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Abstract

In this thesis we have studied phenomenon associated with interpolation of equally

spaced data known as Runge phenomenon. This phenomenon was first observed by

Carl David Tolme Runge which deals with the oscillatory behavior of a higher degree

interpolating polynomial near the end points of equally spaced data.

In this dissertation we have discussed the conditions for the occurrence or absence of

this phenomenon and illustrated our results graphically. Aasimpleaproofafor theacaseaof

Runge functionaona[−a, a] has been discussed. A simple formula has been found to

calculate the point, for a fixed a, beyond which Runge phenomenon makes its appear-

ance.

The role of Chebyshev polynomials in approximation theory has been briefly discussed.

To further improve the convergence rate and the reduction of an error obtained through

approximation of an interpolating polynomial and non-polynomial function different

types of notions like Fourier series and Chebyshev series were discussed.
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Chapter 1

Introduction

1.1 Interpolation

1. Interpolationaisatheaprocessaofaestimationainawhichaweaestimateatheavaluebof func-

tiondat new pointsagivenaset ofavaluesaataaasetaofadataapoints.

2. Interpolationacanaalsoabeadefinedaasathe processaof fittingaaafunction throughagiven

data points.

1.1.1 Polynomial Interpolation

Polynomialainterpolationais aamethodaofbfindingcadpolynomialaP (x) foreaefunction

f(x) thataagreesawith f(x)aataspecified points. More precisely, ifaf(x)aisaa function

definedaon the intervala[c, d] thenaP (x)aisaan interpolationapolynomialaof f(x) if

P (xk) = f(xk) k = 0, 1, 2, ...n.

Reasons for using Polynomial Interpolation

1. Polynomials are preferred becauseatheyahaveatheaproperty to approximate any

continuousafunction.

2. Definite integrals and derivatives are easy to determine.
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1.1.2 Weierstrass Approximation Theorem

Ifafaisaaacontinuousareal-valuedafunctiongon [c, d] andaifaany ε > 0 isagiven, then

thereaexistsaa polynomialaP on [c, d] suchathat

|f(x)− P (x)| < ε

foraallaxain [c, d]. Inaotherawords, letaf(x)abeacontinuousaandadefinedaon [c, d]athen

there existsaa sequence of apolynomial Pn(x)aofadegree nasuchathat

lim
n→∞

Pn(x) = f(x).

1.1.3 Example

We determine a polynomial of degree one i.e. P1(x) thatapassesathrough the dis-

tinctapoints (x0, f0) and (x1, f1) such that P1(x0) = f0, P1(x1) = f1.

As we know that polynomial of degree one is generally expressed as:

P1(x) = d0 + d1x. (1.1)

To find d0 and d1 we apply given conditions. So,

P1(x0) = d0 + d1x0

⇒ f0 = d0 + d1x0. (1.2)

Similarly

P (x1) = f1 = d0 + d1x1. (1.3)

Now

f1 − f0 = d1(x1 − x0)

⇒ d1 =
f1 − f0
x1 − x0

.

Putting value of d1 in (1.2) and rearranging we get:

d0 = f0 −
f1 − f0
x1 − x0

x0.

2



Putting values of d0 and d1 in (1.1) we get:

P1(x) = f0 −
f1 − f0
x1 − x0

x0 +
f1 − f0
x1 − x0

x.

Simplification gives:

P1(x) =
x− x1
x1 − x0

f0 +
x− x0
x1 − x0

f1

P1(x) = L0(x)f0 + L1(x)f1.

1.1.4 Lagrange Interpolating Polynomial

P1(x) = L0(x)f0 + L1(x)f1. (1.4)

where

L0 =
x− x1
x0 − x1

, L1 =
x− x0
x1 − x0

. (1.5)

P1(x) in (1.4) is known as linear Lagrange interpolating polynomial and L0 and L1 in

(1.5) are Lagrange co-efficient polynomial.

Unique Polynomial

Note that

L0(x0) = 1, L0(x1) = 0, L1(x0) = 0, L1(x1) = 1.

(1.4) implies that

P (x0) = 1.f0 + 0.f1 = f0

and

P (x1) = 0.f0 + 1.f1 = f1

So (1.4) is the unique polynomial of degree one.

nth Lagrange Interpolating Polynomial

Lemma 1.1.1. Ifax0, x1, ..., xnaarean+1adistintanumbersaandafaisaafunctionawhose

valuesaare given atatheseanumbers, thenaaauniqueapolynomialaP (x)aofadegreeanaexists

with

P (xk) = f(xk) k = 0, 1, 2, ...n.

3



The polynomial is given by:

P (x) =
n∑
k=0

f(xk)Lk(x) (1.6)

where, for each k = 0, 1, 2, 3...n

Lk(x) =
n∏

j=0,j 6=k

x− xj
xk − xj

. (1.7)

Proof. Notice that Lk in (1.7) is a polynomial of degree n. Furthermore, for each xk
we have Lk(xk) = δkj (Kronecker delta). It follows that the linear combination

P (x) =
n∑
k=0

f(xk)Lk(x)

is an interpolating polynomial of degree n.

Uniqueness: Assumeathatathere existsaanotherainterpolating polynomialar of de-

greeaatamostan. SinceaP (xk) = r(xk)afor allak = 0, 1, 2...n. Itafollowsathatathe poly-

nomialaP−rahas n+1adistinctazeros. However, P−r isaofadegreeaat mostanaandaby

fundamental theorem of algebraaitacanahave atmostanazeros; thereforeaP = r.

Theorem 1.1.2. Supposeax0, x1, ...xnare distinctanumbersain [c, d]aandaf ∈ Cn+1[c, d]

thenafor eachax ∈ [c, d], aanumberaξ(x)aexistaina(c, d)asuch that

f(x)− Pn(x) =
f (n+1)(ξx)

(n+ 1)!
(x− x0)(x− x1)...(x− xn) (1.8)

where Pn(x) is the interpolating polynomial [1].

Proof. Noteathataifax = xjaforaanyaj = 0, 1, ...nathenaf(xj) = Pn(xj), andachoosingaξ(xj)

arbitrarilyaina(c, d) yeilds (1.8).

If x 6= xj, for all j = 0, 1, ...n, define the function r for s in [c, d] by

r(s) = f(s)− P (s)− [f(x)− Pn(x)]
(s− x0)(s− x1)...(s− xn)
(x− x0)(x− x1)...(x− xn)

= f(s)− P (s)− [f(x)− Pn(x)]
n∏
k=0

s− xk
x− xk

.

