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Abstract

One of the impressive application of the theory of convex functions is to the study
of classical inequalities. Here, we show that how the theory provides an elementary,
elegant, and unified treatment of some of the best known inequalities in mathematics.
The fundamental purpose of this thesis is to establish some new Hermite-Hadamard
type integral inequalities associated to s-convex function for (2w+1) times differentiable
functions. We assume definite integrable function that can be differentiated up to
(2w+1) times on closed interval [0,1]. The integrable function that we assumed, has
an isolated singularities on 0 and 1. So, it is an improper integral. Our first purpose was
to remove these isolated singularities. Henceforth, to remove these isolated singularities
we solved this improper integral by famous integration technique namely as integration
by parts. After, solving and making some substitution we observed that it has no
singularities on 0 and 1. The improper integral turns into proper integral. Here, we
also used Binomial expansion to write integrable function in a compact form. The result
that we obtain, named as a lemma. Then, we associates that lemma with Hermite-
Hadamard type integral inequalities for s-convex function. We introduced several new
results associated to s-convex function and extended s-convex functions. We used some
famous integral inequalities i.e. classical Hermite-Hadamard integral inequality, power
mean’s integral inequality, Holder’s integral inequality and Jensen integral inequality
in order to obtain new results. These famous integral inequalities helps us a lot to solve

our problem related to s-convex function.
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Unless specified otherwise, the following notations are used in this thesis.

R  {ri—oo <z < o0}

w . Set of all positive integers.

1 :  Any interval in R.

I° : Interior of T (Largest open set contained in I)
[y, s  {reR:a; <z <}

(o, ) c {zeR:a<z<b}

h(®) : Five times derivative of a function h.

h2wt1) : 2w-1 times derivative of a function h.

Llay, as) . Lebesgue integrable function on [ay, as].

vi



Chapter 1

Preliminaries of convex and s-convex
functions

Introduction

Generally, the word "inequality” refers the difference between two quantities, that in-
terrelate one quantity to another quantity by some relation [25]. In Mathematics these
relations are less than or greater than are mostly used. In simple words, someone
can say that “inequality” means any two quantities that are not equal. In our daily
life when someone is comparing scalar quantities like ages, weights, masses, lengths
etc. Actually someone is using inequalities. In Mathematics a lot of work has been
started on inequalities in the 19th century, and some well known inequalities came
into exist like Holder’s inequality, Jensen’s inequality, Power mean integral inequality
and classical Hermite-Hadamard type inequality etc. In these days inequalities play a
very significant role in many fields of engineering and physical sciences. It has several
applications in the field of engineering, mathematics and interrelated disciplines many
more. One of the very interesting problem in computational mathematics, to asses the
definite integral of a real valued function f(t) on a closed interval [a,b]. Henceforth,
to tackle these type of problem many techniques and methods are appear in literature
[32].

We observe that in the theory of convex function the Hermite-Hadamard inequality

has a fundamental role. Tt has been used as a tool to obtain many results in integral



inequalities, approximation theory, optimization theory and numerical analysis. Since,
many results have been obtained in numerical analysis, optimization theory, by using
Hermite-Hadamard type inequality. So, we can say that in the theory of convex func-
tion the classical Hermite-Hadamard inequality has a primitive role. It is known that,

convexity plays a major role in the evolution of numerous branches of mathematics.

1.1 Convex Sets:

The convex set has an ordinary concept. A set in space X is convex if whenever it
contains two points, it also contain the line segment joining them. Ellipses, triangles,
cubes, balls, half spaces, parallelograms all are convex. Vertex set of a cube, an annulus,

a crescent all are non convex [1].

Definition 1.1.1. A set X is said to be convex set if for any two pair of points x1,xs €
X, line segment joining these two points must contain in X that means for all xy,x5 €

X and for any ¢ such that 0 < { <1, we obtain |32]
Cl’l + (1 — C)xz € X.
Remark 1. The empty set is trivially convex. Every one-point set z is convezx [30].

Example 1.1.1. Half-spaces are conver |2|. We show that the closed half space A in
R" defined by the inequality w.x < p, is convex.
To prove this, let x,y € A and \,;u > 0 such that A+ p =1, we have

w.(Ax + py) =  w.x + pw.y

< Ao + fifto = Ho-

Hence, \x + py € A that proves that A is conver. Similarly, in the same fashion we

can prove that the open Half spaces are conver.

1.2 Properties of convex sets:

The following results gives the important properties of convex sets [2].
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Theorem 1. The intersection of an arbitrary family of a convex sets in R™ is also a

convex set.

Theorem 2. Suppose that a1, as,as - - - a,, be any arbitrary points of a conver set A in
R™ Let A, Ao, A3--- A\, >0 such that Ay + Ao+ X3+ ...+ X\, = 1. Then Aai + Aas +
)\30,3 + ...+ )\mam € A.

Remark 2. A point x is said to be convex combination of points a,,as, a3 a,, €
R™, if there exists A1, Ao, A3+ - - Ay > 0 be the scalars, such that \{+ o+ A3+ -+, = 1.
Then, [25]

m:)\lal + /\2(12 + )\3@3 + ...+ /\mam.

Remark 3. Every conver combination of points of a conver set in R" belongs to that

set.

1.3 Convex function:

Definition 1.3.1. A function V is supposed to be conver on an interval |a,b] if for

any pair of points x1,xs € [a,b], and for any ¢ such that 0 < ¢ < 1, we have |3].
U[Cwy + (1 = Qae] < U (a1) + (1 — () ¥ (x2). (1.1)
holds.

Graphical interpretation of convex function is the line segment for every pair of
points must lie on or above the function’s graph [28|. It is not always possible to check
convexity or concavity by plotting their graphs. So there is another suitable way to

check convexity or concavity through second derivative.

Theorem 3. If U is twice differentiable on interval [c,d], then a necessary and suffi-
cient condition for function to be convex is that the second derivative is greater than

or equal to zero for all x € [c,d] [28].



Remark 4. By adding any two convex function that has been defined on the same

wnterval; then the resultant function that we have obtained is again a convex function,if

any of them is strictly convex then sum will also be strictly convex [1].

Remark 5. Multiplying a positive scalar by strictly convex function we also obtained

a strictly convex function [1].

Example 1.3.1. Let h: R — R defined as; h(x) = x*. Then h(z) is convex function.

Proof. We will use the definition of convex function, to show h(x) is convex function.

(1= ¢)z +¢y) < (1= Oh(w) + Chly).
Let 1 — ¢ = u, so the above inequality directly becomes;
h(px + Cy) < ph(x) + Ch(y).

such that ¢, > 0 with ( + ¢ = 1. This implies that

ph(a) + Ch(y) — h(pz +Cy) >0
Now,
ph(x) + Ch(y) — h(px + Cy) = pa’ + Cy* — (px + Cy)?

= pa® — pPa® + Gy — Cy® — 2uCay
= pa®(1 = p) + Cy° (1 = ¢) — 2uCry
= Cua® + Cuy® — 2uCry
= Cu(a® +y* — 2xy)
= Cu(z —y)* > 0.

This shows that h(z) = z? is a convex function.

1.4 s-convex function:

(1.2)

Definition 1.4.1. A function ¥ : [0,00) — R is supposed to be s-convez in the second

sense if the inequality |3],
[z + (1= Qyl < C¥(z) + (1 = ¢)°U(y).

4
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holds for all x,y € [0,00), ¢ € [0,1] and s € (0, 1].

Example 1.4.1. The function |22] f(x) = 2° is s convex on [0, 1]
We have,

/ zdr = 1
0 s+1 (1.4)
f(0)+ f(1)

s+1

1.5 Extended s-convex function:

Definition 1.5.1. A function W : I C [0,00] — R is supposed to be extended s-convex

function in the second sense if the inequality 5],
Uiz + (1= Qy] < () + (1 =) ¥(y). (1.5)

holds for all x,y € I, and ¢ € [0,1], for some s € [—1,1].

Here, we have an example of extended s-convex function.

Example 1.5.1. Suppose that [5],
h(r)=1-1r?

for r €0, 1].
By definition of extended s-convex function (1.5),

U(re+ (1 —r)y) <r*U(x) + (1 —7r)°U(y).
U(rz+ (1 —r)y) —r'U(z) — (1 —r)*T(y) < 0.

For extended s-convex function s = —1, then,

U(re + (1 —1r)y) —
r(1 =) [Tz + (1 —r)y)] — (1 —r)¥(z) — r¥(y) <O0.

—(1—-r)(1—-2%)—r(1—y*) +r(1 —7)[1 — (rz + (1 —r)y)?] <0.

5



(1—r)(1— 2% + r(l— y?) —r(l— T) [1 — (re+ (1 - r)y)z} > 0.

for every x,y € [0,1] and r € (0,1). This means that h(r) is an extended -1 convex

function in the second sense on [0, 1].

The defining inequality inequality for a convex function implies a more general one,

nown nsen’s inequality.
kno as Jensen’s inequalit

1.6 Jensen’s Inequality:

The Jensen inequality was derived by Danish mathematician, John Jensen in 1906 [25].
The classical literature of mathematics involves a comprehensive study of the inequal-
ities which is used excessively in mathematics. The critical analysis of inequalities
demonstrate the novel feature of current mathematics "inequalities" by Hardy at all
was published in 1934 [29]. This book describes the inequalities in a very efficient and
sophisticated manner. These famous mathematician not only explained and demon-

"

strated this subject with its due but also they made " inequalities" popular among
their peers. An "Introduction to inequalities" by Beckenbach and Bellman brings forth
a well described, brief and comprehensive introduction to inequalities in 1975 [30].

Jensen’s inequality has several different forms.In simple words, Jensen,s inequality
demonstrate that the convex transformation of a mean is less than or equal to the

mean applied after convex transformation.

Definition 1.6.1. Suppose oy, - -, are positive numbers such that > " a, =1

and g is real valued continuous conver function, then [25],

g ( Xn; Oafci]) < zn; a,g(x,).



Chapter 2

Some well known results of
Hermite-Hadamard type inequalities
for s-convex function

Originally convexity belongs to geometry but it is wide spread in other mathemati-
cal fields simultaneously like calculus of variation, functional analysis, graph theory,
probability theory, complex analysis and many other fields. Moreover, convexity has
significant interdisciplinary features and occupies essential position in the field of chem-
istry, biology and other sciences. However this aspect of convexity would not be the
main focus in this research.

A short background of convexity is being given here. Convexity has a history going
back to Greek, Egypt and Babylonian times. It is assumed that it is quite younger than
numbers but basic geometric drawings are traced to the initial stage of human civiliza-
tion. It is difficult to ascertain the first person who first defined convexity. Supposedly
"Archimedes" was the first one to define "Convexity". His definitions and postulates
remained in the dark for almost two thousand years. Though, the mathematical ex-
perts were aware of these. Though 17th century calculus was at a primitive stage and
convexity was not take as a priority.

Convex function and theories of inequalities have a very close relation. Convexity is
a broad subject which also includes theory of convex functions. Convexity is a very

powerful property of function. It is known as a natural property of functions. Fur-



thermore, its minimization property makes it unique, novel and beneficial. Due to its
minimization characteristic it possess a significant status in optimization theory, cal-
culus of variation and probability theory. As the idea of convex functions has placed
a significant role in modern Mathematics [25]. Since, we observed that a lot of re-
search articles and books has been dedicated to this field in last number of years. The
Hermite-Hadamard inequality has placed a significant role in the study of convex func-
tion [7]. In this sense it could be said that, the Hermite-Hadamard inequality is one of
the fundamental result for convex functions with a natural geometrical interpretation
and has a lot of applications, that attract much interest in elementary mathematics.
Many researches have done a lot of work to refinement and extend it for many different
classes of functions such as quasi-convex function, s-convex function, log-convex func-
tions, p-functions, and r-convex functions.

In this Chapter, we have some well known results about classical Hermite-Hadamard
inequality for s-convex functions. These results are obtained by using Holder-Iscan
integral inequality and improved power mean integral inequality that provide better
approach as compared to the results obtained by classical Holder’s and power mean’s
inequalities. The followings are some well known theorems in the literature, that has

been used to prove our succeeding theorems.

2.1 Fundamental inequalities:

Here, are some of the basic integral inequalities that are mostly used to prove our

succeeding theorems.

Theorem 4. (Holder’s inequality for integrals): Assume that p > 1 and % + % = 1.
Supposing that g1(C), g2(C) are two real valued functions defined in the interval of [c,d],
and if | g1 |P and | go |9 are integrable on [c,d], then,|31]

/ rg1<c>g2<<>\d<s</ | 01(0) rpd<>p</ | 62(0) w)q. (2.1)

with equality holds if and only if A | g1(¢) |P= B | 92(C) |7 almost everywhere, where A

and B are constants.



