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Abstract

Partial or ordinary differential equations are used to solve problems in a variety of
fields. The goal of achieving exact solutions of differential equations is therefore of
great importance and continues to attract great attention. The basic purpose of this
thesis entitled "Solution of the Momentum Equation for Laminar Flow through Con-
centric Ducts using Symmetry Method" is attempted to find symmetries and the exact
solutions of momentum equation. After that, we reduced partial differential equation
to ordinary differential equations. Then we obtained exact solutions corresponding to
these ordinary differential equations.

This thesis is divided into four chapters. The brief outlines of the research work pre-
sented chapter wise in the thesis are as follows:

In Chapter 1, is given the brief introduction of partial differential equations and their
solutions. Also we discussed preliminary material and relevant literature of Lie group
of transformations.

In Chapter 2, methods to solve partial differential equations, Lie symmetries and in-
variant solution of partial differential equations are discussed.

The core of the thesis is chapter 3. The symmetries and invariant solution of momen-
tum equation are investigated.

In Chapter 4, the thesis is concluded.
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Chapter 1

Preliminaries

Differential equation is an equation that contains an unknown function and its deriva-
tives [6]. Differential equations have become a significant branch of applied and pure
mathematics from their emergence in 17th century. Though their history has been
well studied, it continues to be an important area of research. The application of
differential equations are extended to number of subjects, from physics to population
growth to stock market. They are helpful tool for modeling and analyzing environmen-
tal phenomena including variation in population of species over time or transmission of
disease. Differential equations appear whenever an unknown event changes with respect
to time. The two categories of differential equations are ordinary differential equations
and partial differential equations.

An equation which involves one or more functions of a single independent variable is
called an ordinary differential equation. Ordinary differential equations have become
especially important and also have contributed in major developments [7]. Ordinary
differential equations play vital role in modeling and dynamical systems [8, 9].

An equation which involves one or more partial derivative of one or more functions
dependent on more than one independent variables is known as partial differential
equation. The PDEs can be classified as linear, quasi-linear and non-linear partial dif-
ferential equations. Linear PDEs are those equations in which the order of dependent
variables and their partial derivatives is linear. Whereas, if the equation is linear in its

highest order partial derivative then it is said to be quasi-linear. The PDE is said to



be non-linear if it is neither linear nor quasi-linear. Furthermore, linear PDEs can be
classified as homogeneous and non-homogeneous. A liner PDE is said to be homoge-
neous if it does not involve the terms which only depend on the independent variables
otherwise PDE is said to be non-homogeneous.

The PDEs can be solved analytically as well as numerically. The analytical solutions
can be calculated using the method of separation of variables, method of character-
istics, integral transform an change of variables, symmetry method etc. But in some
cases we are unable to find the solution analytically then we move towards the numer-
ical solutions of differential equations. The numerical solution can be calculated using
the finite element method, finite difference method and finite volume method. In this
dissertation, we are dealing with the non-homogeneous PDE.

Marius Sophus Lie, A Norwegian mathematician (1842-1899), devoted much of his life
to theory of continuous groups and their influence over differential equations [10]. Lie
has found that common solution methodologies employ groups of symmetries of equa-
tions in order to find solutions. As a consequence, exact solutions can be obtained by
use of symmetries [11]. The Lie group analysis is major implementation in distinct
fields such as number theory, differential equations, analysis, differential geometry etc.
In this dissertation, we mainly focus on finding the solution of partial differential equa-
tion by using symmetries. The standard methods of finding solutions are insufficient
for such type of equations so, implementation of symmetries helps in finding solutions.
The concept of symmetry methods is to find the new coordinate system which makes
it simpler to find the solution [12].

First we will recall some basic definitions before solving the momentum equation.

1.1 Groups

Set of elements with composition law p between elements that satisfy the axioms

(1) — (iv) is said to be a group G.



(i) Closure property

For all p,q € G the composition u(p,q) € G.
(ii) Associative property

Vp,qreG,

(P, (g, ) = p(pe(p, ), 7).
(iii) Identity element

There exists e € G for any p € G such that

u(p, e) = u(e,p) = p,

then e is said to be the identity element of G.

(iv) Inverse element

There exists ¢ € G for any p € G such that

w(p,q) = plq,p) = e,

1

then ¢ is said to be the inverse of p in G and is denoted as p~'. G is said to be abelian

ifV p,qg €G u(p,q)=w(g,p). A subset of G is said to be a subgroup if it is a group with

same composition law p.

1.2 One-Parameter Lie Groups of Transformations and
Infinitesimal Transformations

Definition 1.2.1. (Group of Transformations)

Let us consider t = (t1,ta,...,t,) lie in region M C R". A set of transformations [2]

t* = T(t;¢),



defined for every t € M and the parameter ¢ € A C R, with p(e,d) defining the

composition law of parameters §,¢ € A and on M it forms a group of transformations
if
(1) For every parameter ¢ € A, transformations are bijective in M. (Hence, t* lies in
(17) With the composition law p, A forms a group G.
(73i) t* =t when € = ¢, i.e,
T(t;e) =t.

() If t* = T(t;¢), t* = T(t*;0), then

t™ = T(t; (e, 0)).

Definition 1.2.2. A one-parameter Lie group of transformations defines if it satisfies
the properties of group of transformation () to (iv) given of previous definition and in
addition the following hold:

(v) p(e,0) is an analytic function of € and §, ¢ € A.

(vi) T is infinitely differentiable with respect to t € M and an analytic function ¢ € A.
(vii) € is a continuous parameter i.e, A is an interval in R. Without loss of generality,

e = 0 corresponds to the identity element e.
Example. Let us consider
t"=t+e,
u* =u, ¢ € R,
then u(e,0) = e+ § forms a one-parameter Lie group of transformations.
Definition 1.2.3. Consider
t* =T(t;¢), (1.1)

a family of one-parameter € € R invertible transformations of points t* = (¢],t5,... ,ty) €

RY. It is said to be a one-parameter transformation subject to the condition

t*].o = t. (1.2)



i.e.

