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Abstract

In this research, we investigated nonlinear fractional Langevin equation involving two
distinct generalized fractional derivatives. Existence of unique and at least one solution
is demonstrated by making use of Krasnoselskii’s theorem and Banach contraction
mapping principle. Pair of fractional Langevin equations with Caputo and Riemann-
Liouville fractional derivatives were considered to check existence of positive solution.
Green functions for related equations are found to verify existence of positive solution
using fixed point theorems, upper and lower solution techniques. Also we have discussed
a coupled system of fractional Langevin equations. Existence result is obtained by
utilizing Schauder Fixed Point theorem and uniqueness result is proved by contraction

mapping theorem.



Contents

1 Introduction
1.1 Basic Knowledge . . . . . . .. ... .. o oo
1.1.1 Some Special Functions . . . . . . .. .. ... .. ... ... ..
1.2 Riemann-Liouville and Caputo Fractional Integral and Derivative
1.2.1 Generalized Integral and Derivative . . . . . .. .. ... ...

1.3 Results from Analysis. . . . . . . . .. ...

2 Generalized Fractional Langevin Equation
2.1 Existence of Unique Solution . . . . . . . ... ... ... ... ...,

2.2 Existence of Solution . . . . . . . . . ..

3 Existence of Positive Solution for Fractional Langevin Equations
3.1 Green Functions . . . . . . . . . . . ...
3.2 Properties of Green Functions . . . . . . . ... .. ... ... ... ..

3.3 Existence of Positive Solution . . . . . . . . . ... ...

4 Existence of Solution for Coupled System of Langevin Equation
4.1 Existence of Solution . . . . . . . .. ... ...

4.2 Existence of Unique Solution . . . . . . .. ... ... ... ... ....
5 Conclusion

Biblography

vi

DD NN NN -

12
14
20

25
27
30
33

45
46
93

56

57



Chapter 1

Introduction

The concept of differentiation is known to those who have gone through ordinary
calculus. The nth derivative g—f of a function g is well defined where n is an integer. The
development of fractional calculus began immediately after development of classical
calculus. Initially, it was stated in Leibniz’s letter to the L’Hospital, which proposed
the concept of a semi-derivative [13,14,25]. The development of fractional calculus was
made by several prominent mathematicians including Riemann, Lagrange, Liouville,
Fourier, Heaviside, Euler, Abel etc.

Lacroix wrote a paper in 1819 defining the fractional derivative. The nth derivative of

y=1t" meZ",Iis
dy — m!
dtn — (m —n)!

he replaced generalized factorial by Legendre’s symbol T,

d'y  T'(m+1)

din - I'(m—n+1)

m—n

The semi-derivative is obtained by taking m = 1,n =1/2

d1/2y t

Fourier listed the fractional derivative, but did not provide any examples or imple-
mentations. So, N.H. Abel was the first to render applications [2]. He analyzed the

fractional calculus in the integral equation solution.



Over the time, numerous mathematicians, employing their own terminology and method-
ology, have defined different concepts meeting the concept of non-integer order deriva-
tives and integrals. Definition of Riemann-Liouville fractional is one of the most com-
mon definition in fractional calculus. Riemann-Liouville definition of fractional deriva-
tive provides equivalent result as in equation (1.1). Most of concepts of fractional
calculus are essentially modifications of Riemann-Liuoville interpretation, This version

and its extensions are most likely to be addressed in this work.

1.1 Basic Knowledge

Before specifying the definition of integration and derivative of Reimann Liouville and
Caputo, we shall first state some special functions that are needed to properly under-

stand the definitions to come.

1.1.1 Some Special Functions

We will introduce the fundamental meanings and characteristics of some special func-

tions in this section, that are the main pillars of fractional calculus.

Gamma Function
Gamma function is one of essential features of fractional calculus.
Definition 1.1.1. [27] The gamma function can be defined as:
['(h) = /OO e " tdv, h € RT.
0

Some of the fundamental properties are:

(i) I'(1) = 1.

(ii) T'(h+ 1) = h!, h is a non-negative integer.

(iii) T(h+ 1) = hL'(h), h > 0.



Here are some commonly found examples of gamma function for different value of h,

(L) =ym Tn+ 1) =L(@2n 1), I(—n) = +o0,n=0,1,2,3, ... .

2 2’VL

The analytic extension of gamma function is given as below:

I'(h+ w)
h(h+1)(h+2)...(h +w—1)’

I(h) =

for any positive value of w. The above formula defines I'(h) for —w < h < 0 and h #
—1,—2,... —w+ 1. Thus domain of the gamma function is h € R —{0, -1, -2, -3, ...}.

Beta Function

It is more efficient to apply beta function instead of gamma in certain situations.

Definition 1.1.2. [27] The beta function can be defined as:
1
B(m1,72) = / v N1 —v)? dy, 7 >0, > 0.
0

Beta function can also be defined using gamma function as given below

['(m)T(72)

B = )
(71, 72) [(m + 72)

Mittag-Leffler Function

Among the important functions associated with fractional differential equation is Mittag-

Leffler function.

Definition 1.1.3. [27] One-parameter and two-parameter Mittag-Leffler functions

denoted by E,(t) and E, (t) respectively and defined as:

o tn
Et= —" k>0
(®) ;F(nﬁ+1) A

For k =1, we have F;(t) = e and for k = 2, Ey(t) = cosht.

n

I'(nk +¢)’

NE

E.(t) = k>0, ¢(>0.

Il
=)

n

In particular, F;»(t) = et;1’ Ey5(t) = %

3



1.2 Riemann-Liouville and Caputo Fractional Inte-
gral and Derivative

Fractional integral and derivative were developed by prolongation of integer order in-
tegral and derivative. The fractional integral can be derived from conventional ex-
pression for repeated integration of a function. Generally, this approach is known as
Riemann-Liouville method. Cauchy is credited with following method for determining

pth integration of function.

/at /azpl /:1 g(2)dzdz...dzp—q = ﬁ /at(t — 2P g(2)dz.

The operator I? denotes repeated integration,

oo = —+ [ (= 2 g(2)dz p € T

(p—1
The above formula does not provide fractional order integration. For all the real values,
gamma function gives extension of fractional. Thus, formula for fractional integration

can be obtained by replacing fractional expression by gamma function.

Ifg(t) = ﬁ/ (t —2)"'g(2)dz, Kk € RT.

Definition 1.2.1. [27,35] The Riemann-Liouville fractional integral of order x > 0 is

stated as: .
() = 5 [ (=2 gl

For t > a, if g is continuous then
lim I7g(t) = g(1).
Lemma 1.2.2. When g(t) = t¢, ¢ > —1 then we have

I5tS =
0 F(k+C¢+1)



Example 1.2.1. For k =2 and { = 3/2,

e _ _LBR2ED g,
Z —

I'(2+3/2+1)
I'(3/2+ 1)t7/2
I'(7/24+1)

6 TB3/2)
35T(3/2+1)
_ A

35

Lemma 1.2.3. Suppose g be an integrable function and x,( > 0. Then the composi-

tion of integrals is:
IiIog(t) = I, g(t) = I I5g(t).

Definition 1.2.4. [35] Assume a function g defined on [a,b] and n —1 < xk < n. Then

Riemann-Liouville derivative of order  is:

1 a
Dig(t) = ————— [ (t—2)" " Yg(2)dz.
o) = e L (= el
Lemma 1.2.5. When g(t) = t¢, then
r¢+1) .
Dité = > T ¢ ~1.
e N L

Example 1.2.2. For k = 1/2 and { =1,

CT(3/2)

Theorem 1.2.1. Assume that C"[a,b] be a space of all continuous and n-times dif-
ferentiable functions. Let ¢g € C™[a,b], n € N, h € C'[a,b] and k € (n — 1,n). Then

results given below hold:

(i) DEI%h(t) = h(t).

—_

n—

) 15Drg(t) = g(t) — S DLy, Lo

NCE)

<.
I
o



The Caputo fractional derivative was presented by Caputo in 1967. First nth

derivative of function is evaluated then fractional integral is applied.

Definition 1.2.6. Suppose n — 1 < k < n and g be n-times differentiable function.

Then Caputo fractional derivative of order s is stated as:

Dag(t) = I "Dyg(t)
1 ! 1
T(n H)/a(t 2) 9" (2)dz.

The Caputo derivative of fractional integral is
Dilig(t) = g(t),

This shows that D7 is left inverse of I”.
The fractional integral of Caputo derivative is

n—1 ,;
K CK t/ j
I7 Dig(t) = g(t) = Y ﬁg(”(a)-

§=0
1.2.1 Generalized Integral and Derivative

In order to resolve the overwhelming number of definitions, we should consider general
operators, we can choose specific kernels and some sort of differential operator to obtain
classical fractional integrals and derivatives. However, due to the arbitrary existence
of the kernel, most of the basic laws of the derivative operator can not be acquired.
In order to overcome this trouble, another solution is to consider a special case with

kernel of form k(t,z) = £(t) — £(z) and the derivative operator is of type %(t)%'

Definition 1.2.7. [3] Suppose a finite or infinite interval [a,b] and £ > 0, an inte-
grable function g over [a,b], £ € C*[a,b] is increasing function on [a,b] where V ¢ €
la,b], &(t) # 0. Then generalized fractional integral of function with respect to £ is

given as follows:

K, _ ]' ! !/ r—1
1 Eg(t)—m/a §(2)(&(t) = &£(2))"g(2)dz. (1.2)

6



For n = |k|+1, the generalized fractional derivative of g with respect to other function

¢ is given by

1 od\" .
DESg(t) = ( —) IS g(t)

¢(t) dt

1 1 d\" t/ o
F("—Fc)(s’(t)%) / (2)(E(t) — &(2))" " g(z)dz.

The Hadamard and Riemann-Liouville fractional operators can be obtained by setting

&(t) = Int and £(t) = t respectively.