The Holder’s inequality has essential significance in numerous branches of pure and
applied mathematics [30]. It also has many applications in the theory of convex func-

tions.
In some sense the Holder’s integral inequality also illustrated in the following way.

Theorem 5. (Power-mean integral inequality) Suppose that ¢ > 1. If g1 and g2 are two
real valued functions define in the interval [c,d], and if | g1 | and | go | are integrable

on [c,d], then, |31].

d d -3 d 7
/ | 91(¢)g2(¢) | dC < (/ | g1(¢C) | dC) (/ | 91(€) | 92(C) | dC) . (22)

2.2 Some results of s-convex function:

Lemma 2.2.1. Suppose that g : J C RT U {0} — R is differentiable function up to

1"

three times on J° and ¢,d € J with c < d. If g € Ly[c,d] and 0 < <1, then [5].

d
L g(t)dt—?’wQ_g’erl
20 — 1
2
(d—c)?®

S [w [ e+ = i)+ (1= et

(d—c)’q" (Ye+ (1 —v)d)

(d—c)g (We+ (1 —1)d) — g(ve+ (1 —1)d)

(- / 289" (e + (1 — 9)d) + (1 — )t

Theorem 6. Suppose that g : J C [0,00) — R is a three times differentiable function
on J, c,d € J withc < d, g" € Li[c,d], and 0 < < 1. If| ¢" () |? is an extended

s-convez function in the second sense on [c,d], s € [—=1,1], and g > 1, then [5].



d 2 .
s o= S o e (1= v

_ 2¢2— La— o)g (et (1= 0)d) — g(ve + (1 — )d)

<5 [3w4<12— M |

(1= ) 201 — )% | g (d) |7 —¢*(2(1 — ¥)* + 3(1 — )% + (1 — ¥) + 6In) | ¢ (c) | ]«

+ P21 =) | g7 () |7 —(1 — )" (20 + 3¢ + 6¢ + 6In(1 — ) | g (d) | }q}
(2.3)
Theorem 7. Suppose that g : J C RT U {0} — R is a differentiable function up to

three times on J, where ¢,d € J with ¢ < d, g € Ly[e,d], and 0 <+ < 1. If | " (t) |7

is an extended s-convex function in the second sense on [c,d], —1 < s <1, and ¢ > 1,
subsequently, [5].

d 2 ,
= [ata - T o ek (-

-2k ek (L= 0)a) = glue+ (1= 0)d)

= (d—60)3 (3q +1s+ 1>é 24

{(1 — )] " (e+ (1—)d) " +(3g+ 5+ 1)BBg+1,5+1) | g (c) 7]

+ ' g e+ (1 —)d) |1 +(3g+ s+ 1)B(Bg+1,s+1) | g ()| ]3}.

Theorem 8. Suppose that g : J C RT U {0} — R is a differentiable function up to
three times on J, c,d € J with ¢ < d, g € Li[c,d], and 0 < ¢ < 1. If | g"(t) |7 is

an extended s-convex function in the second sense on [c,d], —1 < s < 1, and ¢ > 1,

10



subsequently, |5].

d 2 ,
[ et T o ek (-

- 2= O ek (L= 0)a) = glve+ (1= 0)d)

< L (YT (L gy e 0w 1+ 170 1

Q=

s+1

Lol g et (L—w)d) 17 + | ¢"(d) mé}.
(2.5)

Lemma 2.2.2. Suppose that h : J C RT U [0} — R is r-times differentiable function
on J° with h") € L'[c,d|, subsequently, [8].

T

d Ok (t—d)*
(-1 / h(u)du = Z(—l)r"““{(t ) o t-d) }h(’“_l)(t) .
k=1 2.6

+ % { / (1t — R () + /t " d)”h(”(u)du] |

Theorem 9. Suppose that g : J C RTY U {0} — R is a differentiable function up to
r-times on J° such that g") € L'[c,d], where c,d € J, ¢ < d. If | g™ | is s-convex on
[e,d] for some fized 0 < s < 1, then for every v € [c,d], subsequently, [8].

RS Y e P

< %{ﬁ(s +1,r+1) (W= g (c) | +(d— )" | g"(d) |) (2.7)

FAL s+ 1) (6 — O 4 ([d— ) | g () | }

Theorem 10. Suppose that g : J C RT U {0} — R is a differentiable function up to
r-times on J° such that ¢ € L'[c,d], where c,d € J, ¢ < d. If | ¢ |? is s-convex on

11



[e,d] for some firted 0 < s <1, and ¢ > 1. Then for every ¢ € [c,d|, we have [8§].

17 [ atondo s ;(—1)”*2 R

1

<D - {s 1+ ) 1@ P+ s+ ) ) 1) 28

rl

f(d- W“{ﬂ(H L+ 1) | () [P 4B(Lr +5+1) | g () r}]

Lemma 2.2.3. Lets g : J C RT U {0} — R is differentiable function on J° where
c,d € J withc<d. If ¢ € Llc,d], then the following inequality holds [9)].

g(c) ;g(d) - i C/C g(z)dz = d ; C/O (1—2t)g (tc+ (1 — t)d)dt. (2.9)

Theorem 11. Suppose that g : J° CRTU{0} — R is a differentiable function on J°,
also c,d € J° with ¢ < d and g € Llc,d]. If | g | is s-convez on [c,d]. If p > 1 such

that q = z%’ subsequently,|13]

LGRS IR .

Theorem 12. Suppose that g : J C RT U {0} — R is a differentiable function up to
three times on J, ¢,d € J with ¢ < d, g" € Li[c,d] , and 0 < < 1. If | g (t) |9 is

R (g/(c)”g/(d)q);, (2.10)

_2(p+1)% s+1

an extended s-convex function in the second sense on [c,d], —1 < s < 1, and ¢ > 1,

subsequently, [5].

d 2
' — [t 2= g opg e+ (1- )

d—c 6
_ 2¢2— l(d —c)g (e + (1 —)d) — g(he + (1 — @/J)d)’
(d—c (1 \i
< () o

Q=

(1= [ g (be+ (1—u)b) |7 +(Bg+s+1)BBg+1,s+1) | g (c)|*]

b

"

+t[ ] g (et (1—9)d) |7 +(B3g+ s+ 1)B(Bg+ 1,5+ 1) | g (d) |*]

Q=

12



Chapter 3

Some generalized results of
Hermite-Hadamard type inequalities
for s-convex function

To obtain results, in more general form we prove a lemma for (2w + 1) times differ-
entiable function. We need a lemma for the purpose of establishing main theorems of
s-convex functions. We mainly use this for showing results of Hermite-Hadamard type
inequalities for s-convex function. This will play a significant role by relating it with
Hermite-Hadamard types inequalities for s-convex function as well as the the other
types of integral inequalities like power means integral inequalities, Holder’s integral

inequality, to obtain the results associated to s-convex function.

3.1 Some generalized results for s-convex function:

Lemma 3.1.1. Assume that h : RTU {0} — R is a (2w+1) times differentiable func-

tion on RT in such a way that oy, ay € RT. When h®) ¢ L([ay, as]), moreover

13



0 < (¢ <1, subsequently,

2w-+1 w
3 (-1 (2“’ * 1) ¢ — o | (2200 ey 0L (1~ (Jay)

= 0l (2w +1)!
2 — ay)@D)
+ [ D=1 (2;}) ¢ = (@ ;S,) - h2 D (Car + (1= an)
(2w—1) % — 1 (i — ap)@2)
+ D (—1)(7“)( N )C7 — ¢y 2(2w — i h272 (Cag + (1= o)
=0 :
2w—2 . . (2w—3)
+ D (=1 (%v 2> "= ¢ (0‘2@;‘_1)2)' h=3) (Car + (1= Qo)
=0 ’
2w—3 (Oég _ O[1)(20.)—4)
" 70 i ( gl ) — Y e M e+ (= Q)
. h(t
* a2 - 041 /
_ (Oég ;wa—il_ 2w+ [( 2w+2) t(2w+1)h(2w+1)(t(ca1 + (1 . C)OCZ) + (1 . t)Oéz)dt
— (1 =)@ / tEAD Rt (Cay + (1 — Oag) 4 (1 — t)ay)dt | . (3.1)
0

Proof. We assume a following improper definite integral. Here, we consider 0 < ¢ < 1.

/1 t(2w+1)h(2w+1)(t(<’al + (1 — C)QQ) + (1 — t)ag)dt. (3-2)
0

Now, we solve the above definite integral by famous technique namely as integration
by parts. Here, we consider the internal part of above integral equation (3.2) and make

it in a simplified form for the convenience of integration.

tEADREAD (1 (Cay + (1 — Qo) + (1 — t)aw)

_ Tl jeegpes _ - (3.3)
= o oq)t 24D g2 (t(Cay + (1= o) + (1 — t)an).
So, equation (3.2) becomes;
1 1
= | t@e)gpe) g _ _
s al)/o 2R (#(Con + (1 — Q) + (1 — t)an)dt. (3.4)

14



Using integration by parts equation (3.4) implies

_—1
C(ag — 1)

1
%/ 2909 (¢(Cap + (1 — Oaws) + (1 — t)a)dt
0

-1
C(OZQ —041)

1
B %/ £2dh® ™ (#(Can + (1 = QJag) + (1 — t)az)dt
-1
~ (s - m)h(w(gal 1= Ge)
2w+l oy (2w 1
— mt h (t(COzl + (1 — C)Oég) + (1 — t)Oéz) |0

2 + ]- ! w— wW—
T [ 20 G+ (1= Q) + (1= )
I S AC — -
~ ((an — al)h Pt (L= Oas)
(20 +1)(20)
C2(042 — &1)2
1

HEDRC (¢(Car + (1= Caz) + (1= o) [}

B2 (Con + (1= C)an)

2w+1

Claz —aq)?
1

/ t2 D (¢ (Cag 4+ (1 — Qo) + (1 — t)aw)dt
0

_ - 29) (g, Oy - 2wl
C(az—al)h (Coq + (1= Qo) oy —an)?
(2w +1)(2w) bt (29-2) (4(¢ o0 —Oa ~Da
<3<a2_a1)3/0 = dh (t(Car + (1 = Qag) + (1 —t)a)dt
R S ACT Ol —
C(Oég—()él)h (C 1_'_(1 C) 2)
_ (2w +1)(2w) 9,4 (2w—2)
(G{(¢%) —041)3t "
(2w +1)(2w)(2w — 1
Glag —aq)?
I S ACT 1 ~ D) —
C(a2—a1)h (Car+ (1 = Q)az) (g — a1)?
_ Qw+ D), 2, ~ Oa
C3(az—a1)3h (Con (1 =)o)
2w+ 1)(2w)(2w — 1

Glag —ay)?

h = (Cay + (1= ao)

h® D (Cag + (1 = )a)

20+ 1

lag —aq)?

(t(Con + (1 = Q)ag + (1 — t)as) |

h2 D (Car + (1 = a)

) /1 222D (t(Coq + (1 — Qo) + (1 — t)ap)dt

2w+1 A2 (Caq 4+ (1 = Qo)

) /1 t272p 2Dt (Coq + (1 — Q) + (1 — t)ap)dt

15



_ b e _ 2wl
C(CVZ — Oél)h (gal + (1 C)aQ)

oz —a)?
- %h@”)(@q + (1= )as)
0 DD =) [ e (1 ) 4 (1t
g — aq)? /0 Fedh (t(Car + (1 = QJaz) + (1 — t)ay)dt
_ e e o — Oas) — _ 2w+l
(a2 —m)h (Con+{1=C)a) Clag — ar)?
- G D G+ (1= )
2w+ 1)(2w)(2w — 1)(2w — 2)
(g — )t
1

S.— ) — Oay) —
(o= al)h (Canr + (1 = Q)az)

B (2w + 1)(2w) (2w-2) (o — Oas) —
Cg(OQ _al)gh (C 1+(1 C) 2)

2w+ 1)(2w)(2w — 1) (2w — 2)

(Hag —an)*

Here, we observe the behavior of integration of above definite integral, that looks like

h2 D (Car + (1 = (o)

h2 D (Cay + (1 = ao)

/1 20782978 (1(Cay + (1= ) + (1 — ) dlt
0

L G + (1= O

(2w + 1)(2w) (2w — 1)

(Hag —ag)?

1
/ 12073123 (1(Cay + (1 — O)az) + (1 — t)a)dt
0

R (Can + (1 = Q)

in certain definite pattern, so we can write (2w + 1)th term of above definite integral.