4



For s = xj we have

r(xj) = f(xj)− P (xj)− [f(x)− Pn(x)]
n∏
k=0

(xj − xk)
(x− xk)

= 0− [f(x)− Pn(x)].0 = 0.

Moreover,

r(x) = f(x)−P (x)− [f(x)−Pn(x)]
n∏
k=0

(x− xk)
(x− xk)

= f(x)−Pn(x)− [f(x)−Pn(x)] = 0.

Therefore, r(x) is zero at n+2 different numbers x, x0, x1, ..., xn. By Generalized Rolle’s

Theorem there exists ξ(x) in [c, d] s.t r(n+1)(ξ) = 0. So,

0 = r(n+1)(ξ) = f (n+1)(ξ)− P (n+1)(ξ)− [f(x)− P − n(x)] d
n+1

dtn+1
[
n∏
k=0

s− xk
x− xk

]s=ξ (1.9)

As P (x) is a polynomial of degree at most n, so (n+1)st derivative is identically zero.

Also,
∏n

k=0
s−xk
x−xk

is a polynomial of degree n, so

n∏
k=0

s− xk
x− xk

=
1∏n

k=0(x− xk)
sn+1 + (lower degree in s)

and
dn+1

dsn+1

n∏
k=0

s− xk
x− xk

=
(n+ 1)!∏n
k=0(x− xk)

.

Equation (1.9) now becomes

0 = f (n+1)(ξ)− 0− [f(x)− Pn(x)]
(n+ 1)!∏n
k=0(x− xk)

.

Solving for f(x), we have

f(x) = Pn(x) +
f (n+1)(ξx)

(n+ 1)!

n∏
k=0

(x− xk). (1.10)

5



1.2 Error Estimation of Polynomial Interpolation

Eq.(1.10) is knowns as error of interpolationg polynomial:

E(x) = f(x)− Pn(x) =
f (n+1)(ξx)

(n+ 1)!

n∏
k=0

(x− xk). (1.11)

where ξx is some number in [c, d].

Example 1.2.1. Letaf(x) = 1
x
aonathe intervala[2, 4]awhereanodesaare x0 = 2, x1 =

2.74, x2 = 4. FindatheasecondaLagrangeainterpolatingapolynomial andadetermineaerror

foran = 2.

Solution:

Lagrange interpolaating polynomial of second order is:

P2(x) = f0L0(x) + f1L1(x) + f2L2(x) (1.12)

where

f(x0) = f(2) = f0 = 0.5

f(x1) = f(2.75) = f1 = 0.3649

f(x2) = f(4) = f2 = 0.25.

Now we will determine the co-efficients polynomials L0(x), L1(x), and L2(x) using

(1.7).

L0(x) =
(x− 2.75)(x− 4)

(2− 2.5)(2− 4)
=

2

3
(x− 2.75)(x− 4)

,

L1(x) =
(x− 2)(x− 4)

(2.75− 2)(2.75− 4)
= −16

15
(x− 2)(x− 4)

,

L2(x) =
(x− 2)(x− 2.75)

(4− 2)(4− 2.5)
=

2

5
(x− 2)(x− 2.75)

Substituting values in (1.12) we get:

P2(x) =
1

22
x2 − 35

88
x+

49

44
.
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Now for error:

f(x) =
1

x

f ′(x) =
−1
x2

f ′′(x) =
2

x3

f ′′′(x) =
−6
x4

As error is defined as:

E(x) = f(x)− Pn(x) =
f (n+1)(ξx)

(n+ 1)!

n∏
j=0

(x− xj)

For n=2 we get:

E(x) = f(x)− P2(x) =
f (3)(ξx)

(3!)

2∏
j=0

(x− xj)

So:

E(x) =
f (′′′)(ξx)

(3!)
(x− x0)(x− x1)(x− x2)

Substituting values we get:

E(x) =
−1

(ξ(x)4)
(x− 2)(x− 2.74)(x− 4)

The maximum value of (ξ(x))4 in the interval (2, 4) is
1

16
. So the error is:

E(x) ≤ −1
16

(x− 2)(x− 2.74)(x− 4)

1.3 Error Estimation and Runge Phenomenon

Aagoodainterpolationapolynomialaneedsatoaprovide an accurateaapproximation with

least error overaanaentireainterval. In 1901, Carl David Tolme Runge when exploring

behaviour of error estimation using interpolation polynomial to approximate certain

function discovered oscillations at the end of the interval. The discovery was important

because it shows that going to higher degree over equispaced nodes is a bad idea, such

conditions reduce accuracy and results in divergence of a function [11].

7



1.3.1 Earlier Work and Plan of Thesis

Runge phenomenon is a consequence of equally spaced nodes and the nth order deriva-

tives of functions that grows quickly when n increases. After the discovery many

methods and strategies were proposed to overcome the oscillations and to get accurate

approximation. Chebyshev nodes and piecewise polynomial interpolation is commonly

used to overcome these oscillations.

In 2007, John P. Boyd discovered several exponentially convergent strategies to defeat

Runge Phenomenon [2]. In 2010, he presented six strategies to defeat Runge phe-

nomenon in guassian radial basis function on finite interval [5].

Moreover, recent researches invovlves radial basis functions to avoid the oscillations by

using different radial functions approximation [13].

In 2018, C.Ye [3] presented the co-efficient and order determination method (CAOD)

to eliminate oscillations at the edges of an interval. This method is used to construct

the linear combination of orthogonal polynomialsatoaapproximateatheatargetafunction

and to get improved accuracy .

A transform method known as smoothing is also an efficient method to deal with Runge

phenomenon. Through this method we can achieve higher degree polynomial interpo-

lation through fewer interpolation points with accurate approximation [4].

The scope of this thesis will define Runge phenomenon by analyzing previously done

work. The research method will include secondary research through articles and re-

searches done in the past to discuss the conditions for the occurance or absence of

Runge phenomenon. The research will inlcude theory along with examples where the

phenomenon appears and also we will investigate theoretical method in detail to over-

come this phenomenon.

Plan of the thesis is as follows:

In the first Chapter, we introduce the basic concepts and the theory of interpolation.

