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Abstract

In this thesis, a new generalized solution by using the Karmarkar condition for charged

anisotropic matter distribution is presented. Under the embedding Class-I space-times,

we �nd out the possibility of constructing an electromagnetic model where physical

parameters have a purely electromagnetic origin. This speci�c solution of charged

anisotropic relativistic compact objects is used to model the internal composition so

that it satis�es compulsory physical conditions. The metric potentials, density and

pressure have no singularities and satisfy the required conditions inside the anisotropic

compact object. The anisotropic factor is zero at the center and increases afterwards.

iv



Contents

1 Introduction 1

1.1 Historical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Role of Electrodynamics . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 The Mach's Principle . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Michelson Morley Experiment . . . . . . . . . . . . . . . . . . . 3

1.2 Theory of Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Equivalence Principle . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Principle of General Covariance . . . . . . . . . . . . . . . . . . 6

1.3 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.1 The Metric Tensor . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.2 The Curvature Tensor . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.3 The Einstein Tensor . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.4 The Maxwell Tensor . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.5 The Energy Momentum Tensor . . . . . . . . . . . . . . . . . . 10

2 The Einstein-Maxwell Field Equations 12

2.1 Derivation of the Einstein Field Equations . . . . . . . . . . . . . . . . 12

2.2 The Maxwell Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Exact Solutions of the Field Equations . . . . . . . . . . . . . . . . . . 15

2.3.1 The Schwarzschild Solution . . . . . . . . . . . . . . . . . . . . 16

2.3.2 The Reissner-Nordstrom Solution . . . . . . . . . . . . . . . . . 17

v



2.3.3 The Kerr Solution . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.4 The Kerr�Newman Solution . . . . . . . . . . . . . . . . . . . . 19

3 Models of Compact Objects with Karmarkar Condition 20

3.1 Admissible Conditions for Compact Objects . . . . . . . . . . . . . . . 22

3.2 The Karmarkar Condition for Class-I Space-time . . . . . . . . . . . . . 23

3.3 Review of Some Solutions of the Field Equations with Karmarkar Con-

dition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Models Of Compact Stars on Paraboloidal Spacetime Satisfying

Karmarkar Condition . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.2 A Charged Anisotropic Well-behaved Adler-Finch-Skea Solution

Satisfying the Karmarkar Condition . . . . . . . . . . . . . . . . 28

4 Charge Anisotropic Solution on Embedding Class-l Space-time 32

4.1 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Physical Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Metric potential and Electric Field Intensity . . . . . . . . . . . 34

4.2.2 Density and Pressures . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.3 Trace of the Energy-Momentum Tensor . . . . . . . . . . . . . . 37

4.2.4 Anisotropic Factor . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.5 Mass-Radius Relation . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Stability Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Energy Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.2 Adiabatic Index . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.3 Casuality Condition . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.4 Equilibrium State Under Various Forces . . . . . . . . . . . . . 45

5 Conclusion 47

Bibliography 48

vi



List of Figures

3.1 Graphs of pressures are plotted for compact stars PSR J1903+327, Vela

X-1 and PSR J1614-2230. . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Graphs of energy density and anisotropy show that both are well de�ned

and non-negative. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 The graphs of metric potentials plotted by taking A = 0.38, B = 0.022,

C = 10.12 and K = 0.001. Variation of density is plotted by taking the

same values of the constant mentioned earlier. . . . . . . . . . . . . . . 30

3.4 Variation of pressures and anisotropy are plotted by taking the same

values of the constant mentioned in Fig 3.3. . . . . . . . . . . . . . . . 31

4.1 The metric potentials are plotted for a = 0.3, 0.6, and 0.9. . . . . . . . 34

4.2 The electric �eld intensity is plotted for a = 0.3, 0.6, and 0.9 by taking

k = 0.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 The density ρ is plotted for a = 0.3, 0.6, and 0.9 by taking k = 0.5. It

is well de�ned and positive. . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4 The radial and tangential pressures are plotted for a = 0.3, 0.6, and 0.9

by taking k = 0.5. Both are well de�ned and non-negative. . . . . . . . 36

4.5 The pressures-density ratios are plotted, which are less than 1. . . . . . 36

4.6 The gradients of density and pressures are plotted, which have non-

positive values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.7 The trace of energy momentum tensor is plotted, which is positive and

decreasing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

vii



4.8 The anisotropic factor is plotted for a = 0.3, 0.6, and 0.9 by taking k = 0.5. 39

4.9 Variation of mass function. . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.10 Graph of compactness factor. . . . . . . . . . . . . . . . . . . . . . . . 40

4.11 Graphs of Surface and gravitational redshifts. . . . . . . . . . . . . . . 41

4.12 Graphs of the energy conditions. . . . . . . . . . . . . . . . . . . . . . . 42

4.13 Graph of the Adiabatic Index . . . . . . . . . . . . . . . . . . . . . . . 43

4.14 Plots of the radial and tangential speeds of sound. . . . . . . . . . . . . 44

4.15 Stability factor is plotted for a=0.3, 0.6, and 0.9. . . . . . . . . . . . . 45

4.16 Variations of di�erent forces with r/R, where F shows the resultant force. 46

viii



Chapter 1

Introduction

1.1 Historical Background

Many philosophers and scientists throughout history have held di�erent views on the

concepts of space and time. Throughout Plato's era, time was linked to cosmic regular-

ity (the movement of the Sun and Moon), but Aristotle disagreed with this framework,

believing that space is proportional to its substance content, and time is proportional

to the succession of events. At the sphere of the moon, Aristotle separated the world

into two di�erent portions. Everything was made up of the four elements air, �re,

water, and earth below this sphere where all types of motion were conceivable, but

only the �fth element ether was present above it where the circular movement was

possible only. However, the movements above were classi�ed into two categories by

him: natural motion and enforced motion [1]. These misapprehensions continued until

the mid-seventeenth century when substantial work by Newton and Galileo uncovered

them. Galileo was the �rst to make a logical connection between past hazy notions with

subsequent discoveries in 1632. His interpretation of relativity was devoid of any rela-

tion to the mechanics of natural motion. Galileo moved beyond the Principle of Inertia,

which had �xed a simple equivalence of state between rest and uniform motion, and he

de�ned a complete equivalence of physical laws concerning all inertial references. Aris-

totle's "natural motion" was similarly reinforced by the gravitational force for Newton.

He added di�erent concepts like including laws of motion and gravitation. Moreover

in Newtonian mechanics, the notions of space and time are considered to be entirely
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separable and time is also assumed to be an absolute quantity capable of precise de-

scription irrespective of the reference frame. Later on, Leibniz came and contradicted

Newton's idea of absolute space, he was of the view that laws of gravitation might

be universalized. To begin with, he said that Galileo had demonstrated that there is

no such thing as absolute velocity, and hence no such thing as absolute space; from

which it is formed. Second, Leibniz criticized Newton's depiction of absolute space as a

physical substance because it lacked causal powers and independent existence. Space,

according to Leibniz, is just a mental concept [2, 3].

