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Abstract

In this dissertation the accretion of the Schwarzschild black hole immersed in an electro-

magnetic �eld is discussed in the context of rainbow gravity. Discussion of the Hamilton

Jacobi equations for astrophysical �uid is also given.

Then the cyclic and heteroclinic �ow of the Schwarzschild black hole in rainbow grav-

ity is discussed. Later, we �nd the Hamiltonian, sonic points, non-sonic critical points of

the given system and discuss the isothermal test �uid with its solution. Further, conditions

for critical accretion and polytropic solution for the Schwarzschild black hole are discussed

in the framework of rainbow gravity.
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Chapter 1

1.1 Introduction

On the basis of gravitational force, Isaac Newton compared the acceleration of di�erent ob-

jects. He linked the acceleration of bodies on earth to the acceleration of bodies on moon.

His comparison enabled him to wrap up the concept of gravitational force of attraction

between di�erent objects. He found out that the gravitational force of attraction shows a

signi�cant change when the distance between the two objects is varied. Further, he noticed

distance is not only the variable quantity a�ecting the magnitude of gravitational force. He

noticed that the gravitational force of attraction decreases when the square of the distance

between the centers of two bodies is increased. The concept behind the mystery of the

apple falling from tree under gravity must be contingent upon the mass of the apple. As

acceleration of freely falling object is constant over small heights, thus the force F becomes

entirely relied on the mass of the falling object/apple. On the basis of these ideas Newton

discovered universal law of gravitation in which every body in the entire universe, attracts

every other body with a force which changes directly with the product of their masses and

that force changes inversely to the square of distance between their centers. The Newto-

nian gravity is treated as universal constant, i.e. same in all inertial frames [1].

In 1905, Einstein showed that if speed of light is treated as universal constant, then Lorentz

transformations reduces to Galilean transformation, which also serve as a more generalized

replacement. Further treating time on the same ground to the dimensions related to space,

Einstein proposed special relativity (SR). This is grounded upon the two principles stated

below [2]:
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1. All inertial reference frames are physically same, i.e. in an inertial frame (a frame in

which Newton’s second law of motion holds), there is no physical dissension between

two observers if they move relative to each other and "physical laws" appear to be

same for both of them.

2. The speed of light remains the same in vacuum and observer independent.

Clearly, this theory is bounded to dealing with uniform and linear motion only. That is why

it is called SR. Maxwell’s theory is a remarkable theory of light, magnetism and electricity,

which is merged into the framework of SR. Then one could think that the next step would

be, to generalize Newton’s theory of gravitation by making that compatible with Einstein’s

theory of SR as Maxwell did by generalizing Coulombs electrostatics and proposed new

theory [2]. In contrast, Einstein selected completely di�erent path for formulation of his

theory, instead of generalized relativity. He proposed a mechanism, in which space and

time are treated a continuum as spacetime. The idea behind this was that, mostly the forces

of nature are represented by �elds de�ned on spacetime fabric but in this theory of gravity

known as general relativity (GR), gravity is the property of spacetime [1].

According to the equivalence principle, all bodies irrespective of their size and weight, ex-

perience same acceleration in the gravitational �eld. Now to develop further perspective on

gravitation, one should consider how can we measure the electromagnetic �led in SR. First

of all, set the "background observers", which are not in the range of electromagnetic �eld.

These observers are called "inertial observers" and satisfy geodesic equation ua∂aub = 0

[1]. Secondly, we place a charged test body in that electromagnetic �eld. Here the deviation

of that test body from inertial motion will determine Fab [1].

By the equivalence principle, we are unable to stay away a body or an observer from the

force �eld. Thus, we do not have any straightforward, physical procedure for constructing

mechanical approach parallel to that of electromagnetism. Any observer will move in an

identical manner to the test body. So, we do not have an independent "background ob-

server" to monitor the body under test. Therefore, we have no simple and direct method to

assess the gravitational �eld in the present frames. If Einstein’s theory of relativity were
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correct, one might device mechanical methods for independent observer by spacetime mea-

surements, i.e. the (�at) spacetime metric can be measured using clocks and meter sticks,

from which geodesic can be calculated. Also, the inertial observer can be thought of as

driven by rocket engine. In this way equivalence principle can be viewed as an unexpected

aspect of gravitational force �eld as was in Newtonian theory of gravity [2].

The concept of the GR emerges from our inability to construct independent "inertial ob-

server" in SR. This can be su�ced by the hypothesis that " the spacetime is not �at". The

world line of a free falling timelike observers is exactly same as the geodesic of the curved

spacetime metric. So, this can be concluded that the motion of an object in gravitational

�eld is equivalent to the geodesic of the curved spacetime. Hence gravity can be viewed as

an aspect of spacetime structure instead of the force �eld. Einstein’s theory of GR modi�es

the framework of SR by allowing the manifold to di�er from R4 and allow the metric to

be non �at. The physical quantities in GR can be described by tensor �elds as were used

in SR. In GR, perfect �uids are described in the terms of velocity 4-vector ua (unit tangent

(measured by gab) to its world line), density ρ, pressure P [1, 2].

1.1.1 Quantum Theory of Gravity

The Einstein’s theory of GR put forth a revolutionary viewpoint on gravity and spacetime.

However, in one important aspect, this theory is not comprehensive enough. It is well es-

tablished that all physical �elds must be described on a fundamental level by the principles

of quantum theory. In quantum �eld theory, state of a system are represented by vectors

in a Hilbert space and observable quantities are shown by self adjoint linear maps acting

on Hilbert space [3]. Moreover, observable will not have de�nite value and one can only

predicts possibilities for the outcomes of measurements. However, in GR the observable

quantities, especially the spacetime metric always have a de�nite value. Thus, if the prin-

ciples of quantum theory are apply to gravitational �eld, GR must correspond to quantum

theory of gravity.

Classical description of matter are suitable for matter at macroscopic scale but becomes

entirely inadequate on atomic and smaller scales. In this case, the scale at which the clas-

sical description breaks down is determined by the masses and velocity of the fundamen-
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tal particles as well as the two fundamental constant of nature which enter the theory,

namely Planck’s constant h and the speed of light c. Similarly, in quantum theory of grav-

itation based on GR, one would expect that the fundamental scale at which the classical

description become completely inadequate should be set by h, c and G. This is a unique

combination of these constants which has the dimensions of length, namely the Planck’s

length lp = (Gh/c3)
1
2 [4, 5]. As might be expected, the Planck’s length arises naturally

in attempts to formulate a quantum theory of gravity. Thus, dimensional argument sug-

gest that a classical description of space time structure should break down at scales of the

order of the Planck length and below. Quantum mechanics and GR seems to describe all

of observable reality and yet they cannot be simultaneously true. They must be united in

a deeper yet undiscovered theory. In the start of 20th century Einstein’s relativity utterly

change the means, how we anticipate space, time, mechanics and gravity. Then the revo-

lution in quantum mechanics of the 20’s and 30’s upturned all of our thinking about the

subatomic world [3].

These two philosophies have con�icts with each other in fundamental ways. On one hand

as GR is the comprehensive theory of gravity, which describes the presence of matter and

energy as to wrap the sheet of spacetime and the motion of objects is thereby changed.

This result in the e�ect we perceive as gravity [4]. On the other hand, quantum mechan-

ics talks about the subatomic world. It describes particle as waves of in�nite possibility

whose observed properties are indigenously uncertain. That development started with the

Schroedinger equation, which tracks the probable waves through space and time. Here the

space and time are treated as fundamentally separate variables like in Newtonian mechan-

ics [5].

In order to build a comprehensive approach on gravitation, quantum mechanics must in-

corporate essential features of Einstein’s relativity. This was initially addressed by Paul

Dirac, who designed relativistic wave equation for the ultra fast electrons. Nowadays, mod-

ern quantum �eld theories fully incorporate the melding of space and time, yet inclusion

of bending of spacetime is more complex. This causes issues some mild and �exible, other

catastrophic. So, starting with the mild, we have paradox about black hole information. The

black hole of pure GR swallow information in a way that can remove it completely from
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the universe. Especially when these black holes evaporate via Hawking radiation [3, 4].

A big con�ict arises due to quantum theory which tells that quantum information should

never be destroyed. This is known as information loss paradox, which is itself addressed

by modern developments in quantum information theory. Following the work of Hawking,

Bekenstein, Gerard and others, it becomes clear that an information engulfeds by the black

hole can again become the part of the universe back through their Hawking radiation [3].

In a sense, both the source and the solution to the information loss paradox came from the

discovery of Hawking radiation. Hawking was able to unite GR and quantum �eld theory

but the union was approximate and incomplete [3].

In fact, it is very practicable to embed the curved geometry of GR into the theory of quantum

�eld dealing with time and space but that approach completely fails when we have intense

e�ects of gravity on the smaller scales of spacetime like the peculiarity of the black hole or

at the instant of the Big Bang. For that, we need a generalized quantum theory of gravity,

although the concepts of curved space on the smaller scales leads to catastrophic con�icts.

