
Comparison of Methods to Solve
Inverse Matrix Problem in Regression

Namra Shakeel
Regn.# 321269

A thesis submitted in partial fulfillment of the requirements
for the degree of Master of Science

in
Mathematics

Supervised by: Dr. Tahir Mehmood

Department of Mathematics

School of Natural Sciences
National University of Sciences and Technology

H-12, Islamabad, Pakistan

Year 2021

I dedicate this thesis to my beloved late parents.

i

Acknowledgments

Allah Almighty, the most beneficent and gracious, who created the whole universe,

deserves all honor and glory. I am deeply grateful and indebted to Him for bestowing

countless blessings upon me, including the courage and strength to complete my thesis

effectively. Without a doubt, my sincerest appreciation goes to my supervisor, Dr.

Tahir Mehmood, who is one of the best teachers I have ever had. I owe him a lot

of gratitude for his support, advice, and especially his constant patience during this

journey. May Allah bless him with an abundance of blessings. This research would

not have been accomplished without his knowledge and experience. Furthermore, it is

completely because of his efforts and appreciative responses to my questions that I have

gained a complete grasp and respect of this field. I would like to pay my gratitude to

my GEC members Dr. Mujeeb Ur Rehman and Dr. Raza Ali for their support

and guidance in completing this thesis. Lastly, I want to thank the support of my

siblings and friends in my studies.

ii

Abstract

The inverse matrix problem in linear regression models is a basic issue for high di-

mensional data and the reason behind this issue is multicollinearity and identifica-

tion problem. One of Artificial Intelligence’s (AI) branches, machine learning empha-

sizes using data and algorithms to replicate the approach by which humans learn, to

steadily increase accuracy. One of machine learning’s categories is supervised learn-

ing which consists of both predictors and predicted values. The regression model is

a supervised learning technique for dealing with continuous data sets. Some existing

regression methods are LASSO, generalized inverse, and partial least squares (PLS)

regression that is considered as a reference to evaluate the newly proposed methods.

Newly proposed methods include ‘Beta Cube’, ‘Compressed Beta Cube’, ‘Compressed

LASSO’ and ‘Compressed Generalized inverse’ regression. Two existing data sets ‘NIR

(Near-Infrared) Spectra of Biscuit Dough’ and ‘Raman Spectra Analysis of Contents of

Polyunsaturated Fatty Acids (PUFA)’ have been considered for comparing the perfor-

mance of reference and proposed methods. To divide the data into training and testing

sets, Monte Carlo Cross Validation has been used, and the root mean square error has

been used to evaluate the performance estimation of all techniques. All models are

tested through algorithms on the R language.

iii

Contents

List of Figures vii

1 Introduction 1

1.1 Singularity of a Matrix . 2

1.1.1 Multicollinearity . 2

1.1.2 Identification Problem . 2

1.2 Machine learning . 3

1.2.1 Definition . 3

1.2.2 Theory . 3

1.3 Supervised and Unsupervised Learning 4

1.3.1 Supervised Learning Models . 5

1.4 Summary . 5

2 Reference Regression Models 7

2.1 Introduction . 7

2.1.1 Ordinary Least Square (OLS) 8

2.1.2 Assumptions of Linear Regression 10

2.1.3 Limitations of OLS . 12

2.1.4 Compressed Regression . 13

2.2 Least Absolute Shrinkage and Selection Operator 14

2.3 Generalized Inverse . 17

iv

2.3.1 Pseudo inverse . 17

2.3.2 Left Inverse . 18

2.3.3 Right Inverse . 18

2.3.4 Solve-ability of Linear Equations 19

2.4 Partial Least Squares (PLS) Regression 20

3 Proposed Regression Models 25

3.1 Introduction . 25

3.2 Beta Cube Regression . 25

3.3 Compressed Beta Cube Regression . 27

3.4 Compressed LASSO Regression . 28

3.5 Compressed Generalized Inverse Regression 30

4 Model Building and Comparison 32

4.1 Cross Validation . 32

4.1.1 Monte Carlo Cross Validation 33

4.1.2 Selection of Penalty Parameter 34

4.1.3 Performance Estimation . 34

5 Applications and Results 37

5.1 NIR (Near-Infrared) Spectra of Biscuit Dough 39

5.2 Raman Spectra Analysis of Contents of Polyunsaturated Fatty Acids

(PUFA) . 46

6 Conclusions 51

Bibliography 52

Appendix 59

v

List of Figures

1.1 This figure represents complete flow of methods that has been used in

this research . 6

4.1 This figure represents complete flow of computational steps in OLS method 35

4.2 This figure represents complete flow of computational steps in PLS method 36

5.1 This figure represents the NIR spectra of Biscuit Dough 39

5.2 This represents RMSE of fat component of biscuit dough for each pre-

diction method . 40

5.3 This represents threshold of fat component of biscuit dough for each

prediction method . 41

5.4 This represents RMSE of flour component of biscuit dough for each

prediction method . 42

5.5 This represents threshold of flour component of biscuit dough for each

prediction method . 42

5.6 This represents RMSE of sucrose component of biscuit dough for each

prediction method . 43

5.7 This represents threshold of sucrose component of biscuit dough for each

prediction method . 44

5.8 This represents RMSE of water component of biscuit dough for each

prediction method . 45

5.9 This represents threshold of water component of biscuit dough for each

prediction method . 45

vi

5.10 This figure represents the Raman spectroscopy of Fatty Acids 47

5.11 This represents RMSE of fatty acid as a percentage of total sample

weight for each prediction method . 48

5.12 This represents threshold of fatty acid as a percentage of total sample

weight for each prediction method . 48

5.13 This represents RMSE of fatty acid as a percentage of total fat content

in this data set for each prediction method 49

5.14 This represents threshold of fatty acid as a percentage of total fat content

in this data set for each prediction method 50

vii

Chapter 1

Introduction

In Mathematics, linear equations are consisting of unknown variables x and y. Its

solution can be found through different methods. In linear algebra, these equations

can also be written in the form of a matrix. For example, let a linear equation

Y = Xβ (1.1)

where Y is a column vector having dimension n× 1, β vector consists dimension of

p× 1 while X is a matrix of dimension n× p. Then solution of unknown coefficient β

can be represented as

β = X−1Y if X−1 6= 0 (1.2)

where X−1 is an inverse matrix. But the problem comes when a square or rect-

angular matrix X becomes singular. So, there exists no solution for finding unknown

parameter β. For example,

X =

 3 3 −1
3 3 −1
−1 −1 6

 (1.3)

In matrix (1.3), determinant of X becomes 0 and its rank is equal to 2. To overcome

this problem, an American mathematician, Moore in 1935, and a British mathemati-

cian Penrose in 1955 tried to find an alternative solution of inverse matrix called the

Generalized inverse or Moore-Penrose Pseudo inverse [1]. There is a detail discussion

of generalized inverse given in Chapter 2.

1

Now, the question rises why inverse of a matrix becomes singular? What are the rea-

sons for singularity in a matrix X? What are the alternative solutions? How suitable

solution can be determined? Firstly, we define the problem statement.

Problem Statement

How to solve the inverse of a matrix in regression analysis when its rank is less than

the dimension of a matrix or matrix becomes singular?

1.1 Singularity of a Matrix

A n× n matrix is called singular matrix when its determinant becomes zero.

There are two main reasons for singularity in a matrix:

1. Multicollinearity

2. Identification Problem

1.1.1 Multicollinearity

When two or more than two independent variables are related to each other in a matrix

in terms of rows or columns, then there exists multicollinearity. Multicollinearities

build problems in finding out the relationship between dependent and independent

variables in a linear or multivariate model. Due to multicollinearity, the coefficient value

changes its sign as well as they become inaccurate and unreliable. This exaggerates

variances of coefficients and gives wrong results in testing, evaluation, and prediction.

Multicollinearity builds when the observer takes two or more independent variables in

collecting data that may be written in a linear combination of each other [2].

1.1.2 Identification Problem

In data handling, we come across the data where sample size ‘n’ is less than a number

of independent variables ‘p’, such a situation is known as an identification problem.

With this condition, the covariance matrix of independent variables becomes singular

2

due to a reduction in the rank. Proof of the singularity due to rank reduction is given

in the article [3].

Now, large data sets are being created and used to predict future responses from

current and past observed data. To find accurate predictions, computer scientists are

creating algorithms but still there exists an inverse matrix problem in data handling.

So, to solve this problem, mathematicians and statisticians are working on different

models based on machine learning [4].

1.2 Machine learning

1.2.1 Definition

The study of computer algorithms that improve over time as a consequence of expe-

rience and data is known as machine learning (ML). It is considered to be a part of

artificial intelligence. Machine learning algorithms build a model based on training data

in order to make predictions or decisions without needing to be explicitly programmed.

Machine learning is relatable with computational statistics that emphasizing esti-

mating predictions using information technology and computers. However, not every

machine learning is considered as statistical learning. The study of mathematical opti-

mization supports the field of machine learning since it provides methodologies, theory,

and applications in a variety of disciplines.

1.2.2 Theory

The concept "artificial intelligence" was created in the 1950s as a basic idea of human

intellect being shown by machines. Jerrold S. Maxmen stated in 1976 that artificial in-

telligence (AI) will usher in the twenty-first century. AI has progressed beyond simple

theory to actual application on an enormous scale during today’s age of technological

development and the availability of huge data sets (‘big data’). Machine learning (ML),

which is considered a subcategory of AI, demonstrates the empirical “acquisition” con-

cerned with human intellect and has the potential to learn and enhance its assessment

3

by using computer algorithms. The machine can take an input and estimate a result

with repetitions and alterations to the algorithm. The algorithm’s accuracy is there-

fore tested by trying to compare the outcomes with ground truth, which is repeatedly

revised to perfect the ability to predict future events [5].

The challenge of developing a prediction based on data that incorporates algorithms

and large data calculations is tackled by machine learning. It is helpful in predicting

the future prediction based on already known data. It is useful to interpreting the data

according to our preferred information. Machine learning support to interpret data in

many fields such as Science, Medicine, Economy, Policy-Making, etc. Machine learning

works with the help of mathematical equations, statistical analysis, and computer pro-

gramming techniques. It is based on a proper programming that deals with dependent

and independent variables, error terms, and some estimation parameters. For getting

accurate interpretations of data, researchers are still working to introduce new meth-

ods of prediction corresponding to the demand of data. Supervised and unsupervised

machine learning are the two forms of machine learning.

1.3 Supervised and Unsupervised Learning

Supervised learning is a machine learning technique that includes both input and out-

put data. Input data corresponds to independent variables while output data corre-

sponds to the predicted response. In supervised learning, there is a possibility to test

the large data by working on small training data set. In machine learning, algorithm

provides the characteristics of final data sets similar to training data sets. Supervised

learning is helpful in knowing the relationship between the explanatory and response

variable with accuracy. There are many practical applications of supervised learning

algorithms such as text categorization, signature recognition, weather forecast, stock

exchange predictions, face detection, etc. [6]. Unsupervised learning is a form of sta-

tistical learning where only computations are performed on data that has not been

labeled, resulting in the formation of different structures. It consists of only indepen-

dent variables. There is no response variable in unsupervised learning. The algorithm

4

sets the link between data sets in a random way. There is no need for a human to give

any input. The formation of different structures from data makes this learning more

useful [7]. Unsupervised learning algorithms are useful to handle complicated tasks.

Examples of unsupervised learning techniques include clustering, anomaly detection,

and in some cases neural networks.

Unsupervised learning has been introduced for benefit of the reader. Detailed discus-

sion is beyond the scope of this project.

1.3.1 Supervised Learning Models

Regression and classification models are two forms of supervised learning models. Re-

gression models are those that deals with continuous response/output variable like real

value such as height, money, intensity, length, etc. It is helpful to estimate the link

between numerical value data of an outcome variable with a series of explanatory vari-

ables. While, the classification model is a type of supervised learning in which the

response/output variable is categorical such as “Yes” or “No”, “True” or “false”, “male”

or “female” and binary values 0 or 1. The output will be in the form of mostly 2 classes.

