(x, y) = ∆n
x[χ(x, y)] we have that

Lx∆
n+1
x [χ(x, y)] = Lx[∆xφ(x, y)].

Again using equation (4.1) of Lemma 4.3.1,

Lx∆
n+1
x [χ(x, y)] = pLx{φ(x, y)} − φ(a, y)]

= pLx{∆n
x[χ(x, y)]} −∆n

x[χ(a, y)].
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By using assumption for n,

Lx∆
n+1
x [χ(x, y)] = p[pnLx{χ(x, y)} −

n−1∑
k=0

pn−1−k∆k
xχ(a, y)]−∆n

x[χ(a, y)]

= pn+1Lx{χ(x, y)} −
n−1∑
k=0

pn−k∆k
xχ(a, y)− pn−n∆n

x[χ(a, y)]

= pn+1Lx{χ(x, y)} −
n∑
k=0

pn−k∆k
xχ(a, y).

The result holds for n+ 1, whenever it holds for n. Hence by induction, result in part (i) holds.

(ii) We prove this part by induction on m, case for m = 1 has been proved in Lemma 4.3.1.

Assume that the result is true for m ≥ 1,

Ly∆
m
y [χ(x, y)] = qmLy{χ(x, y)} −

m−1∑
j=0

qm−1−j∆j
yχ(x, a).

We will establish result for m+ 1, begin with the following

Ly∆
m+1
y [χ(x, y)] = Ly[∆y∆

m
y χ(x, y)].

Let φ(x, y) = ∆m
y [χ(x, y)], we have that

Ly∆
m+1
y [χ(x, y)] = Ly[∆yφ(x, y)].

Again using equation (4.2) of Lemma 4.3.1,

Ly∆
m+1
y [χ(x, y)] = qLy{φ(x, y)} − φ(x, a)]

= qLy{∆m
y [χ(x, y)]} −∆m

y [χ(x, a)].

By using assumption for m,

Ly∆
m+1
x [χ(x, y)] = q[qmLx{χ(x, y)} −

m−1∑
j=0

qm−1−j∆j
yχ(x, a)]−∆m

y [χ(x, a)]

= qm+1Ly{χ(x, y)} −
m−1∑
j=0

qm−j∆j
yχ(x, a)− qm−m∆m

y [χ(x, a)]

= qm+1Ly{χ(x, y)} −
m∑
j=0

qm−j∆j
yχ(x, a).
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The result holds for m + 1, whenever it holds for m. Hence by induction, result in part (ii)

holds.

(iii)

Lx∆
nm
xy [χ(x, y)] = Lx∆

n
x[∆m

y χ(x, y)].

Let ψ(x, y) = ∆m
y χ(x, y), and use part (i) of the same Lemma,

Lx∆
nm
xy [χ(x, y)] = Lx∆

n
x[ψ(x, y)]

= pnLx{ψ(x, y)} −
n−1∑
k=0

pn−1−k∆k
xψ(a, y)

= pnLx∆
m
y {χ(x, y)} −

n−1∑
k=0

pn−1−k∆k
x∆

m
y χ(a, y).

Proof of (iv) is similar to that of part (iii).

Theorem 4.11. Assume χ : Na × Na → R such that the delta double Laplace transforms exists

for constants p 6= −1, q 6= −1. Then

(i) L2∆n
x[χ(x, y)] = pnL2{χ(x, y)} −

∑n−1
k=0 p

n−1−kLy{∆k
xχ(a, y)},

(ii) L2∆m
y [χ(x, y)] = qmL2{χ(x, y)} −

∑m−1
j=0 qm−1−jLy{∆j

yχ(x, a)},

(iii) L2∆nm
xy [χ(x, y)] = pnqm

[
L2{χ(x, y)} −

∑n−1
k=0 p

−1−kLy{∆k
xχ(a, y)}

−
∑m−1

j=0 q−1−jLx{∆j
yχ(x, a)}+

∑m−1
j=0

∑n−1
k=0 p

−1−kq−1−j{∆kj
xyχ(a, a)}

]
.

Proof. Since by definition, the delta double Laplace transform is the successive application of

the delta Laplace transform on x and y in any order, therefore L2 = LxLy = LyLx.
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(i) Using Lemma 4.3.3 part (i) and linearity of Laplace, we consider the following

L2∆n
x[χ(x, y)] = Ly[Lx∆

n
xχ(x, y)]

= Ly[p
nLx{χ(x, y)} −

n−1∑
k=0

pn−1−k∆k
xχ(a, y)]

= pnLyLx{χ(x, y)} −Ly

n−1∑
k=0

pn−1−k∆k
xχ(a, y)

= pnL2{χ(x, y)} −
n−1∑
k=0

pn−1−kLy{∆k
xχ(a, y)}.

(ii) Using Lemma 4.3.3 part (ii) and linearity of Laplace, we consider the following

L2∆m
y [χ(x, y)] = Lx[Ly∆

m
y χ(x, y)]

= Lx[q
mLy{χ(x, y)} −

m−1∑
j=0

qm−1−j∆j
yχ(x, a)]

= qmLxLy{χ(x, y)} −Lx

m−1∑
j=0

qm−1−j∆j
yχ(x, a)

= qmL2{χ(x, y)} −
m−1∑
j=0

qm−1−jLx{∆j
yχ(x, a)}.

(iii) Using Lemma 4.3.3 part (iii) and linearity of Laplace, we consider the following,

L2∆nm
xy [χ(x, y)] = Ly[Lx∆

nm
xy χ(x, y)]

= Ly[p
nLx∆

m
y {χ(x, y)} −

n−1∑
k=0

pn−1−k∆k
x∆

m
y χ(a, y)]

= pn[LyLx∆
m
y {χ(x, y)}]− pn

n−1∑
k=0

p−1−k
[
Ly∆

k
x∆

m
y χ(a, y)

]
= pn[L2∆m

y {χ(x, y)}]− pn
n−1∑
k=0

p−1−k
[
qmLy∆

k
x{χ(a, y)}

−
m−1∑
j=0

qm−1−j∆k
x∆

j
yχ(a, a)

]
.

In previous step, we used Lemma 4.3.3 part (iv). In following step, using Theorem 4.11 part
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(ii),

L2∆nm
xy [χ(x, y)] = pn

[
qmL2{χ(x, y)} −

m−1∑
j=0

qm−1−jLy{∆j
yχ(x, a)}

]
− pn

n−1∑
k=0

p−1−k
[
qmLy∆

k
x{χ(a, y)} −

m−1∑
j=0

qm−1−j∆k
x∆

j
yχ(a, a)

]
= pnqm

[
L2{χ(x, y)} −

n−1∑
k=0

p−1−kLy{∆k
xχ(a, y)}

−
m−1∑
j=0

q−1−jLx{∆j
yχ(x, a)}+

m−1∑
j=0

n−1∑
k=0

p−1−kq−1−j{∆kj
xyχ(a, a)}

]
.

Now, we solve partial difference equation.

Example 4.3.4. (a) Consider the partial difference equation

∆xχ(x, y)−∆yχ(x, y) = 0

with χ(x, a) =(x− a)1, χ(a, y) = (y − a)1.

Application of the delta Laplace transform to initial conditions by Lemma 2.1.27,

Lxχ(x, a) = Lx(x− a) 1 =
1

p2
, Lyχ(a, y) = Ly(y − a) 1 =

1

q2
.

Apply the delta double Laplace transform to difference equation and then use linearity property

L2[∆xχ(x, y)−∆yχ(x, y)] = 0,

L2∆xχ(x, y)−L2∆yχ(x, y) = 0.

Using Theorem 4.9,

[pL2{χ(x, y)} −Ly{χ(a, y)}]− [qL2{χ(x, y)} −Lx{χ(x, a)}] = 0, (4.7)

(p− q)L2{χ(x, y)} =
1

q2
− 1

p2
,

L2{χ(x, y)} =
1

pq2
+

1

p2q
.
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Inverting the delta Laplace transform pairs

χ(x, y) = (x− a)1 + (y − a)1.

(b) Consider the same partial difference equation as in (a) with slight different initial conditions

χ(x, a) = (x− a)2, and χ(a, y) = (y − a)2.

Application of the delta Laplace transform to initial conditions by Lemma 2.1.27,

Lxχ(x, a) = Lx(x− a) 2 =
2

p3
,Lyχ(a, y) = Ly(y − a) 2 =

2

q3
.

From equation (4.7) (p− q)L2{χ(x, y)} =
2

q3
− 2

p3
,

L2{χ(x, y)} =
2

pq3
+

2

p2q2
+

2

p3q
.

Inverting delta Laplace transform pairs

χ(x, y) = (x− a)2 + 2(x− a)1 (y − a)1 + (y − a)2.

Let f : Na → R, then the RL FDO N − 1 < α ≤ N for N ∈ N1 is given by ∆α
af(x) =

∆N∆
−(N−α)
a f(x) for x ∈ Na+N−α. By using the discussion and results from Theorem 2.65 to

Theorem 2.70 in [103], we take the starting point of the double Laplace a+α−N and a+N −α,

respectively for sum and difference operator.

Corollary 4.3.5. Assume χ : Na×Na → R such that the delta double Laplace transforms exists

for constants p 6= 0,−1, q 6= 0,−1 and denote L2χ(x, y) = ˜̃u(p, q). Then for dN − αe = M and

dk + α−Ne = L, the delta double Laplace transforms of fractional order operators is given by

(i) L2[∆−αa χ(x, y)](p, q) =
(p+ 1)α−N(q + 1)α−N

pαqα
˜̃u(p, q), where N − 1 < α < N,

65



(ii) L2[∆α
xχ(x, y)](p, q) =pαqα−N(p+ 1)N−α−M(q + 1)N−α−M ˜̃u(p, q)

−
N−1∑
k=0

pN−1−k
[
qk+α−N(q + 1)L−(k+α−N)ũ(a, q)

−
L−1∑
j=0

qj∆k+α−N−1
x χ(a, a+ L− (k + α−N))

]
,

(4.8)

(iii) L2[∆α
yχ(x, y)](p, q) =pα−Nqα(p+ 1)N−α−M(q + 1)N−α−M ˜̃u(p, q)

−
N−1∑
k=0

qN−1−k
[
pk+α−N(p+ 1)L−(k+α−N)ũ(p, a)

−
L−1∑
j=0

pj∆k+α−N−1
y χ(a+ L− (k + α−N), a)

]
.

Proof. (i) Proof is an implication of Definition 4.1.1 and Theorem 2.67 in [103].

(ii) Result is obtained by application of Theorem 4.11 part (i) and Theorem 2.70 in [103]. (iii)

Result is obtained by application of Theorem 4.11 part (ii) and Theorem 2.70 in [103].

Example 4.3.6. Consider the fractional difference equation for 0 < α < 1,

∆α
xχ(x, y) = (y − a)1 with χ(a, y) = 0. (4.9)

Apply the delta Laplace transforms to initial condition Lyχ(a, y) = Ly0 = 0. For 0 < α < 1,

we have N = 1 which implies k = 0 and hence dk + α − 1e = L = 0, and d1 − αe = M = 1.

Application of the delta double Laplace transforms on both sides of FDE in (4.9) and making use

of equation (4.8) on left hand side, and on the right hand side we used Example 4.1.3 to obtain,

pαqα−1

(p+ 1)α(q + 1)α
˜̃u(p, q)− p0qα−1(q + 1)1−αũ(a, q) =

1

pq2
.

Using ũ(a, q) = 0 and simplifying the above

˜̃u(p, q) =
(p+ 1)α(q + 1)α

pα+1qα+1
.
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Inverting the delta Laplace transforms pairs by making use of Theorem 4.1 (iii), together

with Lemma 2.1.27 (iii),

χ(x, y) =
(x− a)α

Γ(α + 1)

(y − a)α

Γ(α + 1)
.

4.4 Delta Laplace transform of Hilfer like fractional dif-

ference

Findings of this section appeared in [109]. In this section, we presented the delta Laplace trans-

form for newly defined Hilfer fractional difference operator. Note that, if in Theorem 4.12, we

set ϕ = 0, then we recovered [103, Theorem 2.70]. Further, if we set ϕ = 1, we obtained the

delta Laplace transform for the Caputo FD.

Theorem 4.12. Assume f : Na → R is of EO r > 1 with that La{f(x)}(y) = F̃a(y) and

0 < ϑ < 1, 0 ≤ ϕ ≤ 1. Then for |y + 1| > r we have the delta Laplace transform given as

La+1−ϑ{∆ϑ,ϕ
a f}(y) =yϑ(y + 1)1−ϑF̃a(y)

− (y + 1)ϕ(1−ϑ)

yϕ(1−ϑ)
∆−(1−ϕ)(1−ϑ)
a f(a+ (1− ϕ)(1− ϑ)).

Proof: Considering the left hand side and using the Lemmas 2.1.22 and 2.1.23,

La+1−ϑ{∆ϑ,ϕ
a f}(y) =La+1−ϑ[∆

−ϕ(1−ϑ)
a+(1−ϕ)(1−ϑ)∆∆−(1−ϕ)(1−ϑ)

a f(x)](y)

=
(y + 1)ϕ(1−ϑ)

yϕ(1−ϑ)
La+(1−ϕ)(1−ϑ)[∆∆−(1−ϕ)(1−ϑ)

a f(x)](y)

=
(y + 1)ϕ(1−ϑ)

yϕ(1−ϑ)

[
yLa+(1−ϕ)(1−ϑ)[∆

−(1−ϕ)(1−ϑ)
a f(x)](y)

−∆−(1−ϕ)(1−ϑ)
a f(a+ (1− ϕ)(1− ϑ))

]
=

(y + 1)ϕ(1−ϑ)

yϕ(1−ϑ)

[
y

(y + 1)(1−ϕ)(1−ϑ)

y(1−ϕ)(1−ϑ)
La[f(x)](y)

−∆−(1−ϕ)(1−ϑ)
a f(a+ (1− ϕ)(1− ϑ))

]
=yϑ(y + 1)1−ϑF̃a(y)

− (y + 1)ϕ(1−ϑ)

yϕ(1−ϑ)
∆−(1−ϕ)(1−ϑ)
a f(a+ (1− ϕ)(1− ϑ)).
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4.5 Delta Laplace transform of substantial fractional dif-

ference, exponential shift and double exponential shift

property

Some findings of this section appeared in [108]. In this section, we introduce an important

shifting property which is missing in the theory of delta Laplace transform. Only few simple

cases have been addressed by implication of the definition [103, Theorem 2.10,Theorem 2.11].

Also delta Laplace transform of substantial operators and double exponential shift property of

delta Laplace transform have been presented too.

Lemma 4.5.1. Let L{f(x)}(y) = F̃ (y). Then for c ∈ R,

(i) L{ec(x, a)f(x)}(y) = 1
1+c

F̃ (y 	 c), where y 	 c = y−c
1+c

,

(ii) L{ec(−x, 0)f(x)}(y) = (1 + c)F̃ (y ⊕ c).

Proof. (i) By Definition 2.1.19 of delta Laplace transform on a,

La{ec(x, a)f(x)}(y) =

∫ ∞
a

e	y(σ(x), a)ec(x, a)f(x)∆x.

By Example 2.1.8 and by additive inverse property

La{ec(x, a)f(x)}(y) =
1

1 + c

∫ ∞
a

e	y(σ(x), a)e	[	c](σ(x), a)f(x)∆x.

By using Lemma 2.1.13,

La{ec(x, a)f(x)}(y) =
1

1 + c

∫ ∞
a

e	[y	c](σ(x), a)f(x)∆x.

Again by Definition 2.1.19 of delta Laplace transform,

La{ec(x, a)f(x)}(y) =
1

1 + c
F̃ (y 	 c).
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(ii) By using the fact that ec(−x, 0) = e	c(x, 0) = (1 + c)e	c(σ(x), 0), one can prove it on the

similar line as in part (i).

Theorem 4.13. Assume f : Na → R is of EO r > 1 with that La{f(x)}(y) = F̃a(y) and ϑ > 0.

Then for |y + 1| > r we have La+ϑ{ s∆−ϑa f}(y) =
(
y+1
y+p

)ϑ
F̃a(y).

Proof. Considering the left hand side for −p ∈ R and using the Lemma 3.2.6(i),

La+ϑ{ s∆−ϑa f}(y) =La+ϑ[e−p(x, 0)∆−ϑa {e−p(−x, 0)f(x)}](y)

=
1

1− p

[
La+ϑ∆−ϑa {e−p(−x, 0)f(x)}(y)

]
y→ y+p

1−p

=
1

1− p

[(y + 1)ϑ

yϑ
La{e−p(−x, 0)f(x)}(y)

]
y→ y+p

1−p

.

In the preceding steps, we used Lemma 4.5.1(i) and then Lemma 2.1.22. In the following step

we applying Lemma 4.5.1(ii),

La+ϑ{ s∆−ϑa f}(y) =
1

1− p

[(y + 1)ϑ

yϑ
{(1− p)F̃a(y ⊕ (−p))}

]
y→ y+p

1−p

=
[(y + 1)ϑ

yϑ
{F̃a(y − p− yp)}

]
y→ y+p

1−p

=
(y + 1

y + p

)ϑ
F̃a(y).

Theorem 4.14. Assume f : Na → R is of EO r ≥ 1 with that La{f(x)}(y) = F̃a(y) and

m− 1 < ϑ < m with positive integer m. Then for |y + 1| > r,

La+m−ϑ{ s∆ϑ
af}(y) =

(y + p)ϑ

(1− p)m
(y + 1)m−ϑ{F̃a(y)} − 1

1− p

m−1∑
j=0

(y + p

1− p

)j
×

a+m−1−j∑
F=a

h−ϑ−1(a+m− ϑ, σ(F))e−p(−F, 0)f(F).
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Proof. Consider the left hand side for −p ∈ R and use Lemma 3.2.6 (ii),

La+m−ϑ{ s∆ϑ
af}(y) =La+m−ϑ[e−p(x, 0)∆ϑ

a+ϑ{e−p(−x, 0)f(x)}](y)

=
1

1− p

[
La+m−ϑ∆ϑ

a+ϑ{e−p(−x, 0)f(x)}(y)
]
y→ y+p

1−p

=
1

1− p

[
yϑ(y + 1)m−ϑLa{e−p(−x, 0)f(x)}(y)

−
m−1∑
j=0

yj
{

∆ϑ−1−j
a e−p(−x, 0)f(x)

}
x→a+m−ϑ

]
y→ y+p

1−p

.

In the preceding steps, we used Lemma 4.5.1(i) and then Lemma 2.1.24. In the following step

we apply Lemma 4.5.1(ii) and Definition 2.1.17,

La+m−ϑ{ s∆ϑ
af}(y) =

1

1− p

[
yϑ(y + 1)m−ϑ{(1− p)F̃a(y ⊕ (−p))} −

m−1∑
j=0

yj

{ x+ϑ−1−j∑
F=a

h−ϑ−1(x, σ(F))e−p(−F, 0)f(F)
}
x→a+m−ϑ

]
y→ y+p

1−p

=
1

1− p

[
yϑ(y + 1)m−ϑ{(1− p)F̃a(y − p− yp)} −

m−1∑
j=0

yj

×
a+m−1−j∑

F=a

h−ϑ−1(a+m− ϑ, σ(F))e−p(−F, 0)f(F)
]
y→ y+p

1−p

=
(y + p)ϑ

(1− p)m
(y + 1)m−ϑ{F̃a(y)} − 1

1− p

m−1∑
j=0

(y + p

1− p

)j
×

a+m−1−j∑
F=a

h−ϑ−1(a+m− ϑ, σ(F))e−p(−F, 0)f(F).

