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Abstract

In this thesis, assuming the generalized polytropic equation of state and suitable

form of electric �eld intensity, new classes of charged anisotropic perfect �uid solu-

tions to the Einstein-Maxwell equations in paraboloidal geometry are obtained, repre-

senting relativistic charged compact stellar objects. These exact polytropic solutions

for di�erent variations of the adjustable parameter, known as the polytropic index η

(η = 1/2, 1, 2), satisfy all physically admissible conditions. The matter composition

obeys all stability conditions; including the hydrostatic equilibrium by means of the

Tolman�Oppenheimer�Volko� equation, viable trends of stability through the rela-

tivistic adiabatic index and Abreu's criterion are ful�lled. The pro�les are displayed

by assuming the estimated radius, the geometric parameter L, and other constants for

which compact stars obeying the mass-radius ratio are obtained.
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Chapter 1

Introduction

1.1 Theory of Relativity and Beyond

The concept of space and time are enlightened by several scientists and philosophers

since ancient times. In 4th century BC, Aristotle's perspectives regarding this were that

space is comparative with its matter substance and time to the sequence of occasions,

he concluded �time as the potentiality of the motion of matter � [1]. In 17th/18th

century, the word �physics� signi�cantly changed its importance, by the revelations

and signi�cant work of Galileo and Newton. It was Galileo initially who in 1632

gave a logical connection between previous fuzzy thoughts and resulting developments.

Relativity expressed in his point of view was free from any reference to the physics of

natural motion. He characterized equivalence of physical laws concerning all inertial

reference frames. Newtonian mechanics added several other concepts, including laws of

motion, gravitation, and asserted in new notion of an absoluteness of space and time.

The principle of relativity (Newtonian or Galilean) articulates that �the laws of me-

chanics are invariant under change of inertial frame� [2]. The physical experiment

should necessarily be identical when performed in two inertial frames of references to

all sorts of physics (kinematics or non-gravitational). This implies that there is no

preferred initial frame or absolute motion, space is well-de�ned by three coordinates
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(x, y, z) and is regarded as a phase where events occur, with time being considered as

a universal entity. In the pre-relativistic era, Newtonian mechanics used the Galilean

transformations for the change in inertial frames due to the signi�cant fact that �New-

ton's laws are invariant under Galilee transformations�[2]. In short, before the 20th

century the classical world related with the names like Aristotle, Newton etc. view was

that the rules governing space and time were absolute always, energy was considered

moving through the medium called ether, matter was deliberated to be made up of

inseparable and immutable atoms. These concepts lurked many unanswered queries

especially after the development of Maxwell's theory of electrodynamics

1.1.1 Relativity and Role of Electrodynamics

In 1864, Maxwell came across the equations manifesting phenomena of electricity, mag-

netism and light traveling as a wave into a single frame called electromagnetism. Before

in Newtonian physics, light waves were considered to appear motionless meaning that

oscillation of electric and magnetic �eld will go nowhere, where as Maxwell equations

gave no such indication. Electromagnetic �eld arises from two sources mainly that

is electric charge (Q) and current (I), the stationary charge creates electric �eld and

the moving charge creates magnetic �eld. Typically charge and current densities are

utilized in Maxwell's equations to quantify the e�ects of �elds. The equations split up

in two pairs the �source equations�

∇ · E = ρ, (1.1)

∇×B− ∂tE = j, (1.2)

and the �internal equations�

∇ ·B = 0, (1.3)

∇× E− ∂tB = 0, (1.4)
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here, ρ is the electric charge density, j is the current density, E is the electric �eld and B

is the magnetic �eld [3]. These equations were not Galilee-invariant which lead to the

incompatibility of Newtons theory with electromagnetism in a sense that it was only

e�ectual in the limit |v| � c. One of the major question of incompatibility was raised

when an experiment to measure the speed of earth relative to the ether was performed

by Michelson and Morley, it resulted as an unsuccessful testing in 1887. This leads to

certain possibilities, �rstly that the ether is attached �rmly to the earth, which created

some further problems and the other possibility was that there is no ether, this leads

speed of light to be the fundamental quantity of the medium.

Another crisis occurred for the immutable atoms in the early 1900s by the understand-

ing of the concept of radioactive decay. In that period Maxwell's equations were being

investigated and the heat emitted by dark objects when they absorb light was being

observed. Furthermore, energy was considered as a continuous wave, however, the

wave-based theory contradicted this point as according to it there might exist in�nite

transmitted energy. All these ongoing events disregarded the recently settled laws of

thermodynamics and in order to describe the strange results about light and heat.

Planck speculated that light may be a series of particles or quantum units rather than

a wave.

But still no proper explanation paved into the minds until a proposal led by Einstein

worked out, it severely discredited the ether theories and got rid of all reference frames

for space and time. In 1905, with the four publications including the revolutionary

work about the Brownian motion, the photoelectric e�ect, the equivalence of mass

and energy, and the special relativity theory published in the paper �On the Electro-

dynamics of Moving Bodies� [4] Einstein changed physics overnight. He substantiated

that nothing can move faster than the speed of light `c' and that there does not ex-

ist any universal space. In accordance with his results all the measurements became
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relative to the position and speed of the observer, space and time became one entity

space-time. Einstein's thinking basically revolved around electrodynamics He �gured

out that Maxwell's condition of electromagnetism required special theory of relativity.

The two postulates of the theory of relativity are [2]:

1. In all inertial reference frames, the laws of physics assume the same form and all

observers are equivalent.

2. In all inertial reference frames regardless of the state of motion or source, all

observers will measure same speed of light.

Various consequences like contraction of length, time dilation and mass expansion were

derived from this theory. Later on, in 1907, events happening in the universe were ex-

pressed in a four-dimensional worldview by Minkowski. In Minkowski spacetime event

was considered as a point simply. As in the classical era Galilean transformations were

used, here, Lorentz transformations became the center of this new theory of relativ-

ity. These are basically linear coordinate transformations relating two frames relative

to each other moving with the constant speed. In �at spacetime (no acceleration)

the Minkowski line element is invariant under Lorentzian transformations, it is the

square of in�nitesimal interval between two events (ct,x) and (ct + cdt,x + dx) that

are separated in�nitesimally given as [2]

ds2 = −c2dt2 + dx2 + dy2 + dz2. (1.5)

One of the importance of these transformations in special theory of relativity is that

Maxwell equations are invariant under them. But this was not the end as soon after

this revolutionary work Einstein began to wonder about gravity, whether the Newton's

theory of gravitation i.e. (between the interactions of two massive objects gravity acts

as an attractive force) is fully consistent with his theory or not, since in the frames of

special relativity idea of gravitation propagation appeared slightly absurd.
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1.1.2 Principles of General Relativity

Laboriously working for almost ten years Einstein ended up again with the series of four

papers in 1915, forming the general theory of relativity [5]. Few founding principles

that guided to construct the theory directly or indirectly are

Mach's Principle

Mach's principle may be regarded as founding principles that pretty much in�uenced

Einstein when he was in the development phase of general theory of relativity. We

began our explanation with the famous bucket experiment of Newton: in an absolute

space imagining a bucket of water, if the bucket is rotating around its own vertical

axis the rotation of water in it will form a concave surface due to the centrifugal force

and when one imagines sitting on the edge of bucket no rotation would be observed

but actually it still has the concave shape. This was objectionable by Mach's, since it

hypothesized absolute space and reference, he was of the view that it was acceptable

in hypothetically empty universe and the matter content in the real universe did not

support such existence. He insisted on the point that absolute space and absolute

motion are not to be used in scienti�c context as they are meaningless metaphysical

concepts. Mach was of the view that in rotating water the concavity can be caused

because of the presence of nearby large masses, according to him physics of the small

scale actually depends on the physics of large scale. Summary of the results of Mach's

principle [3] is:

1. Matter distribution determines the geometry of spacetime.

2. Simply no matter then there exists no geometry.

3. Universe containing a single body should not possess any inertial properties.
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Equivalence Principle

The particles inertial and gravitational equivalence of masses led to a thought that

crossed Einstein's mind in 1907 later which he called �the happiest thought of my life�.