Real-life examples are light detection, sentiment analysis, scorecard prediction of tests,

etc. For this research, we are working only on the previous and proposed models of

regression.

1.4 Summary

The main objective of the thesis is to propose a method for solving inverse matrix is-

sues in regression models. Moreover, the comparison of the proposed method with the

reference methods will be carried out over real-life data sets. Ordinary Least Square

(OLS) is the basic method for parameter estimation in regression. OLS estimates the

regression coefficients as β = (XTX)−1XTY . In presence of identification and perfect

multicollinearity problems, the inverse of XTX does not exist. In such a situation,

several solutions exist in literature. Among the existing solutions, we have considered

the potential methods including LASSO, generalized inverse, and partial least squares

5

(PLS) regression. These reference methods are presented in Chapter 2. We have pro-

posed beta cube regression, and compressed form of LASSO, beta cube, and generalized

inverse. These methods are presented in Chapter 3. The model building of proposed

methods and their comparison with the reference method is presented in Chapter 4.

Real life applications and their results are discussed in chapter 5. The conclusion is

presented in Chapter 6, finally, the pseudo codes and R functions are presented in

Appendix. In the last of this chapter, Figure 1.1 represents the previous and newly

contributed regression methods of this thesis.

Figure 1.1: This figure represents complete flow of methods that has been used in this
research

6

Chapter 2

Reference Regression Models

2.1 Introduction

Francis Galton was a pioneer who worked in regression analysis in social sciences in

1870s. The German mathematician Karl Gauss used the method of ordinary least

squares before it in the early 1800s in astronomical data. There is intensive literature

on regression analysis [8].

The method of regression is useful to determine the relationship between regressand and

regressor. It represents a cause and effect relation. Regression analysis is useful in

predictions and forecasting as well as to see the relationship between predictors and

outcome variables [9]. There are two types of Regression Analysis.

1. Simple Linear Regression

2. Multiple Linear Regression

A method for determining a relationship between one independent variable x and one

dependent variable y is known as simple linear regression. It is a linear connection that

can be expressed as

y = α + βx+ µ (2.1)

In equation (2.1), α and β are two constants that represent intercept and slope and µ

is a residual term in the model. These constants are called model coefficients. A model

with the error terms is called the stochastic model.

7

ŷ = α̂ + β̂x (2.2)

In equation (2.2), α̂ is the average value of ŷ, when there is no effect of predic-

tor variable x and β̂ represents the average change in ŷ with one unit change in x.

Estimated sample model is called the deterministic model (model without error).

Multiple linear regression is a technique for determining the relationship between

multiple independent variables X1,X2,X3,...,Xp, and one dependent variable Y . It can

be written as

Y = α + β1X1 + β2X2 + β3X3 + ...+ βpXp + µ (2.3)

In equation (2.3), α and β1, β2, β3,..., βp are the model coefficients that represents the

relation between response and predictors while µ is the error term in the model.

The equation for estimated multiple linear regression can be expressed as

Ŷ = α̂ + β̂1X1 + β̂2X2 + β̂3X3 + ...+ β̂pXp (2.4)

In equation (2.4) α̂ is the average change in Ŷ when all the predictors are not included.

β̂1 is the unit change in Ŷ with one unit change inX1 by keeping all the other predictors

constant. There will be the same effect of remaining each β for their corresponding

predictor [6].

2.1.1 Ordinary Least Square (OLS)

Ordinary Least Squares (OLS) is a linear least squares approach that is used to estimate

the model’s coefficients. In OLS, parameters are chosen by taking the set of explanatory

variables in which linear function can be written as minimum of the sum of the squares

of the differences between actual response variable and predicted response variable [10].

Consider the classical multiple linear regression model

Y = Xβ + µ (2.5)

8

Where X is an input matrix of the dimension of n × p, Y is a response vector of

dimension n × 1 , β vector has dimension p × 1, and error term µ consists of n × 1

dimension. Consider the assumptions that are, mean of the residual term is zero i.e

E(µ)= 0 and mean of variance is sigma square i.e E(µTµ) = σ2 In, where In is an n×n
identity matrix.

Residual term can be as

µ = Y −Xβ. (2.6)

To estimate the β̂, the criteria is to minimize the sum of squares of residual and in

matrix algebra, it can be written as sum of squares of residuals∑
µ2 = µTµ (2.7)

∑
µ2 = (Y −Xβ)T (Y −Xβ)

∑
µ2 = (Y T − βTXT)(Y −Xβ)

∑
µ2 = Y TY − Y TXβ − βTXTY + βTXTXβ

∑
µ2 = Y TY − (βTXTY)T − βTXTY + βTXTXβ. (2.8)

Now, take derivative on both sides of above equation (2.8) with respect to β

d(µTµ)

dβ
=
d(Y TY − (βTXTY)T − βTXTY + βTXTXβ)

dβ

0 = 0−XTY −XTY + 2XTXβ

0 = −2XTY + 2XTXβ

9

2XTY = 2XTXβ

XTXβ = XTY

β̂ = (XTX)−1XTY. (2.9)

The ordinary least squares (OLS) solution of above equation can be analytically

calculated by considering that XTX is full rank matrix, which implies that XTX is

positive definite [11].

2.1.2 Assumptions of Linear Regression

When working with data in linear regression, it’s essential to recognize the model’s

assumptions. In regression, assumptions can be adapted according to the requirement

of the model. Data can be shrunk by using regression modeling methods which required

some assumptions of linear regression. These assumptions are the following:

1. Type of variable: For the linear regression model, the response variable must

be continuous. Continuous variables are those in which any value can be taken

between its extreme values. If the variable type is discrete such as 0 or 1, ‘Yes’ or

‘no’, then the regression model is not suitable. For discrete data, a classification

model can be used.

2. Linearity: The regression model must be linear in parameters. Linear relation

can be represented by a straight line.

Y = α + βX (2.10)

If explanatory variables in the model are not linear then these can be transformed

into a linear model. For example, there can be a curvature in the data, which is

well shown by a quadratic or cubic rather than a linear relationship.

Y = α + βX2 (2.11)

10

Above equation can be modeled by

Y = α + βX∗ (2.12)

where, we can assume X* = X2

3. Distribution of Residuals: In linear regression, residuals are normally distributed.

Due to normal distribution, they lie nearly on the diagonal. The mean of residual

is zero in normal distribution and variance is σ2.

4. Homoscedasticity of Residuals: Homoscedasticity means residuals or error terms

have constant variance, i.e. variance is σ2. The standard deviation of residuals

is constant and does not depend on the independent variables. Homoscedasticity

occurs when the residual term is the same in all predictors, while heteroscedas-

ticity arises when the size of the residual term varies across independent variable

values.

5. Auto Correlation: If there is a relation between values of the same variables,

then it is called autocorrelation. Autocorrelation problems mostly came in time

series and cross-sectional data. It may occur when observations are dependent

on each other in different factors other than time. It can also cause a problem

when residuals are autocorrelated due to a wrongly identified model.

6. Multicollinearity: If two or more than two independent variables are related to

each other then it is called multicollinearity. These correlated variables show

the same aspects in a model and make it unstable. It is necessary to remove

the remaining related variables from the model to make it more efficient. Mul-

ticollinearity can exist in the conditions when β coefficients are not significant,

when they change completely by removing or adding a variable and when they

represent a negative relationship instead of a positive.

To evaluate multicollinearity, there is a measure called variance inflation fac-

tor (VIF) which describes the increase in variance of regression estimates due

to increase in multicollinearity. It exists when the VIF value is greater than 5.

11

Multicolinearity can be removed by eliminating variables that are causing a prob-

lem or by reducing the dimension of explanatory variables. The consequences of

multicollinearity are

• If there exists an exact relationship between the predictor variables, then

exact multicolinearity exists and least-squares estimators cannot be found.

As XTX becomes singular, thus, coefficients and standard errors cannot be

estimated.

• OLS (Ordinary Least Square) estimators become high in variance and co-

variance due to correlation in independent variables.

• Due to high variance and covariance, the confident interval becomes broader

resulting in the acceptance of null hypothesis more freely. This is the cause

of the high standard error.

• Due to small changes in the data, OLS estimators and standard errors be-

come sensitive and give inaccurate results [12].

7. Identification problem: If sample size n is less than predictors p, then we cannot

find a unique β coefficient, that is why the identification problem comes in the

regression model [13].

2.1.3 Limitations of OLS

Solution of linear regression cannot be found if XTX has not a full rank matrix due

to multicollinearity or identification problem. OLS performance becomes very poor

due to these conditions. The main issue arises in finding the inverse matrix of XTX,

because it becomes singular and we cannot solve it further. This method does not

remove outliers and even cannot shrink the regression coefficients. Moreover, it cannot

provide an alternative way to reduce the correlated explanatory variables or variable

selection method. Overall, OLS cannot perform computations in a model having big

data sets. There are other methods discussed here to solve regression problems [4].

12

2.1.4 Compressed Regression

The development of quick and randomized approximations to significant numerical

linear algebra tasks like solving least squares problems and discovering spectral decom-

position has been a goal in the large-scale data processing. Compressed, modeling and

preconditioning are methods for reducing the amount of data collection and creating

a smaller, “compressed” solution. The variation in the optimal solution assessed at

the “compressed” solution as compared to the full-data solution is further limited by

probable explanations for these approximation techniques. A key objective in numeri-

cal linear algebra is to create compression methods that reduce computationally load

without sacrificing too much accuracy. Comprehensive mathematical constraints with

regard to the sub-sampling or arbitrary projection method are given with a high pos-

sibility due to their randomness [14].

Consider a matrix X with dimensions of n× p , where n is the sample size and p

is the number of predictors. Let Y is a response variable of dimension n× 1 and µ of

dimension n × 1 satisfying the conditions, E(µ)=0 and V(µ) = σ2In, where In is the

identity matrix. β is the estimated coefficient with dimension p× 1.

Y = Xβ + µ (2.13)

Through linear regression, coefficients of β̂ are estimated by using Euclidean norm

as ||Xβ − Y ||22, then a least square solution can be defined as

β̂OLS = min
β
||Xβ − Y ||22 (2.14)

Equation (2.14) can be written as β̂ = (XTX)−1XTY . If XTX matrix is not a full rank

matrix, then (XTX)−1 becomes singular and its solution can’t be found with ordinary

least square. This problem can be overcome by introducing a Cm that is a compression

matrix having dimension q × n, where q is a compression constant and q < n. Data

can be compressed by Cm matrix as X̃ = CmX and µ̃ = Cmµ [15]. The selection of

Cm can be made randomly by independent Gaussian random variables. In compressed

regression, the response variable is to be considered compressed as Ỹ = CmY by

13

Ỹ = CmXβ + Cmµ (2.15)

and least square compressed equation is represented as

β̂C.OLS = min
β
||CmXβ − CmY ||22 (2.16)

β̂C.OLS = (XTCT
mCmX)−1XTCT

mCmY (2.17)

Above β̂ is named as compressed OLS. Same like OLS, compressed OLS does not

provide results in case of n < p. Now, discuss the already existing methods as fellows:

2.2 Least Absolute Shrinkage and Selection Operator

The LASSO operator stands for least absolute shrinkage and selection operator. It has

been introduced by Fadil Santosa and William W. Symes in 1986 [16]. It came into

prominence in 2006 by Robert Tibshirani [17]. This is the type of regression model

that executes variable selection as well as regularization to increase the estimation of

14

accuracy. LASSO shrink β coefficients exactly equal to zero. LASSO is also called the

L1 norm [4].

The LASSO estimate of β̂ can be written as LASSO has many practical applications

that are discussed by many researchers in solving big data problems. Among the

most common methods for modeling spatial auto correlation in a regression model is

eigenvector-based spatial filtering. In this technique, the independent variable is a

subset of eigenvectors generated from a modified spatial weight matrix. To choose the

eigenvectors, the LASSO is presented in [18]. LASSO has been enhanced to address

practical concerns, such as financial ones such as index tracking without short sales.