The product of two exponential function in continuous calculus ec1xec2y = ec1x+c2y, motivate

the product of two delta exponential function in discrete calculus ec1(x, a)ec2(y, a). Surprisingly,

analogous result ec(x, a)ec(y, a) = ec(x+ y, a), x, y ∈ Na, does not holds in general for discrete

case, where c ∈ R. However ec(x, a)ec(y, 0) = ec(x, 0)ec(y, a) = ec(x + y, a) hold but it is not

useful for isolated time scale unless a = 0. Further, more generally ec(x, a−b)ec(y, b) = ec(x+y, a)

where c ∈ R on all Na,Nb and Na−b. Note that c ∈ R on Na does not ensure c ∈ R on Nb, as a
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counter example x− 2 ∈ R on N 1
2

but not on N1. The product ec1(x, a)ec2(y, a) = ec1⊗c2(x, y, a)

is defined as unique solution of IVP.

Definition 4.5.2. Assume c1, c2 ∈ R. Denote the double delta exponential function by

ec1⊗c2(x, y, a) which define to be the unique solution ec1(x, a)ec2(y, a) for x, y ∈ Na of the

IVP

c2∆xχ(x, y)− c1∆yχ(x, y) = 0, χ(a, a) =1.

Note that for derivation of double delta exponential function by application of delta double

Laplace transform, we need two initial conditions.

Theorem 4.15. Let c1, c2 ∈ R. Then the IVP

c2∆xχ(x, y)− c1∆yχ(x, y) = 0,

with χ(x, a) =ec1(x, a), χ(a, y) = ec2(y, a).

has a unique solution χ(x, y) = ec1(x, a)ec2(y, a) for x, y ∈ Na.

Proof. Let L2{χ(x, y)}(p, q) = ˜̃U(p, q). Applying delta double Laplace transform on partial

difference equation and using linearity property of delta double Laplace transform Theorem 4.3,

c2L2∆xχ(x, y)− c1L2∆yχ(x, y) = 0.

Using Theorem 4.9,

c2[pL2χ(x, y)−Lyχ(a, y)]− c1[qL2χ(x, y)−Lxχ(x, a)] = 0.

Take delta Laplace of initial conditions by using Example 2.1.21, Lxχ(x, a) = 1
p−c1 and

71



Lyχ(a, y) = 1
q−c2 ,

[c2p− c1q]
˜̃U(p, q) =

c1

p− c1

− c2

q − c2

,

=
c2p− c1c2 − c1q + c1c2

(p− c1)(q − c2)
,

˜̃U(p, q) =
1

(p− c1)(q − c2)
.

Inverting delta Laplace transform pairs

χ(x, y) = ec1(x, a)ec2(y, a).

To find the discrete analogue of [71, Equations 11–15], first we define the following.

Definition 4.5.3. Let c1, c2 ∈ R. Then delta hyperbolic cosine and sine functions for x, y ∈ Na

are defined as follows:

coshc1⊗c2(x, y, a) =:
ec1⊗c2(x, y, a) + e−c1⊗−c2(x, y, a)

2
,

sinhc1⊗c2(x, y, a) =:
ec1⊗c2(x, y, a) − e−c1⊗−c2(x, y, a)

2
.

Definition 4.5.4. Let c1, c2 ∈ R. Then delta trigonometric cosine and sine functions for

x, y ∈ Na are defined as follows:

cosc1⊗c2(x, y, a) =:
eic1⊗ic2(x, y, a) + e−ic1⊗−ic2(x, y, a)

2
,

sinc1⊗c2(x, y, a) =:
eic1⊗ic2(x, y, a) − e−ic1⊗−ic2(x, y, a)

2i
.

Example 4.5.5. For p 6= −1, c1 and q 6= −1, c2

(i) L2{ec1⊗c2(x, y, a)} = 1
(p−c1)(q−c2)

,
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(ii) L2∆x{ec1⊗c2(x, y, a)} = c1L2{ec1⊗c2(x, y, a)},

(iii) L2∆y{ec1⊗c2(x, y, a)} = c2L2{ec1⊗c2(x, y, a)},

(iv) L2∆2
x{ec1⊗c2(x, y, a)} = c2

1L2{ec1⊗c2(x, y, a)},

(v) L2∆2
y{ec1⊗c2(x, y, a)} = c2

2L2{ec1⊗c2(x, y, a)},

(vi) L2∆xy{ec1⊗c2(x, y, a)} = c1c2L2{ec1⊗c2(x, y, a)}.

(i) For p 6= −1, c1; q 6= −1, c2. By using Theorem 4.1 part (iii), we get

L2{ec1⊗c2(x, y, a)} = L2[ec1(x, a)ec2(y, a)]]

= Lx[ec1(x, a)]Ly[ec2(y, a)]

By using Example 2.1.21 = 1
(p−c1)(q−c2)

.

(ii) By Theorem 4.9 part (i),

L2∆x{ec1⊗c2(x, y, a)} =
p

(p− c1)(q − c2)
− 1

q − c2

=
c1

(p− c1)(q − c2)

= c1L2{ec1⊗c2(x, y, a)}.

(iii) By Theorem 4.9 part (ii),

L2∆y{ec1⊗c2(x, y, a)} =
q

(p− c1)(q − c2)
− 1

p− c1

=
c2

(p− c1)(q − c2)

= c2L2{ec1⊗c2(x, y, a)}.

(iv) First note that Ly∆x{ec1⊗c2(a, y, a)} = c1
q−c2 . Then by Theorem 4.10 part (i).

L2∆2
x{ec1⊗c2(x, y, a)} =

p2

(p− c1)(q − c2)
− p

q − c2

− c1

q − c2

=
c2

1

(p− c1)(q − c2)

= c2
1L2{ec1⊗c2(x, y, a)}.
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(v) Observe that Lx∆y{ec1⊗c2(x, a, a)} = c2
p−c1 . By Theorem 4.10 part (ii), we get

L2∆2
y{ec1⊗c2(x, y, a)} =

q2

(p− c1)(q − c2)
− q

p− c1

− c2

p− c1

=
c2

2

(p− c1)(q − c2)

= c2
2L2{ec1⊗c2(x, y, a)}.

(vi) By Theorem 4.10 part (iii), we get

L2∆xy{ec1⊗c2(x, y, a)} =
pq

(p− c1)(q − c2)
− q

q − c2

− p

p− c1

+ 1

=
c1c2

(p− c1)(q − c2)

= c1c2L2{ec1⊗c2(x, y, a)}.

Example 4.5.6. For p 6= −1,±c1 and q 6= −1,±c2

(i) L2{coshc1⊗c2(x, y, a)} = pq+c1c2
(p2−c21)(q2−c22)

,

(ii) L2{sinhc1⊗c2(x, y, a)} = c1q+c2p
(p2−c21)(q2−c22)

,

(iii) L2∆x{coshc1⊗c2(x, y, a)} = c1L2{sinhc1⊗c2(x, y, a)},

(iv) L2∆y{coshc1⊗c2(x, y, a)} = c2L2{sinhc1⊗c2(x, y, a)},

(v) L2∆x{sinhc1⊗c2(x, y, a)} = c1L2{coshc1⊗c2(x, y, a)},

(vi) L2∆y{sinhc1⊗c2(x, y, a)} = c2L2{coshc1⊗c2(x, y, a)},

(vii) L2∆2
x{coshc1⊗c2(x, y, a)} = c2

1L2{coshc1⊗c2(x, y, a)},

(viii) L2∆2
y{coshc1⊗c2(x, y, a)} = c2

2L2{coshc1⊗c2(x, y, a)},

(ix) L2∆2
x{sinhc1⊗c2(x, y, a)} = c2

1L2{sinhc1⊗c2(x, y, a)},

(x) L2∆2
y{sinhc1⊗c2(x, y, a)} = c2

2L2{sinhc1⊗c2(x, y, a)},
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(xi) L2∆xy{coshc1⊗c2(x, y, a)} = c1c2L2{coshc1⊗c2(x, y, a)},

(xii) L2∆xy{sinhc1⊗c2(x, y, a)} = c1c2L2{sinhc1⊗c2(x, y, a)}.

(i) For p 6= −1,±c1; q 6= −1,±c2,

L2{coshc1⊗c2(x, y, a)} = L2

[
ec1⊗c2(x, y, a) + e−c1⊗−c2(x, y, a)

2

]
=

[ 1
(p−c1)(q−c2)

+ 1
(p+c1)(q+c2)

2

]
=

pq + c1c2

(p2 − c2
1)(q2 − c2

2)
.

(ii) For p 6= −1,±c1; q 6= −1,±c2,

L2{sinhc1⊗c2(x, y, a)} = L2

[
ec1⊗c2(x, y, a) − e−c1⊗−c2(x, y, a)

2

]
=

[ 1
(p−c1)(q−c2)

− 1
(p+c1)(q+c2)

2

]
=

c1q + c2p

(p2 − c2
1)(q2 − c2

2)
.

Remaining parts can be obtained by application of Theorem 4.9 and Theorem 4.10.

Example 4.5.7. For p 6= −1,±ic1; q 6= −1,±ic2,

(i) L2{cosc1⊗c2(x, y, a)} = pq−c1c2
(p2+c21)(q2+c22)

,

(ii) L2{sinc1⊗c2(x, y, a)} = c1q+c2p
(p2+c21)(q2+c22)

,

(iii) L2∆x{cosc1⊗c2(x, y, a)} = −c1L2{sinc1⊗c2(x, y, a)},

(iv) L2∆y{cosc1⊗c2(x, y, a)} = −c2L2{sinc1⊗c2(x, y, a)},

(v) L2∆x{sinc1⊗c2(x, y, a)} = c1L2{cosc1⊗c2(x, y, a)},

(vi) L2∆y{sinc1⊗c2(x, y, a)} = c2L2{cosc1⊗c2(x, y, a)},

(vii) L2∆2
x{cosc1⊗c2(x, y, a)} = −c2

1L2{cosc1⊗c2(x, y, a)},
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(viii) L2∆2
y{cosc1⊗c2(x, y, a)} = −c2

2L2{cosc1⊗c2(x, y, a)},

(ix) L2∆2
x{sinc1⊗c2(x, y, a)} = −c2

1L2{sinc1⊗c2(x, y, a)},

(x) L2∆2
y{sinc1⊗c2(x, y, a)} = −c2

2L2{sinc1⊗c2(x, y, a)},

(xi) L2∆xy{cosc1⊗c2(x, y, a)} = −c1c2L2{cosc1⊗c2(x, y, a)},

(xii) L2∆xy{sinc1⊗c2(x, y, a)} = −c1c2L2{sinc1⊗c2(x, y, a)}.

(i) For p 6= −1,±ic1; q 6= −1,±ic2,

L2{cosc1⊗c2(x, y, a)} = L2

[
eic1⊗ic2(x, y, a) + e−ic1⊗−ic2(x, y, a)

2

]
=

[ 1
(p−ic1)(q−ic2)

+ 1
(p+ic1)(q+ic2)

2

]
=

pq − c1c2

(p2 + c2
1)(q2 + c2

2)
.

(ii) For p 6= −1,±ic1; q 6= −1,±ic2,

L2{sinc1⊗c2(x, y, a)} = L2

[
eic1⊗ic2(x, y, a) − e−ic1⊗−ic2(x, y, a)

2i

]
=

[ 1
(p−ic1)(q−ic2)

− 1
(p+ic1)(q+ic2)

2i

]
=

c1q + c2p

(p2 + c2
1)(q2 + c2

2)
.

(iii) For p 6= −1,±ic1; q 6= −1,±ic2, and by using Theorem 4.9 part (i),

L2∆x{cosc1⊗c2(x, y, a)} = p
pq − c1c2

(p2 + c2
1)(q2 + c2

2)
− 1

2

[
1

q − ic2

+
1

q + ic2

]
= p

pq − c1c2

(p2 + c2
1)(q2 + c2

2)
− 1

2

[
2q

(q2 + c2
2)

]
=
p2q − pc1c2 − p2q − c2

1q

(p2 + c2
1)(q2 + c2

2)

= −c1L2{cosc1⊗c2(x, y, a)}.
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(iv) For p 6= −1,±ic1; q 6= −1,±ic2, and by using Theorem 4.9 part (ii),

L2∆y{cosc1⊗c2(x, y, a)} = q
pq − c1c2

(p2 + c2
1)(q2 + c2

2)
− 1

2

[
1

p− ic1

+
1

p+ ic1

]
= q

pq − c1c2

(p2 + c2
1)(q2 + c2

2)
− 1

2

[
2p

(p2 + c2
1)

]
=
pq2 − qc1c2 − pq2 − c2

2p

(p2 + c2
1)(q2 + c2

2)

= −c2L2{cosc1⊗c2(x, y, a)}.

(v) For p 6= −1,±ic1; q 6= −1,±ic2, and by using Theorem 4.9 part (i),

L2∆x{sinc1⊗c2(x, y, a)} = p
c1q + c2p

(p2 + c2
1)(q2 + c2

2)
− 1

2i

[
1

q − ic2

− 1

q + ic2

]
= p

c1q + c2p

(p2 + c2
1)(q2 + c2

2)
− 1

2i

[
2ic2

(q2 + c2
2)

]
=
pqc1 + p2c2 − c2p

2 − c2
1c2

(p2 + c2
1)(q2 + c2

2)

= c1L2{cosc1⊗c2(x, y, a)}.

(vi) For p 6= −1,±ic1; q 6= −1,±ic2, and by using Theorem 4.9 part (ii),

L2∆y{sinc1⊗c2(x, y, a)} = q
c1q + c2p

(p2 + c2
1)(q2 + c2

2)
− 1

2i

[
1

p− ic1

− 1

p+ ic1

]
= q

c1q + c2p

(p2 + c2
1)(q2 + c2

2)
− 1

2i

[
2ic1

(p2 + c2
1)

]
=
c1q

2 + pqc2 − c1q
2 − c1c

2
2

(p2 + c2
1)(q2 + c2

2)

= c2L2{cosc1⊗c2(x, y, a)}.

(vii) First note that Ly∆x{cosc1⊗c2(x, y, a)} = −c1c2
q2+c22

. For p 6= −1,±ic1 and q 6= −1,±ic2, by

using Theorem 4.10 part (i),

L2∆2
x{cosc1⊗c2(x, y, a)} = p2 pq − c1c2

(p2 + c2
1)(q2 + c2

2)
− p q

q2 + c2
2

− −c1c2

q2 + c2
2

= −c2
1

pq − c1c2

(p2 + c2
1)(q2 + c2

2)

= −c2
1L2{cosc1⊗c2(x, y, a)}.

(viii) First note that Lx∆y{cosc1⊗c2(x, y, a)} = −c1c2
p2+c21

. For p 6= −1,±ic1 and q 6= −1,±ic2, by
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using Theorem 4.10 part (ii),

L2∆2
y{cosc1⊗c2(x, y, a)} = q2 pq − c1c2

(p2 + c2
1)(q2 + c2

2)
− q p

p2 + c2
1

− −c1c2

p2 + c2
1

= −c2
2

pq − c1c2

(p2 + c2
1)(q2 + c2

2)

= −c2
2L2{cosc1⊗c2(x, y, a)}.

(ix) First note that Ly∆x{sinc1⊗c2(x, y, a)} = c1q
q2+c22

. For p 6= −1,±ic1 and q 6= −1,±ic2, by

using Theorem 4.10 part (i),

L2∆2
x{sinc1⊗c2(x, y, a)} = p2 c1q + c2p

(p2 + c2
1)(q2 + c2

2)
− p c2

q2 + c2
2

− c1q

q2 + c2
2

= −c2
1

c1q + c2p

(p2 + c2
1)(q2 + c2

2)

= −c2
1L2{sinc1⊗c2(x, y, a)}.

(x) First note that Lx∆y{sinc1⊗c2(x, y, a)} = c2p
p2+c21

. For p 6= −1,±ic1 and q 6= −1,±ic2, by

using Theorem 4.10 part (ii),

L2∆2
y{sinc1⊗c2(x, y, a)} = q2 c1q + c2p

(p2 + c2
1)(q2 + c2

2)
− q c1

p2 + c2
1

− c2p

p2 + c2
1

= −c2
2

c1q + c2p

(p2 + c2
1)(q2 + c2

2)

= −c2
2L2{sinc1⊗c2(x, y, a)}.

(xi) For p 6= −1,±ic1 and q 6= −1,±ic2, by using Theorem 4.10 part (iii), we get

L2∆xy{cosc1⊗c2(x, y, a)} = pq
pq − c1c2

(p2 + c2
1)(q2 + c2

2)
− q q

q2 + c2
2

− p p

p2 + c2
1

+ 1

= −c1c2
pq − c1c2

(p2 + c2
1)(q2 + c2

2)

= −c1c2L2{cosc1⊗c2(x, y, a)}.

(xii) For p 6= −1,±ic1 and q 6= −1,±ic2, by using Theorem 4.10 part (iii), we get

L2∆xy{sinc1⊗c2(x, y, a)} = pq
c1q + c2p

(p2 + c2
1)(q2 + c2

2)
− q c2

q2 + c2
2

− p c1

p2 + c2
1

+ 0

= −c1c2
c1q + c2p

(p2 + c2
1)(q2 + c2

2)

= −c1c2L2{sinc1⊗c2(x, y, a)}.

Now, we states and proves the double shift property.
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Theorem 4.16. Assume that double Laplace of f exists, then for c1, c2 ∈ R,

L2{ec1⊗c2(x, y, a)f(x, y)}(p, q) =
1

(1 + c1)(1 + c2)
˜̃F (p	 c1, q 	 c2).

Proof. By Definition 4.1.1 of delta double Laplace transform,

L2{ec1⊗c2(x, y, a)f(x, y)} =

∫ ∞
a

∫ ∞
a

e	p(σ(x), a)e	q(σ(y), a)ec1⊗c2(x, y, a)f(x, y)∆x∆y.

By Definition 4.5.2,

=

∫ ∞
a

∫ ∞
a

e	p(σ(x), a)e	q(σ(y), a)ec1(x, a)ec2(y, a)f(x, y)∆x∆y.

By Example 2.1.8, ec1(x, a) = 1
1+c1

ec1(σ(x), a) and ec2(y, a) = 1
1+c2

ec2(σ(y), a)

=
1

(1 + c1)(1 + c2)

∫ ∞
a

∫ ∞
a

e	p(σ(x), a)e	q(σ(y), a)ec1(σ(x), a)ec2(σ(y), a)f(x, y)∆x∆y.