He envisioned a person falling o� from the roof top would feel weightless when plummet-

ing downwards, this made him realize that by eliminating gravity various complications

can be reduced as well and concluded that accelerated motion and gravitational �elds

are one and the same. The equivalence principle was stated following this

�The laws of physics are the same in uniform static gravitational �eld and in the ac-

celerated frame of reference�.

Principal of General Covariance

Einstein proposed that �all observers are equivalent� is the complete logical form of

the principle of special relativity and he incorporated it into his general theory. This

means that physics must have the tensorial form and any observer independent of its

property are acceptable to determine laws of physics. It is stated as

�The laws of physics are invariant under any set of coordinate transformation and must

be speci�ed in tensorial form�.

1.2 Tensors

The last mentioned principle derives the attention towards the importance of tensor

theory in relativity. What are tensors? and why they are considered essential part

of theory? These are the intriguing questions that need to be answered before the

development of main �eld equations proposed by Einstein, that changed the meaning

of physics and the eye to look at various aspects of physics.

Tensors are mathematical objects, entirely described in respective coordinate systems

by transformation properties. Tensor formalism is studied in relativity to get deeper
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geometrical awareness as it is the language required to explain how the quantities

transform under coordinate transformation as they are valid ia all systems. Tensors

are fundamentally the generalization of vectors and dual vectors. If T is (r, s) tensor

then in component notation it is written as

T = T i1···ir j1···js êi1 ⊗ · · · ⊗ êir ⊗ v̂
j1 ⊗ · · · ⊗ v̂js , (1.6)

where

êi1 ⊗ · · · ⊗ êir ⊗ v̂j1 ⊗ · · · ⊗ v̂js , (1.7)

are basis of (r, s) tensor, given by the tensor product of vectors and dual vectors.

Similarly one can de�ne components of contravariant and covariant tensors having all

upper and lower indices respectively. The transformation law for the components of

mixed tensor is de�ned as

T
i′1···i′r

j′1···j′s
= T i1···ir j1···js

∂xi
′
1

∂xi1
· · · ∂x

i′r

∂xir
∂xj1

∂xj
′
1
· · · ∂x

js

∂xj′s
. (1.8)

Properties

1. The fundamental operations like addition, subtraction are valid for the tensors

of same rank and type, while the product of two tensors given by its components

whose upper and lower indices consist of all upper and lower indices of the original

tensor components is valid. Expressed as follows

T abc = Uab
c ± V ab

c, (1.9)

T abcef = Uab
e V

c
f . (1.10)

2. Contraction is summation of one upper and one lower index (of the same type)

otherwise tensor would not hold the transformation laws.

Rank n tensor
1 Contrac−−−−−−→ Rank (n− 2) tensor

1 Contrac−−−−−−→Rank (n− 4) tensor · · ·

As an example consider

Sabc = T adbcd. (1.11)
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3. Given a tensor, its symmetric and skew-symmetric parts are de�ned as follows

T(i1···in) =
1

n!
(Ti1···in + sum over permutation of indices i1 · · · in) , (1.12)

T[i1···in] =
1

n!
(Ti1···in + alternating sum over permutation of indices i1 · · · in) .

(1.13)

1.2.1 Metric Tensor

It is the fundamental object of study in relativity, specially when studying the geometric

properties of manifolds (in any �nite no of dimension) such as distance or curvature

of manifold we de�ne the quantity called metric tensor. It is de�ned in term of basis

vector

gab = ea · eb. (1.14)

As the dot product of ea · eb = eb · ea this implies symmetry of second rank tensor i.e.

gab = gba. (1.15)

The metric tensor is also de�ned as the square of in�nitesimal distance between two

points R(xa) and S(xa + dxa) on a manifold given as

ds2 = gab dx
adxb. (1.16)

Properties

1. gab is the inverse metric of gab since g
abgbc = δac.

2. Metric determinant `g' is the determinant of n × n symmetric non-degenerate

matrix i.e. g = Det(gab).

3. It plays a key role in raising and lowering of index.

4. Law of transformation for second rank tensor (gab) can be easily �gured out from

equation (1.8).
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1.2.2 Curvature Tensor

General theory gave a profound connection between accelerated observer and gravity. It

was proposed that deformation in spacetime is caused due to the existence of immense

bodies. It is not a �at structure rather massive objects produce curvature which is

described by the Riemann tensor. The Riemann curvature tensor is expressed in terms

of covariant derivative (`;') that is the generalization of ∂a for a curved spacetime. For

example the components of covariant derivative of a tensor of rank (1, 1) is de�ned as

Aab;c = Aab,c + ΓabdA
d
c − ΓdcbA

a
d. (1.17)

Here Γabc is the Christo�el symbol, de�ned as an array of numbers depicting the met-

ric association to surfaces or manifolds permitting distances to be estimated on that

particular manifold or surface. In the general theory of relativity vital role of this asso-

ciation is the correspondence between gravitational �eld and the gravitational potential

being metric tensor. Christo�el symbol of second kind is expressed as.

Γabc =
1

2
gda (gcd,b + gbd,c − gbc,d) . (1.18)

The Riemann curvature tensor is expressed by the covariant derivative as

Aa;d;c − Aa;c;d = Aa;d,c + ΓaceA
e
;d − ΓedcA

a
;e − Aa;c,d − ΓadeA

e
;c + ΓecdA

a
;e, (1.19)

Aa;d;c − Aa;c;d = ((Γabd),c − (Γabc),d + ΓaceΓ
e
db − ΓadeΓ

e
cb)A

b + (Γedc − Γecd)A
a
e, (1.20)

Torsion is de�ned as Γabc − Γacb = T abc and in the framework of general relativity the

spacetime is torsion free. So the required results are attained by utilizing the symmetry

connection Γabc = Γacb. The rank-4 Riemann curvature tensor R in components form

is de�ned as

Ra
bcd = (Γabd),c − (Γabc),d + ΓaceΓ

e
db − ΓadeΓ

e
cb, (1.21)

Thus equation (1.20) reduces to

Aa;d;c − Aa;c;d = Ra
bcdA

b. (1.22)
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The covariant derivatives do not commute and satis�es the condition gab;c = 0 unlike

the partial derivatives. This condition is used to determine the deviation from �at

spacetime by the components of Riemann tensor Ra
bcd. In simple words, for Ra

bcd = 0

there is �at geometry and for Ra
bcd 6= 0 there is curved space. Ra

bcd can be transformed

into covariant tensor form by using the transformation

Rabcd = gaeR
e
bcd, (1.23)

where Ra
bcd 6= Rabcd. The components in explicit form by performing some algebra can

be written as

Rabcd =
1

2
(gda,bc + gbc,da − gbd,ac − gca,bd) + gpe (ΓedaΓ

p
cb − ΓecaΓ

p
db) . (1.24)

Properties of curvature tensor are as follows:

1. It is skew-symmetric either the order of �rst two indices is swapped or of the last

two.