Lemma 1.2.8. [3] If x,{ > 0, then the semigroup property holds:

[s,ﬁjgvﬁg(t) = ]:*C’gg(t) = I§’§I§”’59(t)-

By shifting the ordinary derivative with fractional order derivative, Caputo rede-
veloped Riemann-Liouville fractional derivative known as Caputo fractional derivative.

Here we also introduce a generalized Caputo-type operator.

Definition 1.2.9. Let £ > 0, on [a, b], £ is increasing and continuous function with
E(t)#0, Vtelab] and g € C"[a,b], n € N. Then generalized Caputo derivative of

order k is specified as:

cK, __ JNn—K, 1 i !
Dagg(t)_Ia 5(5,(25) dt) g<t)7

here for Kk € N, n =k and for k ¢ N, n = || + 1.

For convenience, let

0= () 90

If n =k € N, then from definition we have

Ditg(t) = gi'(t),

and if k ¢ N then
Dia(t) = s | €0 — ) e

7



Lemma 1.2.10. Suppose g : [a,b] R and x > 0, then following results hold:
(i) If g € C'[a,b], then

DEEIMg(t) = g(2).

(ii) If g € C"'[a, b] then following holds

n—1
I35 Diycg(t) = g(t) = > ¢;(E(t) — £(a)),
7=0
with
(7]
g9¢ (a)
Cj = 5]' .

In particular, when € (0,1)
DytI5¢g(t) = g(t) — g(a).

For the existence of integral (1.2), we must have k > 0. Moreover under certain
assumptions we have

lim 15%(1) = (1) (1.3)

If ¢ is differentiable and continuous for ¢ > 0 then the proof of (1.3) is simple. In this

case the integration by parts will result into

ey _ €O -g@)rel@ 1 .
régte) = SUEUI s [ e — s ()

lm 13%0(0) = g(a) + [ oz = g(0).

k—0

If g(t) is only continuous for ¢ > a, then proof of (1.3) is a bit lengthy. For this write

(1.2) in form given below
gty = % / E(2)(E() — £(2)) M gl2) — g(1))da
1 ‘ / r—1
S / E(2)(E(t) — £()) (1)

8



1 t=5 B
I*g(t) = m/ §'(2)(&(t) — &(2))" (9(2) — g(t))d= (1.4)
T €(2)(E(t) = €(2))" g(2) — g(t))dz (1.5)
I'(k) Jis
L90(ED -~ E@)
I'k+1)

Consider (1.4)

N t—0
LK< — ! t) — "z
e A CIGORT O
After integration and using limit k — 0 we have

Let us consider the integral (1.5). Since ¢ is continuous, for every § > 0 there exist

€ > 0 such that
9(z) — g(t)|<e.
So, result obtained is

Bl < s [ €EEn -l - gl

€

I'(k) /t§ §(2)(E(t) —€(2)" dz =

€

= T(k+ 1)

(&(2) — &(t = 0))".

Taking € — 0 as § — 0 we get for all Kk > 0,

lim| 5= 0.
Considering
)~ Ea))
15590 < |0+ n) ()| ER =@
o) < kgl SR
. K),é .
lim 1259(0] = lg(o)].
So,

lim I74g(t) = g(t),

rk—0

holds if for ¢ > a, ¢ is continuous.



1.3 Results from Analysis

In this section, few concepts from real analysis are presented that are needed for exis-

tence of solution for fractional Langevin equation.

Definition 1.3.1. Assume vector space V and suppose for each element g € V' there

is a non-negative number ||g|| assigned in such that ¥V g,h € V:
(i) llgll=0iff g = 0;
(ii) llegll= lelllg|l for any scalar ¢;
(iii) [lg + All< [lgll+I[7l
The quantity ||g|| is called the norm of g and V' is known as the norm space.

Definition 1.3.2. Suppose a subset X of Banach space 8 and functional S with
domain X C B, that is .S be a mapping from X to 8. Then S is equicontinuous on X
iff, for each € > 0 there is 6 > 0 such that [S(g) — S(k)|< € for all g, k € X whenever
lg —k|< 6.

Example 1.3.1. S ={h:[0,1] - R| h(7m) = cm,c € (0,1)}, then S is eqicontinuous.
Choose d = € > 0 for given € > 0

|h(m1) — h(ma)|= c|m — ma|< |m — m|< €.

Definition 1.3.3. Assume X be the subset of Banach space 9. If any class of open
sets covering X has a finite subclass covering X, then X is compact..

If closure of X is compact then the X is said to be relatively compact.

Definition 1.3.4. An element of function’s domain that is mapped to itself by function

is called a fixed point. t is fixed point of g if g(t) = ¢.

In following theorem () represents a subset of R™ and C/(Q)) is Banach space of real

valued continuous functions with maximum norm.

10



Theorem 1.3.1. [17] Assume a bounded subset ) of R™ and X C C(Q). Then X is

relatively compact iff it is equicontinuous and bounded.

Theorem 1.3.2. [17]| Suppose Z be a convex, nonempty and compact subset of Banach
space B, also assume A : Z — Z maps Z to itself and is compact. Then a fixed point
of A exists in Z.

Theorem 1.3.3. [31] Consider a closed, nonempty and convex subset X of a Banach
space Y. Suppose U,V be operators so that (i) Up+ V¢ € X for p,g € X. (ii) V is a
contraction mapping. (iii) U is continuous and compact. Then there exist r € X such

that r = Ur + Vr.

Lemma 1.3.5. [16] Assume B is Banach space and cone T' C B. Also assume
wy and wy be open discs in B. Also 0 € w; and Wy C wy. Furthermore, assume

G : T N (Wwy/wi) — T be completely continuous operator. Then either

(1) [Gall< [lgl| for ¢ € Z N dwy and [[Gql|= lq|| for ¢ € Z N Ow,, or

(17) ||Gqll> |lq|| for ¢ € Z N Owy and ||Gq||< ||¢]| for ¢ € Z N Ows.

Then there exist at least one fixed point of operator G in Z N (W /w1 ).

11



Chapter 2

Generalized Fractional Langevin
Equation

Langevin equation is a basic Brownian motion principle to explain evolution of physical
processes in evolving conditions [12,39], that was presented and formulated by Paul
Langevin [21], in 1908. Numerous generalizations of Langevin equation have been for-
mulated and researched by many researchers around the globe due to the advancement
of fractional derivatives [18,22,23,26]. Some useful applications of equation are study-
ing the fluid suspensions, photoelectron counting, modeling the evacuation processes
and protein dynamics.

In [15], Fa found a fractional Langevin equation involving Riemann—Liouville fractional
derivative to analyze deviations, position and velocity similarity functions of the de-
vice. Fractional Langevin equation is involved in the modeling of fundamental motor
control system [36].

Bashir Ahmad and Jaun J. Nieto in [5], discussed existence of solution for following

boundary value problem,
°D§(°DE + N z(1) = g(1, 2(1)), 0 <1 <1,
2(0) =y, 2(1) =7,
where 0 < k,( < 1, A is a real number, D is Caputo derivative, 7,72 € X and

g:10,1] x X — X. X is a Banach space of all continuous funcions.

In [6], the authors examined existence of solution for following three point boundary

12



value problem with Langevin equation,

°D§(°DE 4+ N)s(2) = d(2,5(2)), 0 < 2 < 1,

s(0)=0, s(n)=0, s(1)=0, 0<n <1,
where 0 < k <1, 1 < ¢ <2, Mis areal number, a continuous function ¢ : [0, 1]xR — R
and D is Caputo fractional derivative.

In [11], Nieto and Baghani studied the existence of solutions for following Langevin

equation,

where 0 < k <1, 1 < ¢ <2, ¢D is Caputo derivative, s : [0,1] x R — R is continuous

function, A € R and D?" is sequential derivative given by:
DFy = DPD® DRy =23 ...

Authors in [1], investigated uniqueness and existence result for problem stated below,

‘D5 2(r) = g(r, z(r)), r € [a,b],

zgf](a) =z~ z;"l(b) =2z, k=0,1,....,n— 2,

where D% is ¢-Caputo fractional derivative of order n — 1 < k < n, 2¥, 2, € R and
g :[a,b] x R — R is continuous function.

Our goal in this chapter is to analyze the generalized fractional Langevin equation with
two different generalized fractional derivatives. Specifically, we considered problem

given below,
D§*(Dg* + Nz(1)

x(0) = 1, z(1)

(t,z(t)), 0 <t <1, 1)

g
72

where 0 < k,( < 1, D is Riemann-Liouville fractional derivative, g : [0,1] x R — R,
A is real number, 71,72 € R, (R,|.]|) be a Banach space and A = C([0,1],R) is
Banach space of continuous functions with uniformly convergent topology with ||x||=

max |z(t)], t € [0,1].

13



We found a general solution to the problem (2.1) in Lemma 2.1.1. We used the Banach
Contraction mapping principle in section 2.1 for existence of a unique solution for
problem (2.1) and in section 2.2, for existence of at least one solution for problem
(2.1), Krasnoselskii’s theorem is employed.

The linear problem related to (2.1) is given by,
DS (DF* + Nz(t) = o(t), 0 <t <1,

JZ(O) =71 ZL'(]_) = 72,
here 0 < k,( <1 and o € C|0, 1].

2.1 Existence of Unique Solution

We intended to check existence of unique solution for problem (2.1) in this section. We
will first find an integral form of equation for (2.1) that will further allow us to verify

the uniqueness of the solution.

Lemma 2.1.1. The problem (2.2) has followmg solution:

/ ¢z () 1[/ &' (w f(w))c_la(w)dw_)\x(z)] dz

é— 0 F\l-‘rC 1/ 5/ 1
Az ( 2.3
+ g o 23)
"(w &(t) —£(0) Fhe-1
/ f )(5 w))*” ( dw]der’Yz[ (<1 0] :
Proof. Consider the linear differential equation in (2.2)
DS (DE*S 4+ Nx(t) = o(t). (2.4)
Applying Ig £ and Iy £ respectively and using the following property
I3 Dy g (t) = g(t) — co(&(t) — £(0)) "
We obtained following general solution for equation (2.4)
_ (¢ -
t) = £) — £(0))"1 = A% (t) + —2 t) — £(0))+¢1
v(t) = eil&n) - £0)) 1) + F o * (€)= €(0)
+ 15 (t). (2.5)

14



Using the boundary conditions for linear equation (2.2), we get ¢; = 0 and

COF(C) _ 1
I(r+¢)  (&(1) —€(0)"

Using these values in equation (2.5)

K8 r+C,E
g [)\] (1) = I"%%0(1) 4+ 2|

o k+(¢—1
z(t) = =N"x(t) + "o (t) + {H} INF42(1) — IF S0 (1) + ).