T(t;¢)| t. (1.3)

e=0 -

Expanding equation (1.1) for € = 0, in some neighborhood of € = 0, we obtain

t"=t+e¢ or + i 82_T +
- O |._g 2\ 0e?|__,
_ oT 2
=t +6(§ s:()) + O(e7). (1.4)
Let
oT
Ct) =5 L (1.5)

Then transformation t 4+ £{(t) is called infinitesimal transformation of Lie group of
transformations equation (1.1).

The components of {(t) are called the infinitesimals of equation (1.1).

Theorem 1.2.1. There exists a parameterization 7(¢) such that Lie group of trans-
formations equation (1.1) is equivalent to the solution of the initial value problem for

the system of first-order ODEs given by

dt .
Ao, (16)
.
with
t*=t when 7=0. (1.7)

In particular

(&) = /OEF(s')de’, (1.8)

where
ou(p, q)
r(e) = 2 | (19)
T lpa=(1e)
and
T(0) = 1. (1.10)
( where 7! is inverse element to ¢ )



Example. Consider the groups of translations

t"=t+e,
(1.11)
u* = u,
the law of composition is u(p,q) = p + ¢, and e} = —e. Then %};q) = 1 and hence

Ie)=1.
Let t = (¢,u). Then the group equation (1.11) is T(t;¢) = (¢t + ,u). Thus ZL(t;e) =
(1,0). Hence

oT
t) = —(t; = (1,0
¢ =G| =010
Consequently becomes
dt* du*
=1 =0 1.12
de de ’ (1.12)
with
"=t u'=u at ¢=0. (1.13)

The solution of IVP equations (1.12) and (1.13) are easily seen to be equation (1.11).

Definition 1.2.4. The infinitesimal generator of one-parameter Lie group of transfor-

mations is defined by operator
X = X(t) = > (t) 5 (1.14)
J

Theorem 1.2.2. The Lie group of transformations equation (1.1) is equivalent to the

solution of an ordinary differential equation initial value problem

dt*(e)
T — et
e~ s (1.15)
t*(0) = t.
Example. Consider an infinitesimal generator
0 0
Xy =t—+2—. 1.16
T (1.16)
Its infinitesimals are
Cltyu) =1, n(t,u) =2 (1.17)



According to Theorem 1.2.2, the IVP of ODE is given by

dt* . du’ einy eray
=t =2, (0 =t w(0) = (1.18)

From the first differential equation in system equation (1.18) we obtain

=T Ut = 2e + .
After applying t*(0) = ¢, u*(0) = u, we obtained
t* =te®, u" =2+ u. (1.19)

The Lie group corresponding to the infinitesimal generator equation (1.16) is given by

equation (1.19), which represents scaling in ¢ and translation in w.

1.3 Invariance of a Partial Differential Equations

Definition 1.3.1. A function F'(t) is said to be invariant of Lie group of transforma-

tions equation (1.1) iff for any group of transformations equation (1.1)
F(t*) = F(t). (1.20)
Theorem 1.3.1. F(t) is invariant under equation (1.1) iff
XF(t)=0. (1.21)

Example. Find all functions F'(¢,u) invariant with respect to scalings

0 0

corresponding to the Lie group of scalings, given by
t* = te°, u* = ue®. (1.23)

According to Theorem 1.3.1, such functions F'(¢,u) should satisfy XF(t,u) = 0.

oF oF
tor +3uz— =0, (1.24)



Solving the characteristic equation

dt  du
t  3u
One obtains the first integral as
t?)
Cl = —.
u

It follows that the invariant functions F'(¢,u) are given by

F(t,w) = Fle) = F(*).

Indeed, one can explicitly verify this fact

*3 3 3¢ 3
r(5) =) =7 (%)
u* ues U

Theorem 1.3.2. (Invariance of a ODE)

An ordinary differential equation
E(t,u7u/, cenu”) =0,
admits a group of symmetries with generator Xl iff
XHE|,_, =o0.

Example. Consider an ODE

Here

1

E(tu,u ,u ) =u".
Infinitesimal generator and its first extension correspondingly are defined as

0 0

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)

(1.31)

(1.32)

(1.33)



0 0 » 0 n 0
X — Ca + 5. +1 57 +n B (1.34)

Applying X! to E we obtain
XUE  =5"=o0. (1.35)
E=0

Therefore, the symmetry condition is

thus we have

0= e+ (2w — )t — (D — 26t = Cantd” + (7 — 26, — 3¢t " =0, (1.36)

and we obtain the system of PDEs as

e =0,
20 — G = 0,
(1.37)
Nuu — 2Ctu = 07
Solving the system equation (1.37) we obtain
C(t, U) = bltu + bQU + b3t2 + b7t + bg,
(1.38)

T](t, u) = b1U2 + bgtu + b4u + b5t + bﬁ.
Here b;, 1 <1 < 8 are arbitrary constants.
So, the most general one-parameter Lie group of point symmetries of the ODE " = 0,

is obtained by the infinitesimal generator

X = (bytu + byu + bst? + byt + bg)% + (byu? + bgtu + byu + bst + bﬁ)%. (1.39)
Therefore the corresponding symmetries are
X, —tu§+u§ ngu%,
X =10 Xs= 2.

10



Definition 1.3.2. (Invariance of a PDE)
Consider a PDE

F(t,v,qu,g,...,g):(), (1.40)
with p dependent variables v = (v',v% 03 ... vP) and ¢ independent variables ¢t =
(t1,t2,t3,...,t,). As v refers to a set of coordinates corresponding to all first order

partial derivatives of v with respect to ¢t and so forth. The one-parameter Lie group of

point transformations

t* =T(t,v;e).
(1.41)
u =U(t,v;e).

leaves partial differential equation (1.40) invariant iff its kth extension, leaves the sur-

faces in (¢, v, v, ,g)—space, defined by equation (1.40), invariant.