Rabcd = −Rbacd, Rabcd = −Rabdc. (1.25)

2. It satis�es Bianchi identity of �rst and second kind given as

Ra[bcd] = Rabcd +Radbc +Racdb = 0. (1.26)

Ra
p[bc;d] = Ra

pbc;d +Ra
pdb;c +Ra

pcd;b = 0. (1.27)

3. It is symmetric if �rst two pair of indices are swapped with the last two

Rabcd = Rcdab. (1.28)

By contracting the components of Riemann tensor one can construct Ricci tensor

Rab = Rc
acb, (1.29)
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and the trace of Ricci tensor is the Ricci scalar (or curvature scalar) as given below

R = gabRab. (1.30)

Ricci tensor is symmetric and an interesting feature of Ricci scalar is that it determines

the nature of singularity as it is invariant under coordinate transformation. There are

two types of singularities coordinate and essential, one arises with the bad choice of

coordinates and is removable, other occurs due to problem in geometry which can not

be removed. By examining the invariant quantities given below, one can conclude that

if there are �nite curvature invariants then there is coordinate singularity otherwise

essential (or spacetime).

R1 = R, (1.31)

R2 = Rab
cdR

cd
ab, (1.32)

R3 = Rab
cdR

cd
efR

ef
ab , (1.33)

R4 = Rab
cdR

cd
efR

ef
ghR

gh
ab . (1.34)

Now as curvature tensor is discussed in detail then the principle of minimal gravitational

coupling implicitly used by Einstein is quite easier to understand, which is stated as �No

term explicitly containing the curvature tensor should be added in making the transition

from special to general theory of relativity� [3].

1.2.3 The Einstein Tensor

The Einstein tensor gives symmetric, linear and divergence free function of the curva-

ture. It can be derived by the second kind of Bianchi identity stated in equation (1.27),

�rstly contracting a and b in it

Ra
pac;d +Ra

pda;c +Ra
pcd;a = 0. (1.35)
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Substituting Ra
pac = Rpc and R

a
pda = −Ra

pad = −Rpd in equation (1.20)

Rpc;d −Rpd;c +Ra
pcd;a = 0, (1.36)

multiplying the above by gpe

Re
c;d −Re

d;c +Rae
cd;a = 0. (1.37)

Carrying out some contractions, equation (1.37) reduces to(
Ra

c −
1

2
δacR

)
;a

= 0, (1.38)

where

Ga
c = Ra

c −
1

2
δacR, (1.39)

Here the Einstein tensor G in components form is given in equation (1.39) where

equation (1.38) implies Ga
c;a = 0. This tensor is symmetric, divergence free and in

covariant form is given as

Gab = Rab −
1

2
Rgab, (1.40)

1.2.4 The Maxwell Tensor

The Maxwell tensor is also known as electromagnetic �eld tensor, for its construction

initially de�ne the four vector potential A and skew symmetric tensor F = Fab as

Aa = (φ,A), (1.41)

Fab = ∂aAb − ∂bAa. (1.42)

Here, φ is the scalar potential and A is 3-vector potential. Electric and magnetic �elds

in terms of φ and A become

E = −∇φ− ∂tA, (1.43)

B = ∇×A. (1.44)
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By the equations (1.42)-(1.44), we get F0i = Ei and Fij = εijkB
k where i, j, k = 1, 2, 3

and εijk is the Levi-Civita tensor (0,3) de�ned as

εijk =


+1 if ijk is an even permutaion of 123
-1 if ijk is an odd permutaion of 123
0 otherwise

(1.45)

Further simpli�cation yields the covariant form of electromagnetic �eld tensor

Fab =


0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

 . (1.46)

The contravariant form can be obtained by F ab = gacgbdFcd.

1.3 The Maxwell Equation in Relativity

Now the main goal is to observe electromagnetism in context of relativity. In order

to show that the equations (1.1)-(1.4) need to be transformed into tensor notation, by

the electromagnetic �eld tensor given by equation (1.46) and four vector Ja de�ned as

Ja = (ρ,J). Thus the set of traditional Maxwell equations in tensor form are reduced

to two equations as follows

∂bF
ab = Ja, (1.47)

∂[bFac] = 0. (1.48)

Source equation (1.47) is valid in Minkowski space (inertial coordinates), one can ex-

press it in coordinate invariant (arbitrary coordinates) way as

∇bF
ab = Ja, (1.49)

where as the internal equation (1.48) subject to continuity equation is satis�ed au-

tomatically as there is no change in ∇[bFac] = ∂[bFac] = 0. If these covariant tensor

equations are valid in one coordinate system then they are valid for all.
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1.4 The Energy Momentum Tensor

The energy momentum tensor (T) plays a key role in constructing gravitational �eld

equations. It is related to Einsteins tensor (G) and delineates the matter distribution

in spacetime. The most commonly known energy momentum tensor is �dust", where

the distribution can be characterized by matter density ρ and four velocity (ua) of �uid

in some coordinate xa as

T ab = ρuaub. (1.50)

The detail explanation of the components and their physical meaning are stated as [15]

1. T 00 represents energy density ρ.

2. T i0 is �ow of ith component of momentum called the momentum density (mo-

mentum per unit volume).

3. T 0i is �ow of energy across the surface xi called the energy �ux.

4. T ij is �ow of ith component of momentum crossing the interface in jth direction,

which gives force per unit area called stress.

Due to this reason energy momentum tensor is known as stress-energy tensor as well.

Other energy momentum tensor related to matter distribution is �perfect �uid�, de�ned

as �The �uid in which there are no forces between the particles, and no heat conduction

or viscosity in the inertial reference frame� [6]. It can be characterized by adding scalar

pressure p along with energy density ρ and �ow vector ua as

T ab = (ρ0 + p)uaub − pgab. (1.51)

T ab is symmetric rank-2 tensor and note that perfect �uid becomes dust if p→ 0. The

Maxwell energy momentum tensor is given as

T ab = −F adF b
d +

1

4
gabFcdF

cd. (1.52)
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The conservation equation of energy and momentum is given as

T ab;b = 0, (1.53)

and for �at space time it becomes

T ab,b = 0. (1.54)

1.5 The Einstein Field Equation

Beginning the derivation of �eld equation by de�ning the general form of Einstein-

Hilbert action as

S =

∫
L
√
−g d4x. (1.55)

The Lagrangian L for gravitational source and matter is taken as L = LG +Lm where

LG = 1
2k
R and K = 8πG

c4
. Originally LG was de�ned without the cosmological constant,

later on it was added by Einstein to develop a static model of universe. Throughout

this dissertation the speed of light c, the gravitational constant G are taken to be 1

and cosmological constant is zero (Λ = 0). Thus action becomes

S =

∫
1

2k
R
√
−g d4x+

∫
LM
√
−g d4x. (1.56)

Since δS = 0, using this and equation (1.30) in (1.56) gives

δS =
1

2k

∫ (
Rabg

abδ
√
−g +Rab

√
−gδgab +

√
−ggab(δRab)

)
d4x

+

∫ (
LMδ
√
−g +

√
−gδ(LM)