Particularly, the generalization for (2w + 1) times is given as follows;

/1 t(2w+1)h(2w+1)(t<ca1 +(1=Qas) + (1 —t)ay)dt
0

= —g(a: (e + (1= ) = Gy h ™ (Can + (1= Oaz)
- %h@“‘”(ml = Oy - 2o D@ 1)

(Hag — o)
P 2w+ 1)2w) (2w —1)(2w —2) - - - 5.4.3.2h(Ca1 + (1= Oan)

(2t (g — g )21
(2w + 1)(2w) (2w — 1)(2w — 2) - --5.4.3.2.1
C2w+l (052 _ Oél)Qerl

2w—+1

=3 (Cay + (1 — O)ag)

/ h(t(Con + (1 — Q)an) + (1 — t)ag)dt.
’ (3.5)

16



<2w+2(a2_a1)2w+1

Multiplying equation (3.5) by (Tl

w _ w 1
¢ +2((2aj - 105)1')2 +1 / tEAD A (Cay + (1 — Q) 4+ (1 — t)ag)dt
: 0
_ 2w+l _ 2w 2w . 2w—1
— ¢ (QLE;&j 1>!Oz1) h(2w)((a1 +(1—=as) — G (e QW!Oél) h(2w—1)(<al + (1= Q)a)
2w—1 _ 2w—2 2w—2 _ 2w—3
S ((202 - (11)1!) h2 = (Caq + (1 = (o) — ¢ ((202 - ;)1!) h=3) (Cay + (1 — C)aw,

+ o= Ch(Con + (1 — Qo) +€/O h(t(Car + (1 = Q)az) + (1 — t)ag)dt.
(3.6)

Here, we assume another definite integrable function on [0, 1] of the following form;

/1 t(2w+1)h(2w+1)(t<ca1 + (1 — C)a2> + (1 — t)al)dt. (37)
0

Now, we consider the internal part of above integral equation (3.7) and simplify it for
the ease of integration.

t(2w+1)h(2w+1) (t(Cal + (1 _ Q)OKQ) + (1 _ t)OZl)

= ! (2w+1) 77, (2w) o e A
(1—C)(a2—a1)t dh=(t(Car + (1 = QJaz) + (1 — t)an).

So, after simplification the above equation (3.7) becomes;

(3.8)

1
(1=Q(az—

Using integration by parts equation (3.9) implies,

) / 1 t 2D AR (1(Cay + (1 — Oag) + (1 — t)ay )dt. (3.9)

_ ! 1) 29 (4 Car + (1 — O e !
(1—C)(042—041)t h (t(C 1+(1 C) 2)"’(1 t) 1) |o

- (1_30(021_%) /0 2R (¢(Car + (1= QJaz) + (1 = ) )dt
~ O ey ™G + (1= o)
- (1_230(;1_&1) /0 2R (t(Can + (1= Q)an) + (1 = t)ay )dt

17



1
(1 =)oz —ar)
- 52?;1_ o)? /0 Edh® D (o + (1= Qaz) + (1= Han)dt
1
(1 =)oz —a)
2w+1
(1 -0 — aq)
= 5(:(;1_ ar)? /0 20t R (#(Con + (1= Qaz) + (1 = Han )t
1 2w +1

1= O — ) (1= 00z — ar)?

= O(LQ - al)h@“)((m +(1—Qas) —
(2 + 1)(2)

(1 —=¢)P*(ag —ay)?

TGy o+ (1= o) =
2+ 1)(20)

(1—=¢)P* (a2 —an)? 1

SR Lt -

= O(; — g G+ (1= QJaz) -

(2w + 1)(2w)
(1= ¢)3(az — an)?
N (2(0; J_F 35?:2) ?“;:)3” /0 2072 h 272 ((Can + (1= Qo) + (1 — t)an)dt
(1-— C)(im - a1)h(2w)(C041 + (1= (Q)az) —
(2w + 1)(20)
(1—-0¢)P(ag—aq)?
. <2(°;jgg?:2><fz 1—)4” / 2029 (1(Con + (1= Qo) + (1= o )t

R (Cay + (1 — Q)aw)

W) (Can + (1 = ¢)az)

SR (¢ (Cay + (1= CQag) + (1 - au) |3

h) (Can + (1 = Q) — K2 (Cay + (1= an)

20+1
(1 —=0)*(ag —a)?

/1 27 dh @72 (t(Car + (1 = Q)az) + (1 — t)an)dt
0

R (Can + (1 = ¢)a)

h2 D (Cay + (1= o)

(1= ¢)* (a2 — ar)?
2 R D (4(Cay + (1 - Qg + (1 - Bas) |}

(1—-0)* (g — ay)?
h7D(Can + (1 = o)

2+1
(I =¢)*(ag — n)?

h272 (Cay + (1= a)

A (Cay + (1= o)

18



(- g)(; - al)h(zw)(fal + (1= Qaz) -
(2w + 1)(2w)
(1 =¢)3(az — o)
- +(11)(—2 ?35?:2_—2% = / R (1 Car + (1= Qan) + (1= tan )t
= g e+ 0= 0% - o
1 (_2 %;2@21)3h(2‘”‘2)(<a1 +(1-0)as)

_ 2o DR =D o900, 1 (1 - o
00ty — )t h (Car + (1 = Q)az)
(2w +1)(2w) (2w — 1)(2w — 2

(1 =)z — )

Here, we observe the behavior of integration of above definite integral that looks like

2w+1
(1= ¢)* (g — ay)?

h 2D (Con + (1 = ()an)

h(2w—1)(<~=a1 + (1 - C)Oég)

2w+ 1 K2 D (Cay + (1= Oan)

) /1 23203 (t(Cog + (1 = Qan) + (1 — )y )dt

in certain pattern, so we can write (2w + 1)th term of above definite integral i.e More

specifically, Generalizing for (2w + 1) times.

_ 1 (2w) o —()0g) —
IOl —an  H =09 = e, oy
e S e o+ (1 Gaw)

C Cw+1D)(2w)(2w = 1) 5,3 N O
= ilm—ayt ot mom
2w+ 1)(2w) (2w — 1) (2w — 2) (2o-) (g, O
(1—-¢)°(az —ay)® " (Gar + (1 = GJaz)
(2w + 1)(2w) (2w — 1)(2w — 2) - - - 5.4.3.2
(1= )2 (g — ap)2o !
(2w +1)(2w) (2w — 1)(2w — 2) - - - 5.4.3.2.1

- (1= )2+ (ag — oy )21 /0 h(t(Car + (1 — Q)ag) + (1 — t)ay )dt.
(3.10)

In order to obtain some specific form, we multiply above equation (3.10) on both sides
by a-=9

2w+ 1 K2 D (Cay + (1= Oan)

et h(Car + (1 = ()ae)

2w+2(a27a)2w+1
(2w+1)!

. So, after some simplification we obtain a definite integral in the

19



following form.

w w 1
(1 — C)2 +2(a2 ;‘al)Q +1 / t(2‘“+1)h(2‘”+1)(t(§a1 + (1 _ g)a2) + (1 _ t)Oél)dt
: 0

(2w+1
B S (R

-t O(zwil)! S G + (1= o)
— (1 — C)ZW(Qaj‘_ 051)26071h(2w—1)(§a1 + (1 _ C)OQ)

(1 —0)* Moo —a1)* ™2 (g
+ o~ 1) B2 (Car + (1= ()an)

(1—0)* (g — o)™ ™ (9
- @0~ 3) R (Con + (1 = Qo)
+o+ (1 =0Oh(Car + (1 —)ag) — (1 — C)/O R(t(Car + (1 = Q)ag) + (1 — t)ay)dt.

(3.11)

Now, we write the above Equation in Binomial series form:

w _ w 1
(1-— <)2 +2<a21)‘ a1)2 +1 / t(2w+1)h(2w+1)(t(<al +(1—=Qag) + (1 —t)ay)dt
: 0

(2 1
_ (2:2?(1)7 <2°"7+ 1) O%h@“)(cal +(1- ()a2)>
_ jz:;(_m (2ot e g+ 1 - <>a2>)
+ 2:2:(—1)7 (2(”7— 1) o (0‘—22; 011)12;_211(2‘“2)(@1 +(1-¢ )042)>
. g(_m (2ol e G+ (1 - <>a2)>

+ o+ (L= Qh(Con + (1 = Qas) — (1 - C)/O h(t(Car + (1 = Qag) + (1 — t)an )dt
(3.12)

20



By subtracting the equation (3.12) from equation (3.6) term by term.
(a9 — ap)2t]

(2w +1)!

- [ (1 ) + (1 - D
0

B _§2w+1(a2 _ al)Zw

[C2w+2 /1 t2“+1h(2w+1)(t(C041 + (1= )ag) + (1 — t)ag)dt
0

A (Cay + (1= Q)ay)

(2w + 1)!
+ (;(1)%1 (200;‘ 1)@) 'ﬁh%(fal (- (o)

<2w(042 _ al)Qw—l
2w!

+(§%@4Wff)@)ﬁﬁjfﬁi—mw1Mm1+a—<mn

B C2w—1<&2 _ al)Qw—2 (22

KD (Car + (1 = (an)

'(Car + (1= (o)

(2w —1)!
- CQW—2<(202 - ;)1!)%_3 R (Cay + (1 — O)a)

— Ch(Can + (1 = QJag) — (1 = Qh(Can + (1 = ()as)

+C/ t(Car+ (1 = Qag) + (1 — t)ag)dt + (1 — ) /01 h(t(Con + (1 = Qaz) + (1 — t)ay)dt
(3.13)

21



So, the right side of above equation (3.13) becomes;

T (201 ) (e —a)®
= (Z(l)+( N >C —¢ )mh( '(Con + (1= ()an)

=0

=0

2 2w (ay — )1
D e G T e e R R

2w—1 9 (s — )2&;72
+ Z(_l)ﬁl(w )O CMI) N h(zwﬂ)(Cal‘i‘(l_C)%)

= (2w —1)!

v=0

h(Car + (1 = Q)az)) — h(Can + (1 = ()az) + h({(Car + (1 = ()az)

+ Q/ t(Ca+ (1 —Q)ag) + (1 —t)ag)dt + 01 h(t(Car + (1 = Qo) + (1 — t)ay)dt

X (7)o <) (e h I G (L= Q)

—g/ t(Car + (1= Q)ag) + (1 —t)oy)dt

By making some simplifications and substitutions, also uses the change of variable and

22



finally write up in the simplest form of the definite integral on [ay, as).

S (e = oo ) 2= cas (1= G

= 0% 2w+ 1)!
OyEt (2‘”) ¢ - | Q2B iy (1 Ga)
= y 2w!
(20-1)

(Ozg _ Cn)(2w—2)

e (201N e (20-2) _
[ X o (B o g | 22l aica (1= ay

v=0
2 2w — 2 (g — a)®=3)
_ _ -2 | A2 (2w-3) _
o (e Ik (1= Qay
2w—3
e (2073 o ey | (02 @) _
N e (27 e et (1= o)
1 az
+---+Q2_a1/ h(t)dt
— (2w+1) 1
B (a2<2f+1)12>'+1 [C(M [ ORI b+ (1= Q)+ (1~ Haz)at
: 0

_ (1 _ C)(2w+2) /1 t(Qw“)h(z”H)(t(Cal + (1 _ Oa2) + (1 _ t)al)dt] )
’ (3.14)
]

Theorem 13. Assume that h : I C Rt U {0} — R is a differentiable function up to

(2w+1) times in the interior of I, having ay, oy € I in order that h**+Y € L([ay, as)),

Furthermore 0 < ¢ < 1. When | h®*Y |9 is an estended s-conver function in the

23



second sense on closed interval [y, ag], whereas s € [—1,1], and g > 1, then,

20+1
‘ (Z (—1)*t (QW + 1) ¢ — <(2w+1)) uh@w (COél + (1 =)

v=0 g (2(") + 1)
2w o—
e e (%) o | 2 g 1= O
=0 ’
(2w—1) 2% — 1 (a — )(20.)72)
+ D (—1)(%1)( y )C7 — ¢ Q(QW — i h272 (Cay + (1= o)
=0 )
2w—2 . . (2w—3)
+ Z (—1) (2“7 2) ¢V — (&Y (0‘2(2w0‘i)22)' ’ R (Cay + (1 = Q)aw)
=0 :
= 2w —3 (g — ap )24
+ (—1)0+Y < y )O — ¢ 2(2w N 3] R (Cay + (1= o)
=0 )

/ (t
062—061

2w+1 1**
2w—|—1 (2 w+1 >

(22 | K2 (o + (1 — )
2w+1)+s

1
q

" B(2(w+1)+s,5+1) | h*D(ay) |q>

(1= () <| B (Gon + (1= Qa

)l N
2w+ 1)+ s +B2w+ 1)+ 5,5+ 1) | B )(ozz)!> ]

(3.15)

Proof. Since, 0 < ¢ <land —1 < s <1, | h®*1 |9is an extended s-convex function

24



in the second sense on [a, as), then by (3.14) and the Holder’s integrable inequality,

2w+1 .
Z (—1)7+1 <2w7+ 1) ¢ — C(Qw—l—l) %h@w)(cal + (1 . C)OQ)
v=0 !
2w o
+ Z(_l)V (2;d> 7 - <(2w) (a2 _2023‘)(2 Y h(2w—1)(ca1 + (1 . C)OQ)
v=0 !
(2w—1) B
2w —1 " (@ — )(Qw 2) "
" ; <_1)(W+1)( g ><7 - Q(Qw —1 1)! R (Cay + (1 — ()ag)

2w—2 _ _ (2w—3)
+ (—1)" (2“}7 2> ¢V — <(2w72) (042(2&}@_1)2)! h(2w—3)(ga1 + (1= ()as)

v=0

n :3<—1><7“> (37 %Yo - oo ) L0200 s+ (1
ot /:Qh(t)dt
< m?;j‘fiﬁ” [g@w”) /0 () [ (1 G+ (1~ Q) + (1 Do) di
— (1 —¢)@+2) /0 1t(2“+1) R (t(Can 4 (1 — Qo) + (1 — t)ay)|dt]|.
(3.16)

By taking the right side of (3.16) of first integral and using Holder’s integrable inequal-
ity. Also, we apply the Holder’s integral inequality on the R.H.S of (3.16). We also

know that | A2+ |7 is an s-convex function in the second sense on closed interval

[, ag).