By using Lemma 2.1.13, e	p(σ(x), a)e	[	c1](σ(x), a) = e	[p	c1](σ(x), a) and

e	q(σ(y), a)e	[	c2](σ(y), a) = e	[q	c2](σ(y), a)

=
1

(1 + c1)(1 + c2)

∫ ∞
a

∫ ∞
a

e	[p	c](σ(x), a)e	[q	c2](σ(y), a)f(x, y)∆x∆y.

Again by definition of delta double Laplace transform 4.1.1,

L2{ec1⊗c2(x, y, a)f(x, y)} =
1

(1 + c1)(1 + c2)
˜̃F (p	 c1, q 	 c2).
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Chapter 5

Fixed point operators and Green’s
functions

In order to apply FPT for difference equations, we convert the IVP and BVP to equivalent

summation equation. In this chapter, we present an alternative approach to obtain a general

method for converting the fractional delta difference equation with impulse to an equivalent

summation equations. The basic motive is to exhibit a simple and well established method to

construct FPO for impulsive delta difference equations of Caputo type with arbitrary order. We

shall demonstrate the applicability of procedure by building the operator for a few particular

problems of interest with initial and BC in order to find fixed point. We shall derive Green’s

function with some of its properties for impulsive delta DE with two and four-point BC and

nonlinear FDE with multi-point summation boundary conditions. FPO for Hilfer FDE and

substantial FDE shall be obtained too. Findings of Sections 5.1 and 5.2 appeared in [110].

5.1 Fixed point operators for IVP with impulse

Motivated by the work in [158] where authors established a method for transforming differential

equations of arbitrary order with impulse to their corresponding integral equations and also

considered BVP with nonlinear impulsive FDE for existence of solution. In this section, we use
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the fundamental theorem to obtain an equivalent summation equation for nonlinear difference

equation of non integer order ϕ > 0 with impulses:
c∆ϕ

ax(t) + f(ϕ+ ρ(t), x(ϕ+ ρ(t))) = 0, t ∈ Na+1−ϕ, t 6= a+ nj + 1− ϕ,
∆j−1x+

k −∆j−1xk = (−1)j−1∆jxk, t = a+ nj + 1− ϕ,
xi = (−1)i∆ix(a), i = 0, 1, · · · , r − 1, dϕe = r, k ∈ Nm

1 , j ∈ Nk−1
0 ,

(5.1)

where c∆ϕ
ax(t) is the Caputo difference of x(t) for ϕ > 0. Choose the numbers nk ∈ N0 in

such a way that 0 = n0 < n1 < · · · < nj < nj+1, and a + nk = ιk are impulse points. Choose

1 < nj+1 − nj to ensure that ιk and ιk+1 are separated by at least two time steps.

Remark 4. We define the notations as ∆j−1xk := ∆j−1x(t)|t=ιk and ∆j−1x+
k := ∆j−1x(t)|t=ιk+ck ,

where ck are numbers such that a+ ck ∈ Na for ck ∈ N0 and ck 6= nk.

The concept of continuity in discrete setting is in the sense of topological spaces. The

notation [a, T ]Na is used to denote the set [a, T ]∩Na [107]. Under the choice nj+1−nj > 1, there

exist atleast one non-impulsive point between two impulsive points ιk and ιk+1. The purpose

of using the space PC([a, T ]Na ,R) = {x : [a, T ]Na → R, x ∈ C((ιk, ιk+1]Na ,R), k ∈ Nm
0 }, is to

cover up the continuity of all impulsive and non-impulsive points on (ιk, ιk+1]Na through the

space C((ιk, ιk+1]Na ,R) and consequently to cover up the continuity of all impulsive and non-

impulsive points on [a, T ]Na . The space PC([a, T ]Na ,R) is a Banach space equipped with norm

||x|| = sup
t∈[a,T ]Na

|x(t)|. To obtain an impulsive solution of system (5.1), first we establish equivalent

summation equation for integer-order difference equation accompanied with impulses and initial

conditions 
∆rx(t) + g(t) = 0, t ∈ Na, t 6= a+ nj, j ∈ Nk−1

0 ,

∆j−1x+
k −∆j−1xk = (−1)j−1∆jxk, t = a+ nj, k ∈ Nm

1 ,

xi = (−1)i∆ix(a), i = 0, 1, · · · , r − 1, for a positive integer r.

(5.2)
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Lemma 5.1.1. Let g : Na → R be given and let r be a positive integer. Solution x(t) (5.2), can

be explained as if and only if

x(t) =
r−1∑
i=0

(t+ i− a− 1)i

Γ(i+ 1)
xi +

r−1∑
i=0

{ ∑
a<ιk<t

(t− ιk)i

Γ(i+ 1)
∆i+1xk

}
−∆−rg(t). (5.3)

Proof. Assume that ∆rx(t) = −g(t). For s ∈ (ιj, ιj+1], k ∈ Nm
1 and j ∈ Nk−1

0 , by using Theorem

2.1.29 and Definition 2.1.15, we have k equations for each value of j:

∆r−1x(s)|s=ιj+1
−∆r−1x(s)|s=ιj+cj = −

ιj+1−1∑
s=ιj

g(s), j ∈ Nk−1
0 .

For s ∈ (ιk, t], again we apply Theorem 2.1.29 and Definition 2.1.15

∆r−1x(s)|s=t −∆r−1x(s)|s=ιk+ck = −
t−1∑
s=ιk

g(s).

Adding these k + 1 equations to get

∆r−1x(t) = ∆r−1x(a)−
t−1∑
a

g(s) +
∑
a<ιk<t

(−1)r−1∆rxk.

By following the above procedure, we have

∆r−2x(t) = ∆r−2x(a)−
t−1∑
a

∆r−1x(s) +
∑
a<ιk<t

(−1)r−2∆r−1xk.

∆r−3x(t) = ∆r−3x(a)−
t−1∑
a

∆r−2x(s) +
∑
a<ιk<t

(−1)r−3∆r−2xk.

...

∆2x(t) = ∆2x(a)−
t−1∑
a

∆3x(s)+
∑
a<ιk<t

(−1)2∆3xk. (5.4)

∆1x(t) = ∆1x(a)−
t−1∑
a

∆2x(s)+
∑
a<ιk<t

(−1)1∆2xk. (5.5)

x(t) = x(a)−
t−1∑
a

∆1x(s)+
∑
a<ιk<t

(−1)0∆1xk. (5.6)
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Substituting (5.5) into (5.6), we get

x(t) = x0 −
t−1∑
a

[
− x1 −

s−1∑
a

∆2x(u)−
∑

a<ιk<s

∆2xk
]

+
∑
a<ιk<t

∆1xk,

= x0 + (t− a)x1 +
t−1∑
a

s−1∑
a

∆2x(u) +
t−1∑
a

∑
a<ιk<s

∆2xk +
∑
a<ιk<t

∆1xk.

(5.7)

Interchange the order of summations and evaluation yields

t−1∑
a

s−1∑
a

∆2x(u) =
t−1∑
a

(t− u)∆2x(u)

and
t−1∑
a

∑
a<ιk<s

∆2xk =
∑
a<ιk<t

(t− ιk)∆2xk.

Thus (5.7) implies that

x(t) =x0 + (t− a)x1 +
t−1∑
a

(t− u)∆2x(u) +
∑
a<ιk<t

(t− ιk)∆2xk

+
∑
a<ιk<t

∆1xk.
(5.8)

Substituting (5.4) into (5.8), we get

x(t) =x0 + (t− a)x1 +
∑
a<ιk<t

(t− ιk)∆2xk +
∑
a<ιk<t

∆1xk

+
t−1∑
u=a

(t− u)
[
x2 −

u−1∑
s=a

∆3x(s) +
∑

a<ιk<u

∆3xk
]
,

=x0 + (t− a)x1 +
∑
a<ιk<t

(t− ιk)∆2xk +
∑
a<ιk<t

∆1xk

− (t+ 1− u)2

2
x2

∣∣∣∣u=t

u=a

−
t−1∑
u=a

u−1∑
s=a

(t− u)∆3x(s)

+
t−1∑
u=a

∑
a<ιk<u

(t− u)∆3xk.

(5.9)

Interchange in the order of summations and evaluation yields

t−1∑
u=a

u−1∑
s=a

(t− u)∆3x(s) =
t−1∑
s=a

(t+ 1− s)2

2
∆3x(s)

and
t−1∑
u=a

∑
a<ιk<u

(t− u)∆3xk =
∑
a<ιk<t

(t− ιk)2

2
∆3xk.
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Equation (5.9) becomes

x(t) =x0 + (t− a)x1 +
(t+ 1− a)2

2
x2 −

t−1∑
s=a

(t+ 1− s)2

2
∆3x(s)

+
∑
a<ιk<t

∆1xk +
∑
a<ιk<t

(t− ιk)∆2xk +
∑
a<ιk<t

(t− ιk)2

2
∆3xk,

=
2∑
i=0

(t+ i− a− 1)i

Γ(i+ 1)
xi +

2∑
i=0

{ ∑
a<ιk<t

(t− ιk)i

Γ(i+ 1)
∆i+1xk

}
−

t−3∑
a

h3−1(t, σ(s))∆3x(s).

Proceeding inductively, we get

x(t) =
r−1∑
i=0

(t+ i− a− 1)i

Γ(i+ 1)
xi +

r−1∑
i=0

{ ∑
a<ιk<t

(t− ιk)i

Γ(i+ 1)
∆i+1xk

}
−

t−r∑
a

hr−1(t, σ(s))∆rx(s),

=
r−1∑
i=0

(t+ i− a− 1)i

Γ(i+ 1)
xi +

r−1∑
i=0

{ ∑
a<ιk<t

(t− ιk)i

Γ(i+ 1)
∆i+1xk

}
−

t−r∑
a

hr−1(t, σ(s))g(s),

=
r−1∑
i=0

(t+ i− a− 1)i

Γ(i+ 1)
xi +

r−1∑
i=0

{ ∑
a<ιk<t

(t− ιk)i

Γ(i+ 1)
∆i+1xk

}
−∆−ra ∆rx(t),

=
r−1∑
i=0

(t+ i− a− 1)i

Γ(i+ 1)
xi +

r−1∑
i=0

{ ∑
a<ιk<t

(t− ιk)i

Γ(i+ 1)
∆i+1xk

}
−∆−ra g(t).

Conversely, one proves that (5.3) satisfies (5.2) by straight forward substitution.

Now, we extend Lemma 5.1.1 to Caputo type difference operators of fractional order ϕ.

Consider
c∆ϕ

ax(t) + f(ϕ+ ρ(t)) = 0, t ∈ Na+1−ϕ, t 6= a+ nj + 1− ϕ, j ∈ Nk−1
0 ,

∆j−1x+
k −∆j−1xk = (−1)j−1∆jxk, t = a+ nj + 1− ϕ, k ∈ Nm

1 ,

xi = (−1)i∆ix(a), i = 0, 1, · · · , r − 1, where dϕe = r.

(5.10)

The proof of the following lemma is obvious therefore it is omitted.
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Lemma 5.1.2. Let f : Na → R be given and let r ∈ N and r − 1 < ϕ ≤ r. Solution x(t) of

(5.10), can explained as if and only if

x(t) =
r−1∑
i=0

(t+ i− a− 1)i

Γ(i+ 1)
xi +

r−1∑
i=0

{ ∑
a<ιk<t

(t− ιk)i

Γ(i+ 1)
∆i+1xk

}
−∆−ϕa+r−ϕf(ϕ+ ρ(t)), for t ∈ Na+1.

Example 5.1.3. To illustrate the construction in Lemma 5.1.2, consider the example

c∆ϕ
0x(t) + t2−ϕ = 0, 1 < ϕ ≤ 2, t ∈ N26−ϕ

1−ϕ , t 6= ι1, ι2, ι3,

x(ι+1 )− x(ι1) = 10, ∆x(ι+1 )−∆x(ι1) = 1
6
, for ι1 = 7− ϕ,

x(ι+2 )− x(ι2) = 30, ∆x(ι+2 )−∆x(ι2) = 1
6
, for ι2 = 14− ϕ,

x(ι+3 )− x(ι3) = 50, ∆x(ι+3 )−∆x(ι3) = 1
6
, for ι3 = 21− ϕ,

∆ix(0) = 0, i = 0, 1,

has solution for t ∈ N1,

x(t) =


Γ(3−ϕ)

2
t2, 0 ≤ t < ι1,

Γ(3−ϕ)
2

t2 + 10 + 1
6
(t− ι1), ι1 ≤ t < ι2,

Γ(3−ϕ)
2

t2 + 40 + 1
6
(2t− ι1 − ι2), ι2 ≤ t < ι3,

Γ(3−ϕ)
2

t2 + 90 + 1
6
(3t− ι1 − ι2 − ι3), ι3 ≤ t ≤ 25.

Figure 5.1: The graph of x(t) for ϕ = 1.5 and 1.9.

The following corollary conveys that one can apply Lemma 5.1.2 to solve nonlinear impulse

difference equation of arbitrary order.
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Corollary 5.1.4. Let f : Na × R→ R be given and let r ∈ N and r − 1 < ϕ ≤ r. Solution x(t)

of (5.1), can explained as if and only if

x(t) =
r−1∑
i=0

(t+ i− a− 1)i

Γ(i+ 1)
xi +

r−1∑
i=0

{ ∑
a<ιk<t

(t− ιk)i

Γ(i+ 1)
∆i+1xk

}
−∆−ϕa+r−ϕf(ϕ+ ρ(t), x(ϕ+ ρ(t))).

We apply Corollary 5.1.4 to obtain appropriate FPO for several family of problems for

fractional difference equation with impulse. For t ∈ Na+1−ϕ consider

c∆ϕ
ax(t) + f(ϕ+ ρ(t), x(ϕ+ ρ(t))) = 0, t 6= a+ nj + 1− ϕ, (5.11)

with impulsive conditions, ∆1xk = Ik(x(ιk)), (5.12)

∆2xk = Īk(x(ιk)), for t = a+ nj + 1− ϕ, and k ∈ Nm
1 . (5.13)

We use (5.11)–(5.13) under the following set of initial and boundary conditions.

For r − 1 < ϕ ≤ r, (−1)i∆ix(a) = xi, i = 0, 1, · · · , r − 1, (5.14)

for 1 < ϕ ≤ 2, the nonlocal conditions, x(a) = x0 − h(x),−∆x(a) = x1. (5.15)

The first two lemmas are immediate applications of Corollary 5.1.4.

Lemma 5.1.5. Assume that f : Na × R → R, h : R → R are given and 1 < ϕ ≤ 2. Then

(5.11)–(5.13) with initial condition (5.14) has solution x(t), if and only if

x(t) =x0 + x1(t− a) +
∑
a<ιk<t

Ik(x(ιk)) +
∑
a<ιk<t

Īk(x(ιk))(t− ιk)

−∆−ϕa+2−ϕf(ϕ+ ρ(t), x(ϕ+ ρ(t))).

Lemma 5.1.6. Let f : Na × R→ R be given and 1 < ϕ ≤ 2. Then problem (5.11)–(5.13) with

nonlocal initial condition (5.15) has solution x(t), if and only if

x(t) =x0 − h(x) + x1(t− a) +
∑
a<ιk<t

Ik(x(ιk)) +
∑
a<ιk<t

Īk(x(ιk))(t− ιk)

−∆−ϕa+2−ϕf(ϕ+ ρ(t), x(ϕ+ ρ(t))).
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5.2 Fixed point operators for impulsive BVP

We use (5.11)–(5.13) under the following sets of BC.

for 0 < ϕ ≤ 1, the boundary condition, c1x(a) + c2x(T ) = θ (5.16)

for 1 < ϕ ≤ 2, the four-point BC,

x(a) = αx(ξ), x(T ) = βx(η), ξ, η ∈ (a, T )Na . (5.17)

We state the next two lemmas without proof; we shall provide the related algebraic details in

the proof of Lemma 5.2.4.

Lemma 5.2.1. Let f : Na × R → R be given and 0 < ϕ ≤ 1 with c1 + c2 6= 0. Then problem

(5.11)–(5.12) with BC (5.16) has solution x(t), if and only if

x(t) =
θ

c1 + c2

+
∑
a<ιk<t

Ik(x(ιk))−
t−ϕ∑
s=a

hϕ−1(t, σ(s))f(ϕ+ ρ(s), x(ϕ+ ρ(s)))

− c1

c1 + c2

[ m∑
k=1

Ik(x(ιk)) +

T−ϕ∑
s=a

hϕ−1(T, σ(s))f(ϕ+ ρ(s), x(ϕ+ ρ(s)))
]
.

For the sake of abbreviation, define

p(t) := t(1− α) + αξ − a,

q(t) := t(1− β) + βη − T,

and

δ := (T − βη + aβ − a)(1− α) + (ξ − ξβ + aβ − a)α.

We solve the following for ξ < η, the case for which η < ξ can be solved in similar manner.
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Lemma 5.2.2. Let f : Na → R be given, 1 < ϕ ≤ 2, and δ 6= 0, for α, β, ξ, η ∈ R, ξ, η ∈

(a, T )Na. Then BVP (5.11) with (5.17) in absence of impulsive condition, has solution x(t), if

and only if

x(t) =
p(t)

δ

[ T−ϕ∑
s=a

hϕ−1(T, σ(s))f(s)− β
η−ϕ∑
s=a

hϕ−1(η, σ(s))f(s)
]

+
αq(t)

δ

ξ−ϕ∑
s=a

hϕ−1(ξ, σ(s))f(s)−
t−ϕ∑
s=a

hϕ−1(t, σ(s))f(s).

Remark 5. One may note that Lemma 5.2.2 is a slight generalization of the problem (1.1) in [91]

for three point nonlocal condition.