1.1.1 Role of Electrodynamics

Maxwell discovered the equations combining electricity, magnetism, and light moving

like a wave into a single frame termed electromagnetism in 1864 [4]. These are set of

coupled partial di�erential equations given as

∇ · E = ρ, (1.1)

∇×B− ∂tE = j, (1.2)

∇ ·B = 0, (1.3)

∇× E− ∂tB = 0, (1.4)

where ρ is the electric charge density, j is the current density, E is the electric �eld

and B is the magnetic �eld. It was found that Galilei's laws do not apply to Maxwell

equations or the processes they govern. Moreover, taking the curl of equations (∇×E)

and (∇ × B) one derives the equation for electromagnetic waves with a propagation

speed c = 1√
µ0ε0

where µ0 is the permeability of vacuum and ε0 is the permittivity of a

vacuum. One of Maxwell's most surprising implications was the relationship between

the constants µ0, ε0 and the speed of light. Based on the success of Maxwell's theory

and the inconsistency of Newtonian mechanics many questions of incompatibility were

raised [5]; what exactly is a `vacuum'? Is it a set of rules that must be followed at all

times? How can we develop an electromagnetic theory if we reject the existence of an

absolute frame of rest? In frames moving with respect to each other, how do Maxwell's

equations appear? Is it necessary to alter the value of c?
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1.1.2 The Mach's Principle

By thoroughly studying the classic bucket experiment, in 1872 Ernst Mach came to

certain �ndings, claiming that thought experiments like the bucket argument are prob-

lematic. His results are said to be one of the factors that in�uenced the creation of

Einstein's hypothesis. Newton imagined a bucket of water hung on a rope and the rope

coils up as one turns the bucket clockwise. Now on relinquishing control the bucket

starts spinning counter-clockwise, slowly at �rst, then more quickly. According to new-

ton the water's surface will gradually retreat from the center and climb up the edge of

the vessel, acquiring a concave shape. The bucket and the water spin together for a

time. The bucket eventually slows down and its rotation reverses; the water slows down

as well, �nally smoothing out again. The only way Newton could explain the bucket

experiment was to claim that the water was whirling in absolute space. Mach objected

to this, he believed it was permissible in a hypothetically empty universe because the

matter content in the real world did not support such existence. Absolute space and

absolute motion, he maintained, should not be utilized in scienti�c contexts since they

are useless philosophical ideas. Mach came to think that any explanation of motion

and inertia, including the motion of water in a spinning bucket, could be understood

exclusively in terms of the rest of the universe's matter. He summarized the results as

follows [6]

1. The geometry of spacetime is determined by the distribution of matter.

2. If there is no matter then there is no geometry.

3. A body in an otherwise empty universe should posses no inertial properties.

1.1.3 Michelson Morley Experiment

Physicists were used to thinking that waves needed a medium to travel, the possibility

of an ether in which electromagnetic waves might travel was proposed. The earth should

then travel through this ether, and its absolute velocity through the ether should be

detectable.
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In 1881, Michelson and Morley designed an experiment in this regard and performed on

apparatus known as Michelson interferometer. They reasoned that if the speed of light

was constant with regard to the hypothetical ether through which Earth was traveling

then its motion might be detected by comparing the speed of light in the direction of

Earth's motion along with the speed of light at right angles to Earth's motion. This

famous experiment yields a negative result, which refutes the ether theory. Failure of

this lead to certain possibilities [6]:

1. The ether is attached rigidly to the earth.

2. It was assumed that rigid bodies contract and clocks slow down when moving

through the ether.

3. There is no ether.

1.2 Theory of Relativity

There was no proper explanation for all these problems until a proposal led by Einstein

in 1905 was worked out. It severely discredited the ether theories and got rid of all

reference frames for space and time. Einstein's view was that space and time are not

absolute quantities but they depend on the motion of the observers. He believed that

the universe can be visualized as a 4-dimensional continuum with 3 spatial and 1 time

coordinates. Einstein's thinking revolved around electrodynamics. He �gured it out

that Maxwell's condition of electromagnetism required a Special Theory of Relativity

[7].

Postulates of Special Theory of Relativity

The two postulates of his theory are:

1. All inertial observers are equivalent.

2. The velocity of light is the same in all inertial systems.
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The most signi�cant consequences of this theory, which had been experimentally tested

and validated are:

1. Time Dilation: The slowing of the passage of time observed by moving objects

relative to an observer.

2. Length Contraction: Observers perceive the length of a moving item to be

shorter than it would be if it were still.

Minkowski later expressed events occurring in the cosmos in a four-dimensional per-

spective in 1907. In Minkowski's theory, a spacetime event was simply regarded as

a point. The Lorentz transformations became the focal point of this new theory of

relativity, much as the Galilean transformations were in the classical era. These are

essentially linear coordinate transformations that relate two frames traveling at a con-

stant speed to each other. The Minkowski line element is invariant under Lorentzian

transformations in �at spacetimes. It is the square of the in�nitesimal gap between two

events (ct, x) and (ct + cdt, x + dx) that are separated in�nitesimally and represented

as

ds2 = −c2dt2 + dx2 + dy2 + dz2. (1.5)

The fact that the Maxwell equations are invariant under these transformations is one

of the reasons for their relevance in the special theory of relativity. But this was not

the end, after presenting a special theory that described the uniform linear motion of

an object restricted to the inertial frame of reference, Einstein started working for the

general case which involves the arbitrary motion of an object. Einstein took ten years

to include acceleration and generalize the special, or restricted theory from uniform

linear motion to the arbitrary motion. This new theory of space, time and gravitation

is known as the General Theory of Relativity (GR), published in 1915 [8]. It is a

geometric theory which proposes that the spacetime is not a �at structure, but it can

be distorted by the presence of massive objects producing curvature in the spacetime.

GR replaces the Newtonian gravitational force with the curvature of spacetime. This

theory is based on the following premises:
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1.2.1 Equivalence Principle

In November 1907, Einstein had a thought that he subsequently described as "the hap-

piest idea of his life". He recognized there had to be a relationship between inertia and

gravitation by envisioning a guy standing in an elevator freely falling under gravity.

He came to the conclusion that tests carried out in a uniformly accelerated frame of

reference are compatible with experiments carried out in a non-accelerated frame of

reference placed in a gravitational �eld. To put it another way, being stationary in a

gravitational �eld and speeding upward are both the same thing. The principle states

as [5]:

�The laws of physics are the same in uniform static gravitational �eld and in the

accelerated frame of reference.�

1.2.2 Principle of General Covariance

The equivalence of all inertial observers is a premise of special relativity, but in order

to deal with gravity, general relativity seeks to incorporate non-inertial observers. All

observers, whether inertial or not, should be capable of discovering the rules of physics,

according to Einstein. As a logical conclusion to Einstein's principle of special relativity,

he o�ered the following [6]

�All observers are equivalent�

There is a canonical or preferred coordinate system in special relativity when the metric

is �at and the connection is integrable; speci�cally, Minkowski coordinates, but there

is none in a curved spacetime that is a manifold with a non-�at metric. This is merely

another assertion that a global inertial observer does not exist. As a result, the principle

of general covariance acquires its ultimate form as [6]

�In a gravitational �eld, the universal principles of physics are to be represented in

tensorial form�

6



1.3 Tensors

Physical laws must be independent of any particular coordinates used in describing

them mathematically, if they are to be valid. A study of the consequences of this

requirement leads to tensors. Tensors are algebraic objects which remain unchanged

under coordinate transformations.

Tensors are fundamentally the generalization of vectors. If we have a �nite set of

vectors spaces {V1, V2, ..., Vn} over a common �eld F , one can form tensor product as

V1 ⊗ V2...⊗ Vn, which is termed a tensor. If there are i copies of V and j copies of V ?

(V ? is dual space of V ) in our tensor product, the tensor is said to be of type (i, j).

The space of tensors of type (i, j) is expressed as

T ij = V1 ⊗ V2 ⊗ ...⊗ Vi ⊗ V ?
i+1 ⊗ V ?

i+2 ⊗ ...⊗ V ?
i+j. (1.6)

A scalar is a zero rank tensor, a vector is a 1st rank tensor and matrix is 2nd rank

tensor. Addition and subtraction are only possible for tensors of same rank and gives

tensor of same rank. Product of di�erent rank tensors gives tensor whose rank is sum

of the ranks of the given tensors.

1.3.1 The Metric Tensor

In di�erential geometry, metric tensor is a type of function which takes tangent vectors

u and v at a point of a surface (or higher dimensional di�erentiable manifold) as input

and produces a scalar

g(u,v) = u.v, (1.7)

g(u,v) = uiujei.ej. (1.8)

In terms of basis vectors

gij(ei, ej) = ei.ej. (1.9)

As dot product is commutative so metric tensor is symmetric tensor i.e gij = gji and

gij is inverse of gij.
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Metric tensor is also used to �nd �rst fundamental form as

ds2 = gijdx
idxj, (1.10)

also known as the line element or metric.