1
/ £(2wt1)
0
1
(/ t2w+1(ts | h2w+1(Coz1 +(1=Qas) |7+ ((1 — )% h2w+1<a2) K dt))
0

S (/1 th—i—ldt)
(3.17)

By applying the definition of classical Beta function on (3.17) and after some simplifi-

R (H(Cay 4+ (1 — Oag) + (1 — t)ay)| dt

1 1
q q

25



cation we have,
1
/ 3[R (4 + (1= Caas) + (1= t)aw)|
0

< <;))12 (I Rt (Cay + (1 — Qo) | 31‘

2w+ 1 20w+1) +s +B(2w+1) 45,5+ 1[h* (ar) |)

(3.18)

Similarly, in the same fashion on the second integral of right side of inequality (3.16), by

applying the definition of classical Beta type function and by doing some simplification
we obtain.

1
/ 3D R (4 + (1= Caas) + (1= t)aw)|
0

< (;})1—2 (I Rt (Cay + (1 — Q)arg) | 31'

2(w+1 2w+1)+s +B8(2w+1)+s,s+ 1| h* (o) |7)

(3.19)
By using the above two inequalities (3.18), (3.19) and do some necessarily simplifica-

tions, we have.

O E

[C2w+2 (’ A2 (Cay + (1 — Q)aw) |2

1
q

2w+1)+s + (2<W +1) + 5,5+ 1) | h(2w+l)(a2) ‘q)

| A®V(Ca+ (1 - QJay) |4
2w+1)+s

+<1—<)2“+2< ]
0)
[]

+BR2w+1)+s,s+1) | h(2“+1)(o¢1) |q>
2

(3.

Theorem 14. Assume that h : I C RT U {0} — R is a differentiable function up to
(2w + 1) times is in the interior of [ay, aw|, having a1, € I in order that h>*+Y ¢

L([ay, o)), furthermore 0 < ¢ < 1. When | %V |7 s an extended s-convex function
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in the second sense on closed interval [y, g, whereas s € (—1,1], and q¢ > 1, then,

2w—+1 w
S (-1 (Qﬁ 1) ¢ — e %h@w)@al (1= Q)

2w o—
+ Z(—D”(%)“—c@@ (02 = 0B o) Gy + (1= Q)

= y 2w!
(2w-1) B
2w—1 — Qo — & (2-2) w—
+{ > (—1)(%1)( y >C7 — ¢ ( 2(2w _1)1>' h272 (Cay + (1= o)
v=0 '

2w—2 _ _ (2w—3)
+ (—1)" (2“}7 2> ¢V — <(2w72) (a2(2wa_1)2)! h(2w—3)(ga1 + (1= ()as)

v=0

2w—3

20 — o (2w—4
+ (_1)(’7+1) ( w 3) C'y _ <(2w73) (042 al)

)
v (2&] _ 3)| h’(2w74)<<051 + (1 - <)052)

=0

1 o2
dee ot / h(t)dt

Qo — 01 Jo,

(a2 _ a1)2w+1

(2w +1)! (@w+1é+8+1)

(1= (| AV (Car + (1= o) |9

+ (2w + Dg+ 5+ DA((2w + g, 5 +1) | A () [2)7
+ 22 (| B2 (Cay + (1= ag) |1

Q=

+(2w+Dg+s+1)B((2w+1)g,s+ 1) | h(2w+1)(a2) K )
(3.21)

Proof. By taking Lemma (3.1.1) and applying the Holder’s integral inequality on
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(3.1.1),

2w+1 w
' Z<—1>7“(2““>0—c2“—1 (@2 = O™ 6y 0y 1 (1 = C)aay)

= v (2w + 1)!
2w . (2w—1)
+ Z(_l)V (2§}> ¢ = (a; 202') - R~ (Cay + (1 - ()as)
y=o0
(2w—1) 2% — 1 (O./ — )(2w72)
+ > (—1)(%1)( y >C7 — ¢ Q(QW — i h272 (Cany + (1= o)
=0 )
2w—2 B . (2w—3)
N Z (_1)7 (2&)7 2> o <(2w72) (@2(2wa_1)22)' ’ h(2w73)(ca1 4 (1 . <)a2>
7=0 '
od 2w — 3 (g — ap) @)
+ | 2 (=D ( . )O — ) Sy T Gt (1= Qo)
7=0 '
1 a2
+H.+042—051/al h(t)dt

(042 _ al)(2w+1)

(2w + 1)!

o (1 . C)(2w+2) /1 t(2w1+1) ‘h(2w+1)<t(COZ1 + (]_ _ C)OQ) + (]_ _ t)al)‘ dt:| .
0

1
|:C(2w+2)/ t(2w+1) ‘h@w""l)(t(Cal + (1 — C)O./Q) + (1 — t)OZQ)‘ dt
0

(3.22)
Now, we apply Holder’s integral inequality on the R.H.S of (3.22). we also know that

| h(2»+1) |4 is an extended s-convex function in the second sense on [ay, as).

1
/ (2w+1)
0

1 1*% 1
< (/ 1dt) (/ 2D | B (1 (Cap 4 (1 — Qg + (1 — t)ag) |9 dt)
0 0

R (H(Cay 4+ (1 — Oag) + (1 — t)ay)| dt

1
q

(3.23)

Since, | h?**1 |7 is an extended s-convex function in the second sense on [ay, ay] for
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t e [0,1],

1
/ H(2w+1)
0

1
: </ tEHD (@ | R (Car + (1= Qag |7 +(1 = )°) | A D (ag) [1)dt
0

A2 (H(Cay + (1 — Oag) + (1 — t)ay) | dt

Q=

(3.24)
By applying the definition of classical Beta function on (3.24), and after some simpli-
fications,
1
/0 £ [RC4D (o + (1= C)ag) + (1 — )| dt
2w+1 q
fgch(ér$32$§f?ﬂW+ﬂ«mwwm+Ls+n|M”“mnnq .

(3.25)
Similarly, in the same fashion on the second integral of right side of above (3.22)
inequality, By applying the definition of classical Beta type function and by doing

some simplifications we obtain.

1
/ H(2w+1)
0

| h(%“)(cal + (1 - C)O@) |q 241 g (3'26)
< ot gt +B8((2w+1)g+1,s+1) | A% (@) 7] .

R (H(Cay + (1 — Oag) + (1 — t)ay) | dt

Here, by using the inequality (3.25) and (3.26), and by doing some necessarily simpli-

fications.

(a2 _ al)Zerl

(2w +1)! <(2w+1)2+s+1)q

(1= (| AV (Car + (1= a) |

+ (2w +1)g+ 5+ 1)B(2w + 1), s+ 1) | A+ (ay) 7)) (3.27)
+ <2w+2( | h(2“+1)(Ca1 + (1 _ C)O@) ’q

+ (2w + D)g + 5+ (2w + g, s + 1) | 2D (ag) 1)1 ].
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Corollary 3.1.1. Under the assumption of above theorem (14). If s = 1, then,

2w+1 w
' S (-1 (ZMJ 1) ¢7 — ) %W“)«al + (1))
=0 '
2w - (2w—1)
+ Z(_l)’Y (2;«:]) C’y . C(Qw) (OQ 2022 h(2w—1) (Cal + (1 . C)CYZ)
¥=0 )
(2w-1) B
2% — 1 o (2w—2)
+ Z; (—1)(7“)( w,y >C7 — @y (a2(2wai)1)! =D (Cay + (1 — ()ay)

2w—2 . _ (2w—3)
" (—l)y (Zw 2> CW . C(Qw—Z) (062(2w06_1)22>! ’ h(?w—3)(<a1 + (1 . C)OQ)

20 — _ (2w—4)
b [ e (B 7)o - g ) 2O e g+ (1 - o)
= v (2w — 3)!
1 e
TRt / h(t)dt
Oy — aq
(a2_a1)2w+1

1 q
(2w + 1)! (((Qw +1D)g+1)((2w+1)g+ 2))

{(1 — 2 (@ D+ 1) [ %D Can + (1= Cag) 1+ | KD (a) 1]

1

£ (204 Vg + 1) | K (Ca+ (1-Qas) |9 + | 2 (an) [9]"
(3.28)

Theorem 15. Assume that h : J C RT U {0} — R is a differentiable function up to
(2w + 1) times having oy, an € J in order that h®*Y € L(lay, as)), and 0 < ¢ < 1.

When | h®*+Y |9 s an estended s-conver function in the second sense on the closed
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interval [y, o], whereas s € (—1,1], and ¢ > 1, then,

2w+1 2w
' (Z (—1)7+1 (2‘” - 1) ¢ - c<2w+1>) (?_;w‘fi))! B (Cay + (1 = C)an)

v=0 v

2w o—
+ Z(l)”(%)OC“‘”) (02 = b G+ (1 Q)

'y:O ,y 2(,«}'
(2w—1) (v41) 2w —1 ( ) (g — al)(2w72) ( :
+1 2w—1 2w—2
e ()= o G + (1= Qo)
2w—2 _ B (20-3)
+ (_1)7 (QW 2> 7 - <(2w72) (OQ(QWQ_I)Q)! h(2w—3)(ca1 + (1 . C)OQ)
=0 v
o[ (2 3o ey | @200 g0 gay)
— (2w _ 3)| 1 2
v=0 v
1 @2
+-~+a2_a1/ h(t)dt

< (CYQ — 051)2w+1 q — 1 17% 1 é
(w4 1) 2q(w+1) -1 s+1
1

(1= 0™ [ A (Cay + (1= Qaz) [+ | h**(ay) 9]

+ Czw+2 [| h(2w+1)(cal + (1 _ C)Oéz) |q + ‘ h(2w+1)(a2) |q} q]‘

(3.29)

Proof. By taking Lemma (3.1.1) and applying the Holder’s integral inequality on
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= y 2w!
(2w-1) ( ) 2w 1 ( ) ((1/2—0(1)(2“]72) ( )
. +1 _ A(2w—1 2w—2 _
+ ;< o ( ., )0 ¢ oo et (1= Q)
2 2w — 2 (qg — ap)20=3)
_ _ w2y | L2 T (20-3) _
o (7)o - g | 22D a4 (1 G
2w—3
e (2073 e peemsy | (2= )Y o _
o e (27 o - g | 02 2oy 4 (1 - o)

1 &2
h(t)dt
042—061/ ()

ai
(042 o al)(2w+1)

<
2w+ 1)

B (1 _ O(2w+2) /1 $(2w+1) ’h@w“)(t(Cal + (1 _ OOQ) + (1 _ t)al)’ dt} .
0

1
|:C(2w+2)/ t(2w+1) ‘h@w""l)(t(Cal + (1 — C)O./Q) + (1 — t)OZQ)‘ dt
0

(3.30)
Applying the Holder’s integral inequality on the R.H.S of (3.30). We also know that

| h(2»+1) |4 is an extended s-convex function on [ay, @] in the second sense.

1
/ +2w+1)
0
1 (3.31)

1 2041)q 1*% 1 q
< (/0 twdt) (/0 | AP (#(Car + (1= Qan + (1 — b)) qut>

Since | A?"*1) |7 is an extended s-convex function in the second sense on [ay, ] for

A (H(Cay + (1 — Oag) + (1 — t)ay) | dt
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t €[0,1], so

1
/ #(2w+1)
0

R (H(Cay 4+ (1 — Oag) + (1 — t)ay)| dt

g—1 1-2 1
< (__1> (/ 15 | h(2w+1)(COé1 + (1 _ g)o@) |q +(1 _t)s) | h(2w+1)(a2) |q dt

2q(w +1) 0

(3.32)

Here, we apply the simple rule of integration and obtain the following inequality.