5.2.1 Green’s function for impulsive BVP

Theorem 5.1. Let f : NT
a → R be given and 1 < ϕ ≤ 2. Assume α, β, ξ, η ∈ R, ξ, η ∈

(a, T )Nawithδ 6= 0. The solution x(t) of the problem (5.11) with boundary conditions (5.17) is

given by x(t) =
∑T

s=aG(t, s)f(s), where Green’s function for the boundary value problem is

defined by

G(t, s) :=



p(t)
δ

[
hϕ−1(T, σ(s))− βhϕ−1(η, σ(s))

]
+αq(t)

δ
hϕ−1(ξ, σ(s))− hϕ−1(t, σ(s)), a ≤ s ≤ t− ϕ,

p(t)
δ

[
hϕ−1(T, σ(s))− βhϕ−1(η, σ(s))

]
+αq(t)

δ
hϕ−1(ξ, σ(s)), t− ϕ+ 1 ≤ s ≤ ξ − ϕ,

p(t)
δ

[
hϕ−1(T, σ(s))− βhϕ−1(η, σ(s))

]
−hϕ−1(t, σ(s)), ξ − ϕ+ 1 ≤ s ≤ t− ϕ,
p(t)
δ

[
hϕ−1(T, σ(s))− βhϕ−1(η, σ(s))

]
, t− ϕ+ 1 ≤ s ≤ η − ϕ,

p(t)
δ
hϕ−1(T, σ(s))− hϕ−1(t, σ(s)), η − ϕ+ 1 ≤ s ≤ t− ϕ,

p(t)
δ
hϕ−1(T, σ(s)), t− ϕ+ 1 ≤ s ≤ T − ϕ.
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Proof. If a ≤ t ≤ ξ, then the solution can be stated from Lemma 5.2.2 as

x(t) =
−βp(t)
δ

[
t−ϕ∑
s=a

hϕ−1(η, σ(s))f(s) +

ξ−ϕ∑
s=t−ϕ+1

hϕ−1(η, σ(s))f(s)

+

η−ϕ∑
s=ξ−ϕ+1

hϕ−1(η, σ(s))f(s)

]
+
p(t)

δ

[
t−ϕ∑
s=a

hϕ−1(T, σ(s))f(s)

+

ξ−ϕ∑
s=t−ϕ+1

hϕ−1(T, σ(s))f(s) +

η−ϕ∑
s=ξ−ϕ+1

hϕ−1(T, σ(s))f(s)

+

T−ϕ∑
s=η−ϕ+1

hϕ−1(T, σ(s))f(s)

]
+
αq(t)

δ

[
t−ϕ∑
s=a

hϕ−1(ξ, σ(s))f(s)

+

ξ−ϕ∑
s=t−ϕ+1

hϕ−1(ξ, σ(s))f(s)

]
−

t−ϕ∑
s=a

hϕ−1(t, σ(s))f(s),

=

t−ϕ∑
s=a

{
− hϕ−1(t, σ(s))− βp(t)

δ
hϕ−1(η, σ(s)) +

p(t)

δ
hϕ−1(T, σ(s))

+
αq(t)

δ
hϕ−1(ξ, σ(s))

}
f(s) +

ξ−ϕ∑
s=t−ϕ+1

{−βp(t)
δ

hϕ−1(η, σ(s))

+
p(t)

δ
hϕ−1(T, σ(s)) +

αq(t)

δ
hϕ−1(ξ, σ(s))

}
f(s),

+

η−ϕ∑
s=ξ−ϕ+1

{p(t)
δ
hϕ−1(T, σ(s))− βp(t)

δ
hϕ−1(η, σ(s))

}
f(s)

+

T−ϕ∑
s=η−ϕ+1

p(t)

δ
hϕ−1(T, σ(s))f(s).

Similarly, if ξ ≤ t ≤ η, then the solution can be stated as

x(t) =

ξ−ϕ∑
s=a

{p(t)
δ
hϕ−1(T, σ(s)) +

αq(t)

δ
hϕ−1(ξ, σ(s))− hϕ−1(t, σ(s))

− βp(t)

δ
hϕ−1(η, σ(s))

}
f(s) +

t−ϕ∑
s=ξ−ϕ+1

{p(t)
δ
hϕ−1(T, σ(s))− hϕ−1(t, σ(s))

− βp(t)

δ
hϕ−1(η, σ(s))

}
f(s) +

η−ϕ∑
s=t−ϕ+1

{p(t)
δ
hϕ−1(T, σ(s))

− βp(t)

δ
hϕ−1(η, σ(s))

}
f(s) +

T−ϕ∑
s=η−ϕ+1

p(t)

δ
hϕ−1(T, σ(s))f(s).
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Furthermore, if η ≤ t, then the solution can be stated as

x(t) =

ξ−ϕ∑
s=a

{p(t)
δ
hϕ−1(T, σ(s)) +

αq(t)

δ
hϕ−1(ξ, σ(s))− hϕ−1(t, σ(s))

− βp(t)

δ
hϕ−1(η, σ(s))

}
f(s) +

η−ϕ∑
s=ξ−ϕ+1

{p(t)
δ
hϕ−1(T, σ(s))− hϕ−1(t, σ(s))

− βp(t)

δ
hϕ−1(η, σ(s))

}
f(s) +

t−ϕ∑
s=η−ϕ+1

{p(t)
δ
hϕ−1(T, σ(s))

− hϕ−1(t, σ(s))
}
f(s) +

T−ϕ∑
s=t−ϕ+1

p(t)

δ
hϕ−1(T, σ(s))f(s).

Finally, define GF as given in the statement. Then it is clear that solution takes the desired

form x(t) =
∑T

s=aG(t, s)f(s).

Remark 6. It is observed that the GF given in Theorem 5.1, which is a generalization of GF

derived in [177].

The function H(t, ιk) can be derived in similar way by the same technique that used in

Theorem 5.1:

H(t, ιk) :=



p(t)
δ

[
β(η − ιk)− (T − ιk)

]
− αq(t)

δ
(ξ − ιk)

+(t− ιk), a ≤ ιk ≤ t,
p(t)
δ

[
β(η − ιk)− (T − ιk)

]
− αq(t)

δ
(ξ − ιk), t+ 1 ≤ ιk ≤ ξ,

p(t)
δ

[
β(η − ιk)− (T − ιk)

]
+ (t− ιk), ξ + 1 ≤ ιk ≤ t,

p(t)
δ

[
β(η − ιk)− (T − ιk)

]
, t+ 1 ≤ ιk ≤ η,

−p(t)
δ

(T − ιk) + (t− ιk), η + 1 ≤ ιk ≤ t,
−p(t)
δ

(T − ιk), t+ 1 ≤ ιk ≤ T.

Corollary 5.2.3. For G(t, s) and H(t, ιk), following equations are hold

T∑
s=a

G(t, s) =
p(t)

δ

[
hϕ(T, a)− βhϕ(η, a)

]
+
αq(t)

δ
hϕ(ξ, a)− hϕ(t, a),

T∑
ιk=a

H(t, ιk) =
p(t)

δ

[
βh2(η + 1, a)− h2(T + 1, a)

]
+
αq(t)

δ
h2(ξ + 1, a)

+ h2(t, a).
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Lemma 5.2.4. Let f : Na×R→ R be given, 1 < ϕ ≤ 2, and δ 6= 0. Then problem (5.11)–(5.13)

with boundary conditions (5.17) has solution x(t), if and only if

x(t) =
∑
a<ιk<t

Ik(x(ιk))−
p(t)

δ

[ ∑
a<ιk<T

Ik(x(ιk))− β
∑

a<ιk<η

Ik(x(ιk))
]

− αq(t)

δ

∑
a<ιk<ξ

Ik(x(ιk)) +
∑

a<ιk<T

H(t, ιk)Īk(x(ιk))

+
T∑
s=a

G(t, s)f(ϕ+ ρ(s), x(ϕ+ ρ(s))).

Proof. Suppose that x(t) solves (5.11). Then by using Corollary 5.1.4, we have

x(t) =A+B(t− a) +
∑
a<ιk<t

Ik(x(ιk)) +
∑
a<ιk<t

Īk(x(ιk))(t− ιk)

−
t−ϕ∑
s=a

hϕ−1(t, σ(s))f(ϕ+ ρ(s), x(ϕ+ ρ(s))).

(5.18)

Using boundary condition x(a) = αx(ξ) in equation (5.18), we get

A(1− α)−Bα(ξ − a) =α
∑

a<ιk<ξ

Ik(x(ιk)) + α
∑

a<ιk<ξ

Īk(x(ιk))(ξ − ιk)

− α
ξ−ϕ∑
s=a

hϕ−1(ξ, σ(s))f(ϕ+ ρ(s), x(ϕ+ ρ(s))).

(5.19)

Now, using x(T ) = βx(η) in equation(5.18), we get A(1− β) +B(T − βη − a(1− β))

=−
∑

a<ιk<T

Īk(x(ιk))(T − ιk) +

T−ϕ∑
s=a

hϕ−1(T, σ(s))f(ϕ+ ρ(s), x(ϕ+ ρ(s)))

+ β
∑

a<ιk<η

Īk(x(ιk))(η − ιk)− β
η−ϕ∑
s=a

hϕ−1(η, σ(s))f(ϕ+ ρ(s), x(ϕ+ ρ(s)))

−
∑

a<ιk<T

Ik(x(ιk)) + β
∑

a<ιk<η

Ik(x(ιk)).

(5.20)

Solving linear system of equations (5.19) and (5.20) for A and B, we get

A =
α(ξ − a)

δ

{
−

∑
a<ιk<T

Ik(x(ιk)) + β
∑

a<ιk<η

Īk(x(ιk))(η − ιk)

−
∑

a<ιk<T

Īk(x(ιk))(T − ιk) +

T−ϕ∑
s=a

hϕ−1(T, σ(s))f(ϕ+ ρ(s), x(ϕ+ ρ(s)))

+ β
∑

a<ιk<η

Ik(x(ιk))− β
η−ϕ∑
s=a

hϕ−1(η, σ(s))f(ϕ+ ρ(s), x(ϕ+ ρ(s)))
}
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+
α(T − a− β(η − a))

δ

{ ∑
a<ιk<ξ

Ik(x(ιk)) +
∑

a<ιk<ξ

Īk(x(ιk))(ξ − ιk)

−
ξ−ϕ∑
s=a

hϕ−1(ξ, σ(s))f(ϕ+ ρ(s), x(ϕ+ ρ(s)))
}
,

B =
(1− α)

δ

{
β
∑

a<ιk<η

Ik(x(ιk))−
∑

a<ιk<T

Ik(x(ιk))

−
∑

a<ιk<T

Īk(x(ιk))(T − ιk) + β
∑

a<ιk<η

Īk(x(ιk))(η − ιk)

+

T−ϕ∑
s=a

hϕ−1(T, σ(s))f(ϕ+ ρ(s), x(ϕ+ ρ(s)))

− β
η−ϕ∑
s=a

hϕ−1(η, σ(s))f(ϕ+ ρ(s), x(ϕ+ ρ(s)))
}

− α(1− β)

δ

{ ∑
a<ιk<ξ

Ik(x(ιk)) +
∑

a<ιk<ξ

Īk(x(ιk))(ξ − ιk)

−
ξ−ϕ∑
s=a

hϕ−1(ξ, σ(s))f(ϕ+ ρ(s), x(ϕ+ ρ(s)))
}
.

Substitution of A and B, in equation (5.18) yields

x(t) =
∑
a<ιk<t

Īk(x(ιk))(t− ιk)−
t−ϕ∑
s=a

hϕ−1(t, σ(s))f(ϕ+ ρ(s), x(ϕ+ ρ(s)))

− p(t)

δ

{ ∑
a<ιk<T

Ik(x(ιk)) +
∑

a<ιk<T

Īk(x(ιk))(T − ιk)

− β
∑

a<ιk<η

Ik(x(ιk))− β
∑

a<ιk<η

Īk(x(ιk))(η − ιk)

−
T−ϕ∑
s=a

hϕ−1(T, σ(s))f(ϕ+ ρ(s), x(ϕ+ ρ(s)))

+ β

η−ϕ∑
s=a

hϕ−1(η, σ(s))f(ϕ+ ρ(s), x(ϕ+ ρ(s)))
}

− αq(t)

δ

{ ∑
a<ιk<ξ

Ik(x(ιk)) +
∑

a<ιk<ξ

Īk(x(ιk))(ξ − ιk)

−
ξ−ϕ∑
s=a

hϕ−1(ξ, σ(s))f(ϕ+ ρ(s), x(ϕ+ ρ(s)))
}

+
∑
a<ιk<t

Ik(x(ιk))
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which implies

x(t) =
∑
a<ιk<t

Ik(x(ιk))−
p(t)

δ

{ ∑
a<ιk<T

Ik(x(ιk))− β
∑

a<ιk<η

Ik(x(ιk))
}

− αq(t)

δ

∑
a<ιk<ξ

Ik(x(ιk)) +
∑
a<ιk<t

Īk(x(ιk))(t− ιk)

− p(t)

δ

{ ∑
a<ιk<T

Īk(x(ιk))(T − ιk)− β
∑

a<ιk<η

Īk(x(ιk))(η − ιk)
}

+
p(t)

δ

{ T−ϕ∑
s=a

hϕ−1(T, σ(s))f(ϕ+ ρ(s), x(ϕ+ ρ(s)))

− β
η−ϕ∑
s=a

hϕ−1(η, σ(s))f(ϕ+ ρ(s), x(ϕ+ ρ(s)))
}

+
αq(t)

δ

ξ−ϕ∑
s=a

hϕ−1(ξ, σ(s))f(ϕ+ ρ(s), x(ϕ+ ρ(s)))

−
t−ϕ∑
s=a

hϕ−1(t, σ(s))f(ϕ+ ρ(s), x(ϕ+ ρ(s)))− αq(t)

δ

∑
a<ιk<ξ

Īk(x(ιk))(ξ − ιk).

The desired expression for x(t) follows by Lemma 5.2.2, Theorem 5.1 and the value of H(t, ιk).

5.3 Fixed point operators for MPFBVP

Findings of this section appeared in [107]. In this section, we shall obtain GF and FPO for the

given nonlinear difference equation of non-integer order with multi-point summation boundary

conditions: {
−∆ϑ

ϑ−2x(t) = h(ρ(t) + ϑ, x(ρ(t) + ϑ)), t ∈ Nb+1
0 ,

x(ϑ− 2) = p, x(ϑ+ b+ 1) + λ
∑ϑ+b

s=ϑ−1 x(s) = q,
(5.21)

where h : [ϑ− 2, b+ ϑ+ 1]Nϑ−2
× R→ R, ϑ ∈ (1, 2], b ∈ N0 and λ > 0, p, q ∈ R.

5.3.1 Green’s function for MPFBVP with summation condition

In this subsection, our purpose is to obtain Green’s function for MPFBVP (5.22), further the

maximum value of its sum is acquired for later use.
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Now, we examine the non-homogeneous MPFBVP with summation conditions:{
−∆ϑ

ϑ−2y(t) = g(t), t ∈ Nb+1
0

y(ϑ− 2) = 0, y(ϑ+ b+ 1) + λ
∑ϑ+b

s=ϑ−1 y(s) = 0,
(5.22)

where g : Nb+1
0 → R, ϑ ∈ (1, 2], b ∈ N0 and 0 < λ ∈ R.

Theorem 5.2. The solution y of the MPFBVP (5.22) is given by

y(t) =
b+1∑
s=0

G(t, s)g(s), t ∈ Nb+ϑ+1
ϑ−2 ,

where G(t, s)

:=


χ(t, s) =

[
hϑ−1(ϑ+ b+ 1, σ(s)) + λhϑ(ϑ+ b+ 1, σ(s))

]
θtϑ−1, 0 ≤ σ(t)− ϑ ≤ s ≤ b+ 1,

ψ(t, s) = χ(t, s)− hϑ−1(t, σ(s)), 0 ≤ s ≤ t− ϑ,
0, for (t, s) ∈ {ϑ− 2} × [0, b+ 1]N0 ,

with θ =: ϑ
(ϑ+b+1)ϑ−1[ϑ+λ(b+2)]

where hϑ(t, s) is the ϑth fractional Taylor monomial given in

Definition 2.1.5.

Proof. Suppose y on Nb+ϑ+1
ϑ−2 satisfying the equation −∆ϑ

ϑ−2y(t) = g(t), t ∈ Nb+1
0 .

By making use of Lemma 2.1.29 and Lemma 2.1.30, we get

y(t) = c1t
ϑ−1 + c2t

ϑ−2 −∆−ϑϑ−2g(t).

Definition 2.1.15 implies that

y(t) = c1t
ϑ−1 + c2t

ϑ−2 −
t−ϑ∑
s=0

hϑ−1(t, σ(s))g(s). (5.23)

Using the first BC y(ϑ− 2) = 0, we have

c1(ϑ− 2)ϑ−1 + c2(ϑ− 2)ϑ−2 −
−2∑
s=0

hϑ−1(ϑ− 2, σ(s))g(s) = 0.
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First term is zero by Definition 2.1.4, and by empty sum convention, last term also vanishes.

Therefore we left with c2 = 0. Let
∑ϑ+b

s=ϑ−1 y(s) = A. Now y(ϑ+ b+ 1) + λA = 0 implies that

c1(ϑ+ b+ 1)ϑ−1 −
b+1∑
s=0

(ϑ+ b+ 1− σ(s))ϑ−1

Γ(ϑ)
g(s) + λA = 0.

Solving for c1, we have that

c1 =
−λA

(ϑ+ b+ 1)ϑ−1
+

1

(ϑ+ b+ 1)ϑ−1Γ(ϑ)

b+1∑
s=0

(ϑ+ b− s)ϑ−1g(s).

Thus from equation (5.23), we have

y(t) =
−λAtϑ−1

(ϑ+ b+ 1)ϑ−1
+

tϑ−1

(ϑ+ b+ 1)ϑ−1Γ(ϑ)

b+1∑
s=0

(ϑ+b−s)ϑ−1g(s)−
t−ϑ∑
s=0

(t− σ(s))ϑ−1

Γ(ϑ)
g(s). (5.24)

To evaluate A use y in A =
ϑ+b∑

s=ϑ−1

y(s)

A =
ϑ+b∑

s=ϑ−1

[
−λAsϑ−1

(ϑ+ b+ 1)ϑ−1
+

sϑ−1

(ϑ+ b+ 1)ϑ−1Γ(ϑ)

b+1∑
F=0

(ϑ+b−F)ϑ−1g(F)−
s−ϑ∑
F=0

(s− σ(F))ϑ−1

Γ(ϑ)
g(F)

]
.

A

(
1 +

λ

(ϑ+ b+ 1)ϑ−1

ϑ+b∑
s=ϑ−1

sϑ−1

)
=

1

(ϑ+ b+ 1)ϑ−1Γ(ϑ)

ϑ+b∑
s=ϑ−1

sϑ−1

b+1∑
F=0

(ϑ+ b−F)ϑ−1g(F)

−
ϑ+b∑

s=ϑ−1

s−ϑ∑
F=0

(s− σ(F))ϑ−1

Γ(ϑ)
g(F).

(5.25)

Change the order of summation in last double sum of equation (5.25)

ϑ+b∑
s=ϑ−1

s−ϑ∑
F=0

(s− σ(F))ϑ−1

Γ(ϑ)
g(F) =

b∑
F=0

b+ϑ∑
s=F+ϑ

(s− σ(F))ϑ−1

Γ(ϑ)
g(F).

Make substitution s = x+ σ(F) only for inner sum and then use Lemma 2.1.6 and Lemma 2.1.9

=
b∑

F=0

b+ϑ−F−1∑
x=ϑ−1

xϑ−1

Γ(ϑ)
g(F)

=
b∑

F=0

xϑ

Γ(ϑ+ 1)

∣∣∣∣b+ϑ−F
ϑ−1

g(F)
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=
b∑

F=0

(b+ ϑ−F)ϑ

Γ(ϑ+ 1)
g(F). (5.26)

Since sums are independent in first double sum of equation (5.25), use Definition 2.1.5, Definition

2.1.1, Lemma 2.1.6 and Lemma 2.1.9 to evaluate the sum

b+ϑ∑
t=ϑ−1

tϑ−1 =
b+ϑ∑
t=ϑ−1

Γ(ϑ)hϑ−1(t, 0)∆t

= Γ(ϑ)hϑ(t, 0)

∣∣∣∣b+ϑ+1

ϑ−1

= Γ(ϑ)hϑ(b+ ϑ+ 1, 0)− Γ(ϑ)hϑ(ϑ− 1, 0)

=
Γ(ϑ)

Γ(ϑ+ 1)
(b+ ϑ+ 1)ϑ − 0

=
(b+ ϑ+ 1)ϑ

ϑ
. (5.27)

Making use of equations (5.26), (5.27) in equation (5.25)

A

(
1 +

λ

ϑ

(b+ ϑ+ 1)ϑ

(ϑ+ b+ 1)ϑ−1

)
=

(b+ ϑ+ 1)ϑ

(ϑ+ b+ 1)ϑ−1

b+1∑
F=0

(ϑ+ b−F)ϑ−1

Γ(ϑ+ 1)
g(F)−

b∑
F=0

(b+ ϑ−F)ϑ

Γ(ϑ+ 1)
g(F).

