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Abstract

In this thesis, the propagation of plane waves in rotating elastic solids with and without

voids are discussed. In each case, various graphs are plotted for illustration purposes

and solution analysis. The case of propagation of plane waves for anisotropic material

with voids is a new problem and discussed in detailed. Plane wave solutions are ob-

tained by solving the equation of motion. Graphs are plotted for dimensionless wave

speeds and wave number, wave speed and rotation, imaginary part of the solution is

plotted separately. A special case where k̄ →∞ is considered.
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Chapter 1

Introduction

Waves play a vital role in our routine life. We can see with the help of light waves

and talk with the help of microwaves and radio waves. Earthquakes are quantatized

with the help of seismic waves because waves travel through the interior of the earth.

The materials inside the earth like oil, coal and gass can be observed with waves. The

quality of a material can be checked by passing waves through it without damaging

it with the use of non-destrustive testing system (NDT). The material is as useful as

it was before the testing through the waves. During the last few years, in the field of

medical the diseases are diagonosed and cured with the help of waves.

The history of wave propagation in research is a long and interesting one. English

scientist Robert Hooke discovered linear elasticity in 1660, but not in the form of

stress and strain. The displacement under a load was observed proportional to the

force applied in case of several materials. It seems that light existed only till mid-19th

century, is a wave which can travel across a particular medium considered an elastic

ether. The utilization of elastic waves in different studies, for example, geophysics,

was additionally an impetus for researchers and mathematicians to explore waves. The

names that added to the field were Poisson, Cauchy, Lame, Stokes, Christoffel, Lamb

and numerous others.

The theory of elasticity associated with solid elastic material consisting of distri-

bution of pores, known as voids has gained much importance in recent years. Cowin

and Nunziato [1, 2] formulated the general theory in its linearized version where voids
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induce an additional kinematic variable. In the absence of void volume (as a limiting

case), this theory reduces to classical theory of elasticity. This theory plays a vital role

where classical theory is inadequate e.g problems of geological and synthetic porous

medium. Cowin and Iesan [2] introduced the basic theorem and brief account of the

theory on voids. Cowin presented the connection between theory of voids and theories

of elasticities. Chandrasekharaiah [3] furnished uniqueness theorem related to theory

of elastic material with voids. He also focused his attention on the effect of surface

stresses and voids on Rayleigh waves in an elastic medium [4].

A porous material whose matrix skeleton is elastic and voids are viscous pores are

called elastic material with voids. During deformation, pores and matrix undergo a

change. Due to this reason it is different from Cauchy continuum. The voids exert an

equilibrated stress called pseudo force, in addition to the stress. The elastic material

with voids has four degrees of freedom consisting of three translation and one due to

the change in the void volume fraction. The variation in void volume fraction adds an

additional kinematic variable in the theory of voids. It has been noticed that pores

of the body are vacuous but do not have any mechanical significance. With the help

of principles of continuum mechanics, field equations and relations for elastic material

with voids have been derived. If the plastic effect of the medium is removed then we

get an elastic body with voids.

Iesan [5], investigated the plane wave propagation in thermoelastic medium with

voids. He observed three sets of coupled longitudinal waves and transverse waves.

In the case of coupled longitudinal waves, displacement, void volume fraction and

thermal properties are dispersive in nature. Free plane boundary of thermo-elastic

half-space with voids, the phenomenon of reflection and transmission between two

separate permeable elastic half-spaces was studied by Iesan. These phenomenas occur

due to the incidence of plane longitudinal waves at a plane interface. In the case, when

the incident frequency is low, the effect of voids on the transmission and reflection

coefficient is highly significant. When high frequency longitudinal waves are incident,

the phenomena of reflection and transmission are very close to the classical elastic

theory with no effect of voids. An investigation about plane wave propagation in an
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isotropic medium with voids has been conducted by Maity [6]. The governing equations

have been studied by taking account of rotation, magnetic field effect and presence of

voids.

Sharma [7] presented the propagation of plane waves in thermoviscoelastic medium

with voids. He considered the one dimentional model of isotropic generalized ther-

moviscoelastic medium. He noticed there exist three longitudinal waves called elastic

(E-mode), thermal (T-mode) and volume fraction (V-mode). The transverse waves

decoupled and does not effect by thermal and volume fraction field.

In this academic thesis, plane waves are investigated and the effect of porosity on

isotropic and anisotropic rotating material is examined in elastic solids with voids.

Chapter 2 introduces the reader to the basic concepts of elasticity. The notion of

stress, strain, their relationship, and effect of crystal symmetries on elastic stiffness

tensors are revised. Equation of wave propagation is derived. Types of waves and

some wave parameters like wave number, phase velocity etc. are discussed. A quick

review of the propagation of a two dimensional plane waves in the presence of voids

in an isotropic and anisotropic materials is given. In the presence of voids, a detailed

investigation is carried out in Chapter 3 for wave propogation in a rotating elastic solids.

Furthermore, the derivation of governing equations and their corresponding boundary

conditions for an elastic solids with voids is discussed. The graphical representation of

various parameters involved along with the different range of values of a wave number

regarding its propogartory properties is also given. Chapter 4, is mainly composed of

the discussion regarding the traveling waves in a rotating anisotropic elastic material

with voids. Travelling of waves in an anisotropic elastic materials in the presence of

porous is a new problem and discussed in detail. Moreover, the calculation of plane

waves and a detailed discussion of their numerical results is also given. In Chapter 5,

all the results found throughout the thesis are concluded briefly.
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Chapter 2

Fundamentals of Elasticity

The main objective of this chapter is to make the reader acquainted with some basic

concepts and results related to the theory of elasticity. In elasticity, tensor calculus

is often used and therefore tensors are briefly discussed in section 2.1. Section 2.2

comprises the basic definitions of stress, strain, Hook’s Law, elasticity constants are

retrieved by using crystal symmetry and equation of motion. The last section deals

with the quick review of propagation of two dimensional plane waves in an isotropic

and in anisotropic material in the presence of the porous material.

2.1 Tensor calculus

Tensor calculus finds its applications in the field of dynamics, elasticity, fluid, differen-

tial geometry, general relativity, electricity and magnetism. It is a mathematical tool

used to describe the mechanism of deformed structure to get the main idea related to

required field. Generalization of vectors and scalars is called tensor, while number of

independent directions necessary to describe the tensor is called the rank (order) of

tensor. A tensor of rank zero is a scalar and tensor of rank 1 is a vector. A tensor of

the rank 1 is described by 3×1 column vector, while components of second rank tensor

are represented by 3×3 matrix.

Mathematically, rth rank tensor in k-dimensional space, is an object having r

indices and k components under transformation laws. Therefore, tensor of rank r is a
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linear mapping which maps a vector to a tensor of order (r-1). The transformation of

the components of rth rank tensor form one basis to another is same as follows:

A
′

r1r2...rn
= Tm1r1Tm2r2 ...TmnrnAm1m2...mn , (2.1)

where Tm1r1Tm2r2 ...Tmnrn are the elements of transformation matrix.

Main formulas and definitions which will be used in the proceeding chapters are given.

Definition 2.1.1 A tensor A is said to be symmetric if

AT = A, (2.2)

and is said to be antisymmetric if

AT = −A. (2.3)

Symmetric tensor of second order is very vital in the mechanics of deformed bodies.

Examples of symmetric tensors are Green’s deformation tensor and Cauchy’s stress

tensors.

Definition 2.1.2 The Kronecker delta-δ is defined as

δmn =

{
1, m = n,

0, m6=n.
where δmn is kroneckor symbols. If the elements of basis are unit vectors then they

are called orthonormal basis.

The third rank tensors are usually used in thermomechanics, electromechanics, there-

fore material properties of the deformed structure are also expressed by using tensor

of rank 3.

Definition 2.1.3 The Livi-Civita tensor or called as permutation tensor and defined

as

εlmn =


1, for even permutation of lmn,

−1, for odd permutation of lmn,

0, otherwise.

5



Definition 2.1.4 A tensor is said to be isotropic tensor if its components remain

unaltered upon the change of coordinate system otherwise, anisotropic tensor.

Definition 2.1.5 Transpose of a tensor A in a Euclidean space V is a function AT

defined as

(Au)T .v = u.Av, for any u, v ∈ V.

2.2 Fundamentals of elasticity and continuum me-

chanics

Fundamentals of elasticity are based upon the concept of continuum approximation.

In which, matters are idealized as a continuous material. The distribution of atoms

and molecules are continuous in terms of their material properties e.g. density, as a

continuous function of position and time. There are two properties of the continuum

material.

1. The continuum materials are subdivided many times and each subdivision have

similar properties.

2. The continuum approximation gives useful results on a scale larger than the space

between the particles, not on nanometers.

2.2.1 Stress, strain and their relationship

When we apply body force or surface force to any object then its original shape and size

measure of this deformation is called strain. The shapes of the objects is determined

through relative position of the particles.

Strain in three dimensional case is determined by symmetric tensor Sij of the second

rank as

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (2.4)

where i, j=1,2,3. The stress tensor Tjk is defined as

Tjk = lim
∆sk→+0

∆Fj
∆sk

, (2.5)
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when components acts tangentially then stress is known as shear stress.

There is one-to-one relation between stress and strain. In other words, one can

define stress as a function of strain and vice versa. The elastic behaviour of objects for

small deformation can be expressed with first-order term in Taylor’s expansion of the

function.

Tjk(Sil) = Tjk(0) +

(
∂Tjk
∂Sil

)
Sil=0

Sil +
1

2

(
∂2Tjk

∂Sil∂Smn

)
Sil=0

SilSmn + · · · . (2.6)

Now assuming, in the absence of stress there will be no strain and vice versa. That is

Tjk(0) = 0, (2.7)

By ignoring higher order terms, we get an expression called Hook’s Law

Tjk = CjkilSil, (2.8)

where

Cjkil =

(
∂Tjk
∂Sil

)
Sil=0

, (2.9)

is a tensor of rank four which is called elastic stiffness tensor and describes the rela-

tionship between stress and strain and consists of 81 components.

It has two symmetries Cjkil = Ckjil and Cjkil = Ckjli due to symmetries of the stress

and strain tensor, while stored energy function also imposes symmetry. The number

of components reduces from 81 to 21 due to the symmetries, namely, Cjkil = Ciljk.

Two index representation of the indices Cijkl known as Voigt notation is written as

follows

(11)←→ 1, (22)←→ 2, (33)←→ 3,

(23) = (32)←→ 4, (13) = (31)←→ 5, (21) = (12)←→ 6.

This reduces the set of four indices to a set of two indices which is convenient to use.
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2.2.2 Symmetry properties of the crystalline system

Symmetry proportion of the crystal system reduces the number of independent com-

ponents. Crystals are usually anisotropic. Since we have 21 independent stiffness

constants which can be further reduced by applying symmetry conduction of the crys-

talline system. When we consider an isotropic material, constants reduces from 21 to

2.

In hexagonal material, we have 5 independent elastic constants and in the matrix

form written as

Cαβ =


C11 C12 C13 0 0 C16

C12 C11 C13 0 0 −C16

C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
C16 0 0 0 0 C11−C12

2

 . (2.10)

The above matrix is the consequences of these restriction

C ′pqmn = qipqjqqkmqlnCijkl, (2.11)

due to axis of symmetry

q11 = q22 = 1, q33 = −1, (2.12)

qij = 0 for i 6= j, (2.13)

using these conditions

C1123 = C14 = −C1123 = −C14, (2.14)

accordingly,

C14 = C24 = C34 = C64 = C15 = C25 = C35 = C65 = 0. (2.15)

2.2.3 Isotropic material

Isotropic material in which physical properties are independent of direction and choice

of reference frame. In other words, stiffness constants are unaltered by the transforma-

tion of the reference frame. In order to get stiffness tensor Cijkl it must be expressed
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in terms of components of the tensors δij. Mainly there are three fourth rank isotropic

tensor exist

δijδkl, δikδjl, δilδjk.