/1 $2w+) ’h<2w+l>(t(ca1 + (1= Cag) + (1 —t)as)| dt
0 (3.33)

§ ( g1 ) <| B (Gon + (L= Qag) 7 | h*+)(ay) \q) g
— \ 2¢( -1

w+1) s+1 s+1

Similarly, in the same fashion by applying the Holder’s integral inequality on the second
integral of right side of (3.30). Also, we know that | h(2**1) |7 is an extended s-convex

function in the second sense on [ay, as]. So, after some simplification we obtain.

1
/ H(2w+1)
0

1 1 (3.34)
< g—1 ([P (Con + (1= Q)as) | L | AP () 9}
T\ 2q¢w+1)-1 s+1 s+1 '

R (H(Cay 4+ (1 = Qag) + (1 — t)oy )| dt

Now, by using above two inequalities (3.33) and (3.34) we have,

< (042 — &1)2w+1 q — 1 17% 1 %
— Q2w+ 1) 2qw+1)—1 s+1

(1= ¢)2+? <| R (Cay + (1 — Oag) |7 + | A2+ (ay) |q> (3.35)

Q=

4 (22 (| R (Cay + (1 = Qo) |9+ | KD (ay) |‘1>E ] :
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Corollary 3.1.2. Under the assumption of above theorem (15). If s =1, then,

2w+1 _ 2w
‘ > (=t (2&1;- 1) v — ¢y —(ng fi))' R (Cay + (1= Q)aw)
=0 )

2w . (2w—1)
+ Z(—m(i") - ¢ | e a4 (1= o)
=0 ’
(2w—1) 2w — 1 (a —« )(2w—2)
+ X (—1)(%1)( y )CV — ¢ 2(2w — i K272 (Cay + (1 = o)
=0 :
2w—2 . _ (2w—3)
n (1) (2@;7 2) - C(zw—2) (a2(2wa_1)2)l h(zw_g)(C% +(1-)aw)
v=0 :
2w—3 2% — 3 (Oé —« )(2w74)
+ (=)0 < y )0 — (Y 2(2w - 3] R (Cay + (1 = )a)
v=0 :
1 a2
+---+a2_a1/ h(t)dt

2 [ R (Ca + (1= Qaz) [+ | h () 1]

(1= O [| A (Can + (1= Qo) [* 4 | hE+D(aq) 1]

3.2 Inequalities for (2w+1) times differentiable func-
tion:

Q=

(3.36)

Here, some of the inequalities of s-convex function for (2w + 1) times differentiable

function. ,
/ t°(1—t)“dt = B(s + 1w+ 1). (3.37)
0

The above equation (3.37) may be known in the literature as classical Beta function.

Theorem 16. Assume that h : I C RT U {0} — R is a differentiable function up to

(2w + 1) times on [y, as] whereas a; < ag and ay,an € 1. When | RV | is an
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s-convex function on [aq, ] for some fivred s € (0,1], then for every ¢ € [0,1], we

have,

2w+1 2w
' (Z o (M) - <<2“’+”) {8 = O G + (1 - Q)

= 0% (2w +1)!

2w o—
+{ (=1 (2;}) ¢ = C(2w)) (@ _202!)(2 i A= (Cay + (1 = ()ag)

v=0
(2w—-1) _
2w —1 _ ay — ) &2 o
+{ > (—1)(7“)( y >C7—C(2w 1)) ( 2(2w _1)1), h272) (Cay + (1= o)
=0 )
2w—2

e (7)o C(M) e ) D o+ (1= )

(1) 2w—3 A (2w—3) (042—0‘1)(%_4) (2w—4) _
[ Z e (2 e - S G+ (- o)

+ (1= B2(w+1)+s,1) | A2 (Cay + (1 - ag) |

+ 5(2(60 + 1)’5 + 1) [<2w+2 ‘ h(2w+1)(a2) | +(1 . C>2w+2 ’ h(2w+1)(a1) q :|

(3.38)

Proof. Here we take (3.14) and apply Holder’s integral inequality on (3.14) and obtain
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the following result.

l

2w+1
_1\v+1 2w+1 v ~(2w+1) (aQ—Ql)Qw (2w) o
> 1y (2 )¢ g ) (2 Z O Gy + (1 O

2w —
Z(—D”(%)C”—c@@ (@0 = 0B ooy (1 CJag)

|
pors ¥ 2w!
(2w—1) _
2w—1 ooy | (@ —ay)®2D
> (1) (27 g - e | (22 20 ga 4 (1 G
=0 ’
2w—2

(—1)" (2“’7_ 2) C7 — (o) (042(2;&_1);2;3) h2 =) (Car + (1 = Qa)
=0 ’

2w—3

=y (%v_ 3) o <a2(2—wa_1);°:4> B3 (Cay + (1= (aw)

v=0

_|_

1 o2
h(t)dt
%_m/al (t)

(a2 _ al)(2w+1)

1
2ot 1 [C(zwz)/o (20+1) ‘h(2w+1)(t(ga1 + (1= )as) + (1 — t)oQ)‘ dt

1
(- g)(2w+2) / £(20+1) ‘h(?w-l—l)(t(COtl + (1 —=()as) + (1 — t)a)‘ dt} )
0

(3.39)

Here, we consider the first part of the R.H.S of above inequality (3.39). Also, | A2+ |

is an s-convex function on [ay, as), as 0 <t < 1.

| AP (t(Can+(1=C)az) +(1-t)as) [< ¢ | AV (Cart(1-C)az) | +(1-1)" | A (ay) |

Similarly, Here we consider the second part of R.H.S of above inequality(3.39). Also,

| K2+ | is an s-convex function on [a, ap], as 0 < ¢ < 1.

| AP (Cart(1=C)az)+(1-t)an) [< t° | AV (Car+(1-C)as) | +(1-1)° | KD (an) |.

Here, we use the above two inequalities in the equation (3.39) and obtain a following
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inequality.
(042 _ a1>2w+1

1
< (2w - 1)' [<2w+1/ $20t1 [ts | h(2w+1)(Ca1 + (1 _ C)Oéz) | +(1 _ t)s | h(2w+1)(a2) d dt
: 0

1
+<1—<f“+{/'ﬂWH[f|h@w“kca1+<1—<ym>|+<1—tf|hQWHwao|}d4.
0
(3.40)
We observed that some part of above inequality (3.40) is in the form of classical Beta

type function. So, we separates that part and apply the definition of classical Beta

type function on that part.

1
/ (1 =)0t =B (2(w+1) + s, 1) (3.41)
0
1
/ N1 —t)dt =B (2(w+1),s+ 1). (3.42)
0
By using equation (3.41), (3.42) and above inequality (3.40) we obtain,
(ag — ag)*H! 2w+1 (2w+1)
P ¢ BRw+1)+s,1)|h (Con + (1 = (az) |

+W%W+UJ+U|M%HWWI)
(3.43)
+ (1 - ()22 (ﬁ@(w +1) +5,1) | A (Car + (1 - ay) |

+B2w+1),s+1) | AT (o) | )] |

After some simplification, we obtain the following inequality.
(s — ap) 2!
- 2w+ 1)!

+ 5(2(00 + 1),8 + 1) [<2w+2 | h(2w+1)(a2) | +(1 . <>2w+2 ’ h(2w+1)(a1) |}

l(CQWH +(1=¢0)*) B2(w+1)+s,1) | R (Caq + (1= (o) |

(3.44)
Here, we obtain (2w+1) times differentiable s-convex function associated with classical

Beta type function. O]
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Theorem 17. Assume that h : I C RT U {0} — R is a differentiable function up to
(2w + 1) times on [ay, an] whereas oy < ag and ay, o € 1. If | K%V | is an s-conver

function on oy, as), for some fized s € (0,1], then for every ¢ € [0,1], we have,

2w+1 _ 2w
' S (-1 (2wv+ 1)0 - %h@%al +(1-Qan)
¥=0 ’
2w _ (2w—1)
I Z(—l)v (2;0) CW _ C(2w) (042 202') h(2‘“_1)(Ca1 + (1 . C)&Q)
¥=0 ’
(2w-1) _ _ (2w—2)
[ X o (7 o | L2l o, + 1 - ay
v=0 :

2w—2 —
n (1) (Qw - 2) o g(gw—Q) (g — 041)(2 ) h(2w_3)(Coz1 (1= O)aw)

= vy (2w — 2)!
e 2w — 3 (g — )24
+ (—1)(7“)( y )CﬂY — (¥ 20— 3) K2 (Caq + (1= ao)
7=0 '
1 az
Foo / h(t)dt
Gy — Q01 Jqoy

< (k) o

(B(Q(w +1) +5,1) | A2 (Cay 4+ (1 = Qaw) |?

1

+02w+1),s+1) | h(2w+1)(a2) |7 ) ’
+ (1 — )% 2 (5(2(w + 1) +5,1) | B2 (Cay + (1 = Qaw) |4

+ 5(2(&0 =+ 1), s+ 1) | h(2w+1)(a1) |q )q] .

(3.45)

Proof. Here, we use the equation (3.14) and apply the Holder’s integral inequality and
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obtain following result,

2w+1 . 2w
' S (-1 (2“7+ 1) ¢ — ¢ %h@%al (1= Q)aw)
¥=0 ’

2w w—
+ Z(—l)” (Qw) ¢ — () (a2 = o) R~ (Cay + (1 — ()a)

|
= ¥ 2w!
(2w-1) _
2w—1 _ (g — @1)(2w 2) 202
+1 2 (—W*”( )O — ¢y B2 (Con + (1 = C)a)
= vy (2w —1)!

2w—2 . . (2w—3)
n (_1)7 (2(,0,7 2> CW . C(2w_2) <042(2w04_1)2>' h(2w—3)(ca1 + (1 . C)QZ)
7=0 '

2w—3

e (2073 oy e | (2= a)®T _
e (7)o e G+ (1= Q)
1 2
N —(a2 . / h(t)dt
< (062(2_6005—’1_);2;+1) |:<(2w+2) /1 t(2w+1) h(2w+1)(t(ca1 + (1 o C)@Q) + (1 . If)Oéz) dt
: 0

- = [ [ oG + (1= ) + (1 - )
0

dt].

(3.46)
By applying the Holder’s integral inequality on the R.H.S of above inequality(3.46).
We also know that | A2+ |7 is an extended s-convex function in the second sense on
[, ag).

/1 H2w+1) ‘h(%*l)(t(fal + (1 —=Q)az) + (1 —t)ay)|dt
0

Q=

! v [
< (/ t2“+1dt) (/ {201 ’ h(2w+1)(t(<al + (1 _ C)a2 + (1 _ t)az) ’q dt)
0 0
(3.47)

However, it may be convenient to say that,

lep= qqu the conjugate exponent. Since, it satisfies,

1 1 _
lpl=y
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Here;

1
1
2t = ———— 3.48
/0 2(w+1) (3.48)

So, above inequality (3.47) becomes,

1
/ #(2w+1)
0

1N ([ e e N e e 4
§(2< )) (/t R (4 (Con + (1= CJas + (1— 1) 2>|dt>

R (H(Cay + (1 — Oag) + (1 — t)ay)| dt

w+1
(3.49)
Similarly, now we consider second integral of right side of above inequality(3.46). We
also know that | h®**1) |7 is an extended s-convex function in the second sense on

[, ap]. Here, we apply the definition of classical Beta type function.

)h(Qerl)(t(CCYl + (1 —=Qag) + (1 —t)ag)|dt (3.50)
< | B (Can + (1= Qan) 17 +(1 = 1)° | A D (a) |7 |
By using (3.49) and definition of classical Beta function.
1 q 1 >
(2w+1) |7, (2w+1) _ — R
/0 2ot ‘h D (¢(Can + (1= Qo) + (1 t)a2>‘ dt < (2@; - 1))
{5(2@ + 1) +5,1) [REH (Can + (1= Qo) [ +8(2(w + 1), 5+ 1) [ A () |7 }
(3.51]

In a similar way, we obtain.

1 q 1 >
(2w+1) |7, (2w+1) _ — R
[ e e o + 0= o+ 0= o < (57

[5% +1) +5,1) | AP (Car + (1= Q) [1 482w+ 1), 5 + 1) [ A+ (ay) |9 ] '

(3.52)
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Here, we use above two inequalities (3.51), (3.52) and obtain the following result.

L) (a2t - q
= (2(w+ 1)) (2w + 1)! [(6(2<“+ 1) +5,1) | A% (Car + (1= )a) |

Q=

# B2+ 1,5+ 1) [ A o) 1)
+ (1= ()P (ﬁ(2<w +1) +5,1) | A (Car + (1= Qay) |1

+ B(z(w + 1), s + 1) | h(2w+1)<a1> ’q )q] |

(3.53)

The result that we obtain associates s-convex function with classical Beta type function.