)
d4x = 0. (1.57)

Now considering geodesic coordinate where Γabc = 0 at an arbitrary point P. This then

reduces Riemann tensor as

Rc
adb = Γcab,d − Γcad,b. (1.58)
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δ on both sides of equation (1.58) yields

δRc
adb = δΓcab,d − δΓcad,b. (1.59)

Since in geodesic coordinates the partial derivative is equivalent to covariant derivative

and commutes with variation. So famous Palatini equation is obtained given as

δRc
adb = δΓcab;d − δΓcad;b. (1.60)

Contraction of c and d gives

δRab = δΓcab;c − δΓcac;b, (1.61)

multiplying above equation by gab

gabδRab = gabδΓcab;c − gabδΓcac;b, (1.62)

= gabδΓcab;c − gacδΓbab;c, (1.63)

=
(
gabδΓcab − gacδΓbab

)
;c
. (1.64)

Consider

Ac = gabδΓcab − gacδΓbab, (1.65)

further simpli�cation and integration on both sides yields∫
v

gabδRab

√
−g d4x =

∫
v

Ac;c
√
−g d4x, (1.66)

using divergence theorem above equation becomes∫
v

gabδRab

√
−g d4x = 0. (1.67)

By equation (1.67) and substitution of the identity δ
√
−g = −1

2

√
−ggabδgab, equation

(1.57) becomes

1

2k

∫
v

(
Rabg

ab

(
−1

2

√
−g gabδgab

)
+Rab

√
−g δgab

)
d4x

+

∫
v

(
Lm

(
−1

2

√
−g gabδgab

)
+
√
−g δ(Lm)

)
d4x = 0.

(1.68)
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As Lm = Lm(gab) this implies δLm = ∂Lm
∂gab

δgab, thus equation (1.68) becomes

1

2k

∫
v

(
−1

2
Rgabδg

ab +Rabδg
ab

)√
−g d4x

−1

2

∫
v

(
−2

∂Lm
∂gab

+ Lmgab

)
δgab
√
−g d4x = 0.

(1.69)

Energy momentum tensor is terms of Lagrangian is de�ned as

Tab = −2
∂Lm
∂gab

+ Lmg
ab. (1.70)

Thus equation (1.69) takes the form

1

2k

∫
v

(
Rab −

1

2
gabR− kTab

)
δgab
√
−g d4x = 0, (1.71)

this implies

Rab −
1

2
gabR− kTab = 0, (1.72)

Rab −
1

2
gabR = kTab. (1.73)

Equation (1.73) are famous Einstein equations on left we have curvature that deter-

mines the presence of gravitational source and on right energy momentum tensor leads

to the representation of matter in given space.
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Chapter 2

Exact Solutions for Anisotropic

Compact Objects in Relativity

2.1 Exact Solutions

From the time general theory was developed, due to its essential feature of non-linearity,

few approaches are taken to understand it deeply. Most important being worked out

still is the exact solutions to the Einstein �eld equations as said by Mason and Wood-

house �they combine tractability with non-linearity, so they make it possible to explore

nonlinear phenomena while working with explicit solutions� [7]. Although exact solu-

tions are special cases that are very useful, there are still no adequate conditions or a

�xed method for obtaining viable exact solutions of the theory after a century of anal-

ysis. Since there are two rank-two tensors Tab and gab, each with up to ten individual

components, the derivation of solutions is a very broad term. As a result, to proceed

certain logical assumptions must be made, the known exact solutions are all obtained

by imposing certain constraints. In general, to minimize complexity some symmetry

conditions are imposed on metrics. Some other conditions such as static, stationary or

non-charged spacetimes may also be considered [8]. Moreover, for proceeding towards

the solution many suitable assumptions can be made about Tab like �xing its form dust,

perfect �uid, etc. As mathematical and physical assumptions are applied to get the
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solution then it is essential for solution to be physically admissible. The most physical

way of �nding the solutions is by the equation of state, where it relates pressure in

terms of energy density p = p(ρ). The polytropic equation of state i.e.
(
P = κρΓ

where Γ = 1 + 1
η
and η is the polytropic index) along with the equation of hydrostatic

equilibrium is often considered playing important part in obeying the astrophysical

systems [9] which is discussed in detail later on.

2.2 Compact Objects

Earlier in 1798, Laplace introduced the theoretical concept of the existence of a massive

object from whose gravitational �eld no particle could escape even light, but it did not

receive much attention due to some strange properties. Astronomers believe that stars

are formed by the gravitational collapse of gaseous mass. In 18th century, it was known

as Laplace's nebular hypothesis which was overruled lately in 1970's by solar nebular

disk model, mainly due to its lack of information about the dissemination of angular

momentum in between planets and sun. Formation of star by nebula means that there

is the dense interstellar disc of cosmic dust and gasses present in form of molecular

clouds in the universe composed of 75% hydrogen and 23% helium. This cloud starts

spinning due to the conservation of momentum from movement of particles, this drastic

spin �attens the cloud into proplanetary disk. The formation of a protostar occurs as

regions of increased gravity allow gas and dust to condense, when these regions grow

more massive, they crumble under the enhanced gravitational �eld, creating an increase

in temperature and thereby becoming a protostar. Finally the star remains in this state

for several thousands of years, until the nuclear fusion process ignites crushing hydrogen

atoms into helium then carbon until the formation of iron. Fusion process that creates

iron does not generate any energy. Due to nuclear fusion process if the gravitational

force pressing inwards is grater than the outwards push of internal pressure, the core
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collapses under the dominant gravitational �eld [10], from this point star are formed

often called the �compact objects�.

2.2.1 White Dwarfs, Neutron Stars and Black Holes

The study of compact objects can be categorized as

1. White Dwarfs: If the star is small its core will turn into a white dwarf. It

is one of the densest forms of matter present with mass comparable to that of

the Sun and a volume comparable to that of the Earth. Just three white dwarfs

were discovered until 1926, they are held up against gravity not by heat but by

electrons repelling each other. Chandrasekhar later developed the degenerate

electron equation of state in 1930, taking into account special relativistic results.

The amount of maximum mass they can hold was to be 1.4M�, where M� is the

solar mass [11].

2. Neutron Stars:

When Chandrasekhar limit is reached massive stars which have �nished burning

there fuel undergo a supernova explosion. This explosion blows o� the outer

layers of a star into a supernova remnant. The central region collapses so much

that protons and electrons combine to form neutrons resulting in neutron stars,

with neutron degeneracy pressure partially supporting against further collapse.

Neutron stars are partially supported against further collapse by neutron degen-

eracy pressure, a phenomenon described by the Pauli exclusion principle, just

as white dwarfs are supported against collapse by electron degeneracy pressure.

They were discovered as radio pulsars at the end of the 1960s and as X-ray stars

at the start of the 1970s, also planets have been discovered in one neutron star

[11]. Typically they have radius about 10km and the maximum mass estimated
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to be is 3M�, massive stars could not resist the gravitational pull and continue

to collapse.

3. Black Holes: As �uid in these are the densest material so in the massive stars

(M > 3M�) entire mass of core collapses into a black hole. These are so dense

objects with extremely strong gravity that even light cannot escape through. The

most important feature in a black hole is event horizon, de�ned as �a hypersurface

separating those spacetime points that are connected to in�nity by a timelike path

from those that are not� [9]. If something crosses this it falls into the black hole

singularity (it is in�nitely small and dense where space time and laws of physics

do not apply). Escaping through it one needs to move faster than speed of light.