1.4 Change of Coordinates

Consider a non-degenerate change of coordinates
u="U(t) = (un(t), us(t), ..., ua(t)). (1.42)

For one-parameter Lie group of point transformations are stated in equation (1.1), the
infinitesimal generator equation (1.14) with respect to coordinates t = (t1,ta,...,1t,)

becomes the infinitesimal generator

U= (1.43)

=1

with respect to coordinate u = (uq, ug, . .., u,) defined by equation (1.42).

Theorem 1.4.1. After change of coordinates equation (1.42) the operator X equation
(1.14) yields the operator U equation (1.43), where

n(u) = Xu. (1.44)

11



Definition 1.4.1. A change of coordinates equation (1.42) defines a set of canoni-
cal coordinates u = (uy,us, ..., u,) for the one-parameter Lie group of point trans-
formations are given by equation (1.1) if after this change infinitesimal generator
X =", nj(t)a% yields a pure translation in v" : U = ;2. Infinitesimals in
this case are given by

ni(u) =X =0, j=1,...,n—1;

(1.45)
Ne(u) = Xu" = 1.
Example. Consider a group of scalings in R?, t = (1, 9, t3).
th = ety, th=e*ty, t; = e t3. (1.46)

The infinitesimal generator is given by

X = tla% + 2@(%2 + 7t38%‘
To find canonical coordinates one should find 3—1 = 2 invariants uq, us and translation
coordinate uz. The characteristic equation is given by
dhy _dty sy
t 2ty Tt

and the corresponding first integrals are given by, e.g.

2 7
U = %’ Uy = i—;
To find the translation coordinate us, one uses the condition Xus = 1:
tlaa?f + 2@21;; + 7@22 = 1.
A particular solution of the characteristic equation
dhy _dty _dty _ dug

t 2y Tt; 1
is given by, e.g.

Uz = lntl.

Hence, the set of canonical coordinates for the group of scalings equation (1.46) is given

by
t2 t7
Ulz—l, ng—l, U3:1Ht1.
la 3

12



Chapter 2

Point Symmetries of Partial
Differential Equations

In this chapter, we are focused in analysing the one-parameter group of transfor-
mations admitted by the particular system of partial differential equations. When
studying invariance properties of kth order partial differential equation with depen-
dent variable v and independent variables t = (t1,%,...,t,), with v = v(t), we are, of
course, faced with the problem of finding extensions of transformations (t,v)-space to
(t,v, U0, ,g)—space. All the kth order partial derivatives of v with respect to t are
represented by v.

First of all, we consider the extended transformation of a set of point transformations
(2.1)

In some domain M in (t,v)-space with (T'(¢,v),V(t,v)) k-times differentiable in M,
the transformations equation (2.1) are supposed to be one-to-one. The transformations

equation (2.1) sustain contact conditions, i.e.,

dv = v dt,
1
(2.2)
dp_1v = v dt,
k

13



in some domain M in (t,v,zij,g, . ,z)—space iff
dv* = 111* dt*,

(2.3)

dj_v* = %*dt*,

in the corresponding domain M™* in (t*, v*, 11}*, 12}*, . ,g*)—space.
Let
ov , Oov* IV ;
v =—, U = = —, etc.
oot ot oty

From now we assume summation over a repeated index. In equation (2.2), dv = v dt
represents

dv = (% dtj,

and in equation (2.2), dj_jv = v dt represents a set of equations
dvz-m_”ik,_l = Ui1i2-..ik_1jdtja il = 1, 2, oo, fOI’ l = 1, 2, cey ]{5 — 1.

Similarly representations hold for equation (2.3).

We introduce the total derivative operators

D0, 0,2y 0o | (2.4)
i = = tvigtvia—+ Vi —— -, :
Dt;  0t; ov Yo, T i
i=1,2,...,n. For a given differentiable function F'(¢,v, U0, ,1;) we have:
oF  OF oF OF ,
DiF(t, U,11}7 12}, e ,1[)) = 8—ti+?}i%+?}ij‘a—z}j+' : —f—Uuluznm‘}‘ sy U= ]-; 27 REERLD

Now, consider the preserved contact condition equation (2.3), dv* = v} dt7, in order to

determine the extended transformation

v;‘:Vj(t,v,zl)), ji=1,2,...,n. (2.5)
From equation (2.1) we obtain

14



and
dt; = (DT)dt;, j=1,2,...,n,

where D; is defined by equation (2.4), 7 =1,2,...,n. Then
(DT)v; =DV, i=1,2,...,n.

Let the n X n matrix

D1T1 R DlTn
A= : (2.6)
D, Ty ... D,T,
and assume that A~! exists. Then
v} Vi DV
vl B Va 4 D,V 2.7)
vl Vi, D,V
This leads to the extended transformation in (¢, v, 11))—Space:
t*=1T(t,v),
vt =V(t,v), (2.8)
=y
It is easy to show that the extension to (¢, v, VY, ,g)—space is given by
t*=1T(t,v),
vt =V(t,v),
vt =V(t,v,0) (2.9)
vt =V(t,v,v,v,...,0),
k 1 12 k
where the components of 9%v* are determined by
Uz'ﬁlig.‘.ik,ll Vivio.ig 11 D1Visig.ix o
fizik a2 | _ Vivio.ig_12 _ DoViig.in o (2.10)
U;‘klig...ik_ln ‘/;17;2~--ik-—1n Dnvillé-uik—l

15



iw=12,...,nforl =1,2,....k—1with k = 2,3,...; ‘{(t,v,zlj) is determined by
equation (2.7) and A is the matrix equation (2.6).

