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Abstract

In this thesis, the propagation of plane waves in rotating elastic solids with and without
voids are discussed. In each case, various graphs are plotted for illustration purposes
and solution analysis. The case of propagation of plane waves for anisotropic material
with voids is a new problem and discussed in detailed. Plane wave solutions are ob-
tained by solving the equation of motion. Graphs are plotted for dimensionless wave
speeds and wave number, wave speed and rotation, imaginary part of the solution is

plotted separately. A special case where k — oo is considered.
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Chapter 1

Introduction

Waves play a vital role in our routine life. We can see with the help of light waves
and talk with the help of microwaves and radio waves. Earthquakes are quantatized
with the help of seismic waves because waves travel through the interior of the earth.
The materials inside the earth like oil, coal and gass can be observed with waves. The
quality of a material can be checked by passing waves through it without damaging
it with the use of non-destrustive testing system (NDT). The material is as useful as
it was before the testing through the waves. During the last few years, in the field of
medical the diseases are diagonosed and cured with the help of waves.
The history of wave propagation in research is a long and interesting one. English
scientist Robert Hooke discovered linear elasticity in 1660, but not in the form of
stress and strain. The displacement under a load was observed proportional to the
force applied in case of several materials. It seems that light existed only till mid-19th
century, is a wave which can travel across a particular medium considered an elastic
ether. The utilization of elastic waves in different studies, for example, geophysics,
was additionally an impetus for researchers and mathematicians to explore waves. The
names that added to the field were Poisson, Cauchy, Lame, Stokes, Christoffel, Lamb
and numerous others.

The theory of elasticity associated with solid elastic material consisting of distri-
bution of pores, known as voids has gained much importance in recent years. Cowin

and Nunziato [1, 2] formulated the general theory in its linearized version where voids



induce an additional kinematic variable. In the absence of void volume (as a limiting
case), this theory reduces to classical theory of elasticity. This theory plays a vital role
where classical theory is inadequate e.g problems of geological and synthetic porous
medium. Cowin and lesan [2] introduced the basic theorem and brief account of the
theory on voids. Cowin presented the connection between theory of voids and theories
of elasticities. Chandrasekharaiah [3] furnished uniqueness theorem related to theory
of elastic material with voids. He also focused his attention on the effect of surface

stresses and voids on Rayleigh waves in an elastic medium [4].

A porous material whose matrix skeleton is elastic and voids are viscous pores are
called elastic material with voids. During deformation, pores and matrix undergo a
change. Due to this reason it is different from Cauchy continuum. The voids exert an
equilibrated stress called pseudo force, in addition to the stress. The elastic material
with voids has four degrees of freedom consisting of three translation and one due to
the change in the void volume fraction. The variation in void volume fraction adds an
additional kinematic variable in the theory of voids. It has been noticed that pores
of the body are vacuous but do not have any mechanical significance. With the help
of principles of continuum mechanics, field equations and relations for elastic material
with voids have been derived. If the plastic effect of the medium is removed then we

get an elastic body with voids.

lesan [5], investigated the plane wave propagation in thermoelastic medium with
voids. He observed three sets of coupled longitudinal waves and transverse waves.
In the case of coupled longitudinal waves, displacement, void volume fraction and
thermal properties are dispersive in nature. Free plane boundary of thermo-elastic
half-space with voids, the phenomenon of reflection and transmission between two
separate permeable elastic half-spaces was studied by lesan. These phenomenas occur
due to the incidence of plane longitudinal waves at a plane interface. In the case, when
the incident frequency is low, the effect of voids on the transmission and reflection
coefficient is highly significant. When high frequency longitudinal waves are incident,
the phenomena of reflection and transmission are very close to the classical elastic

theory with no effect of voids. An investigation about plane wave propagation in an



isotropic medium with voids has been conducted by Maity [6]. The governing equations
have been studied by taking account of rotation, magnetic field effect and presence of

voids.

Sharma [7] presented the propagation of plane waves in thermoviscoelastic medium
with voids. He considered the one dimentional model of isotropic generalized ther-
moviscoelastic medium. He noticed there exist three longitudinal waves called elastic
(E-mode), thermal (T-mode) and volume fraction (V-mode). The transverse waves

decoupled and does not effect by thermal and volume fraction field.

In this academic thesis, plane waves are investigated and the effect of porosity on
isotropic and anisotropic rotating material is examined in elastic solids with voids.
Chapter 2 introduces the reader to the basic concepts of elasticity. The notion of
stress, strain, their relationship, and effect of crystal symmetries on elastic stiffness
tensors are revised. Equation of wave propagation is derived. Types of waves and
some wave parameters like wave number, phase velocity etc. are discussed. A quick
review of the propagation of a two dimensional plane waves in the presence of voids
in an isotropic and anisotropic materials is given. In the presence of voids, a detailed
investigation is carried out in Chapter 3 for wave propogation in a rotating elastic solids.
Furthermore, the derivation of governing equations and their corresponding boundary
conditions for an elastic solids with voids is discussed. The graphical representation of
various parameters involved along with the different range of values of a wave number
regarding its propogartory properties is also given. Chapter 4, is mainly composed of
the discussion regarding the traveling waves in a rotating anisotropic elastic material
with voids. Travelling of waves in an anisotropic elastic materials in the presence of
porous is a new problem and discussed in detail. Moreover, the calculation of plane
waves and a detailed discussion of their numerical results is also given. In Chapter 5,

all the results found throughout the thesis are concluded briefly.



Chapter 2

Fundamentals of Elasticity

The main objective of this chapter is to make the reader acquainted with some basic
concepts and results related to the theory of elasticity. In elasticity, tensor calculus
is often used and therefore tensors are briefly discussed in section 2.1. Section 2.2
comprises the basic definitions of stress, strain, Hook’s Law, elasticity constants are
retrieved by using crystal symmetry and equation of motion. The last section deals
with the quick review of propagation of two dimensional plane waves in an isotropic

and in anisotropic material in the presence of the porous material.

2.1 Tensor calculus

Tensor calculus finds its applications in the field of dynamics, elasticity, fluid, differen-
tial geometry, general relativity, electricity and magnetism. It is a mathematical tool
used to describe the mechanism of deformed structure to get the main idea related to
required field. Generalization of vectors and scalars is called tensor, while number of
independent directions necessary to describe the tensor is called the rank (order) of
tensor. A tensor of rank zero is a scalar and tensor of rank 1 is a vector. A tensor of
the rank 1 is described by 3x1 column vector, while components of second rank tensor

are represented by 3x3 matrix.

Mathematically, r*" rank tensor in k-dimensional space, is an object having r

indices and k& components under transformation laws. Therefore, tensor of rank r is a



linear mapping which maps a vector to a tensor of order (r-1). The transformation of
the components of r* rank tensor form one basis to another is same as follows:

’

A = Tmlrlezrg-'-TmnrnAmlmg...mna (21)

rira...r'n

where 10, Tinory---Lin,,r, are the elements of transformation matrix.

Main formulas and definitions which will be used in the proceeding chapters are given.
Definition 2.1.1 A tensor A is said to be symmetric if

AT = A, (2.2)
and is said to be antisymmetric if

AT = —A. (2.3)
Symmetric tensor of second order is very vital in the mechanics of deformed bodies.

Examples of symmetric tensors are Green’s deformation tensor and Cauchy’s stress

tensors.
Definition 2.1.2 The Kronecker delta-d is defined as
1 -
5 = , m=n,
0, m##n.
where d,,, is kroneckor symbols. If the elements of basis are unit vectors then they
are called orthonormal basis.

The third rank tensors are usually used in thermomechanics, electromechanics, there-

fore material properties of the deformed structure are also expressed by using tensor

of rank 3.

Definition 2.1.3 The Livi-Civita tensor or called as permutation tensor and defined

as
1, for even permutation of Imn,
€imn = § —1, for odd permutation of Imn,
0, otherwise.



Definition 2.1.4 A tensor is said to be isotropic tensor if its components remain

unaltered upon the change of coordinate system otherwise, anisotropic tensor.

Definition 2.1.5 Transpose of a tensor A in a Euclidean space V is a function A7
defined as
(Aw)" v =u.Av, forany u,ve V.

2.2 Fundamentals of elasticity and continuum me-
chanics

Fundamentals of elasticity are based upon the concept of continuum approximation.
In which, matters are idealized as a continuous material. The distribution of atoms
and molecules are continuous in terms of their material properties e.g. density, as a
continuous function of position and time. There are two properties of the continuum

material.