Therefore, elastic stiffness tensor can be obtained by a linear combination of three

distinct fourth rank tensors,

Cijkl = λδijδkl + µ(δikδjl + δilδjk). (2.16)

and we obtained the matrix

Cαβ =


λ+ 2µ λ λ 0 0 0
λ λ+ 2µ λ 0 0 0
λ λ λ+ 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

 . (2.17)

After the French mathematician G.Lame, λ and µ are known as Lamé constants.

2.2.4 Different wave parameters and types of elastic waves

A disturbance or oscillation through space and matters along with the transfer of energy

is called waves. Different wave parameters associated with wave propagation are given

as follow.

Wave number

Wave number is denoted by k and defined as the reciprocal of the wavelength. Wave

numbers are widely used in optics, physics X-ray diffraction and elementary particle

physics etc.

Wavelength

The distance between the two peaks of the waves is called wave length, and recip-

rocal of the wavelength is called wave number which is denoted by letter k.

Amplitude and frequency

The distance of maximum displacement of a wave from its rest position is called

amplitude.
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Frequency

In Physics, engineering such as optics, acoustics and radio, frequency is defined as

the reciprocal of the time period and is given by

f =
1

T
.

The SI unit of frequency hertz (HZ), named after the German physicist Heinrich Hertz

and time is measured in seconds.

Different classes of the elastic waves can easily travel through solids. The direction

of the wave propagation and the boundary conditions relative to the motion of the

particles enable us to classify different elastic waves. Common elastic waves in solids are

longitudinal or primary waves (P-waves) and transverse, shear waves called as surface

waves (S-waves). We now give short but precise overview of some elastic waves.

P-waves

P-waves are those in which direction of particle displacement is parallel to the wave

propagation. These waves can travel through solids, liquids and gasses.

S-waves

S-waves are those in which direction of particle displacement is perpendicular to

the wave propagation. These waves only propagate through solids.

Surface waves

Surface waves propagate near the surface or boundary of solid material. The am-

plitude of waves decreases sharply as the waves move away from the surface. Two

important surface waves are Love waves and Rayleigh waves.
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Rayleigh waves

Rayleigh waves were discovered by Rayleigh in 1885, the elliptic motion of particles

produce Rayleigh waves. In Rayleigh waves, propagation is in the direction of the

horizontal and vertical components of the motion.

Love waves

Love waves were discovered in 1911 by Augustus Edward Hough Love, produce due

to side by side motion of ground and proved the existence of transverse waves. The

motion of the particle is parallel and transverse to the surface.

Rayleigh waves are non-dispersive in nature while love waves are dispersive in na-

ture. These waves propagate in homogeneous isotropic half-space, while love waves

propagate easily on the homogeneous isotropic layer of homogeneous isotropic half

space.

Dispersive and non-dispersive waves

Wave nature is said to be dispersive if wave speed is dependent upon wave number.

If waves speed is independent of wave number, then they are non-dispersive in nature.

2.2.5 Governing equations of motion

The equation of motion is governed by the fundamental law of thermodynamics also

known as Newton’s second law of motion F = ma, where force F caused an acceleration

and a in to a body of mass m. Suppose disturbance is produced in a solid due to stress,

at some arbitrary point, change in displacement is denoted by v and components of

the force due to stress S is given by

Fi =
∂Sij
∂xj

, i, j = 1, 2, 3, (2.18)

where Sij are the components of the stress tensor, which gives rise to acceleration ∂2vi
∂t2

with unit volume mass along ith axis. In the absence of body force, equation of motion

will be
∂Sij
∂xj

= ρ
∂2vi
∂t2

. (2.19)
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By Hook’s Law, above expression will take form

Cijkl
∂2vl

∂xk∂xj
= ρ

∂2vi
∂t2

, (2.20)

which is second order partial differential equation which give rise to equation of motion

in three dimensional case.

Hook’s Law for an isotropic materials has the form

Sij =λTkkδij + 2µTij

=λ
∂

∂xj

∂vk
∂xj

δij + µ
∂

∂xj

(
∂vi
∂xj

+
∂vj
∂xi

)
(2.21)

Equation (2.19) becomes

λ
∂uk,k
∂xj

δij + µ

(
∂2vi
∂xj∂xj

+
∂

∂xi

∂vj
∂xj

)
= ρv̈ (2.22)

Here the summation is on k.

The equation of motion for homogeneous elastic material will be

(λ+ µ)∇(∇.v) + µ∇2v = ρv̈. (2.23)

2.3 Theory on voids

The linear and non-linear continuum theories of elastic bodies with voids were first

presented by Cowin [12]. It is used for investigating various types of geological and

biological materials for which classical theory of elasticity is not adequate. He also

supposed that elastic material contain pores which are porous but do not have any

mechanical significance. The theory of linear elastic material with voids deals the ma-

terials with a distribution of small pores or voids, where the volume of void is included

among the kinematics variables. It reduces to the classical theory in the limiting case

of the volume of void, tending to zero. It has applications in the study of geological

materials like rocks and soil, synthetic materials like ceramics, pressed powders and

biological structure like bones.

Propagation of elastic waves in a rotating medium were presented by Censor and
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Schoenberg [8, 9]. In these papers, they examined that anisotropy and dispersion

were produced due to the rotation of the elastic medium.

Chandersekhariah [10] studied the propagation of plane waves with voids rotating with

constant angular velocity. Also, the dilatational waves have two different modes. Both

are affected by voids and rotations.

Eringen [11] presented the theory of elastic material with voids as special case of theory

of micromorphic material. Puri and Cowin [12] studied porous material with voids.

They investigated that two dilatational waves exist. One wave corresponds to the

classical linear elasticity. second wave is associated with the change in void volume

fraction.

The governing equation for a homogeneous elastic solid with voids in the absence

of body forces are given in [13] as

µ52 v + (λ+ µ)5 (5.v) + β 5 φ = ρ[v̈ + Ω× (Ω× v) + 2Ω× v̇, (2.24)

α52 φ− ξφ− β 5 .v = ρσφ̈. (2.25)
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Chapter 3

Analysis of Waves Traveling in
Isotropic Elastic Solids with Voids

The study of wave propagation in an isotropic material has gained much attraction

in the literature due to its wide range of applications in the field of seismology, non-

destructive testing system and in the other technical fields. Isotropic materials and

its application are found in Physics, Cosmology, Chemistry etc. The generalization of

the classic theory of elasticity is the theory of linear elastic material with voids. This

theory plays vital role in studying geological and biological materials.

This chapter is mainly based on the study done by Tomar and Ogden [13]. In this

paper, they investigated about the wave propagation in rotating isotropic elastic solids

in the presence of voids. A comprehensive review about their study has been presented

in this chapter. The chapter has been divided into the following sections. In Section

3.1, derivation of the governing equation of the elastic solids with voids is discussed.

In Section 3.2, propagation of waves in two dimensions is discussed in such a way that

waves are traveling in x1x3-plane and x2 = 0 is considered as stress free boundary.

The components of displacement and rotation are such that v2 = 0, Ω1 = Ω3 = 0. In

Section 3.3, solution of the governing equations is discussed in detail. In Section 3.4,

discussion about wave propagation with and without voids is presented. In Section 3.5,

graphical illustrations in the context of voids, rotation and wave number is discussed.
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3.1 Governing equations for waves propagation

We take homogeneous elastic isotropic matter in the presence of porous medium. The

material revolves with a constant soeed Ω. The change in void volume fraction φ(p, t),

where p is the position vector and t is the time. The governing equations without body

forces and external equilibrated body forces are mention in Eq. (2.24) and (2.25).

3.2 Propagation of waves in two dimensions

We consider that waves are traveling in x1x3-plane. The boundary x2 = 0 is taken as

the stress free boundary. Let v = [v1, v2, v3] and Ω = [Ω1,Ω2,Ω3] such that v2 = 0,

Ω1 = Ω3 = 0.

v1 = v1(x1, x3, t), v3 = v3(x1, x3, t), Ω2 = Ω, (3.1)

Using Eq. (3.1), Eq. (2.24) and (2.25) becomes

µ∇2v1 + (λ+ µ)e,1 + βφ,1 = ρ(v̈1 − Ω2v1 + 2Ωv̇3), (3.2)

µ∇2v3 + (λ+ µ)e,3 + βφ,3 = ρ(v̈3 − Ω2v3 − 2Ωv̇1), (3.3)

α∇2φ− ξφ− βe = ρσφ̈, (3.4)

where

e =
∂v1

∂x1

+
∂v3

∂x3

, ∇2 =
∂2

∂x2
1

+
∂2

∂x2
3

. (3.5)

The expression for v1 and v3 with respect to potential function is

v1 = χ,1 + ψ,3, v3 = χ,3 − ψ,1, (3.6)

Using derivatives of Eq. (3.6), Eqs.(3.2) and (3.3) can be written in the form(
c2

1∇2χ− χ̈+ Ω2χ+ 2Ωψ̇ + c2
4φ
)
,1

+
(
c2

2∇2ψ − ψ̈ + Ω2ψ − 2Ωχ̇
)
,3

= 0, (3.7)(
c2

1∇2χ− χ̈+ Ω2χ+ 2Ωψ̇ + c2
4φ
)
,3
−
(
c2

2∇2ψ − ψ̈ + Ω2ψ − 2Ωχ̇
)
,1

= 0, (3.8)
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respectively, where

c2
1 =

(λ+ 2µ)

ρ
, c2

2 =
µ

ρ
, c2

4 =
β

ρ
. (3.9)

This means that Eq. (3.7) and Eq. (3.8) are satisfied if

c2
1∇2χ− χ̈+ Ω2χ+ 2Ωψ̇ + c2

4φ = 0, (3.10)

c2
2∇2ψ − ψ̈ + Ω2ψ − 2Ωχ̇ = 0. (3.11)

These are coupled with Eq. (3.4), in which terms of potential functions become as

c2
3∇2φ− ξ∗φ− φ̈− ν∗∇2χ = 0, (3.12)

where

c2
3 =

α

ρσ
, ξ∗ =

ξ

ρσ
, ν∗ =

β

ρσ
=
c2

4

σ
. (3.13)

In classical elasticity theory, c1 and c2 represent the longitudnal and transverse wave

speeds, while c3 corresponds to the logitudnal wave speed, which exists due to change

in void volume fraction and c4 has the dimension of the speed.

3.3 Solution of the governing equations

For the solution of the governing Eqs. (3.2)-(3.4), it is enough to solve Eqs. (3.10)-

(3.12) for χ, ψ and φ . We take harmonic plane waves that travel along wave normal

laying in the x1x3-plane and makes an angle θ with the x3-axis.