Now we specialize to the case where equation (2.1) defines a Lie group of transforma-
tions.

The transformations are given by equation (2.1) define a one-parameter Lie group of

transformations
t* =T(t,v;¢e),
(2.11)
vt =V (t,v;e),
acting on (¢, v)-space, then it is easy to show that its kth extension to (¢, v, U0, ,z)—
space, given by
t* = T<t7 ,U? 6)’
vt =V(t,v;e),
v = ‘{(ta v, Y5 £), (2.12)
vt =V (t,v,v,...,v;¢),
k k 1 k

defines a k times extended one-parameter Lie group of transformations. In equation

(2.12),

v} Vi D,V
’U; VQ DQV
_ _ Afl
0 D B : ’
vy V. D,V
. - - (2.13)
Uitig.ip_11 Vivig.ip_11 D1\Viiig. iry
*
i ig12 Viig.ip_12 e DoViyiy. gy
— . — . )
*
Uitig.ip_1n ‘/;1%'2---1'1@—1”_ _Dn 11929k —1
where {vf = V;} are the components Ofil) = \1/ and {v;, i i = Viis.ip_,i) are the

components 1}5* = Yk/ In equation (2.13) 4, = 1,2,...,n for | = 1,2,... k — 1 with
k = 2,3...; the operator D; are given by equation (2.4); A™! is the inverse of the
matrix A given by equation (2.6) for 7" and V' given by equation (2.12).

16



2.1 Infinitesimal Transformations of One Dependent
and n Independent Variables

The one-parameter Lie group of transformations

tr=Ti(t,v;e) = t; + e&(t,v) + O(?),

(2.14)
v* =V (t,vie) = v +en(t,v) + O(e?),
1 <i < n acting on (¢,v)-space has as its infinitesimal generator
0 0
X =¢&(tv)— t,v)—. 2.15
Gt v)gm +nltv)5 (2.15)
The k-th extension of equation (2.14), is given by
tr=Ti(t,v;e) = t; + e&(t,v) + O(e?), (2.16)
v* =V (t,v;e) = v +en(t,v) + 0(e?), (2.17)
o} = Vilt.v,v6) = v+ enf (1 0,0) + O(E), (2.18)
/U;klig...ik = ‘/;1%2% (t7 v, 11)’ g7 s 72; 5) (2'19)
= Vigiy..ij, 5771(?2‘..% (t7 v, 1{? gv S 7%) + O(€2>7 (2'20)

where 1 < i,4; <n, for 1 <1<k with k£ > 1 has as its (k-th extended) infinitesimal

(&(t,v),n (¢, v, 11)), (¢, U0, ,z)), (2.21)

with corresponding (k-th extended) infinitesimal generator

0 0 0
X0 = gi(t,0) 5+t )50 (v w)

0
T k=1,2,....

120k 9o
8U1112...zk

(2.22)

The extended infinitesimal, n*), has the explicit formulas derived in the following

theorem.

17



Theorem 2.1.1. For 1 <1, <n, 1 <[ <k with k£ > 2 we have

Y = Din — (Di&;)v;, 1 < i <, (2.23)
k k—1
nl(l’b)zlk - Dikn’§1i2...)ik_1 - (Dikgj)vilil--ik—lj' (224)

By Theorem 2.1.1, the extended one-parameter Lie group of transformations for one

dependent and two independent variables ¢, t; are given by

tr=Ti(ty, t,v;€) = t; +&(t1, ta,v) + O(?), i = 1,2 (2.25)
v =Vt ta,vie) = v +en(ty, ta,v) + O(e?), (2.26)
v = Viltr, ta, 0,01, 0958) = v+ en (b, b, v, 01, 09) + O(E3), 0= 1,2 (2.27)

. )
Vij = Vij(t1, 2, v, 01,02, 11, V12, V22; €),

= Vij + 6773)(151,752,?]7 U1, V2, V11, V12, Ua2) + 0(52)7 h,j=1,2 (2.28)

etc., and the extended infinitesimals are given as

w_on[n_0n) o6 06, . 0
LT [av S| B T g, () g, (2.29)
8 a af 851 862 afl
my _ on on  0&| 04 06 , 06
2= Oty [av 8152} Oto U1 v (v2) 0 VU2, (2.30)

2 2 2 2
(2) 3n+{23n 851] 0”& +[@_28&}UH

= 9e T %onae - a2 | a2 T av Coh
96 Pn 0% s 5 0%
i 04 9
8751 12 + |:8’U2 0t16v (Ul) 8t18vvlv2 (231)
—%(U )3—%(1} )2 —3%1}1) —%vv
52 U1 Gz (V1) V2 5y 1 — 5 "vatn
aU 1V12,

18



(2) (2)
2 1

Tho = 1o

_ 9" On P& [ Pn PG

T 0,01, | |0tov  ototy| 2 | 0t0v 01,0ty | "

L8 o [0 06 0% 06 O
ot, ° ov Ot Oty | 2 0ty ' otov
*n %G 0%y 0%*¢ , 0% 9

* lavz T otov atgav]““? ~ oho0 ) T gz v2)
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Theorem 2.1.2. (Infinitesimal Criterion for Invariance of a PDFE).
Let

0 0
X = Si(t,v)% +n(t, U)%>

be the infinitesimal generator of equation (1.41). Let

0 0

W _ e o) 2 Z W
X fz(t> U) 8151 + 77(757 U) By + 1 (t’ v, 11))
(k) 9
4+ 4 7']7;12‘2._.% (t, v, 71)7 12]7 s 7%)

a'l}i

b
avilig...ik

be the kth extended infinitesimal generator of equation (2.34) where 7751) and ni(

are given by

m(l) =Dm— (Di&)v;, 1<i<n;
* =Dy (D31.&5)Vivig..i_15>

niliz...ik iknhiz...ik,l -

(2.32)

(2.33)

(2.34)

(2.35)

)

122...15

1 <id <n, 1 <1< kwith k> 2, in terms of ({(¢t,v), n(t,v)). [{(t,v) denotes
(&1(t,v), &(t,v), ..., & (t,v))]. Then equation (1.41) is admitted by partial differential
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equation (1.40) iff
[k _
X F(t,v,vf,g,...,g) 0, (2.38)
when

F(t,v,ll),g,...,g) =0. (2.39)

2.2 Invariant Solutions

Consider a kth order scalar partial differential equation (1.40) (k > 2) which admits
a one-parameter Lie group of transformations with infinitesimal generator equation

(2.34). We assume that &(t,v) # 0.