In the second Chapter, we deal with the Runge phenomenon. First we consider ex-

amples of some functions and graphically consider their representations by varying

the length of an interval and the number of interpolation points. In the case of ex,

8



the Runge phenomenon appears to be absent irrespective of the lengthaofatheainterval

andanumberaofainterpolationapoints. However, for the Runge function, 1/(1+x2), the

phenomenon appears to be absent if the interval is [−1, 1] or a subinterval of it, but

for any larger interval, the phenomenon appears in the form of oscillation near the end

points.

The phenomenon is explained by representing the error term in the form of a contour

integral of a complex function. The integral converges in a domain enclosed by a closed

contour which has no singularity of the function on or inside the contour. However it

diverges for the contour which passes through a singularity of the function under con-

sideration. For the Runge function, f(x) = 1/(1 + x2), on [−5, 5], it is found that the

first contour to pass through the point z = ±i, intersects the real axis at ±3.63. These
are the points beyond which the Runge phenomenon manifests itself. We also review

Epperson’s solution [15], which explains the phenomenon, in case of Runge function,

without the use of complex analysis. His method leads to a function, w(x) whose zeros

determine the points of occurrence of this phenomenon. We have found a formula for

approximately locating these zeros. The accuracy steadily improves with the length of

the interval of definition.

In the third Chapter, by using properties of monic Chebyshev polynomial we explained

that the error by using Chebyshev nodes (roots of Chebyshev polynomial of 1st kind)

is smallest for all polynomials and is uniformly distributed over the interval [−1, 1] and
demonstrate graphically that these non-uniform nodes eliminate Runge phenomenon

as error decreases exponentially.

The final chapter is about the reduction of error in approximation. We derived Chebyshev-

Fourier series by changing variable in Fourier series and showed that because of some

remarkable properties of Chebyshev polynomials the error and convergence rate is su-

perior to that of Fourier series.

This thesis does not contain any original work. We have only reviewed some

earlier work on Runge phenomenon and have tried to understand and ex-

plain it by means of illustrative examples.
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Chapter 2

Runge Phenomenon

If the number of interpolating points is increased, say from 7 to 12, the error of approxi-

mation decreases. It is reasonable to imagine that the erroracanabeamadeaarbitrarilya

small by sufficiently increasing the number of data points. In reality, the opposite

happens. For a large equally spaced data points, the interpolation polynomial, while

matching the function exactly at each point, oscillates with a large amplitude. If the

function is defined on [−a, a], the approximation may be excellent on a sub-interval

[−b, b], but is worthless in the remaining part of [−a, a].
This phenomena was first discovered by Carl Runge [11].

2.1 Runge Phenomenon

We have noticed that, if Runge phenomenon exists, it limits convergence of the in-

terpolation polynomial to an interval smaller than the original [−a, a] on which the

function f(x) was defined. Now we have to investigate the following questions:

1. Does Runge phenomenon always occur?

2. Why does it occur?

3. If it does occur, at what points of the interval does it manifest itself?

10



2.1.1 Theoretical Explanation

Letan > 0aand f ∈ Cn+1(I), I = [c, d] beagiven, xnj adenotesathe interpolating nodes

fora0≤j≤n then polynomialainterpolationaerror in complexaformais definedaas:

f(z)− pn(z) =
1

2πi

∫
CT

vn(z)

vn(ξ)

f(ξ)

ξ − z
dξ

where

vn(x) =
n∏
j=0

(x− xnj ).

Also T is domain and CT is boundary of that domain T, nodes are also contained in

T and f is analytic in T [9].

Lemma 2.1.1. Assume that {xnj } are equally spaced nodes on interval [c, d] and define

σ(z) = |vn(z)|1/n+1

Then:

lim
n−>∞

σn(z) = σ(z) (2.1)

exists for all z. In particular:

σ(z) = exp{ 1

b− a

∫ b

a

log |z − s|ds}

For p>0 and consider family of curves:

C(p) = {z ∈ C|σ(z) = p}

These smooth concentric curves and placement of z relative to these curves are key to

convergence: pn converges to f if

lim
n−>∞

|vn(z)
vn(ξ)

| = 0

where ξ ∈ C(p) , z ∈ C(p′) , p’<p.[9]

Lemma 2.1.2. Let C(p) is a contour and function f is analytic inside this contour and

also interpolation nodes {xnj } contained in a contour C(p) then pn → f uniformly on

C(p′), p′ < p [9].
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Theorem 2.1.3. [9] At equally spaced points {xnk},0 ≤ k < n where xnk ∈ [c, d] and

let {pn} be a sequence of polynomials interpolating f(suppose f is analytic at given

interval) also σ(z) as defined in (2.1).Then:

1. Ifafaisaanalyticaforaallazasuchathataσ(z) < p,thenapn
.−→ f foraeach z∗ suchathat

σ(z∗) < p. Theaconvergenceaisauniformaforaall z∗ suchathat σ(z∗)≤ p* < p .

2. If p hasaaapole z∗,and z isasuchathat σ(z) > σ(z∗), then pn(z) 9 f(z).

The theorem implies that if f(z) is analytic on the entire z plane then no Runge

phenomenon will exist for f(x) defined on any interval on the real line. On the other

hand, if f(z) has a singularity in the complex plane, Runge phenomenon will exist

beyond a point where σ(z∗) = p intersects the real axis. This is the curve which passes

through the nearest singularity of f(z).

Example 2.1.1. Let:

f(x) = ex

Let us plot graphs of interpolation polynomial of this function on different intervals

with equally spaced nodes.

Graphical Verification

Following graphs are made by using Mathematica. We keep on increasing nodes i.e.

keep on increasing degree of polynomial for different intervals to see behaviour of in-

terpolation polynomial. In the graphs, the function and the interpolation polynomial

for various sets of data points have been plotted together.
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At first we took 10 data points for f(x) = exp(x) to observe whether Runge phe-

nomenon occurs or not.

Figure 2.1: n=10 for ex on [-1,1]

We increased our data points upto 50 on interval [−1, 1] which results in no oscil-

lation.

Figure 2.2: n=50 for ex on [-1,1]
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Now we will observe the behaviour of exponential function on [−2, 2] by taking
different data points. Taking n = 10 results in absence of Runge phenomenon.

Figure 2.3: n=10 for ex on [-2,2]

Now, if we increased our data points upto 50 on [−2, 2] it results in no oscillations

at the edges.