χ = A exp
[
ik(x1 sin θ + x3 cos θ)− iωt

]
, (3.14)

ψ = B exp
[
ik(x1 sin θ + x3 cos θ)− iωt

]
, (3.15)

φ = C exp
[
ik(x1 sin θ + x3 cos θ)− iωt

]
. (3.16)

Solutions for χ, ψ and φ are assumed in the form of Eqs. (3.14)-(3.16) . Where

k is the wave number, ω is the angular frequency and v is the wave speed. Various

derivatives of χ are

∂χ

∂x1

= A(iksin θ) exp
[
ik(x1 sin θ + x3 cos θ)− iωt

]
. (3.17)

16



Omitting the expression exp
[
ik(x1 sin θ + cos θ)− iωt

]
to save space, we have

∂2χ

∂x2
1

= A(iksin θ)2 = −Ak2sin2 θ, (3.18)

∂2χ

∂x2
3

= A(ikcos θ)2 = −Ak2cos2 θ, (3.19)

∇2χ = −Ak2. (3.20)

In a similar manner derivatives of χ and φ are calculated. After using various derivatives

of χ, φ and ψ Eq. (3.10) becomes

c2
1(−Ak2)− (−Aω2) + Ω2(A) + 2Ω(−Biω) + c2

4C = 0,

which further reduces to(
k2c2

1 − ω2 − Ω2
)
A+ 2iΩωB − c2

4C = 0. (3.21)

Substituting the values of ∇2ψ, ψ̈, ψ, χ̇ in Eq.(3.11), we get

c2
2

(
−Bk2

)
−
(
−Bω2

)
+ Ω2B − 2ΩA(−iω) = 0,

which takes the form

2iΩωA−
(
c2

2k
2 − ω2 − Ω2

)
B = 0. (3.22)

Likwise, Eq. (3.12) becomes

c2
3(−Ck2)− ξ∗(C)− (−Cω2)− ν∗(−Ak2) = 0,

which reduces to simplified form as

k2ν∗A−
(
k2c2

3 − ω2 + ξ∗
)
C = 0, (3.23)

where ν∗ and ξ∗ are defined by Eq. (3.13). Equations (3.21)-(3.23) are coupled having

all three contants A, B and C. However, these equations decouple and give v2 = c2
2

in the absence of rotation. This decoupling correspond to tranverse wave. In order

to eliminate the constants A, B and C from Eqs. (3.21)-(3.23), the determinant must

vanish which gives nontrivial solution. The respective determinant of the coefficient
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matrix is denoted by M and is given by

M =
k2c2

1 − ω2 − Ω2 2ιΩω c2
4

2ιΩω k2c2
2 − ω2 − Ω2 0

k2ν∗ 0 k2c2
3 + ω2 − ξ∗

∣∣∣∣∣∣ = 0. (3.24)

After solving the determinant and collecting the like terms, we get

c2
1c

2
2c

2
3k

6 − c2
2c

2
4k

4ν∗ + c2
1c

2
2k

4ξ∗ − c2
1c

2
3k

4ω2 − c2
2c

2
3k

4Ω2 + c2
4k

2ν∗Ω2 − c2
1k

2ξ∗2Ω2

− c2
2k

2ξ∗Ω2 + c2
3k

2Ω4 + ξ∗Ω4 − ω6 +
(
c2

1k
2 + c2

2k
2 + c2

3k
2 + ξ∗ + 2Ω2

)
ω4

+
(
− c2

1c
2
2k

4 − c2
1c

2
3k

4 − c2
2c

2
3k

4 + c2
4k

2ν∗ − c2
1k

2ξ∗ − c2
2k

2ξ∗ + c2
1k

2Ω2 + c2
2k

2Ω2

− 2c2
3k

2Ω2 − 2ξ∗Ω2 − Ω4
)
ω2 = 0. (3.25)

Equation (3.25) can be written in a compact form as a cubic equation for ω2, which is

given by

ω6 − a1ω
4 + a2ω

2 − a3 = 0, (3.26)

where the (real) coefficients a1, a2, a3 are defined by

a1 = c2
1k

2 + k2c2
2 + k2c2

3 + ξ∗ + 2Ω2,

= 2Ω2 + k2
(
c2

1 + c2
2 + c2

3 + ξ∗
)
, (3.27)

a2 = c2
1c

2
2k

4 + c2
1c

2
3k

4 + c2
2c

3
3k

4 − c2
4k

2ν∗ + c2
1k

2ξ∗ + c2
2k

2ξ∗ − c2
1k

2Ω2 − c2k
2Ω2

+ 2c2
3k

2Ω2 + 2ξ∗Ω2 + Ω4,

=
(
Ω2 − k2c2

1

)(
Ω2 − k2c2

2

)
− ν∗k2c2

4 + 2Ω2k2c2
3 + 2Ω2ξ∗ + k4c2

1c
2
3 + k2c2

1ξ
∗

+ k4c2
3c

2
3 + k2c2

2ξ
∗,

=
(
Ω2 − k2c2

1

)(
Ω2 − k2c2

2

)
+ [2Ω2 + k2

(
c2

1 + c2
2

)
]
(
k2c2

3 + ξ∗
)
− ν∗k2c2

4, (3.28)

a3 = c2
1c

2
2c

2
3k

6 − c2
2c

2
4k

4ν∗ + c2
1c

2
2k

4ξ∗ − c2
1c

2
3k

4Ω2 − c2
2c

2
3k

4Ω2 + c2
4k

2ν∗Ω2

− c2
1k

2ξ∗Ω2 − c2
2k

2ξ∗Ω2 + c2
3k

2Ω4 + ξ∗Ω4,

=
(
Ω2 − k2c2

2

)[
− c2

1c
2
3k

4 − c2
2c

2
3k

4 + c2
3k

2Ω2 + ξ∗Ω2 − c2
4ν
∗k2 + c2

1c
2
3k

3

− c2
1k

2ξ∗4
]
,

=
(
Ω2 − k2c2

2

)[(
Ω2 − k2c2

1

)(
k2c2

3 + ξ∗
)

+ ν∗k2c2
4

]
. (3.29)
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After we get the solution for ω, we can obtain the wave speed by using v = ω/k. The

waves are dispersive because we know that ω depends on k generally. In the limit

k → 0 Eqs. (3.26)-(3.29) reduce to

a1 = 2Ω2 + ξ∗, (3.30)

a2 = Ω4 + 2Ω2ξ∗, (3.31)

a3 = Ω4ξ∗. (3.32)

and Eq. (3.27) takes the form
(
ω2−Ω2

)2(
ω2− ξ∗

)
= 0 and the compatible wave speed

take the form unlimited. At the other extreme, in the limit k →∞, Eq. (3.25) has the

asymptotic form
(
ω2 − k2c2

1

)(
ω2 − k2c2

2

)(
ω2 − k2c2

3

)
= 0, where c2

1, c2
2, c2

3 are squared

wave speed.

3.4 Two main cases

In the presence of voids in an isotropic material, dispersion in the waves occur due

to rotation. The quadratic equation in ω2 which gives two real solution depicts the

association of wave speed on the wave number.

3.4.1 Isotropic material without voids

If there are no voids and then consequently voids parameters α, β, ξ, are zero and a3,

c3, c4 also zero and the only nonzero solutions of Eq. (3.27) are given by a quadric in

ω2, namely

ω4 −
[
2Ω2 + k2

(
c2

1 + c2
2

)]
ω2 +

(
Ω2 − k2c2

1

)(
Ω2 − k2c2

2

)
= 0. (3.33)

Two real solutions for ω2 are obtained, at least one of which is greater than zero. The

discriminant must be greater than or equal to zero, in order to have at least one positive

root in quadratic equation. In the form of quadratic equation generally,

Aω4 −Bω2 − C = 0.
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It is required that, C<0,
(
Ω2 − k2c2

1

)(
Ω2 − k2c2

2

)
60. This is possible if

Ω2 − k2c2
2≥0, Ω2≥k2c2

2,
Ω2

c2
2

≥k2, (3.34)

or

Ω2 − k2c2
160, Ω26k2c2

2,
Ω2

c2
1

6k2. (3.35)

In order to get two real solutions for ω, k must lies outside the range,

Ω2

c2
1

6k26
Ω2

c2
2

. (3.36)

This implies that
Ω

c1

6k6
Ω

c2

. (3.37)

Eq. (3.33) shows the association of wave speed on the wave number. When we put

v = ω/k, while dispersion in the waves are caused by rotation.

3.4.2 Isotropic material with voids

In this case, when we have voids but no rotation. In such a case Eqs. (3.27)-(3.29)

reduce to

a1 = k2(c2
1 + c2

2 + c2
3) + ξ∗, (3.38)

a2 = (−k2c2
1)(−k2c2

2) + [k2(c2
1 + c2

2)](k2c2
3 + ξ∗), (3.39)

a3 = (−k2c2
1)(−k2c2

2)(k2c2
3 + ξ∗) + v∗k2c2

4, (3.40)

In the absence of rotation Eq. (3.26) takes the forms

ω6 −
(
k2(c2

1 + c2
2 + c2

3) + ξ∗
)
ω4 +

(
(−k2c2

1)(−k2c2
2) + [k2(c2

1 + c2
2)](k2c2

3 + ξ∗)
)
, (3.41)

or

(ω2 − k2c2
2){ω4 − [ξ∗ + k2(c2

1 + c2
3)]ω2 + k2c2

1(ξ∗ + k2c2
3)− k2ν∗c2

4} = 0. (3.42)

The first factor in Eq. ( 3.42) yields ν2 = c2
2. The second degree equation in ω2 has two

real solutions, minimum one being greater than zero. The constant factor in quadratic
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equation in Eq. ( 3.42) is greater than zero for both solutions to be greater than zero.

k2c2
1(ξ∗ + k2c2

3)− k2ν∗c2
4 > 0,

=⇒ k2c2
1c

2
3 > ν∗c2

4 − ξ∗c2
1. (3.43)

For the explanation of the result, we require suitable values of the matter’s param-

eters. The parameters are adopted from Puri and Cowin [12] and these are listed in

Table 3.1. The expressions in Eqs. (3.9) and (3.13) are then used to calculate the

values of c1, c2, c3, c4, ξ∗ and ν∗, which are written together in Table 3.2. Without

voids and rotating wave speeds have the values c1 and c2, which does not depend on k.

We will take dimensionlize values of the parameters for the convenience of the

calculation which are given by

λ̄ =
λ

µ
, β̄ =

β

µ
, ξ̄ =

ξ

µ
, ᾱ =

α

µσ
, (3.44)

ω̄ = ω

√
ρσ

µ
, Ω̄ = Ω

√
ρσ

µ
, k̄ = k

√
σ. (3.45)

Letter Value Units Letter Value Units

λ 15× 109 Nm−2 µ 7.5× 109 Nm−2

α 8× 109 N β 10× 109 Nm−2

ξ 12× 109 Nm−2 ρ 1999 kgm−3

σ 0.162 m2

Table 3.1: Values of the various material parameters in the presence of voids.

After the calculation, the derived form are obtained in dimensionless parameters

which are λ̄, ᾱ, β̄, ξ̄, Ω̄. These are the functions of either ω̄ or k̄; where ω̄= k̄ν̄.