Note that (b+ϑ+1)ϑ

(b+ϑ+1)ϑ−1 = (b+ 2). Since we choose 0 < λ therefore λ 6= −ϑ
(b+2)

. A =

ϑ(b+ 2)

Γ(ϑ+ 1)[ϑ+ λ(b+ 2)]

b+1∑
F=0

(ϑ+ b−F)ϑ−1g(F)− ϑ

Γ(ϑ+ 1)[ϑ+ λ(b+ 2)]

b∑
F=0

(ϑ+ b−F)ϑg(F).

Pick value of A in equation (5.24)

y(t) =
−ϑλ(b+ 2)tϑ−1

Γ(ϑ+ 1)[ϑ+ λ(b+ 2)](ϑ+ b+ 1)ϑ−1

b+1∑
s=0

(ϑ+ b− s)ϑ−1g(s)

+
ϑλtϑ−1

Γ(ϑ+ 1)[ϑ+ λ(b+ 2)](ϑ+ b+ 1)ϑ−1

b∑
s=0

(ϑ+ b− s)ϑg(s)

+
tϑ−1

Γ(ϑ)(ϑ+ b+ 1)ϑ−1

b+1∑
s=0

(ϑ+ b− s)ϑ−1g(s)−
t−ϑ∑
s=0

(t− σ(s))ϑ−1

Γ(ϑ)
g(s)

=
tϑ−1

Γ(ϑ)(ϑ+ b+ 1)ϑ−1

[
1− λ(b+ 2)

ϑ+ λ(b+ 2)

] b+1∑
s=0

(ϑ+ b− s)ϑ−1g(s)

+
λtϑ−1

Γ(ϑ)[ϑ+ λ(b+ 2)](ϑ+ b+ 1)ϑ−1

b∑
s=0

(ϑ+ b− s)ϑg(s)−
t−ϑ∑
s=0

(t− σ(s))ϑ−1

Γ(ϑ)
g(s)
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=
ϑtϑ−1

Γ(ϑ)(ϑ+ b+ 1)ϑ−1[ϑ+ λ(b+ 2)]

b+1∑
s=0

(ϑ+ b− s)ϑ−1g(s)

+
λtϑ−1

Γ(ϑ)[ϑ+ λ(b+ 2)](ϑ+ b+ 1)ϑ−1

b∑
s=0

(ϑ+ b− s)ϑg(s)−
t−ϑ∑
s=0

(t− σ(s))ϑ−1

Γ(ϑ)
g(s).

Since 1 < ϑ ≤ 2 and (ϑ+ b− s)ϑ = 0 for s = b+ 1, therefore for convenience, we can write∑b
s=0(ϑ+ b− s)ϑg(s) =

∑b+1
s=0(ϑ+ b− s)ϑg(s).

y(t) =θtϑ−1

b+1∑
s=0

[(ϑ+ b− s)ϑ−1

Γ(ϑ)
+
λ(ϑ+ b− s)ϑ

ϑΓ(ϑ)

]
g(s)−

t−ϑ∑
s=0

hϑ−1(t, σ(s))g(s)

=θtϑ−1

b+1∑
s=0

[
hϑ−1(ϑ+ b+ 1, σ(s)) + λhϑ(ϑ+ b+ 1, σ(s))

]
g(s)−

t−ϑ∑
s=0

hϑ−1(t, σ(s))g(s).

It follows that

y(t) =
b+1∑
s=0

χ(t, s)g(s)−
t−ϑ∑
s=0

hϑ−1(t, σ(s))g(s)

=
t−ϑ∑
s=0

[χ(t, s)− hϑ−1(t, σ(s))]g(s) +
b+1∑

s=σ(t)−ϑ

χ(t, s)g(s)

=
t−ϑ∑
s=0

ψ(t, s)g(s) +
b+1∑

s=σ(t)−ϑ

χ(t, s)g(s)

=
b+1∑
s=0

G(t, s)g(s).

This completes the proof.

Next we sum Green’s function on Nb+1
0 for later use to prove existence of solutions for

nonlinear MPFBVP.

Lemma 5.3.1. The Green’s function for MPFBVP (5.22) satisfies the identity

b+1∑
s=0

G(t, s) =

[
θ
{

(ϑ+ 1)(ϑ+ b+ 1)ϑ + (ϑ+ b+ 1)ϑ+1
}
− (ϑ+ 1)(σ(t)− ϑ)

]
Γ(ϑ+ 2)

tϑ−1, t ∈ Nb+ϑ+1
ϑ−2 .
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Proof. For t ∈ Nb+ϑ+1
ϑ−2 , consider the left hand side

b+1∑
s=0

G(t, s) =
t−ϑ∑
s=0

ψ(t, s) +
b+1∑

s=σ(t)−ϑ

χ(t, s),

=
t−ϑ∑
s=0

[χ(t, s)− hϑ−1(t, σ(s))] +
b+1∑

s=σ(t)−ϑ

χ(t, s),

=
b+1∑
s=0

χ(t, s)−
t−ϑ∑
s=0

hϑ−1(t, σ(s)).

For t ∈ Nb+ϑ+1
ϑ−2 , using the expression χ(t, s) and Lemmas 2.1.6, 2.1.9 we get

b+1∑
s=0

G(t, s) =θtϑ−1
[ b+1∑
s=0

[hϑ−1(ϑ+ b+ 1, σ(s)) +
b+1∑
s=0

hϑ(ϑ+ b+ 1, σ(s))
]

+ hϑ(t, s)

∣∣∣∣σ(t)−ϑ

s=0

,

=θtϑ−1

[
− hϑ(ϑ+ b+ 1, s)

∣∣∣∣b+2

s=0

− hϑ+1(ϑ+ b+ 1, s)

∣∣∣∣b+2

s=0

]
− hϑ(t, 0),

=θtϑ−1

[
(ϑ+ b+ 1)ϑ

Γ(ϑ+ 1)
+

(ϑ+ b+ 1)ϑ+1

Γ(ϑ+ 2)

]
− tϑ

Γ(ϑ+ 1)
,

=
θtϑ−1

[
(ϑ+ 1)(ϑ+ b+ 1)ϑ + (ϑ+ b+ 1)ϑ+1

]
− (ϑ+ 1)tϑ

Γ(ϑ+ 2)
,

=

[
θ
{

(ϑ+ 1)(ϑ+ b+ 1)ϑ + (ϑ+ b+ 1)ϑ+1
}
− (ϑ+ 1)(σ(t)− ϑ)

]
Γ(ϑ+ 2)

tϑ−1.

In last step, we used the fact that tϑ = (t− ϑ+ 1)tϑ−1.

Next lemma gives the maximum value of
∑b+1

s=0G(t, s).

Lemma 5.3.2. The following expression holds for
∑b+1

s=0G(t, s):

max
Nb+ϑ+1
ϑ−2

b+1∑
s=0

G(t, s) =
1

Γ(ϑ+ 2)

[
θ
{

(ϑ+ 1)(ϑ+ b+ 1)ϑ + (ϑ+ b+ 1)ϑ+1
}

− (ϑ+ 1)(dθ(ϑ− 1){(ϑ+ 1)(ϑ+ b+ 1)ϑ + (ϑ+ b+ 1)ϑ+1}
ϑ2 + ϑ

e − 1)
]

×
(
ϑ− 2 + dθ(ϑ− 1){(ϑ+ 1)(ϑ+ b+ 1)ϑ + (ϑ+ b+ 1)ϑ+1}

ϑ2 + ϑ
e
)ϑ−1

= :
M∗

Γ(ϑ+ 2)
.

Proof. By Lemma 5.3.1, we have

b+1∑
s=0

G(t, s) =

[
θ
{

(ϑ+ 1)(ϑ+ b+ 1)ϑ + (ϑ+ b+ 1)ϑ+1
}
− (ϑ+ 1)(σ(t)− ϑ)

]
Γ(ϑ+ 2)

tϑ−1

=
F (t)

Γ(ϑ+ 2)
,
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where F (t) =
[
θ
{

(ϑ+ 1)(ϑ+ b+ 1)ϑ + (ϑ+ b+ 1)ϑ+1
}
− (ϑ+ 1)(σ(t)− ϑ)

]
tϑ−1.

To find critical point of F (t), we consider

∆F (t) =− (ϑ+ 1)tϑ−1 + (ϑ− 1)tϑ−2
[
θ
{

(ϑ+ 1)(ϑ+ b+ 1)ϑ + (ϑ+ b+ 1)ϑ+1
}

− (ϑ+ 1)(t− ϑ+ 2)
]
,

=− (ϑ+ 1)(t− ϑ+ 2)tϑ−2 + (ϑ− 1)tϑ−2
[
θ
{

(ϑ+ 1)(ϑ+ b+ 1)ϑ + (ϑ+ b+ 1)ϑ+1
}

− (ϑ+ 1)(t− ϑ+ 2)
]
,

=tϑ−2
[
− (ϑ2 + ϑ)(t− ϑ+ 2) + θ(ϑ− 1)

{
(ϑ+ 1)(ϑ+ b+ 1)ϑ + (ϑ+ b+ 1)ϑ+1

}]
.

In preceding step, we used the fact that tϑ−2 = tϑ−1

t−ϑ+2
and product rule given in Lemma 2.1.14.

The only critical point of F (t) is at t = ϑ − 2 + d θ(ϑ−1){(ϑ+1)(ϑ+b+1)ϑ+(ϑ+b+1)ϑ+1}
ϑ2+ϑ

e. Note that

F (ϑ− 2) = 0, however for each fix value of ϑ, λ and b, it is clear from observation that critical

point is a point of maximum value. Hence evaluation give the desired result.

Theorem 5.3. Assume that ϑ ∈ (1, 2], p, q ∈ R and f : [0, b+ 1]N0 → R. Then solution to the

non-homogeneous MPFBVP{
−∆ϑ

ϑ−2x(t) = f(t), t ∈ Nb+1
0

x(ϑ− 2) = p, x(ϑ+ b+ 1) + λ
∑ϑ+b

s=ϑ−1 x(s) = q,
(5.28)

can be represented x(t) = φ(t) +
b+1∑
s=0

G(t, s)f(s), t ∈ Nb+ϑ+1
ϑ−2 ,

for unique solution φ(t) of following problem{
−∆ϑ

ϑ−2φ(t) = 0, t ∈ Nb+1
0

φ(ϑ− 2) = p, φ(ϑ+ b+ 1) + λ
∑ϑ+b

s=ϑ−1 φ(s) = q.
(5.29)

Proof. By virtue of Theorem 5.2, suppose that y(t) =
∑b+1

s=0G(t, s)f(s), t ∈ Nb+ϑ+1
ϑ−2 , is a solution

of the MPFBVP (5.22) on Nb+ϑ+1
ϑ−2 . Suppose x(t) and φ(t) as stated above. Then

x(ϑ− 2) = φ(ϑ− 2) + y(ϑ− 2) = p,

99



and x(ϑ+ b+ 1) + λ
ϑ+b∑

s=ϑ−1

x(s) = y(ϑ+ b+ 1) + φ(ϑ+ b+ 1) + λ
ϑ+b∑

s=ϑ−1

φ(s) = q.

Finally, −∆ϑ
ϑ−2x(t) = −∆ϑ

ϑ−2y(t)−∆ϑ
ϑ−2φ(t) = f(t) for t ∈ Nb+1

0 .

Theorem 5.3 can be helpful for treating nonlinear system with summation condition as next

result reflects.

Corollary 5.3.3. Assume that ϑ ∈ (1, 2] and h : [ϑ − 2, b + ϑ + 1]Nϑ−2
× R → R. Then the

solution to system (5.21) is given by

x(t) = φ(t) +
b+1∑
s=0

G(t, s)h(ρ(s) + ϑ, x(ρ(s) + ϑ)), t ∈ Nb+ϑ+1
ϑ−2 , (5.30)

for φ(t) as given in Theorem 5.3.

5.4 Fixed point operator for Hilfer fractional difference

system for IVP

Findings of this section appeared in [109]. To establish the existence theory for Hilfer fractional

difference equation with initial conditions:{
∆ϑ,ϕ
a χ(x) + g(x+ ϑ− 1, χ(x+ ϑ− 1)) = 0, for x ∈ Na+1−ϑ,

∆
−(1−η)
a χ(a+ 1− η) = ζ, ζ ∈ R,

(5.31)

where η = ϑ+ ϕ− ϑϕ. We transforms the problem to an equivalent summation equation which

in turn defined an appropriate FPO.

Lemma 5.4.1. Let g : [a, T ]Na × R → R be given and 0 < ϑ < 1, 0 ≤ ϕ ≤ 1. Then χ solves

system (5.31) if and only if

χ(x) = ζhη−1(x, a+ 1− η)−∆−ϑa+1−ϑg(x+ ϑ− 1, χ(x+ ϑ− 1)),
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for all x ∈ Na+1.

The proof of above lemma is an implication of Lemma 3.1.2 (i) and (ii) and second part of

Theorem 8 in [116]. In next chapter, the Brouwer’s FPT [61] is utilized for establishing existence

conditions. The set Z of all real sequences u = {χ(x)}Tx=a with ||u|| = sup
x∈NTa

|χ(x)| is a Banach

space.

Using Definition 2.1.15 and Lemma 5.4.1, we define an operator A : Z → Z by

Aχ(x) =ζhη−1(x, a+ 1− η)−
x−ϑ∑

F=a+1−ϑ

hϑ−1(x, σ(F))g(F + ϑ− 1, χ(F + ϑ− 1)). (5.32)

The fixed points of A coincides with the solutions of the problem (5.31).

5.5 Fixed point operator for substantial fractional differ-

ence system for IVP

Findings of this section appeared in [108]. In order to apply FPT to establish existence theory

for substantial fractional difference equation with initial conditions:{
s∆ϕ

aχ(x) + f(x+ ϕ− 1, χ(x+ ϕ− 1)) = 0, for x ∈ Na,
s∆ϕ−i+1χ(x0 = a+m− ϕ) = χi, i = 0, 1, · · · ,m− 1,

(5.33)

where m − 1 < ϕ ≤ m with positive integer m. Here we use a type of initial conditions

involving non-integer order differences, suggested by Heymans and Podlubny [114]. However

these conditions may be converted to whole order conditions by a technique used by Holm [117]

in his doctorate dissertation. Physical entity of initial conditions that involves RL derivative has

been challenged by few researchers. However Heymans and Podlubny discussed some expositions

and provided a physical interpretation for the initial conditions [114, 149]. We convert the

problem to an equivalent summation equation to obtain an appropriate fixed point operators.
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Lemma 5.5.1. Lemma Let f : [a, T ]Na×R→ R be given and m− 1 < ϕ ≤ m for m ∈ N. Then

u solves system (5.33) if and only if

χ(x) =
e−p(x− a+ 1, 0)hϕ−m+1(x, a)∑m

`=0

(
m
`

)
(−p)m−`

m−1∑
i=0

i−1∑
j=0

(
i

j

)
(−p)jχi

− 1∑m
`=0

(
m
`

)
(−p)m−`

s∆
−(ϕ−m+j)
a+m−ϕ f(x+ ϕ− 1, χ(x+ ϕ− 1)).

The proof of above lemma is an implication of Equation (3.3) of Lemma 3.2.5. The Brouwer’s

FPT [61] is utilized for establishing the condition for existence, in the next chapter. The set Z

of all real sequences u = {χ(x)}Tx=a with a norm defined ||u|| = sup
x∈NTa

|χ(x)| is a Banach space.

Define the operator A : Z → Z by

Aχ(x) =
e−p(x− a+ 1, 0)hϕ−m+1(x, a)∑m

`=0

(
m
`

)
(−p)m−`

m−1∑
i=0

i−1∑
j=0

(
i

j

)
(−p)jχi −

1∑m
`=0

(
m
`

)
(−p)m−`

×
x−ϕ+m−j∑
F=a+m−ϕ

hϕ−m+j−1(x, σ(F))e−p(x−F, 0)f(F + ϕ− 1, χ(F + ϕ− 1)).

Fixed points of A coincide with the solutions of the problem (5.33).
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Chapter 6

Existence and uniqueness of solutions

In this chapter, EU conditions of solutions to IVP and BVP shall acquire for different type of

fractional delta difference equations. We deal explicitly with impulsive difference equations for

nonlocal initial condition and two and four point boundary conditions, nonlinear FDE with

multi point summation BC, Hilfer fractional difference Cauchy system and substantial fractional

difference Cauchy system. Findings of sections 6.1 and 6.2 appeared in [110].

6.1 Existence and uniqueness of solutions for IVP with

impulse

Following are the assumptions to apply in the contraction principle:

(C1) there exists a constant N such that

∣∣f(t, x)− f(t, x̄)
∣∣ ≤ N

∣∣x− x̄∣∣, for each t ∈ [a, T ]Na and all x, x̄ ∈ R;

(C2) there exist constants N1 and N2 such that

(i)
∣∣Ik(x)− Ik(x̄)

∣∣ ≤ N1

∣∣x− x̄∣∣, for all x, x̄ ∈ R, k ∈ Nm
1 ;

(ii)
∣∣Īk(x)− Īk(x̄)

∣∣ ≤ N2

∣∣x− x̄∣∣, for all x, x̄ ∈ R, k ∈ Nm
1 ;
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(C3) there exists a constant Nh such that

∣∣h(x)− h(x̄)
∣∣ ≤ Nh

∣∣x− x̄∣∣, for all x, x̄ ∈ R.

Proof of the following two theorems is similar to that of Theorem 6.4.

Theorem 6.1. Let f : [a, T ]Na × R → R be continuous, and 1 < ϕ ≤ 2. Assume that

Ik, Īk : R → R are continuous for k ∈ Nm
1 . In addition, assume that (C1), (C2) hold and

N < Γ(ϕ+1)
3(T−a)ϕ

, N1 <
1

3m
, N2 <

1
3m

. Then the problem (5.11)– (5.13) with initial condition (5.14)

has a unique solution.

Theorem 6.2. Assume that f : [a, T ]Na × R→ R, h : R→ R are continuous, and 1 < ϕ ≤ 2.

Assume that Ik, Īk : R→ R are continuous for k ∈ Nm
1 . In addition, assume that (C1)− (C3)

hold and N < Γ(ϕ+1)
4(T−a)ϕ

, N1 <
1

4m
, N2 <

1
4m

, Nh <
1
4
. Then the problem (5.11)–(5.13) with initial

condition (5.15) has a unique solution.