Portfolio management is really a long-term focus mostly in financial sector. Modern

portfolio theory (MPT) is a traditional approach to constructing optimum investment

strategies [19]. One of the applications of LASSO is hard modeling multivariate curve

resolution which is applied in Ion Mobility Spectra to fit broader peaks that deviate

from a perfect Gaussian form [20].

The LASSO estimator can be written as

β̂LASSO = argmin
β

1

n

n∑
i=1

(Y −Xβ)2 subject to
p∑
j=1

||β||1 ≤ t (2.18)

Where t is the penalty on L1 norm. Above equation can also be written in the form

β̂LASSO = argmin
β

1

n
||Y −Xβ||22 + λ

p∑
j=1

||β||1 (2.19)

Where L1 norm and L2 norm are defined by ||β||1 =
∑p

i=1 |βi| and ||β||22 =
∑p

i=1 β
2
i .

There is one-to-one correspondence in t and λ. This relation is because of duality and

the Karush-Kuhn-Tucker (KKT) conditions. Thus, for every t ≥ 0, there exists λ ≥
0 such that both problems play the same role [21]. The selection of λ can be done by

cross validation. If λ = 0, LASSO estimator behaves similarly to the ordinary least

square. If λ value rises, a number of non-zero β̂ coefficients decreases and if λ value

approaches to ∞ , then β̂ becomes zero and LASSO provides null model [22].

Due to the non-differentiable objective function, the LASSO doesn’t provide a

closed-form solution to the problem. Still, there is a possibility of obtaining closed-form

15

by adding soft threshold operator. That’s how the soft-thresholding operator is defined

for LASSO regression.

signλ(x) =

x+ λ, if x < −λ

0, if |x| ≤ λ

x− λ, if x > λ

(2.20)

After the derivation, β̂ can be written as

β̂ =
1

n
(XTY)− λ

2
sign(β̂)

β̂LASSO =

1
n
(XTY)j + λ

2
, if 1

n
(XTY)j < −λ

2

0, if 1
n
|(XTY)j| ≤ λ

2

1
n
(XTY)j − λ

2
, if 1

n
(XTY)j >

λ
2

(2.21)

The purpose of LASSO regression is to find regression parameters that correspond to

a model with minimum prediction error. This is accomplished by putting a constraint

on the model parameters that ‘shrinks’ the regression coefficients towards zero, i.e.,

requiring the total of the absolute values of the regression coefficients to be smaller

than a predefined value λ. In a real sense, it limits the model’s complexity. After

shrinkage, variables having a regression coefficient of zero have been removed from the

model [23].

Although LASSO regression is well-known regression but there are some pros and

cones, that are as under.

Pros:

• By reducing the co-efficient towards zero, LASSO select features.

• Overfitting is avoided in it.

Cons:

The LASSO estimator has a lot of faults that make variable selection difficult in

some circumstances.

16

• When n < p, the LASSO picks a maximum of n variables. If the real model has

more than n variables, this might be a limitation.

• There is no grouping characteristic in LASSO, which implies it chooses only one

predictor within the set of strongly correlated predictors [4].

The next method is generalized inverse regression in which we predict our data set

without adding any penalty parameter.

2.3 Generalized Inverse

If A is a rectangular n× p matrix of rank n ≤ p , then A− of dimension p× n is called

generalized inverse matrix.

AA−A = A (2.22)

Overall, the generalized inverse is not unique but it always exists. As the inverse

of a matrix does not exist if its determinant becomes zero. This matrix is called

the singular matrix. Moreover, the inverse could not be able to find even matrix is

a non-square. The solution to finding the inverse of such matrix is presented by an

American mathematician, Moore in 1935, and later in 1955, a scientist named Penrose

developed a Moore inverse in a different method [24]. After this, the generalized inverse

is called Moore-Penrose Inverse. In the meanwhile, an author named Rao contributed

a computational method of singular matrix called pseudo inverse and used it to solve

the least square theory to know estimators of linear equations [25]. But this concept

has not used for high dimensional data. Several variants of generalized inverse exist,

the description of these variants is as follows.

2.3.1 Pseudo inverse

Generalized inverse means that an inverse matrix A− is associated with the matrix A

in such a way that

17

• It happens for a class of matrices that is bigger than the non singular matrices

class.

• It consists of few properties like the simple inverse.

• It shrinks to the usual matrix when the matrix is not singular [26].

Moore-Penrose inverse matrices also permit the evaluation of the system of equa-

tions with rank deficiency. There are many procedures to solve this problem but the

most frequently used is the Singular Value Decomposition (SVD) method. Its func-

tion in MATLAB can be written as “pinv” and in Mathematica, it can be run by

“PseudoInverse” [27]. While in R language, generalized inverse or pseudoinverse can

be represented by “ginv”. This method does not much take time to execute and also

provides accurate results [26].

2.3.2 Left Inverse

Generalized inverse becomes a regular inverse matrix when the number of samples n

equals the number of observations p. But for n < p, the pseudo inverse will be the left

inverse of A. This is the only inverse having rows in the row-space of AT . The point is

that ATA is invertible if A has a full column rank [28].

A−
left = (ATA)−1AT (2.23)

For rectangular matrix, A−
left = (ATA)−1AT is the generalized inverse of A if (ATA)−

is the ginv of (ATA).

2.3.3 Right Inverse

For n > p, the pseudo inverse will be the right inverse of A. This is the only inverse

having a column in the column-space of AT [28].

A−
right = AT (AAT)−1 (2.24)

18

For rectangular matrix, A−
right = AT (AAT)−1 is the generalized inverse of A if

(AAT)− is the ginv of (AAT).

2.3.4 Solve-ability of Linear Equations

One of the most applied applications of generalized inverse is to find the system of

linear equations. Let

Y = Xβ (2.25)

In equation (2.25), Y is a column vector with dimensions of n× 1 and β is a vector

with dimensions of p × 1 , and X is a matrix with dimensions of n × p. Then the

equation may be written as

β = X−1Y (2.26)

If X is non-square, singular matrix, then its generalized inverse can be represented

as

β̂ginv = ginv(XTX)XTY (2.27)

where ’ginv’ is a function in R used for generalized inverse [26].

Notable, among these variants we have used left inverse.

The properties of generalized inverse are as under

1. rank(A)= rank(AA−) =rank (A−A).

2. rank(A) ≤ rank (A−).

3. If A is non-singular and square matrix, then A− = A−1 and A− is unique.

4. In addition both AA− and A−A is symmetric.

5. AA− and A−A are idempotent matrices.

6. A−AA− = A− and AA−A = A.

7. (AA−)∗= AA− and (A−A)∗ = A−A , where A∗ is the conjugate transpose of A

[29] [30].

19

2.4 Partial Least Squares (PLS) Regression

Partial least squares (PLS) regression was firstly introduced by Herman O.A. Wold in

econometrics. Then, PLS had initiated by S. Wold and H. Martens in the late seventies

in branches of chemistry like in analytical, physical, and clinical chemistry. PLS is a

substitute of multiple linear regression model. It is more efficient since it is robust,

which implies that model parameters do not vary often when fresh samples are taken

from the entire population [31].

A statistical approach for comparing response variables and numerous predictor

variables is partial least squares analysis. Partial least square is the technique also

known as structural equation modeling (SEM). PLS is useful for the data having less

sample size, missing values, and the data of high correlation in multiple variable model.

It deals in the regression as well as classification models to reduce dimension and to

remove multicollinearity [32].

PLS is an all-around method used in many models of multivariate data. Other

than chemometrics, it has several applications in bioinformatics, machine learning,

food research, medicine, pharmacology, social sciences, and physiology. This is one of

the supervised methods developed to predict accurate results in multivariate problems.

PLS’s primary goal is to find the associated subspace of predictor variables.

The approach of partial least squares ignores the directions in the variable space

that are covered by extraneous variables. As a result, variable selection is not essential

for forecasting outcomes because up and down weighting of variables is an intrinsic

characteristic of the PLS estimator. However, a small sample size n and a high number

of variables p might cause the regression findings to be skewed. For testing data,

many irrelevant variables can be a cause of high changes in prediction. Due to these

deficiencies, PLS assists to find the appropriate subspace of a p dimensional variable

space when p > n [33].

PLS is another possibility for solving multicollinearity and dimension reduction

problems. It is an iterative procedure. In PLS, the objective is to optimize the covari-

ance between X and Y.

20

Y = Xβ + µ (2.28)

Consider X to be a matrix with dimensions of n × p , Y to be a column vector with

dimensions of n × 1, β to be a vector with dimensions of p × 1, and µ is a vector

with dimensions of n× 1. Consider few values of A (where A ≤ p) as the number of

components to be calculated.

It works differently from regression analysis, as it calculates weights between depen-

dent and independent variables, then finds score vector by multiplying X with weights.

After this, X-loading’s and Y-loading’s are calculated and deflation matrix X and vec-

tor Y are estimated by equations 2.41 and 2.42. β̂ can be estimated with the help of

loading weights, X and Y loading.

Then the PLS regression can be written as

β̂PLS = W (P TW)−1Q (2.29)

where P is the X-loading, Q is the Y-loading and W is the loading weights.

Algorithm

1. Input: X, Y , n = sample size, p = number of variables, A = maximum iteration.

2. Calculate the averages of X and Y

X̄ =

∑n
1 X

n
(2.30)

Ȳ =

∑n
1 Y

n
. (2.31)

3. Compute the standard deviation of X and Y

S.D(X) =

√∑n
1 (X − X̄)2

n
(2.32)

21

S.D(Y) =

√∑n
1 (Y − Ȳ)2

n
. (2.33)

4. Centering and scaling the Data:

Xo =
X − 1X̄

S.D(X)
(2.34)

Yo =
Y − 1Ȳ

S.D(Y)
. (2.35)

5. A ≤ p

For a = 1 to A

Wa = XT
a−1Ya−1. (2.36)

• Normalize the Weights

Wa =
Wa

||Wa||2
. (2.37)

• Calculate Score Vector

ta = Xa−1Wa. (2.38)

• Calculate X-loadings

Pa =
XT
a−1ta
tTa−1ta

. (2.39)

• Calculate Y-loadings

Qa =
Y T
a−1ta
tTa−1ta

. (2.40)

22

• Deflation:

Xa = Xa−1 − taP T
a (2.41)

Ya = Ya−1 − taQa. (2.42)

where P , Q and W are matrix consisting of a vectors.

P = [P1, P2, . . . Pa], Q = [Q1, Q2, . . . Qa],W = [W1,W2, . . . ,Wa] (2.43)

6. Compute the estimated beta coefficients

β̂ = W (P TW)−1Q. (2.44)

As one of the major techniques to solve identification problem in regression and

classification models is partial least squares. Multiple regression and PLS provide

nearly the same results. But for some data sets, PLS gives more accurate performance

over multiple regression. Following are the advantages of PLS.

• PLS still offers useful robust equations when the number of predictors exceeds

the number of experimental sample sizes.

• It even performs when data is noisy and missing.

• PLS performance is much better than multiple regression. Comparison between

performance has been explained through practical data results.

• It delivers stable results when number of predictors are correlated instead of

orthogonal.

• Performance of models having more than one response variable can easily be

performed through PLS.

23

• It can be applied to a small sample size.

• It has a strong grip over the variables like nominal, ordinal, and continuous

variables [34] [32].

Along with advantages, PLS also has some deficiencies that are the following:

• There is a difficulty in constructing the loadings of predictor latent variables.

• In PLS, distributional properties of estimates are unknown.

• PLS cannot attain worthiness until it runs bootstrap.

• It has a deficiency of model test statistics [32].

PLS has many practical applications as follows:

Healthcare decision-making is difficult. Comparative studies for many fields, sta-

tistical analysis for single decision-makers, decision outcomes, and assessment criteria

have all been included in coverage decision-making research. A real-world application

of partial least square path modeling (PLS-PM) is being investigated to see how it

may be used as a tool for empirical decision-making research in the healthcare busi-

ness [35]. A multi-modal multivariate network analysis was used to define the link

among the structures of data by complementary images of the brain within the same

individual, as well as to demonstrate its utility by demonstrating that it can distinguish

elderly people from younger adults with higher efficiency than many existing methods.