The outside observer dose not get e�ected by events happening inside an event

horizon. Depending on the mass distribution black holes can be de�ned as

• Stellar black holes: These black holes are smaller in size and to grow in size

they consume gas and dust present around them. These are the most common

black holes, according to scientists millions of them can be only present in Milky

Way galaxy, and the mass range lies between 10
1
2 to 102M�.

• Intermediate black holes: Presence of this medium size black hole is still de-

batable astronomers believe that these are formed by collision of cluster of stars

in a chain reaction. Usually there mass ranges between 103 to 105M�.

• Supermassive black holes: These black holes are located at the heart of each

galaxy and are formed by the merger of hundred thousands of stellar and inter-

mediate black holes. The known supermassive black hole is S50014 + 81 which

is 40 billions time mass of sun and its diameter is 236.7 billion km. The range of

such black holes is 106 to 109M�.
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2.3 Some Known Black Hole Solutions

The structure of spacetime followed in general relativity is of a four-dimensional pseudo-

Riemannian manifold M , the related metric is not positive de�nite thus the signature

representation will be (−,+,+,+) or (+,−,−,−), given the general line element in

metric component form by equation (1.16). In this thesis work is carried out under

(−,+,+,+) signatures and on static spherically symmetric paraboloidal spacetime

metric unless mentioned otherwise. When contemplating solutions especially exact

solutions, symmetry is a crucial assumption to make because of the mathematical

simpli�cations. Many good theoretical predictions for spherically symmetric solutions

have been made, proving Einstein's theory [10]. So assuming spherical symmetry the

line element (1.16) in spherical coordinates will thus become

ds2 = −c2dt2 + dr2 + r2dΩ2, (2.1)

where dΩ2 = dθ2 + sin2θdφ2. Now as for the metric to reach the requirement of being

static consider time independence, static spacetime is de�ned as �In a static spacetime

all metric components gab are independent for some time like coordinate say x0 and

the line element is invariant under transformation x0 → −x0� [6]. Next if there is

no preferable angular direction in space then the metric is spherically symmetric i.e

dxa → −dxa where xa are spatial coordinates. Thus, when r → ∞ and presence of

spherical symmetry the metric in equation (2.1) becomes

ds2 = −e2ν(r)c2dt2 + e2λ(r)dr2 + r2(dθ2 + sin2θdφ2). (2.2)

2.3.1 Schwarzschild Black Hole

In 1916, Schwarzschild presented a simplest exact solution by considering vacuum, thus

the Einstein �eld equation becomes

Rab = 0. (2.3)
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For the simplest form of metric given in equation (2.2) which is time independent and

spherically symmetric, the metric tensor and its inverse are

gab =
(
−e2ν(r), e2λ(r), r2, r2sin2θ

)
,

gab =

(
−e−2ν(r), e−2λ(r),

1

r2
,

1

r2sin2θ

)
. (2.4)

The total independent Christo�el symbols are 40 but non zero components are

Γ1
00 = ν ′e2(ν−λ), Γ1

22 = −re2λ, Γ1
11 = λ′, Γ2

21 = Γ3
31 =

1

r
,

Γ1
33 = −re−2λsin2θ, Γ2

33 = −sinθcosθ, Γ3
32 = cotθ, Γ0

01 = ν ′. (2.5)

Thus in equation (2.3) the non-vanishing components are

R00 = ν ′′ + ν ′(ν ′ − λ′) +
2ν ′

r
= 0, (2.6)

R11 = −ν ′′ + ν ′(λ′ − ν ′) +
2λ′

r
= 0, (2.7)

R22 = 1− e−2λ + re−2λ(λ′ − ν ′) = 0, (2.8)

R33 = R22sin
2θ = 0. (2.9)

Simplifying equations (2.6) and (2.7) and further substituting it in equation (2.8) yields

ν = −λ, (2.10)

(re−2λ)′ = 1. (2.11)

This implies

e2ν = e−2λ =
(

1 +
α

r

)
, (2.12)

where α = −2Gm
c2

. Thus metric in equation (2.2) takes the form

ds2 = −
(

1− 2Gm

c2r

)
c2dt2 +

(
1− 2Gm

c2r

)−1

dr2 + r2(dθ2 + sin2θdφ2). (2.13)
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The above metric for G = c = 1 becomes

ds2 = −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2(dθ2 + sin2θdφ2), (2.14)

which is the Schwarzschild line element [12]. Event horizon of Schwarzschild black hole

is given by rs = 2Gm
c2

. There exist two singularities in the metric (2.14). At r = 0 there

is essential singularity which can not be removed and at r = 2m there is coordinate

singularity which can be removed by appropriate choice of coordinates.

2.3.2 Reissner�Nordstrom Black Hole

The analogue of above solution having charged point mass was discovered in 1916 by

Reissner [13] and in 1918 by Nordstrom [14] independently, hence the solution is known

as Reissner-Nordstrom. Therefore, adding charge into the previous assumptions the

Einstein-Maxwell �eld equation becomes

Rab = 8πTab. (2.15)

Here due to spherical symmetry and point charge placed at origin the components of

electrostatic �eld are in the radial direction i.e. E = E(r) with magnetic �eld being

zero. The Maxwell tensor Fab in this case takes the form

Fab =


0 −E(r) 0 0

E(r) 0 0 0
0 0 0 0
0 0 0 0

 . (2.16)

It should satisfy the Maxwell equations, by plugging the assumptions and using the

metric and Christo�el symbols given in equations (2.4) and (2.5), ∇bF
ab = F ab

;b = 0

reduces to

(e−2(ν+λ)r2E)′ = 0. (2.17)

For r →∞ with ν, λ→ 0 we get

E(r) =
Qe2(ν+λ)

r2
. (2.18)
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Components of Maxwell energy momentum tensor Tab become

Tab = (−E2,−E2, E2, E2). (2.19)

Similarly using the set of equations (2.6) to (2.8) along with equation (2.19) in (2.15)

and following the detailed procedure again these equations then yield

ν = −λ, (2.20)

(re−2λ)′ = 1− Q2

r2
. (2.21)

Simplifying further we get

e2ν = e−2λ =

(
1 +

constant

r
+
Q2

r2

)
, (2.22)

for Q = 0 the solution reduces to Schwarzschild which implies constant = −2m, thus,

equation (2.22) becomes

e2ν = e−2λ =

(
1− 2m

r
+
Q2

r2

)
. (2.23)

Therefore, the Reissner-Nordstrom metric is

ds2 = −
(

1− 2m

r
+
Q2

r2

)
dt2 +

(
1− 2m

r
+
Q2

r2

)−1

dr2 + r2(dθ2 + sin2θdφ2). (2.24)

Here again at r = 0 essential singularity occurs and for �nding other singularities take

1− 2m

r
+
Q2

r2
= 0, (2.25)

this implies

r± = m±
√
m2 −Q2. (2.26)

Here on surface r = r± coordinate singularity occurs, r+ is called outer horizon and r−

is called inner horizon. There exist three cases depending on the values of m and Q,

which are as follows [6]:
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1. m2 < Q2: No coordinate singularity exists this is called naked singularity and is

considered not to be physically realistic.