6.2 Existence and uniqueness of solutions for impulsive

BVP

We shall illustrate the usefulness of Lemma 5.2.4 by establishing existence conditions with

straight forward use of Schaefer’s FPT and accomplish the contraction principle for uniqueness

conditions. We define for further use

M1 := sup

t∈[a,T ]Na

∣∣p(t)∣∣∣∣δ∣∣ , M2 := sup

t∈[a,T ]Na

∣∣α∣∣∣∣q(t)∣∣∣∣δ∣∣ .

Theorem 6.3. Let f : [a, T ]Na × R → R be continuous, and 1 < ϕ ≤ 2. Assume that Ik,

Īk : R → R are continuous for k ∈ Nm
1 . Assume α, β, ξ, η ∈ R, ξ, η ∈ (a, T )Nawhereδ 6= 0. If
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following conditions hold for positive constants L,Lk, L̄k such that

∣∣f(t, x)
∣∣ ≤ L,

∣∣Ik(x)
∣∣ ≤ Lk,

∣∣Īk(x)
∣∣ ≤ L̄k, for t ∈ [a, T ]Na , k ∈ Nm

1 . (6.1)

Then the problem (5.11)– (5.13) with boundary condition (5.17) has at least one solution.

Proof. Define the operator A : PC([a, T ]Na ,R)→ PC([a, T ]Na ,R) by

Ax(t) =
∑
a<ιk<t

Ik(x(ιk))−
p(t)

δ

[ ∑
a<ιk<T

Ik(x(ιk))− β
∑

a<ιk<η

Ik(x(ιk))
]

− αq(t)

δ

∑
a<ιk<ξ

Ik(x(ιk)) +
∑

a<ιk<T

H(t, ιk)Īk(x(ιk))

+
T∑
s=a

G(t, s)f(ϕ+ ρ(s), x(ϕ+ ρ(s))).

The fixed points of A coincide with the solutions of the given problem. The continuity of

f, Ik and Īk implies the continuity of operator A. To prove that A is completely continuous.

Let Ω` = {x ∈ PC([a, T ]Na ,R) : ||x|| ≤ `} for some T < `. Let k0 ∈ Nm
1 . For x ∈ Ω` and

t, t̄ ∈ [a, T ]Na , ιk0 < t < t̄ ≤ ιk0+1, by using (6.1), we get

∣∣Ax(t)−Ax(t̄)
∣∣ ≤(t̄− t)

∑
a<ιk<t

 Lk +
(t̄− t)|α(1− β)|∣∣δ∣∣ [ ∑

a<ιk<ξ

Lk

+ h2(ξ, a)L̄k + hϕ(ξ, a)Lk

]
+

(t̄− t)|(1− α)|∣∣δ∣∣ [ ∑
a<ιk<T

Lk

+ hϕ(T, a)Lk + h2(T, a)L̄k − β
{ ∑
a<ιk<η

Lk + h2(η, a)L̄k

+ hϕ(η, a)Lk
}]

+
∣∣∣(t̄− a)2

Γ(3)
− (t− a)2

Γ(3)

∣∣∣L̄k
+
∣∣∣ (t̄− a)ϕ

Γ(ϕ+ 1)
− (t− a)ϕ

Γ(ϕ+ 1)

∣∣∣L.
The right hand side is independent of x and

∣∣∣∣Ax(t)−Ax(t̄)
∣∣∣∣→ 0 as t̄→ t for ιk0 < t < t̄ ≤ ιk0+1.

By the Arzela-Ascoli theorem we conclude that A : PC([a, T ]Na ,R) → PC([a, T ]Na ,R) is

completely continuous. In order to prove Z = {x ∈ PC([a, T ]Na ,R) : x = λA(x), for some 0 ≤
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λ ≤ 1} is bounded. If x ∈ Z, then x = λA(x)for some 0 ≤ λ ≤ 1. For any t ∈ [a, T ]Na , we have∣∣x(t)
∣∣ =λ

∣∣(A)x(t)
∣∣

≤
∑
a<ιk<t

∣∣Ik(x(ιk))
∣∣+M1

[ ∑
a<ιk<T

∣∣Ik(x(ιk))
∣∣+ |β|

∑
a<ιk<η

∣∣Ik(x(ιk))
∣∣]

+M2

∑
a<ιk<ξ

∣∣Ik(x(ιk))
∣∣+
∣∣∣M1

[
h2(T, a)− βh2(η, a)

]
+M2h2(ξ, a)

+ h2(t, a)
∣∣∣L̄k +

∣∣∣M1

[
hϕ(T, a)− βhϕ(η, a)

]
+M2hϕ(ξ, a)

+ hϕ(t, a)
∣∣∣L

≤M1

{ m∑
k=1

Lk + h2(T, a)L̄k + hϕ(T, a)L+
∣∣β∣∣[h2(η, a)L̄k + hϕ(η, a)L

+
∑

a<ιk<η

Lk
]}

+M2

{ ∑
a<ιk<ξ

Lk + h2(ξ, a)L̄k + hϕ(ξ, a)L
}

+
m∑
k=1

Lk + h2(T, a)L̄k + hϕ(T, a)L := M.

This implies that the set Z is bounded. By the virtue of Schaefer’s FPT fixed point exist for

operator A. Hence given problem has a solution in PC([a, T ]Na ,R).

Theorem 6.4. Let f : [a, T ]Na × R → R be continuous, and 1 < ϕ ≤ 2. Assume that Ik,

Īk : R → R are continuous for k ∈ Nm
1 . Assume α, β, ξ, η ∈ R, ξ, η ∈ (a, T ) whereδ 6= 0. In

addition, assume that (C1), (C2) hold and

N < Γ(ϕ+1)
3

(
(1 +M1)(T − a)ϕ +

∣∣β∣∣M1(η − a)ϕ +M2(ξ − a)ϕ
)−1

,

N1 <
1
3

(
m+M1

(
m+

∣∣β∣∣(η − a)
)

+M2(ξ − a)
)−1

,

N2 <
2
3

(
(1 +M1)(T − a)2 +

∣∣β∣∣M1(η − a)2 +M2(ξ − a)2
)−1

.

Then unique solution to the problem (5.11)–(5.13) with boundary condition (5.17) exists.

Proof. Let x, x̄ ∈ R. For each t ∈ [a, T ]Na , we have
∣∣Ax(t)−Ax̄(t)

∣∣
≤
∑
a<ιk<t

∣∣Ik(x(ιk))− Ik(x̄k)
∣∣+

∣∣p(t)∣∣∣∣δ∣∣ { ∑
a<ιk<T

∣∣Ik(x(ιk))− Ik(x̄k)
∣∣

+
∣∣β∣∣ ∑

a<ιk<η

∣∣Ik(x(ιk))− Ik(x̄k)
∣∣}+

∣∣α∣∣∣∣q(t)∣∣∣∣δ∣∣ ∑
a<ιk<ξ

∣∣Ik(x(ιk))− Ik(x̄k)
∣∣
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+
∑

a<ιk<T

H(t, ιk)
∣∣Īk(x(ιk))− Īk(x̄k)

∣∣+
∑
a<ιk<t

∣∣Īk(x(ιk))− Īk(x̄k)
∣∣

+
T∑
s=a

G(t, s)
∣∣f(ϕ+ ρ(s), x(ϕ+ ρ(s)))− f(ϕ+ ρ(s), x̄(ϕ+ ρ(s)))

∣∣,
≤||x− x̄||

(
mN1 +M1

{
mN1 +

∣∣β∣∣N1(η − a)
}

+M2N1(ξ − a)

+
{
M1

(T − a)2

Γ(3)
+
∣∣β∣∣M1

(η − a)2

Γ(3)
+M2

(ξ − a)2

Γ(3)
+

(T − a)2

Γ(3)

}
N2

+
{(T − a)ϕ

Γ(ϕ+ 1)
+M1

(T − a)ϕ

Γ(ϕ+ 1)
+
∣∣β∣∣M1

(η − a)ϕ

Γ(ϕ+ 1)
+M2

(ξ − a)ϕ

Γ(ϕ+ 1)

}
N

)
,

=||x− x̄||

({
m+M1

(
m+

∣∣β∣∣(η − a)
)

+M2(ξ − a)
}
N1

+
{

(1 +M1)(T − a)2 +
∣∣β∣∣M1(η − a)2 +M2(ξ − a)2

}N2

2

+
{

(1 +M1)(T − a)ϕ +
∣∣β∣∣M1(η − a)ϕ +M2(ξ − a)ϕ

} N

Γ(ϕ+ 1)

)
,

<
(1

3
+

1

3
+

1

3

)
||x− x̄|| < ||x− x̄||.

A is a contraction mapping. As a consequence of the Banach FPT the given BVP has a

unique solution.

Theorem 6.5. Let f : [a, T ]Na ×R→ R be continuous, c1, c2, θ ∈ R, c1 + c2 6= 0 and 0 < ϕ ≤ 1.

Assume that Ik, Īk : R→ R are continuous for k ∈ Nm
1 . In addition, assume that (C1), (C2) (i),

hold and N < Γ(ϕ+1)
2(T−a)ϕ

(
1 + |c1|

|c1+c2|

)−1

, N1 <
1

2m

(
1 + |c1|

|c1+c2|

)−1

. Then the problem (5.11)–(5.12)

with boundary condition (5.16) has a unique solution.

Finally we give an example to illustrate the usefulness of Theorem 6.3.

Example 6.2.1. Consider the FDE with impulses and four-point BC
c∆ϕ

0x(t) + t2 sin(x) = 0, 1 < ϕ ≤ 2, t ∈ N26−ϕ
1−ϕ , t 6= ι1, ι2, ι3,

Ik = 3, k ∈ N3
1

Īk = 1

5+ex2
,

x(0) = 2x(3), x(25) = 3x(5).
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Since δ = −22 6= 0, and there exist positive constants L,Lk, L̄k such that

∣∣t2 sin(x)
∣∣ ≤ ∣∣t(t− 1)

∣∣ = 600 = L,
∣∣Ik(x))

∣∣ ≤ Lk = 3,
∣∣Īk(x)

∣∣ ≤ 1

6
= L̄k,

k ∈ N3
1. Hence all the assumptions of Theorem 6.3 are satisfied. Which shows that problem

possess at least one solution.

6.3 Existence and uniqueness of solutions for MPFBVP

Findings of this section appeared in [107]. In this section, we shall study the existence for

the nonlinear difference equation of non integer order with multi-point summation boundary

conditions. The Schauder’s FPT is utilized for existence, and the contraction mapping theorem

[191] is utilized for uniqueness of solutions.

Theorem 6.6. Let h : [ϑ− 2, b + ϑ + 1]Nϑ−2
× R→ R be continuous function in 2nd variable,

maxt∈Nb+ϑ+1
ϑ−2

φ(t) ≤ M , where φ is the unique solution to the MPFBVP (5.29). Let C =

max{|h(t, u)| : 0 ≤ t ≤ b+ 1, u ∈ R, |u| ≤ 2M} > 0. Then the nonlinear MPFBVP (5.21) has a

solution provided

M∗ <
Γ(ϑ+ 2)M

C
.

Proof. Define a norm ||.|| on space of real valued functions X as ||y|| = max{|y(t)| : t ∈ Nϑ+b+1
ϑ−2 }

so that the pair (X, ||.||) is a Banach space. Thus X is a topological vector space. Define the

compact, convex subset K = {x ∈ X : ||x|| ≤ 2M} of X. The operator T : X → X is given by

Tx(t) =
b+1∑
s=0

G(t, s)h(s, x(ρ(s) + ϑ)) + φ(t), t ∈ Nb+ϑ+1
ϑ−2 .
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First we shall show that T is self map. For arbitrary t ∈ Nb+ϑ+1
ϑ−2 and x ∈ K, we have

|Tx(t)| =
∣∣∣ b+1∑
s=0

G(t, s)h(s, x(ρ(s) + ϑ)) + φ(t)
∣∣∣

≤
b+1∑
s=0

G(t, s)|h(s, x(ρ(s) + ϑ))|+ |φ(t)|

≤C
b+1∑
s=0

G(t, s) +M

≤ CM∗

Γ(ϑ+ 2)
+M

≤ C

Γ(ϑ+ 2)

Γ(ϑ+ 2)M

C
+M ≤ 2M.

To show T is continuous on K, let ε > 0 and substitute maxNb+ϑ+1
ϑ−2

∑b+1
s=0G(t, s) = L. Then by

Lemma 5.3.2, we have

L =
M∗

Γ(ϑ+ 2)
.

Continuity of h on R, implies its uniform continuity on [−2M, 2M ]. So there exists δ > 0 for all

t, and for all x, x̄ ∈ [−2M, 2M ] with |(t, x)− (t, x̄)| < δ we have

|h(t, x)− h(t, x̄)| < ε

L
.

Thus for all t ∈ Nb+ϑ+1
ϑ−2 it follows that

|Tx(t)−Tx̄(t)| =
∣∣∣ b+1∑
s=0

G(t, s)h(s, x(ρ(s) + ϑ))−
b+1∑
s=0

G(t, s)h(s, x̄(ρ(s) + ϑ))
∣∣∣

≤
b+1∑
s=0

G(t, s)
∣∣∣h(s, x(ρ(s) + ϑ))− h(s, x̄(ρ(s) + ϑ))

∣∣∣ < b+1∑
s=0

G(t, s)
ε

L
≤ ε.

This proves the continuity of operator T from K into K. Thus the application of Schauder’s

theorem implies that T(x) = x for some x ∈ K. This prove the desired result.

The Contraction mapping theorem [191] is utilized for uniqueness, in the following theorem.
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Theorem 6.7. Assume h : [ϑ−2, b+ϑ+1]Nϑ−2
×R→ R is uniform Lipschitz in 2nd variable, with

constant k > 0. If k < Γ(ϑ+2)
M∗ , then the nonlinear fractional BVP (5.21) has unique solution.

Proof. Define a norm ||.|| on space of real valued functions X by ||y|| = max{|y(t)| : t ∈ Nϑ+b+1
ϑ−2 }

in such a way that (X, ||.||) is a Banach space. Define operator T as stated in Theorem 6.6. To

show that T is a contraction map, observe for all t ∈ Nb+ϑ+1
ϑ−2 and for all x, x̄ ∈ X that

||Tx(t)−Tx̄(t)|| = max
t∈Nb+ϑ+1

ϑ−2

∣∣∣∣∣
b+1∑
s=0

G(t, s)[h(s, x(ρ(s) + ϑ))− h(s, x̄(ρ(s) + ϑ))]

∣∣∣∣∣
≤ max

t∈Nb+ϑ+1
ϑ−2

b+1∑
s=0

G(t, s)k
∣∣x(ρ(s) + ϑ)− x̄(ρ(s) + ϑ)

∣∣
≤k
∣∣∣∣x− x̄∣∣∣∣ max

t∈Nb+ϑ+1
ϑ−2

b+1∑
s=0

G(t, s)

≤k
∣∣∣∣x− x̄∣∣∣∣ M∗

Γ(ϑ+ 2)
≤ α

∣∣∣∣x− x̄∣∣∣∣.
Thus by given condition α = kM∗

Γ(ϑ+2)
< 1, consequently T is a contraction on X. Hence fixed

point of T in X is unique.

6.4 Existence and uniqueness of solutions for Hilfer frac-

tional difference system

An application of Brouwer’s FPT gives us conditions for the existence of solution for a class of

Hilfer nonlinear FDE. For uniqueness of solution we applied Banach contraction principle. To

solve linear fractional Hilfer difference equation we used successive approximation method and

then define the discrete ML function in the delta difference setting. Findings of this section

appeared in [109].

Theorem 6.8. Let f : [a, T ]Na → R be a bounded function in such a way that |g(x, u)| ≤ f(x)|u|
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for all u ∈ Z given in Lemma 5.4.1. Then IVP (5.31) has at least one solution on Z, provided

L∗ ≤ Γ(ϑ+ 1)

(T − a− 1 + ϑ)ϑ
, (6.2)

where L∗ = sup
x∈NTa+1−ϑ

f(x+ ϑ− 1).

Proof. For M > 0, define the set

W = {u : ||u− ζhη−1(x, a+ 1− η)|| ≤M, for x ∈ NT
a+1−ϑ}.

To prove this theorem we just have to show that A maps W into itself. For u ∈ W , we have∣∣∣Au(x)− ζhη−1(x, a+ 1− η)
∣∣∣

≤f(x+ ϑ− 1)
x−ϑ∑

F=a+1−ϑ

hϑ−1(x, σ(F))|u(F + ϑ− 1)− 0|

≤L∗ sup
x∈NTa+1−ϑ

|u(x+ ϑ− 1)− 0|
x−ϑ∑

F=a+1−ϑ

hϑ−1(x, σ(F))

=L∗||u− 0||
[(x− a− 1 + ϑ)ϑ

Γ(ϑ+ 1)
− 0
]

≤L∗M (T − a− 1 + ϑ)ϑ

Γ(ϑ+ 1)
≤M.

We get ||Au|| ≤M which implies that A is self map. Therefore by Brouwer’s FPT A has at

least one fixed point.

Theorem 6.9. For k > 0 and u, v ∈ Z assume that |g(x, u) − g(x, v)| ≤ k|u − v| for all

x ∈ [a, T ]Na . Then IVP (5.31) has unique solution on Z, provided

k <
Γ(ϑ+ 1)

(T − a− 1 + ϑ)ϑ
. (6.3)

Proof. Let u, v ∈ Z and x ∈ [a, T ]Na , we have by assumption∣∣∣Au(x)−Av(x)
∣∣∣ ≤∣∣∣ x−ϑ∑

F=a+1−ϑ

hϑ−1(x, σ(F))
∣∣∣

× |g(F + ϑ− 1, u(F + ϑ− 1))− g(F + ϑ− 1, v(F + ϑ− 1))|

≤|0− (x− a− 1 + ϑ)ϑ|
Γ(ϑ+ 1)

k|u(F + ϑ− 1)− v(F + ϑ− 1)|.
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In the preceding step, we used
∑

F hϕ−1(x, σ(F)) = −hϕ(x,F) and Lemma 2.1.9. Now taking

supremum on both sides we have

sup
x∈NTa

∣∣∣Au(x)−Av(x)
∣∣∣ ≤ k(T − a− 1 + ϑ)ϑ

Γ(ϑ+ 1)
||u− v||.

Using inequality (6.3), we get ||Au−Av|| ≤ ||u− v|| which implies A is contraction. Therefore

by Banach FPT A has unique fixed point.

To solve the linear Hilfer fractional difference IVP, we use the successive approximation

method.

Example 6.4.1. Let η = ϑ + ϕ − ϑϕ, with 0 < ϑ < 1 and 0 ≤ ϕ ≤ 1. Consider the IVP for

linear Hilfer fractional difference equation,{
∆ϑ,ϕ
a χ(x)− λχ(x+ ϑ− 1) = 0,

∆
−(1−η)
a χ(a+ 1− η) = ζ, ζ ∈ R.

(6.4)

The solution of (6.4) is given by

χ(x) =ζhη−1(x, a+ 1− η) + λ∆−ϑa+1−ϑχ(x+ ϑ− 1).

The Definition 2.1.15 and successive approximation yields the following

χk(x) =χ0(x) + λ
x−ϑ∑

F=a+1−ϑ

hϑ−1(x, σ(F))χk−1(F + ϑ− 1), (6.5)

for k = 1, 2, 3, · · · , where χ0(x) = ζhη−1(x, a+ 1− η).