We talk about these in two ways one after the another [3]. Let’s start by thinking about

what it means to de�ne a location in a gravitational �eld with perfect precision. In order to

measure a location in space say, the location of a particle you need to interact with it. One

typically do that by striking a photon or other particle with the object. The more precisely

you want to measure position the higher the energy of that interaction. That is why we use

electron microscopes or X-rays or gamma rays to take images of extremely small things. So

lets say we strike a particle with a beam from a particle accelerator to measure its location

with extreme precision [3]. To measure more precisely we need more energy, which means

we end in making even larger black hole. According to GR and Heisenberg it is impossible

to measure a length smaller than the Planck length. As we know that uncertainty principle

talks about the interdependence of uncertainty in position and momentum and large mo-

mentum also means large energy [4]. Keeping in view the Heisenberg uncertainty principle,

we know that for a particle to be well localized in space, it’s position wave function needs

to be constructed from a broad momentum space wave functions, that include extremely

high frequencies or extremely high momenta, i.e. the more certain is position, uncertainty

in momentum increases. At Planck’s length, momentum becomes highly uncertain and the
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�uctuations are extremely high due to high energy probe at smaller scale [4].

Now by looking at the real con�ict,the standard quantum theories treat the fabric of space-

time as the plate form on which all weird quantum stu� happens. Having understood the

basic underlying features applying quantum principles to quantize most of the forces of

nature is the standardize feature. For example, classical electromagnetism becomes quan-

tum electrodynamics when you quantize the electron �eld and the electromagnetic �eld.

To quantize gravity, spacetime itself must be quantized. That leaves no clean coordinate

system on which to predicate our theory [3, 4].

In GR, the presence of mass or energy cause spacetime curvature, generating gravitational

�eld causing gravity. Any energy must cause spacetime curvature. So, in quantum gravity

theory of gravity, gravity is caused by excitation in our quantized space time. The energy of

these excitation contribute to more spacetime curvature, represented as further excitation.

In other words, gravity induces gravity. This type of self-interaction or self-energy is seen

in other quantum �eld theories and is hard to deal with, even there. For example, in quan-

tum electrodynamics (QED), the electron has a self-interaction due to its electric charge

messing with the electric �eld of the surrounding. In QED, such situations are solved with

something called perturbation theory [3, 5]. It’s a scheme to calculate a complex interaction.

The perturbation theory is more applicable throughout the quantum �eld theories of the

standard model as it is more reliable and having little corrections even in the case, where

the driving terms become in�nite. In such a situation, the correction are constrained and

brought back to reality through concrete physical measurements of some simple numbers

in a process called renormalization [4].

None of them works when we try to quantize GR. When we deal with intense e�ects of

gravity, the self energy corrections shatter to in�nity. However, unlike other quantum �eld

theories, there are no easy ways to measure we can do to re-normalize those recti�cations.

There is a dire need to have in�nite measurements. Therefore, it can be said that a quan-

tized spacetime of GR is non-renormalizable. The non-renormalizability of quantized GR

is connected to the idea that precisely localized particles produces black holes [3]. Space

and time cannot be dealt with the same way, i.e. below the Planck level and therefore the

easiest economical way to quantizing gravity and spacetime must be inproper.
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1.2 Metric Tensor and Energy Momentum Tensor

GR theory is described in terms of tensors. Before proceeding to Einstein �eld equation,

we will de�ne two basic tensors: energy momentum tensor Tαβ that is the generalization

of pressure (force) and the metric tensor gαβ that provides the information of coordinates

of a spacetime [6].

1.2.1 Metric Tensor

We de�ne the metric tensor by

g : D → D∗ by gµνAµ = Aν,

with D and D∗ are sets of derivation and dual derivation respectively and they form

linear vector space over set of real numbers [6]. Its inverse is given by

g−1 : D∗ → D by gµνAµ = Aν.

The metric and its inverse are symmetric tensors and can be used for raising and lowering

indices. The mixed component of metric tensor is

gµλgλν = δ
µ
ν ,

here δ
µ
ν is known as the kronecker delta and de�ned as

δ
µ
ν = 1 f or µ = ν,

δ
µ
ν = 0 f or µ 6= ν.

1.2.2 Energy Momentum Tensor

GR deals with the gravitational �eld. This �eld rely on allocation of matter in space and its

temporal evolution. So, we need a mathematical distribution of matter in spacetime. As SR

relates mass and energy, the spacetime description must incorporate with the distribution
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of energy as well. The energy could either be carried by matter or stored in the �eld. In

particular, it could be contained in stresses setup in a medium approximate as continuum.

Before going on to the full relativistic description it is worthwhile to review the classical, 3-

dimensional description of stresses. The generalization of the concept of pressure is stress,

which is force per unit area. As force and area are vector quantities in 3-dimension. So,

generally there is no meaning of dividing two vectors. The concept of pressure is appli-

cable if the directions of the vector do not matter and only the magnitudes are relevant.

A mean for which this requirement supports is called isotropic medium. For instance, the

pressure of a gas, as deduced from the kinetic energy of gases, is the same in all directions.

However, consider a helical spring stretched or squashed. The energy stored in it can be

released by motion in one direction only not orthogonal to it. Such a medium is anisotropic.

The generalization of anisotropic media is called stress. The stress is given by stress tensor

[6].

σµν =
dFµ

dSν
(µ, ν = 1, 2, 3). (1.1)

Here dFµ is the force which is acting on the area element dSν. The skew part of this tensor

σ[µ,ν] gives the rotation. From this, we can de�ne the vorticity vector by using the totally

skew tensor in 3-dimensions,

Ωγ =
1
2

eµνγσµν. (1.2)

Assuming an irrotational medium, so that σγ = 0, the stress tensor will be symmetric,

σµν = σνµ. It is symmetric part of the stress tensor that is the generalization of pressure.

Thus, in the inertial frame in �at space (Minkowskispacetime) the 4-dimensional tensor

is

Tµν = ρc2δ
µ
0 δν

0 + σabδ
µ
a δν

b . (1.3)

In GR, the spacetime does not remain �at if matter is present. Equation (2.3) can be gener-

alized for any arbitrary frame and arbitrary manifold by

Tµν = ρuµuν + σabδ
µ
a δν

b , (1.4)
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where uµ is the velocity 4-vector. In the case that there are no stresses in an arbitrary frame

Tµν gives the total energy and the momentum of any portion of the �uid. Therefore, it is

known as the energy momentum tensor [6].

1.3 Einstein Field Equations

Einstein �eld equations can be obtained from the action principle [1, 2].

S = SM + SG, (1.5)

where SM and SG are components of the action because of matter and gravity (spacetime).

The curvature of spacetime is sketched by Ricci tensor and metric tensor. S is de�ned as

S =
∫
L
√
−gd4x, (1.6)

L = LG + LM, (1.7)

LG =
1
2

R. (1.8)

By using (1.7) and (1.8) in (1.6) we get

S =
∫

v
(

1
2κ

R + LM)
√
−gd4x,

where κ = 8π and R is Ricci scalar.

S =
∫

v

1
2κ

R
√
−gd4x +

∫
v
LM
√
−gd4x, (1.9)

taking δS in (1.9) gives

δS =
1

2κ

∫
v

δ(R
√
−g)d4x +

∫
v

δ(LM
√
−g)d4x,

now as R = gµνRµν above equation becomes

δS = 1
2κ

∫
v δ(gµνRµν

√−g)d4x +
∫

v δ(LM
√−g)d4x,

δS = 1
2κ

∫
v

[
Rµνδ(gµν√−g) + gµν√−gδRµν

]
d4x +

∫
v

[
δ(LM

√−g)

+LMδ
√−g

]
d4x,
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δS = 1
2κ

∫
v

[
Rµνgµνδ

√−g + Rµν
√−gδ(gµν) +

√−ggµνδRµν

]
d4x

+
∫

v

[
δLM
√−g + LMδ

√−g
]

d4x, (1.10)

note that δg = ggµνδgµν = −ggµνδgµν

δ
√
−g = − 1

2
√−g

δg,

δ
√
−g = − 1

2
√−g

(−ggµνδgµν),

δ
√
−g = −1

2
√
−ggµνδgµν, (1.11)

now as right most part in (1.10) is δSM, as follow

δSM =
∫

v
[δ(LM)

√
−g + LMδ

√
−g]d4x, (1.12)

using (1.11) in (1.12) we have,

δSM =
∫

v
(δ(LM)

√
−g)d4x +

∫
v
LM[
−1
2
√
−ggµνδgµν]d4x, (1.13)

let

LMgµν ⇒ δLM =
∂LM

∂gµν δgµν,

by using above in (1.13), we have

δSM =
∫

v
[
∂LM

∂gµν −
1
2
LMgµν]δgµν

√
−gd4x, (1.14)

δSM = −1
2

∫
v
[−2

∂LM

∂gµν + LMgµν]δgµν
√
−gd4x, (1.15)

we de�ne the energy momentum tensor Tµν as

Tµν = −2
∂LM

∂gµν + LMgµν,

therefore (1.15) become,

δSM =
∫

v

√
−gTµνδgµνd4x, (1.16)
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now, consider a local inertial frame, Γa
bc(P) = 0 ⇒ Γa

bc,ρ(P) 6= 0, as

Rµν = Γλ
µν,λ − Γλ

µλ,ν,

δRµν = δ(Γλ
µν,λ)− δ(Γλ

µλ,ν),

δRµν = δ(Γλ
µν),λ − δ(Γλ

µλ),ν,

δRµν = δ(Γλ
µν);λ − δ(Γλ

µλ);ν,

(1.17)

gµνδRµν = gµν(δΓλ
µν);λ − gµν(δΓλ

µλ);ν,

by replacing λ by ν, above become,

gµνδRµν = (gµνδΓλ
µν − gµλδΓν

µν);λ.