After simplification, we obtained the general solution as required in equation (2.3). [

In following theorem, we will verify the existence of unique solution for problem
(2.1).

Theorem 2.1.1. Suppose g : [0,1] xR — R be a continuous function and also satisfies

following inequality

Then unique solution of problem (2.1) exists if T < 1, where

o [20(6(1) = £(0)"TC 2[N(E(1) = £(0))"
T = { I'k+(+1) + L(k+1) ]

Proof. Define set U, = {z € A: ||z||< r}, where

1 [QN(i(l) —£(0)*
“1l-v I(k+(¢+1)

+"72|:|, T§V<1.

Also state [|g(w)||= max |g(w)| and set m%§}|g(w,0)|: N. Define O: A — A by
we|0,

wel0,1]
/5/ [/ = ( ))C_lg(’w,x(w))dw
_Ax<2)]dz+ E((i i‘g rﬂ 1/ 5’ ( - {M:(z)
/ §'(w (w)) g(wjx(w))dw} Az + {H] KhC—1

15



|(Oz)(2)]

s/g U"' W( 2(w))|duw
—£(0

+|A||x(z)|] E((g 5 r+c 1/ g/ {
/ '(w)(€(2) = E(w))*~ |9(w z(w ))|dw}dz+| 2|[ (t) — Z( )]K+C 1

|Allz(2)

0 €1) —£0)
S/e i L/g Sl ) (g, w(w)) — glaw, 0)
%wwwwﬁvm@wz[iygmw“éﬁﬁmﬁéww*
<[l [~ “”GWMmewwwwa
+| 2||:H:|N+C 1
s/g U“' ) )+l a0, 0) e
+wmﬂz[ E}Mi/g S oo |
+ [ S E (M$0M%+WOUOﬂﬁwidz+¢7ﬂ{€g§:iﬁg]ﬁw
g(/ﬁ’ Hf@ /'g C _(WMHNﬂw
i [ UG
e e }[]
< /Otfl K) £) {/ ¢lw _ (m+N)dw
e i zzr*“/ sty
i) =

{ o)

After integration we get

16



|(Oz)(2)]

t (o —&(z k—1 _ ¢
N ORO [(WN) <5<F2< SO s
—E0)]" T ez (2))! (£(2) — £(0))¢
o) [ o+ WS
£(1) = £(0) ] v
*'A'T} det il [5(1) - 5(0)]
- "Tgﬂ DL ) — goyaz + D
- 1) =€0) ]+ N
/ € e [5(1) —f(O)] ( D
/ n— r+C—1
<[ (€ - 0 + | £5= ]
Wr et £(t) —€(0) “*“
/ €t t=+ bl —£<o>1
After integration and using the following result
v, D+ i
I%5(E(t) — €(0)) = m(f( ) —£(0))°
We obtain
[(Oz)(t)]
nr+ N e [€(B) = €(0)77
S Tlrcrn 8O L(l)—sm)]
nr+ N p [Alr .
X m(f(l)—f(o)) T+ F(/<;—|—1)(€(t)_§(0)) (2.7)
Ar TE€W =601 0 e £(t) —£(0) 17
rresyi i IMCORKOURECH i)
Since £ is an increasing function and ¢ € [0, 1] so
) < &(1)
E(t) —£(0) < &(1) —£(0) (2.8)

Using (2.8) in (2.7), we obtain



2(nr+ N)
Oz|| < —~——(&(1) —£(0)" 4
jos) = 2L () - g(0)

< (TH+1—-v)r<r.
For every t € [0,1] and z,y € A, we will show

1(0)(t) = (Oy)B)[|< Tl =yl
(Oz)(t) = (Oy)(#)

- [ [/8 e e
—g(w,y(w))] dw} dz +/ SC (@5(2))5—1)\@(2) — z(2))dz
Loy et *M@><mw

%%)%Jﬂvg . Hﬁfg
({0, y(w)) - mmuwﬁw

(O2)(t) = (Oy)(#)]

< [ Ug S, o)

—wwmwwﬂw+/5' mﬁm”MM@—mmw

[w>aﬂﬁ“/€ “wma—@w

+[i=dm

aw-co) b
i e el
Iﬂwwwn—ﬂwy(mmﬁz-

Rearranging and using inequality (2.6), we get
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(O2)(t) = (Oy)(#)]

/)g [/‘g D fofu) ~ y(wd = +

/ §'(z ,{) )it I|2(2) — y(z)|dz + E((i)):z((g))rﬂ—l
/ gz 11“) £(z))~ A|z(2) — y(2)]dz + E((g_z((g))r%l
/ <l 1r)(;)g {/ = le(é)g ”'x(w) —y(w)ldw} dz

< [ SR [/‘g eyl a:

/ R _ k+¢—1
/5 qu—mw+[§3_§8}

/ H_ _ K+C—1
/ = Al — ylldz + Eg;_gm

t/‘gl U] [ ) a

After integration

(O2)(t) = (Oy)(?)]

é(: ~ €(0)) (6() — )
< [ [4 M) e —iaz + SLED
xumx—mu[gj zﬂﬂ @(LE“?>MW ol
N EUE Oy FC UL O (O R L

fi) r¢+1)
xnllz — yl}dz
eyl [ EERED € o (6D~ EO)
TTCEN b T SO R
o Kk+(—1
Wil =i+ | F5 =50 S Al vl

) — €O alle —ul [ EERED € o

e Rl A e GO R
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Integration yields the following result
2(£(1) — £(0))+S  2JA|(£(1) — £(0))"
)0 - O < | PAEI=HIE , ZAIED = E0)
= Tz -yl

|z -y

As Y < 1, then O is a contraction. Thus unique solution exists for problem (2.1). O

2.2 Existence of Solution
We have applied krasnoselskii’s theorem to check existence of at least one solution for
problem (2.1).

Theorem 2.2.1. Assume that bounded subsets of [0,1] x R are mapped to compact
subsets of R by a continuous function g : [0,1] x R — R. Also suppose Lipschitz

condition is satisfied
lg(t,z) — gt y)|<nlz —yl, Vt€[0,1], v,y € R.

If

M) — €0)" | (6(1) — €)™ _,
T(k+1) Tk+C+1) | =

Then at least one solution exists on interval |0,1] for problem (2.1).
Proof. Suppose U, = {z € A: ||z||<r}, where

. D(s + DEN(EQ) = £0) + ]
= T(r+ ¢+ DE(x+ 1) — 20T (s + 1)(E(1) — E(0)+ 2T (s + ¢ + DEQ) — E0))

Now define operators on U, as follows

o) = [0 - e | [T He e - dn o st

0
—)\x(z)}dz,
and
_ k+C—1 /1 (4
O I = (COREI 8
") . H—£(0)]"
- | € e atwsatunan]a 4o 5= Eg



Let x,y € U,, then
|(wa)(t) + (6y)(?)]

< [ E8ew et | [ S e6e) - st ot atwplaw
+|A\|:c<z>\] [ —ggg}g [ £ - “[Muy( )
oo i
< 5’ - { e (|g<w,x<w>>—g<w,o>\
Ha(w, o>|)dw+w|x ] E }C B e - o
e+ [ ()~ (|g<w o) = 9w, 0|l ) |
IHEAES
Let us defne lgw)ll= ma ()] and set ma g(u, 0)|= . So,
@) (0) + @) 0)
"t - et [ E58 ete) - etw) e+ N
+|A|||a:||} { g;y A 5’;
[ S - swn vl au + wuyu)} . Wﬁéﬂjiiﬂﬂg |

After integration and using (2.8), we have

2(nr + N)
Mk+C+1)
r.

2|A\|r

Ry 1 €0 — €0 + e

lwz + By (€(1) = £(0))"* +

IN A

Hence wx+60y € U,. Now we are going to prove that w is continuous and compact. The
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continuity of w is implied by continuity of ¢g. Also w is bounded on U,.

ool < [ e -] [ 58 ete) - et atuplan

HAllo()]|

< [ S - o [t - ) gt stw)
g0, 0) +lg(w,0) )dw + Nz \]dz

<« (€@ ¢ { ¢ ZJ; w))S (nllal|+ N )duw
HAlle]

< [ 8w e | [ W) + N)dw
+|>\|r]dz.

After integration and using the inequality (2.8), we obtained the following result

(g + N)(E() = €)™ Ar(€(1) = £(0)"
I'k+¢+1) I'(k+1) '

lwl[<

To check the compactness of w, we will first show that w is equicontinuous.

(W) (ta) = (wa)(t)]

ta () eyt [ [TE@) e
; F(@(é“(ta) £(2)) { T (£(2) = &(w))* " [g(w, z(w))|d

#A e + [ S et - s [ - st

g, ew)ldw + | |w<z>\]dz

22



< [ Fagteen - | [ e - e otunatwn - w0

+Hg(w, 0)])dw + |AHx<Z>|1dZ i / | fw(mi
y { T ) e

(&(ty) — (=)™

l9(w, 2(w)) — g(w, 0)[+|g(w, 0)[)dw

F(]C)

+HAlz(2)]| d=

< [ Z;(S U & zf’) )6 1(nr+N)dw—|—|/\|r]dz
+ Otb i((g [ 5/ (w) NS (npr + N)dw + |)\]r} dz.