Definition 2.2.1. v = ¢(t) is an invariant solution of equation (1.40) corresponding
to equation (2.34) admitted by partial differential equation (1.40) iff [1]

(i) v = ¢(t) is an invariant surface of equation (2.34).

(i) v = ¢(t) satisfies equation (1.40).

It follows that v = ¢(¢) is an invariant solution of partial differential equation (1.40)

iff v = ¢(t) satisfies
(i)

X(v—¢(t)) =0 when v = ¢(t) i.e,

0
61, 6(0)) 5 = n(t, (1)) (2.40)
(i)
F(ta v, 11)7 ga s ag) = 07 where Ui1i2i3-.-ij = Ot aat](b(t) Ot ) (241)

1 <i; <nforl<j<k. Equation (2.40) is said to be the invariant surface condition
for the invariant solution of the partial differential equation (1.40). Invariant solutions

of a partial differential equation can be determined in two ways:
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2.2.1 Direct Substitution Method

This method is used if we cannot solve the invariant surface condition equation (2.40)
explicitly. We assume that &,(¢,v) # 0, without any loss of generality. Then equation
(2.40) becomes

_ NGy )
Up = ; o T E G (2.42)

2.2.2 Invariant Form Method

Here we set the invariant surface condition equation (2.40) by solving the corresponding

equations for v = ¢(t) given by

dtl - dtg o dtn _ du
&(t,v)  &tv) Etv)  n(t,v) (2.43)

If (T\(t,v), To(t,v),...,Th_1(t,v)),w(t,v) are n independent invariants of equation

(2.43) with jacobian 2% # 0, then the general solution v = ¢(t) of equation (2.40)

is given invariant form
w(t,v) = P(Ti(t,v), To(t,v), ..., Tho1(t,v)), (2.44)

where 1) is an arbitrary function of T}, Ty, ..., T,_1. Note that (11,75, ...,T,_1,w) are
n independent group invariants of equation (2.34) and are canonical coordinates of

equation (1.41). Let T,(¢,v) be the (n + 1)th canonical coordinate satisfying
XT, = 1. (2.45)

If partial differential equation equation (1.40) is transformed to another kth order
partial differential equation in terms of independent variables (71,75, ...,T,) and de-

pendent variables w, then the transformed partial differential equation admits

TF=T, 1<i<n-—1, (2.46)
T =T, +¢, (2.47)
w* = w. (2.48)
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In the transformed partial differential equation, 7T, does not appear explicitly. Hence
the transformed partial differential equation has solutions of the form w = (T, Ts, ..., T,,1).
Accordingly, partial differential equation (1.40) has invariant solutions given implicitly
by the form equation (2.44). These solutions are found by solving a reduced partial
differential equation with (n — 1) independent variables (73,75, ...,T,_1) and depen-
dent variables w. The variables (T3, T5, ..., T, 1) are called similarity variables. This
reduced partial differential equation is obtained by substituting equation (2.44) into

equation (1.40). We assume that this substitution does not lead to a singular differ-

9 —
ov

1 <i<n-—1,if n = 2 then the reduced partial differential equation is an ordinary

ential equation for w. Note that if 0, as is usually the case, then T; = T;(t),

differential equation and we denote the similarity variable by ¢ = Tj.

Example. The heat equation is given by
UV = Vg (2.49)

The infinitesimal generator is given by

0 0 0
Xz&l(t,J:,U)a—FéQ(t,x,v)a—x+n(t,x,v)%, (250)
where X[ is the first prolongation of X given by
0 0 0 0 0
XM — gl 2 2 7 _- - —
ST 0 g0 T gy, T gy,
0 0 0
e . 2.51
* tht a’Utt * 777 tavxt * 777 avx:}: ( )
Let
E=v, —v=0. (2.52)
Applying first prolongation on F, we get
Naw = Mty _, =0 (2.53)
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After substituting 1, 1., and v; = v,, in equation (2.53), we get the following system

of equations

&£ =0, (2.54)
£=0, (2.55)
& =0, (2.56)
—260 4+ & =0, (2.57)
Mo = 07 (259)
Solving above system we get the general solutions given below
1
€' = by + bst + 154152, (2.61)
1
52 = bg + §(b3 + b4t>$ + bﬁt, (262)
1 1 1
n= ( — §b4l’2 — Zb4t — 5[?61’ + b5)'U + V(t, LL’), (263)

where V (¢, x) is function of integration. Therefore corresponding symmetries are given
by

X, = pre (2.64)
X, = a%’ (2.65)
X3 = t% + %x%, (2.66)
Xy = %tQ% + %tw% - (%tv + éxzv) %, (2.67)
X = v%, (2.68)
X¢ = t% — %xv(%, (2.69)
X, =VI(t, x)% (2.70)
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We will find the invariant solution of the symmetry equation (2.69). The characteristic

equation is

dv T
— = ——dt. 2.71
) 2t ( )

Integrating equation (2.71) we obtain
1‘2
v=at)e . (2.72)
Differentiating equation (2.72) with respect to ¢ and twice with respect to x we obtain

’ 2 x2 z?

vy = o (t)e T + a(t)@e’ft, (2.73)
2 .2 1 2
Vpy = ()a(t)él—]?e’E - a(t)ge’ﬂ. (2.74)

p 1
a(t)+ ﬂ&(t) =0. (2.75)
Then the solution becomes
k 22
V= e (2.76)

Sometimes it is difficult to find exact solution of the reduced ordinary differential
equation. In such cases we consider the numerical approach. Once we get solution
of the reduced ordinary differential equation, we get the solution of initial partial
differential equation by using the reciprocal bijection of point transformation.