Letter Value Units Letter Value Units

c1 3874 ms−1 c2 1937 ms−1

c3 4970.34 ms−1 c4 2236.66 ms−1

ν∗ 30.8804× 106 s−2 ξ∗ 37.0565× 106 s−2

Table 3.2: Calculated values of material parameters using the information from Table
3.1 and Eq. (3.9) and Eq. (3.13).
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Using Eq. (3.44) and Eq. (3.45) in Eq. (3.26), after putting ω2 = t, we get

t3 − ā1t
2 + ā2t− ā3 = 0, (3.46)

where

ā1 = 2

(
µΩ̄2

ρσ

)
+
k̄2

σ

[
λ+ 2µ

ρ
+
µ

ρ
+

α

ρσ

]
+

ξ

ρσ
, (3.47)

Ω2 =
µΩ̄2

ρσ
, k2 =

k̄2

σ
, ξ = ξ̄µ. (3.48)

So, rewriting ā1 and utilizing Eq. (3.48)

ā1 = 2

(
µΩ̄2

ρσ

)
+
k̄2

σ

[
λ̄µ+ 2µ

ρ
+
µ

ρ
+

α

ρσ

]
+
ξ̄µ

ρσ
,

=
µ

ρσ

[
2Ω̄2 + k̄2

(
λ̄+ 3 +

α

µσ

)
+ ξ̄

]
,

=
µ

ρσ

[
2Ω̄2 + ξ̄ + k̄2

(
λ̄+ 3 + ᾱ

)]
,

=
µk̄2

ρσ

[
2Ω̄2 + ξ̄

k̄2
+ (3 + λ̄+ ᾱ)

]
. (3.49)

Similarly, the expression for ā2 is obtained as

ā2 =

(
Ω̄2µ

ρσ
− k̄2µ(λ̄+ 2)

ρσ

)( ¯Ω2µ

ρσ
−

¯k2µ

ρσ

)
+

[
2

¯Ω2µ

ρσ
+
k̄2

σ

(
(λ̄+ 2)µ

ρ

+
µ

ρ

)]
×
(
k̄2

σ
× ᾱµσ

ρσ
+
µξ̄

ρσ

)
−
(
µβ̄

ρσ

)2

k̄2, (3.50)

=

(
k̄µ

ρσ

)2[(
Ω̄2

k̄2
− λ̄− 2

)(
Ω̄2

k̄2
− 1

)
+

(
2Ω̄2

k̄2
+ λ̄+ 3

)(
ᾱ +

ξ̄

k̄2

)
− β̄2

]
,

=

(
k̄µ

ρσ

)2[
2 + λ̄+ (3 + λ̄)α +

(3 + λ̄)(ξ̄ − Ω̄2) + 2Ω̄2ᾱ− β̄2

k̄2

+
Ω̄4 + 2Ω̄2ξ

k̄4

]
. (3.51)
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Likewise, for ā3 one can obtain as

ā3 =

(
Ω̄2µ

ρσ
− k̄2

σ
× µ

ρ

)[(
Ω̄2µ

ρσ
− k̄2

σ
× (λ+ 2µ)

ρ

)(
k̄2

σ
× α

ρσ

+
ξ

ρσ

)
+

β

ρσ
× k̄2

σ
× β

ρ

]
,

=

(
k̄2µ

ρσ

)3[(
Ω̄2

k̄2
− 1

)(
Ω̄2

k̄2
− (λ̄+ 2)

)(
ᾱ +

ξ̄

k̄2

)
+
β̄µ

ρσ

]
,

=

(
k̄2µ

ρσ

)3[
(2 + λ̄)ᾱ +

(2 + λ)ξ̄ − (3 + λ̄)Ω̄2ᾱ− β̄2

k̄2

+
[Ω̄2ᾱ + β̄2 − (3 + λ̄)ξ̄]Ω̄2

k̄4
+

Ω̄4ξ̄

k̄6

]
. (3.52)

3.5 Results and discussion of graphs

The graphs are reproduced in Mathematica with the following code

λ = 15 ∗ 109;

α = 8 ∗ 109;

ξ = 12 ∗ 109;

σ = .162;

µ = 7.5 ∗ 109;

β = 10 ∗ 109;

λ1 = λ/µ;

α1 = α/(µ+ σ);

β1 = β/µ;

ξ1 = ξ/µ;

Ω1 = 0;
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and

x1 = 3 + λ1 + α1 +
(
2Ω12 + ξ1

)
/k2;

x2 = 2 + λ1 + (3 + λ1)α1 +
(
(3 + λ1)(ξ1− Ω12) + 2Ω12α− β12

)
/k2

+
(
Ω14 + 2Ω12ξ

)
/k4;

x3 = (2 + λ1)α1 +
(
(2 + λ1)ξ1− (3 + λ1)Ω12α1− β12

)
/k2

+
(
Ω2α1 + β12 − (3 + λ1)ξ1

)
Ω12/k4 + Ω14ξ/k6;

where λ̄ = λ1, β̄ = β1, ξ̄ = ξ1, ᾱ = α1, a1 = x1, a2 = x2, a3 = x3.

contourplot
[
ν3 − x1 ∗ ν2 + x2 ∗ ν − x3 = 0, (k, 0, 3), (ν, o, 20)

]

(a) Ω̄ = 0 (b) Ω̄ = 1
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(c) Ω̄ = 2 (d) Ω̄ = 5

(e) Ω̄ = 10 (f) Ω̄ = 20

Figure 3.1: Graphss of ν̄2 against the k̄ in the presence of voids and rotation.

Graphical results are produced by using Mathematica [14]. When rotation is zero

then ā1, ā2 and ā3 are positive and can be less than for non-zero rotation. The greater

values of the material parameters with voids results in the fall off rotation.

By Descartes’ rule of sign, Eq. (3.46) can change sign maximum three times as function

25



of t. So there are 1, 2 or 3 positive real roots and thus one, two or three real wave

speeds. This is shown in Fig. 3.1.

Fig. 3.1 is drawn from Eq. (3.46) using the data of Table 3.1 which present the

non-dimensionlize squared wave speed t as function of k̄ with non-dimensionlize values

of λ̄, ᾱ, β̄ and ξ̄. The result of voids in the absence of rotation is observed in Fig. 1(a).

Out of three wave speed, one is wave speed of transverse wave which is unchanged in

the presence of voids and is constant along horizontal axis and the other parallel wave

speed decays in the beginning and then become constant as wave number increases.

In the third, wave speed is plotted for small wave number corresponding to large wave

speed and gradually wave number become constant.

3.5.1 Case for k̄ →∞

If we take k̄ very large in Eq. (3.46) and approaching to infinity then as a result few

terms of ā1, ā2 and ā3 will become zero. These are:

ā1 = 3 + λ̄+ ᾱ, (3.53)

ā2 = 2 + λ̄+ (3 + λ̄)ᾱ, (3.54)

ā3 = (2 + λ̄)ᾱ. (3.55)

Now Eq. (3.46) becomes

t3 − (3 + λ̄+ ᾱ)t2 + [2 + λ̄+ (3 + λ̄)ᾱ]t− ((2 + λ̄)ᾱ) = 0. (3.56)

If one root is 1 then the other two roots by long division are obtained.

t2 − (2 + λ̄+ ᾱ)t+ (2 + λ̄)ᾱ

t− 1
√

t3 −(3 + λ̄+ ᾱ)t2 +[2 + λ̄+ (3 + λ̄)ᾱ]t −(2 + λ̄)ᾱ

±t3 ∓t2
−(2 + λ̄+ ᾱ)t2 +[2 + λ̄+ ᾱ + (2 + λ̄)ᾱ]t

∓(2 + λ̄+ ᾱ)t2 ±[2 + λ̄+ ᾱ]t

+(2 + λ̄)ᾱt −(2 + λ̄)ᾱ

±(2 + λ̄)ᾱt ∓(2 + λ̄)ᾱ

0

.
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Now factorizing the polynomial by using the formula

t2 − (2 + λ̄+ ᾱ)t+ (2 + λ̄)ᾱ =
(2 + λ̄+ ᾱ)±

√
(2 + λ̄+ ᾱ)2 − 4(1)(2 + λ̄)ᾱ

2(1)
,

=
(2 + λ̄+ ᾱ)±

√
(2 + λ̄)2 + ᾱ2 + 2(2 + λ̄)ᾱ− 4(1)(2 + λ̄)ᾱ

2
,

=
(2 + λ̄+ ᾱ)±

√
(2 + λ̄)2 + ᾱ2 − 2(2 + λ̄)ᾱ

2
,

=
(2 + λ̄+ ᾱ)±

√
[(2 + λ̄)− ᾱ]2

2
,

=
(2 + λ̄+ ᾱ)± [(2 + λ̄)− ᾱ]

2
,

t =
(2 + λ̄+ ᾱ) + [(2 + λ̄)− ᾱ]

2
, or t =

(2 + λ̄+ ᾱ)− [(2 + λ̄)− ᾱ]

2
,

or t = 2 + λ̄, or t = ᾱ.

Eq. (3.56) is solved and it gives three roots 1, ᾱ, λ̄+2. Fig. 3.1(a)-(f), shows the voids

parameters α, β, ξ and rotation. Graphs are plotted by taking various values of Ω̄.

Waves are coupled and on the horizontal axis there is a sharp gap for k̄, for very small

value of t. The waves of Fig. 3.1(c)-(f) become broaden as value of k̄ and t increases.

In a graph, each wave changes its behaviour as wave number and wave speed increases

accordingly.
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3.5.2 Case with voids

(a) no voids, k̄ = 1, (b) k̄ = 1

(c) k̄ = 2 (d) k̄ = 5

Figure 3.2: Graphs of the ν̄2 against the Ω̄ for constant values of k̄, where α, β and ξ
are calculated from Table 3.1.

In Fig. 3.2(a), voids parameters ᾱ, β̄ and ξ̄ are absent so as a consequence one wave

is vanished for wave number 1. In Fig. 3.2(b), wave number is same as in Fig. 3.1(a)
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but the voids parameters with rotation are present, as effect three wave speeds are

travelling. In Fig. 3.2(c) and (d) waves are broden as the wave number is increased.

In Fig. 3.3, when a3 = 0 in the absence of voids the graphs depend on the solution of

the second degree equation.
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3.5.3 Case without voids

(a) Ω̄ = 0 (b) Ω̄ = 1

(c) Ω̄ = 2 (d) Ω̄ = 5

Figure 3.3: Graphs of the ν̄2 against the k̄ in the absence of voids.

In Fig. 3.3(a) when rotation is absent then only two real wave speeds travel, one is

longitudinal and other is transverse. As we observed that when we add rotation, in

graphs of Fig. 3.3(b)-(d) it is clear that as wave number is low then wave speed is high.
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In these figures, one real wave speed has been observed and other wave has ”cut-out”

range which increase as rotation increases.
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Chapter 4

Travelling of Waves in an
Anisotropic Elastic Materials with
Voids

The theory of linear elastic material with voids is the generalization of the classical

theory of elasticity in which strain and void volume is considered as an independent

kinematics variable. The nonlinear version of the theory of elastic material with voids

was presented by Nunziato and Cowin in 1979 [1] and linear version was proposed by

Cowin and Nunziato in 1983 [2]. Later on, void volume was added as a new kinematic

variable to introduce the new version. The limitation of this version was that after

removal of voids volume, we again get classical linear theory of elasticity. This theory

has a wide range of application in geological material like rocks, solid and manufactur-

ing material like wood, clothes, paper etc. The anisotropic material gained attraction

in 19th century and are used in the field of seismology, ultra sonics and electromagnetic

fields.

In this chapter, travelling of waves in anisotropic elastic mterial with voids is discussed.