1. The continuum materials are subdivided many times and each subdivision have

similar properties.

2. The continuum approximation gives useful results on a scale larger than the space

between the particles, not on nanometers.

2.2.1 Stress, strain and their relationship

When we apply body force or surface force to any object then its original shape and size
measure of this deformation is called strain. The shapes of the objects is determined
through relative position of the particles.

Strain in three dimensional case is determined by symmetric tensor S;; of the second

rank as
1/ 0u; Ou;
S = = ¢ 2, 2.4
> (ij * axi) (2.4)
where 4, j=1,2,3. The stress tensor T}, is defined as
AF;
T, = lim J (2.5)

Asp—+0 ASk ’
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when components acts tangentially then stress is known as shear stress.

There is one-to-one relation between stress and strain. In other words, one can
define stress as a function of strain and vice versa. The elastic behaviour of objects for
small deformation can be expressed with first-order term in Taylor’s expansion of the

function.

0Ty, 1/ 0*Tj
T:.(S:;) = T; J g = —2" , . 2.
w5a) #0)+ (asil >S,-loSll ! 2 <85ilasmn> Siz:oSlemn " 20

Now assuming, in the absence of stress there will be no strain and vice versa. That is
T,(0) = 0, (27)

By ignoring higher order terms, we get an expression called Hook’s Law
T = CikaSin, (2.8)

where

_ (9T
Cika = <8Sﬂ )SHO, (2.9)

is a tensor of rank four which is called elastic stiffness tensor and describes the rela-
tionship between stress and strain and consists of 81 components.

It has two symmetries Cji; = Ciju and Cjpy = Cjii due to symmetries of the stress
and strain tensor, while stored energy function also imposes symmetry. The number
of components reduces from 81 to 21 due to the symmetries, namely, Cjri = Ciji-

Two index representation of the indices Cjj,; known as Voigt notation is written as

follows

(11) +— 1,(22) +— 2, (33) +— 3,
(23) = (32) «— 4, (13) = (31) +— 5, (21) = (12) +— 6.

This reduces the set of four indices to a set of two indices which is convenient to use.



2.2.2 Symmetry properties of the crystalline system

Symmetry proportion of the crystal system reduces the number of independent com-
ponents. Crystals are usually anisotropic. Since we have 21 independent stiffness
constants which can be further reduced by applying symmetry conduction of the crys-
talline system. When we consider an isotropic material, constants reduces from 21 to

2.

In hexagonal material, we have 5 independent elastic constants and in the matrix

form written as

Ciu Cip Ciz3 0 0 Cis
Ciz2 Cuu Ciz 0 0 —Cle
Cis Ciz Cs3 0 0 0
Cos =1 0" 0 0 Cu 0 0 (2.10)
0 0 0 0 Cuy 0
| C 0 0 0 0 S
The above matrix is the consequences of these restriction
C;lloqmn = qinijkmquijkl; (211)
due to axis of symmetry
i1 =22 = 1,q33 = —1, (2.12)
q; =0  for i#j, (2.13)
using these conditions
Crizz = Cia = —Chio3 = —Chy, (2.14)
accordingly,
Cry = Cyy = O3y = Cgy = C15 = Cy5 = U35 = C5 = 0. (2.15)

2.2.3 Isotropic material

Isotropic material in which physical properties are independent of direction and choice
of reference frame. In other words, stiffness constants are unaltered by the transforma-

tion of the reference frame. In order to get stiffness tensor Cjji; it must be expressed

8



in terms of components of the tensors d;;. Mainly there are three fourth rank isotropic

tensor exist

0ij Ot Oik0jt, 0it0jk-

Therefore, elastic stiffness tensor can be obtained by a linear combination of three

distinct fourth rank tensors,
Cijrt = ANij0n + (03051 + 60 (2.16)

and we obtained the matrix

A2 A A0 0 0
A A+2u A 00 0
A A A+22 0 0 0
Cap = 0 0 0 u 00 (2.17)
0 0 0 0 p 0
0 0 0 0 0 p

After the French mathematician G.Lame, A and p are known as Lamé constants.

2.2.4 Different wave parameters and types of elastic waves

A disturbance or oscillation through space and matters along with the transfer of energy
is called waves. Different wave parameters associated with wave propagation are given
as follow.

Wave number

Wave number is denoted by k and defined as the reciprocal of the wavelength. Wave
numbers are widely used in optics, physics X-ray diffraction and elementary particle
physics etc.

Wavelength

The distance between the two peaks of the waves is called wave length, and recip-
rocal of the wavelength is called wave number which is denoted by letter k.
Amplitude and frequency

The distance of maximum displacement of a wave from its rest position is called

amplitude.



Frequency

In Physics, engineering such as optics, acoustics and radio, frequency is defined as

the reciprocal of the time period and is given by

=g

The ST unit of frequency hertz (HZ), named after the German physicist Heinrich Hertz
and time is measured in seconds.

Different classes of the elastic waves can easily travel through solids. The direction
of the wave propagation and the boundary conditions relative to the motion of the
particles enable us to classify different elastic waves. Common elastic waves in solids are
longitudinal or primary waves (P-waves) and transverse, shear waves called as surface
waves (S-waves). We now give short but precise overview of some elastic waves.

P-waves

P-waves are those in which direction of particle displacement is parallel to the wave
propagation. These waves can travel through solids, liquids and gasses.

S-waves

S-waves are those in which direction of particle displacement is perpendicular to
the wave propagation. These waves only propagate through solids.

Surface waves

Surface waves propagate near the surface or boundary of solid material. The am-
plitude of waves decreases sharply as the waves move away from the surface. Two

important surface waves are Love waves and Rayleigh waves.

10



Rayleigh waves

Rayleigh waves were discovered by Rayleigh in 1885, the elliptic motion of particles
produce Rayleigh waves. In Rayleigh waves, propagation is in the direction of the
horizontal and vertical components of the motion.

Love waves

Love waves were discovered in 1911 by Augustus Edward Hough Love, produce due
to side by side motion of ground and proved the existence of transverse waves. The

motion of the particle is parallel and transverse to the surface.

Rayleigh waves are non-dispersive in nature while love waves are dispersive in na-
ture. These waves propagate in homogeneous isotropic half-space, while love waves
propagate easily on the homogeneous isotropic layer of homogeneous isotropic half
space.

Dispersive and non-dispersive waves

Wave nature is said to be dispersive if wave speed is dependent upon wave number.

If waves speed is independent of wave number, then they are non-dispersive in nature.

2.2.5 Governing equations of motion

The equation of motion is governed by the fundamental law of thermodynamics also
known as Newton’s second law of motion F = ma, where force F caused an acceleration
and a in to a body of mass m. Suppose disturbance is produced in a solid due to stress,
at some arbitrary point, change in displacement is denoted by v and components of
the force due to stress S is given by

%

F=—4,
axj

i,j=1,2,3, (2.18)

. . . . 2.,
where S;; are the components of the stress tensor, which gives rise to acceleration %tg’

with unit volume mass along i*" axis. In the absence of body force, equation of motion

will be
85’7, . 62’%
8Ij =P 6t2 )

(2.19)

11



By Hook’s Law, above expression will take form

82?}1 . 82’Ui
Orpdx; Poe

Cijki (2.20)

which is second order partial differential equation which give rise to equation of motion

in three dimensional case.

Hook’s Law for an isotropic materials has the form

Sij =ATk0ij + 2pT5;
0 Ouy 0 (8% N avj)

aLL’j ij J + a an (91:1

=\
al‘j

(2.21)

Equation (2.19) becomes

8ukk 82% 0 0v; .
A—0;; — | = 2.22
8xj J + M(@xjﬁxj + 8x, 8%) v ( )

Here the summation is on k.

The equation of motion for homogeneous elastic material will be

A+ W)V (V.v) + uV3v = pv. (2.23)

2.3 Theory on voids

The linear and non-linear continuum theories of elastic bodies with voids were first
presented by Cowin [12]. It is used for investigating various types of geological and
biological materials for which classical theory of elasticity is not adequate. He also
supposed that elastic material contain pores which are porous but do not have any
mechanical significance. The theory of linear elastic material with voids deals the ma-
terials with a distribution of small pores or voids, where the volume of void is included
among the kinematics variables. It reduces to the classical theory in the limiting case
of the volume of void, tending to zero. It has applications in the study of geological
materials like rocks and soil, synthetic materials like ceramics, pressed powders and
biological structure like bones.

Propagation of elastic waves in a rotating medium were presented by Censor and

12



Schoenberg [8, 9]. In these papers, they examined that anisotropy and dispersion
were produced due to the rotation of the elastic medium.