Figure 2.4: n=50 for ex on [-2,2]
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Conclusion

It is clear from the above graphical analysis that for different number of nodes the

Runge phenomena does not occur in f(x) = ex. The reason is that f(x) = ex is an

analytic function and does not contain any singularity in the complex plane. Thus,

the approximation improves quickly by increasing the number of nodes on any interval

[a, b] and consequently the interpolation polynomial uniformly converges to a function

on equally spaced nodes.

Note: In some instances, the higher order interpolation polynomial yields an oscil-

latory curve in the graph which is not caused by Runge’s phenomena but is due to

numerical errors like round off error, machine error etc. However, these types of er-

rors can be eliminated by using the precision command in Mathematica during the

interpolation of a polynomial.

Example 2.1.2. Let us take another function f(x) =
1

(1 + x2)
. As this function is

not analytic i.e. it has singularity at x = ±i. So in view of above discussion we will

see through graphs whether Runge phenomena occurs or not. Let us plot graphs of

interpolation polynomial for given function at different number of nodes and by varying

length of interval.

Firstly, we took 10 data points on the interval [−1, 1] and observed no oscillations.

Figure 2.5: n=10 on [-1,1]
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To further predict behaviour of resulting polynomial we increased our data points

from 10 to 30.

Figure 2.6: n=30 on [-1,1]

Similarly, increasing data points upto 80 results in absence of Runge phenomenon.

Figure 2.7: n=80 on [-1,1]

Through above graphical analysis it is conlcuded that the interval Runge phe-

nomenon does not occur for Runge function on [−1, 1].
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At interval [−2, 2] oscillations began to start at n = 10 and thus Runge phenomenon

occurs.

Figure 2.8: n=10 on [-2,2]

And increasing nodes at [−2, 2] results in more and more oscillations near end

points.

Figure 2.9: n=80 on [-2,2]
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At [−3, 3], oscillations occurs at the edges of interval at n = 10

Figure 2.10: n=10 on [-3,3]

Figure 2.11: n=40 on [-3,3]
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Similarly Runge phenomenon occurs at [−4, 4]

Figure 2.12: n=10 on [-4,4]

Figure 2.13: n=30 on [-4,4]
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At [−5, 5] for n = 10, resulting apprximated polynomial shows presence of Runge

phenomenon.

Figure 2.14: n=10 on [-5,5]

It results in wild oscillations at the edges by increasing nodes.

Figure 2.15: n=50 on [-5,5]
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Conclusion

Above examples show that:

1. A function may have a singularity in the complex plane but Runge phenomenon

may not occur if the interval [−a, a] is sufficiently small as in Ex. 2.1.2.

2. The Runge function manifests Runge phenomenon on any interval larger than

[−1, 1].
To see exactly when this phenomenon occurs, we shall now describe a simple proof due

to Epperson [9].

2.2 Epperson’s Proof

Let us suppose that we have odd number of nodes ”2k+1” which are equally spaced so

they are at an/k for −k ≤ n ≤ k. Let p(x) = 1/(1+x2) and q(x) is a monic polynomial

which vanishes at node so q(x) =
∏k

n=−k(x− an/k). So now p(x)(x2 + 1)− 1 vanishes

at nodes. Now we have:

p(x)(x2 + 1)− 1 = q(x)m(x) (2.2)

for some polynomial m(x). As degree of p(x) is even and degree of q(x) is odd so m(x)

have degree ≤1. Let m(x) = bx for some constant b.We need to compute b for this we

will replace x by i in equation (2.1).

p(i)(i2 + 1)− 1 = q(i)m(i)

0− 1 = (bi).
k∏

n=−k

(i2 − an/k)

−1 = (bi).i.
k∏

n=1

(i2 − a2n2/k2)

b =
(−1)k∏k

n=1(1 + a2n2/k2)
.

Rearranging equation (2.1) will exactly gives error formula:

p(x)− 1

1 + x2
=
bxq(x)

1 + x2
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p(x)− 1

1 + x2
=

(−1)kx2
∏k

n=1(x
2 − a2n2/k2)

(1 + x2
∏k

n=1(1 + a2n2/k2)
.

Error goes to zero iff

lim
k−>∞

(
k∑

n=1

log |x2 − a2n2/k2| −
k∑

n=1

log(1 + a2n2/k2) = −∞.

It looks like Riemann sum with spacing a/k, so it can be written as:

k

a
(

∫ a

t=−a
log |x2 − t2|dt−

∫ a

t=−a
log |1 + t2|dt) (2.3)

where ∫ a

−a
ln |x2 − t2|dt =

∫ x

0

ln |x2 − t2|dt+
∫ a

x

ln |x2 − t2|dt. (2.4)

Equation (2.4) further simplified to:∫ a

−a
ln |x2 − t2|dt =

∫ x

0

ln |x− t|dt+
∫ a

x

ln |t− x|dt+
∫ a

0

ln |x+ t|dt.

Applying integration by parts term by term we get:∫ a

−a
ln |x2 − t2|dt = (a− x) ln(a− x) + (x+ a) ln(x+ a)− 2a (2.5)

Similarly: ∫ a

t=−a
ln |1 + t2|dt = a ln(a2 + 1) + 2 arctan(a)− 2a. (2.6)

Putting (2.4) and (2.6) in (2.3) we get simplied result that is:

w(x) = (a− x) ln (a− x) + (a+ x) ln (a+ x)− a ln (a2 + 1)− 2 arctan(a). (2.7)

The Epperson’s solution explain the phenomenon, in case of Runge function, with-

out the use of complex analysis [15]. The zeros of w(x) will determine the points of

occurrence of this phenomenon.

2.2.1 Approximate Solution

We shall find an approximate solution of the equation w(x) = 0; where,

w(x) = (a− x) ln(a− x) + (a+ x) ln(a+ x)− a ln(a2 + 1)− 2 arctan a. (2.8)
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w(x) = a(1−x/a)(ln a+ln(1−x/a))+a(1+x/a)(ln a+ln(1+x/a))−a ln(a2+1)−2 arctan a.

w(x) = (1− x/a)a ln a+ (1 + x/a)a ln a+ a(1− x/a) ln(1− x/a)

+ a(1 + x/a) ln(1 + x/a)− a ln(a2 + 1)− 2 arctan a.

Assuming x < a and using the Maclaurin series,

(1− x) ln(1− x) + (1 + x) ln(1 + x) = x2 + x4/6 + .... (2.9)

we have

w(x) = a(
x2

a2
+

x4

6a4
)− a ln a

2 + 1

a2
− 2 arctan a.

w(x) = a(
x2

a2
+

x4

6a4
)− 1

a
− 2 arctan a.