Integrating and simplification gives the following result

[(wz)(ta) = (wz)(t)]]

777’ + N K+ |/\‘T K
< T ) — 0D+ () - 60)
e 6 = €)™ 2 o) - €0

The continuity of (§(ta) — £(0))"*, (§(ta) — £(0))", (&(ts) — £(0))"*¢, (£(t) — £(0))"
implies the continuity of w. For every ¢, w(F (t)) is relatively compact in R because
g maps bounded subsets to relatively compact subsets where F is bounded subset of
A. Hence on U,., w is proved relatively compact. Thus using theorem 1.3.1, w is compact

on U,. Now we will show that 6 is a contraction mapping.

(6)() ~ (99)(0)
€0 €01 G iy eomt] [ E@ et
< B=te] [ iem-dor| [ SEen - dw)
<lat. () = g )l + o) - ()|

€0 €01 €O iy ot | [ EW e e
< [0 S e - | [ - )

la(w) — y(w)ldw + |A2(z) - y<z>|] &z
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() —£(0) S LE(2) —£(2)) L “ ¢ (w) 2) — £(w))S L
< f=tn] e -cor| [ SEen - dw)

<z = ylldw + [Nl — yu}dz.

After integration and using (2.8) we arrived at the following result

(€(1) =€) (€(1) —£(0)**
Ple+1) D(k+¢+1)

(02) (1) — () ()| < [ } e -yl

Since all axioms of Theorem 1.3.3 are fulfilled, hence at least one solution exists for

problem (2.1) on [0, 1]. O

Example 2.2.1. Consider

here k =1/2, ( =2/3, A= —1/2 and

ot 2(t)) = — )2< ol +1).

Here
lg(t, z(t)) — g(t,y(t))|< ilx(t) —y(0)|-

Also for 0 <t < 1, £(t) = 2t + 1 is increasing function.

Further
k_18><27/6+\/§<1
- T0(1/6) T

So, unique solution exists for problem (2.9) on interval [0, 1] by using Theorem 2.1.1.
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Chapter 3

Existence of Positive Solution for
Fractional Langevin Equations

As a significant area of study, fractional differential equations have appeared. Frac-
tional differential equations exist in a broad range of disciplines namely mechanics,
viscoelasticity, morphology, blood flow phenomena, control theory, polymer rheology,
etc. Check [4,7,8,20] for more details. In [9,10] Ahmad et al. examined uniqueness
and existence of nonlinear fractional differential and integro-differential equation so-
lutions with number of boundary conditions employing fixed point theorems. Recent
study [34], addressed uniqueness and existence result for solutions of nonlinear frac-
tional differential equations for Riemann-Liouville form under generalized non-local
boundary condition. Zhi-Wei Lv, in [24] implemented fixed-point theorems for deter-
mining existence of positive solutions for system of fractional differential equations.
Langevin equation has a long-term impact on research. Fresh findings on the Langevin
equations throughout the diversity of boundary value conditions were already docu-
mented, see [28,29,32].

In [38], Shugin Zhang studied the multiplicity and existence of positive solution for

problem given below,

Dy .1(2) = g(2,7(2)), 0 <z<1,
7(0)+7'(0) = 0, 7(1)+7(1) =0,
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where 1 < kK < 2, g : [0,1] x [0,+00) — [0,+00) is continuous and D is Caputo
derivative.

For nonlinear fractional boundary value problem, in [19] authors examined existence
result and multiplicity of positive solutions with the help of theory of fixed point

theorems on cones,
Di,q = w(s)g(q), 0<s<1,
q(0) = 0, ¢(1) =0,

where w € L[0,1] is bounded on [0,1] and w(s) > 0 on [1/4,3/4], ] < o < 2, g €
C(RT,R*) with RT = [0, 00) and D is Riemann-Liouville fractional derivative.
For the following delay differential equation, Haiping Ye in [37] studied existence of

positive solution by employing upper and lower bounds technique,
D[r(w) =r(0)] = r(w)g(w,ry), w e [0, P],
r(w) = n(w), we[-¢0]

where 0 < a« < 1, n € K, g : [0,P] x K — RY be a continuous function. D is
Riemann-Liouville derivative. K = K([—¢,0];R") is space of continuous functions
from [—e&, 0] to R* with ||n]|= 71%8%0\77(7)], r(w) is a function in K defined as r,(v) =
r(w+ ), —e <y <0and R" = [0, +00).
Encouraged by work on positive solutions as stated above, we find out that there are not
much articles so far on existence of positive solutions for fractional Langevin equations.
Therefore, here we develop results on uniqueness and existence of positive solutions for
nonlinear fractional Langevin equations. First we will study following boundary value
problem:
DS(D* 4+ Na(t) +o(t,z(t) =0, 0 <t <1,
(3.1)
D*x(0) =0, z(0) = z(1) =0,

where D is Riemann-Liouville fractional derivative. Secondly we will focus on boundary

value problem with Caputo fractional derivative stated below:
“DS(°D" — N)E(t) = 5(t, 7(t), 0 <t <1,

- (3.2)
°DRF(0) = AZ(0), F(0) +7(0) = 0, (1) +7(1) =0,
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where “D is Caputo derivative. 0 < ( <1, 1 <k < 2 and A, X € R*. The nonlinear

functions o, 7 : [0,1] x R — R are assumed to be continuous.

3.1 Green Functions

First we will find integral form for problems (3.1) and (3.2) that will assist us in finding

the Green function.

Lemma 3.1.1. The problem (3.1) has following solution:
x(t) = =A"2(t) — I"Co(t, 2(t)) + X" T2 (1) + 7 1o (1, 2(1)). (3.3)
Proof. Applying I¢ on both sides of (3.1) and using Theorem 1.2.1

(D" 4+ Na(t) = —I(tzt) —cit*™' ¢ €R
Drx(t) = —da(t) — Io(t,z(t)) — cyt* . (3.4)

By using D*z(0) = 0 on (3.4), we obtained ¢; = 0.
DFg(t) = —Xx(t) — Io(t, 2(t)).
Applying I* to both sides
w(t) = =M"2(t) — I"Co(t, 2(t)) — cot™ ' — cst™ 2, ¢, c3 €R.
By z(0) = 0 there is ¢3 = 0 and (1) = 0 yields
co = —M"z(1) — "o (1, 2(1)).
Therefore, the integral form of (3.1) is
z(t) = —AI"z(t) — I"Co(t,z(t)) + M (1) + "o (1, 2(1)).

We can write it as

o) = /Ot_(trz—;))ﬁ_l[)\x(z)+/Ozwa(w,x(w))dw]dz
571 [/01 (1_—’2_1 [Ax(z) + /0 (Z}—M)Ha(w, x(w))dw} dz] :
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Lemma 3.1.2. Following solution exists for problem (3.2):

T(t) = APF(t) + MET(1) + MIT(L) + M1F (1) — M E(1) + 775 (8, T (t))

+ IG5 (1,2(1)) + 175 (1,7(1)) — 115 (1, 2(1)) + 17715 (1, 2(1)). 39
Proof. Apply I¢ on both sides of (3.2)
(‘D = NE(t) = IG5t E®D) —co, co €R
‘DT = ME(t) + IS5 (t, Z(t)) — co. (3.6)
Using “D*Z(0) = AZ(0) on (3.6), we get ¢y = 0.
*DFE(t) = NE(t) + 15 (¢, Z(1)).
Apply I” to both sides of above equation
T(t) = A"F(t) + "5 (8, T (1)) — et — co. (3.7)

Now by using z(0) + 2'(0) = 0 we attained ¢y = —¢q, and (1) + 2'(1) = 0 yields

o = MFE(1) 4 I"F(1,T(1)) + AIPTE(L) + 175 (1, 2(1)),
¢ = —AFE(1) = I"HE(1,E(1) — AIPE(1) — 19715 (1, 2(1)).
Thus substituting ¢; and ¢, in (3.7) and rearranging the terms we obtained
T(t) = AIPE(t) + AIPF(1) + MIPF(1) + M3 (1) — M3 (1) + I575 (8, (1)
+I55 (1, (1)) + LI (1, 2(1)) — tI°T 15 (1, 2(1)) + I57 15 (1, 2(1)).
O

Lemma 3.1.3. Consider h € C[0,1] and 0 < ¢ < 1, 1 < k < 2, then unique solution

of problem
(3.8)

18

28



where

(1 —w)F~ 4=t — (t —w) =t w <t

A
G(taw) = m { (1 o w)n—ltm—I’ t S w, (31())
and
- 1 (1 _ w)/@—l-C—ltn—l _ (t _ w)n—l—(—l’ w < t;
H(t7w) - F(Ii + g) { (1 _ w)n-i—C—ltn—l’ t < w. (311>

Proof. By Lemma 3.1.1, we need to prove that (3.3) can be defined in form of (3.9)

x(t) = /0 AT —w)™ — (= w)ﬁ_l)z(w)dw +/ AL = w)™ z(w)dw +

['(x) ¢ (k)
t (tﬁ—l(l . w)fﬁ-{—l _ (t _ w)fﬁ‘(-l) 1 tn—l(l _ w)fﬁ-(-l
/0 s h(w)dw + /t P )

x(t) = /OG(t,w)x(w)dw—i—/o H(t, w)h(w)dw.
[

Lemma 3.1.4. Consider h € C[0,1) and 0 < ¢ <1, 1 < Kk < 2, then unique solution

of problem
cDS(ED" — NZ(t) = h(t), 0 <t <1, 5.12)
cD*F(0) = A7(0), #(0) + 7(0) = 0, F(1) + (1) = 0, '
is
1 1 .
O / Gi(t, w)F(w)dw + / H(t, w)h(w)dw, (3.13)
0 0
where
N O ) i (O R ) s ) G € ) BN
G(t,w) :)\{ o L) I e (3.14)
’ (1—w) (1—t) (1—w) (1—t¢)
T(x) Rl gy t<w,
and
~ (zw) At (tzw)™h et | (w21t oy
H(t;w) — { (1_w)n+gfllzl(i—:)€) (1_w)n+<72(1_t)1—‘(ﬂ+<—1) B (315)
t <w.
T(k+C) L(k+¢-1) -
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Proof. We only need to show that (3.5) can be written in form of (3.13).

aw::X/Tﬂ_wy10_®+@_wy1+0_wyzg_§FWMw

T'(x) I'k—1)
+A/ [._ ) 1—w+xl—§f_%-¢qawmw
e
w1 (w1 -]
+/){ DE+d) Trt(-1D) ]hwmw
G w)dw + H t, w)h(w)dw.
0

3.2 Properties of Green Functions

For Green functions, some properties are presented in this section.