The symmetries obtained above generates the point transformations which leave the

differential equation invariant. In order to get these point transformations we solve

ot . Ox  , Ov
- = = = = = 2.77
Oe & de & R (2.77)
subject to condition
t‘s:(] =1, XLZO =z, VL:O = . (2.78)
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Let us find the point transformations of equation (2.66) implies

ot ox ov

_:t —_— _— =
Oe " Oe * Oe 0,

along with initial conditions which implies

1
t= dles, X = d2€2€, vV = dg,

(2.79)

(2.80)

where dj, dy and d3 are arbitrary constants. Using conditions equation (2.78) the point

transformations obtained from equation (2.66) give the Lie scaling group

1
t =tef, x =ze2®, v=no.

(2.81)

Thus we have illustrated the algorithm by finding symmetries of heat equation and

using one of these symmetries to find exact solution of heat equation. Again we used

another symmetry to find point transformation which leave the differential equation

invariant.
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Chapter 3

Solutions of the Momentum Equation
for Laminar Flow through Concentric
Ducts using Symmetry Methods

The mechanism of fluid flow can be mathematically depicted by Navier-Stoke equations.
These equations are highly non-linear in nature, which make solution almost impossible.
Analytical solution exists, when reduced to one dimension, only for few simplifies cases.

In general form these equations can be written as

@+A@+Q@+A@_w_2 —_a_P_|_ i R@ + i@
P\ot " ar TRoe "o T R) T “or "M\ Ror\'VoR "\ r2 962

0% v 2 0w v
w‘ﬁ‘ﬁ%‘?)”gm
(3.1)
ow oOw wow  oOw W 1 0P 0 ow 1 0%*w
P(a“@w%”a—f):—Tﬁw(ﬁ@@))”(ﬁw
v W 2 00 w
*W‘ﬁ*ﬁ%—f)“g@’
(3.2)
ou . O0u wou  0u oP 0 ou 1 0%
p(a*“@ﬁ%”a):—aﬂ‘(w@@))*“(ﬁw .

i 0%u n
022 K P9z
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In the above equations, K is considered as the permeability of the medium, p is density
of the medium (fluid), (0,0, ) are the velocity components of the fluid, p is the
dynamic viscosity and (gr, gs,g.) are the components of gravitational effect on the
fluid. Tt carried out simulation of fluid flow through horizontally placed circular annulus
duct under the assumption of hydro-dynamically fully developed flow neglecting the
body forces [19]. Under these assumptions equation (3.3) was reduced to (in cylindrical

polar coordinates)

Qi 100 10 @ 10P 6.4)
OR?2  ROR R200> K 10z’ ‘

To make above reduced momentum equation in dimensionless form with non porous

media, we introduce the following parameters

R _ R —U
7":—, 7”':—’ u:—a (35)
R, TR, T IROE

Above equation (3.4) is non dimensional form (by using transformation defined in

equation (3.5)) with non porous media can be written as

0*u  10u 1 0%u

gu —oY_ g .
or? T ror + r2 002 (3.6)

3.1 Infinitesimal Generator of Symmetries of Momen-
tum Equation

In this section, we are intended to find the infinitesimals of momentum equation, so

we needed to the first prolongation. Hence the generator and first prolongation are

) o, 9 o
0 0 0 0 0
1] _ ¢r il J _ -
X =005+ €00 D g gl
0 0 0 ’
+77,rrau +n0ra g, +77098u09
Let
1 1
E =ty + —u, + —ugy +4 = 0. (3.9)
T T
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So,
XYUE| gy =0

Equation (3.10) implies

0 0 0
(T,Q,U)— a +7798 g

& (r,0,u)— 0 +&%(r,0,u) = 8 50

or 06

0 n 0 n 0
O W@ra o UKl o~

+ Nz

1 1
+ Nrr 53— (u’r"r + —Up + _2U90 + 4)
T T

Ougg E=0

which reduces to get

T 26T r 00
- X et L =0
r T T r

We know that
Nr = Dr - UGDT - urDra

19 = Do(n) — ugDy(&’) — U Dy(E"),
(777“ Ugr r( 6) - Uerr(ﬁr),

) —
N.00 = De(ﬁe) UaeDe( ) - ueng(ér),
)

nor = Dr(n9) — uge Dy (&%) — ug, D, (€7),
where
ng%—ug%—u 0 —i—u@i—l—
" or "ou " Ou, "Oug
Dg—g—kuga—kuaa —l—u@gi—i—..
00 ou " ou, Oug

(3.10)

(3.11)

=0,

(3.12)

w2
—_
W~

N N N N
w W
=
D Ot

N N

(3.18)

(3.19)

Using equations (3.18) and (3.19) in equations (3.13) - (3.16), we obtained the following

equations

Nr =N + (e — Eur — Eug — Eul — ugu,,

o = Mo+ (M — fg)UG — gy — 52“3 — &, Ur o,

Nerr = Ny + (277m - Err) ’Srrue + (nu - 25 )uﬂ" 2£$u9T + (77"“ -

- 2£fuu9u7’ guu r guuué’u - 35 UrUpy — 2£uu9TuT7
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(3.20)

(3.21)

267, )ur

(3.22)