2. m2 > Q2: On surface r = r± two coordinate singularities exist. This case is

called as usual Ressiner-Nordstrom black hole

3. m2 = Q2: This case is called as extreme Reissner-Nordstrom black hole and is

similar to second case but with the region r− < r < r+ removed.

2.4 Permissible Conditions for Relativistic Stellar Mod-

els

As discussed earlier that exact solution require to be physically consistent with the

assumptions applied to get the solution. For a compact stellar model to be acceptable

the following physical and stability criteria needs to be ful�lled:

1. Metric potential in the interior part of star should be free from geometrical sin-

gularities.

2. The nature of energy density and radial pressure needs to be decreasing monoton-

ically and should de�nitely be positive throughout whereas tangential pressure

decreases as we move towards the boundary of the star but it may have increasing

values in the central region of stellar con�guration.

3. The tangential and radial pressure at origin surely needs to be equal and at

the boundary of object radial pressure should necessarily vanish which is not a

requisite condition to be obeyed for tangential pressure.

4. The electric �eld intensity and anisotropic factor at center are zero and should

de�nitely portray increasing nature moving towards the surface of the star.
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5. The pro�les of mass radius, compacti�cation factor, and surface redshift increase

monotonically whereas gravitational redshift decreases.

6. The density and pressure gradient (dρ
dr
, dpr
dr
, dpt
dr

) must be negative through out the

stellar interior.

7. The trace of energy tensor must be positive inside the stellar con�guration.

8. For stellar interior to be stable the energy conditions, adiabatic index, causality,

and hydrostatic equilibrium condition must be satis�ed.

2.5 Review of Some Known Solutions by Polytropic

Equation of State

Previously polytropic models were studied under Newtonian gravity, which describes

the internal pressure and distribution of �uid etc. in various conditions. It is considered

important because it can help model stars made of real materials, such as natural gas,

photon gas, decaying Fermi gas and quark matter. Special polytropic indicators are

used earlier to show correspondence to low mass white dwarfs, neutron stars, isother-

mal sphere and di�erent main sequence stars. Chandrasekhar gave a comprehensive

examination of polytropes, polytropic index η = 0, 1, 3 and 5 are considered of extraor-

dinary importance in astronomy. The main sequence stars are pretty well modeled

by using η = 3 whereas η = 0, 1 can be tackled in complete generality [15]. Earlier

studies have revealed that polytropic models have �nite radius for polytropic index η

< 5. The key features of the neutron stars are described by Oppenheimer and Volko�

using η= 3/2. The polytropic �uid sphere structure along with numerical solutions for

η = 1, 3/2, 5/2, and 3 were discussed in detail by Tooper [16]. Detailed outcomes of

polytropes in the span of 1/2 ≤ η ≤ 3 were found by Pandey et al [17]. It was discussed

by Kippenhahn [18] that the polytrope has an in�nite radius for models where η ≥
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5 and the isothermal sphere is generated when the index η → ∞ i.e. an isothermal

self-gravitating gas sphere.

Now will be discussing some known solutions presented by Takisa and Maharaj [19],

they presented an exact solutions for Einstein-Maxwell equation in the presence of

static, spherically symmetric, charged anisotropic �uid distribution using polytropic

equation of state (pr = κρ1+ 1
η ). Moreover, Thirukkanesh et al [20] analyzed solutions

to Einstein equations using polytropic equation of state (pr = kρ1+ 1
η − β) in a spheri-

cally symmetric paraboloidal spacetime with uncharged anisotropic �uid distribution.

2.5.1 Some Charged Polytropic Models

Mafa Takisa and S. D. Maharaj [19] :

The line element in standard coordinate is given by equation (2.2) and the components

of energy momentum tensor for this distribution in the presence of anisotropy and

electromagnetic �eld takes the form

Tab = diag =
(
−ρ− E2, pr − E2, pt + E2, pt + E2

)
. (2.27)

These quantities are studied in connection with the co-moving �uid velocity ua = eλ

δa0 and radial four vector va = e−ν δa1 , with ρ being the energy density, E the electric

�eld intensity and (pr, pt) are radial and tangential pressure respectively. Thus the

Einstein-Maxwell equations become

1

r2
[r(1− e−2λ)]′ = ρ+ E2, (2.28)

− 1

r2
(1− e−2λ) +

2ν ′

r
e−2λ = pr − E2, (2.29)

e−2λ

(
ν ′′ + ν ′2 +

ν ′

r
− ν ′λ′ − λ′

r′

)
= pt + E2, (2.30)

σ =
1

r2
e−λ

(
r2E

)′
. (2.31)
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Assuming the polytropic equation of state along with the transformations

pr = κρ1+ 1
η , x = Cr2, Z(x) = e−2λ(r), A2y2(x) = e2ν(r). (2.32)

The gravitational behavior observed by the set of transformed equations is given as

ρ

C
=

1− Z
x
− 2Ż − E2

C
, (2.33)

pr = κρ1+ 1
η , (2.34)

pt = pr + ∆, (2.35)

∆

C
= 4xZ

ÿ

y
+ Ż

(
1 + 2x

ẏ

y

)
+

1− Z
x
− 2E2

C
, (2.36)

ẏ

y
=

1− Z
4xZ

− E2

2CZ
+
κC1+1/η

4Z

(
1− Z
x
− 2Ż − E2

C

)1+ 1
η

, (2.37)

σ2

C
=

4Z

x

(
xĖ + E

)2

, (2.38)

where ∆ is the ansiotropic factor. A physically reasonable form of gravitational poten-

tial Z and electric �eld intensity E are chosen i.e.

Z =
1 + bx

1 + ax
, a 6= b, b 6= 0 (2.39)

E2

C
=

εx

(1 + ax)2
. (2.40)

Therefore, equations (2.34), (2.38) and (2.39) by substituting Z and E become

ρ

C
=

(a− b)(3 + ax)− εx
(1 + ax)2

, (2.41)

ẏ

y
=

a− b
4(1 + bx)

− εx

(1 + ax)(1 + bx)
+
kC1+ 1

η
(1+ax)

4(1 + bx)

(
(a− b)(3 + ax)− εx

(1 + ax)2

)1+ 1
η

,

(2.42)

σ2

C
=

2ε(1 + bx)(3 + ax)2

(1 + ax)5
. (2.43)
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Polytropic Models

Following are the models obtained by varying values of η = 1, 2, 1/2, 2/3 in this par-

ticular article by the authors.

Case I:

When η = 1, radial and tangential pressure along are given as

pr = κρ2, (2.44)

pt =
4xC(1 + bx)

1 + ax

(
κ(κ− 1)a2

(1 + ax)2
+

2κlab

(1 + ax)(1 + bx)
+

2κaḞ (x)

1 + ax
+
b2l(l − 1)

(1 + bx)2

+
2lbḞ (x)

1 + bx
+ F̈ (x) + Ḟ (x)2

)
+ 2xC

(
aκ

1 + ax
+

b

1 + bx
+ Ḟ (x)

)
+
C(a− b)ax− 4εx

(1 + ax)2
+ κC2

(
(a− b)(3 + ax)− 2εx

(1 + ax)2

)2

. (2.45)

Di�erence of these pressures reveal the expression for anisotropic factor and integrating

equation (2.42) yields the gravitational potential y in this case as

y = B(1 + ax)κ(1 + bx)lexp(F (x)). (2.46)

The variable F (x) and the constants k and l are given as

F (x) =
C2k(2(2b− a)(1 + ax) + (b− a))

2(b− a)2(1 + ax)2
− C22κε(4a(a− b) + 2ε)

8a2(a− b)(1 + ax)

− C2κε(2a(a2 − 4ε) + b(2ab− 2ε))

4a2(a− b)2(1 + ax)
,

k = C2κ(2(a− b))2

(
b2

(b− a)3
+

b

(b− a)2
+

1

4

)
− 4ε((a− b)2 + C22κaε)

a

− 8C2κaε(1 + b(4− 3b)),

l =
(a− b)

4b
+ C2κ(2(a− b))2

(
b2

(b− a)3
+

b

(b− a)2
+

1

4

)
− 2ε((a− b)2 + C2κbε)

b
− 4C2κε((a− b)(a− 3b)).