Lemma 3.2.1. G(t,w) and H(t,w) defined in Equations (3.10), (3.11) satisfy proper-

ties given below:
(i) G(t,w) >0 and H(t,w) >0, w,te (0,1).

(ii) For v € C[0,1],

tél{l;llg G(t,w) > () , w e (0,1),
G(t,w) < ﬁ(l—w)”l.
Also
By HEw) > i (l-w) T we 01,
Hiow < oo
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Proof. (i) Since t < 1 implies ¥ > w thus we obtain (1 — %) < (1 — w) which gives

1 —w)" =t —w)" >0, w<t

Hence G(t,w) >0, w, t € (0,1).
(17) Let
at,w)=[1-w)]" "t —(t—-—w)' 0<w<t<l
Thus
gt w) = [(1—w)]" 't = (t—w)" < (1—w)",

and this implies

Similarly, for 0 < w <t < 1, we obtain

hl(t, w) _ tnfl(l . w)fﬂ‘i’(*l . (t o w)ﬁ‘#{*l

Thus

1 K+C—1
H(t,w) < m(l—w) L

Next, it is noted that for w > t, G(t,w) is increasing with respect to ¢ and for w < ¢,

G(t,w) is decreasing with respect to t. Therefore,

oi(tw) 2 (L= ) G = (C — ), te [, 3

3 3
and
min G(t,w) > y(w)(1 —w)" ™, we (0,1),
te(3,2]
where
) = L = G

(1 —w)r1
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Also, let w = min (#571 — ¢"t¢~1) then

relh 2
hi(t,w) = (1 —w) 5=t — (¢ —a)rtet
Z (1 o w)n-{-(—ltn—l . (t N tw),ﬁ_c_l
= (1 _ w)fﬁ-i-{—l(tm—l . tm—&-(—l) > w(l . w)’”c—l,
Hence
w
minHt,w > (1 —w ’f+€_17 w e 0’1 )
e A TCET A ©.1

[]

Lemma 3.2.2. The function G(t,w) and H (¢, w) presented in Equation (3.14) satisfies

following conditions:

(i) G(t,w) >0, t,w € (0,1).

(ii) The Green functions defined by (3.14) and (3.15) has following properties

Gt w) < (?&;) (1—w) 2,
and
F(t,w) < %(1 )2,

Proof. (i) It is obvious from (3.14) that G(t,w) > 0 t,w € (0,1).

(ii) Consider

I—w) Q-0+t —w " (1= —w)r

atw) = T(r) Tk — 1)
(1—w)? (t—w)'  (I-w) (k-1
S TTm) T T Tk — 1)
(1—w)"?xk (1—w)"!
- I'(x) I'(x)

32



So, we get

Gt w) < O;?'H)l) (1 — w)=2
Now let
7 =)@ —w)t T (f—w)t (1= )1 — w)te?
it = I(x+) T T Tk o0)
< (1 — w)n+<—2 (t - w)n+€—1 (/<a + C . 1)(1 . w)n+<—2
- DE+Q) I'(k+0) T(k+¢—1)
< (1-— w)“+4_2(n +¢  (1- w)n+<—1
- I'(k + () I'(k+¢)
Thus we have : X |
~ k+C+1 W C—2
H(t’w) S W(l —w) ¢ .

3.3 Existence of Positive Solution

The existence and uniqueness of positive solution for problem (3.1) is verified in this

section.

Theorem 3.3.1. Suppose a Banach space C' = A([0,1],Y) of continuous functions

from [0,1] — Y provided with uniformly convergent topology with ||z|= m[(z)ix]]x(tﬂ
tef0,1

where (Y, ||.||) is a Banach space. Let o : [0,1] x Y — Y be a continuous function

which satisfies the following inequality
lo(t,z) —o(t,y)|< klz —y|, Vte[0,1], z,y €Y.

Then unique solution of problem (3.1) exists if < 1 where
2k 2|\
n= + :
I'k+¢+1) I(k+1)
Proof. Define operator I : C' — C' as:

(Iz)(t) = /Ot % [)\x(z) + /OZ %J(w, x(w))dw] dz

571 /01 % [)\:zz(z) + /OZ %a(w, x(w))dw] dz
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g el 7 (5 )1
ol < [T ok [ E ot a(w) - ow0)

Hotw o] ds-+0 | [ UL fnagos [7EL05

X (lo(w, z(w)) — o(w, 0)|+|o(w, 0)|)dw dz}

/0 (t —z) ! l|>\\|x(z)’+/oz (Z}—Uj)gl(k|x<w)|+|0'(U),O>|)dw:| "

IN

() (€)

w2 s [T S atiilotw. o] i

Ct—z) ! 2 —w) !
/0 (k) [P\‘Hxﬂ—i-/o T(C) (k:||:r:||—|—|o(w,0)|)dw} dz

et | l%wxw / Z%wuxuﬂa(w,mudw] Al

Define the set U, = {z € C : ||z||< r} where

1 2R
Ql—p(F<n+<+1>>’

where p is such that n < p < 1. also set m[ax]|a(w, 0)|= R.
we|0,1

(I2)(1)] < /Ot (t;é);_l [l)\|r+(kr+R)/Oz (z;(ug;c_ldw]dz

_ (1—2z)! [ /Z (z —w)s ! } }
+t“1[/— Ar+ (kr+ R —————dw|dz|.
o T TR TG
Integrating and using Lemma 1.2.2, we find the result given below
2|A|r 2kr + R
(k+1) T(k+(+1)

IN

1Hzll< & <(m+l-pr<r

Now for z,y € C,

|(Tz)(t) = (Ty) (D))

t (t o Z)n—l t (t o Z)f-c—l z (Z - w)C—l
< [ EE e v+ [ [ ot a(w)

(k) (©)
—a(w,y(w))ldwdz+t”1{/O %MHQ:(Z)—;U(@MZ—F/O a ;2;1

(2 —w)s !
x/o %\a(w,yc(w)) —J(w,y(w))|dwdz]
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=yt B by A
< [Nl —yle+ [ S [

k| (w) — y(w)|dwdz + ! UO %Mux(z) — y(2)|dz
V=2 7 (2 —w)! B
—i—/o () /0 0 k|x(w) y(w)|dwdz} )

Integration yields result given below

|(Tz)(t) = (Ty) (D))

Dl =yl | Kl =yl (=2 Dl =yl
I'(k+1) 'c+1) J, T(k) I'(k+1)
Bz — =" / (1=
+ z°dz
rc+1) Jo  T(x)
Al =l Bl =yl Al -yl Kl — gl
I'(k+1) I(k+¢+1) I'(k+1) I(k+(¢+1)
Since t € [0, 1], thus
2k 2|
Te —1 —
o=t < |forers * g e

= nllz =yl

As n < 1, hence [ is contraction. Thus conclusion followed by Contraction mapping

principle and hence BVP (3.1) has unique solution. m

Theorem 3.3.2. Suppose bounded subsets of [0,1] X Y are mapped to the compact
subsets of Y by a continuous function ¢ : [0,1] x Y — Y. Also suppose Lipschitz

condition is satisfied
lo(t,z) —o(t,y)|< klz —y|, Vte[0,1], z,y €Y.
Then on interval [0, 1], at least one solution exists for problem (3.1).

Proof. Suppose U, = {x € C': ||z||< r} where

- 2IM/T(k+1)+2R/T(k+ ¢+ 1)
- 1-2k/T(k+(+1) '
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And set max ]J(w 0)|= R. Define operators on U, as follows

we(0,1]
<mm>=——A“}2; w@+MﬂA<ﬁé?2@@,
©2)(t) = /0 :))R 0 (w))dwd=

1#‘{ 1(

L=z ( w)¢
+ 0 NG /0 0 (w z(w))dwdz.

Let z,y € U,, then

[(Qx)(t) + (Oy)(t)]
< |A|/ t}(zﬁ) 2)|dz + |\t 1/0 (Gl i ;(?; 1| (2)|dz +/0 (t;(’f;_l
y w)( 1 S i 1tm—1(1 _Z>n—1 ( w)g 1
Lé Q) '(y(mdd+l Sy R

x|o(w, y(w) |dwdz

)
IAI/ t}(i)) 2)ldz + A5 1/0 i ;(2);_ |x(2)|dz+/0 —(t;(fj;_

1 tm—l(l _ Z)n—l

IN

w) - — ol\w o\w waz
< [ S oty = ow )t 0w + [
z—w)¢ !

?A 7o) = o (w,0) -+l 0) dudz

e Iy Y s (t— 2!
I oz + e [ U \UM+A o

) )
(2 —w)s ! L=l (z —w)s !
></O 0 (k|y(w)|+|o(w,0)] dwdz+/ / G
X (kly(w)|+|o(w,0)])dwdz

MM’“')Hnw+uw14<ﬁﬁfuwm+ﬂﬁ%%l

1 4k—1 — )1 ZZ_wC—l
<[ g o+ [FEGERE [T
X (k|ly||+R)dwdz

|)\|T/O (t ;(Z); dz + |>\|7’t”1/0 (Gl ;(Z); dz + (kr + R)/O (U b ;(22;1

z (Z . w)gfl 1 t“fl(l _ z)nfl z (Z o w)gfl
X /0 0 dwdz + (kr + R) /0 00 /0 0 dwdz.

)1

IN
>

IN

IN
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After simplification

2\ | 2(kr + R)

Qx + Oyll<
1622 + yH_F(erl) Tkt ¢t 1) =

Hence Qx + ©y € U,. Now we will prove that €2 is bounded and compact.