1.3.2 The Curvature Tensor

The Riemann curvature tensor can be de�ned with the help of the Christo�el symbols

Γijk.

Ri
jkl = (Γijl),k − (Γijk),l + ΓikeΓ

e
lj − ΓileΓ

e
kj, (1.11)

where Christo�el symbols are expressed in terms of metric tensor as

Γijk =
1

2
gil (gkl,j + gjl,k − gjk,l) . (1.12)

Ri
jkl can be transformed into covariant tensor by using the transformation

Rijkl = gimR
m
jkl, (1.13)

and satis�es the Bianchi identity of �rst and second kind given as

Ri[jkl] = Rijkl +Riljk +Riklj = 0, (1.14)

Ri
m[jk;l] = Ri

mjk;l +Ri
mlj;k +Ri

mkl;j = 0. (1.15)

Here ` ;' is covariant derivative that is the generalization of ∂a for a curved spacetime.

For example the components of covariant derivative of a tensor of rank (1, 1) are de�ned

as

Aij;k = Aij,k + ΓijlA
l
k − ΓlkjA

i
l. (1.16)

By contracting �rst and third indices of the Riemann curvature tensor one can construct

the Ricci curvature tensor, Rij, and transformation of that gives the Ricci scalar, R,

respectively as

Rij = Rk
ikj, (1.17)

R = gijRij. (1.18)
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An interesting feature of Ricci scalar is that it determines along with other invariants

the nature of a singularity, as it is invariant under coordinate transformations. There

are two types of singularities, that are coordinate (arises due to coordinates and are

removable) and essential (occurs due to problem in geometry and are non removable)

singularities. By examining the invariant quantities given below in eqs. (1.19) to (1.22),

one can check the nature of a singularity. If the curvature invariants are �nite then

there is a coordinate singularity otherwise essential singularity.

R1 = R, (1.19)

R2 = Rij
klR

kl
ij , (1.20)

R3 = Rij
klR

kl
mnR

mn
ij , (1.21)

R4 = Rij
klR

kl
mnR

mn
op R

op
ij . (1.22)

1.3.3 The Einstein Tensor

The Einstein tensor can be derived from second kind of the Bianchi identity by putting

i = j,

Ri
mik;l +Ri

mli;k +Ri
mkl;i = 0. (1.23)

Substituting Ri
mik = Rmk and R

i
mli = Ri

mil = −Rml, we have

Rmk;l −Rml;k +Ri
mkl;i = 0, (1.24)

multiply by gmn to get

Rn
k;l +Rn

l;k +Rin
lk;i = 0, (1.25)

with some contractions one obtains(
Ri
k −

1

2
δikR

)
;i

= 0, (1.26)

or

Gi
k;i = 0, (1.27)

where

Gi
k = Rk

i −
1

2
δikR, (1.28)
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or

Gij = Rij −
1

2
Rgij, (1.29)

is called the Einstein Tensor.

1.3.4 The Maxwell Tensor

Maxwell tensor is also known as elector magnetic �eld tensor, for its construction, we

de�ne the four vector potential, Ai, and skew symmetric tensor, Fij, as

Ai = (−φ,A), (1.30)

Fij = ∂iAj − ∂jAi. (1.31)

Here, φ is the scalar potential and A is vector potential. Electric and magnetic �elds

in terms of φ and A become

E = −∇φ− ∂tA, (1.32)

B = ∇×A. (1.33)

By these equations, we get F0j = Ej and Fij = εijkB
k where εijk is the Levi-Civita

tensor de�ned as

εijk =


+1 if ijk is an even permutaion
−1 if ijk is an odd permutaion
0 otherwise.

(1.34)

Therefore the electromagnetic �eld tensor is given as

Fij =


0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

 (1.35)

1.3.5 The Energy Momentum Tensor

Energy momentum tensor (T ab) has very important role in the Einstein �eld equations.

The energy momentum tensor (EMT) of �dust� can be characterized by density ρ and

four velocity, vi, of �uid in some coordinates, xi, as

T ij = ρvivj. (1.36)

10



The physical explanation of the components are given as

1. T 00 represents energy density ρ.

2. T i0 is called the momentum density.

3. T 0i is called the energy �ux.

4. T ij with i = j 6= 0, gives force per unit area called pressure.

EMT related to "perfect �uid" can be de�ned by adding scalar pressure, p, along with

energy density, ρ, and �ow vector, vi, as

T ij = (ρ0 + p)vivj − pgij. (1.37)

Notice that the perfect �uid becomes dust if p→ 0.

For anisotropic �uid distribution EMT takes the form

T ij =
[
(ρ+ pt) v

ivj − ptgij + (pr − pt)χiχj
]
, (1.38)

where χi is unit space vector in radial direction.

The Maxwell EMT is given as

T ij =
1

4π

(
−F ikFjk +

1

4
gijF

klFkl

)
. (1.39)
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Chapter 2

The Einstein-Maxwell Field Equations

The �eld equations given by Einstein in 1915, in the form of a tensor equation relate

the spacetime curvature with energy, momentum and stress within that spacetime.

The electromagnetic �elds are related to the distribution of charges and currents via

Maxwell's equations. The relationship between the metric tensor and the Einstein

tensor allows the Einstein �eld equations to be written as a set of non-linear partial

di�erential equations. The solutions of the Einstein �eld equations are the components

of the metric tensor.

2.1 Derivation of the Einstein Field Equations

Beginning the derivation of �eld equations by de�ning the general form of Einstein-

Hilbert action as

S =

∫
L
√
−g d4x. (2.1)

The Lagrangian L for gravitational source and matter is taken as L = LG + Lm

where LG = 1
2k
R and k = 8πG

c4
. Throughout this discussion the speed of light c and

gravitational constant G are taken to be 1, so action becomes

S =

∫
1

2k
R
√
−g d4x+

∫
Lm
√
−g d4x. (2.2)
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Since δS = 0, using this and eq (1.18) in (2.2) gives

δS =
1

2k

∫ (
Rijg

ijδ
√
−g +Rij

√
−gδgij +

√
−ggij(δRij)

)
d4x

+

∫ (
Lmδ
√
−g +

√
−gδ(Lm)

)
d4x = 0. (2.3)

Now considering geodesic coordinates where Γijk = 0 at an arbitrary point P. This then

reduces Riemann tensor as

Rk
ilj = Γkij,l − Γkil,j. (2.4)

or

δRk
ilj = δΓkij,l − δΓkil,j. (2.5)

Since in geodesic coordinates the partial derivative is equivalent to covariant derivative

and commutes with variation. So famous Palatini equation is obtained given as

δRk
ilj = δΓkij;l − δΓkil;j. (2.6)

Contraction of k and l gives

δRij = δΓkij;k − δΓkik;j, (2.7)

or

gijδRij = gijδΓkij;k − gijδΓkik;j, (2.8)

= gijδΓkij;k − gikδΓ
j
ij;k, (2.9)

=
(
gijδΓkij − gikδΓ

j
ij

)
;k
, (2.10)

or ∫
v

gijδRij

√
−g d4x =

∫
v

Ak;k
√
−g d4x, (2.11)

where

Ak = gijδΓkij − gijδΓ
j
ij. (2.12)
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Using divergence theorem eq (2.11) yields∫
v

gijδRij

√
−g d4x = 0. (2.13)

By eq (2.13) and substitution of the identity δ
√
−g = −1

2

√
−ggijδgij, eq (2.3) becomes

1

2k

∫
v

(
Rijg

ij

(
−1

2

√
−g gijδgij

)
+Rij

√
−g δgij

)
d4x

+

∫
v

(
Lm

(
−1

2

√
−g gijδgij

)
+
√
−g δ(Lm)

)
d4x = 0.