For A2B2 = D and C = 1 the line element becomes

ds2 = −D(1 + ar2)2k(1 + br2)2lexp(2F (r2))dt2 +
1 + ar2

1 + br2
dr2 + r2(dθ2 + sin2θdφ2).

(2.47)
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Now the uncharged model in this case was generated by taking ε = 0 then E becomes

zero

ds2 = −D(1 + ar2)
2κ(2(a−b))2

(
b2

(b−a)3
+ b

(b−a)2
+ 1

4

)
× (1 + br2)

2a−b
4b

+κ(2(a−b))2
(

b2

(b−a)3
+ b

(b−a)2
+ 1

4

)

× exp
(
κ(2(b− a))(1 + ax) + (b− a)

(b− a)2(1 + ax)2

)
dt2 +

1 + ar2

1 + br2
dr2 + r2(dθ2 + sin2θdφ2).

(2.48)

Case II:

When η = 2, radial and tangential pressure are given as

pr = κρ
3
2 , (2.49)

pt =
4xC(1 + bx)

1 + ax

[
d

dx

(
b((a− b)2 + 2ε)

4b(a− b)(1 + bx)
− 2aε

4a(a− b)(1 + ax)

−
(m+ w)

√
b(a(a− b)ε)

2U(
√

2a(a− b) + 2ε)

)
+
ẏ2

y2

]
+
C(b− a)

(1 + ax)2
× [1 + 2x(

b((a− b)2 + 2ε)

4b(a− b)(1 + bx)
− 2aε

4a(a− b)(1 + ax)
−

(m+ w)
√

2b(a(a− b)ε)
2U(

√
2a(a− b) + 2ε)

)]

+
(a− b)(1 + ax)− 2εx

(1 + ax)2
+ κC

3
2

(
(a− b)(3 + ax)− εx

(1 + ax)2

) 3
2

. (2.50)

Here U =
√

(3 + ax)(a− b)− εx, di�erence of these pressures reveal the expression

for anisotropic factor and integrating equation (2.42) yields the gravitational potential

y in this case as

y = B
(1 + bx)

(a−b)2+2ε
4b(a−b)

(1 + ax)
−2ε

4a(a−b)

(√
(2a(a− b) + 2ε)−

√
b((3 + ax)(a− b)− 2εx)√

(2a(a− b) + 2ε) +
√
b((3 + ax)(a− b)− 2εx)

)m+w

exp(G(x)).

(2.51)

The variable G(x) and the constants m and w are given as

G(x) =
C

3
2κ

2(1 + ax)
−
C32κε

√
(3 + ax)(a− b)− 2εx

4a(a− b)(1 + ax)
,

m =
C

3
2κ((a− b)(3b− a)− 2ε)

3
2

2
√
b (a− b)

,

w =
C

3
2κ(2a2(a− b)(3a+ 7b)− 2aε(3a+ 5b))− 2ε2(b− 3a)

4a
3
2 (a− b)

√
2a(a− b) + 2ε

.
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For A2B2 = D and C = 1 the line element becomes

ds2 = −D(1 + br2)
(a−b)2+4ε
2b(a−b) (1 + ar2)

2ε
2a(a−b) exp(2G(r2))dt2(√

(2a(a− b) + 2ε)−
√
b((3 + ar2)(a− b)− 2εr2)√

(2a(a− b) + 2ε) +
√
b((3 + ar2)(a− b)− 2εr2)

)2(m+w)

+
1 + ar2

1 + br2
dr2 + r2(dθ2 + sin2θdφ2).

(2.52)

The uncharged model in this case was generated by taking ε = 0 =⇒ E = 0

ds2 = −D(1 + br2)
(a−b)2
2b(a−b) exp

(
−κ

(1 + ar2)

)
dt2

×

(√
(2a(a− b))−

√
b(3 + ar2)(a− b)√

(2a(a− b)) +
√
b(3 + ar2)(a− b)

)κ(3b−a)
√

(a−b)(3b−a)√
b

+
κ
√
a (3a+7b)√
2a(a−b)

+
1 + ar2

1 + br2
dr2 + r2(dθ2 + sin2θdφ2).

(2.53)

Case III:

When η = 2/3, radial and tangential pressure are given as

pr = κρ
5
2 , (2.54)

pt =
4xC(1 + bx)

1 + ax

[
d

dx

(
b((a− b)2 + 2ε)

4b(a− b)(1 + bx)
− 2aε

4a(a− b)(1 + ax)

−
(p+ q)

√
2b(a(a− b)ε)

2T (
√

2a(a− b) + 2ε+
√
bT (x))

)
+
ẏ2

y2

]
+
C(b− a)

(1 + ax)2
× [1 + 2x(

b((a− b)2 + 2ε)

4b(a− b)(1 + bx)
− 2aε

4a(a− b)(1 + ax)
−

(p+ q)
√

2b(a(a− b)ε)
2T (
√

2a(a− b) + 2ε+
√
bT (x))

)]

+
(a− b)(1 + ax)− 4εx

(1 + ax)2
+ κC

5
2

(
(a− b)(3 + ax)− 2εx

(1 + ax)2

) 5
2

. (2.55)

Di�erence of these pressures reveal the expression for anisotropic factor and integrating

equation (2.42) yields the gravitational potential y in this case as

y = B
(1 + bx)

(a−b)2+2ε
4b(a−b)

(1 + ax)
−2ε

4a(a−b)

(√
(2a(a− b) + 2ε)−

√
b((3 + ax)(a− b)− 2εx)√

(2a(a− b) + 2ε) +
√
b((3 + ax)(a− b)− 2εx)

)p+q

exp(H(x)).

(2.56)
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The variable H(x) and the constants p and q are given as

H(x) = −C
5
2κ(2a(a− b) + 2ε)((a− b)(13a2 − 25ab) + 2ε(13a+ 7b))A

48a2(a− b)2(1 + ax)3

− C
5
2κ(206a3b2(a− b3) + 70a2b2(b2 − 2ε) + 2aε(8a2 − 14ε)− a3(3a6 − b3))A

32a2(a− b)3(1 + ax)

− C
5
2κ(2a(a− b) + 2ε)2A

12a2(a− b)(1 + ax)3
− C

5
2κ((a− b)(8a3(a2 − 2ε) + 8aε(2ε− 1))− 9a2b3)A

32a2(a− b)3(1 + ax)
,

p =
C

5
2κ
√
b((a− b)(3b− a) + 2ε)

5
2

32a2(a− b)3(1 + ax)
,

q = −C
5
2κ(51a2b42ε+ 60a3bε2 + 1468a5b3)

32a
5
2 (a− b)3

√
2a(a− b) + 2ε

− C
5
2κ(a4b5(353ab− 1354))

32a
5
2 (a− b)4

√
2a(a− b) + 2ε

+
C

5
2κ[(a+ b)(498a42bε+ 15a6s+ 10abε3 − 5a8 − 30a4ε2) + a5b(16b3 − 85a3)]

32a
5
2 (a− b)4

√
2a(a− b) + 2ε

+
C

5
2κ[−b(42b+ 75a4)− 2ε2(2a+ 5b) + 6b2(a3 − 3b3)]

16a
1
2 (a− b)4

√
2a(a− b) + 2ε

+
C

5
2κ[2ε3(a3 + b3) + 2abε2(9b3 + 15a3) + 535b4(a5 + b5)]

32a
5
2 (a− b)4

√
2a(a− b) + 2ε

.