We de�ne a vector Aλ as, such that

Aλ = (gµνδΓλ
µν − gµλδΓν

µν),

gµνδRµν = Aλ
;λ. (1.18)

Now by multiplying by
√−g and by integrating over the volume element 4- dimension we

get ∫
v

gµνδRµν

√
−gd4x =

∫
v

Aλ
;λ
√
−gd4x.

By using Gauss-divergence theorem, where right side of above equation tends to zero, we

have ∫
v

Aλ
;λ
√
−gd4x =

∫
∂v

nλ Aλ
√

hd3y,

above become ∫
v

gµνδRµν

√
−gd4x = 0, (1.19)

now

δ(gµν
√
−g) =

√
−gδgµν + gµνδ

√
−g,

δ(gµν
√
−g) =

√
−gδgµν + gµν(−1

2
√
−ggαβδgαβ). (1.20)
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By using (1.16) , (1.19) and (1.20) in (1.10) we get,

δS =
1

2κ

∫
v

√
−gRµν(δgµν − 1

2
gµνgαβδgαβ)− 1

2

∫
v

√
−gTµνδgµνd4x, (1.21)

δS =
1

2κ

∫
v

√
−g(Rµνδgµν − 1

2
Rgµνδgµν)d4x− 1

2

∫
v

√
−gTµνδgµνd4x,

as δS = 0, so

δS =
1

2κ

∫
v

√
−g[Rµν −

1
2

gµνR− kTµν]δgµνd4x.

Above equation is valid for arbitrary δgµν and the volume element d4x, the integral must

be zero i.e.,

Rµν −
1
2

Rgµν − κTµν + Nµν = 0,

Rµν −
1
2

Rgµν + Nµν = κTµν.

Here Nµν is the constant of integration. We can write above as

Gµν = κTµν,

where Gµν is called Einstein tensor [2].

In Einstein’s theory of relativity, equivalence of energy and mass that recommends every

single kind of energy should behave as source of �eld. Wherever Gµν tells spacetime how

to bend and Tµν tells mass how to �ow. Here, Nµν ought to have a universal value. For the

conservation of energy momentum tensor, it is needed that the covariant derivative of Nµν

vanishes. So Nµν ≡ ∧gµν, wherever ∧ is cosmological constant [2]. The Einstein Field

Equations (EFEs) is written as

Rµν −
1
2

Rgµν + ∧gµν = κTµν. (1.22)

1.3.1 Schwarzschild Solution of Einstein Field Equations (EFEs)

The solution of EFEs that corresponds to exterior gravitational �eld of a static and spheri-

cally symmetric object (such as our sun and many other bodies) is proposed by Karl Schwarzschild

only a few months later, when Einstein published his �eld equations [6]. The Schwarzschild

solution remains the �rst and one of the most important known exact solution of EFEs. In
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(t, r, θ, φ) coordinates, the metric of an arbitrary static, spherically symmetric spacetime

takes the simple form with signature (−,+,+,+).

ds2 = − f (r)dt2 + h(r)dr2 + r2(dθ2 + sin2θdφ2), (1.23)

where f (r) = 1− 2M
r and h(r) = f (r)−1 with M and r are mass and radial component

respectively. The singularity occurs when f (r)→ 0 and is given by

1− 2M
r

= 0 ⇒ r = 2M. (1.24)

The metric (1.23) with f (r) = 1− 2M
r has two singularities at r = 2M and r = 0 namely

co-ordinate and essential singularity respectively [1, 2]. The curvature invariants for given

metric (1.23) having f (r) = 1− 2M
r are:

I1 = gµνRµν = 0,

I2 = RµνRµν = 0,

I3 = RµνρσRµνρσ =
48M2

r6 . (1.25)

In general, if all curvature invariants of some given metric are �nite then the metric has

co-ordinate singularity and if any of these curvature invariant is in�nite then the metric

has essesntial singularity [6].

1.4 Hamilton-Jacobi Equations

A system that is characterize by the Hamiltonian is known as Hamiltonian system. If we

use the generalized coordinates to de�ne the state of the system, then the canonical form

of the Hamiltonian can be derived from the Lagrangian, using the Legendre transformation

[5]. We take a Lagrangian such that

L = L(t, q̇1, · · · , q̇n, q1, · · · , qn), (1.26)

where q̇i, qi and t are the generalized velocities, generalized coordinates and time coordinate

respectively. Now, if we apply the Legendre transformation we yield new function H that
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depends on t and qi and the derivatives of L with respect to q̇i, i.e.

H = H(t, qi,
∂L
∂q̇ i

) (i = 1, 2, 3, ..., n),

H = H(t, qi, pi), (1.27)

the generalized momentum conjugate to qi is given by pi =
∂L
∂q̇i

. So by Legendre transform

we have

H(t, qi, pi) =
n

∑
i=1

piq̇i −L(t, qi, q̇i). (1.28)

Moreover, the Hamiltonian principle describes that the action integral of a system in a

certain time period is stationary, i.e.

δI = δ
∫ t2

t1

Ldt = 0. (1.29)

In this formulation, the momentum and coordinates lie on the same point. By using (1.29)

in (1.28) we get

δI = δI
∫ t2

tq
[

n

∑
i=1

piq̇i −H(t, qi, q̇i)]dt = 0, (1.30)

the square bracket has function of t, pi, ṗi, qi and q̇i. Therefore,

δI = δ
∫ t2

tq
f (t, pi, ṗi, qi, q̇i)dt = 0, (1.31)

The Euler-Lagrange equations leads us to the equations,
d
dt
(

∂ f
∂q̇i

)− ∂ f
∂q̇i

= 0, (1.32)

d
dt
(

∂ f
∂ ṗi

)− ∂ f
∂ ṗi

= 0. (1.33)

∂ f
∂q̇

= p,
d
dt

∂ f
∂q̇

= ṗ and
∂ f
∂q

= −∂H
∂q

,

∂ f
∂ ṗ

= q,
d
dt

∂ f
∂ ṗ

= q̇ and
∂ f
∂p

=
∂H
∂p

. (1.34)

Using (1.32) and (1.33) in above we get
∂H
∂q

= − ṗ, (1.35)

∂H
∂p

= q̇, (1.36)

above are called as canonical forms of the Hamiltonian of the system [5].
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1.5 Astrophysical Fluid and Flow

The shape of any material changes as it experiences a force. This may lead to a deforma-

tion. An unbounded deformation of the material, in such cases, is termed as �ow. In other

words, anything that can move is known as �uid. The �uid element is the landscape upon

which the local variables, like density, temperature etc. can be de�ned [5].

The �uid can �ow anywhere in space at the cosmic level is known as astrophysical �uids.

Mathematical expressions providing the complete information of the �ow are named as

equation of state. These describe the link between thermodynamical properties and pres-

sure of the systems. All thermodynamical properties can be calculated through these, such

as the �uid moving at a �xed rate can be labeled as isothermal �uid. The equation of state

is, p = kρ, where ρ is the energy density, p is the pressure and k is a constant ranging

between 0 < k ≤ 1 [5].
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Chapter 2

Cyclic and Heteroclinic Flow of
Schwarzschild Black Hole Immersed in
an Electromagnetic Field in Rainbow
Gravity

In this chapter, we review the cyclic and heteroclinic �ow of Schwarzchild black hole im-

mersed in an electromagnetic �eld that is formed by the coupling of electromagnetic waves

with double polarization in the framework of rainbow gravity [7]. Here, we also discuss

the general accretion of any static spherically symmetric metric. Further, we derive general

formalism for accretion using the energy function of the dynamical system i.e. Hamilto-

nian, in the plane (r, v) where r and v are the position coordinate in radial direction and

three dimensional velocity of �uid respectively. In addition, we investigate di�erent cases

and found that for some points, the speed of �uid is equal to the speed of sound and for

some other points they are not equal. [8].

2.1 Rainbow Gravity

Several counter theories were proposed to develop quantum theory of gravity by unify-

ing GR and quantum mechanics. String theory, M-theory, loop quantum theory, non-

commutative geometry, rainbow gravity etc. are all the outcomes of this e�ort [9]. A fun-

damental issue arises in transition between GR at low energies and fundamental quantum
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description. At the same time, some important techniques are put forward to change the

linear dispersion ratio E2− p2 = m2 with non- linear version. As relativistic phenomenon

are not linear. It is likely that the linear version of the energy momentum relation is the

�rst approximation of the actual non-linear ones [10].

E2 = p2 + m2,

is modi�ed to

E2 = p2 + m2 + λE3 + · · · ,

It forms the basis of quantum theory of gravity and it asserts to reconsider the Lorentz in-

variance relation and the structure of spacetime at high energy keeping Lorentz symmetry.

Advances in this domain led to more generalized theories which indicate further minimum

bounds to our probe of nature at high energy. It is likely that physics may change signi�-

cantly over these thresholds on the study of theory of quantum gravity. Plancks length and

Plancks energy are known to play vital role in quantum theory of gravity and are consid-

ered as universal constants, these can be think as the split between the classic and quantum

structure [11]. This suggests that the Plancks length should remained invariant when mea-

sured in all inertial reference frames. However, this attribute will be associated with the

Lorentz symmetry in SR. Plancks length found to violate the Lorentz transformation due to

length [12]. Moreover, the absolute time or energy values also not �t in the description of

Lorentz invariance and this gives an additional motivation to know the cause and solution

of the Lorentz invariance. With all the suggestions for deepening our understanding of

the type of nature of space by altering some well-formed concepts in physics, it is indeed

very interesting to modify the Lorentz invariance by the proposals of the double special

relativity recommendations (DSR) [13]. This adds the Planck length as a new required

measure for the real version of Lorentz transformation of the spacetime. In DSR theory,

the Lorentz invariance is valid only in classical gravity but remains no more feasible at the

Planck scale. Although the properties of the inertial framework and the principle of equiv-

alence are always preserved. The DSR theory in the framework of GR is called rainbow

gravity. The rainbow gravity is characterized by the feature that the spacetime geometry

rely upon the moving test particle’s energy in the background, which implies that di�erent
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observers having di�erent energies will observe di�erent classical geometries [14]. The

metric description of spacetime must contain the parameter examining particle energy E,

which forms an one parameter energy dependent metric family. Finally, it is worthwhile

examining the e�ect of the modi�ed dispersion ratio (corresponding to the quantum quan-

tity) in a massive gravitational �eld like black hole [11, 13].