(2.14)

As Lm = Lm(gij) this implies δLm = ∂Lm
∂gij

δgij, thus eq (2.14) becomes

1

2k

∫
v

(
−1

2
Rgijδg

ij +Rijδg
ij

)√
−g d4x

−1

2

∫
v

(
−2

∂Lm
∂gij

+ Lmgij

)
δgij
√
−g d4x = 0.

(2.15)

Energy momentum tensor in terms of Lagrangian is de�ned as

Tij = −2
∂Lm
∂gij

+ Lmg
ij. (2.16)

Thus eq (2.15) takes the form

1

2k

∫
v

(
Rij −

1

2
gijR− kTij

)
δgij
√
−g d4x = 0, (2.17)

which implies

Rij −
1

2
gijR = kTij. (2.18)

Eq (2.18) are the Einstein �led equations(EFEs) on the left we have curvature that

determines the presence of gravitational source and on the right energy momentum

tensor that represents the matter contents.

2.2 The Maxwell Equations

Now the main goal is to observe electromagnetism in the context of relativity. For this

eqs. (1.1) to (1.4) need to be transformed into tensor notation by the electromagnetic
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�eld tensor given by eq (1.35) and the four vector J i de�ned as J i = (ρ,J). Thus the

set of traditional Maxwell equations in tensor form are reduced to two equations as

follows

∂jF
ij = J i, (2.19)

∂[jFik] = 0. (2.20)

Source eq (2.19) is valid in Minkowski space (inertial coordinates), one can express it

in coordinate invariant (arbitrary coordinates) way as

∇jF
ij = J i, (2.21)

where as the internal eq (2.20) subject to continuity equation is satis�ed automatically

as there is no change in ∇[jFik] = ∂[jFik] = 0. If these covariant tensor equations are

valid in one coordinate system then they are valid for all.

2.3 Exact Solutions of the Field Equations

Consider the most general static spherically symmetric metric as

ds2 = eν(r)c2dt2 − eλ(r)dr2 − r2(dθ2 + sin2θdφ2). (2.22)

So the metric tensor and its inverse are

gij =
(
eν(r),−eλ(r),−r2,−r2sin2θ

)
,

gij =

(
e−ν(r),−e−λ(r),− 1

r2
,− 1

r2sin2θ

)
. (2.23)

The independent, non zero components of the Christo�el symbols are

Γ1
00 = ν ′e(ν−λ)/2, Γ1

22 = −re−λ, Γ1
11 = λ′/2,

Γ2
21 = Γ3

31 =
1

r
, Γ1

33 = −re−λsin2θ, Γ2
33 = −sinθcosθ,

Γ3
32 = cotθ, Γ0

01 = ν ′/2. (2.24)
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So the non-vanishing components of the Ricci curvature tensor are

R00 = eν−λ
(
ν ′′

2
+
ν ′

4
(ν ′ − λ′) +

ν ′

r

)
, (2.25)

R11 = −ν
′′

2
+

1

4
ν ′(λ′ − ν ′) +

λ′

r
, (2.26)

R22 = 1− e−λ +
1

2
re−λ(λ′ − ν ′), (2.27)

R33 = R22sin
2θ, (2.28)

and the Ricci scalar is

R = e−λ
(
ν ′′ +

ν ′

2
(ν ′ − λ′) +

2

r
(ν ′ − λ′) +

2

r2

)
− 2

r2
. (2.29)

2.3.1 The Schwarzschild Solution

The �rst exact solution of the Einstein �eld equations is the Schwarzschild solution.

Schwarzchild found the metric that represents static, spherically symmetric gravita-

tional �eld in the empty space. By considering vacuum, the Einstein �eld equations

become

Rij = 0. (2.30)

So by eqs. (2.25) to (2.27), the EFEs becomes

ν ′′

2
+
ν ′

4
(ν ′ − λ′) +

ν ′

r
= 0, (2.31)

−ν
′′

2
+

1

4
ν ′(λ′ − ν ′) +

λ′

r
= 0, (2.32)

1− e−λ +
1

2
re−λ(λ′ − ν ′) = 0. (2.33)

Simplifying eqs. (2.31) and (2.32), we get

ν = −λ, (2.34)

substituting it in eq (2.33), we have

(re−λ)′ = 1. (2.35)
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This implies

eν = e−λ =
(

1 +
α

r

)
, (2.36)

where α = −2Gm
c2

. Thus metric in eq (2.22) takes the form

ds2 =

(
1− 2Gm

c2r

)
dt2 −

(
1− 2Gm

c2r

)−1
dr2 − r2(dθ2 + sin2θdφ2), (2.37)

which is the Schwarzschild metric. There exist two singularities in the metric, at r = 0

and r = 2Gm/c2, which are essential and coordinate singularities respectively, the later

called the event horizon. In gravitational units, G = c = 1, the Schwarzchild metric

takes the form

ds2 =

(
1− 2m

r

)
dt2 −

(
1− 2m

r

)−1
dr2 − r2(dθ2 + sin2θdφ2). (2.38)

2.3.2 The Reissner-Nordstrom Solution

The analogue of the Schwarzschild solution having charged point mass was found by

Reissner [9] in 1916 and by Nordstrom [10] in 1918 independently, hence the solution

is known as Reissner-Nordstrom solution. Therefore, adding charge into the previous

assumptions the Einstein-Maxwell �eld equation become

Rij = 8πTij. (2.39)

Here due to spherical symmetry and static point charge the components of electrostatic

�eld are in the radial direction i.e. E = E(r) with magnetic �eld equal to zero. So the

Maxwell tensor Fij is

Fij =


0 −E(r) 0 0

E(r) 0 0 0
0 0 0 0
0 0 0 0

 . (2.40)

Components of the Maxwell tensor, eq (1.39) become

Tij =
1

8π
(E2, E2,−E2,−E2). (2.41)
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So by eqs. (2.31) to (2.33), the EMFEs (2.39) become

eν−λ
(
ν ′′

2
+
ν ′

4
(ν ′ − λ′) +

ν ′

r

)
= E2, (2.42)

−ν
′′

2
+

1

4
ν ′(λ′ − ν ′) +

λ′

r
= E2, (2.43)

1− e−λ +
1

2
re−λ(λ′ − ν ′) = −E2. (2.44)

The Maxwell equations ∇jF
ij = F ij

;j = 0 reduce to

(e−(ν+λ)/2r2E)′ = 0, (2.45)

which leads to

E(r) =
Qe(ν+λ)/2

r2
. (2.46)

By solving eqs. (2.42) to (2.44) with (2.46), we get

ν = −λ, (2.47)

(re−λ)′ = 1− Q2

r2
. (2.48)

By integration, we get

eν = e−λ =

(
1 +

constant

r
+
Q2

r2

)
, (2.49)

for Q = 0 the solution reduces to the Schwarzschild solution which implies constant =

−2m, so,

eν = e−λ =

(
1− 2m

r
+
Q2

r2

)
. (2.50)

Therefore, the Reissner-Nordstrom metric is

ds2 =

(
1− 2m

r
+
Q2

r2

)
dt2 −

(
1− 2m

r
+
Q2

r2

)−1
dr2 − r2(dθ2 + sin2θdφ2). (2.51)

Here again at r = 0, we have essential singularity. For �nding other singularities take

1− 2m

r
+
Q2

r2
= 0, (2.52)

or

r± = m±
√
m2 −Q2. (2.53)

Here r = r± are coordinate singularities, r+ and r− are called outer and inner horizons

respectively.
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2.3.3 The Kerr Solution

In 1963, Roy Kerr discovered a solution of rotating black holes. He generalized the

Schwarzchild solution by assuming a rotating point mass in vacuum with static space

time. The line element in Boyer Lindquist form is

ds2 =
∆

ρ2
(
dt− asin2θdφ

)2 − sin2θ

ρ2
((
r2 + a2

)
dφ− adt

)2 − ρ2

∆
dr2 − ρ2dθ2, (2.54)

where

∆2 = r2 − 2Mr + a2, ρ2 = r2 + a2cos2θ. (2.55)