Basic equations governing the wave motion in anisotropic materials are considered in

section 4.1. In Section 4.2, the hexagonal crystal system is chosen to assign values to

constants of equations in section 4.1. Numerical results and discussion are given in

section 4.3.
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4.1 Elasticity tensor for anisotropic materials

Consider the Eq. (2.8), which is elastic stiffness tensor of order four and differentiating

Eq. (2.8) w.r.t j we have,

Tij,j = Cijkluk,lj, (4.1)

Substituting Eq. (4.1) into stress equation of motion

Tij,j = Cijkluk,lj = ρ(ü1 − Ω2u1 + 2Ωu̇3). (4.2)

Therefore, for i = 1

T1j,j = C1jkluk,lj. (4.3)

Now, for j = 1, 2, 3

T1j,j = T11,1 + T12,2 + T13,3,

= C11kluk,l1 + C12kluk,l2 + C13kluk,l3 + βφ,1 = ρ(ü1 − Ω2u1 + 2Ωu̇3). (4.4)

For k = 1, 2, 3

C111lu1,l1 + C112lu2,l1 + C113lu3,l1 + C121lu1,l2 + C122lu2,l2

+ C123lu3,l2 + C131lu1,l3 + C132lu2,l3 + C133lu3,l3 + βφ,1 = ρ(ü1 − Ω2u1 + 2Ωu̇3). (4.5)

For l = 1, 2, 3

C1111u1,11 + C1112u1,21 + C1113u1,31 + C1121u2,11 + C1122u2,21

+ C1123u2,31 + C1131u3,11 + C1132u3,21 + C1133u3,31 + C1211u1,12

+ C1212u1,22 + C113u1,32 + C1221u2,12 + C1222u2,22 + C1223u2,32

+ C1231u3,12 + C1232u3,22 + C1233u3,32 + C1311u1,13 + C1312u1,23

+ C1313u1,33 + C1321u2,13 + C1322u2,23 + C1323u2,33 + C1331u3,13

+ C1332u3,23 + C1333u3,33 + βφ,1 = ρ(ü1 − Ω2u1 + 2Ωu̇3). (4.6)

It is easy to use Voigt notation or two index representation of Cijkl in which a pair of

indices corresponds to a single index in the following manner.

11→ 1, 22→ 2, 33→ 3, 23→ 4, 13→ 5, 12→ 6 (4.7)

33



Now, by using Voigt notation Eq. (4.6) becomes

C11u1,11 + C16u1,21 + C15u1,31 + C16u2,11 + C12u2,21 + C14u2,31

+ C15u3,11 + C14u3,21 + C13u3,31 + C16u1,12 + C66u1,22 + C56u1,32

+ C66u2,12 + C26u2,22 + C46u2,32 + C56u3,12 + C46u3,22 + C36u3,32

+ C15u1,13 + C56u1,23 + C55u1,33 + C56u2,13 + C25u2,23 + C45u2,33

+ C55u3,13 + C45u3,23 + C35u3,33 + βφ,1 = ρ(ü1 − Ω2u1 + 2Ωu̇3). (4.8)

So, Eq. (4.8) in partial form as

C11
∂2u1

∂x2
+ C16

∂2u1

∂y∂x
+ C15

∂2u1

∂z∂x
+ C16

∂2u2

∂x2
+ C12

∂2u2

∂y∂x

+ C14
∂2u2

∂z∂x
+ C15

∂2u3

∂x2
+ C14

∂2u3

∂y∂x
+ C13

∂2u3

∂z∂x
+ C16

∂2u1

∂x∂y

+ C66
∂2u1

∂y2
+ C56

∂2u1

∂z∂y
+ C66

∂2u2

∂x∂y
+ C26

∂2u2

∂y2
+ C46

∂2u2

∂z∂y

+ C56
∂2u3

∂x∂y
+ C46

∂2u3

∂y2
+ C36

∂2u3

∂z∂y
+ C56

∂2u2

∂x∂z
+ C15

∂2u1

∂x∂z

+ C56
∂2u1

∂y∂z
+ C55

∂2u1

∂z2
+ C25

∂2u2

∂y∂z
+ C45

∂2u2

∂z2
+ C55

∂2u3

∂x∂z

+ C45
∂2u3

∂y∂z
+ C35

∂2u3

∂z2
+ βφ,1 = ρ(ü1 − Ω2u1 + 2Ωu̇3). (4.9)

Now, For i = 2

T2j,j = C2jkluk,lj. (4.10)

For j = 1, 2, 3

T2j,j = T21,1 + T22,2 + T33,3,

= C21kluk,l1 + C22kluk,l2 + C23kluk,l3 + βφ,2 = 2ρΩ(u̇1 + u̇3). (4.11)

For k = 1, 2, 3

C211lu1,l1 + C212lu2,l1 + C213lu3,l1 + C221lu1,l2 + C222lu2,l2

+ C223lu3,l2 + C231lu1,l3 + C232lu2,l3 + C233lu3,l3 + βφ,2 = 2ρΩ(u̇1 + u̇3). (4.12)
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For l = 1, 2, 3

C2111u1,11 + C2112u1,21 + C2113u1,31 + C2121u2,11 + C2122u2,21

+ C2123u2,31 + C2131u3,11 + C2132u3,21 + C2133u3,31 + C2211u1,12

+ C2212u1,22 + C2213u1,32 + C2221u2,12 + C2222u2,22 + C2223u2,32

+ C2231u3,12 + C2232u3,22 + C2233u3,32 + C2311u1,13 + C2312u1,23

+ C2313u1,33 + C2321u2,13 + C2322u2,23 + C2323u2,33 + C2331u3,13

+ C2332u3,23 + C2333u3,33 + βφ,2,= 2ρΩ(u̇1 + u̇3). (4.13)

Using Voigt notation, Eq. (4.13) can be written as,

C16u1,11 + C66u1,21 + C56u1,31 + C66u2,11 + C26u2,21

+ C46u2,31 + C56u3,11 + C46u3,21 + C36u3,31 + C21u1,12

+ C26u1,22 + C25u1,32 + C26u2,12 + C22u2,22 + C24u2,32

+ C25u3,12 + C24u3,22 + C23u3,32 + C14u1,13 + C46u1,23

+ C45u1,33 + C46u2,13 + C24u2,23 + C44u2,33 + C45u3,13

+ C44u3,23 + C34u3,33 + βφ,2 = 2ρΩ(u̇1 + u̇3). (4.14)

Equation (4.14) in partial form,

C16
∂2u1

∂x2
+ C66

∂2u1

∂y∂x
+ C56

∂2u1

∂z∂x
+ C66

∂2u2

∂x2
+ C26

∂2u2

∂y∂x

+ C46
∂2u2

∂z∂x
+ C56

∂2u3

∂x2
+ C46

∂2u3

∂y∂x
+ C36

∂2u3

∂z∂x
+ C12

∂2u1

∂x∂y

+ C26
∂2u1

∂y2
+ C25

∂2u1

∂z∂y
+ C26

∂2u2

∂x∂y
+ C22

∂2u2

∂y2
+ C24

∂2u2

∂z∂y

+ C25
∂2u3

∂x∂y
+ C24

∂2u3

∂y2
+ C23

∂2u3

∂z∂y
+ C14

∂2u1

∂x∂z
+ C46

∂2u1

∂y∂z

+ C45
∂2u1

∂z2
+ C46

∂2u2

∂x∂z
+ C24

∂2u2

∂y∂z
+ C44

∂2u2

∂z2
+ C45

∂2u3

∂x∂z

+ C44
∂2u3

∂y∂z
+ C34

∂2u3

∂z2
+ βφ,2 = 2ρΩ(u̇1 + u̇3). (4.15)
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Now, for i = 3 in Eq. (4.1)

T3j,j = C3jkluk,lj. (4.16)

For j = 1, 2, 3 in Eq. (4.16)

T3j,j = T31,1 + T32,2 + T33,3,

= C31kluk,l1 + C32kluk,l2 + C33kluk,l3 + βφ,2 = ρ(ü3 − Ω2u3 + 2Ωu̇1). (4.17)

For k = 1, 2, 3 in Eq (4.17)

C311lu1,l1 + C312lu2,l1 + C313lu3,l1 + +C321lu1,l2 + C322lu2,l2 + C323lu3,l2

+ C331lu1,l3 + C332lu2,l3 + C333lu3,l3 + βφ,3 = ρ(ü3 − Ω2u3 + 2Ωu̇1). (4.18)

For l=1,2,3 in Eq. (4.18)

C3111u1,11 + C3112u1,21 + C3113u1,31 + C3121u2,11 + C3122u2,21

+ C3123u2,31 + C3131u3,11 + C3132u3,21 + C3133u3,31 + C3211u1,12

+ C3212u1,22 + C3213u1,32 + C3221u2,12 + C3222u2,22 + C3223u2,32

+ C3231u3,12 + C3232u3,22 + C3233u3,32 + C3311u1,13 + C3312u1,23

+ C3313u1,33 + C3321u2,13 + C3322u2,23 + C3323u2,33 + C3331u3,13

+ C3332u3,23 + C3333u3,33 + βφ,2 = ρ(ü3 − Ω2u3 + 2Ωu̇1) (4.19)

Using Voigt notation, therefore, Eq. (4.19) implies,

C15u1,11 + C56u1,21 + C55u1,31 + C56u2,11 + C25u2,21

+ C45u2,31 + C55u3,11 + C45u3,21 + C35u3,31 + C14u1,12

+ C46u1,22 + C45u1,32 + C46u2,12 + C24u2,22 + C44u2,32

+ C45u3,12 + C44u3,22 + C34u3,32 + C13u1,13 + C36u1,23

+ C35u1,33 + C36u2,13 + C23u2,23 + C34u2,33 + C35u3,13

+ C34u3,23 + C33u3,33 + βφ,3 = ρ(ü3 − Ω2u3 + 2Ωu̇1) (4.20)
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Writing Eq. (4.20) in partial form as,

C51
∂2u1

∂x2
+ C56

∂2u1

∂y∂x
+ C55

∂2u1

∂z∂x
+ C56

∂2u2

∂x2
+ C25

∂2u2

∂y∂x

+ C45
∂2u2

∂z∂x
+ C55

∂2u3

∂x2
+ C45

∂2u3

∂y∂x
+ C35

∂2u3

∂z∂x
+ C14

∂2u1

∂x∂y

+ C46
∂2u1

∂y2
+ C45

∂2u1

∂z∂y
+ C46

∂2u2

∂x∂y
+ C24

∂2u2

∂y2
+ C44

∂2u2

∂z∂y

+ C45
∂2u3

∂x∂y
+ C44

∂2u3

∂y2
+ C34

∂2u3

∂z∂y
+ C13

∂2u1

∂x∂z
+ C36

∂2u1

∂y∂z

+ C35
∂2u1

∂z2
+ C36

∂2u2

∂x∂z
+ C32

∂2u2

∂y∂z
+ C34

∂2u2

∂z2
+ C35

∂2u3

∂x∂z

+ C34
∂2u3

∂y∂z
+ C33

∂2u3

∂z2
+ βφ,3 = ρ(ü3 − Ω2u3 + 2Ωu̇1) (4.21)

In order to discuss two dimensional wave propagation, in the (x, z) plane, we shall

consider u and Ω to have components

u1 = u1(x, z, t),

u3 = u3(x, z, t),

Ω2 = Ω.

with

u2 = 0,

Ω1 = Ω3 = 0.