In DSR, when the ratio E/Ep → 0, the speed of light goes to universal constant c. As a

result energy momentum dispersion modi�es to

E2 f 2(lpE)− p · pg2(lpE) = m2, (2.1)

this can be obtained by the mapping of momentum space onto itself, i.e. M : P → P ,

denoted by

M · (E,pi) = (U0, Ui) = ( f (
E
Ep

)E, g(
E
Ep

)pi). (2.2)

This concludes the non linear norm on momentum space, given as

|p|2 = ηabUa(p)Ub(p). (2.3)

The norm is preserved by real realization of the Lorentz group, given as

L̃b
a = U−1 · Lb

a ·U. (2.4)

Where Lb
a are the usual operators.

In rainbow gravity, when e�ects of order lpE are taken under consideration, we do not

have single classical spacetime geometry. We propose that when higher order of lpE are

taken into account, classical spacetime geometry are presented by one parameter family

of matrices, parametrized by the ratio E/Ep [12, 13]. Moreover, the energy of the particle

moving in it depends on the geometry of spacetime. Therefore, there is no single spacetime

is dual to momentum space. Instead, the matrice’s family is dependent upon the energy of

photon/particle [11, 14].

Moreover, argument E in spacetime metric gab(E) does not represent the energy of the

spacetime fabric. This shows the scale at which an inertial observer observes the trajectory

of a particle or a system of particles, to determine the geometry of a spacetime [12]. In other

words, when the gravity is weak or absent, the spacetime metric has energy dependence, i.e.
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the geometry of particle of energy E is given by the set of energy dependent orthonoraml

frames, i.e.

e0 = f−1(E/Ep)ẽ0, ei = g−1(E/Ep)ẽi. (2.5)

Here, tilde quantities represent the energy dependent frames. All these inertial frames have

same metric but due to scaling, these inertial frames do not share all their geodesic. All these

geodesic are energy dependent. This is equivalent to saying that energy momentum dis-

persion relation is modi�ed. So, it remain no more quadratic. The modi�cation of generally

spherically symmetric exact and vaccum solution of EFEs called as modi�ed Schwarzschild

black Hole, described by the following metric [11].

ds2
Schw = −

(1− 2GM
r̃ )

f 2(E/Epl)
dt̃2 +

1
(1− 2GM

r̃ )g2(E/Epl)
dr̃2 +

r̃2

g2(E/Epl)
dΩ̃2, (2.6)

with the condition

lim
E/Ep→0

f (E/Ep) = 1 , lim
E/Ep→0

g(E/Ep) = 1.

According to Amelino-Camelia, rainbow functions can be written as:

f (E/Ep) = 1 , g(E/Ep) =

√
1− η

( E
Ep

)2
,

here η is dimensionless entity. By Heisenberg uncertainty principle that gives a relation-

ship between momentum of Hawking particle P emitted from the blackhole and mass of

blackhole as P =M P ∼ 1
2GM by regarding M x ∼ 1

2GM [12]. For simplicity we take n = 2

in modi�ed dispersion relation. So that,

m2 = E2 − P2 + ηP2
( E

Ep

)2
.

From above equation we can write

E2 = (1 + 4G2M2m2)/(ηG + 4G2M2),

with

G = 1/Ep
2,
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that for massless particle reduces to

E2 = 1/(ηG + 4G2M2).

Firstly, we discuss the equations for spherical accretion as well as the conservation laws for

any static spherically symmetric, particularly Schwarzschild metric immersed in an elec-

tromagnetic �eld. Secondly, We have driven the pressure of ideal �uid for such spherically

symmetric �ow. Thirdly, we study the accretion development using Hamiltonian approach.

At last, we study the polytropic �uid and verify answers that are strictly supersonic and so-

lution with sonic �ows and apply our results of Hamiltonian kinetic analysis to polytropic

�uid [8].

2.2 General Equations of Accretion

We consider the modi�ed static spherically symmetric metric of the form

ds2 = − F(r)
f 2(E/Ep)

dt̃2 +
1

g2(E/Ep)
[

dr̃2

F(r)
+ r2dΩ̃2], (2.7)

where dΩ̃ = dθ̃2 + sin2θφ̃2 and here the quantities (t̃, r̃, Ω̃) are independent energy vari-

ables. The given metric also depends on the energy of a particle moving in it. The function

F(r) is given by [7]

F(r) = 1− 2M
r

+
Qe f f

r2 . (2.8)

By taking e�ective charge as Qe f f ≡ M2(1 − a2). As it is clear that when a = 1, i.e.

Qe f f = 0, the metric (2.7) becomes the Schwarzschild black hole. Anyhow, when a = 0,

i.e. Qe f f = M2 corresponds to he Reissner-Nordstorm black hole. Where M denotes the

mass-parameter and a is the interpolation parameter with 1 ≥ a ≥ 0. On the other hand

the metric function (2.8) can be written as:

F(r) =
(r− re)(r− ri)

r2 , (2.9)

with re = M(1 + a) and ri = M(1− a) are two horizons named as the event and inner

horizons respectively [15]. According to the law of particle conservation that states that
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particles neither created nor destroyed [8]. So, the divergence of particle �ux is preserved,

.i.e.

∇µ Jµ = ∇µ(nuµ) = 0, (2.10)

where n is baryon number density of �uid and un is intrinsic four velocity of �uid. The

stress energy momentum tensor for perfect �uid is given by

Tµν = (e + p)uµuν + pgµν, (2.11)

where ρ is energy density and p is pressure. Furthermore, we assume that the perfect �uid

is moving in equatorial plane, as a result uθ = 0 and uφ = 0. For convenience, we use the

notation ur = u. Now, by normalization condition that is uµuµ = −1. we get

g00(u0)2 + g11(u1)2 = −1,

ut = ±
√

F(r)g2
E + u2 fE

F(r)gE
, (2.12)

where fE = F2( E
Ep
) and gE = G2( E

Ep
) are energy dependent rainbow functions. The

determinant of spacetime metric is given by

√
−g =

√
r4sin2(θ)

f 2
Eg6

E
. (2.13)

As the perfect �uid �ows in equatorial plane so θ = π/2. We obtain,

√
−g =

r2

fEg3
E

, (2.14)

by using the law of conservation of particles, it yields

∇µ(nuµ)) =
1√−g

∂µ(
√
−gnuµ),

0 =
fEg3

E
r2 (∂µ(

r2

fEg3
E
)nuµ), (2.15)

by integrating we get
r2nu2

fEg3
E

= A1. (2.16)
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Where A1 is integration constant. Special enthalpy is de�ned as

h =
e + P

n
, (2.17)

then

dh =
n(de + dP)− (e + p)dn

n2 ,

dP = ndh− de + hdn. (2.18)

By �rst law of thermodynamics [8] we have

de = hdn + nTds, (2.19)

by using (2.19) in (2.20) we get

dp = ndh− nTds, (2.20)

(2.19) and (2.20) are equations that describes the thermodynamics of simple �uids. Here T

is the temperature and s is the entropy of per particle. According to theorem of relativistic

hydrodynamics, the scalar huµξµ is conserved along the trajectories of the �uid [8].

ux∇x(huµξµ) = 0,

where ξµ is killing vector. We consider special case, when ξµ = (1, 0, 0, 0). Now take

∇µTµ
t = ∇µ[(e + P)uµut + Pδ

µ
t ],

∇µTµ
t = ∇µ[(hn)uµut + Pδ

µ
t ],

∇µTµ
t = ∇µ[hnuµut + Pδ

µ
t ],

∇µTµ
t = hut∇µ(nuµ) + nuµ∇µ(hut) +∇t(P).

By using (2.17), we get,

∇µTµ
t = nuµ∇µ(hut) +∇t(nh− e),

∇µTµ
t = nuµ∇µ(hut),

therefore,

nuµ∇µ(hut) = 0,
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nuµ[∂µ(hut)− Γλ
µthuλ] = 0,

as u = u(r) and n 6= 0. So

uµ[∂µ(hut)− Γλ
µthuλ] = 0,

ut[∂t(hut) + ur∂r(hur)− hΓλ
µtu

µuλ] = 0,

ur∂r(hut)− h[ututΓt
tt + uturΓr

tt + urutΓt
rt + ururΓr

rt] = 0.