This is the Kerr black hole solution. The inner and outer event horizons are

r+ = M +
√
M2 − a2, r− = M −

√
M2 − a2. (2.56)

2.3.4 The Kerr�Newman Solution

The Kerr�Newman solution is a generalization of the Reissner-Nordstrom solution by

assuming a charged rotating point mass in vacuum with static space time. The line

element in Boyer-Linquist coordinates is given as

ds2 =
∆

ρ2
(
dt− asin2θdφ

)2 − sin2θ

ρ2
((
r2 + a2

)
dφ− adt

)2 − ρ2

∆
dr2 − ρ2dθ2, (2.57)

where

∆2 = r2 − 2Mr + a2 +Q2, ρ2 = r2 + a2cos2θ. (2.58)

This is the Kerr�Newman black hole solution. The inner and outer event horizons are

r+ = M +
√
M2 − a2 −Q2, r− = M −

√
M2 − a2 −Q2. (2.59)
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Chapter 3

Models of Compact Objects with

Karmarkar Condition

Laplace introduced theoretical concept of the existence of a massive object from whose

gravitational �eld no particle even light could not escape, but it did not receive much

attention due to some strange properties. Astronomers believe that stars are formed

from massive clouds of dust and gases in space. Gravity pulls dust and gases together

to form a prostar. As gasses come together, they get hot. Finally the star remains

in this state for several thousands of years, until the nuclear fusion process ignites

crushing hydrogen atoms into helium then carbon until the formation of iron. Fusion

process that creates iron dose not generate any energy. Due to nuclear fusion process

if the gravitational force pressing inwards is greater than the outwards push of internal

pressure, the core collapses under the dominant gravitational �eld, at this point com-

pact objects are formed.

The study of compact objects can be categorized as

1. White Dwarfs: If the size (volume) of the star is comparable to earth and

mass is comparable to sun then star will turn into a white dwarf. It is one of

the densest forms of matter present with this density. Just three white dwarfs

were discovered until 1926, they are held up against gravity not by heat but by

electrons repelling each other. Chandrasekhar later developed the degenerate

electron equation of state in 1930, taking into account special relativistic results.
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The amount of maximum mass they can hold was to be 1.4M�, where M� is the

solar mass [11].

2. Neutron Stars: When Chandrasekhar limit is reached massive stars will eventu-

ally have smaller radius and at this time protons combine with electrons forming

neutrons and neutrinos, where neutrinos �y away resulting in neutron stars. Su-

pernova remnants, solitary objects, and binary systems may all include neutron

stars. Stars with radius about 10km and the maximum mass estimated to be is

3M�, massive stars could not resist the gravitational pull and continue to col-

lapse, and Neutron star is formed. They were discovered as radio pulsars at the

end of the 1960s and as X-ray stars at the start of the 1970s, also planets have

been discovered in one neutron star [11].

3. Black Holes: As �uid in blackholes are the densest material so in the massive

stars (M > 3M�) entire mass of core collapses into a black hole. These are

so dense objects with extremely strong gravity that even light cannot escape

through. The most important feature in a black hole is event horizon, de�ned as

�a hypersurface separating those spacetime points that are connected to in�nity by

a timelike path from those that are not� [12]. If something crosses this it falls into

the black hole singularity (it is in�nitely small and dense where laws of physics

do not apply). The outside observer dose not get e�ected by events happening

inside an event horizon. Depending on the mass distribution black holes can be

de�ned as

• Stellar black holes: These black holes are smaller in size and to grow in size

they consume gases and dust present around them. These are the most common

black holes, according to scientists millions of them can be present only in the

Milky Way galaxy, and the mass range lies between 10
1
2 to 102M�.

• Intermediate black holes: Presence of this medium size black hole is still de-

batable astronomers believe that these are formed by collision of cluster of stars

in a chain reaction. Usually there mass ranges between 103 to 105M�.

• Supermassive black holes: These black holes are located at the heart of each
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galaxy and are formed by the merger of hundred thousands of stellar and inter-

mediate black holes. The known supermassive black hole is S50014 + 81 which

has 40 billions times mass of sun and its diameter is 236.7 billion km. The range

of such black holes is 106 to 109M�.

The internal composition of compact objects is unknown. In order to study and un-

derstand thermodynamical and gravitational behavior of compact objects, one gen-

erally develops their possible analytical models. These models are solutions of the

Einstein �eld equations (EFEs)/Einstein-Maxwell �eld equations (EMFEs) for un-

charged/charged objects respectivily. Many solutions of the EFEs/EMFEs for com-

pact objects have been obtained by several authors taking di�erent assumptions on

the parameters involved. There are some necessary conditions for acceptable model of

compact objects.

3.1 Admissible Conditions for Compact Objects

For any compact object to be physically acceptable the following conditions should be

ful�lled:

1. There should be no singularity in metric potentials within the radius of the object.

2. The electric �eld and anisotropic factor should be increasing as moving towards

the boundary and must be zero at the center.

3. ρ, pr and pt must be positive, monotonically decreasing with radial coordinate

and �nite inside the compact object.

4. The pressures pr and pt must be equal at the center of the compact object and

at the boundary of the compact object pr must be zero.

5. The trace of the energy-momentum tensor must be positive and decreasing.

6. The value of adiabatic-index must be larger than 4/3.

7. Energy, causality and hydrostatic equilibrium conditions should be satis�ed.
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3.2 The Karmarkar Condition for Class-I Space-time

Eddington [13] discussed that four-dimensional curved space-times can be embedded

in higher-dimensional �at space-times. Randall and Sundram [14], Anchordoqui and

Bergila [15] also discussed in details that the m-dimensional manifold, Vm, can be

embedded in Pseudo-Euclidean space of dimension atleast n, where n = m(m + 1)/2.

The minimum extra dimensions (n−m) is called the embedding class of Vm.

The metric given in eq (2.22) can represent Class-I space-time if it satis�es the Kar-

markar condition given as

R2323R1010 = R1212R3030 +R1220R1330. (3.1)

The non-zero components of Riemann curvature tensor for the metric (2.22) are

R1010 = −eν
(
ν ′′

2
+
ν ′2

4
− λ′ν ′

4

)
, (3.2)

R2323 = −e−λr2sin2θ(eλ − 1), (3.3)

R3030 = R2020sin
2θ = −1

2
rsin2θν ′eν−λ, (3.4)

R1313 = R1212sin
2θ =

1

2
rλ′sin2θ. (3.5)

So the Karmarkar condition for metric (2.22) can be written as

ν ′′

ν ′
=

1

2

[
λ′eλ

eλ − 1
− ν ′

]
. (3.6)

Integrating eq (3.6), we obtain ν in terms of λ as

eν =

(
B

∫ √
eλ − 1 dr + A

)2

, (3.7)

where A and B are constants of integration.
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3.3 Review of Some Solutions of the Field Equations

with Karmarkar Condition

The Friedman-Lemaitre-Robertson-Walker metric and the Schwarzschild metric are

of Class-I [16], whereas the Kerr spacetimes is of Class-V [17]. We are considering

the metric of embedding Class-I spacetimes. Several authors have already obtained

embedding Class-I solutions and used them as models of compact stars, some models

are presented by Kumar and Gupta [18], Maurya et al [19] and K.N. Singh [20]. In

the following subsections we will be discussing some known solutions presented the D.

M. Pandya and V. O. Thomas [21], they presented an exact solution of the Einstein

�eld equations that is static, spherically symmetric on paraboloidal spacetime with

uncharged anisotropic distribution by using the Karmarkar Condition. And, Piyali

Bhar, Ksh. Newton Singh and Farook Rahaman [22] analyzed solutions of the Einstein-

Maxwell �eld equations using Karmarkar condition in a spherically symmetric space

time with charged anisotropic distribution.