@l < [ F(fj @tz et [ e

(
- 2llds K—1 (1—2)t zlldz
< [ e+ e [T g

) e [P =2
|)\]r/0 Wdz—l— |A|rt /0 T dz.

Simplification gives the following result

IN

2|A\|r

Quf< 2
191= w5y

Now for ¢,, t, € [0, 1]
|(Q)(ta) — (Q2)(t)]

“ (ta = 2! o [
< i S e [ SRl

=y b%uwdw g [ e

< WA e [ e
[ e+ g [ e
< |>\\r/ %dznﬂ)\hﬂt'gl/o %dz
Al / dz+|)\|rt§‘1/ol%dz
A S

- T(k+1) T(k+1) T(k+1) T(k+1)

The continuity of ¢, ¢*~1, ¥ and ;" implies the continuity of Q. For all ¢, Q(P(t)) is
relatively compact in Y as g maps bounded subsets to the relatively compact subsets

where P, the subset of C', is bounded. Thus ) is relatively compact on U,. So,
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employing Theorem 1.3.1 2 is compact on U,.
O is contraction mapping under the assumption that

2k

F'k+(+1) <L

L] o)1 [% (4 )L
—i—t“_l/o 111(/{)) /0( F(C; klz(w) — y(w)|dwdz
R R N VR
< K=l | ’ F</~c)> | ( F(C; dudz
T e et
T A e B R

Integrating and using Lemma 1.2.2

— < — Nlr—uqll.

Thus using Theorem 1.3.3, at least one solution exists for problem (3.1) on [0,1]. O

Theorem 3.3.3. Let ] <a <2, 0<f <1lando:[0,1] x R — R be continuous

function. Suppose there are two distinct positive constants r; and ry satistying

(Hy) o(t,a(t) < 2 for (t,2) € [0,1] x [0,74],

(Ho) o(t,x(t) > 2fep for (t,2) € [1/2,2/3] x [0, 7],

Then with min{ry,re} < ||z||< max{ry,r2}, at least one positive solution exists for

problem (3.1).
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Proof. Define U, = {z € C : ||z||< p}, (’\+

[Tz(t)] =

7 < £. Then for any ¢ € [0, 1],

/Gtw dw+/ H(t,w U(w,x(w))dw‘

L 1 — w)"* o (w, z(w w
< s [0— o e+ s [0 ar ot
< Lr<
= Tt =7

Now we are going to show that [ is mapping from bounded sets to equicontinuous

sets. For x € U,., t,,t, € [0,1] where t, < t;, then

() —

<

<

IN

L(ta)]

/0 Gty 0) = Glta w)lawdw| +| [ [H{ty,w) = H(ta, w)o(w, x(w))dw‘

ta
/ (G (tp, w) dw‘ ‘/ (tp, w) (w)dw
0

/t[G(tb w) — G(ty, w)]z(w)dw| +

[ﬁmam H(t0 ), 2 mﬁ‘/ (ty,10)

xo(w, x(w))dw‘

+

" H by w) mthwﬂ»m‘

+

/01 (ty ! — t’;;():)(l — w)n*1 dw‘ ‘ /1 (et tﬁ;(:z)r)\é)l )t
—— d‘-+F? [L/ = 0P — (1 — 0yl @mdw'

+

/t:b [ty — w)* = (La w)dw| + ‘ /tb (ty — w)" ™ = (ty — w)" Y]

; a[<tb —w)™ T — (t, — w)" o (w, w(w))dw‘

]
/t:b[(tb — W)™ = (t, — w)" o (w, x(w))dw' T ‘ /t;,l[(tb )t

(12 = 0ot ow)da|

+
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A
— tlﬁ*l _ tlﬁ*l tﬂ+<.*1 o tn+C71 _ t o ta K tl{ _ tl-@
F(H+1)T1|:(b a >+(b a ) (b ) + 1 a

‘I'(tb - ta)H + (ta - tb)ﬁ - (tb - 1)N + (ta - 1)5 - (ta - tb)’.C - (tb - ta)m_C
FETC (1 — 1) (t — 1) = (ty — 1) (t, — 1)

—(t, — tb)”+<] — 0 as t, — t.

Then using Theorem 1.3.1, I : U, — U, is completely continuous.

Now let Q) = {x € U, : ||z||< p1}, where (>‘ r1 < &. For x € 0Qy, we have, ||z||= p;.

+1)
So, for x € U, N0, we get

A [ el ! 1 —w)" o (w, z(w))|dw
12 < o [ (0= w0 el + g [ 1= w0y
< pr = [l].

Now put QQ ={x €U, : ||z||< p2}. For x € 00y, ||z|]|= p2. So, for x € U, N 9y, and

p2A < 75, where A = [(2%;3%) + (32212)_6(2,:;0)]71. Then we get

/Gtw dw+/ H(t,w)o(w,z(w))dw

2/3 2/3
> G(t,w)z(w)dw + H(t,w)o(w,z(w))dw
1/2 1/2
2/3 2/3
Z )\’}/p |:/ (1 _ w)ﬁ—ldw + / (1 o w)H+C—1dw
['(k) 1/2 1/2
> p2 = ||z,

where p = min {z(t)}.
te(33]
So, we have ||]:13||Z llz||, for = € U, N 02y. Thus using Lemma 1.3.5, at least one fixed

point of I exists in U, N (Qa/). O

Suppose a Banach space Y = C(H), H = [0, 1] of real valued continuous functions
with maximum norm. Consider W = {z € Y : z(t) > 0,t € [0,1]} in Y. If Z(¢t) >
0, 0 <t<1andz(0) =0 then T € Y is positive solution.

Assume c¢,d € R with d > c¢. Let us define upper and lower control functions as

U(t,z) =sup{o(t,v) : ¢ < <z} and L(t,7) = inf{o(t,¥) : T < ¢ < d}, for every
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Z(t) € [c, d] respectively. Clearly, on z, U(t,z) and L(t, ) are both non-decreasing and
monotonous and also L(t,7) < o(t,z) < U(t, ).

We suppose 0 : H x Y — Y be continuous function. Define operator ¢ : W — W by
1 1
@0 = [ Gtwitw)do+ [ ). 5w)de
0 0

(Hy) @ 21(t), Z2(t) € W, in such a way ¢ < T5(t) < 71(t) < d and

)
~
)
X
|
=
=
=
Vv
-
=
=2
o
=

DS(DF — N)@y(t) < L(t,25(t)), for any t € H.

(Hy) : A positive real number r < 1 exists such a way that
lo(t,z) —o(t,y)|<rlz—7y|, t€ H, T,y €Y.
Then 71 (t) and Z(¢) are upper and lower solutions for problem (3.2) respectively.

Theorem 3.3.4. Assume that (H;) is satisfied and 7(t) < Z(t) < Z1(t), t € H, then

for problem (3.2) at least one positive solution T € Y exists.

Proof. Consider C' = {z € W : Zo(t) < Z(t) < 71(t), t € H} with ||z||= I}légdf(t)‘,
€

then ||Z||< d, thus C is closed, bounded and convex subset of Y. Furthermore, the

continuity of operator ¢ on C' is obvious from continuity of o. If z € Y then a positive

constant e exists such that max{o(t,z(t)) : t € H, z(t) < d} < e. Then

(02) (1) < /OICNJ(Lw)llf(wﬂdw+/0 | H (¢, w)|[5(w, F(w))|dw

d(1+r) [ v (1+x+Qe [ 2
< St 4wt SRS [ —wpta

d(1+ k) (14+rK+Qe
(k) (k—1) (k+¢—DI(k+C)

Thus ¢(C') is uniformly bounded. For equicontinuity of ¢, suppose z € C, e >0, 6 > 0
and 0 <t, < t, <1, such that |t, — t,|< d. If

el'(k)T(k+1) 'k+QI'(k+¢+1) }
dl(k)(1+ f'(m) + (s + D] e[l(r + QA + f/(2)) + T(s + ¢+ 1] ]

0= min{l,
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Then

(6B (ta) — (D)) < d / 1Gi(tar w) — Gty w)ld + ¢ / (FE (t, w) — (1, w)|duo.

Now consider

é(ta; w) — é(tb, w) = (1 —w)" Yty —ta) + (tg —w) 1 — (t —w)~ !

()
(1—w)"2(tp — t,)
TTTeon
o) o hte it ty —
/ Gt Gty w)|d k[(k) N k[(k) N (k—1I(k—1)

ty—te  ty—te tF—t"
I'k+1) T'(k) T(k+1)

Let m € (ta,tb)
o tb - ta tb - ta f,(n1)<tb - ta)
/ Gltarw) = Gltnwlldw = FE5+ T+ T

_ L+ f'(m) 1
= (tb_t“)lr(mﬂ) +r(ﬁ)}'

Similarly

/lH ta, w) — H(ty, w )Idwz(tb—ta)[ L+ f'(n2) L] }

Fk+C¢C+1) T(k+Q) ]|

So, we have

) ,
) (A )

< €.

Thus ¢(C') is equicontinuous. Using Theorem 1.3.1, ¢ : W — W is compact. The
application of Theorem 1.3.2 requires to show ¢(C) C C. Suppose T € C, then
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hypothesis implies:

(00)(t) =

and

Thus for t € H, Zo(t) < (¢x)(t) < Z1(¢), that is ¢(C) C C. At least one fixed point
T € C of ¢ exists by using Theorem 1.3.2. Thus for problem (3.2) at least one positive
solution = € Y exists and Z5(t) < Z(t) < 71(t) for t € H. O

Theorem 3.3.5. Suppose (H;) and (H,) are satisfied. If

N 1 1
- + K N (14+x+Qr 1

(k—1I(k)  (k+¢—DI'(k+Q)

Then problem (3.2) has unique positive solution = € Y.