As all christo�el symbols vanishes, so

ur∂r(hut) = 0,

as ur 6= 0, so ∂r(hut) = 0
d
dr
(hut) = 0,

hut = A2, (2.21)

by using (2.12) in (2.21), we have

h fE

gE
(
√

F(r)g2
E + u2) = A2. (2.22)

Now for

uν∇µTµν = uν∇µ[nhuµuν + (nh− e)gµν],

uν∇µTµν = uν[huν∇µ(nuµ) + (nuµ)∇µ(huν)] + (nh− e)gµν,

uν∇µTµν = uµ∇µ(nh− e),

by special enthalpy

uν∇µTµν = uµ∇µ(P). (2.23)

by using (2.19) in (2.23), we get

uν∇µTµν = −nTuµ∇µ(s) = 0,

as we are considering that special case in which the �uid has radial motion and stationary

and no dependence on time. Moreover, it conserves the spherical symmetry of black hole.
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As the �ow is is-entropic, i.e. (ds = 0). So (2.18) reduces to

dP = ndh, (2.24)

and de = hdn + nTds reduces to

de = hdn. (2.25)

So the equation of state, that is e = e(n, s) reduces to e = e(n) = F(n). So, F(n) = hn.

We will get

F′(n) = h. (2.26)

From (2.24)

dP
dn

.
dn
dh

= n,

P′ = nF”(n), (2.27)

by integrating by parts we get,

P = nF′ − F. (2.28)

Here F is Legendre transform of energy density. Above result is truly thermodynamic and

it does not depend on the characteristics of �ow. This is true for any isentropic �ow. In

locally inertial frame, three dimensional speed of sound ”cs” is given by c2
s = ( ∂P

∂e )s reduces

to c2
s =

dP
de

c2
s =

dP
de

=
ndh
hdn

, (2.29)

dh
h

= c2
s

dn
n

,

as

c2
s =

dP
de

=
ndh
hdn

=
n
h
· dh

dn
,

c2
s =

n
F′
· F”,

c2
s = n(lnF′). (2.30)
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As

ds2 = −F(r)
f 2
E

dt2 +
dr2

F(r)g2
E

, (2.31)

or

ds2 = −(
√

F(r)
fE

dt)2 + (
dr√

F(r)gE
)2. (2.32)

As we have proper time and proper distance dτ0 =

√
F(r)dt
fE

and dl = dr√
F(r)gE

respectively.

Corresponding to time and radial changes we have three dimensional speed v observed by

locally static observer as

v =
dl

dτ0
, (2.33)

v =
dr
dt
· 1√

F(r)gE
· 1√

F(r)
fE

,

v =
dr
dt
· fE

F(r)gE
. (2.34)

Now by squaring we get,

v2 =

(
dr
dt
· fE

F(r)gE

)2

,

v2 =

[
fE

F(r)gE
· dr

dτ
· dτ

dt

]2

,

v2 =
f 2
E

g2
E

(
u
ut

)2

, (2.35)

as

ut = gttut,

by using (2.12)

ut = −F(r)
[
±
√

F(r)g2
E + u2

(
fE

F(r)gE

)]
,

ut = ∓
√

F(r)g2
E + u2

(
fE

gE

)
, (2.36)

by using (2.12) in (2.35) we get

u2 =
v2F(r)g2

E
1− v2 , (2.37)
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by (2.35) we can write

u2
t =

f 2
E

g2
E

(
u2

v2

)
, (2.38)

by using (2.37), we get

u2
t =

f 2
E

g2
E

(
F(r)g2

E
1− v2

)
, (2.39)

from (2.16) we can write (r2nu)2 = A2
1. Now by using (2.39), (2.38) and (2.16) we can write

A2
1 =

r4n2v2F(r)g2
E

1− v2 . (2.40)

Above equation represents the world lines of �uid element and that of a locally static ob-

server.

2.3 Hamiltonian System

As in (2.16) and (2.21) we have derived two equations of motion. Either of these integral

equations or their combination can be used as a Hamiltonian system for the �uid �ow [16].

Now by taking left side of (2.21) as the Hamiltonian. By using (2.36) in (2.21) we have

H =
h2 f 2

E
g2

E

(
F(r)g2

E +
v2F(r)g2

E
1− v2

)
. (2.41)

Using (2.40) we get

H =
h2 f 2

E
g2

E

(
F(r)g2

E +
A2

1
r4n2

)
. (2.42)

Here n is a function of (r, v) and h is a function of the baryon number density n only so

this implies h(r, v). This applies to pressure p too. If we solve (2.41) without substitution,

we get

H(r, v) =
h2 f 2

E
g2

E

(
F(r)g2

E +
v2F(r)g2

E
1− v2

)
,

H(r, v) = h2 f 2
E

(
F(r) +

F(r)v2

1− v2

)
,

H(r, v) = h2 f 2
E

(
F(r)

1− v2

)
. (2.43)
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2.4 Sonic Points

The parametric energy function of the dynamical energy system is given by (2.43). We use

(2.43) to derive critical points of the dynamical system withH given by (2.43), with

ṙ = H,v v̇ = −H,r, (2.44)

where ” · ” denotes the t̄ derivative. Here radius is kept constant while taking partial deriva-

tive with respect to v inH,v and speed (velocity) of sound is kept constant while performing

partial derivative with respect to r in H,r. To �nd the critical points of (2.44) we put right

hand side of that equation equal to zero. By evaluating right hand side we obtain,

H(r, v) = f 2
E

[
h2(r, v)F(r)

1− v2

]
.

Now by taking partial derivative with respect to v we get

H,v = f 2
E

[
(1− v2)(2h.h,vF(r))− h2F(r)(−2v)

(1− v2)2

]
,

H,v =
2h2F(r)v f 2

E
(1− v2)2

[
1 +

(1− v2)lnh,v

v

]
, (2.45)

and by taking partial derivative of (2.43) with respect to r, we have

H,r =
f 2
E

1− v2

[
2F(r)hh,r + h2F(r),r

]
,

H,r =
f 2
Eh2

1− v2

[
F(r),r +

2F(r)h,r

h

]
,

H,r =
f 2
Eh2

1− v2

[
F(r),r + 2(lnh),r

]
. (2.46)

From (2.29) it’s right most part yields,

(lnh),v = c2
s (lnn),v, (2.47)

(lnh),r = c2
s (lnn),r. (2.48)

Eq (2.40) gives

A1 =
r2nv

√
F(r)gE√

1− v2
.
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If ”r” is kept constant, then

A1 =
nvgE√
1− v2

. (2.49)

Now take A1 = 1, we get √
1− v2 = nvgE.

By taking log of both sides and then taking partial derivative with respect to v we get,

ln
(√

1− v2

v

)
,v
= (lnn),v + (lnG),v,

(
v√

1− v2

)[v · −2v
2
√

1−v2 − (
√

1− v2)

v2

]
= (lnn),v,

(lnn),v =
−1

v
√

1− v2

(
1√

1− v2

)
.

From (2.47)

(lnh),v =
−c2

s
v(1− v2)

. (2.50)

If ”v” is kept constant in (2.40) we get

A1 = r2n
√

F(r)gE. (2.51)

If we take A1 =1, then

1 = r2n
√

F(r)gE,

ln
(

1
r2
√

F(r)

)
= ln(ngE).

Di�erentiating w.r.t r we get,(
ln
(

1
r2
√

F(r)

))
,r
=

(
ln(ngE)

)
,r

,

(lnn),r = −
[

r2F(r),r

2r2F(r)
+

4F(r)r
2r2F(r)

]
,

(lnn),r = −
[

1
2
(lnF(r)),r +

2
r

]
. (2.52)
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Now from (2.48) we get

(lnh),r = −c2
s

[
4 + r(lnF(r)),r

2r

]
. (2.53)

Using (2.50) in (2.44) we get

ṙ = H,v =
2h2F(r)v f 2

E
(1− v2)2

[
1 +

(1− v2)( −c2
s

v(1−v2)
)

v

]
, (2.54)

ṙ = H,v =
2h2F(r)g2

E
v(1− v2)2

[
v2 − c2

s

]
,

and

v̇ = −H,r =
− f 2

Eh2

1− v2

[
F(r),r + 2F(r)(lnh),r

]
,

v̇ = −H,r = −
h2 f 2

E
1− v2

[
rF(r),r − 4c2

s F(r)− c2
s F(r)r(lnF(r)),r

]
,

v̇ = −H,r = −
h2 f 2

E
1− v2

[
rF(r),r(1− c2

s )− 4c2
s F(r)

]
. (2.55)

At critical point, right hand side of above equations (2.54) and (2.55) vanishes if

v2
c = c2

sc, (2.56)

and

rcF(r)c,rc(1− c2
s ) = 4F(r)cc2

sc. (2.57)

This equation shows the speed of sound at the critical points c2
sc in the terms of rc

u2
c =

F(r)c2
sc

1− c2
sc

=
rcF(r)c,rc

4
. (2.58)

Finally, we get

c2
sc =

rcF(r)c,rc

4F(r)c + rcF(r)c,rc

. (2.59)

Then we write constant A2
1 as

C2
1 = r4

c n2
c v2

c
F(r)cg2

E
1− v2

c
= r4

c n2
c v2

c
rcF(r)c,rc g2

E
4v2

c
=

r5
c n2

c F(r)c,rc g2
E

4
, (2.60)
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and we obtain the following ratio:( n
nc

)2
=

r5
c F(r)c,rc

4
1− v2

r4F(r)v2
(gE)

2
c

g2
E

. (2.61)

Here, we have two type of �uid motion approaching the horizon, one of them with speed

v that vanishes and in the other the speed of �uid approaches the speed of light.