By assessing each brain voxel in each person’s complimentary co-registered pictures,

the suggested approach constructs a composite latent variable that optimizes the co-

variance of all combining components using the partial least square (PLS) algorithm

[36]. A chemometric approach based on partial least square methodology was applied

to unfolded differential scanning calorimetry data provided by 63 samples of different

vegetable oils to assess fatty acid content [37].

24

Chapter 3

Proposed Regression Models

3.1 Introduction

We have proposed several models for solving inverse matrix problem in regression. One

of the possibilities is to introduce the cube penalty over the regression coefficient. This

results in beta cube regression. Another possibility is to use the compressed regression

concept with LASSO, generalized inverse, and beta cube regression. The detail of

proposed methods is as under.

3.2 Beta Cube Regression

The regression coefficients are estimated using this approach by solving the following

constraint, expressed as

β̂Cube = argmin
β

n∑
i=1

(Y −Xβ)2 subject to
p∑
j=1

β3 ≤ t. (3.1)

Above equation can also be describe as

β̂Cube = argmin
β

n∑
i=1

(Y −Xβ)2 + λ

p∑
j=1

β3. (3.2)

As previously mentioned in LASSO, there is a one-to-one correspondence between

t and λ. As, β term comes within the β̂ after the derivation of constraint. So, to

25

solve this issue, the normally distributed random β values are generated by "rnorm"

function in the 1st iteration that will provide the value of β̂ according to corresponding

λ values.

Derivation of Beta Cube regression is as follow, equation (3.2) can be expressed as

∑
µ2 = (Y −Xβ)T (Y −Xβ) + λβ3

∑
µ2 = (Y T − βTXT)(Y −Xβ) + λβ3

∑
µ2 = Y TY − Y TXβ − βTXTY + βTXTXβ + λβ3

∑
µ2 = Y TY − (βTXTY)T − βTXTY + βTXTXβ + λβ3.

Now, take derivative on both sides of above equation with respect to β

d(µTµ)

dβ
=
d(Y TY − (βTXTY)T − βTXTY + βTXTXβ + λβ3)

dβ
.

0 = 0−XTY −XTY + 2XTXβ + 3λβ2

0 = −2XTY + (2XTX + 3λβ)β

(2XTX + 3λβ)β = 2XTY

β = (2XTX + 3λβ)−12XTY

β̂Cube = (2XTX + 3λβ)−12XTY. (3.3)

26

β term in equation (3.3) can first be generated randomly by normal random dis-

tribution and against each value of λ, β̂ is computed. Then from all computed β̂, one

optimal β̂ is selected. This optimal β̂ is generated again and again by applying loop in

it to get the best and minimum β̂. This process takes a little bit of time but gives the

better performance for high dimensional data sets.

3.3 Compressed Beta Cube Regression

The compressed Beta Cube estimator is written as

β̂C.Cube = argmin
β

n∑
i=1

(CmY − CmXβ)2 + λ

p∑
j=1

β3 (3.4)

β̂C.Cube = (2XTCT
mCmX + 3λβ)−12XTCT

mCmY. (3.5)

Derivation of Beta Cube regression is as follow,

Residual term can be as

Cmµ = CmY − CmXβ.

To estimate the β̂, the criteria is to minimize the sum of squares of residual and in

matrix algebra, sum of squares of residuals can be written as∑
(Cmµ)2 = (Cmµ)TCmµ

∑
(Cmµ)2 = (CmY − CmXβ)T (CmY − CmXβ) + λβ3

∑
(Cmµ)2 = (Y TCT

m − βTXTCT
m)(CmY − CmXβ) + λβ3

∑
(Cmµ)2 = Y TCT

mCmY − Y TCT
mCmXβ − βTXTCT

mCmY + βTXTCT
mCmXβ + λβ3

27

∑
(Cmµ)2 = Y TCT

mCmY −(βTXTCT
mCmY)T−βTXTCT

mCmY +βTXTCT
mCmXβ+λβ3.

Now, take derivative on both sides of above equation with respect to β

d((Cmµ)TCmµ)

dβ
=
d(Y TCT

mCmY − 2(βTXTCT
mCmY)T + βTXTCT

mCmXβ + λβ3)

dβ
.

0 = 0− 2XTCT
mCmY + 2XTCT

mCmXβ + 3λβ2

2XTCT
mCmY = 2XTCT

mCmXβ + 3λβ2

2XTCT
mCmY = (2XTCT

mCmX + 3λβ)β

β̂C.Cube = (2XTCT
mCmX + 3λβ)−12XTCT

mCmY (3.6)

Like beta cube regression, β term in equation (3.6) can first be generated randomly

by normal random distribution in compressed beta cube regression.

3.4 Compressed LASSO Regression

The compressed LASSO estimator is written as

β̂C.LASSO = argmin
β
||CmXβ − CmY ||22 + λ||β||1 (3.7)

Residual term can be as

Cmµ = CmY − CmXβ.

28

To estimate the β̂, the criteria is to minimize the sum of squares of residual and in

matrix algebra, sum of squares of residuals can be written as∑
(Cmµ)2 = (Cmµ)TCmµ.

∑
(Cmµ)2 =

1

n
((CmY − CmXβ)T (CmY − CmXβ)) + λ|β|

∑
(Cmµ)2 =

1

n
((Y TCT

m − βTXTCT
m)(CmY −Xβ)) + λ|β|

∑
(Cmµ)2 =

1

n
(Y TCT

mCmY −Y TCT
mCmXβ−βTXTCT

mCmY +βTXTCT
mCmXβ) +λ|β|

∑
(Cmµ)2 =

1

n
(Y TCT

mCmY − (βTXTCT
mCmY)T + βTXTCT

mCmXβ) + λ|β|

Now, take derivative on both sides of above equation with respect to β

d(µTµ)

dβ
=
d(1

n
(Y TCT

mCmY − (βTXTCT
mCmY)T + βTXTCT

mCmXβ) + λ|β|)
dβ

.

0 = 0− 1

n
(XTCT

mCmY −XTCT
mCmY + 2XTCT

mCmXβ) + λsign(β)

0 = − 2

n
(XTCT

mCmY +XTCT
mCmXβ) + λsign(β)

− 2

n
(XTCT

mCmY +XTCT
mCmXβ) = λsign(β)

− 1

n
(XTCT

mCmY +XTCT
mCmXβ) =

λ

2
sign(β)

29

1

n
(XTCT

mCmXβ) =
1

n
(XTCT

mCmY)− λ

2
sign(β)

1

n
(XTCT

mCmX)β =
1

n
(XTCT

mCmY)− λ

2
sign(β)

1
n
(XTX) = I by considering that predictors are standardized.

Iβ =
1

n
(XTCT

mCmY)− λ

2
sign(β)

β̂ =
1

n
(XTCT

mCmY)− λ

2
sign(β̂)

β̂C.LASSO =
1

n
(XTCT

mCmY)− λ

2
sign(β̂) (3.8)

β̂C.LASSO =

1
n
(XTCT

mCmY)j + λ
2
, if 1

n
(XTCT

mCmY)j < −λ
2

0, if 1
n
|(XTCT

mCmY)j| ≤ λ
2

1
n
(XTCT

mCmY)j − λ
2
, if 1

n
(XTCT

mCmY)j >
λ
2

(3.9)

Compressed LASSO works on the same pattern of simple LASSO and also perform

variable selection.

3.5 Compressed Generalized Inverse Regression

The Generalized Inverse estimator is written as

β̂ginv = (XT
trXtr)

−XT
trYtr. (3.10)

Introducing compression matrix Cm in β̂ginv results in

β̂ginv = (XT
trC

T
mCmXtr)

−XT
trC

T
mCmYtr. (3.11)

To find the β̂ginv the term (XT
trC

T
mCmXtr)

− is calculated by "ginv" function in R

such as (XT
trC

T
mCmXtr)

− = ginv(XT
trC

T
mCmXtr)

30

Compressed regression is closely related to compressed sensing and gets an idea from

it. The main goal, on the other hand, is the exact opposite of compressed sensing. Since

compressed sensing of X permits the recovery of a sparse X from a small number of

random samples, but in the case of compressed regression, the objective is to recover a

sparse function of X. The compressed regression problem that is explained here may

be a more difficult statistical inference problem, in which the objective is to choose

exponentially by the large number of linear models, and one has a specific set of suitable

and unknown parameters, or to estimate even the best linear model in a given class

[15].

In this recent article, [38] only compressed regression was explained in detail. Now, the

same approach has been applied to other linear regression models to investigate the

impact of compression matrix Cm statistically.

31

Chapter 4

Model Building and Comparison

For model building, the model parameters are required to tune. For this we have

used cross validation. Moreover cross validation is used for the reliable comparison of

reference regression models and proposed regression models.

4.1 Cross Validation

Cross validation (CV) is a basic technique for determining a regression model’s robust-

ness. The main concept behind CV is to evaluate a model’s prediction performance

on a set of data that was not utilized to create the model. Data splitting can be done

by two methods K-fold cross-validation and Monte Carlo cross-validation. In K-fold,

each data point is tested once, the number of partitions is limited by k and results are

unbiased but contain high variance. While, in Monte Carlo cross-validation, each data

point is tested arbitrary times, partitions can be possible many times and this method

result is high bias but low in variance. So, there is a trade-off between bias and variance

in these cross-validation methods. As both methods provide competent results but we

are considering Monte Carlo cross-validation as the splitting method. Typically, the

performance of methods is judged based on new data. Novel data is not always simple

to get by, and one must make do with what is available. Sample splitting is used to im-

itate the context of ‘original’ and novel data: the data set is separated into two halves

(groups of samples). One is known as validation and the other is called calibration.

For validation and calibration, data can be split into two sets i.e. training data set

32

and testing data set or hold-out set. With the training data, model parameters can be

estimated. By using the estimated model parameters, if training data can be predicted

and its performance can be measured then this evaluation process is called calibration.

By using the trained estimators, if test data can be predicted and its performance can

be monitored then this process is called validation.

Cross-validation demands it (namely the penalty parameter) to give a model with

high prediction, rather than picking it to balance model fit with complexity. This

method is carried out to generate a list of relevant penalty parameter options. It is

preferable to choose the penalty parameter that results in the model with the best

prediction performance. The obtained performance depends on the data set’s original

splitting. The data set is split several times into a training and test set to avoid

this dependency. The model parameters for all possibilities of λ using the training

data being calculated for each split and the estimated parameters are assessed on

the associated test set. The penalty parameter that performs best (in certain ways)

overall across the train sets is then chosen [39].

4.1.1 Monte Carlo Cross Validation

The findings of Monte Carlo Cross Validation are obtained utilizing repetitive random

selection and statistical methods. This method is comparable to random experiments,

in which the precise outcome is uncertain beforehand. Mathematical models are used

in natural sciences, social sciences, and engineering fields to describe system dynamics

using mathematical expressions. Typically, such models begin with a set of input

parameters, which are then processed by the model’s mathematical formulas to generate

one or more outputs. Repeated random sub-sampling cross validation is another name

for it. It splits the training data at random (maybe 70–30 percent, or 60-40 percent).

Fit the model to the train data set with that iteration. Data is split randomly to avoid

overestimate or underestimate the results. Then use the resulting model to estimate

test error. Take the average of the test errors over several iterations (for example, 10,

100, or 1000) [40].

33

4.1.2 Selection of Penalty Parameter

The penalized term in regression is determined by a tuning parameter λ, also known

as a penalty parameter. When data values are shrunk towards a central point, such as

the mean, it refers to the degree of shrinking that happens. Shrinkage produces simple

sparse models that are easier to understand than multi-parameter high-dimensional

data models. To make a range of multiple models, a sequence of tuning parameters is

being used.

4.1.3 Performance Estimation

For performance estimation of regression models, we have used root mean square error

(RMSE), which is a tool for analyzing prediction quality. It predicts how far estimations

fall from actual values using Euclidean distance.

RMSE =

√∑n
i=1(Yi − Ŷi)2

n
(4.1)

where n is sample size, Yi is the ith actual response and Ŷi is the ith predicted

response.