Thus the equation w(x) = 0, is approximately equivalent to,

y +
y2

6
=

2 arctan a

a
+

1

a2
. (2.10)

wherer we have defined y = x2

a2
. As a first approximation, we can take the solution of

(2.10) as,

y0 =
2arctan a

a
+

1

a2
(2.11)

Now write (2.10) as y + y2/6 − y0 = 0, and use Newton-Raphson method to find a

better approximation y1. Setting f(y) = y + y/6− y0, we have,

y1 = y0 −
f(y0)

f ′(y0)

= y0 −
y20/6

1− y0/3
= y0 − y20/6.

where in the last step we have neglected third and higher powers of y0. Thus we have

an approximate solution of w(x) = 0, as,

x = a
√
y0 − y20/6. (2.12)
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where y0 was defined in (2.11).

For a = 3, approximate value is 2.675 whereas exact is 2.646. For a = 10, these values

respectively are 5.374 and 5.370. The error is less than 4 parts in 5000. It decreases

steadily as a becomes large [16].

2.2.2 Graphical Verification

Figure 2.16: w(x) on [−1, 1]

Figure 2.17: w(x) on [−2, 2]
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Figure 2.18: w(x) on [−3, 3]

Figure 2.19: w(x) on [−4, 4]

Figure 2.20: w(x) on [−5, 5]
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By using Mathematica commands we can find out the point on the interval [−a, a]
where the Runge phenomena occurs. In view of above graphs, we came to know that

in case of [−1, 1] there is no Runge phenomena. The table below shows the point where

divergence begins.

Table 2.1. Point Of Interval Where Runge Phenomena Begins

Interval Exact Value Approximate Value
[-2,2] ±1.98295 ±2.04956
[-3,3] ±2.64619 ±2.67547
[-4,4] ±3.1769 ±3.19426
[-5,5] ±3.63338 ±3.6451
[-6,6] ±4.03988 ±4.04842
[-7,7] ±4.40975 ±4.41633
[-8,8] ±4.75134 ±4.75659
[-9,9] ±5.07023 ±5.07454
[-10,10] ±5.37039 ±5.37401

Conclusion

By using formula (2.12) we can find approximate zeros of w(x) i.e. the point of occur-

rence of Runge phenomenon. More precisely, the point where function w(x) changes it

sign from negative to poistive is the point where divergence starts (Runge phenomenon

occurs) and before this point, interval is known as interval of convergence.
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Chapter 3

Methods For Minimax Optimization

In this Chapter, we shall show that a suitable choice of nodes can eliminate Runge

phenomenon. This shows that the phenomenon has its roots in equally spaced data.

3.1 Minimizing Error

As error is defined by:

E(x) = f(x)− Pn(x) =
f (n+1)(ξ)

(n+ 1)!

n+1∏
i=1

(x− xi).

The only information we have about ξ is thataitaisasomeapointainatheainterval [a, b]

thatadependsaonax, so we cant deal much with fn+1(ξ) but we can try to make∏n+1
i=1 (x − xi) asasmallaasaweacanabyapickingasuitableachoiceaofanodes xi to get the

minimum error. So now the question arises: Howatoachooseabetterasetaof data points

to get accurate interpolation polynomial.? As equally spaced nodes result in Runge

phenomena so we need to opt non-uniform nodes. One idea is to choose Chebyshev

nodes (roots of Chebyshev Polynomial).

3.2 Chebyshev Polynomial

3.2.1 Definition

Chebyshev polynomial of degree m ≥ 0 is defined as:

Tm(x) = cos(m cos−1 x) x ∈ [−1, 1].
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It can also be written as:

Tm(cos θ) = cosmθ, x = cos θ, θ ∈ [0, π][8].

3.2.2 Recurrence Relation of Chebyshev Polynomial

Using the angle sum angle difference formula:

cos (b± c) = cos (b) cos (c)∓ sin (b) sin (c).

one can write

Tm+1(x) = cos ((m+ 1)cos−1(x)) = cos (m cos−1(x)) cos (cos−1(x))−sin (m cos−1(x)) sin (cos−1(x)).

Tm−1(x) = cos ((m− 1)cos−1(x)) = cos (m cos−1(x)) cos (cos−1(x))+sin (m cos−1(x)) sin (cos−1(x)).

If we add these together one obtains

Tm+1(x) + Tm−1(x) = 2 cos (m cos−1(x)) cos (cos−1(x)).

It can also be written as:

Tm+1(x) + Tm−1(x) = 2xTm(x).

Solving for Tm+1(x) gives

Tm+1(x) = 2xTm(x)− Tm−1(x).

This is the recurrence relationship for the Chebyshev polynomials. We can find any

new polynomial using recurrence relation by knowing the previous one. Hence:

T0(x) = 1.

T1(x) = x.

T2(x) = 2x2 − 1.

T3(x) = 4x3 − 3x.

T4(x) = 8x4 − 8x2 + 1.

T5(x) = 16x5 − 20x3 + 5x.

T6(x) = 32x6 − 48x4 + 18x2 − 1.

Note that the leading term of the Chebyshev polynomial Tm(x) is 2m−1xm [8].
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3.2.3 Roots of Chebyshev Polynomial

Theorem 3.2.1. The roots of Tm(x) for m≥ 1 are:

xk = cos (
2k + 1

2m
π) ∀k = 0, 1, 2..m.

Proof. To find roots we need to find Tm(x) = 0.

Substituting x = cos θ we get:

Tm(cos θ) = cosmθ = 0.

This is possible when mθ =
π

2
+ kπ where k ∈ Z, Thus:

θ =
π

2m
+
kπ

m
=

2k + 1

2m
π.

Since:

x = cos θ = cos (
2k + 1

2m
π).

and we are done.

Moreover, Tm(x) has absolute exterma at:

x = cos
kπ

m
k ∈ Z.

3.2.4 Properties of Chebyshev Polynomial

1. |Tm(x)| ≤ 1 , x ∈ [−1, 1].
2. Tm(cos (

jπ

m
)) = (−1)j j = 0, 1...m

3. Tm(cos (
2j − 1

m
)) = 0 j = 0, 1, ...m.