2.5 Isothermal Test Fluids

It is usually stated that for �ow at a constant temperature, the sound speed of accretion

remains �xed throughout the accretion process. It assures that the sound speed of accretion

�ow at any radii is always similar to the sound speed at the sonic point. As our system is

adiabatic, so the �ow of our �uid is isothermal. As equation of state of the form,

p = ke,

where p = kF(n) with G(n) = kF(n), where k is the state parameter constrained by

(0 < k ≤ 1). Furthermore, the adiabatic sound speed is c2
s = dp/de. After we compare

the adiabatic sound speed to the equation of state, it is found that c2
s = k.

The di�erential equation is obtained:

nF′(n)− F(n) = kF(n), (2.62)

which is yielding

e = F =
ec

nk+1
c

nk+1, (2.63)

with constant ec/nk+1
c , chosen e∞/nk+1

∞ or e0/nk+1
0 ,

h =
(k + 1)ec

nk+1
c

nk =
(k + 1)ec

nc

( n
nc

)k
, (2.64)

and by taking square of above equation and taking

K =
(r5

c F(r)c,rc(gE)c

4

)k( (k + 1)ec

nc

)2
= constant.
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We get

h2 = K
( 1− v2

v2r4F(r)gE

)k
. (2.65)

The new HamiltonianH and the dynamical system are

H(r, v) =
f 2
EF(r)

1− v2

( 1− v2

v2r4F(r)

)k
=

f 2
EF1−k(r)

gk
E(1− v2)1−kv2kr4k

, (2.66)

ṙ =
2(v2 − c2

s )F(r)g2
E

v(1− v2)2

( 1− v2

v2r4F(r)gE

)k
,

v̇ = −
f 2
E

r(1− v2)

( 1− v2

v2r4F(r)gE

)k
[

rF(r),r(1− c2
s )− 4F(r)c2

s

]
.

With p = ke, we obtain

p ∝
( 1− v2

v2r4F(r)g2
E

) k+1
2

, (2.67)

the pressure diverges, as the curve approaches the horizon, as

p ∼ (r− rh)
− k+1

2k . (2.68)

If rh is a double root of f = 0, we obtain

p ∼ (r− rh)
− k+1

k .

A global �ow solution is

v ' v1r−α + v∞ as r → ∞, (2.69)

where (α > 0, v1, |v∞| ≤ 1) are constants. Inserting this in the Hamiltonian:

H '


(a): F(r)1−k

r4k , (if 0 < |v∞| < 1);

(b): F(r)1−k

r(4−2α)k , (if v∞ = 0);

(c): F(r)1−k

r(4+α)k−α , (if |v∞| = 1).

(2.70)

Here, we will analyze the behave of perfect �uid by taking di�erent values of k = 1, i.e.

k = 1 for ultra-sti� �uid, k = 1/2 for relativistic �uid and k = 1/3 for radiation �uid. For

our metric (2.59) becomes

k =
−3(−1 + a2)M2 − 5Mrc + 2r2

c
2(−1 + a2)M2 + 6Mrc − 4r2

c
. (2.71)
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2.5.1 Solution for Ultra-Sti� Fluid (k = 1)

The equation of state of ultra-sti� �uids are p = ke with k = 1 [8]. The Hamiltonian be-

comes

H =
1

v2r4g2
E

, (2.72)

Fig:2.1. Solutions ofH corresponding to k=1 when a=0.25 and 0< g ≤1

and one �nds

v ∼ 1/r2gE, (2.73)

( n
nc

)2
=

r5
h(G

2
E)hF(r),r|r=rh

4
H0r4 − 1
r4F(r)g2

E
, (2.74)

for any solution curveH0 > Hmin = r−4
h , and

( n
nc

)2
=

rc(gE)
2
c F(r)c,rc

4
1− v2

F(r)
=

rh(g2
E)hF(r),r|r=rh

4
r4 − r4

h
r4F(r)g2

E
. (2.75)
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2.5.2 Solution for Ultra-Relativistic Fluid (k = 1/2)

These �uids have energy density greater than isotropic pressure [8]. Here, we put p = e
2

gives k = 1/2. The expression (2.71) reduces to

Z(rc) =
r2

2
− 5

2
Mr +

3
2
(−1 + a2)M2 = 0. (2.76)

This polynomial has two positive roots as event horizon(rh) and inner horizon(ri) respec-

tively,

rh =
1
2
(5M +

√
37M2 − 12a2M2), ri =

1
2
(5M−

√
37M2 − 12a2M2)

Furthermore, the Hamiltonian takes the form,

H =

√
f

r2
√
|v2|
√

1− v2√g

Fig:2.2. Solutions ofH corresponding to k=1/2 when a=0.25 and 0 < g ≤1

2.5.3 Solution for Radiation Fluid (k = 1/3)

One of the most interesting case in astrophysics is radiation �uid which absorbs the radia-

tion emitted by the black hole [8]. In this case, k = 1/3 reduces (2.71) to,

Q(rc) = r2 − 3Mr + 2(−1 + a2)M2 = 0, (2.77)
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gives two roots,

rh =
1
2
(3M +

√
17M2 − 8a2M2), ri =

1
2
(3M−

√
17M2 − 8a2M2).

The Hamiltonian (2.66) reduces to,

H =
f

2
3

r
4
3 |v| 23 g

1
3 (1− v2)

2
3

2.6 Polytropic Test Fluids

The equation of state is [8]:

p = An− B
nα

, (2.78)

where A and B are constants and (0 < α < 1). Inserting p = G(n) = Knγ in the

di�erential equation yields

nF′ − F = Knγ.
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The energy density e = F is obtained as

e = F(n) = mn +
Knγ

γ− 1
. (2.79)

It yields

h = m +
Kγnγ−1

γ− 1
. (2.80)

The speed of sound

a2 =
(γ− 1)X

m(γ− 1) + X
(X ≡ Kγnγ−1). (2.81)

It is found as

h = m
γ− 1

γ− 1− a2 , (2.82)

then we obtain

h = m
[
1 + Y

( 1− v2

r4F(r)g2
Ev2

)(γ−1)/2]
, (2.83)

where

Y ≡ Kγnγ−1
c

m(γ− 1)

(r5
c (g2

E)cF(r)c,rc

4

)(γ−1)/2
= const. (2.84)

Then we evaluate the Hamiltonian by

H =
F(r)

1− v2

[
1 + Y

( 1− v2

r4F(r)g2
Ev2

)(γ−1)/2]2
. (2.85)

If Y < 0,

1 + Y
( 1− v2

r4F(r)g2
Ev2

)(γ−1)/2
∝ r−1 as r → ∞. (2.86)

Speed at spatial in�nity (2.69)

v ' v1r−α + v2r−δ as r → ∞ (δ > α > 0), (2.87)

then from observing , we �nd α = 3 , δ ≥ 4, and

v2
1 = (−3/Λ)(Y2)1/(γ−1). (2.88)
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Chapter 3

Accretion of Schwarzschild Black Hole
Immersed in an Electromagnetic Field
in Rainbow Gravity

Around two decades back, astronomical observations suggested that the cosmos is experi-

encing a rushing extension. This �nding is a revolt in cosmology with the reason account-

able for this consequence labeled as dark energy. It has strange characteristic that yields

repulsive gravitational e�ects and it voilates the null and weak energy conditions [17]. As-

tonishingly, explanations advise that around 70 percent of the energy of the cosmos �t in

to the context of dark energy. Nevertheless, the properties of this energy are not well rec-

ognized and these days is the most interesting issue in theoretical physics. In previous few

years, theorists are trying to solve this issue. Few proposals are presented like cosmolog-

ical constant, phantom energy, quintessence, k-essence, dynamic scalar �elds, and others.

Generally, dark energy is shaped by correlating the parameters such as pressure, density

and energy of an ideal �uid by that of a perfect �uid with the help of a barotropic equation

p = ωρ, where ω is the state parameter. The gravitational accretion of mass is plentiful in

astrophysics because it is an coherent mechanism to change gravitational energy into ki-

netic energy [18]. Basically, accretion is the procedure in which an enormous stellar object

like a black hole or a dense compact object which can take particles from the surroundings

of a �uid that primes to change the mass, size of accreting object. For example, the im-

portance of accretion procedures are tangled with the presence of giant black holes at the
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middle of clusters. Though, black holes formation from the gravitational collapse is not the

only way of their formation. Moreover, the speci�c space regions, where the conditions

are favorable for the for black hole’s formation . One way can be the union of numerous

tiny black holes but it has very low probability [19]. The existence of giant black holes at

the center of super massive ellipsoidal and circling galaxies advises that these black holes

might have grew through accretion proceedings. Additional techniques of forming of super

massive black holes such as union of planetary collapse of many stars or many tiny black

holes in a very small realm resulting to union, seems nearly impossible [20, 21]. The most

appealing picture of super massive and gigantic black holes is the deposit of matter or dust

from neighboring areas for adequately longer times. The creation of mighty overextended

and astrophysical jets from dynamic galaxies or small and compact substances designates

the presence of huge quantities of hot dust nearby the space region of jet formation [22, 23].

Though accretion procedure not at all times increases the mass of the solid source, rarely

the in falling substance is dissipated in the form of cosmic rays or jets. It is feasible that the

accretion proceeding might not be �xed and the speed, an energy density of an in falling

�uid alters with location and time. The compiling of matter and dust on these objects is a

well-studied problem [24]. Anyhow, the pile up of matter of more bizarre kinds of energy-

matter is not so usually probed including dark energy and ultra-sti� �uids. As the universe

is dominated by dark energy and dark matter, it is more suitable to examine the accretion

of di�erent kinds of dark energy onto black holes [25, 26]. We have following metric

ds2 = −F(r)dt2 +
1

F(r)
dr2 + r2(dθ2 + sin2θdφ2), (3.1)

where

F(r) = 1− 2M
r

+
M2(1− a2)

r2 .