Chandersekhariah [10] studied the propagation of plane waves with voids rotating with
constant angular velocity. Also, the dilatational waves have two different modes. Both
are affected by voids and rotations.

Eringen [11] presented the theory of elastic material with voids as special case of theory
of micromorphic material. Puri and Cowin [12] studied porous material with voids.
They investigated that two dilatational waves exist. One wave corresponds to the
classical linear elasticity. second wave is associated with the change in void volume

fraction.

The governing equation for a homogeneous elastic solid with voids in the absence

of body forces are given in [13] as

VA )V (VV) BV =pV+ 2 x (X V)+2Q XV, (2.24)
avio—Ep— BV .V =poo. (2.25)

13



Chapter 3

Analysis of Waves Traveling in
Isotropic Elastic Solids with Voids

The study of wave propagation in an isotropic material has gained much attraction
in the literature due to its wide range of applications in the field of seismology, non-
destructive testing system and in the other technical fields. Isotropic materials and
its application are found in Physics, Cosmology, Chemistry etc. The generalization of
the classic theory of elasticity is the theory of linear elastic material with voids. This

theory plays vital role in studying geological and biological materials.

This chapter is mainly based on the study done by Tomar and Ogden [13]. In this
paper, they investigated about the wave propagation in rotating isotropic elastic solids
in the presence of voids. A comprehensive review about their study has been presented
in this chapter. The chapter has been divided into the following sections. In Section
3.1, derivation of the governing equation of the elastic solids with voids is discussed.
In Section 3.2, propagation of waves in two dimensions is discussed in such a way that
waves are traveling in xjx3-plane and xo = 0 is considered as stress free boundary.
The components of displacement and rotation are such that vo =0, 2, = Q3 = 0. In
Section 3.3, solution of the governing equations is discussed in detail. In Section 3.4,
discussion about wave propagation with and without voids is presented. In Section 3.5,

graphical illustrations in the context of voids, rotation and wave number is discussed.

14



3.1 Governing equations for waves propagation

We take homogeneous elastic isotropic matter in the presence of porous medium. The
material revolves with a constant soeed 2. The change in void volume fraction ¢(p,t),
where p is the position vector and ¢ is the time. The governing equations without body

forces and external equilibrated body forces are mention in Eq. (2.24) and (2.25).

3.2 Propagation of waves in two dimensions

We consider that waves are traveling in x;z3-plane. The boundary xo = 0 is taken as
the stress free boundary. Let v = [v1,vq,v3] and € = [Qq, Qy, Q3] such that vy = 0,
Ql - Qg - O

U1 = U1($1,I3,t), U3 = U3($17$3,f)7 Q= Q, (3-1)

Using Eq. (3.1), Eq. (2.24) and (2.25) becomes

uV2u + (A + ples + Boa = p(vr — Q*oy + 20053), (3.2)
V23 + (A + ples + Bz = p(vs — QPvs — 20, (3.3)
aV?¢ — £ — Be = pog, (3.4)
where dv; Qv 02 0?
e:a—xi a_xz’ VQZa_x%+a_x§‘ (3.5)

The expression for v; and w3 with respect to potential function is

v = X,1 + Y3, vz = X3 — V1, (3.6)

Using derivatives of Eq. (3.6), Egs.(3.2) and (3.3) can be written in the form

(C§V2X Oy 200+ cﬁgb) + (cgv% )+ Q% — QQX) —0, (3.7)

)1 3

<c§v2x — {4 Q2 + 200 + cigb) - (cgv% Q% — QQX) —0, (3.8)

73 71
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respectively, where

2 (A +2p)
1

] = —-, =", = é (3.9)
p p p
This means that Eq. (3.7) and Eq. (3.8) are satisfied if
AV — X 4 Qx4 200 + E¢ = 0, (3.10)
AV — )+ Q%p — 2Qx = 0. (3.11)

These are coupled with Eq. (3.4), in which terms of potential functions become as

AV — ¢ — ¢ — Vi =0, (3.12)

where )
L S (3.13)

po po po T

In classical elasticity theory, c¢; and ¢y represent the longitudnal and transverse wave
speeds, while ¢35 corresponds to the logitudnal wave speed, which exists due to change

in void volume fraction and ¢, has the dimension of the speed.

3.3 Solution of the governing equations

For the solution of the governing Eqs. (3.2)-(3.4), it is enough to solve Egs. (3.10)-
(3.12) for x, ¥ and ¢ . We take harmonic plane waves that travel along wave normal

laying in the zix3-plane and makes an angle 6 with the rs-axis.

X = Aexp [ik(z1sinf + x5 cos0) — iwt], (3.14)
¢ = Bexp [ik(zsinf + z3 cos ) — iwt], (3.15)
¢ = Cexp [ik(zsinf + x5 cos0) — iwt]. (3.16)

Solutions for x, ¢ and ¢ are assumed in the form of Egs. (3.14)-(3.16) . Where
k is the wave number, w is the angular frequency and v is the wave speed. Various
derivatives of y are

ox

P A(iksin6) exp [ik(z1 sin 6 + x5 cos §) — iwt]. (3.17)
T

16



Omitting the expression exp [zk(asl sin @ + cos ) — iwt] to save space, we have

d*x
— = A(iksin §)* = — Ak*sin” 0, (3.18)
oxs
0%y
—=5 = A(ikcos 0)* = —Ak*cos® 0, (3.19)
Oxs
Vi = —Ak*. (3.20)

In a similar manner derivatives of y and ¢ are calculated. After using various derivatives

of x, ¢ and ¥ Eq. (3.10) becomes
A(—AK?) — (—Aw?) + Q*(A) + 2Q(—Biw) + 2C = 0,
which further reduces to
(k*cf — w? — Q*) A+ 2iQwB — ¢;C = 0. (3.21)
Substituting the values of V2, ¢, 1, X in Eq.(3.11), we get
¢;(— BE?) — (= Bw?) + @*B — 2QA(—iw) = 0,

which takes the form

2iQwA — (k* — w® — Q*)B = 0. (3.22)

Likwise, Eq. (3.12) becomes
c5(=Ck?) = €(C) — (—Cw?) — V' (=Ak*) = 0,
which reduces to simplified form as
FrA— (Kd —w*+£)C =0, (3.23)

where v* and £* are defined by Eq. (3.13). Equations (3.21)-(3.23) are coupled having
all three contants A, B and C. However, these equations decouple and give v? = c3
in the absence of rotation. This decoupling correspond to tranverse wave. In order
to eliminate the constants A, B and C from Eqgs. (3.21)-(3.23), the determinant must

vanish which gives nontrivial solution. The respective determinant of the coefficient

17



matrix is denoted by M and is given by

k2 — w? — Q2 200w 2
M = 210w k*c3 — w? — 2 0 = 0. (3.24)
kv 0 k*c3 4+ w? — &

After solving the determinant and collecting the like terms, we get

Ak — Ak + Ak — Ak W — Gk O + AR — AR EPO?
— G + GRPQ + Q= WO+ (R + Gk + Gk + & 4 207)w?
+ (= gk — dak® — GAk* + kv — k¢ — Gk + GO + Gk*Q?
— 203k7Q% — 26" — QY)w® = 0. (3.25)

Equation (3.25) can be written in a compact form as a cubic equation for w?, which is
given by
Wb — ayw* + asw?® —az =0, (3.26)

where the (real) coefficients a1, as, ag are defined by

ay = Ek* + k23 + k3 + &+ 207
=20 + k(4 5+ ¢ + &), (3.27)
ay = cicak* + Ak + ekt — AR+ AR+ kAT — RO — k)2
+ 203K%Q0% + 26707 + QY
= (0 = K°6) (Q® — K*3) — v*k°c] + 20°K° 5 + 20°C" + k' + K 6i¢”
+ ks + kPeser,
= (0 = k) (Q® = K*A3) + 20 + K (¢} + &3)] (K3 + &) — v'k*ci,  (3.28)
a3 = ik’ — Ak + Akt — Ak — Ak O + Ak QP
— AP0 — SEEQR + ERPQ + 61O,
= (V- k*q) | — Giak* — Gk + Gk Q% + &0 — Uk + i gk?
— ke,
= (9% — K*3) [(Q® — k*¢}) (KPch + &) + v k2. (3.29)
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After we get the solution for w, we can obtain the wave speed by using v = w/k. The
waves are dispersive because we know that w depends on k generally. In the limit

k — 0 Egs. (3.26)-(3.29) reduce to

ay = 207 + &7, (3.30)
ay = Q* + 20%¢%, (3.31)
az = Q¢ (3.32)

and Eq. (3.27) takes the form (w?— 92)2 (w? —€*) = 0 and the compatible wave speed
take the form unlimited. At the other extreme, in the limit & — oo, Eq. (3.25) has the
asymptotic form (w? — k2c?) (w? — k?c}) (w? — k*c3) = 0, where ¢}, 3, ¢ are squared

wave speed.