3.3.1 Models Of Compact Stars on Paraboloidal Spacetime Sat-

isfying Karmarkar Condition

Consider the spacetime metric given in eq (2.22) with

eλ = 1 +
r2

a2
, (3.8)

where a is a geometric parameter, this shows the paraboloidal spacetimes. The com-

ponents of energy momentum tensor (1.38) for the distribution in the presence of

anisotropy takes the form

Tij = (ρ,−pr,−pt,−pt). (3.9)
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Thus the Einstein �eld equations (2.18) become

ρ =
1

8π

[(
λ′ − 1

r

)
e−λ

r
+

1

r2

]
, (3.10)

pr =
1

8π

[(
ν ′ +

1

r

)
e−λ

r
− 1

r2

]
, (3.11)

pt =
1

8π

[(
ν ′′ +

ν ′ − λ′

r
+
ν ′

2
(ν ′ − λ′)

)
e−λ

2

]
. (3.12)

From eqs (3.7) and (3.8), we get

eν =

(
A+B

r2

a2

)2

. (3.13)

So eqs (3.10) to (3.12) and the anistropic factor ∆(= pt − pr) become

ρ =
1

8π

[
3 + r2

a2

a2
(
1 + r2

a2

)2
]
, (3.14)

pr =
1

8π

 B
(

4− r2

a2

)
− A

a2
(
A+B r2

a2

) (
1 + r2

a2

)
 , (3.15)

pt =
1

8π

 B
(

4 + r2

a2

)
− A

a2
(
A+B r2

a2

) (
1 + r2

a2

)2
 , (3.16)

∆ =
1

8π

 r2

a2

[
A−B

(
2− r2

a2

)]
a2
(
A+B r2

a2

) (
1 + r2

a2

)2
 . (3.17)

The spacetime metric (2.22) becomes

ds2 =

(
A+B

r2

a2

)2

dt2 −
(

1 +
r2

a2

)
dr2 − r2(dθ2 + sin2θdφ2), (3.18)

which should match the Schwarzschild metric (2.38) at the boundry r = R, to gives

eνb =

(
1− 2M

R

)
=

(
A+B

R2

a2

)2

, (3.19)

e−λb =

(
1− 2M

R

)
= (1 +

R2

a2
)−1. (3.20)
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Using the boundary condition pr(R) = 0, we get

− A+B

(
4− R2

a2

)
= 0. (3.21)

From eqs (3.19) to (3.21), we obtain

a = R

√
R

2M
− 1, (3.22)

A =
4− R2

a2

4
√

1 + R2

a2

, (3.23)

B =
1

4
√

1 + R2

a2

. (3.24)

By using eqs (3.23) and (3.24), we rewrite eqs (3.7) to (3.8) as

ρ =
1

8π

[
3 + r2

a2

a2
(
1 + r2

a2

)2
]
, (3.25)

pr =
1

8π

[
R2

a2
− r2

a2

a2
(
4 + r2

a2
− R2

a2

) (
1 + r2

a2

)] , (3.26)

pt =
1

8π

[
R2

a2
+ r2

a2

a2
(
4 + r2

a2
− R2

a2

) (
1 + r2

a2

)2
]
, (3.27)

∆ =
1

8π

 r2

a2

(
2 + r2

a2
− R2

a2

)
a2
(
4 + r2

a2
− R2

a2

) (
1 + r2

a2

)2
 . (3.28)

To examine the validity of the model with observational data, we have considered

compact stars PSR J1903+327, Vela X-1 and PSR J1614-2230, whose mass and size

are known. By using this observational data, the value of the geometric parameter a

is found. The variation of radial pressure, pr, and tangential pressure, pt, are shown in

Fig 3.1, both pr and pt decrease radially outward. Fig 3.2 shows the graph of density

and anisotropy, density decreases with increase in radius and anisotropy is zero at the

centre and positive otherwise.
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(a) pr (b) pt

Figure 3.1: Graphs of pressures are plotted for compact stars PSR J1903+327, Vela
X-1 and PSR J1614-2230.

(a) ρ (b) ∆

Figure 3.2: Graphs of energy density and anisotropy show that both are well de�ned
and non-negative.
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Discussion

In [21], authors have studied validity of the model developed by using the Karmakar

condition in paraboloidal spacetime for compact stars Her X-1, LMC X-4, EXO 1785-

248, PSR J1903+327, Vela X-1 and PSR J1614-2230. The model satis�es the admis-

sible conditions for compact objects. It has been concluded by calculations that the

energy density, radial and tangential pressures are within the limit, positive at the

center and monotonically decreasing. However, the physical parameters anisotropy

and compactness factors are increasing as moving toward boundary. Furthermore, the

model satis�es all the energy conditions, which are necessary. The stability factor and

adiabatic index fall within the limits.

3.3.2 A Charged Anisotropic Well-behaved Adler-Finch-Skea

Solution Satisfying the Karmarkar Condition

Consider the spacetime metric given in eq (2.22) with

eν = A(1 +Br2)2, (3.29)

where A and B are constants. By assuming that the matter within the star is charged

and anisotropic in nature, the components of energy momentum tensor eqs. (1.38)

and (1.39) take the form

Tij = (ρ+ E2,−pr + E2,−pt − E2,−pt − E2). (3.30)

Thus the Einstein �eld equations (2.18) become

8πρ+ E2 =

(
λ′ − 1

r

)
e−λ

r
+

1

r2
, (3.31)

8πpr − E2 =

(
ν ′ +

1

r

)
e−λ

r
− 1

r2
, (3.32)

8πpt + E2 =

(
ν ′′ +

ν ′ − λ′

r
+
ν ′

2
(ν ′ − λ′)

)
e−λ

2
. (3.33)

From eqs (3.6) and (3.29), we get

eλ = 1 + 16AB2Cr2, (3.34)
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where C is a constant. Assume the electric �eld intensity for model as

E2 =
KBr2

1 +Br2
, (3.35)

where K is positive constant.

Using eqs (3.29), (3.35) and (3.34), in eqs (3.31) and (3.33), we have

ρ =
1

8π

[
16AB2C(3 + 16AB2Cr2)

(1 + 16AB2Cr2)2
− KBr2

1 +Br2

]
, (3.36)

pr =
1

8π

[
4B +KBr2 − 16AB2C{1 +Br2(1−Kr2)}

(1 +Br2)(1 + 16AB2Cr2)

]
, (3.37)

pt =
1

8π

[
4B −KBr2 − 256A2B5C2Kr6 − 16AB2C{1−Br2(1− 2Kr2)}

(1 +Br2)(1 + 16AB2Cr2)2

]
, (3.38)

and the anistropic factor ∆(= pt − pr) becomes

∆ =
1

8π

[
2Br2[−K − 16AB2C{1 + 2Kr2 − 8ABC(1 +Br2 − 2KBr4)}]

(1 +Br2)(1 + 16AB2Cr2)2

]
. (3.39)

The spacetime metric (2.22) becomes

ds2 = A(1 +Br2)2dt2 − (1 + 16AB2Cr2)dr2 − r2(dθ2 + sin2θdφ2), (3.40)

which should match the Reissner-Nordstrom metric (2.51) at the boundry, r = R, to

give

eνb =

(
1− 2M

R
+
Q2

R2

)
= A(1 +BR2)2, (3.41)

e−λb =

(
1− 2M

R
+
Q2

R2

)
= (1 + 16AB2CR2)−1. (3.42)

Now by using the boundary condition pr(R) = 0 and Q(= Er2) with (3.41) and (3.42),

we get
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B =
−R2
√
K2R6 + 4KR4 − 16MR + 4R2 + 16M2 −KR5 + 6MR2 − 2R3

2(3KR7 − 5MR4 + 2R5)
, (3.43)

A =
BKR5 − 2BMR2 +BR3 +R− 2M

R(BR2 + 1)2
, (3.44)

C =
KR2 + 4

16AB(1−BKR4 +BR2)
. (3.45)

The metric potentials are regular inside the compact object. Notice that eλ(r = 0) = 1

and eν(r = 0) = A, a positive constant. Graph of metric potentials are plotted in Fig

3.3 (left). The metric potentials are monotonically increasing. The density, radial and

transverse pressures are positive and monotonically decreasing. The radial pressure

vanishes at the boundary of the compact object pr(R) = 0. The graphs of density,

radial and tangential pressures are shown in Fig 3.3 (right) and 3.4 (left) respectively.