For computing RMSE, first, calculate the difference between actual and estimated

response for each data point that is equal to error or residual term µ = Y − Ŷ .

Compute the norm of the error term and then find the mean of residuals and take its

square root. Root mean square error is helpful in supervised learning to see whether

predictions are correctly measured or not. In machine learning, it is tremendously

useful to know the model’s performance with the help of a single value in training,

testing, and cross validation data. RMSE is an initiative technique to recognize and

suitable with most of the common statistical assumptions [41].

Figure 4.1, represents the complete flow of data splitting and estimation of parame-

ters in basic OLS method. Figure 4.2 is showing whole process of PLS regression model

through flow chart.

34

Figure 4.1: This figure represents complete flow of computational steps in OLS method

35

Figure 4.2: This figure represents complete flow of computational steps in PLS method

36

Chapter 5

Applications and Results

A statistical model is a mathematical representation of a real-world problem. The

data should be summed and explained as closely as feasible by the model. It must be

practical, and that it must be simple to comprehend and easy to apply. The goal is to

create a model out of them without losing too much data [42].

Predictions have long been an important element of modern data science, either in

the domain of statistical analysis or machine learning. Modern technology is enabling

a tremendous expansion of data, yet this data frequently contains useless informa-

tion, making prediction difficult. For extracting information and constructing strong

prediction models, researchers are using innovative approaches and algorithms. Such

models frequently include predictor variables that are either directly or indirectly re-

lated to other predictor variables. Univariate and multi-response models are being

used frequently in modern inter-disciplinary research disciplines such as chemometrics,

econometrics, and bioinformatics. This research compares several univariate prediction

models and algorithms based on their ability to predict data using linear models for

certain characteristics. A few of the characteristics include the correlation between

predictor factors, the number of predictor variables, and the placement of relevant pre-

dictor components. The main purpose of this study is to compare current and newly

contributed prediction approaches such as PLS, LASSO, generalized inverse, beta cube

regression, and compressed versions of these techniques.

An example from near infrared (NIR) and Raman spectroscopy calibrations of chem-

37

ical components in food samples will be used to demonstrate the reference and pro-

posed methods of regression. The data set is derived from a spectroscopic research

whose main goal was to examine the feasibility of utilizing various spectroscopy meth-

ods to measure the fat composition in food products such as meat and fish.

The fatty acid composition and quantities of major constituents in a complex food

model system were determined using Raman and NIR spectroscopy. To produce an

approximate chemical replication of regular fish and meat samples, a model system con-

sisting of 70 distinct combinations of protein, water, and oil blends was developed, ex-

hibiting variations in both fatty acid composition and concentrations of major compo-

nents. Raman and NIR techniques are being used to measure the model samples. For

prediction, fatty acid characteristics were expressed in polyunsaturated fatty acid con-

centrations. The Raman and near-infrared spectroscopies have a lot in common. They

have several characteristics that make them both appropriate for food analysis that is

quick and useful. There is no need to prepare samples for either approach. It is feasible

to do measurements with fiber optics. It is possible to get qualitative, quantitative, and

structural information about the samples. NIR is a vibrational spectroscopy method

based on overtones and combinations of basic vibrational modes, whereas Raman is a

vibrational spectroscopy technique based on fundamental stretching and deformation

modes. In comparison to Raman, the latter technique’s spectral bands are usually

wider, giving NIR a poor chemical selectivity [43].

Multivariate results are provided by spectroscopy and, more broadly, analytical

chemistry methods. These experimental inputs are frequently gathered to evaluate

one or more product characteristics. This assessment is often conducted on calibrating

a chemometric model, such as partial least square regression [44]. Algorithms for

machine learning (ML) provide mathematical tools for linking spectrum reflectance

to food components. To predict numerous food components, many machine learning

techniques have been explored to create calibration models on a local and worldwide

scale [45]. The detail of these data sets is as under.

38

5.1 NIR (Near-Infrared) Spectra of Biscuit Dough

The data set contains 700 NIR spectra wavelengths (1100–2498 nm in 2 nm increments)

that have been utilized as predictor variables. The yield percentages of (a) fat, (b)

sucrose, (c) flour, and (d) water are being organized into four response variables. Each

response’s evaluation is predicted separately as uni variate response [46] [47]. There is

a sample size of 72 in this model that split into train and test data by Monte Carlo

cross validation. Threshold value has been taken from 0.1 to 1 with the gap of 0.1 in all

linear models except PLS. The 15 number of components has been used in PLS model.

Total 10 iterations have been run for all regression models. Table 5.1 is representing the

mean, variance, number of testing and training data for all responses of this data set.

Here all responses are predicted by 7 methods discussed in Chapter 2 and 3. Figure

5.1 represents flow for getting data from NIR spectra. [48]

Figure 5.1: This figure represents the NIR spectra of Biscuit Dough

39

Responses Fat Flour Sucrose Water
Mean 18.30958 16.59375 48.98194 14.19139
Variance 3.874384 15.24049 7.464689 2.200322
Training Data 50 50 50 50
Testing Data 22 22 22 22

Table 5.1: NIR (Near-Infrared) Spectra of Biscuit Dough

PLS and LASSO methods are considered as a reference to know the prediction

accuracy of other methods. In the Figure 5.2, RMSE of generalized inverse and beta

cube regression is nearly equal to zero means that they are performing best for this

data set. In comparison with PLS, compressed generalized inverse and compressed

beta cube are giving the best performance. Compressed LASSO is performing nearly

same like standard lasso for this data set.

●
●

●

●

●

●

●

●

0.0

0.5

1.0

1.5

Cube C. Cube C. G. Invsere C. LASSO G. Invsere LASSO PLS
Model

R
M

S
E

Data Train Test

Fat

Figure 5.2: This represents RMSE of fat component of biscuit dough for each prediction
method

40

●●●●●●●●●●●●●●●●●●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●●

●

●

●

0.00

0.25

0.50

0.75

1.00

Cub
e

C. C
ub

e

C. G
. I

nv
se

re

C. L
ASSO

G. I
nv

se
re

LA
SSO

PLS

Threshold

●
●
●

●

1.00

0.75

0.50

0.25

0.00

Model

●

●

●

●

●

●

●

Cube

C. Cube

C. G. Invsere

C. LASSO

G. Invsere

LASSO

PLS

Fat

Figure 5.3: This represents threshold of fat component of biscuit dough for each pre-
diction method

For 10 iterations, sample data is split randomly for training and testing and in

each iteration, a model gets an optimal threshold for which models perform best by

giving minimum root mean square error. For Fat data set, in Figure 5.3, Generalized

and compressed generalized inverse are performing well for threshold = 0. This means

for threshold = 0, the models are including all the β̂ coefficients. Beta Cube and

compressed beta cube are picking different penalty parameters between 0.1 and 1 and

thus getting the mean value of λ around 0.5. This means the models are picking

approximately half of the relevant β̂ coefficients. In PLS, a model is considering optimal

components in between the range 0.1 to 0.75. LASSO is predicting best for threshold

value equal to 0.1 while compressed LASSO is choosing λ values 0.1 and 1 for getting

minimum RMSE.

In Figure 5.4, the RMSE of the generalized inverse is nearly equal to zero. In

comparison with PLS and LASSO; beta cube, compressed generalized inverse, and

compressed beta cube are giving better performance. Compressed LASSO is performing

parallel to PLS but a bit less performance than standard LASSO.

41

●

●

●
●

●
●

●

●

●
●

0.0

0.5

1.0

1.5

Cube C. Cube C. G. Invsere C. LASSO G. Invsere LASSO PLS
Model

R
M

S
E

Data Train Test

Flour

Figure 5.4: This represents RMSE of flour component of biscuit dough for each pre-
diction method

●●●

●

●●●●●●●●●●●●●

●●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

Cub
e

C. C
ub

e

C. G
. I

nv
se

re

C. L
ASSO

G. I
nv

se
re

LA
SSO

PLS

Threshold

●
●
●

●

1.00

0.75

0.50

0.25

0.00

Model

●

●

●

●

●

●

●

Cube

C. Cube

C. G. Invsere

C. LASSO

G. Invsere

LASSO

PLS

Flour

Figure 5.5: This represents threshold of flour component of biscuit dough for each
prediction method

For the Flour data set, Figure 5.5, Generalized and compressed generalized inverse

42

are predicting best for threshold = 0. PLS is picking different penalty parameters

between 0 and 0.8 and thus getting the mean value of threshold around 0.4. Beta

cube is showing optimal results on the threshold from 0.25 to 0.65 and at 1 while the

compressed beta cube is performing well on the threshold between 0.2 and 0.9. In

LASSO, a model is considering optimal λ at 0.1 and 0.2 while in compressed LASSO,

it is at 0.1 and 1. Every model is considering different threshold values according to

model performance.

In the Figure 5.6, RMSE of generalized inverse and beta cube regression is again

nearly equal to zero for this data set. In comparison with PLS and LASSO, compressed

generalized inverse and compressed beta cube are giving better performance but lower

than simple generalized inverse and beta cube. LASSO and compressed LASSO are not

performing well for this data set because RMSE is much higher than other regression

models.

● ●

●●

●
●

●●0

1

2

3

Cube C. Cube C. G. Invsere C. LASSO G. Invsere LASSO PLS
Model

R
M

S
E

Data Train Test

Sucrose

Figure 5.6: This represents RMSE of sucrose component of biscuit dough for each
prediction method

43

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●
●

●●

●

0.00

0.25

0.50

0.75

1.00

Cub
e

C. C
ub

e

C. G
. I

nv
se

re

C. L
ASSO

G. I
nv

se
re

LA
SSO

PLS

Threshold

●
●
●

●

1.00

0.75

0.50

0.25

0.00

Model

●

●

●

●

●

●

●

Cube

C. Cube

C. G. Invsere

C. LASSO

G. Invsere

LASSO

PLS

Sucrose

Figure 5.7: This represents threshold of sucrose component of biscuit dough for each
prediction method

For Sucrose data set, figure 5.7, Generalized and compressed generalized inverse

are giving best results for threshold = 0. Beta Cube and compressed beta cube are

picking different penalty parameters between 0 and 1. While PLS is showing optimal

results on threshold between 0 and 0.8. Standard LASSO and compressed LASSO are

not performing well even at a threshold equal to 1 because of the increase in the value

of λ results in the decrease of β̂ coefficients. Thus, the model is not performing well

with few β̂ coefficients.

In the Figure 5.8, RMSE of the generalized inverse is again nearly equal to zero for

the Water data set. In comparison with PLS and LASSO; beta cube, compressed gener-

alized inverse, and compressed beta cube are giving better performance but lower than

the simple generalized inverse. LASSO and compressed LASSO are not performing,

this means these two are only helpful in variable selection rather than giving suitable

predictions.

44

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

Cube C. Cube C. G. Invsere C. LASSO G. Invsere LASSO PLS
Model

R
M

S
E

Data Train Test

Water

Figure 5.8: This represents RMSE of water component of biscuit dough for each pre-
diction method

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

Cub
e

C. C
ub

e

C. G
. I

nv
se

re

C. L
ASSO

G. I
nv

se
re

LA
SSO

PLS

Threshold

●
●
●

●

1.00

0.75

0.50

0.25

0.00

Model

●

●

●

●

●

●

●

Cube

C. Cube

C. G. Invsere

C. LASSO

G. Invsere

LASSO

PLS

Water

Figure 5.9: This represents threshold of water component of biscuit dough for each
prediction method

For the Water data set, Figure 5.9, Generalized and compressed generalized inverse

45

are giving the best results for threshold = 0. Beta Cube is picking different penalty

parameters between threshold 0.1 and 0.7, while the compressed beta cube is showing

optimal results between threshold 0.2 and 1. PLS is performing well between thresholds

0.1 and 0.8. LASSO and Compressed LASSO are not performing well even by picking

a threshold above 0.8.