Proof. 1t is followed by Theorem 3.3.4 that at least one positive solution for problem
(3.2) exists in C. So, we are required to show that ¢ described in Theorem 3.3.4 is

contraction on Y. For 7,y € Y,

K@@—%WMS/GtMI wmwlﬁmw%mw»

" (w, Fw)|dw
/0 Gi(t, w)[F(w) — F(w)|dw + / rEI(t, ) |F(w) — §(w)|dw

IN

= [ 1Gtw) = i) 3w) + )

Since




and

ﬁ(t, ) < (F(H+§) (1 _w)n—l-C—Q‘
Therefore
o - ol < [ [ a oy S yyee]
x|z (w) + y(w)|dw
(k+1) ) (k+¢+1)r _ )2
< [w—nr(m“ A P ) ¥ PG L }
<|[Z — 7

[(02)(t) = (en)()] < sz —yl|

Since 5 < 1, Hence ¢ is a contraction mapping. Therefore, unique positive solution

T € Y exists for problem (3.2). O

Example 3.3.1. Consider

DYDR 4 1 _ |cos x|
(D" +Dalt) = Vi+ g (3.16)

D z(0) =0, x(0) =z(1) =0,

where k =3/2, ( =1/2, A=1and

o(t,z) =Vt + |

cos x|
1+t

For (t,x) € [0,1] x [0, +00),

|cos x| 1
1.512p < Vit <Vt <Vt < 2.257;.
p_\f_\f+1+t3_xf+1+t3_ ry

We choose 71 =1, ro =0.50, p = 0.45 and w = 0.914, ~ = 1.225 such that (H;) and

(Hj) of Theorem 3.3.3 are fulfilled. Therefore at least one positive solution for problem

(3.16) exists.
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Chapter 4

Existence of Solution for Coupled
System of Langevin Equation

The development of different mathematics disciplines through fractional calculus has
provided many employments of fractional differential equations. The coupled system of
fractional differential equations became popular due to their application in science and
technology. Many researchers, by using fixed point theorems, has studied existence of
solution for coupled systems of equations.

Fang and Bai in [40], studied existence of positive solution for following singular coupled

system of equations,
D% 2y = hy(s,x3), DV?wy = ho(s,11), 0 < s <1,

where 0 < 91,19 < 1, hy, hy : [0,1) X [0, +00) — [0, +00) are continuous functions and
D is Riemann-Liouville derivative.
In [42], coupled system of multiterm differential equations was considered for estab-

lishing existence and uniqueness of solution,

Dx(t) = gi(t,y(t), D*y(?), ..., D*y(#)), D" "x(0)

D%(t) = go(t,z(t), D" x(t),..., D™ x(t)), D¢_§y(0)

N
|

O, 1,...,7117
0

=
Il

]., .y No.

)

where i = (7] + 1, ns = [¢] + 1 if 7,6 ¢ N otherwise ma = 1], 1o = [¢] if 7,6 € N,
Y >8> > 8, ¢>11> . >, Also g1, g0 0 [0,1] x R*™ — R are continuous and

D is Riemann-Liouville derivative.
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Authors considered coupled system of Langevin equations in [41], to investigate exis-
tence and uniqueness of solution.

In [43], existence result was developed for problem given below,
D%z (w) = wuy(s, zo(w), D' ay(w)),
D?2xy(w) = wug(s,z1(w), D2z (w)),
21(0) = 21(1) = 22(0) = 22(1) =0,
where 0 < s < 1,01—C, ¢po—C1 > 1, (1,0 >0, 1 < ¢y, 02 < 2, D is Riemann-Liouville
derivative and 1,29 : [0,1] x R x R — R are any given functions.
There is limited work available for existence of solution for coupled system of frac-
tional Langevin equations. So, inspired by the work on coupled system of differential
equations, we considered coupled system stated below,
DY (DR + \)z(t) = o1 (t,z(t),y(t)), 0 <t <1,
D=(D"™ + Xo)y(t) = ot 2(t),y(t)), 0 <t <1,

- (4.1)

0, z(0) = z(1) =0,
Y y

(0) = y(1) =0,
where D%, D%, D" D" are Riemman-Liouville derivatives. 0 < (;, ( < 1, 1 <

D™y(0) =

K1, ko < 2 and Aj, As € RT. The nonlinear functions oy, oy :[0,1] x R x R — R are

assumed to be continuous.

4.1 Existence of Solution

The objective of this section is to establish existence of solution for problem (4.1).

Consider C[0, 1] be space of real continuous functions.

Lemma 4.1.1. Suppose S = {z(t) | #(t) € C[0,1]} be a Banach space with norm

||| 5= m[(e]wl(]|x(t)| Also consider Banach space Q = {y(t) | y(t) € C[0,1]} with norm
te|0,

= t)]. F 1Y) € S x ~,
lvllg trg[%ly( )| For (z,y) @, suppose
(@, Y)lg.5= max{||z||5, [lyll5}-

Then (S x Q, |-Il5.5) 1s a Banach space.
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Consider coupled system of integral equations

x(t):/o Gl(t,w)x(w)dw+/o Hi(t,w)oy(w, z(w, y(w)))dw,

y(t):/o Gg(t,w)y(w)dw—i-/o Hy(t, w)os(w, z(w), y(w))dw,

where
Giltu) = o { g e
i) = ot { 0T
=R e
and
e A el

Lemma 4.1.2. Assume continuous functions o1, 09

w <t
t <w,
w)fﬂ-&-@—l,

t <w,

w)HQ+C2—17

w <t
t <w.

(4.2)

(4.3)
(4.4)

(4.5)

(4.6)

0 [0,1] x R x R — R. Then

(z,y) € S x Q is solution for (4.1) if and only if (z,y) € S x @ is solution for (4.2).

Proof. Assume (z,y) € S x Q be solution of (4.1). Then from Lemma 3.1.1, we obtain

that (z,y) € S x Q is solution of (4.2). Now assume (z,y) € S x Q be the solution of

(4.2). Using equations (4.3)-(4.4) in system (4.2) and simplifying we came to conclusion
that (z,7) € S x Q is a solution of (4.1).

Consider the operator K : S x @ — S x @ given as:

K(z,y)(t) =

= (Ku(z,9)(1), Ks(z, 9)(1).

Theorem 4.1.1. Assume one of following are satisfied

47

(/01 Gt wia(w)dw + /01 Hy(t, w)oy (w, x(w), y(w))dw,
/01 Ga(t, w)z(w)dw + /01 Hy(t, w)os(w, z(w), y(w))dw>

]



(Hy) Two non-negative functions p(t), ¢(t) € L[0,1] exists such that |oy(t,z,y)|<
p(t) + arfz[" +aslyl*> and |oa(t, z,y)|< q(t) + bile" +bafy]™, 3\ < T(sy +
1), 3y < F(FLQ + 1), ai,bi > (0 and i, Vi > 1,’l = 1,2

(Hs) |ou(t, 2, 9)|< arlz|" +aolyl*> and |oa(t, 2, y)|< bile]” +bolyl™, 20 < T(k1 +
1), 29 < F(Hg + 1), a;,b; > 0and 0 < p;,v; < 1,0 =1,2.

Then solution exists for problem (4.1).

Proof. First suppose (H) is satisfied. We will make use of Theorem 1.3.2 to prove this
result.

Define set

U, = {(@(t),y(1) |(x(t),y(1)) € S x Q, (@), y(1))llz.a< 7.t € [0, 1]},

where

1

r > maX{ ¢ ( a1 ) o ( 3az ) o
- 1/3—= X\ /T(k1 + 1) \I'(k1 + G + 1) "\l(k1+G+1) ’

_1 _1

D ( 3b > = ( 3bs > =vz }
1/3—)\2/F(Ii2+1)’ F(/ig—f-Cg—f-].) ’ F(Iig—f—CQ—f-]_) ’

and

1
C = max/ |Hy(t, w)p(w)|dw,

tel0,1] Jo

D = max/ |Hy(t, w)q(w)|dw.

tel0,1] Jo

First we will prove that K : U, — U,.

1

[Ka(z,y)(1)] =

Gl(t w)z(w dw+/ H(t,w)or(w, z(w), y(w))dw

IN

/ |G (t, w |dw+/ |Hy(t, w)p(w)|dw + (a7 + agrt?)

/0 |yt w)|duw
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IN

e [

t _(t _ w)lﬂ-i—Cl—l
H(t, )|dw + B+ agrt? / d
/ |Hy(t, w)p(w)|dw + (arr asr )[ T 10 w

t:‘il-i-Cl 11 _ K1+C1—1
(e,
0 ['(k1+ G)

tﬁl 1
= rA + Hi(t,w)p(w)|dw + (ayr* + agrt?
1|:P(/€1+1) K1+1] /’ 1 | (1 2 )
{ tm-i—ﬁ—l t’“+<1 }
(

_.I_
Lk +G+1) Tk +G+1)

rA (@™ 4 agrt?)

T T(m+1) +/0 el + T e Ty

Thus,

T\ (ayr"t 4 agrt?)
Ki(z,y)ls € =——+C+
1Kz, y)lls < T(ki +1) D(ki+ ¢+ 1)

IN
[
+
[
+
[
I
<

Now for Ko,

| Ka(z,y)(1)] =

u/%tw ¢m+/Hﬂwmme)WW4

IN

/ |Go(t, w |dw+/ |Hs(t, w)q(w)|dw + (byr"* + bar"?)

&/MMLMWw
0

A [ e [ P

IN

i dw + (b b ot
+ t,w)g(w)|dw + (byr** 4 bar? / w
[t gt + e | [
bpratCa—1(1 _ 4p)R2tG—1
—l—/ (1= w) dw}
0 [(k2 + C2)
tﬁzfl
= 7\ H(t, )|d b b
TQ[F(H2+1>+ Iig—f— :| /| 2 w |U}+(1T +27‘ )
tlig—i—(g—l tN2+CQ
_l’_
{F(Féz +G+1) [k + G+ 1)}

(blr”l + b27’y2)
— H t + .
@+ /W2 wg(w)ldw T(ky + G + 1)
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Thus

7")\2 (bl’l"yl + bg’f‘y2)
Ko(z,y)||ls < ——22 4
< T+T+T
- - - =T.
-3 3 3

Next assume that (Hs) is valid. Take

" 1
0cr < mnd (FEFGED L A VT (Tt G+l
aq 2 T(k1+1) 2

(F<m2+c2+1)(1_ Ao ) (F<n2+<2+1>)v5—1}
bl 2 F</€2+1> ’ 2b2 )

Then
A1 (a1t + agrt?)
Ki(z,y)(t)| < *
Kle O = 5o T T o+ 1)
r T
1Kz y)lls = 5+5=r
For K, we obtain
g (b1t 4 bar??)
Ky(z,y)(t)| < T
| Ka(z,y) ()] F(ko+1) T(ke+C+1)
roor
(2 y)llg = 5+5=r

Thus as a result K : U, — U,. Since G;(t,w), Ga(t,w), Hy(t,w), Ha(t,w), oy and
oy are continuous, Thus K is also continuous. We will prove that K is completely

continuous.