]

Theorem 18. Assume that h : I C RT U {0} — R is a differentiable function up to
(2w + 1) times on a1, aw), whereas ay < ag and oy, ap € 1. If | K+ | s an s-conver

function on [aq, agl, for some fized s € (0,1], then for every 0 < ¢ < 1 where p,q are
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conjugate numbers and q¢ > 1, we have,

2w+1 N 2w+ 1 5 (2w+1) (062—041)2“) (20)
'(;(1) +1( ., )C — (wtl mhz (Cay + (1 — o)

2w —
+ Z<1>”(2w)<”<(2“)) (o0 — O 00y + (1 )

= vy 2w!
(2w—1) 1) 2% — 1 ( ) (g — al)(2“*2) ( )
~v+1 v (2w—-1 2w—2 _
f T (7)o Sy + (1= a)
2w—2 _ _ (2w—3)
n (1) (Qw 2> - C(2&;—2) (&2(2wa_1)2)! h(2‘*’_3)(Ca1 + (1= Oa)
=0 "
(S (o e ) L2 o oy 41 Gy
= v (2w — 3)!

1 &2
h(t)dt
062—041/ ()

«a

(a2 _ 061)20.1—&-1

(2w + 1)! ((2w+11)p+1>; (si1>;

¢ <\"“““’<<a1 + (1= )a)

q
X ‘h(%ﬂ)(ag)

1
q)q

1= (a4 (1= Q)| + [ (e[ ) ] .

(3.54)

Proof. Here, we use the above (3.14) and apply the Holder’s integral inequality and
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obtain the following result.

)Qw

' 25—4-:1(_1>7+1 (2(,0 + 1) gv - €(2w+1) (062 —

2l o Caa+ (1= Cay)
v=0 :

2w —
+ Z(—D”(%)C”—c@@ (0 — o) l)h@“_l)(C@1+(1—C)0¢2)

= vy 2w!
(2w—1) 1) 2% — 1 ( ) (g — al)(QUJ72) ( )
~v+1 v (2w—-1 2w—2 _
f T (7)o Sy + (1= a)
2w—2 _ _ (2w—3)
+ (=1)” (2“’ 2) ¢ — C(Qw—Q) (0‘2(2wa_1)2>! h(2w—3)(COé1 + (1= {)az)
=0 "
(S (o e ) L2 o oy 41 Gy
= v (2w — 3)!

1 a2
+-+ / h(t)dt
Qo — Q1 Jqoy

(a2 o al)(2w+1)

(2w +1)!
1
+ (1 . C)(2w+2)/ t(2w+l)
0

1
[c@ww [ g + (1= Jaz) + (1~ )| at
0

PESD(E(Can + (1= Oaz) + (1 = o) dt] .

(3.55)
Here, we consider the first part of the R.H.S of (3.55), and by using Holder’s integral
inequality on (3.55).

/1 2w1) ‘h(%“)(t(é’al + (1= Qan) + (1 —t)ay)| dt
0

1 % 1
S (/0 t(2w+1)pdt> (/0 | h(2w+1)<t(ca1 + (1 _ C)OQ + (1 _t)a/2) |q dt)

Here,

L (3.56)

1
1
oty —  ~ 3.57
A 2w+ p+1 (3.57)

q
Now, using the s-convexity of ‘h@‘““) on [aq, as| in the second integral on the right
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side of (3.56), we have,

/01 R (H(Cay + (1 — Oag) + (1 — t)ay)

<[ (r

So finally the equation (3.56) yields,

dt

q

A (Cay + (1= Qaz)| + (1=

J,(20+1) (a2)> dt

/1 ‘h@““)(t(gal (1= Oag) + (1 — t)az)) dt
0 (3.58)

1
< 1 |:‘h(2w+1)<<'a1 + (1 _ C)ag)’q + ‘h(?w—i—l) (O./Q)
S

1

Henceforth, by using (3.56) and (3.58) we obtain the following final inequality,

1

/
L\ a0 - ga
S((2¢u+1)p+1> s+ 1

R (H(Cay 4+ (1 — Oag) + (1 — t)ay)| dt

L ‘h(2w+1)(&2)’q ‘ (3.59)

Similarly, now we consider the second integral of above inequality (3.55), and performed

the same mathematical process on (3.55) and obtain the following integral inequality.

/1 WD (G + (1= Q)an) + (1 = tan) | dt
0

1 v ’h@wﬂ)(foq +(1— C)CYQ)’(J + ‘h(2w+1)(&1)‘q 4 (3.60)
< (m) —— |

By using above two inequalities (3.59) and (3.60), we obtain the final result.

(012 _ a1)2w+1 1 % 1 %
<
- 2w+ 1)! 2w+1)p+1 s+1

e (‘h@“’“)@al + (1= Qaw)

q
I ‘h(2w+1)(a2)

q); (3.61)

b (1= )2 <(h(2w+1>(ga1 (11— g)az)‘q i )h(2w+1)(a1) q);] ‘
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Chapter 4

Hermite-Hadamard type inequalities
for s-convex and Extended s-convex
function

Hudzik et al.in [3] demonstrate some results associating with s-convex in the second
sense. Here, we established some more new results about Hadamard inequality for the
class of s-convex function whose fifth derivative at certain powers are s-convex function
in the second sense. Although it is seen that many important inequalities connecting

with 1-convex function.

4.1 Some results for s-convex function and extended
s-convex function:

Lemma 4.1.1. Assume that h: J C RY U {0} — R is a differentiable function up
to five times in the interior of J such that a1,y € J. When h®) € Li(Jay, o)) and
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0 < (¢ <1, subsequently,

m /aa byt — =10 4121(?@ —2 8 oy — @)K (Ca+ (1 - C)a
48— 64;4* ey — )P (Can + (1= C)as)

_ 352_6¢(@2 — a)2h"(Cay + (1 = O)ag)

_ 252_ 1(a2 — ) (Con + (1 = Q) — h(Cay + (1 — Q)az)

(ag —a)®

120 [46/0 £ | A (¢ (Can + (1 = C)az) + (1 — t)aw) | dt

<

- (1= C)6/01 £ | B (t(Con + (1= Qaz) + (1 = t)ay) | dt] :
(4.1)

Proof. We assume a following improper integral and integrating this integral on [0, 1].

Here, we consider ¢ € (0,1).
1
/ PR (t(Car 4+ (1 — Qaa + (1 — t)ag))dt. (4.2)
0
Consider the internal part of integral equation (4.2) and make it in a simplified form
for the convenience of integration.
-1
((az —a)

So finally, the integral equation (4.2) becomes;

RO (t(Car+(1—=C)ar+(1—t)az)) = PR (H(Con + (1= Can) + (1 = t)az)).

—C(az_—l ) /0 Pdh ™ (t(Coq + (1 — Qg + (1 — t)ay))d. (4.3)
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Hence the above equation (4.3) implies

-1 (i) - 5w ) )
Cloa —any A O + (1= Caa)] | 47— /0 FR) (1 (Con + (1= Oas + (1 — tas)dt
_ 1 (iv) _ 5 B -

lon = a)h (Car + (1 = Q)az) P (as —ar)? /0 tdh (t(Coq + (1 — Qg + (1 — t)ap)dt
_1 ) y
= oz ay al)h(Zv)(Cal + (1= Qas) — m#h (t(Car+ (1= Oan) + (1 — o |}
> e 1 1 — o) dt
C2(a2_a1)2/0 (t(Can + (1 = Q)az) + (1 — t)as)
_]. . 5 "
= (o= Oél)h(w)(COq + (1 —=Q)az) — mh (Cay + (1 —)as)
> fdn (1 1 1 —t)an)dt
‘m/o (t(Con) + (1 = Qaz) + (1 = t)as)
— _—1 (iv) o o L " B
" ((og — oq)h (Cor + (1 = Q)az) (o — a1)2h (Car + (1 = Q)an)
5.4
" (a1 War + (1= Qaz)) + (1= Haz
5.4.3 o,
CGlag — ar)? /o th (8(Con) + (1 = Gaz)) + (1 = t)as)dt
_1 ) .
~ Clon - al)h(w)(fo‘l + (1= Qo) — mh (Cor + (1= Q)an)
5.4 z 5.4.3 v,
T Blan— Gt = Ge) - m/o Edh (t(Can + (1= Q)az) + (1 — t)az)dt
— _—1 (iv) _ - L 1 B
" C(ag — @1)h (Con + (1 = (o) Clag — a1)2h (Car + (1 = Q)an)
5.4 z 5.4.3 ,
= Gay e Con+ (1= Qaw) = o (#(Can) + (1= ) + (1= aa |y
5.4.3.2 t,
m/o th (t(Cay + (1 — t)ag))dt
— —1 (iv) i . 5 " _
o Clag — oq)h (Can (1l = Q)as) —(2(042 — a)gh (Car + (1 = Q)az)
5.4 y
- mh (Can (1l = Q)as)
543 5.4.3.2 1
" Gifas —api Cr TGl - W/o tdh(t(Car + (1 = )az) + (1 — t)az)dt
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1w _ 5
Clog = a1>h (Car + (1 = Q)an) (s — )2

5.4 " 5.4.3 /
— 3 (e + (1 = Qaz) — mh (Con) + (1 = Qe

C?’(Oéz - 061)3
[t(h(Can + (1 = Can))) + (1 = t)as] g

hm(COfl + (1 — C)Oég)

_sasa

(5(ag —a1)d
5.4.3.2.1 1

E /0 h(t(Cai(1 — Q)ag) + (1 — t)aw)dt.

¢laz —a
Finally, we obtain a following integration.

I
((ay — )

W' (Car + (1= Q)an)

1
/ PR (tH(Cay 4+ (1 = Qg + (1 — t)a))dt = — R (Cag 4 (1 = )ay)
0
5 " 5.4
_ —CQ(C){Q — a1)2h (Car + (1 = Q)ag) — —CS(OQ BT
5.4.3 / 5.4.3.2 /
- mh (Car+ (1 = ¢)ag) — mh (Car + (1 = ()a)

5.4.3.2.1 1
m/o h(t(Con + (1 = Q)az) + (1 — t)ar)dt.
(4.4)

Now, by multiplying the equation(4.4) by CG(O‘IQ;OMP.

EEﬁﬂilé/“ Ot(Gon) + (1~ Qo)

50 ' Yo —a)®
= €00 60 oy (1= o) - 2D g 4 (1= Q)
Cg(az @)2 o — ay)

B (Con + (1= Qag) — h (Car + (1= Q)as) — Ch(Car + (1 — (o)

2

+</ H(Con + (1 - C)an) + (1 — t)awm)).
(4.5)

Here, we assume another improper definite integral on [0, 1] of the following form;

/1 PR (t(Cay + (1 = QOag) + (1 — t)ay)dt. (4.6)

Now, we consider the internal part of (4.6) and simplify it for the ease of integration.

1
(1=l —a)

48
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So, after simplification the definite integral (4.6) becomes;

1 ! 5 17 (iv) o ~ Oa e
(1—()(a2—a1)/0 £dn (t(Car + (1 — Qag) + (1 — t)au)dt. (4.7)

Hence the above equation (4.7) implies,

= 1 57 (iv) o ~ Oa ~ D 1
(1_C)(042—041)[th (t(Car + (1 = Qaz)) + (1 = tau] o

(- C<O542 —ay) /o R (H(Cor + (1= Qaz) + (1 =t )dt

T - C)(lOéz - a1)h(iv)<ca1 + (1= ¢)az)
ey, G+ (1= )+ 1 = D
- (1—0)(ay — al)h(iv)@al + (1 = ¢)az)

5 4 " . a _ a 1
" = Ofag —anplt (o) + (1= Qaz) + (= oul
5.4 ! 3 1
T Oan —ar? /o Fhe(#(Con + (1= t)ag) + (1 = t)a)dt
= 1 (iv) o _ o o 5 " o B o
T 00 —an Gort (1= 0o) = o —h (Cont (1= Qo)

5.4 Lo
T (1= )3 (as — ay)? /0 t*dh (t(Can + (1 — Q)az) + (1 — t)ay)dt
1 5

= h(iv)(COél +(1={)as) — th(COél +(1 =)o)

(1= 002 —a1) (1= 0(as — )
5.4 v,
TPz — P /o Edh (t(Con + (1 = CJaz) + (1 =)o )dt
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= s C)éi — al)h(iv)(fal + (1= (Q)az) — = C)2(i42 — &1)2h"'((a1 + (1= )aw)
Tl e (Con + (1= Qo) + (1= D)l [y
TG J, e (1= o+ 1
1 . By
T (1-— CEE(ZLOQ - al)hjlv)(gal + (1= Qaz) - 1— C)Q(ZZ _ a1)2h (Car + (1 = Q)az)
P = 0Py —app (Con T (= )
5.4.3

(1= QOMaz—ay)? /o dh’ (H(Cas + (1= C)an) + (1 = tay )dt

T (- g)(;2 — ot Gan (1= Qaz) = 02(5&2 —arEh (Con (L= Qo)
TG (1= )
Tz g)ikij— o) [#20 (t(Con + (1 = QJan) + (1 = )an)] g
T = ;?022— ) /01 th (t(Car + (1 — Q)ag) + (1 — ) )dt
= =g ey o+ (1= Q) = et + 1= Q)
e <)35(j:2 —aplt (Gt (1= One) = c)i).(tj_ Sl Can+ (1= QJaz)

ot [ttt + (- Qo + (1 =
- C)(ZQ - al)huv)(Cal H= Qo) = = 02& _ al)th”(gal 4= Oan)
+ - Of('(i — a1)3h"(<a1 + (1 = Q) — = g)i.(tj— a1)4h’(ga1 +(1-)aw)
T - g?;tjf— E [th(t(Cor + (1 = Qaz) + (1 = t)an)] |

5.4.3.2.1

T (1= 0)P(ag —ar) /0 h(t(Car) + (1 = Q)ag + (1 — t)ay)dt

Finally, we obtain a following definite integral .
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1
(1 =)oz — )

5 " 5.4 "
— 2h (COél + (1 - C)OQ) + (1 _ <)3<Oé2 _ a1)3h (COél + (1 - C)CYQ)

(1 - C)Q(OQ - 061)

/ RO (Can + (1= Oan + (1 — Han))dt — R (Can + (1 = ()az)

5.4.3 / 5.4.3.2.1 /
T A= Oz —any S O+ e, it (e Cew)
5.4.3.2.1

S (1-Q)P(az —an)® /o h(t(Car + (1 = Q)az) + (1 — t)az)dt.
(4.8)

(1=0%(a2—01)? So, after some

By multiplying the above equation (4.8) on both sides by 50

simplification we obtain a definite integral of the following form.