5.2 Raman Spectra Analysis of Contents of Polyun-
saturated Fatty Acids (PUFA)

The data comes from spectroscopic research whose main goal was to see if different

spectroscopy techniques could be used to measure fat composition in food items like

meat and fish. The fat content of these samples being altered by incorporating mixes

of 5 different vegetable and marine oils based on a distinct mixing design. As a result,

there is variance in both the major ingredients (proteins, water, and fats) and the fatty

acid composition across the 69 samples in the data set. It is indeed an appropriate

way to describe variables in the form of the exact amount of minor components when

utilizing Raman spectroscopy to extract particular chemical information from small

components in meals, such as fat content in this example [49]. Fatty acid information

is presented as a) percentage of total sample weight and b) percentage of total fat

content in this data set. Raman spectroscopy was used to evaluate the samples, yielding

1096 wavelength variables as predictors. Chemical information is extracted from micro

food components. The purpose of this experiment is to investigate how well different

prediction algorithms can estimate PUFA levels from Raman spectra. Model is split

into train and test data by Monte Carlo cross validation. Table 5.2 is representing the

mean, variance, number of testing and training data for all responses of this data set.

Total 10 iterations have been run for all regression models. The λ values are taken

from 0.1 to 1 with the gap of 0.1. Figure 5.10 represents flow for getting data from

Raman spectra.

46

Figure 5.10: This figure represents the Raman spectroscopy of Fatty Acids

Responses Sample weight Fat content
Mean 4.398227 33.63645
Variance 7.899378 251.8544
Training Data 48 48
Testing Data 21 21

Table 5.2: Raman Spectra Analysis of Contents of Polyunsaturated Fatty Acids
(PUFA)

PLS and LASSO methods are considered as a reference to know the prediction

accuracy of other prediction methods. In Figure 5.11, RMSE of generalized inverse

and beta cube regression is nearly equal to zero means that they are performing best

for this data set. In comparison with PLS and LASSO, compressed forms of generalized

inverse and beta cube are performing better. Along with LASSO, its compressed form

is also not working well.

47

●

●

●

●

●

●

●

●

●

●

0

1

2

3

Cube C. Cube C. G. Invsere C. LASSO G. Invsere LASSO PLS
Model

R
M

S
E

Data Train Test

Fatty acids (PUFA) in percentage of total sample weight

Figure 5.11: This represents RMSE of fatty acid as a percentage of total sample weight
for each prediction method

●

●●●●●●

●

●●● ●●●●●●●●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●●

●

0.00

0.25

0.50

0.75

1.00

Cub
e

C. C
ub

e

C. G
. I

nv
se

re

C. L
ASSO

G. I
nv

se
re

LA
SSO

PLS

Threshold

●
●
●

●

1.00

0.75

0.50

0.25

0.00

Model

●

●

●

●

●

●

●

Cube

C. Cube

C. G. Invsere

C. LASSO

G. Invsere

LASSO

PLS

Fatty acids (PUFA) in percentage of total sample weight

Figure 5.12: This represents threshold of fatty acid as a percentage of total sample
weight for each prediction method

For 10 iterations, sample data is split randomly for training and testing and in

48

each iteration, a model gets an optimal threshold for which models perform best by

giving minimum root mean square error. In Figure 5.12, Generalized and compressed

generalized inverse are performing well for threshold = 0. Beta Cube is picking 0.1 and

0.3 as an optimal threshold while compressed beta cube is choosing the values 0.1 and

1. PLS is considering optimal components in between the range 0 to 0.75. LASSO and

compressed LASSO are predicting RMSE for thresholds 0.2 and 1 but these methods

are not giving suitable results.

●

●

●

●

●

●

●

●

0.0

0.5

1.0

1.5

Cube C. Cube C. G. Invsere C. LASSO G. Invsere LASSO PLS
Model

R
M

S
E

Data Train Test

Fatty acids (PUFA) in percentage of total fat content

Figure 5.13: This represents RMSE of fatty acid as a percentage of total fat content
in this data set for each prediction method

In Figure 5.13, RMSE of generalized inverse, and beta cube regression is nearly equal

to zero. In comparison with PLS, compressed generalized inverse and compressed beta

cube are performing well. But LASSO and compressed LASSO are not performing well

for this data set as well.

49

●●●●●●●●●● ●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●

●
●

●

0.00

0.25

0.50

0.75

1.00

Cub
e

C. C
ub

e

C. G
. I

nv
se

re

C. L
ASSO

G. I
nv

se
re

LA
SSO

PLS

Threshold

●
●
●

●

1.00

0.75

0.50

0.25

0.00

Model

●

●

●

●

●

●

●

Cube

C. Cube

C. G. Invsere

C. LASSO

G. Invsere

LASSO

PLS

Fatty acids (PUFA) in percentage of total fat content

Figure 5.14: This represents threshold of fatty acid as a percentage of total fat content
in this data set for each prediction method

In Figure 5.14, Generalized and compressed generalized inverse are predicting best

for threshold = 0. Beta Cube is picking λ = 0.1 means it is choosing a maximum

number of β̂ coefficients. While compressed Beta Cube is picking penalty parameters

at values 0.1 and 1. PLS is taking threshold values between 0 and 0.7. In LASSO

and compressed LASSO, the model is considering an optimal value equal to 1 but not

performing well at this threshold value.

50

Chapter 6

Conclusions

The research has concluded that by using real life practical examples of biscuit dough

and polyunsaturated fatty acids, we predicted the performance of current and newly

proposed regression methods. By considering using LASSO and PLS as standard meth-

ods for regression to predict response, it has been noticed that our new contributed

methods are working much better than already existing models. LASSO has a benefit

over other methods because it helps in variable selection but it doesn’t perform well

for high dimensional data and provides high value of root mean square error (RMSE).

On the other side, PLS is suitable for optimizing covariance between X matrix and

multiple responses. So, by working on the real data sets, it is concluded that our new

contributed method ’Beta Cube Regression’ is performing very well in comparison with

LASSO and PLS. Moreover, our contributed compressed forms of generalized inverse

and beta cube are also performing well in comparison with LASSO. Overall, all our

contributed methods are performing well except compressed LASSO because it is also

giving preference to provide variable selection rather than providing minimum RMSE.

These regression methods are specially designed for the data sets having a very

large number of independent variables as compared to sample size. Moreover, these are

helpful for the data sets which contain multicollinearity. In future, these methods can

also be applied to data sets which even doesn’t have identification and multicollinearity

problem. Compressed LASSO regression is not well working for the above data sets, but

this method can be improved further in the future by applying advanced techniques.

51

Moreover, PLS regression can also be transformed into compressed form by substituting

Cm matrix in independent and dependent variables.

52

Bibliography

[1] C. R. Rao, “A note on a generalized inverse of a matrix with applications to prob-

lems in mathematical statistics,” Journal of the Royal Statistical Society: Series

B (Methodological), vol. 24, no. 1, pp. 152–158, 1962.

[2] A. Alin, “Multicollinearity,” Wiley Interdisciplinary Reviews: Computational

Statistics, vol. 2, no. 3, pp. 370–374, 2010.

[3] G. Trenkler, “C430. on the singularity of the sample covariance matrix,” Journal

of Statistical Computation and Simulation, vol. 52, no. 2, pp. 172–173, 1995.

[4] F. Emmert-Streib and M. Dehmer, “High-dimensional lasso-based computational

regression models: regularization, shrinkage, and selection,” Machine Learning

and Knowledge Extraction, vol. 1, no. 1, pp. 359–383, 2019.

[5] J. M. Helm, A. M. Swiergosz, H. S. Haeberle, J. M. Karnuta, J. L. Schaffer,

V. E. Krebs, A. I. Spitzer, and P. N. Ramkumar, “Machine learning and artificial

intelligence: Definitions, applications, and future directions,” Current reviews in

musculoskeletal medicine, vol. 13, no. 1, pp. 69–76, 2020.

[6] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to statistical

learning, vol. 112. Springer, 2013.

[7] W. J. Murdoch, C. Singh, K. Kumbier, R. Abbasi-Asl, and B. Yu, “Inter-

pretable machine learning: definitions, methods, and applications,” arXiv preprint

arXiv:1901.04592, 2019.

53

[8] J. S. Armstrong, “Illusions in regression analysis,” International Journal of Fore-

casting, vol. 28, no. 3, p. 689–694, 2012.

[9] R. J. Freund, W. J. Wilson, and P. Sa, Regression analysis. Elsevier, 2006.

[10] G. D. Hutcheson, “Ordinary least-squares regression,” L. Moutinho and GD Hutch-

eson, The SAGE dictionary of quantitative management research, pp. 224–228,

2011.

[11] B. Mahaboob, B. Venkateswarlu, C. Narayana, C. Ravi, and P. Balasiddamuni,

“A treatise on ordinary least squares estimation of parameters of linear model,”

International Journal of Engineering & Technology, vol. 7, no. 4.10, pp. 518–522,

2018.

[12] R. K. Paul, “Multicollinearity: Causes, effects and remedies,” IASRI, New Delhi,

vol. 1, no. 1, pp. 58–65, 2006.

[13] M. Tranmer and M. Elliot, “Multiple linear regression,” The Cathie Marsh Centre

for Census and Survey Research (CCSR), vol. 5, no. 5, pp. 1–5, 2008.

[14] N. Halko, P.-G. Martinsson, and J. A. Tropp, “Finding structure with random-

ness: Probabilistic algorithms for constructing approximate matrix decomposi-

tions,” SIAM review, vol. 53, no. 2, pp. 217–288, 2011.

[15] S. Zhou, J. Lafferty, and L. Wasserman, “Compressed regression,” arXiv preprint

arXiv:0706.0534, 2007.

[16] F. Santosa and W. W. Symes, “Linear inversion of band-limited reflection seis-

mograms,” SIAM Journal on Scientific and Statistical Computing, vol. 7, no. 4,

pp. 1307–1330, 1986.

[17] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the

Royal Statistical Society: Series B (Methodological), vol. 58, no. 1, pp. 267–288,

1996.

54

[18] H. Seya, D. Murakami, M. Tsutsumi, and Y. Yamagata, “Application of lasso to the

eigenvector selection problem in eigenvector-based spatial filtering,” Geographical

Analysis, vol. 47, no. 3, pp. 284–299, 2015.

[19] L. Wu, Y. Yang, and H. Liu, “Nonnegative-lasso and application in index tracking,”

Computational Statistics & Data Analysis, vol. 70, pp. 116–126, 2014.

[20] V. Pomareda, D. Calvo, A. Pardo, and S. Marco, “Hard modeling multivariate

curve resolution using lasso: application to ion mobility spectra,” Chemometrics

and Intelligent Laboratory Systems, vol. 104, no. 2, pp. 318–332, 2010.

[21] T. Hastie, R. Tibshirani, and M. Wainwright, “Statistical learning with sparsity:

the lasso and generalizations,” 2015.

[22] N. Gauraha, “Introduction to the lasso,” Resonance, vol. 23, no. 4, pp. 439–464,

2018.

[23] J. Ranstam and J. Cook, “Lasso regression,” Journal of British Surgery, vol. 105,

no. 10, pp. 1348–1348, 2018.

[24] R. Penrose, “A generalized inverse for matrices,” in Mathematical proceedings of

the Cambridge philosophical society, vol. 51, pp. 406–413, Cambridge University

Press, 1955.

[25] C. R. Rao, “Analysis of dispersion for multiply classified data with unequal num-

bers in cells,” Sankhyā: The Indian Journal of Statistics (1933-1960), vol. 15,

no. 3, pp. 253–280, 1955.

[26] A. Ben-Israel and T. N. Greville, Generalized inverses: theory and applications,

vol. 15. Springer Science & Business Media, 2003.

[27] P. Courrieu, “Fast computation of moore-penrose inverse matrices,” arXiv preprint

arXiv:0804.4809, 2008.

55

[28] T. Greville, “The pseudoinverse of a rectangular or singular matrix and its appli-

cation to the solution of systems of linear equations,” SIAM review, vol. 1, no. 1,

pp. 38–43, 1959.

[29] A. G. Fisher, “On construction and properties of the generalized inverse,” SIAM

Journal on Applied Mathematics, vol. 15, no. 2, pp. 269–272, 1967.

[30] P. McCullagh and J. A. Nelder, Generalized linear models. Routledge, 2019.