3.2.5 Monic Chebyshev Polynomial

A polynomial whose highest power of x hasaleading coefficienta1aisaknownaasamonicapolynomial.

In case of Chebyshev polynomials highest power have leading coefficient 2m−1 except
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T0(x) = 1 so to get monic Chebyshev polynomial we need to divide it by
1

2m−1
. The

monic Chebyshev polynomial is denoted by Tm(x). Now:

Tm(x) = 1 m = 0.

Tm(x) =
1

2m−1
Tm m 6= 0.

ThearootsaofamonicapolynomialsaareasameabutaChebyshevapolynomials ahaveamaximumaand

minimum values are±1 butamonicaChebshevapolynomialsahaveamaximumaandaminimum

valuesaare ± 1

2m−1
whichagetsasmallerawhenamaincreases [7].

Theorem 3.2.2. If U is a monic polynomial of degree m, then:

||U(x)||∞ = max−1≤x≤1|U(x)| ≥ 21−m.

Proof. We will prove it by contradiction

Let U(x) be a polynomial of degree m, and also suppose that:

|U(x)| < 21−m ∀x ∈ [−1, 1]

Also set,

vm(x) = 21−mTm(x).

Now set:

xi = cos
iπ

m
i = 0, 1, ...m.

Then it shows that vm(x) is a monomial of degree m, we get:

(−1)ivm(xi) = (−1)i21−mTm(cos
iπ

m
) = 21−m(−1)i − (−1)i = 21−m.

Since vm(x) and U(x) both have leading coefficients 1 so their difference vm(x)−U(x)
have degree ≤m-1. On the other hand

(−1)iU(xi) ≤ |U(xi)| < 21−m = (−1)ivm(xi). i = 0, 1, ..m

Hence:

(−1)i|vm(x)− U(xi)| > 0. i = 0, 1, ..m
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Now, the function vm(x) − U(x) must changes its sign m − 1 times over the interval

[−1, 1] but this is not possible as degree of vm(x) − U(x) is at most m − 1. This

contradicts our supposition and hence completes our proof.

Theorem 3.2.3.
Tm+1(x)

2m
is the polynomial of degree (m + 1) that has the smallest

||.||∞ value over the interval [−1, 1].

Proof. Suppose that rm+1 is a polynomial of degree (m+ 1) also its leading coefficient

is 1 and this polynomial achieves a lower ||.||∞ norm, i.e. ||rm+1||∞ ≤ ||Tm+1||∞.
Now ||Tm+1/2m||∞ = 1/2m is achieved m+2 times within [−1, 1]. But from definition

we know that |rm+1(x)| < 1/2m at each of the m+ 2 extreme points.

Thus R(x) =
Tm+1

2m
− rm+1 is a polynomial of degree≤ m and at each of the m + 2

extreme points it has the same sign as Tm+1.

=⇒ R(x) must change sign m+1 times on [−1, 1] which is impossible for a polynomial

of degree ≤ m. =⇒ contradiction [7].

Theorem 3.2.4. Let:

xk = cos (
2k + 1

2m+ 2
)π k = 1, 2...m.

Then:

(x− x1)...(x− xm) = rm(x) = 21−mTm(x).

Proof. Each of xk is a distinct root of monic polynomial rm(x) of degree m. So by

Fundamental Theorem of Algebra rm(x) must factorizes as (x−x1)...(x−xm)and
this completes our proof [6].

Theorem 3.2.5. Let xk are the nodes chosen as the roots of Chebyshev polynomial

Tm+1(x) i.e.

xk = cos (
2k + 1

2m+ 2
)π k = 1, 2...m.

then error term of interpolating polynomial using node will be;

e(x) = |f(x)− U(x)| =≤ 1

2m(m+ 1)!
max−1≤x≤1|fm+1(t)|

[6].
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Conclusion

1. ||f(x) − pm(x)||∞ is the smallest for all polynomials of degree m if we choose the

{xk} to be the zeros of Chebyshev polynomial Tm(x).

2. The error is distirbuted uniformly over the interval [−1, 1] in case of Chebyshev.

3. Spectral Convergence: If the (m + 1) sample points for the interpolation poly-

nomial pm(x) are chosen at the roots of the Chebyshev polynomials xk = cos[
2k + 1

2m
π]

, then

em(x) = f(x)− pm(x)

=
f (m+1)(ξ)

(m+ 1)!
(x− x0)...(x− xm)

=
f (m+1)(ξ)

(m+ 1)!

Tm+1(x)

2m

Thus taking the absolute value of both sides

|em(x)| = |
f (m+1)(ξ)

(m+ 1)!

Tm+1(x)

2m
|

≤ ||f
(m+1)||∞

(m+ 1)!

|Tm+1(x)|
2m

≤ ||f
(m+1)||∞

2m(m+ 1)!

Thus the error decreases exponentially with m - a property known as spectral conver-

gence.

3.2.6 Optimal Nodes

In order to get accurate interpolating polynomial of a function f at m + 1 points on

the interval [−1, 1] we need to choose data points xk so that they are the zeros of

Chebyshev polynomials. If [c,d] 6=[-1,1] then use linear mapping, for this let g be a

linear map that maps a point x ∈ [−1, 1] to a point g(x) ∈ [c, d] such that g(−1) = c

and g(1) = d. These properties actually fix g uniquely as:

g(x) = c+
d− c
2

(x+ 1) =
d+ c

2
+
d− c
2

x
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The m + 1 data points xk for interpolating polynomial r(x) on interval [c, d] is then

image of g of m+ 1 zeros of Tm+1(x):

xk =
d+ c

2
+
d− c
2

cos (
2k + 1

2m+ 2
π) k = 0, 1...m. (3.1)

3.2.7 Runge Phenomenon and Chebyshev Nodes

As discussed earlier that polynomial interpolation at equally spaced nodes reduces error

in the middle of given range but not at edges for Runge function so we can exactly

say that adding more and more nodes can improve approximation at the middle but

it gives rise to some wild oscillations at the edges so now the question arises that how

to overcome these oscillations? So one observation is that we can cope up with such

problem by not choosing uniform nodes i.e. let us put up more points at the edges

and less at the middle. An optimum way to choose non uniform nodes is that choose

Chebyshev’s nodes (roots of Chebyshev plynomial of first kind). Our main task is to

minimize
∏m+1

i=1 (x− xi). We know that this product is monic polynomial of degree m

and any such type polynomial is bounded from above by 21−m. So now this bound can

be attained by using monic Chebyshev polynomial.