Initially for k = 1 and by Lemma 2.1.16

χ1(x) =ζhη−1(x, a+ 1− η) + λζhη−1+ϑ(x+ ϑ− 1, a+ 1− η).

112



Similarly for k = 2

χ2(x) =ζ
[
hη−1(x, a+ 1− η) + λhη−1+ϑ(x+ ϑ− 1, a+ 1− η) + λ2hη−1+2ϑ(x

+ 2(ϑ− 1), a+ 1− η)
]

=ζ
[
λ0 (x+ η − a− 1)0.ϑ+η−1

Γ(η)
+ λ1 (x+ η − a− 1 + (ϑ− 1))1.ϑ+η−1

Γ(ϑ+ η)

+ λ2 (x+ η − a− 1 + 2(ϑ− 1))2.ϑ+η−1

Γ(2ϑ+ η)

]
.

Proceeding inductively and let k →∞

χ(x) =ζ
[ ∞∑
k=0

λk
(x+ η − a− 1 + k(ϑ− 1))kϑ+η−1

Γ(kϑ+ η)

]
.

Now, we use property xϑ+ϕ = (x− ϕ)ϑ xϕ in the following step,

χ(x) =ζ
[ ∞∑
k=0

λk
(x+ η − a− 1 + (k − 1)(ϑ− 1))kϑ(x+ η − a− 1 + k(ϑ− 1))η−1

Γ(kϑ+ η)

]
.

Now, from the discrete form (6.5), we have numerical formula

χ(a+ n) =χ(a) +
λ

Γ(ϑ)

n∑
j=1

Γ(n− j + ϑ)

Γ(n− j + 1)
χ(a+ j − 1), (6.6)

with χ(a) = ζ Γ(n+η)
Γ(η)Γ(n+1)

. From (6.6), we can have

χ(n) =ζ
Γ(n+ η)

Γ(η)Γ(n+ 1)
+

λ

Γ(ϑ)

n∑
j=1

Γ(n− j + ϑ)

Γ(n− j + 1)
χ(j − 1).

For different values of ϕ numerical solutions for ϑ = 0.8 and ϑ = 0.5 are shown in Fig. 1

and Fig. 2 respectively. Fig. 1 and Fig. 2 show the interpolative behavior of Hilfer difference

operator between the RL [188] and the Caputo difference operator [187].

Definition 6.4.2. For λ ∈ R and ϑ, η, z ∈ C with Re(ϑ) > 0, the discrete ML functions are

defined by

Eϑ,η(λ, z) =
∞∑
k=0

λk
(z + (k − 1)(ϑ− 1))kϑ(z + k(ϑ− 1))η−1

Γ(kϑ+ η)
.
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Figure 6.1: Solutions for λ = 0.1, ϑ = 0.8 and different values of ϕ.

Figure 6.2: Solutions for λ = 0.1, ϑ = 0.5 and different values of ϕ.

Note that Eϑ,η(λ, z) are same discrete Mittag-Leffler functions appeared in [4].

Next we solve the non-homogeneous Hilfer fractional difference IVP.

Example 6.4.3. Let η = ϑ + ϕ − ϑϕ, with 0 < ϑ < 1 and 0 ≤ ϕ ≤ 1. Consider Hilfer

non-homogeneous fractional difference equation,{
∆ϑ,ϕ
a χ(x)− λχ(x+ ϑ− 1) = f(x),

∆
−(1−η)
a χ(a+ 1− η) = ζ, ζ ∈ R.

(6.7)
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The solution of (6.7) is given by

χ(x) =ζhη−1(x, a+ 1− η) + λ∆−ϑa+1−ϑχ(x+ ϑ− 1) + ∆−ϑa+1−ϑf(x).

The Definition 2.1.15 and successive approximation yields

χk(x) =χ0(x) + λ
x−ϑ∑

F=a+1−ϑ

hϑ−1(x, σ(F))χk−1(F + ϑ− 1) + ∆−ϑa+1−ϑf(x),

for k = 1, 2, 3, · · · , where χ0(x) = ζhη−1(x, a+ 1− η).

Initially for k = 1 and by Lemma 2.1.16

χ1(x) =ζhη−1(x, a+ 1− η) + λζhη−1+ϑ(x+ ϑ− 1, a+ 1− η) + ∆−ϑa+1−ϑf(x).

Similarly for k = 2

χ2(x) =ζ
[
hη−1(x, a+ 1− η) + λhη−1+ϑ(x+ ϑ− 1, a+ 1− η) + λ2hη−1+2ϑ(x

+ 2(ϑ− 1), a+ 1− η)
]

+ λ∆−2ϑ
a+1−ϑf(x+ ϑ− 1) + ∆−ϑa+1−ϑf(x)

=ζ
[
λ0 (x+ η − a− 1)0.ϑ+η−1

Γ(η)
+ λ1 (x+ η − a− 1 + (ϑ− 1))1.ϑ+η−1

Γ(ϑ+ η)

+ λ2 (x+ η − a− 1 + 2(ϑ− 1))2.ϑ+η−1

Γ(2ϑ+ η)

]
+ λ∆−2ϑ

a+1−ϑf(x+ ϑ− 1)

+ ∆−ϑa+1−ϑf(x).

Proceeding inductively and let k →∞

χ(x) =ζ
[ ∞∑
k=0

λk
(x+ η − a− 1 + k(ϑ− 1))kϑ+η−1

Γ(kϑ+ η)

]
+
∞∑
k=1

λk−1∆−kϑa+1−ϑf(x+ (k − 1)(ϑ− 1))

=ζ
[ ∞∑
k=0

λk
(x+ η − a− 1 + k(ϑ− 1))kϑ+η−1

Γ(kϑ+ η)

]
+
∞∑
k=1

λk−1

x−kϑ∑
F=a+1−ϑ

hkϑ−1(x, σ(F + (k − 1)(ϑ− 1)))f(F)
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χ(x) =ζ
[ ∞∑
k=0

λk
(x+ η − a− 1 + k(ϑ− 1))kϑ+η−1

Γ(kϑ+ η)

]
+
∞∑
k=0

λk
x−kϑ−ϑ∑
F=a+1−ϑ

(x− σ(F) + k(ϑ− 1))kϑ+ϑ−1

Γ(kϑ+ ϑ)
f(F)

=ζ
[ ∞∑
k=0

λk
(x+ η − a− 1 + k(ϑ− 1))kϑ+η−1

Γ(kϑ+ η)

]
+

x−ϑ∑
F=a+1−ϑ

∞∑
k=0

λk
(x− σ(F) + k(ϑ− 1))kϑ+ϑ−1

Γ(kϑ+ ϑ)
f(F).

In preceding step, we have interchanged summation of second expression. Now, we use property

xϑ+ϕ = (x− ϕ)ϑ xϕ in the following step,

χ(x) =ζ
[ ∞∑
k=0

λk
(x+ η − a− 1 + (k − 1)(ϑ− 1))kϑ(x+ η − a− 1 + k(ϑ− 1))η−1

Γ(kϑ+ η)

]
+

x−ϑ∑
F=a+1−ϑ

∞∑
k=0

λk
(x− σ(F) + (k − 1)(ϑ− 1))kϑ(x− σ(F) + k(ϑ− 1))ϑ−1

Γ(kϑ+ ϑ)
f(F).

Using Definition 6.4.2, we have

χ(x) = ζEϑ,η(λ, x+ η − a− 1) +
x−ϑ∑

F=a+1−ϑ

[
Eϑ,ϑ(λ, x− σ(F))

]
f(F).

Note that above is the generalization of Caputo fractional difference IVP [4], one can prevail it

for ϕ = 1.

6.5 Existence and uniqueness of solutions for substantial

fractional difference system

The Brouwer’s FPT is utilized for existence, and the Banach FPT is utilized for uniqueness of

solutions for a class of substantial nonlinear FDE. Findings of this section appeared in [108].

Theorem 6.10. Let g : [a, T ]Na → R be a bounded function in such a way that |f(x, u)| ≤ g(x)|u|

for all u ∈ Z. Then IVP (5.33) has at least a solution on Z, provided that

L∗ ≤ (1− p)m, (6.8)
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where L∗ = sup
x∈NTa

x−ϕ+m−j∑
F=a+m−ϕ

hϕ−m+j−1(x, σ(F))e−p(x−F, 0)g(F + ϕ− 1).

Proof. For M > 0, define the set

B =
{
u(x) : ||u− e−p(x− a+ 1, 0)hϕ−m+1(x, a)∑m

`=0

(
m
`

)
(−p)m−`

m−1∑
i=0

i−1∑
j=0

(
i

j

)
(−p)jui|| ≤M

}
.

To prove theorem we just show that A maps B into B. For u ∈ B, we have∣∣∣Au(x)− e−p(x−a+1,0)hϕ−m+1(x,a)∑m
`=0 (m` )(−p)m−`

∑m−1
i=0

∑i−1
j=0

(
i
j

)
(−p)jui

∣∣∣
≤
∑x−ϕ+m−j

F=a+m−ϕ hϕ−m+j−1(x, σ(F))e−p(x−F, 0)g(F + ϕ− 1)∑m
`=0

(
m
`

)
(−p)m−`

|u− 0|.

Since
∑m

`=0

(
m
`

)
(−p)m−` = (1− p)m. Take supremum on both sides we have

sup
x∈NTa

∣∣∣Au(x)− e−p(x− a+ 1, 0)hϕ−m+1(x, a)∑m
`=0

(
m
`

)
(−p)m−`

m−1∑
i=0

i−1∑
j=0

(
i

j

)
(−p)jui

∣∣∣ ≤ L∗M

(1− p)m
.

By using inequality (6.8), we get ||Au|| ≤M which implies that A is self map and therefore by

Brouwer fixed point theorem it has at least a fixed point.

Theorem 6.11. Under the assumption (H1) |f(x, u)− f(x, v)| ≤ k|u− v|, for k > 0 and for

all u, v ∈ Z and x ∈ [a, T ]Na . The IVP (5.33) has a unique solution on Z, provided

k <
|1− p|2m−ϕ−j

|hϕ−m+j(T, a− ϕ+m)|
. (6.9)

Proof: Let u, v ∈ Z and x ∈ [a, T ]Na . Then, we have

∣∣∣Au(x)−Av(x)
∣∣∣ ≤∣∣∣∑x−ϕ+m−j

F=a+m−ϕ hϕ−m+j−1(x, σ(F))e−p(x−F, 0)∑m
`=0

(
m
`

)
(−p)m−`

∣∣∣
× |f(F + ϕ− 1, u(F + ϕ− 1))− f(F + ϕ− 1, v(F + ϕ− 1))|

≤|hϕ−m+j(x, a− ϕ+m)|
|1− p|2m−ϕ−j

k|u(F + ϕ− 1)− v(F + ϕ− 1)|.
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In the preceding step, we use condition (H1),
∑m

`=0

(
m
`

)
(−p)m−` = (1 − p)m, Lemma 2.1.9,∑

F hϕ−1(x, σ(F)) = −hϕ(x,F) and the inequality

∣∣∣ x−ϕ+m−j∑
F=a+m−ϕ

hϕ−m+j−1(x, σ(F))e−p(x−F, 0)
∣∣∣ <

∣∣∣∑x−ϕ+m−j
F=a+m−ϕ hϕ−m+j−1(x, σ(F))

∣∣∣
|1− p|m−ϕ−j

.

Now taking supremum on both sides

sup
x∈NTa

∣∣∣Au(x)−Av(x)
∣∣∣ ≤ |hϕ−m+j(T, a− ϕ+m)|

|1− p|2m−ϕ−j
k||u− v||.

By using inequality (6.9), we get ||Au − Av|| ≤ ||u − v|| which implies A is contraction.

Therefore by Banach FPT it has unique fixed point.
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Chapter 7

Stability analysis

In this chapter, four kinds of Ulam stability to initial and boundary value problems is discussed.

Conditions shall acquire for different type of fractional delta difference problems namely, nonlin-

ear FDE with multi-point summation BC, Hilfer fractional difference with initial condition and

substantial fractional difference with initial condition. Also continuous dependence of solution

to fractional order Hilfer difference equation with on initial conditions will be discussed through

modified Gronwall’s inequality.

The definition of Ulam stability for fractional difference equations is introduced in [61].

Consider the system (5.31) and the following inequalities:

∣∣∣∆ϑ,ϕ
a v(y) + g(y + ϑ− 1, v(y + ϑ− 1))

∣∣∣ ≤ ε, y ∈ [a, T ]Na , (7.1)

∣∣∣∆ϑ,ϕ
a v(y) + g(y + ϑ− 1, v(y + ϑ− 1))

∣∣∣ ≤ εð(ρ(y) + ϕ), y ∈ [a, T ]Na , (7.2)

where ð : [a, T ]Na → R+.

Definition 7.0.1. [109] A solution u ∈ Z of system (5.31) is UH stable if there exists a

real number df > 0 such that for each ε > 0 and for every solution v ∈ Z of inequality (7.1), if
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it satisfies ∣∣∣∣v − u∣∣∣∣ ≤ εdf . (7.3)

A solution of system (5.31) is generalized UH stable if we substitute the function ℘f (ε) for the

constant εdf in inequality (7.3), where ℘f (ε) ∈ C(R+, R+) and ℘f (0) = 0.

Definition 7.0.2. [109] A solution u ∈ Z of system (5.31) is UHR stable with respect to

function ð if there exists a real number df,ð > 0 such that for each ε > 0 and for every solution

v ∈ Z of inequality (7.2) if it satisfies

∣∣∣∣v − u∣∣∣∣ ≤ εð(y)df,ð, y ∈ [a, T ]Na . (7.4)

The solution of system (5.31) is generalized UHR stable if we substitute the function Φ(y) for

the function εð(y) in inequalities (7.2) and (7.4).

Now consider the system (5.33) and the following inequalities:

∣∣∣ s∆ϕ
av(x) + f(ρ(x) + ϕ, v(ρ(x) + ϕ))

∣∣∣ ≤ ε, x ∈ [a, T ]Na , (7.5)

∣∣∣ s∆ϕ
av(x) + f(ρ(x) + ϕ, v(ρ(x) + ϕ))

∣∣∣ ≤ εð(ρ(x) + ϕ), x ∈ [a, T ]Na , (7.6)

where ð : [a, T ]Na → R+.

Definition 7.0.3. [108] If there exists a real number df > 0 such that for each ε > 0 and for

every solution v ∈ Z in inequality (7.5) the solution u ∈ Z of system (5.33) is UH stable if it

satisfies ∣∣∣∣v − u∣∣∣∣ ≤ εdf . (7.7)

The solution of system (5.33) is generalized UH stable if we substitute the function ℘f (ε) for the

constant εdf in inequality (7.7), where ℘f (ε) ∈ C(R+, R+) and ℘f (0) = 0.
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Definition 7.0.4. [108] If there exists a real number df,ð > 0 such that for each ε > 0 and for

every solution v ∈ Z of inequality (7.6) then, a solution u ∈ Z of system (5.33) is UHR stable

with respect to function ð if it satisfies

∣∣∣∣v − u∣∣∣∣ ≤ εð(x)df,ð, x ∈ [a, T ]Na . (7.8)

The solution of system (5.33) is generalized UHR stable if we substitute the function Φ(x) for

the function εð(x) in inequalities (7.6) and (7.8).

7.1 Stability of solutions for MPFBVP

In this section, we shall discuss UHR stability for the nonlinear difference equation of non integer

order with multi-point summation boundary conditions. Findings of this section appeared

in [107].

Theorem 7.1. Assume for constant Lh > 0,
∣∣h(t, x(t)) − h(t, y(t))

∣∣ ≤ Lh

∣∣∣x(t) − y(t)
∣∣∣ holds,

for each t ∈ [ϑ − 2, b + ϑ + 1]Nϑ−2
and x(t), y(t) ∈ K. Let x(t) ∈ K be a solution of system

(5.21) and y(t) ∈ K be a solution of inequality (2.4) and M∗ is given in Lemma 5.3.2. Then for

M∗Lh < 1 then the nonlinear MPFBVP (5.21) is UH stable and consequently, generalized UH

stable.

Proof. By Corollary 5.1.4 the solution x(t) of nonlinear MPFBVP (5.21) is given by equation

(5.30). From inequality (2.4) for t ∈ [ϑ− 2, b+ ϑ+ 1]Nϑ−2
, it follows that

∣∣∣y(t)−
(
φ(t)−

b+1∑
s=0

G(t, s)h(ρ(s) + ϑ, y(ρ(s) + ϑ)
)∣∣∣ ≤ ε. (7.9)

By making use of equation (5.30) and inequality (7.9) together for t ∈ [ϑ− 2, b+ ϑ+ 1]Nϑ−2
, we
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have∣∣∣y(t)− x(t)
∣∣∣ =
∣∣∣y(t)−

(
φ(t)−

b+1∑
s=0

G(t, s)h(ρ(s) + ϑ, x(ρ(s) + ϑ))
)∣∣∣

≤
∣∣∣y(t)−

(
φ(t)−

b+1∑
s=0

G(t, s)h(ρ(s) + ϑ, y(ρ(s) + ϑ))
)∣∣∣

+
∣∣∣ b+1∑
s=0

G(t, s)h(ρ(s) + ϑ, x(ρ(s) + ϑ))−
b+1∑
s=0

G(t, s)h(ρ(s) + ϑ, y(ρ(s) + ϑ)
)∣∣∣

≤ ε+M∗Lh

∣∣∣y(t)− x(t)
∣∣∣.

In preceding step, we use the assumption on h and Lemma 5.3.2. Simplification yields the

following ∣∣∣y(t)− x(t)
∣∣∣ ≤ ε

1−M∗Lh
= εdh, with dh =

1

1−M∗Lh
.

Therefore solution of the MPFBVP (5.21) is UH stable. Further by using ℘h(ε) = εdh, ℘h(0) = 0,

implies that solution of system (5.21) is generalized UH stable.

Theorem 7.2. Assume for constant Lh > 0,
∣∣h(t, x(t)) − h(t, y(t))

∣∣ ≤ Lh

∣∣∣x(t) − y(t)
∣∣∣ holds,

for each t ∈ [ϑ − 2, b + ϑ + 1]Nϑ−2
and x(t), y(t) ∈ K. Let x(t) ∈ K be a solution of system

(5.21) and y(t) ∈ K be a solution of inequality (2.5) where M∗ is given in Lemma 5.3.2.

Then for M∗Lh < 1, the nonlinear MPFBVP (5.21) is UHR stable with respect to function

ð : [ϑ− 2, b+ ϑ+ 1]Nϑ−2
→ R+ and consequently, generalized UHR stable.