[31] P. Geladi and B. R. Kowalski, “Partial least-squares regression: a tutorial,” Ana-

lytica chimica acta, vol. 185, pp. 1–17, 1986.

[32] D. M. Pirouz, “An overview of partial least squares,” Available at SSRN 1631359,

2006.

[33] T. Mehmood, K. H. Liland, L. Snipen, and S. Sæbø, “A review of variable selec-

tion methods in partial least squares regression,” Chemometrics and Intelligent

Laboratory Systems, vol. 118, pp. 62–69, 2012.

[34] R. D. Cramer, “Partial least squares (pls): its strengths and limitations,” Perspec-

tives in Drug Discovery and Design, vol. 1, no. 2, pp. 269–278, 1993.

[35] K. E. Fischer, “Decision-making in healthcare: a practical application of partial

least square path modelling to coverage of newborn screening programmes,” BMC

medical informatics and decision making, vol. 12, no. 1, pp. 1–13, 2012.

[36] K. Chen, E. M. Reiman, Z. Huan, R. J. Caselli, D. Bandy, N. Ayutyanont, and

G. E. Alexander, “Linking functional and structural brain images with multivari-

ate network analyses: a novel application of the partial least square method,”

Neuroimage, vol. 47, no. 2, pp. 602–610, 2009.

[37] L. Cerretani, R. M. Maggio, C. Barnaba, T. G. Toschi, and E. Chiavaro, “Applica-

tion of partial least square regression to differential scanning calorimetry data for

fatty acid quantitation in olive oil,” Food Chemistry, vol. 127, no. 4, pp. 1899–1904,

2011.

56

[38] D. Homrighausen and D. J. McDonald, “Compressed and penalized linear regres-

sion,” Journal of Computational and Graphical Statistics, vol. 29, no. 2, pp. 309–

322, 2020.

[39] W. N. van Wieringen, “Lecture notes on ridge regression,” arXiv preprint

arXiv:1509.09169, 2015.

[40] D. P. Kroese, T. Brereton, T. Taimre, and Z. I. Botev, “Why the monte carlo

method is so important today,” Wiley Interdisciplinary Reviews: Computational

Statistics, vol. 6, no. 6, pp. 386–392, 2014.

[41] T. Chai and R. R. Draxler, “Root mean square error (rmse) or mean absolute

error (mae)?–arguments against avoiding rmse in the literature,” Geoscientific

model development, vol. 7, no. 3, pp. 1247–1250, 2014.

[42] V. Fonti and E. Belitser, “Feature selection using lasso,” VU Amsterdam Research

Paper in Business Analytics, vol. 30, pp. 1–25, 2017.

[43] N. Afseth, V. Segtnan, B. Marquardt, and J. Wold, “Raman and near-infrared

spectroscopy for quantification of fat composition in a complex food model sys-

tem,” Applied spectroscopy, vol. 59, no. 11, pp. 1324–1332, 2005.

[44] J.-M. Roger, A. Biancolillo, and F. Marini, “Sequential preprocessing through or-

thogonalization (sport) and its application to near infrared spectroscopy,” Chemo-

metrics and Intelligent Laboratory Systems, vol. 199, p. 103975, 2020.

[45] R. Reda, T. Saffaj, H. Derrouz, S. E. Itqiq, I. Bouzida, O. Saidi, B. Lakssir, et al.,

“Comparing calreg performance with other multivariate methods for estimating

selected soil properties from moroccan agricultural regions using nir spectroscopy,”

Chemometrics and Intelligent Laboratory Systems, vol. 211, p. 104277, 2021.

[46] R. Rimal, T. Almøy, and S. Sæbø, “Comparison of multi-response prediction meth-

ods,” Chemometrics and Intelligent Laboratory Systems, vol. 190, pp. 10–21, 2019.

57

[47] U. Indahl, “A twist to partial least squares regression,” Journal of Chemometrics:

A Journal of the Chemometrics Society, vol. 19, no. 1, pp. 32–44, 2005.

[48] Y. Sun, Y. Wang, J. Huang, G. Ren, J. Ning, W. Deng, L. Li, and Z. Zhang, “Qual-

ity assessment of instant green tea using portable nir spectrometer,” Spectrochimica

Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 240, p. 118576, 2020.

[49] T. Naes, O. Tomic, N. K. Afseth, V. Segtnan, and I. Måge, “Multi-block re-

gression based on combinations of orthogonalisation, pls-regression and canonical

correlation analysis,” Chemometrics and Intelligent Laboratory Systems, vol. 124,

pp. 32–42, 2013.

58

Appendix

Pseudo code

The pseudo code of OLS is presented below.

1. First split data the explanatory and response into training and testing data.

2. Input: Xtr ,Ytr ,Xts ,Yts , n =sample size

3. Compute the estimated beta coefficients for training Data

β̂tr = (XT
trXtr)

−1XT
trYtr.

4. Compute the estimated response Ŷ by multiplying the train data matrix with

estimated β̂tr coefficients

Ŷtr = Xtrβ̂tr.

5. Compute RMSE of training data set

RMSEtr =

√∑n
i=1(Ytr − Ŷtr)2

n
. (6.1)

6. Now compute the estimated response of testing data with the help of beta coef-

ficients of training data

Ŷts = Xtsβ̂tr.

59

7. Compute the RMSE of testing data set

RMSEts =

√∑n
i=1(Yts − Ŷts)2

n
. (6.2)

8. Output: This pseudo code gives following results.

RMSEtr, RMSEts

The pseudo code of LASSO regression is presented below.

1. First split data the explanatory and response into training and testing data.

2. Input: Xtr ,Ytr ,Xts ,Yts , n =sample size , λ = tuning parameter

3. Scale the data Xtr and Ytr by using scale function in R.

4. Compute the estimated β̂ coefficients for training Data.

5. For λ = 1 to i

If
1

n
(XT

trYtr)j < −
λ

2

then

β̂tr =
1

n
(XT

trYtr)j +
λ

2
.

If
1

n
|(XT

trYtr)j| ≤
λ

2

then

β̂tr = 0.

If
1

n
(XT

trYtr)j >
λ

2

60

then

β̂tr =
1

n
(XT

trYtr)j −
λ

2
.

End

6. Compute the estimated response Ŷ by multiplying the train data matrix with

estimated β̂tr coefficients

Ŷtr = Xtrβ̂tr.

7. Compute RMSE of training data set

RMSEtr =

√∑n
i=1(Ytr − Ŷtr)2

n
. (6.3)

8. Now compute the estimated response of testing data with the help of beta coef-

ficients of training data

Ŷts = Xtsβ̂tr.

9. Compute RMSE of testing data set

RMSEts =

√∑n
i=1(Yts − Ŷts)2

n
. (6.4)

10. Output: This pseudo code gives following results.

RMSEtr, RMSEts

The pseudo code of beta cube regression is presented below.

1. First split data the explanatory and response into training and testing data.

2. Input: Xtr ,Ytr ,Xts ,Yts , n =sample size , λ = tuning parameter

3. Scale the data Xtr and Ytr by using scale function in R.

4. Compute the estimated β̂ coefficients for training Data.

61

5. Initially compute the random β vector of p × 1 by using random function in R

language and then compute β̂tr accordingly

β̂tr = (2XT
trXtr + 3λβ)−12XT

trYtr.

6. Compute the estimated response Ŷ by multiplying the train data matrix with

estimated β̂tr coefficients

Ŷtr = Xtrβ̂tr.

7. Compute RMSE of training data set

RMSEtr =

√∑n
i=1(Ytr − Ŷtr)2

n
. (6.5)

8. Now compute the estimated response of testing data with the help of beta coef-

ficients of training data

Ŷts = Xtsβ̂tr.

9. Compute RMSE of testing data set

RMSEts =

√∑n
i=1(Yts − Ŷts)2

n
. (6.6)

10. Output: This pseudo code gives following results.

RMSEtr, RMSEts

The pseudo code of generalized inverse regression is presented below.

1. First split data the explanatory and response into training and testing data.

2. Input: Xtr ,Ytr ,Xts ,Yts , n =sample size , λ = tuning parameter

3. Scale the data Xtr and Ytr by using scale function in R.

4. Compute the estimated β̂ coefficients for training Data.

62

5. Initially compute the random β vector of p × 1 by using random function in R

language and then compute accordingly β̂tr

β̂tr = X−
trYtr

β̂tr = ginv(Xtr)Ytr

β̂tr = (XT
trXtr)

−1XT
trYtr.

6. Compute the estimated response Ŷ by multiplying the train data matrix with

estimated β̂tr coefficients

Ŷtr = Xtrβtr.

7. Compute RMSE of training data set

RMSEtr =

√∑n
i=1(Ytr − Ŷtr)2

n
. (6.7)

8. Now compute the estimated response of testing data with the help of beta coef-

ficients of training data

Ŷts = Xtsβ̂tr.

9. Compute RMSE of testing data set

RMSEts =

√∑n
i=1(Yts − Ŷts)2

n
. (6.8)

10. Output: This pseudo code gives following results.

RMSEtr, RMSEts

The pseudo code of compressed LASSO regression is presented below.

1. First split data the explanatory and response into training and testing data.

63

2. Input: Xtr ,Ytr ,Xts ,Yts , n =sample size, Cm , q < n n, λ = tuning parameter

3. Scale the data Xtr and Ytr by using scale function in R.

4. Compute the estimated β coefficients for training Data.

5. For λ = 1 to i

If
1

n
(XT

trC
T
mCmYtr)j < −

λ

2
(6.9)

then

β̂tr =
1

n
(XT

trC
T
mCmYtr)j +

λ

2
(6.10)

If
1

n
|(XT

trC
T
mCmYtr)j| ≤

λ

2
(6.11)

then

β̂tr = 0 (6.12)

If
1

n
(XT

trC
T
mCmYtr)j >

λ

2
(6.13)

then

β̂tr =
1

n
(XT

trC
T
mCmYtr)j −

λ

2
(6.14)

End

6. Compute the estimated response Ŷ by multiplying the train data matrix with

estimated β̂tr coefficients

Ŷtr = Xtrβ̂tr.

64

7. Compute RMSE of training data set

RMSEtr =

√∑n
i=1(Ytr − Ŷtr)2

n
. (6.15)

8. Now compute the estimated response of testing data with the help of beta coef-

ficients of training data

Ŷts = Xtsβ̂tr.