3.4 Two main cases

In the presence of voids in an isotropic material, dispersion in the waves occur due
to rotation. The quadratic equation in w? which gives two real solution depicts the

association of wave speed on the wave number.

3.4.1 Isotropic material without voids

If there are no voids and then consequently voids parameters «, 3, £, are zero and as,
c3, ¢4 also zero and the only nonzero solutions of Eq. (3.27) are given by a quadric in

w?, namely
wh = 202 + k*(c] + &) |w? + (> = k*c}) (0 — k*c3) = 0. (3.33)

Two real solutions for w? are obtained, at least one of which is greater than zero. The
discriminant must be greater than or equal to zero, in order to have at least one positive

root in quadratic equation. In the form of quadratic equation generally,

Aw* — Bw? — C = 0.
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It is required that, C<0, (2% — k*c?) (Q? — k?c3)<0. This is possible if

QZ
02 — k*c3>0, O*>kc3, — >k, (3.34)
155
or
Q2
0? — k*c3<0, Q*<k?cs, — <k (3.35)
51

In order to get two real solutions for w, k must lies outside the range,

0? 0?
— <k’<=. (3.36)
ci 5
This implies that
Q Q
k<. (3.37)
C1 Cy

Eq. (3.33) shows the association of wave speed on the wave number. When we put

v = w/k, while dispersion in the waves are caused by rotation.

3.4.2 Isotropic material with voids

In this case, when we have voids but no rotation. In such a case Egs. (3.27)-(3.29)

reduce to
ap = k*(cf + 5+ c3) + &, (3.38)
ay = (—k*)(—k*3) + [K*(} + &)|(K*P5 + &), (3.39)
as = (—k:%f)(—k%g)(k?cg + &) + vk, (3.40)

In the absence of rotation Eq. (3.26) takes the forms
W = (KB + G+ ) + &)o' + (=R ) (k) + [K(cf + )] (e’ + ), (341)
or
(w? = K2 {w! — [ + B (c] + f)|w? + K2l (§" + kPc5) — kPv'ci} = 0. (3.42)

The first factor in Eq. ( 3.42) yields v? = c3. The second degree equation in w? has two

real solutions, minimum one being greater than zero. The constant factor in quadratic
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equation in Eq. ( 3.42) is greater than zero for both solutions to be greater than zero.
(& + k°c3) — k*vre; > 0,

= k’cic; > v — £l (3.43)

For the explanation of the result, we require suitable values of the matter’s param-
eters. The parameters are adopted from Puri and Cowin [12] and these are listed in
Table 3.1. The expressions in Egs. (3.9) and (3.13) are then used to calculate the
values of ¢, ¢, 3, ¢4, & and v*, which are written together in Table 3.2. Without
voids and rotating wave speeds have the values ¢; and ¢y, which does not depend on k.

We will take dimensionlize values of the parameters for the convenience of the

calculation which are given by

A

5‘: ) ﬁ_:éa g:§7 @:g’ (344)
H u u uo
o=w % a=0/% [k=kyo (3.45)
u 2
Letter | Value Units | Letter Value Units
A 15 x 107 | Nm™2 1 7.5x 107 | Nm™2
«Q 8 x 10? N 15} 10 x 10° | Nm™2
& 12 x 10° | Nm™2 p 1999 kgm=3
o 0.162 m?

Table 3.1: Values of the various material parameters in the presence of voids.

After the calculation, the derived form are obtained in dimensionless parameters

which are A, @, 3, €, Q. These are the functions of either @ or k; where w= k7.

Letter Value Units | Letter Value Units
c 3874 ms~! o 1937 ms~!
3 4970.34 ms~! 4 2236.66 ms~!
v* 30.8804 x 10% | s72 & 37.0565 x 10° | s72

Table 3.2: Calculated values of material parameters using the information from Table
3.1 and Eq. (3.9) and Eq. (3.13).
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Using Eq. (3.44) and Eq. (3.45) in Eq. (3.26), after putting w? = ¢, we get

3 — ayt* + dgt — az = 0, (3.46)
where
02 k2TA 42
51:2<”—)+—{ S B (3.47)
po ol p p  pol  po
02 2 _
R - =y ") (3.48)
po o

So, rewriting a; and utilizing Eq. (3.48)
Q2 k2 [ Ap+ 2
N IR =
po ol p p o po
+

- i{292+k2(A+3+3)
po o

:ﬁ[292+§+k2()\+3+a)},
po

_,ukTQ 202 4 € <
_pa{ = +B+A+a).

(3.49)

Similarly, the expression for ay is obtained as

02 B2\ + 2 02 k2 02 B2/ (\+2
@:( fo u(+))( fo u)+{2_u+_<(+)u
po po po po po o p

N H)} y (k_z L Qo “_5) _ (“_B)Zka (3.50)

o po po po
_ (R’ Q_z—X—z Q2—1 - 292+X+3 _+§
“\ o 2 2 2 TR

S, o -
:(k_u> {2+A+(3+A)a+(3+)‘)<5_Q2)+2920‘_ﬁ2
po 2

Q4+ 202¢

(3.51)
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Likewise, for a3 one can obtain as

(
(k2u)3 [(2 fas 2 NE = (3+ N2 — B2
L e

k2
+ 82— (34+ M€ Qi
P i }

3.5 Results and discussion of graphs

The graphs are reproduced in Mathematica with the following code

A =15 % 10°;
a=8x10%
£=12%10%
o = .162;
p="1.5%10%
£ =10 % 10%
AL =M

al =a/(p+o0);
Bl =B/
§1=¢&/m;
Q1 =0;
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and

xl =3+ M + ol + (2017 + £1) /K

12 =2+ A+ (3+ Al)al + (34 A1)(£1 — Q1%) + 201%a — 51%) /K
+ (Q1* + 2Q1%¢) /K%

23 = (2+ Al)al + ((2+ A1)EL — (34 AL)Q1%al — B17) /K2
+ (QPal + 817 — (34 AL)EL) Q1 /E* + Q1Y€ /K

where A=\, =751, =¢€1, a=al, a; = 1, ay = 29, ag = 3.

contourplot [1/3 —zlxv?2+22xv—123=0,(k,0,3), (v, o, 20)}

207 wwwwwwwwwwwwwwwwwwwwwwwwwwwwwww m 207‘ . . . . -
15; ] 15; |

IE;' 10} 1 % 10/ 1
5k 1 5 |
. ] ]

Ob o ] oL N —_—
00 05 10 15 20 25 30 00 05 10 15 20 25 30

- _
(a) Q=0 b)) Q=1
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(c) =2 d) Q=5
200 Ty WMy Ty
| Lo |
151 ] 10 ]
: ﬁ 8l ]
% 10F 1 1
I | 6f ]
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Ot r—"/_—r Ot . .. 0o .
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3 3

(e) =10 (f) Q=20

Figure 3.1: Graphss of 7 against the k in the presence of voids and rotation.

Graphical results are produced by using Mathematica [14]. When rotation is zero
then ay, a; and a3 are positive and can be less than for non-zero rotation. The greater
values of the material parameters with voids results in the fall off rotation.

By Descartes’ rule of sign, Eq. (3.46) can change sign maximum three times as function

25



of t. So there are 1, 2 or 3 positive real roots and thus one, two or three real wave
speeds. This is shown in Fig. 3.1.

Fig. 3.1 is drawn from Eq. (3.46) using the data of Table 3.1 which present the
non-dimensionlize squared wave speed t as function of k& with non-dimensionlize values
of A\, @,  and &. The result of voids in the absence of rotation is observed in Fig. 1(a).
Out of three wave speed, one is wave speed of transverse wave which is unchanged in
the presence of voids and is constant along horizontal axis and the other parallel wave
speed decays in the beginning and then become constant as wave number increases.
In the third, wave speed is plotted for small wave number corresponding to large wave

speed and gradually wave number become constant.