Proof. By Corollary 5.1.4 the solution x(t) of nonlinear MPFBVP (5.21) is given by equation

(5.30). From inequality (2.5), for t ∈ [ϑ− 2, b+ ϑ+ 1]Nϑ−2
, it follows that

∣∣∣y(t)−
(
φ(t)−

b+1∑
s=0

G(t, s)h(ρ(s) + ϑ, y(ρ(s) + ϑ))
)∣∣∣ ≤ εð(ρ(t) + ϑ). (7.10)

By making use of equation (5.30) and inequality (7.10) together for t ∈ [ϑ− 2, b+ ϑ+ 1]Nϑ−2
,
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we have∣∣∣y(t)− x(t)
∣∣∣ =
∣∣∣y(t)−

(
φ(t)−

b+1∑
s=0

G(t, s)h(ρ(s) + ϑ, x(ρ(s) + ϑ))
)∣∣∣

≤
∣∣∣y(t)−

(
φ(t)−

b+1∑
s=0

G(t, s)h(ρ(s) + ϑ, y(ρ(s) + ϑ))
)∣∣∣

+
∣∣∣ b+1∑
s=0

G(t, s)h(ρ(s) + ϑ, x(ρ(s) + ϑ))−
b+1∑
s=0

G(t, s)h(ρ(s) + ϑ, y(ρ(s) + ϑ)
)∣∣∣

≤ εð(ρ(t) + ϑ) +M∗Lh

∣∣∣y(t)− x(t)
∣∣∣.

In preceding step, we use the assumption on h and Lemma 5.3.2. Simplification yields the

following ∣∣∣y(t)− x(t)
∣∣∣ ≤ εð(ρ(t) + ϑ)

1−M∗Lh
= εdh,ð, with dh,ð =

ð(ρ(t) + ϑ)

1−M∗Lh
.

Therefore solution of the MPFBVP (5.21) is UHR stable. Further Φ(ρ(t) + ϑ) = εð(ρ(t) + ϑ),

implies that solution of system (5.21) is generalized UHR stable.

Finally, to illustrate the usefulness of Theorem 7.1, we present the following example.

Example 7.1.1. Consider the delta DE with summation condition{
−∆1.2

−0.8x(t) = ζ(t+ 0.2)3x(t+ 0.2), t ∈ [0, 14]N0

x(−0.8) = p, x(15.2) + 10
∑14.2

s=0.2 x(s) = q,

we have Lh = 221.76ζ, for t ∈ [−0.8, 15.2]N−0.8, since b = 13, ϑ = 1.2 and λ = 10, therefore

M∗ = 2.12. Then for 1
ζ
< 470.1, the solution to given problem with inequalities

∣∣∣∆1.2
−0.8y(t) + h(t+ 0.2, y(t+ 0.2))

∣∣∣ ≤ ε t ∈ [0, 14]N0 ,

∣∣∣∆1.2
−0.8y(t) + h(t+ 0.2, y(t+ 0.2))

∣∣∣ ≤ εð(t+ 0.2) t ∈ [0, 14]N0 ,

is respectively UH stable and UHR stable with respect to function ð : [−0.8, 15.2]N−0.8 → R+.

123



7.2 Stability of solutions for Hilfer fractional difference

system

In this section, conditions are acquired for four type of Ulam stability. An application of

modified Gronwall’s inequality has been given for the stability of solution to fractional order

Hilfer difference equation with initial conditions. Findings of this section appeared in [109].

Theorem 7.3. For k > 0 assume that |g(x, u) − g(x, v)| ≤ k|u − v|, for all x ∈ [a, T ]Na . Let

u ∈ Z be a solution of system (5.31) and v ∈ Z be a solution of inequality (7.1). Then for k in

inequality (6.3), the nonlinear IVP (5.31) is UH stable and consequently, generalized UH stable.

Proof. For simplicity the solution of IVP (5.31) can be rewritten as by using Equation (6.1)

u(x) =φ(x)−
x−ϑ∑

F=a+1−ϑ

hϑ−1(x, σ(F))g(F + ϑ− 1, u(F + ϑ− 1)), (7.11)

where φ(x) = ζhη−1(x, a+ 1− η). Now, for [a, T ]Na it follows from inequality (7.1) that

∣∣∣v(x)−
(
φ(x)−

x−ϑ∑
F=a+1−ϑ

hϑ−1(x, σ(F))g(F + ϑ− 1, v(F + ϑ− 1))
)∣∣∣ ≤ ε. (7.12)

For [a, T ]Na , making use of equation (7.11) and inequality (7.12) together for [a, T ]Na , we have

∣∣∣v(x)− u(x)
∣∣∣ =
∣∣∣v(x)−

(
φ(x)−

x−ϑ∑
F=a+1−ϑ

hϑ−1(x, σ(F))g(F + ϑ− 1, u(F + ϑ− 1))
)∣∣∣

≤
∣∣∣v(x)−

(
φ(x)−

x−ϑ∑
F=a+1−ϑ

hϑ−1(x, σ(F))g(F + ϑ− 1, v(F + ϑ− 1))
)∣∣∣

+
∣∣∣ x−ϑ∑
F=a+1−ϑ

hϑ−1(x, σ(F))
∣∣∣

×
∣∣∣g(F + ϑ− 1, v(F + ϑ− 1))− g(F + ϑ− 1, u(F + ϑ− 1))

∣∣∣
≤ ε+ |0− hϑ(x, a+ 1− ϑ)|k

∣∣∣v(F + ϕ− 1)− u(F + ϕ− 1)
∣∣∣.
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In preceding step, we used assumption and the same argument used in Theorem 6.9. Now,

taking supremum on both sides and simplifying, we have

∣∣∣∣v − u∣∣∣∣ ≤ ε

1− hϑ(T, a+ 1− ϑ)k
= εdf , with df =

1

1− hϑ(T, a+ 1− ϑ)k
.

Therefore by inequality (6.3), (5.31) is UH stable. Further by using ℘f(ε) = εdf , ℘f(0) = 0,

which implies that (5.31) is generalized UH stable.

Theorem 7.4. For k > 0 assume that |g(x, u) − g(x, v)| ≤ k|u − v|, for all x ∈ [a, T ]Na .

Let u ∈ Z be a solution of system (5.31) and v ∈ Z be a solution of inequality (7.2). Then

for k in inequality (6.3), the nonlinear IVP (5.31) is UHR stable with respect to function

ð : [a, T ]Na → R+ and consequently, generalized UHR stable.

To illustrate the usefulness of Theorem 7.3, we present the following example.

Example 7.2.1. Consider the fractional Hilfer difference equation with initial conditions in-

volving Reimann-Liouville fractional sum{
−∆0.7,0.5

0.3 u(x) = (x− 0.3)u(x− 0.3), x ∈ [0.3, 9.3]N0.3

∆
−(0.15)
0.3 u(0.45) = ζ.

Here a = 0.3, T = 9.3, ϑ = 0.7 and ϕ = 0.5. Therefore η = 0.85. Thus for k < 0.1974, the

solution to the given problem with inequalities

∣∣∣∆0.7,0.5
0.3 v(x) + (x− 0.3)v(x− 0.3)

∣∣∣ ≤ ε x ∈ [0.3, 9.3]N0.3 ,

∣∣∣∆0.7,0.5
0.3 v(x) + (x− 0.3)v(x− 0.3)

∣∣∣ ≤ εð(x− 0.3) x ∈ [0.3, 9.3]N0.3 ,

is UH stable and UHR stable with respect to function ð : [0.3, 9.3]N0.3 → R+.
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7.2.1 Application of modified Gronwall’s inequality in delta differ-
ence setting

A simple utilization of Gronwall’s inequality leads to stability for Hilfer difference equation.

Let η = ϑ + ϕ − ϑϕ, then for 0 < ϑ < 1 and 0 ≤ ϕ ≤ 1, we have 0 < η ≤ 1. Following result

illustrates the application of Gronwall’s inequality, for the system{
∆ϑ,ϕ
a v(x) + g(x+ ϑ− 1, v(x+ ϑ− 1)) = 0, for x ∈ Na+1−ϑ,

∆
−(1−η)
a v(a+ 1− η) = ξ, ξ ∈ R.

(7.13)

Theorem 7.5. Assume Lipschitz condition |g(x, u)− g(x, v)| ≤ k|u− v| holds for function g.

Then the solution to Hilfer fractional difference system is stable.

Proof. Let u ∈ Z be a solution of system (5.31) and v ∈ Z be a solution of system (7.13). Then

the corresponding summation equations are

u(x) =ζhη−1(x, a+ 1− η)−∆−ϑa+1−ϑg(x+ ϑ− 1, u(x+ ϑ− 1)),

v(x) =ξhη−1(x, a+ 1− η)−∆−ϑa+1−ϑg(x+ ϑ− 1, v(x+ ϑ− 1)).

For the absolute value of the difference, we have |u(x)− v(x)|

≤|ζ − ξ||hη−1(x, a+ 1− η)|

+ |∆−ϑa+1−ϑ(g(x+ ϑ− 1, u(x+ ϑ− 1))− g(x+ ϑ− 1, v(x+ ϑ− 1)))|

≤|ζ − ξ|hη−1(x, a+ 1− η) + ∆−ϑa+1−ϑk|u(x+ ϑ− 1)− v(x+ ϑ− 1)|.

Then it follows from the Theorem 2.3 that

|u(x)− v(x)| ≤|ζ − ξ|
Γ(η)

∞∑
`=0

E`
K(x+ η − a− 1 + `(ϑ− 1))η−1.

By using Lemma 2.1.16, we get E`
K(x+η−a−1+`(ϑ−1))η−1 = K`Γ(η)

Γ(η+ϑ`)
(x+η−a−1+`(ϑ−1))η+ϑ`−1.
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To shape in the form of discrete Mittag-Leffler function, we use property xϑ+ϕ = (x− ϕ)ϑ xϕ,

|u(x)− v(x)| ≤|ζ − ξ|
∞∑
`=0

K`

Γ(η + ϑ`)
(x+ η − a− 1 + (k − 1)(ϑ− 1))kϑ

× (x+ η − a− 1 + k(ϑ− 1))η−1

=|ζ − ξ|Eϑ,η(K, x+ η − a− 1),

where Eϑ,η(λ, x) is discrete Mittag-Leffler functions defined in [4]. Replace system (7.13) with{
∆ϑ,ϕ
a v(x) + g(x+ ϑ− 1, v(x+ ϑ− 1)) = 0,

∆
−(1−η)
a v(a+ 1− η) = ζn,

(7.14)

for x ∈ Na+1−ϑ and ζn → ζ. The solutions are denoted by vn. Now we have

|u(x)− vn(x)| ≤|ζ − ζn|Eϑ,η(k, x+ η − a− 1).

This leads to |u(x)− vn(x)| → 0, when ζn → ζ for n→∞. This complete the proof.

7.3 Stability of solutions for substantial fractional differ-

ence system

In this section, conditions will be acquire for four type of Ulam stability to fractional order

substantial difference equation with initial conditions. Findings of this section appeared in [108].

Theorem 7.6. Assume condition (H1) holds. Let u ∈ Z be a solution of system (5.33) and

v ∈ Z be a solution of inequality (7.5). Then for k in inequality (6.9), the nonlinear IVP (5.33)

is UH stable and consequently, generalized UH stable.

Proof. By Lemma 5.5.1, for simplicity we can rewrite the solution of IVP (5.33) as

u(x) =φ(x)−
x−ϕ+m−j∑
F=a+m−ϕ

hϕ−m+j−1(x, σ(F))e−p(x−F, 0)

(1− p)m
f(F + ϕ− 1, u(F + ϕ− 1)), (7.15)
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where φ(x) = e−p(x−a+1,0)hϕ−m+1(x,a)∑m
`=0 (m` )(−p)m−`

∑m−1
i=0

∑i−1
j=0

(
i
j

)
(−p)jui. From inequality (7.5) for [a, T ]Na , it

follows that ∣∣∣v(x)−
(
φ(x)−

x−ϕ+m−j∑
F=a+m−ϕ

hϕ−m+j−1(x, σ(F))e−p(x−F, 0)

(1− p)m

× f(F + ϕ− 1, v(F + ϕ− 1))
)∣∣∣ ≤ ε.

(7.16)

Making use of equation (7.15) and inequality (7.16) together for [a, T ]Na , we have

∣∣∣v(x)− u(x)
∣∣∣ =
∣∣∣v(x)−

(
φ(x)−

x−ϕ+m−j∑
F=a+m−ϕ

hϕ−m+j−1(x, σ(F))e−p(x−F, 0)

(1− p)m

× f(F + ϕ− 1, u(F + ϕ− 1))
)∣∣∣

≤
∣∣∣v(x)−

(
φ(x)−

x−ϕ+m−j∑
F=a+m−ϕ

hϕ−m+j−1(x, σ(F))e−p(x−F, 0)

(1− p)m

× f(F + ϕ− 1, v(F + ϕ− 1))
)∣∣∣

+
∣∣∣ x−ϕ+m−j∑
F=a+m−ϕ

hϕ−m+j−1(x, σ(F))e−p(x−F, 0)

(1− p)m
∣∣∣

×
∣∣∣f(F + ϕ− 1, v(F + ϕ− 1))− f(F + ϕ− 1, u(F + ϕ− 1))

∣∣∣
≤ ε+

|hϕ−m+j(x, a− ϕ+m)|
|1− p|2m−ϕ−j

k
∣∣∣v(F + ϕ− 1)− u(F + ϕ− 1)

∣∣∣.
In preceding step, we used (H1) and the argument used in Theorem 6.9. Now, taking supremum

on both sides and simplification yields the following

∣∣∣∣v − u∣∣∣∣ ≤ ε

1− |hϕ−m+j(T,a−ϕ+m)|
|1−p|2m−ϕ−j k

= εdf , with df =
1

1− |hϕ−m+j(T,a−ϕ+m)|
|1−p|2m−ϕ−j k.

Therefore, by inequality (6.9), (5.33) is UH stable. Further by using ℘f(ε) = εdf , ℘f(0) = 0,

which implies that (5.33) is generalized UH stable.

Theorem 7.7. Assume condition (H1) holds. Let u ∈ Z be a solution of system (5.33) and

v ∈ Z be a solution of inequality (7.6). Then for k in inequality (6.9), the nonlinear IVP (5.33)

is UHR stable with respect to function ð : [a, T ]Na → R+ and consequently, generalized UHR

stable.
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Finally, to illustrate the usefulness of Theorem 7.6, we present following example.

Example 7.3.1. Consider the fractional substantial equation with difference condition{
− s∆0.8

0 u(x) = (x− 0.2)u(x− 0.2), x ∈ [0, 10]N0

s∆1.8
0 u(0.2) = u0.

Since a = 0, ϕ = 0.8 and T = 10, therefore m = 1, i = 0 and j = 0. Then for any p 6= 1, we

have k < |1−p|1.2
335179.01

. For instant if we choose p = 1001 then for k < 1
84.2

, the solution to given

problem with inequalities

∣∣∣ s∆0.8
0 v(x) + (x− 0.2)v(x− 0.2)

∣∣∣ ≤ ε x ∈ [0, 10]N0 ,

∣∣∣ s∆0.8
0 v(x) + (x− 0.2)v(x− 0.2)

∣∣∣ ≤ εð(x− 0.2) x ∈ [0, 10]N0 ,

is UH stable and UHR stable with respect to function ð : [0, 10]N0 → R+.
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Chapter 8

Summary

In Chapter 1, we outlined some working areas of FC and present the motivation behind using

delta FDO. History of FC is given in Section 1.1 where we highlighted some researcher who

gradually build the theory. Also we highlighted some dominant treatise in the field of FC and

enlist some prominent fractional operators available in the literature. Section 1.2 contained

the discussion on origin of difference equation and some major contribution. As the discrete

analogue of fractional derivative the integer order difference has the generalization to non-integer

order in such a way that it is compatible with classical difference operators. In Section 1.3

references of FC in continuous setting are listed. A short survey of BVP with different types

of boundary conditions, double Laplace transform, Hilfer and substantial fractional derivative

are given to set a track for main research work. Detailed survey of discrete fractional calculus

with some important contributions are presented. Specifically some references in the area of

delta FC are discussed. In Section 1.4 properties of fractional operators are enlisted with some

rules which are not satisfied by fractional operator. Also some commonly used FDO are enlisted.

Motivations for defining new FDO and for defining delta double Laplace transform are given.

Motivations for discussion of multipoint BVP, impulsive difference system and UHR stability
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are also given. To cover up some gaps and to further build up the theory of discrete FC are

two main goal of the dissertation which are described in Section 1.5. Pointwise objective of

dissertation are also enlisted. Detailed organization of dissertation is given in Section 1.6.

In Chapter 2, some fundamentals and special functions are given. Definitions of discrete

FC are given in Section 2.1. Euler Gamma function and alternative versions of discrete ML

functions are presented in comparison to [4] in Section 2.2. The definitions of UHR stability for

delta FDE are stated in Section 2.3. In Section 2.4 a Gronwall’s inequality in delta discrete

setting is furbished.

In Chapter 3, some generalizations of FDO are constructed. In Section 3.1 a new definition

of Hilfer like FD on discrete time scale has been introduced. Some basic composition properties

are also presented for newly defined Hilfer FDO. In Section 3.2 substantial fractional sum and

DO on discrete time scale are constructed. Some important properties including left inverse

property and composition properties are presented. Also a relation between RL and substantial

FDO is induced.

In Chapter 4, the delta double Laplace transform method is introduced. Definition, EU and

series representation of the delta double Laplace transform are given in Section 4.1. Some basic

properties are derived in Section 4.2. The delta double Laplace transform of partial differences

is presented in Section 4.3. The delta Laplace transform is developed for newly defined Hilfer

FDO in Section 4.4. The exponential shift property of delta Laplace transform are proposed in

Section 4.5, as an application of exponential shift property, delta Laplace transform for fractional

substantial sum and DO are presented.

In Chapter 5, FPO and GF to different types of FDE are obtained. In Section 5.1 the general
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method of construction of summation equation from nonlinear FDE with impulse is presented.

This construction applied to obtain FPO for IVP.

In Section 5.2 the general construction is applied to the two point BC and the four point

BC. Then the GF for two points and four points BVP are derived with some useful properties.

In Section 5.3 the GF for multi-points BVP with summation condition are derived. Some

useful properties of the GF are presented. The fixed point operator for the nonlinear FDE with

multi-point summation BC are obtained.

FPO for Cauchy type problem of Hilfer FD system is obtained in Section 5.4.FPO is obtained

in Section 5.5 for substantial FD system with initial condition.

In Chapter 6, conditions for the EU of solutions to different types of FDE are obtained.

Conditions for EU of impulsive difference equations with IVP and BVP are obtained in Section

6.2 and Section 6.1. In Section 6.3 conditions for EU for MPFBVP are obtained. Conditions for

the EU of solutions for Hilfer FD system and substantial FD system are respectively obtained

in Section 6.4 and Section 6.5.

In Chapter 7, UH stability and UHR stability are discussed for different types of FDE.

In Section 7.1, conditions are acquired under which the nonlinear MPFBVP is UH stable,

generalized UH stable, UHR stable and generalized UHR stable. In Section 7.2, conditions are

acquired under which the nonlinear Hilfer FD system is UH stable, generalized UH stable, UHR

stable and generalized UHR stable. An application of the modified discrete Gronwall’s inequality

in delta setting is presented. In Section 7.3, conditions are acquired under which the nonlinear

substantial FD system is UH stable, generalized UH stable, UHR stable and generalized UHR

stable.
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