(1 - Q)%as — )’

/1 RO (t(Cay + (1 — Qag + (1 — t)ay))dt

120 0
_ (1-¢) 1(;15 — OﬂMh(i”)(COq 4 (1-)ap) — (1-2¢) (2(12 — ) hm(COq + (1 - Q)as)
N (1-¢) (66;2 — ) K (Car+ (1= C)ag) — (=9 (;2 —~ al)h/(COél + (1= Qaz)
+ (1= Oh(Can + (1= Qaz) = (1 =) / At + (1 = Qo) + (1 = than)d.

(4.9)
Since, we consider two definite integrals and solve these two definite integral simulta-
neously by using the technique of integration by parts. Hence, we obtain two different
results corresponding to two different definite integrals.
Here, we subtract equation (4.9) from equations (4.4) and after some simplifications
obtain a final result that we name as lemma, and this will help us a lot for the purpose
to prove our succeeding theorems, also we frequently use this lemma for establish-

ing the theorems related to Hermite-Hadamard types integral inequalities for s-convex
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function.

(2 ) [cﬁ / ) (t(Con + (1~ QJan) + (1 — tyon e

(1= [ EROGon+ (1= O+ (1 = )]

oy —an)* Hag —aq)® m

= 10 2O oy 1 (1 - az) — S Gy 4 (1 - Q)

120
o —al)z oy —ay)
2

h' (Cay + (1= {as) — W (Cor + (1= Q)az) — ((h(Car + (1 = Q)az))

+</ HCa + (1= Q) + (1 — )t
(1 C)4(042—061)3

(042 - 041)

190 P (Can + (1= CJaz) + o B (Can + (1= C)an)
—“‘60 W (Gon+ (1= Qoo + LRy 4 (1))
(= o + (1 = Q)+ (1 =€) [ htitcan + (1 = ) + (1~

(4.10)
Here, we made some simplifications and also use the change of variable and finally

write up the simplest form of (4.10).

1 /a‘z h(t)dt — 5¢t —10¢% +10¢* —5¢ + 1
(g — ) J, 120
4¢3 —6¢24+4¢ -1
B 24
3C2-3C+1
===

3 _ @2 _
B 4C 6C -+ 4C 1 (CYQ . al)?)h’”(Cal 4 (1 _ C)Q/Z)

(a2 — a)*ht™) (Can + (1 = ()ao)

(g — a1)3hm(§“a1 + (1 —={)ag)
(az — a1)*h"(Con + (1 = ()as)

24
2 _
— W(az — a1)*h"(Con + (1 = Q)as)
. (062 - 041)

¢ / RO (tH(Car + (1= Qas) + (1 — t)ay )dt

120

(1) /0 1O (#(Can + (1 — O + (1 — t)as))dt |
(4.11)

We mainly use this lemma on Holder’s inequalities for integrals, power mean integral
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inequalities, Holder Iscan integral inequality in order to prove succeeding results related

to Hermite-Hadamard types inequalities for s-convex function. O

Remark 6. Since, we assume ¢ € (0,1). The first definite integral (4.2) that we
assumed diverge at ¢ = 0. Similarly, the second definite integral (4.6) that we assume
diverge at ¢ = 1. So, in order to avoid this obstacle, we take ¢ € (0,1) in the above
Lemma (4.1.1) .

However, if we take ¢ € [0,1] we obtain definite value. Now the behavior of integral

changes.

Remark 7. If we take ( = 0 in above equation (4.11), we obtain.

]. a2 ]. . 1 " 1 "
m/[; h(t)dt — ﬁ(ag — 061)4}1(“))(@1) — Z(CYQ — Oél)gh (CKQ) — 5(@2 — Oél)zh (041)

1 .

1 / ay — o)’ (!
— 5(0[2 — Oél)h (Oél) — h(Oél) = —%/ t5h(v) (tOCQ + (1 - t)Oél)dt
. . 0

(4.12)

Remark 8. Similarly, if we take ¢ =1 in the above inequality (4.11), we obtain.

1 a2 1 TJ’U ]. " 1 "
o /a (et — 53 (0e — 00) ) (o) = (0 — 01)*h" (02) — 5 s — a0 (o)
1 : ay —ay)® !
— 5(0[2 — Oél)h (Oél) — h(Oél) = %/ tBh(v) (tOél + (]_ — t)ag)dt
. . 0

(4.13)

4.2 Inequalities for extended s-convex function in the
second sense:

Now, we use Hermite-Hadamard type integral inequalities and Lemma (4.1.1) to estab-

lish some new integral inequalities associated to s-convex function.

Theorem 19. Assume that h : J C [0,00) — R is a differentiable function up to five
times in the interval of J, such that oy, o0 € J with oy < a, also ) € Ly([oy, as)),

and 0 < ¢ < 1. If | R(t) |7 is an extended s-convex function in the second sense on
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lag,as], =1 < s <1, and q¢ > 1, then,

1 o 4 10¢% 4 10¢2 — 5¢ + 1
/h(t)dt_5< 0¢% +10¢2 — 5¢ +

(CMQ — a1)4h(i“)(Ca1 + (1 — C)Oég)

(042 _ 041) 120
3 a2 _
B 4¢ 6(24-#- 4 -1 (s — al)?’h///(fal + (1= ()as)
2 _
_ %(O@ — 1)’k (Car + (1 = ()a)
-1

5 (g — al)h/(Cal + (1 =Q)az) — h(Cag + (1 — Q)aa)

(ay — ) [ 6 ]
- 720 (s+1)(s+2)(s+3)(s+4)(s+5)(s+6)

[(1 —O%[(s+ 1) (s+2)(s+3)(s+4)(s +5) | A (Car + (1 = )a) |7 +120 | A (an) | ]5

1

+ s+ 1)(s+2)(s +3) (s +4)(5+5) [ A (Car + (1 = Q)a) |* +120 | AP () |7 ]7].
(4.14)
Proof. We prove the above theorem by taking 0 < ( <1 and —1 < s < 1. So, we take

(4.11) and apply the power mean integral inequality on (4.11) to prove the theorem.

Also, we know that | (*)(¢) |7 is an s-convex function in the second sense on [ay, as).

1 o £ —10¢3 +10¢% — 5 + 1
/h(t)dt_x 0¢* + 10¢% — 5¢ +

(C(Q — Ck1>4h(w) (CCH + (1 — C)Oég)

(s — o) 120
3 p— 2 —_ "
_ 4C 6(24+ 4C 1 (042 . Oé1)3h (Cal + (1 — C)Oég)
2 _
— %(% —a1)?h (Cay + (1 = Q)a)
2¢—1

(o2 — a1)h (Car + (1 = Q)az) — h(Con + (1 = Q)a)

2

(g — 041)5

< el [ en0utcan + (1 Qan) + (1 )|

+ (- C)6/0 | PR (t(Car + (1 = CJag) + (1 = t)an) | dt]-
(4.15)
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Here, by taking right side of above inequality (4.15) and applying power mean’s integral
inequality on (4.15).

1 (17%) 1 1
= Lﬁ </0 t5dt> [/0 £ B (t(Can + (1= Qaz) + (1~ t)as) |7 dt

Q=

120

1—1 1

=0 (/01t5dt> q Uolt‘f’ B (t(Con + (1= QJaz) + (1 — ) [ dt} '

Because, | h(t) |7 is an extended s-convex function in the second sense.

1

¢ ( t5dt> [/O 2| B (t(Coq + (1 = Qan) + (1 — t)a) |? dt} '

042—041

t5dt> t5 | O (t(Con + (1 = O)ag) + (1 — t)eyy) |4 dt} q]

S

C ( t5dt> [/O (| B (Car + (1= Qan) [ +(1 = 1)° | A (ay)) | dt}

( t5dt> t5(t5 | B (Coq + (1 = Qawa) | +(1 —1)* | A () | dt} q]

% <6> -2 [!h (Cali‘j_l6_ Qag) |

< (ag —ay)®
= 120

120 | h®)(ag) |9 ]é
T T )61+ 14515516

() [

q

. 120 | h®)(ay) |7 ]
(s+1)(s+2)(s+3)(s+4)(s+5)(s+6)

< (ap —ay)’ { 6 }q
- 720 (s+1)(s+2)(s+3)(s+4)(s+5)(s+6)

(1= 0)°ls + 1)(s + 2)(s +3)(s + 4)(s + 5) | A (Con + (1 = Q) |7 +120 | A (n) ]

F s+ 1) (s+2)(s+3)(s+4)(s+5) | A (Can + (1 = Oan) [ +120 | A (az) 7] 7|

%)



]

Theorem 20. Assume that h : J C [0,00) — R is a differentiable function up to five
times in the interval of J, such that oy, o0 € J with oy < a, also b € Ly([on, as)),

and 0 < ¢ < 1. If | R(t) |7 is an extended s-convex function in the second sense on

[@1,0{2], -1 S S S 17 and q 2 17 then:

1 o2 5¢* —10¢3 +10¢% — 5¢ + 1
(OéQ — Oél) /061 h(t)dt B 120

3 pr2 .
R - P (G + (1= Q)

2 _
_ W(OQ _ al)QhN(Coﬂ + (1 — C)OCQ)

i 242_ L (s — an)B'(Can + (1 = C)an) — h(Can + (1 — O)a)

(a2 — a1)*ht™) (Con + (1 = Q)a)

(o — 041)5

6 ! 6 56 | 7(v q
=70 (60(6(1—06) ' [(1_0 PQG_OC [ H%ea) |

—C(12(1 = )P +15(1 — O)* 4+ 20(1 — ¢)3 + 30(1 — ¢)? +60(1 — ¢) + 60InC) | A (ay) |2

€121 - 0P| HO(a) [ ~(1 = (126" + 156+ 206

+30¢% 4 60¢ + 60In(1 — ¢)) | R (ay) |9 } ] .
(4.16)

Proof. When ¢ € (0,1) and s=-1, since | h¥)(¢) |? is an extended s-convex function in
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the second sense on [aq, as], by (4.9) and holder inequality, we have,

h(t)dt —

Qg — Q1 Jqo
4¢3 —6¢* +4¢ — 1
24
3C2-3C+1

1 /C@ 4¢3 —10¢3 + 10¢2 — 5¢ + 1

(042 — Oél)gh (COKl + (1 — C)Oég)

— —(052 — Ozl)gh”(CCH + (1 — C)OZQ)

6
20— 1
2

(Oég — al)h/(gal + (1 — C)OZQ) — h(Cal + (1 — ()ag)

< (oo mliee [onOtcan + (1~ Qs + (1 - )

120

+(1—<>6/01

PR (t(Cay + (1 — QOag) + (1 — t)ay)

dt].

(a2 — a)*ht™) (Cay + (1 = Q)aw)

(4.17)

Here, we consider the right side of above inequality (4.17) and apply the power mean

integral inequality on (4.17).