The graph of the anisotropic factor is shown in Fig 3.4 (right). The anisotropic factor

vanishes at the center of the compact object, moreover, the anisotropic factor is negative

from center till r = 5.47km and positive for r > 5.47km upto boundry.

Figure 3.3: The graphs of metric potentials plotted by taking A = 0.38, B = 0.022,
C = 10.12 and K = 0.001. Variation of density is plotted by taking the same values of
the constant mentioned earlier.
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Figure 3.4: Variation of pressures and anisotropy are plotted by taking the same values
of the constant mentioned in Fig 3.3.

Discussion

In [22], authors have observed that the physical parameters energy density, radial and

tangential pressures, pressure-density ratio, radial and tangential speeds of sound are

positive at the center, within the limit and monotonically decreasing outwards. How-

ever, the metric potentials, anisotropy, red shift, electric �eld intensity and adiabatic

index are increasing outwards which is necessary for a physically viable con�guration.

The decreasing behaviour of pressures and density is also evident by their negative

gradients. The solution also represents a static and equilibrium con�guration as the

forces acting on the compact object is counter-balancing each other.
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Chapter 4

Charge Anisotropic Solution on

Embedding Class-l Space-time

In this chapter, we �nd new charge anisotropic solutions of the Einstein-Maxwell �eld

equations by using the karmarkar condition. The components of energy momentum

tensor given by eqs (1.38) and (1.39), in the presence of electromagnetic �eld and

anisotropic pressure, take the form

Tab = diag =
(
−ρ− E2, pr − E2, pt + E2, pt + E2

)
. (4.1)

For this con�guration, the EMFE's (2.18) take the form

ρ =
1

8π

[(
λ′ − 1

r

)
e−λ

r
+

1

r2
− E2

]
, (4.2)

pr =
1

8π

[(
ν ′ +

1

r

)
e−λ

r
− 1

r2
+ E2

]
, (4.3)

pt =
1

8π

[(
ν ′′ +

ν ′ − λ′

r
+
ν ′

2
(ν ′ − λ′)

)
e−λ

2
− E2

]
, (4.4)

σ =
1

4πr2
e

−λ
2 (r2E)′, (4.5)

where prime (′) represents di�erentiation with respect to r and σ is the charge density.

For charge compact object the e�ective mass can be expressed as

M =

∫ R

0

(
4πρ+

E2

2

)
r2dr. (4.6)
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Consider the space-time metric given in eq (2.22) with metric potential for the interior

of anisotropic con�guration as

eλ = 1 + ar2. (4.7)

Using eq (3.7) in eq (4.7) we get

eν =

(
A+

B
√
ar2

2

)2

. (4.8)

Motivated by Pant and Fuloria [23], we assume electric �eld intensity for our model as

E2 =
ka3r6

(1 + ar2)4
, (4.9)

where k and a are positive constants. Now by using eqs. (4.2) to (4.4), we obtain the

expressions for ρ, pr, and pt as

ρ =
1

8π

[
3a+ a2r2

(1 + ar2)2
− ka3r6

(1 + ar2)4

]
, (4.10)

pr =
1

8π

[
4B
√
a−Ba

√
ar2 − 2Aa

(1 + ar2)(B
√
ar2 + 2A)

+
ka3r6

(1 + ar2)4

]
, (4.11)

pt =
1

8π

[
B2a2r4 + (2ABa

√
a+ 4B2a− 2ABa)r2 + 8AB

√
a− 4A2a

(1 + ar2)2(B
√
ar2 + 2A)2

− ka3r6

(1 + ar2)4

]
.

(4.12)

4.1 Boundary Conditions

The Reissner-Nordstrom metric (2.51) is the most general spherically symmetric and

static metric for anisotropic charged matter. Our solution must match the Reissner-

Nordstrom solution at the boundry, which requires

eνb =

(
1− 2M

R
+
Q2

R2

)
=

(
A+

B
√
aR2

2

)2

, (4.13)

e−λb =

(
1− 2M

R
+
Q2

R2

)
= (1 + aR2)−1. (4.14)
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Now by using the boundary condition pr(R) = 0 and Q(= Er2) with eqs (4.13) and

(4.14), we obtain

B =
1

2
√
a(1 + aR2)

[
a− ka3R6

(1 + aR2)3

]
, (4.15)

A =

(
1√

1 + aR2

)
−
√
aR2

2
B, (4.16)

M =
R

2
− R

2(1 + aR2)
+

ka3R9

2(aR2 + 1)4
. (4.17)

4.2 Physical Conditions

4.2.1 Metric potential and Electric Field Intensity

The metric potentials are free from singularities and both eλ and eν are monotonically

increasing moreover eλ = 1 at the center. The behavior of metric potentials for di�erent

values of a is shown in Figure 4.1.

(a) eλ (b) eν

Figure 4.1: The metric potentials are plotted for a = 0.3, 0.6, and 0.9.
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The electric �eld intensity is zero at the center and increases as moving towards the

boundary. Figure 4.2 shows the behavior of electric �eld intensity for k = 0.5.

Figure 4.2: The electric �eld intensity
is plotted for a = 0.3, 0.6, and 0.9 by
taking k = 0.5.

Figure 4.3: The density ρ is plotted
for a = 0.3, 0.6, and 0.9 by taking k =
0.5. It is well de�ned and positive.

4.2.2 Density and Pressures

The density and pressures have no singularity. The values of density and pressures at

r = 0 are obtained as

ρ(r = 0) =
3a

8π
> 0, pr(r = 0) = pt(r = 0) =

4B
√
a− 2Aa

16πA
> 0. (4.18)

Notice that radial and tangential pressures are equal and positive at r = 0. Figures 4.3

and 4.4 represent the behaviour of energy density and pressures respectively, which are

monotonically decreasing, moreover pr(r = R) = 0. The Zeldovich's [24] criteria that

the pressure-density ratio must be less than 1 within the compact object is satis�ed.

Figure 4.5 shows the pressure-density ratios.
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(a) pr (b) pt

Figure 4.4: The radial and tangential pressures are plotted for a = 0.3, 0.6, and 0.9 by
taking k = 0.5. Both are well de�ned and non-negative.

(a) pr/ρ (b) pt/ρ

Figure 4.5: The pressures-density ratios are plotted, which are less than 1.
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The gradients of density, radial and tangential pressures are given by eqs (4.19), (4.20)

and (4.21) respectively. These gradients are decreasing for suitable values of the pa-

rameters involved. Figure 4.6 show graphs of the gradients for di�erent values of a.

dρ

dr
=

1

8π(1 + ar2)2

[
2a2r − 4ar(a2r2 + 3a)

(ar2 + 1)
− 6ka3r5

(ar2 + 1)2
+

8ka4r7

(ar2 + 1)3

]
, (4.19)

dpr
dr

=− 1

8π

[
8ka4r7

(1 + ar2)5
+

2Ba3/2r

(1 + ar2)(B
√
ar2 + 2A)

+
2ar(4B

√
a−Ba3/2r2 − 2Aa)

(1 + ar2)2(B
√
ar2 + 2A)

]
− 1

8π

[
2B
√
ar(4B

√
a−Ba3/2r2 − 2Aa)

(1 + ar2)(B
√
ar2 + 2A)2

− 6ka3r5

(1 + ar2)4

]
,

(4.20)

dpt
dr

=− 1

8π

[
4ar(B2a2r4 + r2(2ABa3/2 + 4B2a− 2ABa) + 8AB

√
a− 4A2a)

(1 + ar2)3(B
√
ar2 + 2A)2

+
6ka3r5

(ar2 + 1)4

]
− 1

8π

[
4B
√
ar(B2a2r4 + r2(2ABa3/2 + 4B2a− 2ABa) + 8AB

√
a− 4A2a)

(ar2 + 1)2(B
√
ar2 + 2A)3

− 8ka4r7

(1 + ar2)5

]
+

1

8π

[
4B2a2r3 + 2r(2ABa3/2 + 4B2a− 2ABa))

(1 + ar2)2(B
√
ar2 + 2A)3

]
.