Graphical Verification

Let us plot f(x) = 1/(1 + x2) on [−3, 3] for n = 40 using Chebyshev nodes.
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Figure 3.1: n = 40 on [−3, 3] using Chebyshev nodes

Comparing with Fig.2.13 we concluded that using Chebyshev nodes we can avoid

oscillations at the edge.

3.2.8 RBF and Runge Phenomena

Recent research use radial basis function to deal with Runge phenomena. The RBF

interpolant for data values ek is defined as:

r(x) =
n∑
k=1

λkφ(||x− xk||)

where ||.|| is Euclidean norm and λk can be determined using condition r(xk) = ek [13].

In this recent research six strategies are discussed for defeating Runge phenomena.

Three of them fails and three are successful. The Gaussian RBF is defined as:

φ(x) = exp(−ε2x2)

With "n+1" interpolating points and with grid spacing h = n/2, the Gaussian RBF

can also be written as:

φ(x) = exp(−α2(x/h)2)
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where α is a relative width parameter. By fixing α and by increasing "n" the error falls

upto certain level and then attains a saturation point. So the efficient method is to

decrease α at a rate of 1/
√
n with increasing interpolating points. In this way Runge

phenomena disappears and also sub-geometricarateaofaconvergenceaisaachieved [14].
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Chapter 4

Trignometric Fourier Series and
Chebyshev Fourier Series

Uptill now we have discussed about polynomial interpolation of a function and also

how to deal with oscillations in case of singularities. While dealing with approximation

our main purpose is to get such approximations that results in less and less error. In

this chapter we will discuss about how to approximate a function with least error.

4.1 Least Square Approximation

Let {fm(x)}∞m=0 be a set of functions defined on an interval [c, d] and let w(x) be a

positive weight function on (c, d). Suppose the following k−sum

Pk(x) = a0f0(x) + a1f1(x) + ...+ akfk(x).

approximates an arbitrary function p(x) on [c, d]. Define the error

e(x) =| p(x)− Pk(x) | .

In the least squares approximation the coefficients ai, i = 0, 1, .., k are chosen so as to

make the following integral as small as possible

E2
m =

∫ d

c

w(x)e2(x)dx.
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4.1.1 Basic Definitions

4.1.2 Inner Product

The inner product of real functions w.r.t weight function w(x), let g and h on closed

interval [c, d] is defined as:

(g, h) =

∫ d

c

w(x)hgdx (4.1)

If (g, h) = 0 for g 6= h the two functions are said to be orthogonal to each other on

given closed interval.

Orthogonal Set

A set of functions {f1(x), f2(x), ...} is an orthogonal set of functions on the interval

[c, d] if any two functions in the set are orthogonal i.e.

(fn, fm) =

∫ d

c

fn(x)fm(x)w(x)dx = 0 (n 6= m) (4.2)

While dealing with Fourier series the set {1, cos(x), sin(x), cos(2x), sin(2x), ...} is im-

portant because it is orthogonal set on the interval [−π, π].

Norm of a Function

Norm of a function is defined as:

||f || =
√
(f, f) =

√∫ d

c

f 2(x)w(x)dx (4.3)

Orthonormal Functions

A pair of functions fi and fj is orthonormal if they are orthogonal and each normalized

i.e. ∫ d

c

fi(x)fj(x)w(x)dx = δij

where w(x) is the weight function and δij is Kronecker Delta i.e.

δij =

{
0 for i 6= j

1 for i = j
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Theorem 4.1.1. (Fourier Approximation)

For any given positive integer m, the best approximation, (in the least squares sense)

to a function p by a sum of the form
∑m

k=0 rkfk is obtained when rk = (p, fk) i.e. the

coefficients ak are the Fourier coefficients of p.

The error becomes

E2
m =‖ p ‖ −

m∑
k=0

(p, fk)
2.

where ||p|| is norm of a function (4.2) and fk is a set of orthogonal functions,(p, fk) is

inner product (4.1) and Fourier coefficients of any function p is defined as:

r0 =
1

2π

∫ π

−π
p(x)dx

rk =
1

π

∫ π

−π
p(x)f(x)w(x)dx

Now we will discuss in detail about fourier series.

4.2 Fourier Series for Function 2π Periodicity

Generally Fourier series of periodic function defined on interval [−π, π] is expressed as

:

F (x) = r0 +
∞∑
l=1

rl cos(lx) +
∞∑
l=1

dl sin(lx) (4.4)

where

r0 =
1

2π

∫ π

−π
F (x)dx (4.5)

rl =
1

π

∫ π

−π
F (x) cos(lx)dx (4.6)

dl =
1

π

∫ π

−π
F (x) sin(lx)dx (4.7)

Each term is periodic with a period of 2π so the sum of series is also periodic with

same period. If series converges on (−π, π) then it converges on real line, while dealing
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with fourier series this fact should be kept in mind that it is not necessary that series

in question coverges for all x∈[−π, π]. [10]
Note: The Fourier series converges rapidly to f(x) at all points where f is continuous

and we will see an overshoot near jump discontinuity and hence a very slow conver-

gence near point of discontinuity.

4.2.1 Fourier Series for Arbitrary Period

F (x) =
r0
2
+
∞∑
l=1

(rl cos(
lπx

A
) + dl sin(

lπx

A
)) (4.8)

where

r0 =
1

A

∫ A

−A
F (x)dx (4.9)

rl =
1

A

∫ A

−A
F (x) cos(

lπx

A
)dx (4.10)

dl =
1

A

∫ A

−A
F (x) sin(

lπx

A
)dx (4.11)

4.2.2 Bounds of Coefficients in a Trigonometric Fourier Series

Theorem 4.2.1. : If

1. p(π) = p(−π), p1(π) = p1(−π) ...pk−2(π) = pk−2(−π)
2. pk(x) is integrable

Then coefficients of Fourier series:

r0 +
∑∞

l=1 rl cos lx+ dn sin lx,

have upper bound

| rl |≤ R
lk
, | dl |≤ R

lk
,

where R is a constant, independent of l. If above two conditions are satisifed then

algebraic index of convergence is as large as k [12].
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If F (x) is symmetric about x = 0 i.e. if F (x) = F (−x) for all x we are only left

with constant and cosine terms and resulting expression is known as "Fourier Cosine

Series". If given function is not periodic then we replace x by cos θ and hence resulting

function and all its derivative are periodic on interval [−π, π].
A Fourier series:

F (cos θ) =
r0
2
+ r1 cos θ + r2 cos 2θ + ...

can easily be found. Now replacing cos θ by x and as we known that Tl(x) = cos lθ

we get a series:

p(x) =
r0
2
+ r1T1(x) + r2T2(x) + r3T3(x) + r4T4(x) + ...

where

r0 =
1

π

∫ 1

−1

F (x)√
1− x2

dx (4.12)

and

rl =
2

π

∫ 1

−1

F (x)√
1− x2

Tl(x)dx (4.13)

This series is known as Chebyshev-Fourier series. The few terms in above series gives

polynomial approximation which is superior than any other set of orthogonal polyno-

mials. The co-efficients in above series decays fast.