3.5.1 Case for k — o

If we take k very large in Eq. (3.46) and approaching to infinity then as a result few

terms of a7, as and az will become zero. These are:

a =3+ \+a, (3.53)
ax =2+ A+ 3+ N)a, (3.54)
az = (2 + \a. (3.55)
Now Eq. (3.46) becomes
= B+A+ )+ 2+ A+ B+ Na)t— (24 Na) = 0. (3.56)

If one root is 1 then the other two roots by long division are obtained.

22— 2+ A+a)t+ 2+ Na
t—1y 8 —B+r+a)? +2+ X+ (3+N)ajt -2+ Na
+¢3 T2
—2+A+a)t? 2+ +a+ 2+ Najt
F2+ A+ a)? +2+A+ajt
+(2 4+ N)at -2+ Na
+(2 + Nat F2+ Na

0
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Now factorizing the polynomial by using the formula

2(1) ’
_ A+ @)V a2 +22+ Na - 412+ Na
5 ,
_CHA+a) VA2 +a2-22+N)a
5 ,
2+ +a)£/[2+)) —al?

= - 5 ] ,

2+A+a)L£[2+))—q]
2

or t=2+M\ or t=a.

Eq. (3.56) is solved and it gives three roots 1, &, A+ 2. Fig. 3.1(a)-(f), shows the voids
parameters a, (3, ¢ and rotation. Graphs are plotted by taking various values of Q.
Waves are coupled and on the horizontal axis there is a sharp gap for k, for very small
value of . The waves of Fig. 3.1(c)-(f) become broaden as value of k and t increases.
In a graph, each wave changes its behaviour as wave number and wave speed increases

accordingly.
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3.5.2 Case with voids

20 T T T T, T T T T T T T T ]
15]

% 10}
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a
) k=1
o~
0 5 10 15 20
9
(d) k=5

Figure 3.2: Graphs of the 7% against the ) for constant values of k, where a, 8 and &

are calculated from Table 3.1.

In Fig. 3.2(a), voids parameters @, /5 and £ are absent so as a consequence one wave

is vanished for wave number 1. In Fig. 3.2(b), wave number is same as in Fig. 3.1(a)



but the voids parameters with rotation are present, as effect three wave speeds are
travelling. In Fig. 3.2(c) and (d) waves are broden as the wave number is increased.
In Fig. 3.3, when a3z = 0 in the absence of voids the graphs depend on the solution of

the second degree equation.
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3.5.3 Case without voids

20
15]

% 10}
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15} ]

% 10] ]

l
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Figure 3.3: Graphs of the v2 against the k in the absence of voids.

In Fig. 3.3(a) when rotation is absent then only two real wave speeds travel, one is

longitudinal and other is transverse. As we observed that when we add rotation, in

graphs of Fig. 3.3(b)-(d) it is clear that as wave number is low then wave speed is high.



In these figures, one real wave speed has been observed and other wave has ” cut-out”

range which increase as rotation increases.
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Chapter 4

Travelling of Waves in an
Anisotropic Elastic Materials with

Voids

The theory of linear elastic material with voids is the generalization of the classical
theory of elasticity in which strain and void volume is considered as an independent
kinematics variable. The nonlinear version of the theory of elastic material with voids
was presented by Nunziato and Cowin in 1979 [1] and linear version was proposed by
Cowin and Nunziato in 1983 [2]. Later on, void volume was added as a new kinematic
variable to introduce the new version. The limitation of this version was that after
removal of voids volume, we again get classical linear theory of elasticity. This theory
has a wide range of application in geological material like rocks, solid and manufactur-
ing material like wood, clothes, paper etc. The anisotropic material gained attraction
in 19"" century and are used in the field of seismology, ultra sonics and electromagnetic
fields.

In this chapter, travelling of waves in anisotropic elastic mterial with voids is discussed.
Basic equations governing the wave motion in anisotropic materials are considered in
section 4.1. In Section 4.2, the hexagonal crystal system is chosen to assign values to
constants of equations in section 4.1. Numerical results and discussion are given in

section 4.3.
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4.1 Elasticity tensor for anisotropic materials

Consider the Eq. (2.8), which is elastic stiffness tensor of order four and differentiating
Eq. (2.8) w.r.t j we have,
Tij; = Cijritiny, (4.1)

Substituting Eq. (4.1) into stress equation of motion
ﬂj,j = C'Z-jkluk’lj = p(u1 — 92u1 + 29U3) (42)

Therefore, for i = 1
T = Crjrtn,;. (4.3)
Now, for j =1,2,3
Tyj; =T +Tiop + Thag,
= Cimurn + Croptge + Cispugs + o = p(iy — Q%uy + 2Q3). (4.4)
For k=1,2,3
Cuinuin + Caaug g + Crsiusn + Craytn 2 + Chragiti o
+ Chagiug o + Crsyta s + Crauuags + Cisgiuss + Bor = p(ir — Q%uy + 20niz). (4.5)
For[=1,2,3
01111U1,11 + 01112U1,21 + 01113U1,31 + 01121U2,11 + 01122U2,21
+ Chigsug 3 + Crisiuz 11 + Crisaus o1 + Chrissus st + Craiitg 12
+ Chia12u1 22 + Crizug 32 + Craoiug 12 + Crazgtin 29 + Claggta 32
+ Chaziug 2 + Clazaug 2o + Clagsus s + Craintis + Ciziot 23

+ Chs13u1 33 + Ciza1uz 13 + Clzaotie 03 + Clsagtio 33 + Chssits 13

+ Chssous o3 + Chsssug s + Sd1 = p(uy — Qup + 2Qis). (4.6)

It is easy to use Voigt notation or two index representation of Cjj;; in which a pair of

indices corresponds to a single index in the following manner.
11 —+1,22 2,33 =+ 3,23 4,13 -+ 5,12 =6 (4.7)
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Now, by using Voigt notation Eq. (4.6) becomes

Criur11 + Cieur o1 + Cisur g1 + Creug 11 + Cratg o1 + Crata 31

+ Cisuz i + Craus o1 + Cigug 31 + Creur,12 + Ceettn 22 + Cretin 32
+ Copg,12 + Coptin 20 + Cagtin 32 + Csptiz 12 + Cuagus 20 + Cags 30
+ Chsuq13 + Csettg 23 + Cssg 33 + Csein 13 + Costin 23 + Casin 33

+ Cssuz iz + Casuzoz + Casuzzs + By = p(iin — Q2uy + 20is).

So, Eq. (4.8) in partial form as

Cn% + Cie g;gl +Cis 52 5 Cmc‘);u; + Cl?aa;gi

+014328 +Cl5%2 - +Cl4g ;3 +013§ 23 +Cm%

el sl ea e

a0 T

T 056% - 055% + 0252;8 + 04568:22 + 05588 gg

+ Cis g;ggz - 035%2% + B = pltir — Ly + 20is).
Now, For ¢ =2

Ty = Cojritp, ;-

For 7 =1,2,3

Tyj; = To11 + Taop + 1333,
= Corgrtn,n + Cooprir 12 + Cosptig i3 + Bd o = 2pQ(uy + us).

For k=1,2,3

ot 1 + Corgguan + Carzrusn + Cozngi 1o + Caggria 1o

+ Coagiug ia + Casu iz + Cogatia s + Cagziis gz + 8P o = 2p82(uy + 1i3).
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For[=1,2,3

Corniu a1 + Coriaur 21 + Corizur 31 + Carorug 11 + Caroota 21

+ Cara3ua 31 + Carz1uz 11 + Corzatz 01 + Corssug s1 + Cozn1ty 12
+ Caz12u1 22 + Co213U1 32 + Co21Us 12 + Coooon 22 + Cazastia 39
+ 02231U3,12 + 02232U3,22 + 02233U3,32 + 02311U1,13 + 02312U1,23
+ Cazizuy 33 + Caga1ua 13 + Casaotio 23 + Casagtin 33 + Cosgis 13

+ Cagsoug 03 + Cogssus 33 + B o, = 2p8(1y + us). (4.13)

Using Voigt notation, Eq. (4.13) can be written as,

Cieurn + Cepttr,21 + Csen 31 + Copin 11 + Coptia 21

+ Cupuz g1 + Cseus 11 + Cagugor + Cstz 31 + Corg 12

+ Coptt1 22 + Costg 32 + Cogtioz + Coatig 22 + Coytia 39

+ Cosus o + Cogiz 20 + Cogug 30 + Craus 13 + Cagtiy 23

+ Cusun 33 + Cupin 13 + Cosig 23 + Caatio 33 + Casug 13

+ Cuaiz 93 + Cayuz 33 + B o = 2pQ(1y + 1i3). (4.14)

Equation (4.14) in partial form,

62U1 82u1 82 82 82’&2
C168 3 +0668 8x+C568 Oy +C6Ga 5 +C2Ga Dr
82U2 82U3 62U3 8211,3 82u1
T Cug 5, T O T g5, + Oga, T O,
0%uy 0%uy 0%uy 0%uqy 0%uy
+ C B + 02582'8 + 026’% + 0228_3/2 + 024%
82103 82U3 @2’&3 02u1 82U1
g, T g T Ongg, T g T g,
0%y 0*u 0%uy 0%uy 0%u
+C45a 3 +C468 82 +0248 B +C448 5 +C458 83
0? 0?
+ 044—ayg3 + Oy 8“23 4 Béa = 200ty + ). (4.15)
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Now, for i = 3 in Eq. (4.1)

T35 = Cjpitp,;-

For j =1,2,3 in Eq. (4.16)

T35 = T311 + T390 + 1333,

= Caitp g1 + Caortirz + Cazmp iz + Bda = p(iiz — Q%uz + 20 ).