Set max |oq(t, x(t),y(t))|= A and max|oo(t, z(t),y(t))|= B. For t,,t, € [0,1] with
te(0,1] t€l0,1]
)

ty < tp and (z,y
|Kl<x7y)<ta) _Kl(a:vy)(tb)‘

< /0 |G (te, w) — Gl(tb,w)||x(w)|dw—|—/o |Hy(to, w) — Hy(ty, w)]
Xlo-l(w7x(w>7y<w))|dw

1 1
< 7“/ |G1(te, w) — Gy (tp, w)|dw + A/ |Hy(ta, w) — Hy(tp, w)|dw
0 0
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IA

ta 123
r {/ |G1(ta, w) — Gy (tp, w)|dw + / |G1(ta, w) — Gy (tp, w)|dw
0 tll
1 ta
—l—/ |G (ta, w) — Gl(tb,w)]dw] + A{/ |Hy(ty,w) — Hy(ty, w)|dw
ty 0
ty 1
+/ |Hy(to,w) — Hy(tp, w)|dw +/ |Hy(to,w) — Hl(tb,w)|dw]
ta 123

- sl : (a1 = )7 = 0 = ) = 1= ) 4 (0= )

# (= 0 = ) = o

v/ | (w — )" = ({1 - w>>““1)d“’] ' ﬁ

Ht - w)“ﬁﬁl)dw ¥ / <<ta<1 W) (g1 — )t

T LT / 1 (a1 = w970 = (1 = )9 )]

1 ta
= 1 —w r1—1 tm—l _ tm—l dw+/ —(ty, —w m—ldw
FWM( o = g e [~ w)
A

ty 1
t — fil—ld 4 / 1 . K1+C¢1—1 trﬂ-}—Cl—l o t51+C1—1 d
[t-w w} —r<m+<1>[o< W) S gy

ta tp
+/ _(ta _ w)n1+C1—1dw + / (tb _ w)m-l—ﬁl—ldw} ‘
0 0

rA1 -1 -1 )
= — = (¢t gl g )
(K +1) ( a b a b D(ky+ ¢ +1)

—tZH_Cl + t:l-i-ﬁ) )

_|_

(tgﬁ-é&—l . tZl-l-Cl—l

For K5, we get
Ko (2, y)(ta) — Koz, y) ()]

< /0 |Ga(t,, w) — Gg(tb,w)||x(w)|dw+/0 |Hy(to, w) — Hy(ty, w)|

x|oa(w, z(w), y(w))|dw

1 1
S T/ |G2(ta7w) _GQ(tb7w)|dw+B/ |H2(ta7w) _HQ(tb7w)|dw
0 0

o1



IA

ta 123
r {/ |Ga(ta, w) — Ga(ty, w)|dw +/ |Ga(ta, w) — Ga(ty, w)|dw
O a
1 t ta
—l—/ |Ga(ta, w) — Gg(tb,w)]dw] +B [/ |Hy(ty, w) — Ha(ty, w)|dw
ty 0
ty 1
+/ |Ha(to, w) — Ho(ty, w)|dw +/ |Ho(to,w) — Hg(tb,w)|dw]
ty
7’)\2

T T(ko) Uot (“a(l —w))™? T = (ta — w) T — (1 —w))™ T+ (b — w)@—l)dw
+/ (“a“ — )= = (1= W) (- ww”)dw

v/ 1 ( L= ) = (0t = ) Y] +
{ ( Yl (g, )Rl (4 (1 — w))rete!
ity — ) 1)dw # [ (et - - e

s L 1 (a1 = w70 = (1 = )y )]

tp

1 ta
= l/ (1 —w)== (w2t — 2 Y dw +/ —(t, —w)™ tdw
r 0 0

ty B 1
+ ty —w @_ldw} 4+ — |:/ 1—w k2+(2—1 t§2+<2_1 . tl-iz-l-Cz—l dw
| t=w | [ e o)
ta ty
# [ —wyedo [ (tb—w)”*@‘ldw]
0 0
re -1 -1 ) -1 +Co—1
= % gReTh e R g gl pretC—1 _ 4Rt
F(/ﬁlz‘f‘l)(a b a b F(/‘f2+<2+1) a b

_tZQ-‘r@ + t:z-i-@) )

Since tf1, 51, gl Tl e pee gra—l sl et tm+C1 pra+a-1 tm-i—ﬁ 1 | e,

e et and ¢ all are uniformly continuous on [0,1]. Therefor KU, is

equicontinuous and hence K is completely continuous. Thus there exist solution for

problem (4.1) by Theorem 1.3.2. O
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4.2 Existence of Unique Solution

Existence of unique solution for problem (4.1) is checked in this section.

Theorem 4.2.1. Suppose o1, 02 : [0,1] x R x R — R be continuous functions and

satisfies Lipschitz condition

lo1(t,z1, 1) — ou(t, 22, 42)| < Til|w — 22| +7alyn — vo,
loa(t, w1, 1) — 02(t, 22, 2)| < &|lwr — zo|+Ea|yn — yal,

where x;,y; € R for i = 1,2. If k = max{ky, k2} < 1 and p = max{p;,p2} < 1 where

A1 1 T2

k: 7k: )
' F(51+1)+F</€1+Cl+1) ? I'(k1+G+1)

and

e & &
T(ha +1) T(hatGt1) 2 That G+ 1)

Then problem (4.1) has unique solution.

b1 =

Proof. Since |[Ki(z,y)||g< r and || K2(z,y)||5< r, proved in Theorem 4.1.1. Therefore,
we will only prove that K is a contraction mapping. Suppose (z1,x2), (y1,%2) € SxQ.
Then

| Ky (21, 22)(t) — K1 (y1, y2) (1)
< / Gt w)l a1 () — g () o + /01|H1<t,w>||o—1<w,x1<w>,x2<w>>
oy (1, 1 (), o (w)
[ 16wl @) = wdw + [ 1wl @ - n)
+7a|wa(w) — yo(w)|)dw
< [ 16t 0l — walld + / V() (1 — gl s — o) o

After integration we obtain

IN

Mz =yl nlle =yl Tol|T2 — yal|
Ki(x1,29) — Ky (y1, <
|| 1( 1 2) 1(91 y2)|| F(/il—l—l) F(Hl‘*’gl‘i'l) F(/‘fl“‘Cl“‘l)
A1 T1 7’2||$2—y2||
= + 1 — Y|+
[F(/ﬁ—i—l) Lk + G +1) o =l Lk + G +1)

= klllzr = ull+llw2 = val))-
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Thus we have

| K1 (21, 22) — Ki(y1, v2) | < K| (21 — 1) + (22 — y2) |-

Now we will prove result for Ks.
| Ko (21, 22) (1) — Ka(y1, y2)(1)]

< [ 16t wlnte) - v+ [ 1, wloste )00
(s (). ()

[ 16t wdloate) = vatwdw + [ ot w) — )
+aleaw) )i

< [1Gattwlles - i+ [ ()l — l+ales — o) e

IA

Integration provides following results

Xol|ze — yo| &ller — | &ollze — yo|
K , — Ks(y1, <
H Q(Il xQ) 2<y1 y2)|| F(HQ + 1) P(/'iz + G+ 1) F(HQ + (o + 1)
Ao &1 Eallze — 12|
{F(@) (ke + G +1) s =il (ke +G+1)

= plllzr = vl +llze = yall).

Thus we obtain

[ K21, w2) — Koy p2)ll < pll( — 1) + (22 — 32) .
Thus K is a contraction mapping. Thus problem (4.1) has unique solution. O

Example 4.2.1. Assume problem

DD/ — é)x(t) —(t+

D*P(D + %)y(t) = (t+ )°[(=(®)" + (y(1)™], (4.7)
D322(0) =0, z(0) = x(1) =0,
D*y(0) = 0, y(0) = y(1) =0,
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here a; = b; = and p(t) = q(t) = 0. Solution for problem (4.7) exists for 0 < p;, v; < 1
or p;,v; > 1. Also
1
otz y) = (4 ) @) + (1)),

oaltay) = (t+ P a0) + uH)"]

Now we will check Lipschitz condition.

lo1(t, x1,m2) — o1 (t,y1,92)] < (E+ )3(|( 1) = (ya ()
+|($2(75))“2 (y2(1))"2]),
loo(t, 21, 22) — oot y1,92)] < (E+ )3(’( 1) = (y ()"

( )7 = (2(1))™])-

+(

Here ky = —0.11762963, ko = 0.0078125 and p; = 0.783969355, p, = 0.562422925.
Thus k£ = max{—0.117598,0.0078125} < 1 and p = max{0.783969355, 0.562422925} <

1. Hence problem (4.7) has unique solution.
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Chapter 5

Conclusion

In concern of generalized Reimann-Liouville fractional order derivatives, we have pre-
sented new form of fractional Langevin equation. Existence and uniqueness of solutions
is accomplished by using fixed point theorems requiring corresponding nonlinear func-
tion to be Lipschitz.

Properties of Green functions are used to apply upper and lower solution techniques
along with fixed point theorems to achieve existence and uniqueness of a positive so-
lution for two fractional Langevin equations.

Also existence of solution is obtained for coupled system of fractional Langevin equa-
tions with Riemann-Liouville fractional derivative and uniqueness is verified by con-

traction mapping principle.
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