Example 4.2.1. Let f(x) =
1 + 2x

x2 − x+ 2
on [−1, 1]. The above series is neither even

nor odd. So by using mathematica we will calculate Fourier series for different "n".

Resulting Fourier series:

p2(x) = 0.567669−0.0642192 cos(πx)−0.00408395 cos(2πx)+0.693363 sin(πx)−0.289788 sin(2πx).
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Figure 4.1: Fourier series for n=2

E2
2 = 0.124253

p4(x) = 0.567669− 0.0642192 cos(πx)− 0.00408395 cos(2πx) + 0.000915867 cos(3πx)

− 0.000445927 cos(4πx) + 0.693363 sin(πx)− 0.289788 sin(2πx) + 0.188531 sin(3πx)

− 0.140459 sin(4πx).
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Figure 4.2: Fourier series for n=4

E2
4 = 0.0689793

p7(x) = 0.567669− 0.0642192 cos(πx)− 0.00408395 cos(2πx) + 0.000915867 cos(3πx)

− 0.000445927 cos(4πx) + 0.000272357 cos(5πx)− 0.000184705 cos(6πx)+

0.000133864 cos(7πx) + 0.693363 sin(πx)− 0.289788 sin(2πx) + 0.188531 sin(3πx)−

0.140459 sin(4πx) + 0.112019 sin(5πx)− 0.0931928 sin(6πx) + 0.079799 sin(7πx).
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Figure 4.3: Fourier series for n=7

E2
7 = 0.0413781

p10(x) = 0.567669− 0.0642192 cos(πx)− 0.00408395 cos(2πx) + 0.000915867 cos(3πx)

− 0.000445927 cos(4πx) + 0.000272357 cos(5πx)− 0.000184705 cos(6πx)

+ 0.000133864 cos(7πx)− 0.000101614 cos(8π)0.000079826 cos(9πx)

− 0.0000643969 cos(10πx) + 0.693363 sin(πx)− 0.289788 sin(2πx) + 0.188531 sin(3πx)−

0.140459 sin(4πx) + 0.112019 sin(5πx)− 0.0931928 sin(6πx)

+ 0.079799 sin(7πx)− 0.0697785 sin(8πx) + 0.0619976 sin(9πx)− 0.05578 sin(10πx).
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Figure 4.4: Fourier series for n=10

E2
10 = 0.0295539

We can clearly see that resulting trignometric Fourier series of given function converges

slowly while increasing "n". Now we will calculate Chebyshev-Fourier series: For n = 4,

resulting Chebyshev-Fourier series is:

p4(x) =
r0
2
+ r1T1(x) + r2T2(x) + r3T3(x) + r4T4(x).

r0 =
1

π

∫ 1

−1

1√
1− x2

1 + 2x

x2 − x+ 2
dx

Using Mathematica we get:

r0 = 0.58927

Similarly using (4.13) and using mathematica we get:

p4(x) = 0.503708 + 1.22683x+ 0.303026x2 − 0.356844x3 − 0.184783x4
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Figure 4.5: Fourier series for n=4

E2
4 = 0.0000361002

Similarly for n = 7, the resulting Chebyshev-Fourier series is:

p7(x) = 0.500349 + 1.25082x+ 0.363478x2 − 0.449515x3 − 0.345989x4

+ 0.0662657x5 + 0.107471x6 + 0.00749618x7.
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Figure 4.6: Fourier series for n=7

E2
7 = 0.000000119273

Hence through graphical observations it is clear to us that Chebyshev-Fourier gives

better and almost exact approximation than that of Fourier series. Also error compari-

son for both shows that approximation by Chebyshev-Fourier series has minimum error

than that of Fourier series and hence convergence rate of Chebyshev-Fourier series is

faster than that of Fourier series.

Covergence of Chebyshev-Fourier Series

The Fourier series coverges exponentially as long as function is analytic and periodic

but convergence rate drops if function loses its periodicity. This suffers from the fact

that the expansion has no longer orthogonal basis. The Chebyshev-Fourier series have
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few terms as polynomials which are orthonormal w.r.t particular weight function and

hence resulting in faster convergence rate.

4.3 Conclusion

1. It can be concluded that the Fourier series approximation of a periodic function

on a certain interval is prominently substantial with relatively less error and higher

convergence rate. However, in contrast for non-periodic functions on a limited interval

Chebyshev-Fourier series is far more passable than that of a trigonometric.

2. For a better approximation of an interpolating polynomial we prefer to use Cheby-

shev series due to some unique properties of a Chebyshev polynomial such as orthog-

onality, similarity with polynomials etc. On the other hand, for a non-polynomial

interpolation approximation through Fourier series is preferable due to higher conver-

gence rate than the Chebyshev series.
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Chapter 5

Summary

We have first defined Runge phenomenon and considered several examples to demon-

strate the existence or its absence. It depends on the function, its singularities in the

complex plane and the interval which contains the nodes.

In second chapter we answered all the questions through theoretical evidences about

occurrence and absence of this phenomenon. Moreover, through theorems and proofs

we presented formula to find point where the phenomenon menifest itself.

However, to overcome this oscillatory problem of an interpolating polynomial for a

non-analytic function due to equally spaced data points we consider some strategies.

In third chapter Chebyshev nodes which are the roots of the Chebyshev polynomial

have been introduced.

The fourth chapter comprises of notions concerning the reduction of an error in the

approximation. It can be seen through numerous graphs that for an interpolating

polynomial; the error obtained through Chebyshev-Fourier series is far more adequate

than that of a Fourier series merely due to some unique properties of a Chebyshev

polynomial.
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