For k =1,2,3 in Eq (4.17)

Csiyur g + Caimuan + Carzius gy + +Cso1u1 o + Chortin 2 + Claazitiz 1o

+ Cssug s + Cagauos + Caszius s + Bo s = p(us — Q%uz + 200iy).
For [=1,2,3 in Eq. (4.18)

Cainur 11 + Csii2ur 21 + Csi1zus 31 + Csi21u2,11 + Caia2U2 21

+ Cs193u2,31 + Ca131u3.11 + Ca132u3. 21 + Ci33us 31 + Cs211U1,12
+ Cs212u1 22 + C213U1 32 + Cs291U2,12 + Cs290U9 22 + Ci203U2 32
+ Csa31u3,12 + Ch32Us3 20 + Cs233U3 30 + Csz11U1,13 + Caz12U1 23
+ Cs31311 33 + Cs3212,13 + Cs3091 93 + Csza3tin 33 + Cszziug 13

+ Ca332u3.23 + Cazzauz s + B = p(iiz — Q2ugz + 20y )

Using Voigt notation, therefore, Eq. (4.19) implies,

Cisui i + Cseur 21 + Cssun 31 + Csgug 11 + Costin 21

+ Cusuazi + Cssuz 1 + Casug o1 + Cssuz g + Cratig 12
+ Cuptt1 22 + Cuastig 32 + Cagio 12 + Coatig 22 + Cratia 39
+ Cysus 12 + Cuaus 29 + Cagug 30 + Craug 13 + Csettn 23
+ Cs5u 33 + Csguig 13 + Cozig 23 + Cagig 33 + Cssuz 13
+ Caqus o3 + Cazus s + Bd s = p(is — QPus + 2Qu;)
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Writing Eq. (4.20) in partial form as,

0%y 0uy 0?uy 0%u 0%u
Cs1—— 72 +Csesa Oy +C55828 + Csg o7 22 +0258y8:2r;
62 82’&3 82 8 us 82U1
+ 0456 O + 055 072 + 0458 Oz + 035 9201 + 014 a$ay
62u1 82U1 82U2 82u2 82u2
+ Cle B +C458 dy —1-046a oy 45’y2 +C445’28
0%us 0%us 0%us 0%u 0%u
a8, T e S+ oy oy Craggs * C%ayal
(? (751 02’&2 82 8 U9 82’&3
+ 35— 522 +036a By +0328y8 + Caa—— 5.2 +C35—8x82
0? 0? . .
+ C34a gg + 033871;3 + Bds = pliis — Vuz 4 2iy) (4.21)

In order to discuss two dimensional wave propagation, in the (z,z) plane, we shall

consider u and €2 to have components

Uy = U,l(.T, th)a

Uz = U'S('Ia th)7

Qy =
with

Uy = O,

Ql - Qg — 0

With this specialization, Eq. (4.9) reduces to

C 82 + 8271,1 4 82’&3 i 82U1 82’&3
el 0z0r = 012 ' 0z0z 920
(92u1 82163 82U3 . 2 .
+ CSS( 022 + axaz) + 035 922 + 5¢71 = p(ul —Q Uy + 2QU3) (422)

Likewise, Eq.(4.21) implies

82 82u1 82u3 82U1 82u3 821/4 82U3
O g +C55(a 0z T o )+C3la 9z " (aw:ﬁ 922 +8x8z)
82
+ 033 2 4 Boy = pliis — QPug + 200, ), (4.23)
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yields

0? 0? .
& (8_152 + 8—;3) —&§¢ — Pe=poo, (4.24)
where
_ Ju | Ous (4.25)

©T 0r, 0z

4.1.1 Propagation of plane wave in a material with invariance
of 6-fold axis rotations

For the hexagonal system the principal axis has order six, behaving as a dyad axis
combined with a triad. The matrix C,z thus has a form combining the features of the
monoclinic and trigonal system in the form of matrix given in Eq. (2.10). Using this

matrix in Eq. (4.22) and Eq. (4.23), we have

Crity 11 + Crzuz iz + Cus (ur33 + uzi3) + Boa = p(iin — Q2uy + 2is3),

or

Chuin + (Cis + Cu)ug 1z + Cuytg 33 + S = P(U.l — Q%uy + 29153)- (4.26)
Similarly

Cua (u113 + uz11) + Crzur iz + Cszuz 33 + Bz = p(is — QPug + 20,),

(013 + 044)U1,13 + Cuyuz 1 + Cszuz s + B3 = p(iis — QPus + 2iy), (4.27)

a (a1 + ds) — ¢ — Be = po¢. (4.28)
where

u; = Aexp [ik:(xll + zl3 — ct)],
us = Bexp [ik(:ﬁll + zl3 — ct)],
¢ = Cexp [ik(zly + 213 — ct)].
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When all these expressions have the common term exp [ikz(asll + zl3 — ct)}, which is

omitted to save space.

U1 = —ikcA, iy = —k*c2A,

s = —ikeB, Uy = —k*c*B,

¢ = —ikeC, b = —k22C,
U1 = —k2l%A, Us 31 = —k?L13B,
Uy 33 = —k:2l§A, Uy = —k2l13A,
Uz 11 = —k;2l%B, Uz 33 = —k2l§B,
o1 = —k*C, $as = —KI3C,

e = Aikly + Bikls.
Equation (4.26) becomes

Ciu( = K1) A+ Cis(— K*lils) B+ Cu( — K I3A — KL B) + B(ikl,C)
=p(— KA — QPP A+ 2Q(—ikeB))

or

- k’QCnl%A — K (013 + 044)lllsB - k2C44l§A + 1Bkl C = —kQPCQA
— pQ*A — 2iQkeB. (4.29)

Collecting like terms from Eq. (4.29)

( — Cllk2l12 — C44k2l§ + p(Csz + QZ))A — ((Clg + 044)k2l1l3 — 22pk’QC>B
+ (Bikly)C =0,

or

[Cllkzl% -+ C44]€QI§ — p(C2k2 -+ Q2)]A -+ [013k2lll3 —+ C44k2l1l3 — ZZkaC}B
—1Bkl,C' =0,
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or

@kzl% + %k:?lg e Qz] A+ K% + %) k2113 — 22‘ch} B
P P P P
Bkl
ICLIVORY (4.30)
P
Define the constants like
Ch Cu Cis
02:_7 02:—, 02:—,
1 P 2 P 3 P
s B s Css 2 Q
i =—, ;= —, e = ——,
Yo S op ° (po)
w? = k> (4.31)

After the above substitution, Eq. (4.30) becomes
[GRE + Gk — w0 — P]A+ [R L + Gk Lis — 2iQw] B — icikl;C = 0. (4.32)
Equation (4.27) becomes

Cu( — K*lLlsA — K*I3B) + Cis( — k*Lil3A) + Css( — k*I3B) + B(ikl30)
= p(— KB — O*B — 2iQkcA). (4.33)

Collecting like terms from Eq. (4.33)

(044]{32[1[3 + 013/{32l1l3 — 2Zle€C)A + (044]{32[12 + 033k2l32 - pk262 — pQ2)B

— iBklsC = 0, (4.34)
%k%lg - %k%zg} - 2@9/4 A+ [%/&l% - %k%g — k- QB

P P p p

P

[k Ll + kLl — 2iQw] A + [GE1] + Gk — w? — ] B — cfikl;C = 0. (4.35)
Equation (4.28) becomes
a — CK’l; — CK*15) — £C — B(Aikly + Bikls) = po(—k*cC). (4.36)
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Collecting like terms from (4.36)

(= Bikl)) A+ (— Bikls) B+ (— ak®l} — ak®l5 — € + k*poc?)
(Bikly) A+ (Bikls) B + (ak®l + ak®l3 + & — k*poc?)
ﬁzkl A+ ﬁzkng L RR@e )+ £ peelo- 0,
po po po po
vkl A + V5iklsB + (g (5 + 13) + & — w?)