The matter is approximated as perfect �uid speci�ed by energy momentum tensor

Tαβ = (ρ + P)uαuβ + Pgαβ,

where ρ is proper energy density and P is proper pressure of �uid. The proper baryon

number density is denoted by "n" and the baryon number �ux,

Jµ = nuµ.
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The �rst law of thermodynamics,

dE + Pdv = Tds = 0.

If we take "N" as number of baryons, then

d(
E
N
) + Pd(

V
N
) = 0, (3.2)

E
N

=
E
V
N
V

=
ρ

n
, (3.3)

V
N

=
V
V
N
V

=
1
n

, (3.4)

using (3.2) and (3.3) in (3.4) we get

d(
ρ

n
) + P(d

1
n
) = 0. (3.5)

By taking di�erential of (3.5)

ndρ− ρdn
n2 + P(−dn

n2 ) = 0,

ndρ− ρdn− Pdn = 0,

dρ

dn
=

ρ + P
n

. (3.6)

The adiabatic sound speed of �uid is de�ned as

c2
s ≡

dP
dρ

,

c2
s ≡

dP
dρ
≡ dP

dn
· dn

dρ
,

c2
s ≡

dP
dρ
· 1

ρ+P
n

⇒ c2
s =

n
ρ + P

· dP
dn

. (3.7)

By conservation law of particle number, we have

∇µ jµ = (nuµ);µ.
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Above can be written as
1
r2 .

d
dr

r2nu
fEg3

E
= 0, (3.8)

or
r2nu
fEg3

E
= C1. (3.9)

By integrating (3.8) over spatial volume and multiplying by the mass of each particle "m"

[27]. We get

Ṁ = 4πm
r2nu
fEg3

E
, (3.10)

where "Ṁ" is constant of integration (Bondi mass accretion rate). Divergence of energy

momentum tensor is given by

Tµ
ν;µ = 0,

Tµ
ν,µ + Γµ

µαTα
ν − Γα

µνTµ
α ,

and

Tµ
ν;µ =

√−g√−g
Tµ

ν,µ +
1√−g

(
√
−g),α Tα

ν − Γα
µνTµ

α ,

Tµ
ν;µ =

1√−g
[
√
−gTµ

ν,µ + (
√
−g),µ Tα

ν ]− Γα
µνTµ

α ,

Tµ
ν;µ =

1√−g
[
√
−gTµ

α ],α−Γα
νµTµ

α .

Since

Γα
νµ = gκαΓκµν

and

Γα
µνTµ

α = ΓκνµgκαTµ
α ,

Γα
µνTµ

α = ΓκνµTµκ,

so

Tµ
ν;µ =

1√−g
[
√
−gTµ

ν,µ + (
√
−g),µ Tα

ν ].

As we have
√−g = r2 and energy is conserved so put ν = 0 in Tµ

ν;µ = 0 and

Tµ
ν = (ρ + P)uµ

ν + Pδ
µ
ν ,
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Tµ
0 = (ρ + P)uµ

0 + Pδ
µ
0 .

Now put "µ = 1",

T1
0 = (ρ + P)u1

0,

T1
0 = (ρ + P)

[
1− 2M

r + M2(1−a2)
r2

][
g2

E

(
1− 2M

r + M2(1−a2)
r2

)
+ u2

]1/2

1− 2M
r + M2(1−a2)

r2

,

T1
0 = (ρ + P)

[
g2

E

(
1− 2M

r
+

M2(1− a2)

r2

)
+ u2

]1/2

. (3.11)

We know

∇µTµ
ν =

1√−g
(
√
−gTµ

ν ),µ,

∇µTµ
ν =

1
r2

(
r2

g3
E

Tµ
ν

)
,µ

.

Put ν = 0,

∇µTµ
0 =

1
r2

(
r2

g3
E

Tµ
0

)
,µ

,

as µ = µ(r), so
1
r2 ·

d
dr

(
r2

g3
E

T1
0

)
= 0. (3.12)

Put (1.14) in (1.15), we get

1
r2 ·

d
dr

(
r2u
g3

E
(ρ + P)

[
g2

E

(
1− 2M

r
+

M2(1− a2)

r2

)
+ u2

]1/2)
= 0. (3.13)

Upon integration we get(
r2(ρ + P)

u
g3

E

[
g2

E

(
1− 2M

r
+

M2(1− a2)

r2

)
+ u2

]1/2)
= C2. (3.14)

The relativistic Euler equation is

(ρ + P)(∇µuν)uµ = −
[

gµν∇µP + uµuν∇µP
]

,

for momentum conservation put ν = 1,

(ρ + P)(uµu1
;µ) = −

[
gµ1∇µP + uµu1∇µP

]
,
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(ρ + P)
(

uµ

[
u1

,µ + Γ1
µαuα

])
= −

[
gµ1∇µP + uµu1∇µP

]
,

(ρ + P)
[

u1u1
,1 + Γ1

00(u
0)2 + Γ1

11(u
1)2
]
= −

[
g11∇1P + (u1)2∇1P

]
.

Now as these are the only no-vanishing components of christo�el symbol

Γ1
00 =

[
1− 2M

r
+

M2(1− a2)

r2

][
M
r2 −

M2(1− a2)

r3

]
,

and

Γ1
11 = −

[
M
r2 −

M2(1−a2)
r3

]
1− 2M

r + M2(1−a2)
r2

,

inserting these in above equation we obtain,

u
du
dr

= −dp
dr

[
g2

E

(
1− 2M

r + M2(1−a2)
r2

)
+ u2

]
ρ + P

− g2
E

(
M
r2 −

M2(1− a2)

r3

)
. (3.15)

3.1 Conditions for Critical Accretion

By di�erentiating (3.9) w.r.t ”r”, we get

(
r2nu
g3

E
),r = (C1),r,

2r(nu) + r2(nu),r = 0,

2r(nu) + r2(nu
′
+ n

′
u),r = 0,

u
′

u
+

n
′

n
= −2

r
, (3.16)

by (1.19)

u
du
dr

+
dP
dr

[
g2

E

(
1− 2M

r + M2(1−a2)
r2

)
+ u2

]
ρ + P

+ g2
E

(
M
r2 −

M2(1− a2)

r3

)
= 0,

u
du
dr

+

dP
dn ·

dn
dr

[
g2

E

(
1− 2M

r + M2(1−a2)
r2

)
+ u2

]
ρ + P

+ g2
E

(
M
r2 −

M2(1− a2)

r3

)
= 0,
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u
du
dr

+

c2
s (ρ+P)

n · n,

ρ+P

[
g2

E

(
1− 2M

r + M2(1−a2)
r2

)
+ u2

]
ρ + P

+ g2
E

(
M
r2 −

M2(1− a2)

r3

)
= 0,

uu
′
+

c2
s n
′

n

(
g2

E

(
1− 2M

r
+

M2(1− a2)

r2

)
+ u2

)
= −g2

E

(
M
r2 −

M2(1− a2)

r3

)
. (3.17)

Solving (3.16) and (3.17) simultaneously, we get

u
′
=

N1

N
, (3.18)

n
′
= −N2

N
, (3.19)

where

N1 =
1
n

[
2c2

s
r

(
g2

E

(
1− 2M

r
+

M2(1− a2)

r2

)
+ u2

)
− g2

E

(
M
r2 −

M2(1− a2)

r3

)]
, (3.20)

N =

u2 −
[

g2
E

(
1− 2M

r + M2(1−a2)
r2

)
+ u2

]
c2

s

nu
, (3.21)

N2 =
1
u

[
2u2

r
− g2

E

(
M
r2 −

M2(1− a2)

r3

)]
. (3.22)

For critical points

N1 =
1
nc

[
2c2

sc
rc

(
g2

E

(
1− 2M

rc
+

M2(1− a2)

r2
c

)
+ u2

c

)
− g2

E

(
M
r2

c
− M2(1− a2)

r3
c

)]
,

(3.23)

N =

u2
c −

[
g2

E

(
1− 2M

rc
+ M2(1−a2)

r2
c

)
+ u2

c

]
c2

sc

ncuc
, (3.24)

N2 =
1
uc

[
2u2

c
rc
− g2

E

(
M
r2

c
− M2(1− a2)

r3
c

)]
. (3.25)

We put N1, N2 and N equal to zero. So, we can �nd radial velocity (uc) and speed of sound

(ac) as follow:

u2
c =

rcg2
E

2

[
M
r2

c
+

M2(1− a2)

r3

]
,

i.e.

u2
c =

g2
E

2

[
M
rc
− M2(1− a2)

r2

]
, (3.26)
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and

c2
sc =

u2
c(

1− 2M
rc

+ M2(1−a2)
r2

c

)
g2

E + u2
c

. (3.27)

Physically acceptable solutions of (3.26) and (3.27) exists if ”u2
c ≥ 0” and c2

sc ≥ 0, therefore

u2
c =

g2
E

2
[
M
rc
− M2(1− a2)

r2 ] ≥ 0.

c2
sc =

u2
c(

1− 2M
rc

+ M2(1−a2)
r2

c

)
g2

E + u2
c

≥ 0,

or
g2

E
2 [M

rc
− M2(1−a2)

r2
c

](
1− 2M

rc
+ M2(1−a2)

r2
c

)
g2

E + u2
c

≥ 0,

therefore

c2
sc =

g2
E

2 [M
rc
− M2(1−a2)

r2
c

](
1− 3M

2rc
+ M2(1−a2)