With this specialization, Eq. (4.9) reduces to

C11
∂2u1

∂x2
+ C15

(
∂2u1

∂z∂x
+
∂2u3

∂x2
+
∂2u1

∂x∂z

)
+ C13

∂2u3

∂z∂x

+ C55

(
∂2u1

∂z2
+
∂2u3

∂x∂z

)
+ C35

∂2u3

∂z2
+ βφ,1 = ρ(ü1 − Ω2u1 + 2Ωu̇3). (4.22)

Likewise, Eq.(4.21) implies

C15
∂2u1

∂x2
+ C55

(
∂2u1

∂z∂x
+
∂2u3

∂x2

)
+ C31

∂2u1

∂x∂z
+ C35

(
∂2u3

∂z∂x
+
∂2u1

∂z2
+
∂2u3

∂x∂z

)
+ C33

∂2u3

∂z2
+ βφ,1 = ρ(ü3 − Ω2u3 + 2Ωu̇1), (4.23)
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yields

α

(
∂2φ

∂x2
+
∂2φ

∂z2

)
− ξφ− βe = ρσφ̈, (4.24)

where

e =
∂u1

∂x1

+
∂u3

∂x3

. (4.25)

4.1.1 Propagation of plane wave in a material with invariance
of 6-fold axis rotations

For the hexagonal system the principal axis has order six, behaving as a dyad axis

combined with a triad. The matrix Cαβ thus has a form combining the features of the

monoclinic and trigonal system in the form of matrix given in Eq. (2.10). Using this

matrix in Eq. (4.22) and Eq. (4.23), we have

C11u1,11 + C13u3,13 + C44 (u1,33 + u3,13) + βφ,1 = ρ(ü1 − Ω2u1 + 2Ωu̇3),

or

C11u1,11 + (C13 + C44)u3,13 + C44u1,33 + βφ,1 = ρ
(
ü1 − Ω2u1 + 2Ωu̇3

)
. (4.26)

Similarly

C44 (u1,13 + u3,11) + C13u1,13 + C33u3,33 + βφ,3 = ρ(ü3 − Ω2u3 + 2Ωu̇1),(
C13 + C44

)
u1,13 + C44u3,11 + C33u3,33 + βφ,3 = ρ(ü3 − Ω2u3 + 2Ωu̇1), (4.27)

α (φ,11 + φ,33)− ξφ− βe = ρσφ̈. (4.28)

where

u1 = A exp
[
ik(xl1 + zl3 − ct)

]
,

u3 = B exp
[
ik(xl1 + zl3 − ct)

]
,

φ = C exp
[
ik(xl1 + zl3 − ct)

]
.
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When all these expressions have the common term exp
[
ik(xl1 + zl3 − ct)

]
, which is

omitted to save space.

u̇1 = −ikcA, ü1 = −k2c2A,

u̇3 = −ikcB, ü3 = −k2c2B,

φ̇ = −ikcC, φ̈ = −k2c2C,

u1,11 = −k2l21A, u3,31 = −k2l1l3B,

u1,33 = −k2l23A, u1,31 = −k2l1l3A,

u3,11 = −k2l21B, u3,33 = −k2l23B,

φ,11 = −k2l21C, φ,33 = −k2l23C,

e = Aikl1 +Bikl3.

Equation (4.26) becomes

C11

(
− k2l21

)
A+ C13

(
− k2l1l3

)
B + C44

(
− k2l23A− k2l1l3B

)
+ β

(
ikl1C

)
= ρ
(
− k2c2A− Ω2A+ 2Ω(−ikcB)

)
or

− k2C11l
2
1A− k2

(
C13 + C44

)
l1l3B − k2C44l

2
3A+ iβkl1C = −k2ρc2A

− ρΩ2A− 2iΩkcB. (4.29)

Collecting like terms from Eq. (4.29)(
− C11k

2l1
2 − C44k

2l23 + ρ(c2k2 + Ω2)
)
A−

(
(C13 + C44)k2l1l3 − 2iρkΩc

)
B

+
(
βikl1

)
C = 0,

or

[
C11k

2l21 + C44k
2l23 − ρ

(
c2k2 + Ω2

)]
A+

[
C13k

2l1l3 + C44k
2l1l3 − 2iρkΩc

]
B

− iβkl1C = 0,
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or [
C11

ρ
k2l21 +

C44

ρ
k2l23 − c2k2 − Ω2

]
A+

[(
C13

ρ
+
C44

ρ

)
k2l1l3 − 2ikΩc

]
B

− iβkl1
ρ

C = 0. (4.30)

Define the constants like

c2
1 =

C11

ρ
, c2

2 =
C44

ρ
, c2

3 =
C13

ρ
,

c2
4 =

β

ρ
, c2

5 =
C33

ρ
, c2

6 =
α

(ρσ)
,

ω2 = c2k2. (4.31)

After the above substitution, Eq. (4.30) becomes[
c2

1k
2l21 + c2

2k
2l23 − ω2 − Ω2

]
A+

[
c2

3k
2l1l3 + c2

2k
2l1l3 − 2iΩω

]
B − ic2

4kl1C = 0. (4.32)

Equation (4.27) becomes

C44

(
− k2l1l3A− k2l21B

)
+ C13

(
− k2l1l3A

)
+ C33

(
− k2l23B

)
+ β

(
ikl3C

)
= ρ
(
− k2c2B − Ω2B − 2iΩkcA

)
. (4.33)

Collecting like terms from Eq. (4.33)(
C44k

2l1l3 + C13k
2l1l3 − 2iρΩkc

)
A+

(
C44k

2l1
2 + C33k

2l3
2 − ρk2c2 − ρΩ2

)
B

− iβkl3C = 0, (4.34)[
C44

ρ
k2l1l3 +

C13

ρ
k2l1l3 − 2iΩkc

]
A+

[
C44

ρ
k2l21 +

C33

ρ
k2l23 − k2c2 − Ω2

]
B

− β

ρ
ikl3C = 0,

[
c2

2k
2l1l3 + c2

3k
2l1l3 − 2iΩω

]
A+

[
c2

2k
2l21 + c2

5k
2l23 − ω2 − Ω2

]
B − c2

4ikl3C = 0. (4.35)

Equation (4.28) becomes

α
(
− Ck2l21 − Ck2l23

)
− ξC − β

(
Aikl1 +Bikl3

)
= ρσ(−k2c2C). (4.36)
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Collecting like terms from (4.36)(
− βikl1

)
A+

(
− βikl3

)
B +

(
− αk2l21 − αk2l33 − ξ + k2ρσc2

)
C = 0,(

βikl1
)
A+

(
βikl3

)
B +

(
αk2l21 + αk2l33 + ξ − k2ρσc2

)
C = 0,

β

ρσ
ikl1A+

β

ρσ
ikl3B +

[
α

ρσ
k2(l21 + l23) +

ξ

ρσ
− k2c2

]
C = 0,

ν∗ikl1A+ ν∗ikl3B +
(
c2

6k
2(l21 + l23) + ξ∗ − ω2

)
C = 0, (4.37)

where ξ∗ = ξ/(ρσ) and ν∗ = β/(ρσ).

The determinant A of coefficient of Eqs. (4.32), (4.35) and (4.37) is as follows.

A =

∣∣∣∣∣∣
c2

1k
2l21 + c2

2k
2l23 − ω2 − Ω2 (c2

3 + c2
2)k2l1l3 − 2iΩω −ic2

4kl1
(c2

2 + c2
3)k2l1l3 − 2iΩω c2

2k
2l21 + c2

5k
2l23 − ω2 − Ω2 −c2

4ikl3
ν∗ikl1 ν∗ikl3 c2

6k
2 + ξ∗ − ω2

∣∣∣∣∣∣ .
The determinant of matrix A for non-trivial solution, that is, A = 0, it is real part of

determinant,

Re[A] = ω6 − C4ω
4 + ω2

(
Ω4 − C3Ω2 − C2

)
− C1 = 0, (4.38)

where Re[A] denotes the real part of A. The imaginary part of the determinant is as

Im[A] = ω3
(
c2

2 + c2
3

)
+ ω

(
c2

2c
2
6k

2 + c2
3c

2
6k

2 + c2
4ν
∗ + c2

2ξ + c2
3ξ
)
(−4k2l1l3Ω) = 0, (4.39)

where Im[A] denotes the imaginary part of A. In order to make Eq. (4.38) dimension-

less, we will multiply it with

(
ρσ
C44

)3

, the corresponding expression will be

ω̄6 − C4

(
ρσ

C44

)
ω̄4 + ω̄2

[
Ω̄4 − C3Ω̄2

(
ρσ

C44

)
− C2

(
ρσ

C44

)2

− C1

(
ρσ

C44

)3
]

= 0, (4.40)

where ω̄ = ω
√
ρσ/C44, Ω̄ = Ω

√
ρσ/C44, k̄ = k

√
σ, and C1, C2, C3 and C4 are

given as
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C1 = −c2
1c

2
2c

2
6k

6l41 + 2c2
2c

2
3c

2
6k

6l21l
2
3 + c4

3c
2
6k

6l21l
2
3 − c2

1c
2
5c

2
6k

6l21l
2
3

− c2
2c

2
5c

2
6k

6l43 − c2
2c

2
4k

4l41ν
∗ − c2

1c
2
4k

4l21l
2
3ν
∗ + 2c2

2c
2
4k

4l21l
2
3ν
∗

+ 2c2
3c

2
4k

4l21l
2
3ν
∗ − c2

4c
2
5k

4l21l
2
3ν
∗ − c2

2c
2
4k

4l43ν
∗ − c2

1c
2
2k

4l41ξ

+ 2c2
2c

2
3k

4l21l
2
3ξ + c4

3k
4l21l

2
3ξ − c2

1c
2
5k

4l21l
2
3ξ − c2

2c
2
5k

4l43ξ

+
(
c2

1c
2
6k

4l21 + c2
2c

2
6k

4l21 + c2
2c

2
6k

4l23 + c2
5c

2
6k

4l23 + c2
4k

2l21ν
∗

+ c2
4k

2l23ν
∗ + c2

1k
2l21ξ + c2

1k
2l23ξ + c2

2k
2l21ξ + c2

2k
2l23ξ

+ c2
5k

2l23ξ
)
Ω2 +

(
− c2

6k
2 − ξ

)
Ω4,

C2 = c2
1c

2
6k

4l21 + c2
2c

2
6k

4l21 − c2
1c

2
2k

4l41 + c2
2c

2
6k

4l23 + c2
5c

2
6k

4l23

+ 2c2
2c

2
3k

4l21l
2
3 + c4

3k
4l21l

2
3 − c2

1c
2
5k

4l21l
2
3 − c2

2c
2
5k

4l43 + c2
4k

2l21ν
∗

+ c2
4k

2l23ν
∗ + c2

1k
2l21ξ + c2

2k
2l21ξ + c2

2k
2l23ξ + c2

5k
2l23ξ,

C3 = −6c2
6k

2 + c2
1k

2l21 + c2
2k

2l21 + c2
2k

2l23 + c2
5k

2l23 − 6ξ,

C4 = −c2
6k

2 + c2
1k

2l21 + c2
2k

2l21 + c2
2k

2l23 + c2
5k

2l23 − ξ − 6Ω2,

Now, making the constants C1, C2, C3 and C4 dimensionless

C4

(
ρσ

C44

)
=
[
−c2

6k
2 + c2

1k
2l21 + c2

2k
2l21 + c2

2k
2l23 + c2

5k
2l23 − ξ − 6Ω2

]( ρσ

C44

)
. (4.41)

Using the defined constants of Eq. (4.31), Eq. (4.41) yields

C4

(
ρσ

C44

)
= −ᾱok̄2 + ᾱ1k̄

2l21 + k̄2l21 + k̄2l23 + ᾱ2k̄
2l23 − ᾱ3 − 6Ω̄2, (4.42)

Similarly,

C3

(
ρσ

C44

)
=
[
− 6c2

6k
2 + c2

1k
2l21 + c2

2k
2l21 + c2

2k
2l23 + c2

5k
2l23

− 6ξ
]( ρσ

C44

)
,

=
(
− 6ᾱok̄

2 + ᾱ1k̄
2l21 + k̄2l21 + k̄2l23 + ᾱ2k̄

2 − 6ᾱ3

)
, (4.43)
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C2

(
ρσ

C44

)2

=
[
c2

1c
2
6k

4l21 + c2
2c

2
6k

4l21 − c2
1c

2
2k

4l41 + c2
2c

2
6k

4l23

+ c2
5c

2
6k

4l23 + 2c2
2c

2
3k

4l21l
2
3 + c4

3k
4l21l

2
3 − c2

1c
2
5k

4l21l
2
3

− c2
2c

2
5k

4l43 + c2
4k

2l21ν
∗ + c2

4k
2l23ν

∗ + c2
1k

2l21ξ

+ c2
2k

2l21ξ + c2
2k

2l23ξ + c2
5k

2l23ξ
]( ρσ

C44

)2

,

=
(
ᾱ4k̄

4l21 + ᾱok̄
4l21 − ᾱ1k̄

4l41 + ᾱok̄
4l23 + ᾱ5k̄

4l23

+ 2ᾱ6k̄
4l21l

2
3 + ᾱ7k̄4l21l

2
3 + β̄2k̄2l21 + β̄2k̄2l23 + ᾱ8k̄4l21l

2
3

− ᾱ2k̄
4l43 + ᾱ1ᾱ3k̄

2l21 + ᾱ3k̄
2l21 + ᾱ3k̄

2l23 + ᾱ2ᾱ3k̄
2l23
)
. (4.44)