120

5 1 (1_%) 1
< (oo ( [ [ [P0 KO 1= 107 [ |q]

J

(1-1)
< (2] o ( [ v [ [P 1) P10 ) |q]
0 0

=

1 1_4
todt

S—

+<1—<)6<

120

Q=

+<1—<)6<

S—

o7

Q=

1

Pt +1 = 1) | A a) |7 +(t = Q) | K (a2) |° dt]

1
q

1 1= 1
t5dt> / PtC+1 =) A () |7 +7(t — t¢) 71 | A (a) |7 dt]
0

(4.18)

1
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(=)’ | g Lyt [ A (ay) |9
- ot {g (0) {—

5¢
12¢5 4 15¢* + 20¢% + 30¢% + 60¢ + 60In(1 —¢) , J
- 60C6 =9 | ) (as) | } }
INYE T A@ g
EECHONE =
L 12(1 = Q)P+ 151 = ¢)* +20(1 = ¢)* +30(1 — ¢)* 4 60(1 — ¢) + 60In¢ a

60(1— )Y [ A () I
. (CYQ — a1)5 6 %
720 (60C6(1 - C)6)

X [(1 — Q)%[12(1 = ¢)°¢® | A (ap) |7 —¢O(12(1 — ¢)® + 15(1 — ¢)* +20(1 — ¢)* + 30(1 — ¢)*

+60(1 — ¢) +60inC) | h®(an) 77 + C5[12(1 = O)°C | A (ay) |1

— (1= ¢)5(12¢% + 15¢* + 20¢ + 30¢2 + 60¢ 4 60in(1 — ¢)) | A () |q]§] .

H
Corollary 4.2.1. Under the assumption of above Theorem (19), if s = 1. then,
1 1 5¢* —10¢3 4+10¢%2 —5¢ +1 47 (i)
(a2 — on) /0 h(t)dt — 120 (a2 = o) A (Can + (1 = Qaz)
3 _ a2 _
4 6C24—|— 40 -1 (s — a1 )*h” (Car + (1 — C)aw)
2 _ p
_ ?)C—S’CH(OQ —a1)*h (Cay + (1 — Qay)
B QCz_ (o — o)l (Can + (1 - QJaz) — h(Gan + (1 - CJaw)
< loazaf (1)3 X [(1=QP[6 1 A9 Gy + (1= Qaa) [+ | A (ay) 7]
- 720 7 1 i 1
+¢0[6 | A (Can + (1 = Qaz) [ + | A (ag) |7 ] 3’] :
(4.19)
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Corollary 4.2.2. Under the assumption of above Theorem (19). If s=q=1 then,

oy . o B oy ) 4G (1O

A¢ - 6<;4+ 4¢ -1 (0 — )R (Cay + (1 — C)a)

_ ?’CQ—#(QQ ~a)2h (Car + (1 — Q)

_ 2C2_ (a2 = )l (Gan + (1 = CJaz) — (G + (1 = Q)

< L0 [y 0 RO a) [ 46+ (1= O | A Can + (1= o) | +¢° | A(aa) ).

(4.20)
Corollary 4.2.3. Under the assumption of above Theorem (19). If q=1, then,

_ A 65;4* T — ) (Car + (1= O)an)
_ 3<2——63<+1<a2 — a)?h" (Can + (1 = C)an)
_ 2C2— 1(a2 — o) (G + (1 = Q)az) — h(Cay + (1 = ()az)

(o — 041)5

< ogg | (12¢° = 12(1 = O = 15(1 = ) = 20(1 = ¢)* = 30(1 = ¢) = 60(1 = ¢) = 601 )

(a2 — a1)*ht™) (Con + (1 = Q)aw)

|A®) (a)| + (12(1 = ¢)® — 12¢° — 15¢* — 20¢* — 30¢* — 60¢ — 60In(1 — () | A" (a) |

Theorem 21. Assume that h : J C [0,00) — R is a differentiable function up to five
times in the interval J, such that ay, ap € J and oy < a, moreover h) € Ly([ay, aw)),

and 0 < ¢ < 1. When | RW)(t) |7 is an extended s-convex function in the second sense
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on o, ae), =1 < s <1, and q > 1, then,

1 /a2 h(t)di — 5¢t —10¢* +10¢* —5¢ + 1

(a2 — a)*ht™) (Can + (1 = Q)a)

(042 _ al) ) 120
3 _ a2 _
X 6C24+ 1 7L — PR (Can + (1= C)an)
2 _
— W(Ozz - al)QhN(COq + (1= ¢)az)
-1

5 (ay — ag)h (Cay + (1 — O)ag) — h(Cay + (1 — Q)aw)

< (OéQ—Ozl)5 1 %
= 120 5¢+s—+1

(1= O8I ) (Can + (1 = Qaa) |9 +(5g + 5 + 1)B(5q + 1,5 + 1) | A (ay) |7]

+ Ol R (Con + (1= Q) 1" +(Bg + s + 1)B(5g + 1, s + 1) | h) () qu] -

(4.21)

Proof. We take (4.11) to prove the above inequality for s-convex function. We use here

power mean integral inequality and the Euler integral of first kind that is commonly

known as Beta function.

1 /az hE)dt 5¢C4 — 10¢3 + 10¢% — 5¢ + 1

(as — ar)*h™ (Cay + (1 — )aw)

(052 _ 041) ) 120
3 2 _
_ 4C 6C24+ 4C 1 (O@ o a1)3hm(<—a1 + (1 _ C)Oég)
2 _
- E TR )W (o (1= Q)
-1

5 (a2 — a1)h (Car + (1 = Q)az) — h(Con + (1 = Q)a)

(o — Ofl)“r’ !
= 120 [CG/O

—(1— §)6/0 PR (t(Cay 4+ (1 — Oag + (1 — t)ozl))dt‘] :

PR (t(Cay + (1 — Q) + (1 — t)ay)dt

(4.22)

Now, we apply the power mean integral inequality on the right side of above inequality
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on (4.22). Also, we used the integral inequality of first kind,;

1

<—<“21‘20”) [cﬁ ( / 1dt> ( / 50| KO (t(Can + (1~ Qo) + (1 — o) |th>

1

1
q

1dt> ( t5q | B (tH(Con + (1 = o) + (1 — t)eyy) |4 dt) ]

[c ( B8 | O (Cay + (1 — C)as)) |th)q+< [ a0 110 dt)
(/ 98 | KO (Cay + (1 — >a2>>rth>q+</0 (1 1)° | A <a1>\th>q]

() ( — I
o <| ht (Can + (1 = ()as) | +B(5q+1,5+1) | A (ay) |q>

CV2—041

Q=

CY2—041

5 +s+1

+ (1 . C) ( (Coq + (1 - C)O@) |q +ﬁ(5q+ 1,5+ 1) | h(”)(al) ’q> q]

5q +s+1
We done here a simplification and obtain a result of s-convex that associates with the
Euler integral inequality ( Beta function).
1 o2 5¢* —10¢3 4+ 102 — 5¢ + 1 4yl
—— [ h(t)dt - —ap)*h®™ 1—
ernl R0 = (2 — ) *h) o + (1~ Qo)

3 _ @2 _
4 -6 +4¢ -1 (@ — a1)3h” (Car + (1 — C)aw)

24
_ %(&2 —)?h (Con + (1 = Q)
=y (Gan + (1~ Q) — hGan + (1~ )

< (OCQ — @1)5 1 %
- 120 5 +s+1

(1= Q% A (Cor + (1= Qo) |9 +(5q + s + 1)B(5q + 1,5 + 1) | b (ay) |1]

Q|

+ O R (Can + (1= Q) |7 +(5g + 5+ 1)B(5g + 1,5 + 1) | h) () !“’]‘11] :
(4.23)
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Corollary 4.2.4. Under the assumption of Theorem (21) if s = 1, we obtain a follow-

g tnequality that does not involve Beta function.

1 /0@ h(t)dt — 5¢t — 103 +10¢* —5¢ + 1

(g —aq) 120 (s — 1) *ht™ (Can + (1 = Q)
3 _ a2 _
L« 6(244— 4¢ 1(&2 PR (Con + (1 = O)aw)
2 _
_ W(Oz2 _ @1)2hII(Ca1 + (1 — C)Odz)

_ 242_ L s — a)h (Car + (1 = CO)an) — h(Cas + (1 — C)aua)

1
< (g — )

5 1 . ) q
=120 ((5q+1)(5q+2)) {(1—0 [(5q+1) | A (Car + (1 = C)a) |

#1014+ ¢ [(5g+ 1) [ G+ (1= o) 11+ | 1) 1] |

(4.24)

Theorem 22. Assume that h: J C [0,00) — R is a differentiable function up to five
times on J, o, ay € J with ay < s moreover hY) € Ly(Jay, o)), and 0 < ¢ < 1. When

| hW)(t) |7 is an extended s-convex function in the second sense on [ay, as), —1 < s < 1,

and q > 1, subsequently,

1 /Cm h(t)di — 5¢t —10¢* +10¢* —5¢ + 1

(a2 — ) 120 (az — an)*h™ (Car + (1 — Q)as)
3 _ 62 _
B 4¢ 6C24+ 4¢ 1(a2 _ a1>3h”’(<a1 + (1= )ay)
2 _
- X oy — o (Gon + (1 )

- 242_ L s — an)B'(Con + (1 = C)an) — h(Car + (1 — Oan)

< (Oég — 011)5 q — 1 1_% 1 %
= 120 6g — 1 s+ 1

(1= O[] A (Can + (1= Q) 7 + | B (ay) |7 ]7

+ CG[ | R (Coq + (1 = Q) |74 | BV () |7 ] ‘11] ‘

(4.25)
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Proof. Since | h(")(t) |7 is an extended s-convex function in the second sense on [, as),

then by (4.11) and Holder’s integral inequality, we have,

‘ 1 /az h(t)dt B 5C4 _ 10C3 + 10(2 —5C+ 1(042 B a1)4h(w)(COé1 + (1 _ C)OCQ)

(b— 061) 120
3 _ 2 — ///

S 642: 2 s — @)W (Gon + (1 - Qan)
2 _

— W(O@ — 041)2h”(§041 + (1 = Q)aa)

B 2¢—1

5 (2 — ar)h (Car + (1 = Q) — h(Car + (1 = ()a)

S (OQ ];Oa/l) |:C6/ t5h(v) (t(cal + (1 — C)O@) —+ (1 — t)Oég)dt

— (=0 [ PR + (1= Ohas) + (1 ]
0
(4.26)
Here, we consider the right side of integral inequality (4.26) and apply Holder’s integral

inequality on (4.26). Also, | h(")(¢) |7 is an s-convex function,

g%[ < qldt) (/ |h(”)(t(Ca1+(1—C)a2)+(1—75)042|th>q

+(1—()6< tq 1dt> ( (t(Con + (1 = Qo )+(1—t)a1)|th>q].

1
q

S%[ < tqldt> ( ts|h(”)(Ca1+(1—C)a2)|+(1—t)s|h(v)(a2) 'th>

- ( / £ 1dt> ( / (t° | BO(Can + (1= QJaw)) |1 +(1 = 1)° | () \th)q].
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After some simplifications we obtain.

1 )/a2h(t>dt_ 5¢t — 103 +10¢* —5¢ + 1

(as — oy 120
3 _ 2 — "
B 4¢ 6(24+ 4¢ 1(042 —a)* R (Cay + (1 = O)aw)
2 _
-1

5 (avg — ag)h (Cay + (1 = Qo) — h(Con + (1 = Q)ay)

< (Oég — @1)5 q — 1 175 1 q
=120 6q — 1 s+1

(1= Q%[ | B (Gar + (1= Q)az) |7+ | K (au) [1]7

+ [ R (Car + (1= Qan) |1 + | A (a) Iq]é]-
(4.27)

Corollary 4.2.5. Under the assumption of above theorem (22), if s=1, then,

1 )/%h(t)dt_ 5¢* —10¢* +10¢* —5¢ + 1

‘ (a — an 120 (a2 = 1) B (Con + (1 = Q)awz)

3 _ 2 — "
B 4C 6<24+ 4C 1 (OZQ . al)Sh (Cal + (1 _ Q)ag)
2 _
- X - P (Gon + (1 )
-1

5 (a2 — ar)h (Cay + (1 — Q)ay) — h(Cay + (1 — C)Oég)‘
S CONO)

+ CG{ | A (Car + (1= Q)az) |+ | A (az) |1 } ] :

1

(1- C)6[ | h9(Con + (1= Q) |7 + | A (an) |7 |

(4.28)
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Chapter 5

Conclusion

In this thesis, we introduced several new results of Hermite-Hadamard type integral
inequalities for (2w + 1) times differentiable function associated to s-convex functions
and extended s-convex functions. These results are obtained by using the famous inte-
gral inequalities i.e Holder’s integral inequality and power mean’s integral inequality.

It is observed that the results obtained here are better than the known results.
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