2r2
c

)
g2

E

≥ 0,

where u2
c and c2

sc must satisfy following condition

(
3M

4
± 1

4

√
17M2 − 8a2) < rc < M(a2 − 1). (3.28)

Now to �nd the critical speed uc and energy density ρ of �uid, we get these following equa-

tions from [17] labeled as equation 5, 9, 11 respectively,

uC(r)
g3

E
(ρ + p)

A(r)
B(r)

√
u2 + g2

EB(r) = A1, (3.29)

(ρ + p)
√

u2 + B(r)g2
E

√
A(r)
B(r)

e−
∫ dρ

ρ+p(ρ) =
−A1

A0
= A3, (3.30)

1
g3

E

(ρ + p)
ρ

√
A(r)
B(r)

√
u2 + B(r)g2

E =
A1

A2
= A4. (3.31)
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Solving (3.29), (3.30) and (3.31), we obtain,

u(r) = −
gE

√
A2

1g6
Er2 + A2

0(M + aM− r)((−1 + a)M + r)

A0r
(3.32)

ρ(r) =
A0A2g2

E

r
√

A2
1g6

Er2 + A2
0(M + aM− r)((−1 + a)M + r)

(3.33)

Here A0, A1 and A2 are integration constants. We choose A0 = (1 + ω), A2 = 1 and

A4 = 0.01. Using equation of state p = ωρ, which is used to model the perfect �uid with

state parameter ω, with ω = −1 corresponds to cosmological constant, −1 < ω < −1/3

subjected to quintessence and ω < −1 used for phantom models [17]. By substituting

these in above we obtain,

u(r) = −
gE

√
A2

1A2
4g6

Er2 + (1 + ω)2(M + aM− r)((−1 + a)M + r)

(1 + ω)r
(3.34)

ρ(r) =
(1 + ω)A2g2

E

r
√

A2
1A2

4g6
Er2 + (1 + ω)2(M + aM− r)((−1 + a)M + r)

(3.35)

Fig:3.1. Speed of �uid versus radius for interpolation parameter a, where

Red, Yellow and Blue graphs corresponds to a = 0.25, 0.5, 0.8

respectively with ω = −2 and g = 0.25.
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Fig:3.2. Speed of �uid versus radius for interpolation parameter a, where

Red, Yellow and Blue graphs corresponds to a = 0.2, 0.6, 0.8, 1

respectively with ω = −1.5 and g = 0.25.

Fig:3.3. Speed of �uid versus radius for interpolation parameter a, where

Red, Yellow and Blue graphs corresponds to a = 0.25, 0.5, 0.8, 1

respectively with ω = −2 and g = 0.5.
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Fig:3.5. Speed of �uid versus radius for interpolation parameter a, where

Red, Yellow and Blue graphs corresponds to a = 0.25, 0.5, 0.8

respectively with ω = −2 and g = 0.25.

Fig:3.6. Speed of �uid versus radius for interpolation parameter a, where

Red, Yellow and Blue graphs corresponds to g = 0.25, 0.5, 0.8, 1

respectively with ω = −2 and a = 0.25.
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Fig:3.7. Speed of �uid versus radius for interpolation parameter a, where

Red, Yellow and Blue graphs corresponds to a = 0.25, 0.5, 0.8

respectively with ω = −2 and g = 0.5.

Fig:3.8. Speed of �uid versus radius for interpolation parameter a, where

Red, Yellow and Blue graphs corresponds to a = 0.25, 0.5, 0.8, 1

respectively with ω = −1.5 and g = 0.5.
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Fig:3.9. Density of �uid versus radius for interpolation parameter a, where

Red, Yellow, Blue and Brown graphs corresponds to a = 0.25, 0.5, 0.8, 1

respectively with ω = −2 and g = 0.25.

Fig:3.10. Density of �uid versus radius for interpolation parameter a, where

Red, Yellow, Blue and brown graphs corresponds to a = 0.25, 0.5, 0.8, 1

respectively with ω = −2 and g = 0.25.
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Fig:3.11. Density of �uid versus radius for interpolation parameter a, where

Red, Yellow, Blue and brown graphs corresponds to a = 0.25, 0.5, 0.8, 1

respectively with ω = −2 and g = 1.

Fig:3.12. Density of �uid versus radius for interpolation parameter a, where

Red, Yellow, Blue and Brown graphs corresponds to a = 0.25, 0.6, 0.8, 1

respectively with ω = −1.5 and g = 1.
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Fig:3.13. Density of �uid versus radius for interpolation parameter a, where

Red, Yellow and Blue graphs corresponds to g = 0.25, 0.5, 0.8

respectively with ω = −2 and a = 0.25.

Fig:3.14. Speed of �uid versus radius for interpolation parameter a, where

Red, Yellow and Blue graphs corresponds to g = 0.25, 0.5, 0.8, 1

respectively with ω = −1.5 and a = 0.25.
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3.2 Polytopic Solution

Consider polytropic state of equation [8]

P = knγ. (3.36)

From (2.47) we have

d
ρ

n
+ Pd(

1
n
) = 0,

ndρ− ρdn
n2 + P(−dn

n2 ) = 0,

ndρ− (ρdn + P)dn = 0,

dρ

dn
=

ρ + P
n

,

dρ

dn
=

ρ + knγ

n
,

dρ

dn
− ρ

n
= knγ−1.

Here the integrating factor is

I.F = e−
∫ 1

n dn ⇒ 1
n

,∫
d(ρn−1) =

∫
knγ−2dr,

ρ =
knγ−1

γ− 1
+ mn. (3.37)

The adiabatic speed of sound is

c2
s =

dP
dρ
⇒ (knγ)

d
(

knγ

γ−1 + mn
) ,

c2
s

[
k

γ− 1
(γnγ−1) + m

]
= kγnγ−1,

kγnγ−1 =
c2

s m

1− c2
s

γ−1

. (3.38)
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Bernoulli equation of the �ow can be achieved by dividing (3.14) by (3.9) [27]. We get

ur2(ρ + P)
[(

1− 2M
r + M2(1−a2)

r2

)
g2

E + u2
]1/2

fE

r2nu
=

C1

C2
,

(ρ + P)2

n2

[(
1− 2M

r
+

M2(1− a2)

r2

)
g2

E + u2
]
= C3,

when we take it from ρ to ρ∞, we obtain

C =
ρ∞ + P∞

n∞
,

so that
(ρ + P)2

n2

[(
1− 2M

r
+

M2(1− a2)

r2

)
g2

E + u2
]
=

(
ρ∞ + P∞

n∞

)2

. (3.39)

From (3.36) and (3.37), we can write

ρ + P
n

=
k

γ−1 nγ + mn + knγ

n
,

ρ + P
n

= knγ−1
(

1
γ− 1

+ 1
)
+ m,

ρ + P
n

=
c2

s m

1− c2
s

γ−1

(
1

γ− 1
+ 1
)
+ m,

ρ + P
n

= m
(

1 +
c2

s
γ− 1− c2

s

)
.

Take m = 1 (as its constant of integration). So, the Bernoulli equation (3.39) transforms to(
1 +

c2
s

γ− 1− c2
s

)2[(
1− 2M

r
+

M2(1− a2)

r2

)
g2

E + u2
]
=

(
1 +

c2
s∞

γ− 1− c2
s∞

)2

.

(3.40)
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Chapter 4

Conclusion

We investigated the e�ect of rainbow gravity theory proposed by J. Magueijo and L. Smolin

[29] in accretion and �ow process of spherically symmetric compact objects like Schwarzchild

black hole using its metric in presence of electromagnetic �eld. Here, the Einstein equa-

tions and Schwarzchild metric in electromagnetic �eld are modi�ed using the ratio E/Ep

. We quantize the spacetime by using rainbow gravity functions f ( E
Ep
) and g( E

Ep
) with

0 < f ( E
Ep
), g( E

Ep
) < 1. As we know that in rainbow gravity, the geometry depends

upon the energy of the particle/test body that is under examination. So, we see that test

body/particle with di�erent energies show di�erent geometries with same inertial frame of

reference along with same equivalence principal.

In second chapter, we discussed the Hamiltonian for the given system and discuss the so-

lution for ultra-sti�, ultra-relativistic and for radiation �uids. We found that ultra sti�

�uid has un-physical solution if Hamiltonian is negative and if Hamiltonian is positive and

v > 0, this implies that �uid will �ow outward in the form of jets and v < 0 implies that the

�uid will cause the accretion of black hole . Similarly, in solution for ultra-relativistic �uid,

we found that �uid will only cause in increase in mass, no mass will �ow out. Contrarily,

in solution for radiation �uid, there is only supersonic and subsonic outward �ow of �uid

in form of jets there will be no accretion in this case.

In third chapter, instead of using Hamiltonian approach to study the speed of �ow with

energy density and discuss its several cases in presence of rainbow gravity. Here, we use

equation of state and use di�erent values of cosmological constant to study the speed of
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�ow and energy density of perfect �uid. In this discussion, we took −1 < ω < −1/3,

ω ≤ −1 with di�erent values of 0 < a < g ≤ 1 and discuss only those cases which

posses physically possible solutions. Moreover, we conclude that it is conformal scaling of

the original one and no-linear version leads to linear one when the ratio E/Ep tends to

zero.
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