C1

(
ρσ

C44

)3

=
[
− c2

1c
2
2c

2
6k

6l41 + 2c2
2c

2
3c

2
6k

6l21l
2
3 + c4

3c
2
6k

6l21l
2
3 − c2

1c
2
5c

2
6k

6l21l
2
3

− c2
2c

2
5c

2
6k

6l43 − c2
2c

2
4k

4l41ν
∗ − c2

1c
2
4k

4l21l
2
3ν
∗ + 2c2

2c
2
4k

4l21l
2
3ν
∗

+ 2c2
3c

2
4k

4l21l
2
3ν
∗ − c2

4c
2
5k

4l21l
2
3ν
∗ − c2

2c
2
4k

4l43ν
∗ − c2

1c
2
2k

4l41ξ

+ 2c2
2c

2
3k

4l21l
2
3ξ + c4

3k
4l21l

2
3ξ − c2

1c
2
5k

4l21l
2
3ξ − c2

2c
2
5k

4l43ξ

+
(
c2

1c
2
6k

4l21 + c2
2c

2
6k

4l21 + c2
2c

2
6k

4l23 + c2
5c

2
6k

4l23 + c2
4k

2l21ν
∗

+ c2
4k

2l23ν
∗ + c2

1k
2l21ξ + c2

2k
2l21ξ + c2

2k
2l23ξ

+ c2
5k

2l23ξ
)
Ω2 +

(
− c2

6k
2 − ξ

)
Ω4
]( ρσ

C44

)3

,

=
[
− ᾱ4k̄

6l41 + 2ᾱoᾱ6k̄
6l21l

2
3 + ᾱoᾱ2

6k̄
6l21l

2
3 − ᾱ2ᾱ4k̄

6l21l
2
3

− ᾱ5k̄
6l43 − β̄2k̄4l41 − ᾱ1β̄2k̄4l21l

2
3 + 2ᾱ6β̄2k̄4 + 2β̄2k̄4l21l

2
3

+ 2ᾱ2β̄
2k̄4l21l

2
3 − β̄2k̄4l21l

2
3 − ᾱ1ᾱ3k̄

4l41 + 2ᾱ6ᾱ3k̄
4l21l

2
3

+ ᾱ2
6ᾱ3k̄

4l21l
2
3 − ᾱ1ᾱ2ᾱ3k̄

4l21l
2
3 − ᾱ2ᾱ3k̄

4l43

+
(
ᾱ4k̄

4l21 + ᾱok̄
4l21 + ᾱok̄

4l23 + ᾱ5k̄
4l23 + β̄2k̄2l21 + β̄2k̄2l23

+ 2ᾱ1ᾱ3k̄
2 + ᾱ3k̄

2l21 + ᾱ3k̄
2l23 + ᾱ2ᾱ3k̄

2l23
)
Ω̄2

−
(
ᾱok̄

2 + ᾱ3

)
Ω̄4
]( ρσ

C44

)3

. (4.45)

The dimensionless form of Eq. (4.40) is as follows:

t3 − z1t
2 + z2t− z3 = 0, (4.46)
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where

z1 = −ᾱok̄2 + ᾱ1k̄
2l21 + k̄2l21 + k̄2l23 + ᾱ2k̄

2l23 − ᾱ8 − 6Ω̄2, (4.47)

z2 = Ω̄4 − Ω̄2
(
− 6ᾱok̄

2 + ᾱ1k̄
2l21 + k̄2l21 + k̄2l23 + ᾱ2k̄

2

− 6ᾱ8

)
−
(
ᾱ4k̄

4l21 + ᾱok̄
4l21 − ᾱ1k̄

4l41 + ᾱok̄
4l23

+ ᾱ4k̄
4l23 + 2ᾱ5k̄

4l21l
2
3 + ᾱ6k̄

4l21l
2
3 + β̄2k̄2l21 + β̄2k̄2l23

+ ᾱ7k̄
4l21l

2
3 − ᾱ2k̄

4l43 + ᾱ1ᾱ8k̄
2l21 + ᾱ8k̄

2l21 + ᾱ8k̄
2l23

+ ᾱ2ᾱ8k̄
2l23
)
, (4.48)

z3 = −ᾱ4k̄
6l41 + 2ᾱoᾱ5k̄

6l21l
2
3 + ᾱoᾱ2

5k̄
6l21l

2
3 − ᾱ2ᾱ4k̄

6l21l
2
3

− ᾱ4k̄
6l43 − β̄2k̄4l41 − ᾱ1β̄2k̄4l21l

2
3 + 2ᾱ5β̄2k̄4l21l

2
3

+ 2β̄2k̄4l21l
2
3 + 2ᾱ2β̄2k̄4l21l

2
3 − β̄2k̄4l21l

2
3 − ᾱ1ᾱ8k̄

4l41

+ 2ᾱ5ᾱ8k̄
4l21l

2
3 + ᾱ2

5ᾱ8k̄
4l21l

2
3 − ᾱ1ᾱ2ᾱ8k̄

4l21l
2
3 − ᾱ2ᾱ8k̄

4l43

+
(
ᾱ4k̄

4l21 + ᾱok̄
4l21 + ᾱok̄

4l23 + ᾱ4k̄
4l23 + β̄2k̄2l21 + β̄2k̄2l23

+ 2ᾱ1ᾱ8k̄
2 + ᾱ8k̄

2l21 + ᾱ8k̄
2l23 + ᾱ2ᾱ8k̄

2l23
)
Ω̄2

−
(
ᾱok̄2 + ᾱ8

)
Ω̄4. (4.49)

where the values of ᾱo, ᾱ1, ᾱ2, ᾱ4, ᾱ4, ᾱ5, ᾱ6, ᾱ7 and ᾱ8 are defined as

ᾱo =
α

σC44

, ᾱ1 =
C11

C44

, ᾱ2 =
C33

C44

,

ᾱ3 =
ξ

C44

, ᾱ4 = ᾱ1ᾱo, ᾱ5 = ᾱ2ᾱo,

ᾱ6 =
C13

C44

, ᾱ7 = ᾱ2
5, ᾱ8 = ᾱ2ᾱ1

The determinant A of coefficient of Eqs. (4.32), (4.35) and (4.37)
after substituting ω = ck is as following.

A =

∣∣∣∣∣∣
c2

1k
2l21 + c2

2k
2l23 − c2k2 − Ω2 (c2

3 + c2
2)k2l1l3 − 2iΩck −ic2

4kl1
(c2

2 + c2
3)k2l1l3 − 2iΩck c2

2k
2l21 + c2

5k
2l23 − c2k2 − Ω2 −c2

4ikl3
ν∗ikl1 ν∗ikl3 c2

6k
2 + ξ∗ − c2k2

∣∣∣∣∣∣ .
Solving the determinant of matrix A for non-trivial solution, that is, A = 0. Now

using commands of Mathematica, that is, Collect[complexExpand@Re[T],c] and Col-

lect[complexExpand@Im[T],c], which givesA0, A1, A2, A3, A4 respectively, whereA0, A2, A4
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is for real coefficient, while A1 and A3 correspond to the imaginary coefficients.

A0 = c2
1c

2
6k

6l1
2 + c2

2c
2
6k

6l1
2 − c2

1c
2
2k

6l41 + c2
2c

2
6k

6l23 + c2
5c

2
6k

6l23

+ 2c2
2c

2
3k

6l21l
2
3 + c4

3k
6l21l

2
3 − c2

1c
2
5k

6l21l
2
3 − c2

2c
2
5k

6l43 + c2
4k

4l1
2ν

+ c2
4k

4l23ν + c2
1k

4l21ξ + c2
2k

4l21ξ + c2
2k

4l23ξ + c2
5k

4l23ξ − 6c2
6k

4Ω2

+ c2
1k

4l21Ω2 + c2
2k

4l21Ω2 + c2
2k

4l23Ω2 + c2
5k

4l23Ω2 − 6k2ξΩ2 − k2Ω4,

A1 = −4c2
2c

2
6k

5l1l3Ω− 4c2
3c

2
6k

5l1l3Ω− 4c2
4k

3l1l3νΩ− 4c2
2k

3l1l3ξΩ

− 4c2
3k

3l2l3ξΩ,

A2 = −c2
1c

2
2c

2
6k

6l41 + 2c2
2c

2
3c

2
6k

6l21l
2
3 + c4

3c
2
6k

6l21l
2
3 − c2

1c
2
5c

2
6k

6l21l
2
3

+ c2
2c

2
5c

2
6k

6l43 − c2
2c

2
4k

4l41ν − c2
1c

2
4k

4l21l
2
3ν + 2c2

2c
2
4k

4l21l
2
3ν + c2

3c
2
4k

4l21l
2
3ν

− c2
4c

2
5k

4l21l
2
3ν − c2

2c
2
4k

4l43ν − c2
1c

2
2k

4l41ξ + 2c2
2c

2
3k

4l21l
2
3ξ + c4

3k
4l21l

2
3ξ

− c2
1c

2
5k

4l21l
2
3ξ − c2

2c
2
5k

4l43ξ + c2
2c

2
6k

4l21Ω2 + c2
2c

2
6k

4l23Ω2 + c2
5c

2
6k

4l23Ω2

+ c2
4k

2l21νΩ2 + c2
4k

2l23νΩ2 + c2
1k

2l21ξΩ
2 + c2

2k
2l21ξΩ

2 + c2
2k

2l23ξΩ
2

+ c2
5k

2l23ξΩ
2 − c2

6k
2Ω4 − ξΩ4,

A3 = −4c2
2k

5l1l3Ω− 4c2
3k

5l1l3Ω,

A4 = −c2
6k

6 + c2
1k

6l21 + c2
2k

6l21 + c2
2k

6l23 + c2
5k

6l23 − k4ξ − 6k4Ω2, (4.50)