Q
“o

Q
Il
o

(4.37)

where £* = ¢/(po) and v* = B/(po).

The determinant A of coefficient of Eqs. (4.32), (4.35) and (4.37) is as follows.

ARAE + AERYE — W — Q0 (E+ Bkl — 20w —ic3kly
A= (2 + Akl — 21w ARE + ER2E — w? — Q2 —clikls
v*ikly vikls Ak? + & — w?

The determinant of matrix A for non-trivial solution, that is, A = 0, it is real part of

determinant,
Re[A] = u® — Cyw* + w* (U = C50° = C,) — C1 =0, (4.38)
where Re[A] denotes the real part of A. The imaginary part of the determinant is as
Im[A] = w* (3 + ¢3) + w(cegh® + Gegk® + v + € + 3€) (—4k71L13Q) = 0, (4.39)

where I'm[A] denotes the imaginary part of A. In order to make Eq. (4.38) dimension-

3
less, we will multiply it with (é’—;) , the corresponding expression will be

3
—C +o? |0 CQZ( ) c(pa) —c(p"> —0, (4.40
4(044>w o Cu ? Cua Cu ( )

where @ = wy/po/C44, Q= Q\/po/C44, k = k\/o, and C;, Cy, C3 and Cy are

given as
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C1 = —Ec3cakbl} + 26322k 133 + 32 kP 213 — Ac2cakb iR
— Ac22k0lE — AR — AR BV 4 263K BV
+ 222K PV — AEK B — AAK v — Aaklie
+ 23K 1€ + K PIEE — SRR EI2E — Ac2kz¢

+ (k' + gkl + ek ly + Eegk*l; + kv

+ ARGV + GRS + ARPGE + GRPEE + RPIEE
+ ERE) Q% + (= cak? — &)Y,

Cy = Akl + A2kl — Akl + sk l; + Ecak'ls
+ 263K 1S + GEBE — ARk IR — Ak + AkPEY
+ ARV + AR + ARPEE + AR + ARPIEE,

C3 = —6czk? + k1T + k21T + k%15 + 2 k*15 — 6€,

Cy = —cgh® + K1 + K1} + kP15 + KPS — € — 692,

Now, making the constants C', Cy, ('3 and Cy dimensionless

Cy ( o ) [~k + ERLE + ERE + ERE + G2 — € — 607 (g—") .
44

Cu

Using the defined constants of Eq. (4.31), Eq. (4.41) yields
Cy (ga ) = —a,k* + A k*1} + K1 + K15 + aok®l; — as — 6%,
44

Similarly,

Cs (p_a) - [ 606k2 + Clk2l2 + 021432l2 + C2k2l2 + C5k2l2

Cus
- 6] ( Caa )

= (= 6a,k” + ak?lF + K15 + K*15 + dk® — 6a53),
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(4.41)

(4.42)

(4.43)



2
Cy (g—i) = [lik' + gkl — ikl + Gegk'l;
+ 2kt + 2033k TS + kS — Ak 21

— kS + ARGV 4 ARGV 4 ARPE
2
+ GEE + GRI5E + R 15¢] ( )
C144
= (k' + @'l — ark'l} + a k'l + ask'l3
+ 206k 315 + qr kA1 + BPRPT + BRRPES + askAlil;

— Wkl + @kl + Gk + @kl + aask’l). (4.44)

o ( ng — [ = EERT + 23 ARRLE + ARRLE — AR
— cac2c2kCly — Ak — AAK BBV 4 263k BV
+ 223K BV — AGK BV — Ak — Acaktlie
+ 222K BIEE + AR PI2E — AR I3E — ARk ¢

+ (Giegkl} + gk s + gk s + k'l + ARV
+ RV + GRPIE + SRPIE + SRPIEE
+ GEROD + (— gk® — Q] <C )3
B 44
= [ — auk®l} + 20,06k 115 + qoa2kC 1 — coaak® 15
— @RS — BRRY — @ BRRARIE 4 206 B2k 4 2R R
+ 20, B2k 312 — B2R21E — aqasktl] + 2asaskt 313
+ 2@k 212 — ayapask P12 — ayaskill
+ (quk} + Ak} + k5 + sk 5 + SRR + B2
+ 20,05k + sk} + askPl + drask’l3) 02

3
(@R + @) (ﬁ> . (4.45)
Cua

The dimensionless form of Eq. (4.40) is as follows:

3 — 2 t? + 2t — 23 = 0, (4.46)
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where

21 = —k? + A k1T 4+ KB + K15 4 apk®l3 — ag — 692, (4.47)
20 = Q4 — Q2 — 6ak® + ark*l + K21 + K215 + aok?

— 6as) — (k'] + Ak} — ark'l} + k'l

+ gk Z 4 205k 212 4 agk 2R + 2R + 32K

+ ark* 315 — k'l + ayask®ls + agk*l3 + agk®l;

+ aask’l;), (4.48)
25 = —agkS1t + 20,05 k51212 + @,02k01212 — @ kORI

— k3 — B2EM] — @y BAEMRIE + 205 32K 312

+ 2324212 4 20 2K 312 — BRERMRE — qn skt

+ 205k 212 + 02ask 212 — aydakt P12 — dpagktl

+ (k™ + @k} + @k + aukl + B2RPT + PR

+ 2a;1ask” + agk®l} + ask’l + drasgk’l;) 2

— (aoh? + ag) Q4. (4.49)
where the values of a,, ay, as, ay, ay, as, ag, ay and ag are defined as
& — « G — Cn e — Cs3
o — ’ 1 — ~ > 2 — A~
oCy Cuy Cuy
ag = O ay = Qo a5 = a0,
44
- 013 - 9 - - =
Qg = O Q7 = O, Qg = (2]
44

The determinant A of coefficient of Eqgs. (4.32), (4.35) and (4.37)
after substituting w = ck is as following.

AR2E + RS — Ak — Q3 (2 + )kl l3 — 2iQck —icakly
A= (3 + AK L3 — 2iQck K3 + ERE — 2k — Q2 —c3ikls
vrikly v¥ikls CEk? + & — PK?

Solving the determinant of matrix A for non-trivial solution, that is, A = 0. Now
using commands of Mathematica, that is, Collect[complexExpand@Re[T],c] and Col-
lect[complexExpand@Im|[T],c|, which gives Ag, A1, Az, A3, Ay respectively, where Ay, Ay, Ay
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is for real coefficient, while A; and A3z correspond to the imaginary coefficients.

Ay = A2k + Ak — AAKC + kSIS + AcikSiE
+ 262EKC 212 4+ RSI21E — AEKSEE — AEKSIS + ARy
+ Ak Y + AREE 4 SEE + ARUGE + RS — 6csktO?
+ AKIO + AR + RO + RO — 6K%¢Q? — KPQY,
Ay = 4RO — 422k 1130 — 4AAk3 1 30 — 4ca k31 15€9
— 42K 1,15£9Q,
Ay =~k 4+ 265k 1S + c3cE kOIS — cleica kb3S
+ cacieak®ly — Ak Y — AR By + 205k Gy + Ak Bl
— K By — ik 3y — EkNIE + 263k EIE + sk I5E
— AR BI3E — 5K SE + ek IO + Ak 30 + 2kt 1302
+ ARGV + GRPBVO? + ARPEEQ? + SR EEQ? + AR IEEQ?
+ ERA2EQ? — 2RO — €0,
Az = 42k 113Q — 42K 1159,
Ay = =gk + kO + KO + BKOIS + kOIS — K¢ — 6K, (4.50)

Now, dividing the determinant A by k* and collecting the values of ¢’s, we get

cﬁk:zp3a+ 4(k2ap2 £p? +C’11k52lfp20 K*ip*c  Csk*B3p*o

Ci Ci  CL Ci Ci Ci
K:2p%c  6p300)? i —Cuk*Bap  Kl%ap  Cssk*Bap
— C p—— p—
Cii Ci Ci c44? Ci

_Kllep BFp B Culitp Lep  Culitp Lép
C44? Ciy  Ci Ciy Ch Ciy Ch
Cllk lipoc  CHE*B2po B CniCs3k?213pc 2C13k* 1312 po