9. Compute RMSE of testing data set

RMSEts =

√∑n
i=1(Yts − Ŷts)2

n
. (6.16)

10. Output: This pseudo code gives following results.

RMSEtr, RMSEts

Codes

Codes that are implemented for the data analysis of real data sets are as follows:

Functions

rm(list=ls(all=TRUE))

OLS Regression
ols.fit <-function(Ytr ,Xtr , Yts ,Xts){
Y<- as.numeric(as.matrix(Ytr))
X<- as.matrix(Xtr)
nc <- ncol(Xtr)
nr <- nrow(Xtr)
B.tr <- solve(t(Xtr)%*% Xtr) %*%t(Xtr)%*% Ytr
pr.tr <- Xtr%*%B.tr
pr.ts <- Xts%*%B.tr
RMSE.tr <- sqrt(sum(pr.tr-Ytr)^2/length(Ytr))
RMSE.ts <- sqrt(sum(pr.ts-Yts)^2/length(Yts))

res.ols <-list(B.tr=B.tr ,opt.RMSE.tr=RMSE.tr , opt.RMSE.ts=RMSE.ts)
res.ols
}

65

#LASSO Regression
lasso.fit= function(Ytr ,Xtr , Yts ,Xts ,lambda= seq(from=0.1, to=1, by=0.1)){

Y<- as.numeric(as.matrix(Ytr))
X<- as.matrix(Xtr)
nc <- ncol(Xtr)
nr <- nrow(Xtr)
n= length(Ytr)
B.tr <-matrix(NA,length(lambda),nc)
pr.tr<-matrix(NA ,nr , length(lambda))
pr.ts<-matrix(NA ,length(Yts), length(lambda))
RMSE.tr<-rep(NA ,length(lambda))
RMSE.ts<-rep(NA ,length(lambda))

for (i in 1:length(lambda)){
for (j in 1:nc){
if (((t(Xtr)%*% Ytr)[j]/n) < -lambda[i]/2){
B.tr[i,j] =((t(Xtr)%*% Ytr)[j]/n) + (lambda[i]/2)}
if (((t(Xtr)%*% Ytr)[j]/n) <= lambda[i]/2){
B.tr[i,j] = 0 }
if (((t(Xtr)%*% Ytr)[j]/n) > lambda[i]/2){
B.tr[i,j] =((t(Xtr)%*% Ytr)[j]/n) - (lambda[i]/2)}
}
pr.tr[,i]<- Xtr%*%B.tr[i,]
RMSE.tr[i]<- sqrt(sum(pr.tr[,i]-Ytr)^2/length(Ytr))
pr.ts[,i]<- Xts%*%B.tr[i,]
RMSE.ts[i]<- sqrt(sum(pr.ts[,i]-Yts)^2/length(Yts))

}
opt.RMSE.tr<-min(RMSE.tr)
ind.tr <- which.min(RMSE.tr)
opt.lambda <- lambda[ind.tr]
opt.RMSE.ts<-RMSE.ts[ind.tr]

res.lasso <-list(B.tr=B.tr , RMSE.tr=RMSE.tr , RMSE.ts=RMSE.ts ,
opt.RMSE.tr=opt.RMSE.tr , opt.RMSE.ts=opt.RMSE.ts , opt.lambda= opt.lambda)

res.lasso
}

Beta Cube Regression
BetaCubeReg.fit <- function(Ytr ,Xtr , Yts ,Xts ,
lambda= seq(from=0.1, to=1, by=0.1), N=3){

Y<- as.numeric(as.matrix(Ytr))
X<- as.matrix(Xtr)
nc <- ncol(Xtr)
nr <- nrow(Xtr)

66

set.seed(42)
Int.B<-diag(rnorm(nc),nc ,nc)
B.tr <-array(NA,c(length(lambda),nc,N))
pr.tr<-array(NA ,c(length(lambda),nr , N))
RMSE.tr<-matrix(NA ,N,length(lambda))
pr.ts<-array(NA ,c(length(lambda),length(Yts), N))
RMSE.ts<-matrix(NA ,N,length(lambda))

for (i in 1:N){
if (i==1){
B=Int.B} else {B<- opt.B}
for (j in 1:length(lambda)){

B.tr[j,,i]<-solve(2*t(Xtr)%*% Xtr+3*lambda[j]*B ,
tol =exp(-100))%*%(2*t(Xtr)%*% Ytr)

pr.tr<- Xtr%*%B.tr[j,,i]
RMSE.tr[i,j]<- sqrt(sum(pr.tr-Ytr)^2/length(Ytr))

pr.ts<- Xts%*%B.tr[j,,i]
RMSE.ts[i,j]<- sqrt(sum(pr.ts-Yts)^2/length(Yts))
}
ind <- which.min(RMSE.tr[i,])
opt.B<- B.tr[ind ,,i]
}
opt.RMSE.tr<-min(RMSE.tr)
ind.tr <- which(RMSE.tr == min(RMSE.tr), arr.ind=TRUE)
opt.lambda <- lambda[ind.tr[2]]
opt.RMSE.ts<-RMSE.ts[ind.tr]

res.BetaCube <-list(B.tr=B.tr,RMSE.tr=RMSE.tr ,RMSE.ts=RMSE.ts ,
opt.RMSE.tr=opt.RMSE.tr ,opt.RMSE.ts=opt.RMSE.ts , opt.lambda= opt.lambda)

res.BetaCube
}

Generalized Inverse (Moore -Penrose inverse)
library(MASS)
ginv.fit <-function(Ytr ,Xtr , Yts ,Xts){
Y<- as.numeric(as.matrix(Ytr))
X<- as.matrix(Xtr)
nc <- ncol(Xtr)
nr <- nrow(Xtr)
B.tr <-ginv(t(Xtr)%*% Xtr)%*%t(Xtr)%*% Ytr
pr.tr <- Xtr%*%B.tr
pr.ts <- Xts%*%B.tr
RMSE.tr <- sqrt(sum(pr.tr-Ytr)^2/length(Ytr))
RMSE.ts <- sqrt(sum(pr.ts-Yts)^2/length(Yts))

67

res.ginv <-list(B.tr=B.tr ,opt.RMSE.tr=RMSE.tr , opt.RMSE.ts=RMSE.ts ,
opt.lambda=0)

res.ginv
}

Partial Least Square (PLS)
PLS <- function(Ytr ,Xtr , Yts ,Xts ,ncomp){
Y<- as.numeric(as.matrix(Ytr))
X<- as.matrix(Xtr)
nc <- ncol(Xtr)
nr <- nrow(Xtr)

W<- P<- matrix(NA, nc, ncomp)
B.tr <- matrix(NA, nc , ncomp)
S<- matrix(NA , nr , ncomp)
Q<- rep(NA , ncomp)
RMSE.tr<-rep(NA , 1,ncomp)
RMSE.ts<-rep(NA , 1,ncomp)

for(a in 1:ncomp){
ws <- t(Xtr)%*% Ytr
w<- ws/norm(ws)
s<- Xtr%*%w
p<- t(Xtr)%*%s / c(t(s)%*%s)
q<- t(Ytr)%*%s /c(t(s)%*%s)

Xtr <- Xtr - s%*% t(p)
ytr <- Ytr - s%*% t(q)

W[,a]<- w
S[,a]<- s
P[,a]<- p
Q[a]<- q
mat <- t(P[,1:a])%*% W[,1:a]

B.tr <- W[,1:a]%*% solve(mat)%*%Q[1:a]
pr.tr<- Xtr%*%B.tr
RMSE.tr[a]<- sqrt(sum(pr.tr-Ytr)^2/length(Ytr))

pr.ts<- Xts%*%B.tr
RMSE.ts[a]<- sqrt(sum(pr.ts-Yts)^2/length(Yts))
}

opt.RMSE.tr<-min(RMSE.tr)
opt.lambda <- which.min(RMSE.tr)
opt.RMSE.ts<-RMSE.ts[opt.lambda]

res.PLS <- list(B.tr=B.tr , RMSE.tr=RMSE.tr , RMSE.ts=RMSE.ts ,

68

opt.RMSE.tr=opt.RMSE.tr , opt.RMSE.ts=opt.RMSE.ts , opt.lambda= opt.lambda)

res.PLS
}

Compressed LASSO Regression
cs.lasso.fit <-function(Ytr ,Xtr , Yts ,Xts ,Q = GaussianMatrix(n,q),
lambda= seq(from=0.1, to=1, by=0.1)){

Y<- as.numeric(as.matrix(Ytr))
X<- as.matrix(Xtr)
nc <- ncol(Xtr)
nr <- nrow(Xtr)
n=length(Ytr)
B.tr <-matrix(NA,length(lambda),nc)
pr.tr<-matrix(NA ,nr , length(lambda))
pr.ts<-matrix(NA ,length(Yts), length(lambda))
RMSE.tr<-rep(NA ,length(lambda))
RMSE.ts<-rep(NA ,length(lambda))

for (i in 1:length(lambda)){
for (j in 1:nc){
if (((t(Xtr)%*%t(Q)%*%Q%*%Ytr)[j]/n) < -lambda[i]/2){
B.tr[i,j] =((t(Xtr)%*%t(Q)%*%Q%*% Ytr)[j]/n) + (lambda[i]/2)}
if (((t(Xtr)%*%t(Q)%*%Q%*%Ytr)[j]/n) <= lambda[i]/2){
B.tr[i,j] = 0 }
if (((t(Xtr)%*%t(Q)%*%Q%*%Ytr)[j]/n) > lambda[i]/2){
B.tr[i,j] =((t(Xtr)%*%t(Q)%*%Q%*% Ytr)[j]/n) - (lambda[i]/2)}
}
pr.tr[,i]<- Xtr%*%B.tr[i,]
RMSE.tr[i]<- sqrt(sum(pr.tr[,i]-Ytr)^2/length(Ytr))
pr.ts[,i]<- Xts%*%B.tr[i,]
RMSE.ts[i]<- sqrt(sum(pr.ts[,i]-Yts)^2/length(Yts))

}
opt.RMSE.tr<-min(RMSE.tr)
ind.tr <- which.min(RMSE.tr)
opt.lambda <- lambda[ind.tr]
opt.RMSE.ts<-RMSE.ts[ind.tr]

res.cs.lasso <-list(B.tr=B.tr,RMSE.tr=RMSE.tr ,RMSE.ts=RMSE.ts ,
opt.RMSE.tr=opt.RMSE.tr ,opt.RMSE.ts=opt.RMSE.ts , opt.lambda= opt.lambda)

res.cs.lasso
}

Compressed Beta Cube Regression
cs.BetaCubeReg.fit <-function(Ytr ,Xtr , Yts ,Xts ,Q = GaussianMatrix(n,q),

69

lambda= seq(from=0.1, to=1, by=0.1), N=3){

Y<- as.numeric(as.matrix(Ytr))
X<- as.matrix(Xtr)
nc <- ncol(Xtr)
nr <- nrow(Xtr)

set.seed(42)
Int.B<-diag(rnorm(nc),nc ,nc)
B.tr <-array(NA,c(length(lambda),nc,N))
pr.tr<-array(NA ,c(length(lambda),nr , N))
RMSE.tr<-matrix(NA ,N,length(lambda))
pr.ts<-array(NA ,c(length(lambda),length(Yts), N))
RMSE.ts<-matrix(NA ,N,length(lambda))

for (i in 1:N){
if (i==1){
B=Int.B} else {B<- opt.B}
for (j in 1:length(lambda)){
B.tr[j,,i]<-solve(2*t(Xtr)%*%t(Q)%*%Q%*%Xtr+3*lambda[j]*B,
tol = exp(-100))%*%(2*t(Xtr)%*%t(Q)%*%Q%*% Ytr)

pr.tr<- Xtr%*%B.tr[j,,i]
RMSE.tr[i,j]<- sqrt(sum(pr.tr-Ytr)^2/length(Ytr))

pr.ts<- Xts%*%B.tr[j,,i]
RMSE.ts[i,j]<- sqrt(sum(pr.ts-Yts)^2/length(Yts))
}
ind <- which.min(RMSE.tr[i,])
opt.B<- B.tr[ind ,,i]
}
opt.RMSE.tr<-min(RMSE.tr)
ind.tr <- which(RMSE.tr == min(RMSE.tr), arr.ind=TRUE)
opt.lambda <- lambda[ind.tr[2]]
opt.RMSE.ts<-RMSE.ts[ind.tr]

res.cs.BetaCube <-list(B.tr=B.tr,RMSE.tr=RMSE.tr ,RMSE.ts=RMSE.ts ,
opt.RMSE.tr=opt.RMSE.tr , opt.RMSE.ts=opt.RMSE.ts , opt.lambda= opt.lambda)

res.cs.BetaCube
}

Compressed Generalized Inverse (Moore -Penrose inverse)
library(MASS)
cs.ginv.fit <-function(Ytr ,Xtr , Yts ,Xts ,Q = GaussianMatrix(n,q)){
Y<- as.numeric(as.matrix(Ytr))
X<- as.matrix(Xtr)
nc <- ncol(Xtr)
nr <- nrow(Xtr)

70

B.tr <-ginv(t(Xtr)%*%t(Q)%*%Q%*% Xtr)%*%t(Xtr)%*%t(Q)%*%Q%*% Ytr
pr.tr <- Xtr%*%B.tr
pr.ts <- Xts%*%B.tr
RMSE.tr <- sqrt(sum(pr.tr-Ytr)^2/length(Ytr))
RMSE.ts <- sqrt(sum(pr.ts-Yts)^2/length(Yts))

res.cs.ginv <-list(B.tr=B.tr ,opt.RMSE.tr=RMSE.tr , opt.RMSE.ts=RMSE.ts ,
opt.lambda=0)
res.cs.ginv
}

71

	TH-4.pdf
	TH-4