1,00 = Noo + (2779u - f(%)ue + (Tqu - Qfgu)ug - §Zuug - 353“9“90 — Epplir

(3.23)
— 26, urtig — & untiy + (1 — 260y — 2E51ung — 265 urgliy — & Uggtir
Using the values of 7,, n,, and 74 in equation (3.12) we have
T 2T \ y — T 0
r r3 r r r
v & 0
- 7uu - . —UUy + Ty + (277ru - §;T)ur — & o
+ (nu - 2§r)urr - 2§fu9r + (nuu —2¢, )u - 2§ wWoUr — 2§ UGr Uy
3.24
uuug - & UQU, 3€£uru7‘r - 53“9“7’7’ + ?7_920 ( )
,
(210 — 599) (M — Qfgu) 2 10m 3 9 Z €0
+ TU@ + TU@ — E 0 — _QUGU% — —QUT
289, w2, (ma—28) 26 2, &
2 UpUy — 2 UpUy + Tu% ~ 2 Uy 2 S UrgUy — 2 Zugpuy = 0.
Replace u,,. by (—4 — %ur — T%u(;g) in equation (3.24) to get
r r e 0
- %ur _% Ugg + il +—(77u §T>UT — éu@
r r3 r r
r 56’ 0
- ?UUQ - _u oUr + Nrr + (200 — §7,)Ur — 7,00
r 1 1 6 T 2
+ (nu - 2§r>(_4 - ;u"’ - ﬁuﬁﬁ) - 2§ru97" + (TIUU - 2£ru)ur
1 1
— 2£fuu9ur — 2£2uerur — & ud — 0 Y ugu? — 3E u(—4 — ~u, — —2UQ9) (3.25)
r r
1 1 Mg — o — 260
— Eug(—4 — —u, — — tugo) + 77_929 i (29 : 590)%9 i (n . feu)ug
r r2 r r r
6 6 r r
_ duu, 3 35, _ @ _ 2£9u Ut 02
0 Uy — 2 —5 UgUge 2 Uy 2 UrUp 2 UrUg
L —2 9 €T v
+ uuea - %Ure S S UrgUy — %Ueaur = 0.
r r2 r
Comparing coefficients of u,¢, we have
28 26,
—2¢% — 2¢0, rj e = 0. (3.26)
Equation (3.26) implies
éﬁ = 07 fzur - 07 ég - 07 62“9 - 07 (327)
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equation (3.27) implies
§=06=08=0,&=0. (3.28)

Using equation (3.28) in equation (3.25) we have
£ 28" M (= &)

— —QUT — 3 Ugg + — + ——Up + Ny + (2nru - é.:r)uT
r r T r
1 1 206y,

60 Nuu (nu - 259)
— %U@ + T—2u3 + TQUQQ = 0,

equation (3.29) implies

(3.30)

2/’79u 60
T et g+ (S = T = T =

+

Comparing the coefficients of (u,)°, (u,)', (u.)?, (ug)', (ug)? and (ugg) in equation

(3.30), we get the following system of partial differential equations

Moo M
() s e = A+ 5+ 2 =0, (3.31)
& & ro_
(Ur) . 7 - ﬁ + 27]7’7}, - 57‘7‘ = 0, (332)
(UT)Q N = 07 (333)
209y &
(up)" : % - % =0, (3.34)
(ug)? : % —0, (3.35)
C2 2 2

Integration of equation (3.33) with respect to u result into
n=uf(r,0) +g(r0). (3.37)

Substituting n from equation (3.37) in equation (3.34) and integrating with respect to

6 we obtain

¢ = Q/f(r, 0)dO + 0g1(r) + ga(r). (3.38)

30



From equation (3.36) we have

]
=2 (3.39)
Substltutlng in equation (3.32) and integrating with respect to r yields
¢r :2/f(r,e)ln(r)dr+2/f(r,8)dr—2/ {/fr(r,G) lnrdr]dr
(3.40)
+/lnrg1(r)dr—/ [/gl’(r) lnrdr} dr—i—/h(@)dr.
The Infinitesimals are
=2 f(r,0)In(r)dr+2 | f(r,0)dr —2 [ fr(r,0) In rdr] dr
/ / I/ .
+/1nrg1(7*)dr—/ {/gl’(r) lnrdrl dr—l—/h(&)dr,
& =2 [ 1(r0)d0 + 69:(r) + 9a(r), (3.42)
n=uf(r,0)+ g(r0). (3.43)

3.2 Analysis of Symmetries

In Section 3.1 we found the infinitesimal generators governing equations for the mo-
mentum equation. In this Section 3.2 we try to find the symmetries of the equation

using infinitesimals and for that we will discuss some cases. The corresponding vector

field is
{/fr@ln dr—|—2/fr0 r—2/{/]} lnrdr}
-I—/lnr91 dr—/ {/gl’(r) lnrdr} dr—k/h(@)dr}%

5’

X

(3.44)
_|_

2/
+{ f(r,0) +gr9)}aau
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3.2.1 Casel:

When
f(’/’, 0) = g(T’, 0) = 92(T> =T, gl(r) =1 and h(@) = ‘97

then equation (3.44) becomes

X = [2/rln(7~)dr+2/rdr—2/ [/1.lnrdr]dr
+/lnr.1dr—/ {/O.lnrdr} dr+/0dr}£

0
2 1. —
+[/rd9+ 9—1—7“]89

+ |ur+r 2
ou’
9 0 0
X=[2r"+rlnr—r+0r+h0)] =+ [2r0 + 60+ 7+ g5(r)] =
+ [ur+r]%.
3.2.2 Case 2:

When
f(?“7 6)) = h(@) =0, and g(?“, 0) - gl(r) - QQ(T) =T,

then equation (3.44) becomes

X = [2/01n(r)dr+2/0d7"—2/ [/o_lnrdr}dr
—I—/lnr.rdr—/ ULmrdr} dr+/9dr]%

0
2 : —
—i—{ /9d¢9+7“9+r]80

+ |uf +r 9
ou’
r? 0 9 9,
X =[=+2r0lnr+70 + hs(0)] == + [r0 + 6* + r + ga(r)] =7
+ [u@—l—’r}g.
ou
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3.2.3 Case 3:

When
f(r,0)=g(r,0) = gi(r) = g2(r) = 1, and h(f) =6

then equation (3.44) becomes

X = [2/1.ln(r)dr+2/1.dr—2/ {/O.lnrdr}dr
+/1nr.1dr—/ [/o.lmdr] dr+/0dr]%

0
1.d0+1.0+1
+{/ + +]89

0
+ {u 1+ 1] 5
0 )
X = [3rinr —r+70 + h3(9)}a— +[30+1 +95(7")]%
9 " (3.47)
3.2.4 Case 4:

When
f(r,0) =0,h(0) =0, and g(r,0) = g1(r) = g2(r) =1,

then equation (3.44) becomes

X = {2/0.1n(7°)d7"+2/0.dr—2/ {/O.lnrdr}dr
—i—/lnr.rdr—/ {/1.lnfrdr] dr—l—/@dr]%

[ 0d9+r0+r}§0
+ [uO—i—r]

0

. (3.48)

X

[TQ +r9+h4(9)}§ + [r9+r}% + [r]
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3.2.5 Case 5:

When
f(?”, 8) = h(@) = gl(r) =0, and g(T’, 9) =T gQ(T) =T,

then equation (3.44) becomes

X = {2/0.1n(r)dr+2/0.dr—2/ [/o.lnrdr}dr
—i—/lnr.Odr—/ [/O.Inrdr] dr+/0dr]%

0
+ [2/0.d0+0.«9+r]%

¥ {u.O ¥ ] 9
Ju
X = r% + r(%, (3.49)
3.2.6 Case 6:
When

f(r,0) = h(0) = g1(r) = 0, and g(r,0) = 0, ga(r) = 1,

then equation (3.44) becomes

X = {2/0.1n(r)dr+2/0.dr—2/ [/O.lnrdr}dr
0
+/1n7‘.0dr—/ |:/0.1an7":| dr+/0dr}a—
”
" 2/0d9+09+1 o
' ' 00
0
0 0

X =t (3.50)

3.3 Solutions of the Momentum Equation

Our main concern is to find the exact solutions of momentum equation. First we will

find the solution of equation (3.6) corresponding to the following symmetry equation
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(3.49).

Let F' be invariant then equation (3.49) becomes

XF =0,
0 0
el — \F=
(7“ 2 + Tau) 0,
OF or 0
"o0 " ou
Characteristic equation is
dd du dr
A 3.51
r r 0 ( )

Solving equation (3.51), we get
ca=0—u, co=r.

Taking

a1 =U(w) and ¢y =0,

Uv)=0—u, v=r. (3.52)
Taking partial derivative equation (3.52) w.r.t r, we get
ou 0OU ov Ov

“or —ovor o

Y

u, = —U', v, = 1. (3.53)

"

Upp = —U . (3.54)
Taking partial derivative equation (3.52) w.r.t 6 to have

ug = 1. (3.55)
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Using the values of ugg, u, and u,, in equation (3.6) we get

r2U" 41U = 42 (3.57)
Substituting » = v in above equation (3.57), we get

VU +oU = 40, (3.58)

The solution of equation (3.58) is obtained, using Cauchy Euler method, by taking the

substitution
v=-c t=Inv, (3.59)
which leads to the solution
U=c3+cilnv+v? (3.60)
Using equation (3.59) in equation (3.60) we finally have

0 —u=cy+cylnr+1r2,
or

2
— 3 — — 72 .
u=0-—c3—cqlnr—r (3.61)

where c3 and ¢4 are arbitrary constants.
And secondly we find the solution of equation (3.6) corresponding to following symme-

try equation (3.50) Let F' be invariant then equation (3.50) becomes

XF =0,
0 0

(5+0a)F =0

oF OF

a0 0% ="

Characteristic equation is

d0 du dr
= _ .62
1 0 0 (3:62)



Solving equation (3.62), we get

92
dlzg—’u, ngT.

Taking
dy =U(w) and dy = v,

92
Uv) = 5w V=T (3.63)

Taking partial derivative equation (3.63) w.r.t r, we get

u_wo o
or  ov or’ or

u, = —U', v = 1. (3.64)

e = —U". (3.65)
Taking partial derivative equation (3.63) w.r.t 6 to have

wy = 0. (3.66)

gy = 1. (3.67)
Using the values of wgg, u, and u,, in equation (3.6) we get
U +rU = 4% + 1. (3.68)
Substituting r = v in above equation (3.68), we get
VU +oU" = dav® + 1. (3.69)

The solution of equation (3.69) is obtained, using Cauchy Euler method, by taking the

substitution
v=-c t=Inv, (3.70)
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which leads to the solution

1 2
U:d3+d4lnv+v2+%.

Using equation (3.63) in equation (3.71) we finally have

2 1 2
%—u:d3+d4lnr+r2+%,

or

62 Inr)?
u:g—dg—d4lnr—r2—(n2r)

38
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Chapter 4

Conclusion

Our objective was to find the exact solution of momentum equation by using the
symmetries. We discussed some methods of finding symmetries and invariant solutions
for partial differential equations and for convenience illustrated the methods by giving
an example.

We have tried to find the symmetries of momentum equation and for different cases,
we obtained complicated form of symmetries. So, we have used symmetries obtained
in Case 5 and 6, which satisfied the momentum equation for finding the solutions.
After that we converted the partial differential equation into the ordinary differential
equation. Then we obtained the exact solution of corresponding ordinary differential

equation.
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