Now, dividing the determinant A by k4 and collecting the values of c’s, we get

c6k2ρ3σ

C3
44

+ c4

(
k2αρ2

C3
44

+
ξρ2

C3
44

+
C11k

2l21ρ
2σ

C3
44

+
k2l21ρ

2σ

C2
44

+
C33k

2l23ρ
2σ

C3
44

+
k2l23ρ

2σ

C2
44

− 6ρ3σΩ2

C3
44

)
+ c2

(
−C11k

2l21αρ

C3
44

− k2l1
2αρ

C442
− C33k

2l23αρ

C3
44

− k2l3
2αρ

C442
+
l21β

2ρ

C3
44

+
l23β

2ρ

C3
44

− C11l
2
1ξρ

C3
44

− l21ξρ

C2
44

− C33l
2
3ξρ

C3
44

− l23ξρ

C2
44

− C11k
2l41ρσ

C2
44

+
C2

13k
2l21l

2
3ρσ

C3
44

− C11C33k
2l21l

2
3ρσ

C3
44

+
2C13k

2l21l
2
3ρσ

C2
44

− C33k
2l43ρσ

C2
44

+
6αρ2Ω2

C3
44

+
6ξρ2Ω2

C3
44k

2
+
C11l

2
1ρ

2σΩ2

C3
44

+
l21ρ

2σΩ2

C2
44

(4.51)
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+
C33l

2
3ρ

2σΩ2

C3
44

+
l23ρ

2σΩ2

C2
44

− ρ3σΩ4

C3
44k

2

)
+
C11k

2l41α

C2
44

− C2
13k

2l21l
2
3α

C3
44

+
C11C33k

2l21l
2
3α

C3
44

+
2C13k

2l21l
2
3α

C2
44

+
C33k

2l43α

C2
44

+
l41β

2

C2
44

− C11l
2
1l

2
3β

2

C3
44

+
2C13l

2
1l

2
3β

2

C3
44

− C33l
2
1l

2
3β

2

C3
44

+
2l21l

2
3β

2

C2
44

− l43β
2

C2
44

+
C11l

4
1ξ

C2
44

− C2
13l

2
1l

2
3ξ

C3
44

+
C11C33l

2
1l

2
3ξ

C3
44

− 2C13l
2
1l

2
3ξ

C2
44

+
C33l

4
3ξ

C442
+
C11l

2
1αρΩ2

C3
44

− l21αρΩ2

C2
44

− C33l
2
3αρΩ2

C3
44

− l23αρΩ2

C2
44

+
l21β

2ρΩ2

C3
44k

2
− C11l

2
1ξρΩ2

C3
44k

2
− l21ξρΩ2

C2
44k

2

− C33l
2
3ξρΩ2

C3
44k

2
− l23ξρΩ2

C2
44k

2
+
αρ2Ω4

C3
44k

2
+
ξρ2Ω4

C3
44k

4
(4.52)

The imaginary part of the determinant is as

c

(
4C13kl1l3αρΩ

C3
44

+
4kl1l3αρΩ

C2
44

− 4l1l3β
2ρΩ

C3
44k

2
+

4C13l1l3ξρΩ

C3
44k

+
4l1l3ξρΩ

C2
44k

)
− c3

(
4C13kl1l3ρ

2σΩ

C3
44

+
4kl1l3ρ

2σΩ

C2
44

)
. (4.53)

The dimensionless equation is as following

c̄6k̄2 + c̄4Ā4 + c̄2Ā2 + Ā0 + I(c̄Ā1 + c̄3Ā3) = 0, (4.54)

where

Ā0 = γ1ᾱ14
1k̄

2 − γ2
3 ᾱk̄

2 + γ1γ2ᾱl
2
1l

2
3k̄

2 − γ3ᾱl
2
1l

2
3k̄

2 + γ2ᾱl
4
3k̄

2

+ β̄2l41 − γ1β̄
2l21l

2
3 + 2γ3β̄

2l21l
2
3 − γ2β̄

2l21l
2
3 + 2β̄2l21l

2
3 − β̄2l23

+ γ1ξ̄l̄41 − γ2
3 ξ̄l

2
1l

2
3 + γ1γ2ξ̄l

2
1l

2
3 − 2γ3ξ̄l

2
1l

2
3 + γ2ξ̄l

4
3 − γ1Ω̄2ᾱl21

− Ω̄2ᾱl21 − γ2Ω̄2ᾱl23 − Ω̄2ᾱl23 +
β̄2Ω̄2l21
k̄2

− γ1ξ̄Ω̄
2l21

k̄2
− ξ̄Ω̄2l21

k̄2

− γ2ξ̄Ω̄
2l23 −

γ2ξ̄Ω̄
2l23

k̄2
− ξ̄Ω̄2l23

k̄2
+
ᾱΩ̄4

k̄

2

+
ξ̄Ω̄4

k̄4
,

Ā1 = 8Ω̄ᾱk̄l1l3 −
4β̄2Ω̄l1l3

k̄
+

4ξ̄Ω̄γ3l1l3
k̄

+
4ξ̄Ω̄l1l3
k̄

,

(4.55)
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Ā2 = −γ1ᾱl
2
1k̄

2 − ᾱl21k̄2 − γ2ᾱl
2
3sk̄

2 − ᾱl23k̄2 + β̄l21 + β̄l23

+ γ1ξ̄l
2
1 − ξ̄l21 − γ2ξ̄l

2
3 − ξ̄l23 − γ1l

4
1k̄

4 + γ2
3 l

2
1l

2
3k̄

2 + γ1γ2l
2
1l

2
3k̄

2

+ 2γ3l
2
1l

2
3k̄

2 − γ2l
4
3k̄

2 + 6Ω̄2ᾱ +
6Ω̄2ᾱ

k̄2
+ γ1Ω̄2l21 + Ω̄2l21

+ γ2Ω̄2l23 + Ω̄2l23 −
Ω̄4

k̄2
,

Ā3 = −4γ3Ω̄l1l3k̄ − 4Ω̄l1l3k̄,

Ā4 = ᾱk̄2 + ξ̄ + γ112
1k̄

2 + 12
1k̄

2 + γ212
3k̄

2 + 12
3k̄

2 − 6Ω̄2,

where γ1, γ2, γ3 are defined as

γ1 =
C11

C44

, γ2 =
C33

C44

, γ3 =
C13

C44

,

ᾱ =
α

σC44

, β̄ =
β

C44

, ξ̄ =
ξ

C44

,

Ω̄ = Ω
√
ρσ/C44, c̄ = c

√
ρ

C44

(4.56)

4.2 Results and discussion of graphs

In this section graphs are plotted for Eq. (4.54) by taking different values from research

papers as given below.

4.2.1 Graphs for real values

Following values of material parameters and values of void parameters [15] are used in

MATHEMATICA.

Symbol Value Units Symbol Value Units

c11 1.628×1011 Nm−2 c13 0.508×1011 Nm−2

c33 1.562×1011 Nm−2 c44 0.385×1011 Nm−2

α 3.688×10−5 N β 3.656×10−5 N
ξ 1.475×1010 m2 σ 0.162 m2

l1
√

0.6 l3
√

0.4

Table 4.1: Values of material parameters for an elastic material with voids.
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(a) Ω̄ = 1 (b) Ω̄ = 6

(c) Ω̄ = 10 (d) Ω̄ = 14

Figure 4.1: Plots of dimensionless squared wave speed against the wave number.

Graphs are plotted between wave speed c̄2 and wave number k̄ where k̄ is taken

along x-axis and c̄2 is along y-axis respectively. Using Ω̄=6, two real waves has been

observed, which are coupled in the case when we have rotation and voids. It is noticed

that when Ω̄ is greater than zero the waves dispersed in the surroundings of wave num-
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ber k̄.

4.2.2 Graph for imaginary value

For Figure 4.4, following values of material parameters and values of void parameters

are of material Gneiss rock (dry) and used in Mathematica. This graph is plotted only

for imaginary values of Eq. (4.54).

Symbol Value Units Symbol Value Units

c11 52×109 Nm−2 c13 9×109 Nm−2

c33 16×109 Nm−2 c44 11×109 Nm−2

α 1.7798×10−4 N β 8.52849×10−4 N
ξ 1.21960369×1011 m2 σ 0.162 m2

l1
√

0.6 l3
√

0.4

Table 4.2: Values of material parameters for an elastic material with voids.

Ω̄ = 3

Figure 4.2: Plots of dimensionless squared wave speed against the wave number.
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Here is only one real wave speed appears when graph is plotted between wave num-

ber c̄2 and wave speed k̄ for imaginary values.

For Figure 4.3, material constants and void parameter values are given below [16] are

used in Mathematica to plot the graph. This graph is plotted against dimensionless

rotation and wave number.

Symbol Value Units Symbol Value Units

c11 3.071×1011 Nm−2 c13 1.027×1011 Nm−2

c33 3.581×1011 Nm−2 c44 1.51×1011 Nm−2

α 8×109 N β 10×109 N
ξ 12×109 m2 σ 0.162 m2

l1
√

0.6 l3
√

0.4

Table 4.3: Values of material parameters for an elastic material with voids.
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(a) k̄ = 1 (b) k̄ = 2

(c) k̄ = 3 (d) k̄ = 10

Figure 4.3: Plots of dimensionless squared wave speed against the dimensionless rota-
tion.

Graphs are plotted between wave speed c̄2 and rotation Ω̄ where Ω̄ is taken along

x-axis and c̄2 is along y-axis respectively. Using k̄=1, two real waves has been observed,

which are coupled in the case when we have rotation and voids. It is noticed that when
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k̄ is greater than one then only one real wave speed appear.

4.3 Special case k̄ →∞

After dividing the Eq. (4.54) by k̄2 and taking k̄ →∞, the coefficients Ā0, Ā1, Ā2, Ā3,

and Ā4 takes the form

Ā0 = ᾱγ1l
4
1 − γ2

3 ᾱ + γ1γ2ᾱl
2
1l

2
3 − γ3ᾱl

2
1l

2
3 + γ2ᾱl

4
3,

Ā1 = 8Ω̄ᾱl21l
2
3,

Ā2 = −ᾱγ1l
2
1 − ᾱl21 − ᾱl23γ2 − ᾱl23 − γ1l

4
1 + γ2

3 l
2
1l

2
3 + γ1γ2l

2
1l

2
3 + 2γ3l

2
1l

2
3 − γ2l

4
3,

Ā3 = −Ω̄l1l3,

Ā4 = ᾱγ1l
2
1 + l21 + γ2l

2
3 + l23, (4.57)

Now, using MATHEMATICA commands

Limit[c3 + A4c
2 + A2c+ A0 + I(A3c

3 + A1c), k →∞]

ContourP lot[c3 + A4c
2 + A2c+ A0 + I(A3c

3 + A1c) = 0, (k, 0, 2), (c, 0, 10)]

The values of the voids and material parameters by [6] are given below for the case

k →∞,

Symbol Value Units Symbol Value Units

c11 1.628×1011 Nm−2 c13 0.508×1011 Nm−2

c33 0.627×1011 Nm−2 c44 0.770×1011 Nm−2

α 1.7798×10−4 N β 8.52849×10−4 N
ξ 1.21960369×1011 m2 σ 0.162 m2

l1
√

0.6 l3
√

0.4

Table 4.4: Values of material parameters for an elastic material with voids.
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Ω̄ = 3

Figure 4.4: Plots of dimensionless squared wave speed against the wave number.

There are two real wave speeds appear which are parallel to each other when graph

is plotted between wave speed c̄2 and wave numver k̄ .
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Chapter 5

Conclusions

In this thesis, propagation of plane waves in a rotating isotropic and anisotropic mate-

rial with and without voids are discussed. The summary of the results are as follows.

For isotropic material, three plane waves exist in the presence of voids two are

longitudinal and one is transverse wave. Waves are coupled due to voids and rotation

of the medium. In the absence of voids, coupling of the plane waves take place due to

the rotation of the medium. When the rotation is absent, classical transverse waves

are obtained which travel without coupling and do not affected by voids. On the other

hand, the longitudinal waves relative to change in volume and void volume fraction are

coupled.

The hexagonal crystal system is chosen to give values to the constants in anisotropic

material with voids. In this case, two real wave speeds are obtained. Numerical

investigation revealed the fact that for unit rotation and for the wave with smallest

wave speed started to disappear and large gap between the wave speeds has been

observed. For imaginay solution only one real wave speed exist. When k̄ = 1, two

real wave speeds appear and for all values greater than one there is only one real wave

speed. A special case when k̄ → ∞, two real wave speed occur which are parallel to

each other.
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