(4.21)

4.2.3 Trace of the Energy-Momentum Tensor

The Bondi's [25] condition for anisotripic �uid sphere states that the trace of energy-

momentum tensor must be positive for compact objects to be acceptable. For our

model the condition, ρ− pr − 2pt > 0, is satis�ed and graph is shown in Figure 4.7.

4.2.4 Anisotropic Factor

Anisotropy is de�ned as the di�erence between tangential and radial pressure. For the

compact object it is necessary that the anisotropic factor must be zero at the center

and positive otherwise. The anisotropic factor is obtained as

∆ = pt − pr =
1

8π

[
B2a2r4 + (2ABa

√
a+ 4B2a− 2ABa)r2 + 8AB

√
a− 4A2a

(1 + ar2)2(B
√
ar2 + 2A)2

]
− 1

8π

[
4B
√
a−Ba

√
ar2 − 2Aa

(1 + ar2)(B
√
ar2 + 2A)

+
2ka3r6

(1 + ar2)4

]
.

(4.22)

The anisotropic factor satis�es the required condition and graph shown in Figure 4.8.
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(a) dρ/dr (b) dpr/dr

(c) dpt/dr

Figure 4.6: The gradients of density and pressures are plotted, which have non-positive
values.
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Figure 4.7: The trace of energy mo-
mentum tensor is plotted, which is
positive and decreasing.

Figure 4.8: The anisotropic factor is
plotted for a = 0.3, 0.6, and 0.9 by
taking k = 0.5.

4.2.5 Mass-Radius Relation

The Buchdal [26] states that the condition of mass-radius ratio, M/R < 4/9, for a

compact object must be satis�ed. For our model the mass-radius ratio is, M/R =

0.4 < 4/9. The metric potential eλ in view of eq (4.14) is

e−λ = 1− 2m

r
+
Q2

r2
= 1− 2m

r
+ E2r2 = (1 + ar2)−1, (4.23)

so the mass function from eq (4.23) is obtained as

m =
r

2
[1 + E2r2 − (1 + ar2)−1]. (4.24)

The mass function is positive and increasing. The variation of mass is shown in Figure

4.9. The compactness-factor must be positive, increasing and less than 8/9 for compact

objects.
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Figure 4.9: Variation of mass func-
tion.

Figure 4.10: Graph of compactness
factor.

For our model the compactness factor is given as

u =
2m

r
= 1 + E2r2 − (1 + ar2)−1, (4.25)

which satis�ed the required condition and its graph is shown in Figure 4.10. The

surface and gravitational redshifts are expressed as

zs = eλ/2 − 1, (4.26)

z = e−ν/2 − 1. (4.27)

Surface redshift, zs, and gravitational redshift, z, have increasing and decreasing be-

haviour respectively, shown in Figure 4.11 .
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(a) zs (b) z

Figure 4.11: Graphs of Surface and gravitational redshifts.

4.3 Stability Conditions

4.3.1 Energy Conditions

A physically reasonable compact object should satisfy the energy conditions:

1. WEC: pr + ρ ≥ 0, pt + ρ ≥ 0,

2. SEC: 2pt + pr + ρ ≥ 0,

3. NEC: ρ ≥ 0.

All energy conditions for our model are satis�ed and graphs are shown in Figure 4.12.

41



(a) ρ+ pr (b) ρ+ pt

(c) ρ+ pr + 2pt

Figure 4.12: Graphs of the energy conditions.
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4.3.2 Adiabatic Index

The adiabatic index, Γα, de�ned by the Heintzmann and Hillebrandt [27] is

Γα =
ρ+ pα
pα

dpα
dρ

. (4.28)

The model is physically acceptable if the value of Γα is greater than 4/3. For our model

this condition is satis�ed and graphs of adiabatic index are shown in Figure 4.13.

(a) Γr (b) Γt

Figure 4.13: Graph of the Adiabatic Index

4.3.3 Casuality Condition

The speed of sound, v2α, in anisotropic �uid distribution is de�ned as

v2α =
dpα
dρ

=

(
dpα/dr

dρ/dr

)
. (4.29)

The speed of sound in radial and tangential direction inside the compact object must

be less than 1, i.e. 0 < v2r , v
2
t < 1. The graph of radial and tangential speed of

sound are shown in Figure 4.14, that shows the speeds lie between 0 and 1, obeying

the causality condition. Moreover, for our model the condition 0 ≤ |v2t −v2r | ≤ 1 is also

satis�ed that is shown in Figure 4.15.
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(a) vr
2 (b) vt

2

Figure 4.14: Plots of the radial and tangential speeds of sound.

Herrara [28] and Abrue [29] proposed the concept of "Cracking" by which for anisotropic

matter distribution, we can �nd the potentially stable and unstable regions. The com-

pact object is stable if and only if the tangential speed of sound is less than the radial

speed of sound.

0 ≤ |v2t − v2r | ≤ 1 =

{
−1 ≤ v2t − v2r ≤ 0, Potentially Stable

0 ≤ v2t − v2r ≤ +1. Potentially Unstable

The graphical behavior is shown in Figure 4.15. We clearly observe that the stability

parameter is stable for large region and unstable for some region. We can choose such

values of parameter a for which almost the complete region will be potentially stable.
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(a) vt
2 − vr2 (b) |vt2 − vr2|

Figure 4.15: Stability factor is plotted for a=0.3, 0.6, and 0.9.

4.3.4 Equilibrium State Under Various Forces

The stellar con�guration is in equilibrium state if TOV eq (4.30) which is given by

Tolman-Oppenheimer-Volko� [30, 31] is satis�ed

2

r
(pt − pr)−

dpr
dr

+ σEeλ/2 − (ρ+ pr)ν
′

2
= 0. (4.30)

Eq (4.30) can be written as

Fa + Fh + Fg + Fe = 0, (4.31)

where Fa, Fh, Fe and Fg are anisotropic, hydrostaic, electric and gravitational forces

respectively, given as

Fa =
2

r
(pt − pr), Fh = −dpr

dr
, Fe = σEeλ/2, Fg = −(ρ+ pr)ν

′

2
.

We may conclude that con�guration of our compact object is in static equilibrium

because the above four forces counterbalancing each other.
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(a) a = 0.3 (b) a = 0.6

(c) a = 0.9

Figure 4.16: Variations of di�erent forces with r/R, where F shows the resultant force.
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Chapter 5

Conclusion

In this thesis, at �rst the historical background of space-time is discussed from where

the theory started and how it transformed with time until it took the shape given by the

genius mind of Einstein, then a brief discussion on di�erent tensors is given in Chap-

ter 1. In Chapter 2, the Einstein-Maxwell �eld equations and exact solutions of �eld

equations are discussed in detail, including the most important ones the Schwarzschild

solution for point mass and the Reissner-Nordstrom for the charged point mass pre-

sented in 1916 and 1918 respectively.

Some models for compact objects with Karmarkar condition are reviewed in Chapter 3.

In Chapter 4, we have suggested a new model for anisotropic compact charged object

taking the Karmarkar condition. We have checked all physical and stability conditions

for our model, it is found that for suitable values of the arbitrary constants, our model

satis�es all the physical and stability conditions. Therefore, it can be considered as a

new analytical model of compact objects.
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