Ch Ci Ci Ch
Cy3k?14 6ap?Q?  66p2Q%  CLBp*aQ?  [3pPo0?
& 23p0+ ap3 fg Y, G 1p30 n 1p<27 (4.51)
Cia Cia Ciak Cia Cia
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Cs3l3p° 02 n B3p*o? p30§24> n Cnk?lia  CHE*BEa

Ciy Ch Gl Ch Ciy
011033162[%[?2)0[ 4 2013]{32@[%@ C’33k:2l§a llll52 . Clll%l?%BZ
Ci i Ci i Ci
06BER  CuliB  2BBE  1E | Culle ORI
Ci Ci Ch  Ch O &
C’Hngl%l%f _ QClgl%lgf T nglélf i Clll%@pQ2 _ l%apQQ
024 024 Cug2 021’4 024
_ Calap®  FapQ® N BB2p?  CuliépQ® R
Ci Ciy Ciuk? Cik? Ciyk?
| Cyl3épQ® B ap*Qt Q! (4.52)
The imaginary part of the determinant is as
4013kl1l30[p9 4/<;l1l3apQ 4[1[352p9 4013l1l3§p9
¢ 3 + 2 - 572 T 3
Cia Cha Ciak Ciak
4l1l3€pQ o 03 4013k3l1l3p20'9 i 4kl1l3p20'9 ' (453>
Ciuk Cis &
The dimensionless equation is as following
Sk + A+ A+ Ag + I(CA + 3 43) =0, (4.54)
where
Ag = malik? — y2ak® + y1yal23k? — yalilak? 4+ yoalshk?
+ B2 — B A 2B — BRI + 287105 - BRI
+ Nl — ERE + 7€l — 2vsE0 + 7aély — mQPad
N B £ R
- Qali —pQali — Pali + —5— - —5— — >
__ __ R
caep | REQE Q2 a0ttt o
By -y T S T
- - A4B%Q 15 AEQslils  4EQ1LT
A, = 8Qaklyls — f . 13+ § 7313+ 5_137
k k k
(4.55)
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Ay = —malik — alfk? — 700l }* — a5k + BI} + B3

+ &l — €8 — o€l; — €15 — nltk* + LK + il 5k
02a

. . - 6
+ 232 12K% — plik? + 6Q%a + %

Q22 4 Q2

_ _ 04
+ 70205 + Q213 — 5
/Ig = —4’}/3(2[1[3]% — 4Ql1l3k,

Ay = ak? + &+ 12K + 1252 + 12k + 12k — 602,

where v1, 79, v3 are defined as

o o G oo G
1 0447 2 0447 3 0447
_a 5. B F_ &
a_0044’ /6_044’ §_044’

Q:QVPU/C44, c

(4.56)

[P
C'44
4.2 Results and discussion of graphs

In this section graphs are plotted for Eq. (4.54) by taking different values from research

papers as given below.

4.2.1 Graphs for real values

Following values of material parameters and values of void parameters [15] are used in

MATHEMATICA.

Symbol Value Units | Symbol Value Units
11 1.628x 10 | Nm =2 13 0.508x 10 | Nm—2
C33 1.562x 10" | Nm—2 Caa 0.385x10'" | Nm~2
a 3.688x107° I6] 3.656x107° N
¢ 1.475x 101 o 0.162 m?
L V0.6 ls V0.4
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Table 4.1: Values of material parameters for an elastic material with voids.




To

To

3; 4 3k
] Too
2+ ; 2+

N
T
P
N
T

0’\ ‘/‘\‘ | I I | 0’\ L L I 1 L
K K
(a) Q=1 (b) Q=6
5F CToTT T 1 5F CT T o
ar f ar
3 1 3r
] o
2} 2}
1 s
oh, | ‘ ‘ ‘ ] ok ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5 0 1 2 3 4 5
K K
(c) Q=10 (d) Q=14

Figure 4.1: Plots of dimensionless squared wave speed against the wave number.

2

Graphs are plotted between wave speed & and wave number k where k is taken

along z-axis and ¢ is along y-axis respectively. Using =6, two real waves has been

observed, which are coupled in the case when we have rotation and voids. It is noticed

that when () is greater than zero the waves dispersed in the surroundings of wave num-
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ber k.

4.2.2 Graph for imaginary value

For Figure 4.4, following values of material parameters and values of void parameters
are of material Gneiss rock (dry) and used in Mathematica. This graph is plotted only
for imaginary values of Eq. (4.54).

Symbol Value Units | Symbol Value Units
C11 52x 107 Nm™? C13 9x10? Nm™?
C33 ]_6><109 Nm™2 Cy4 11)(]_09 Nm_2

«Q 1.7798x10~4 N 6] 8.52849x 10~* N
19 1.21960369x 10! m? o 0.162 m?
L V0.6 Iy V0.4

Table 4.2: Values of material parameters for an elastic material with voids.

50
al
3l
Yo |
ol
10
ok L
0 1 2 3 4 5
K
Q=3

Figure 4.2: Plots of dimensionless squared wave speed against the wave number.
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Here is only one real wave speed appears when graph is plotted between wave num-
ber & and wave speed k for imaginary values.
For Figure 4.3, material constants and void parameter values are given below [16] are
used in Mathematica to plot the graph. This graph is plotted against dimensionless

rotation and wave number.

Symbol Value Units | Symbol Value Units
C11 3071X1011 Nm 2 C13 1.027x 1011 Nm 2
C33 3581)(1011 Nm_2 Cyq4 1.51)(]_011 Nm_2

a 8x 107 N 3 10x10° N
¢ 2x10° | m? o 0.162 m?
L V0.6 ls V0.4

Table 4.3: Values of material parameters for an elastic material with voids.
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0 1 2 3 4 5 0 1 2 3 4 5
Q Q
(c) k=3 (d) k=10

Figure 4.3: Plots of dimensionless squared wave speed against the dimensionless rota-
tion.

Graphs are plotted between wave speed & and rotation 2 where Q is taken along

z-axis and & is along y-axis respectively. Using k=1, two real waves has been observed,

which are coupled in the case when we have rotation and voids. It is noticed that when
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k is greater than one then only one real wave speed appear.

4.3 Special case k — o0

After dividing the Eq. (4.54) by k? and taking k — oo, the coefficients Ay, A1, Ay, A3,
and A, takes the form

Ay = amly — yia + npalil; — salils + yals,

A, = 80al?l3,

Ay = —aml} — ald — aldy, — &l — il + Y3212 + B2 + 295205 — i3,

Ay = —Qlyls,

Now, using MATHEMATIC A commands

Limit[c® + Ayc® + Asc + Ay + I(Asc® + Aie), k — 0]
Contour Plot[c® + Ayc® + Asc + Ag + I(Asc® + Are) = 0, (k,0,2), (c,0,10)]

The values of the voids and material parameters by [6] are given below for the case

k — oo,
Symbol Value Units | Symbol Value Units
11 1.628x10'" Nm™2 C13 0.508x 10" Nm ™2
C33 0.627x 10 Nm™? Ca4 0.770x 10" | Nm~2
a 1.7798x 1074 N B 8.52849x 1074 N
1 1.21960369x 10 | m? o 0.162 m?
L V0.6 I3 V0.4

Table 4.4: Values of material parameters for an elastic material with voids.
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Figure 4.4: Plots of dimensionless squared wave speed against the wave number.

There are two real wave speeds appear which are parallel to each other when graph

is plotted between wave speed & and wave numver k .
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Chapter 5

Conclusions

In this thesis, propagation of plane waves in a rotating isotropic and anisotropic mate-

rial with and without voids are discussed. The summary of the results are as follows.

For isotropic material, three plane waves exist in the presence of voids two are
longitudinal and one is transverse wave. Waves are coupled due to voids and rotation
of the medium. In the absence of voids, coupling of the plane waves take place due to
the rotation of the medium. When the rotation is absent, classical transverse waves
are obtained which travel without coupling and do not affected by voids. On the other
hand, the longitudinal waves relative to change in volume and void volume fraction are

coupled.

The hexagonal crystal system is chosen to give values to the constants in anisotropic
material with voids. In this case, two real wave speeds are obtained. Numerical
investigation revealed the fact that for unit rotation and for the wave with smallest
wave speed started to disappear and large gap between the wave speeds has been
observed. For imaginay solution only one real wave speed exist. When k& = 1, two
real wave speeds appear and for all values greater than one there is only one real wave
speed. A special case when k — 0o, two real wave speed occur which are parallel to

each other.
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