Here A =
√

(3 + ax)(a− b)− εx, for A2B2 = D and C = 1 the line element becomes

ds2 = −D(1 + br2)
(a−b)2+4ε
2b(a−b) (1 + ar2)

2ε
2a(a−b) exp(2H(r2))dt2

×

(√
(2a(a− b) + 2ε)−

√
b((3 + ar2)(a− b)− 2εr2)√

(2a(a− b) + 2ε) +
√
b((3 + ar2)(a− b)− 2εr2)

)2(p+q)

+
1 + ar2

1 + br2
dr2 + r2(dθ2 + sin2θdφ2).

(2.57)

The uncharged model in this case was generated by taking ε = 0 then E becomes zero

ds2 = −D(1 + br2)
(a−b)2
2b(a−b)

(√
(2a(a− b))−

√
b(3 + ar2)(a− b)√

(2a(a− b)) +
√
b(3 + ar2)(a− b)

)2(p+q)

× exp(2H(r2))dt2 +
1 + ar2

1 + br2
dr2 + r2(dθ2 + sin2θdφ2).

(2.58)
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Case IV:

When η = 1/2, radial and tangential pressure are given as

pr = κρ3, (2.59)

pt =
4xC(1 + bx)

1 + ax

(
s(s− 1)a2

(1 + ax)2
+

2suab

(1 + ax)(1 + bx)
+

2saİ(x)

1 + ax
+
b2u(u− 1)

(1 + bx)2

+
2ubİ(x)

1 + bx
+ Ï(x) + İ(x)2

)
+ 2xC

(
as

1 + ax
+

b

1 + bx
+ İ(x)

)
+
C(a− b)ax− 4εx

(1 + ax)2
+ κC2

(
(a− b)(3 + ax)− 2εx

(1 + ax)2

)3

, (2.60)

Di�erence of these pressures reveal the expression for anisotropic factor and integrating

equation (2.42) yields the gravitational potential y in this case as

y = B(1 + ax)s(1 + bx)uexp(I(x)). (2.61)
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The variable I(x) and the constants s and u are given as

I(x) = −C
2κ(2a(a− b) + 2ε)3

16a3(a− b)(1 + ax)4
− C3κ(2a(a− b) + 2ε)2[(a− b)(a(3a− 5b)− 4ε)− 2aε]

12a3(a− b)2(1 + ax)3

− C3κ((a− b)(a− 3b)− 2ε)3

4(a− b)4(1 + ax)
− C3κ[6a4(a3 + 12bε)4a4b2(29a+ 10b) + 6aε2]

8a3(a− b)3(1 + ax)2

− C3κa2(6ε(3a− b2) + 14b)

8a3(a− b)3(1 + ax)2
− C32κbε[bη2 + 3a(2ε(b2 + 3a2) + ab(b2 − a2))]

8a3(a− b)3(1 + ax)2

− C3κ[36a4b3(a3 − b3) + 12a2b2(2ε(ab− 1)− a2b2)]

8a3(a− b)3(1 + ax)2
,

s = −2ε[(a2 − b2)2 − 4b(a2(a− b) + b2)]

4a(a− b)5
+
C3κ[a2b2(a2 + b2)(136b2 + 11a2)]

4a(a− b)5

− C3κa2b[a2 + 17ab2 − 44bε]

4(a− b)4
− C3κ[9ab5(3a2 − 19b2) + 6b2ε2(4a2 + 3b)]

4(a− b)5

+
C3κ[6ab4ε(4a+ 9b) + 2abε(a3b+ 2ε2)]

4(a− b)5
− C3κ[6a3bε(a2 + 1) + 40a3b3(a2 − 2ε)]

4(a− b)5
,

u =
(a2 + b2)(8abε+ 15a2b2)− 2ε(a4 + b4)

4b(a− b)5
+

(a3 − b3)− 6ab(a4 + b4 + ab(3 + 2ε))

4b(a− b)5

+
C3κ[2a3b3(a2 − b2) + 2b2ε(6ab− 2ε2)]

4b(a− b)4
+
C3κ[27b3(1 + b3) + a3b2(a3 − 4b3)]

4b(a− b)4

+
C3κ[ab4(57a2 + 108b2)− 6b2ε2(1 + 3b)− 3ab3(21ab2 + 44bε)]

4b(a− b)4
.

For A2B2 = D and C = 1 the line element becomes

ds2 = −D(1 + ar2)2s(1 + br2)2uexp(2I(r2))dt2 +
1 + ar2

1 + br2
dr2 + r2(dθ2 + sin2θdφ2).

(2.62)

The uncharged model in this case was generated by taking ε = 0 =⇒ E = 0

ds2 = −D(1 + ar2)2s(1 + br2)2uexp(2I(r2))dt2 +
1 + ar2

1 + br2
dr2 + r2(dθ2 + sin2θdφ2).

(2.63)

Discussion

In [19] authors, have found out some new classes of solution for di�erent polytropic

indices. From Case I, for ε = 0, the models of Feroze and Siddiqui [21] and Maharaj
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and Mafa Takisa [22] are regained. Rest of all are acceptable new solutions that

can be utilized in modeling charged anisotropic compact objects. The gravitational

potential are regular and continuous in stellar interior with choice of electric �eld E

being physically acceptable. Density and radial pressure are monotonically decreasing

and also pr vanishes at boundary. The tangential pressure at center has increasing

values due to conservation of momentum in quasi equilibrium contraction as pointed

by Karmarkar et al [23], pressure anisotropy is �nite at center and increases while

moving towards the boundary. Lastly for stability of models the causality condition

i.e. the speed of sound dpr
dρ

is less than one. So in all the above models di�erent solutions

have been found for charged anisotropic �uid distribution satisfying the acceptability

conditions of compact objects which can also be further reduced to the uncharged

models.

2.5.2 Review of Model of a Static Spherically Symmetric An-

isotropic Fluid Distribution in Paraboloidal Spacetime

Admitting a Polytropic Equation of State

S. Thirukkanesh, Ranjan Sharma and Shyam Das [20]

If parabolidal spacetime is embedded in a spherically symmetric static metric given by

equation (2.2). Initiating with the Cartesian equation of a Euclidean space character-

izing as being four dimensional with an immersed three paraboloid is given as

x2 + y2 + z2 = 2wL, (2.64)

here L is a constant, where as a three-paraboloid is speci�ed by the constants x, y,

z and the constant w represents the sections of sphere. The 3-paraboloid immersed

in four-dimensional space is parameterized by utilizing the following parameterizations

earlier stated by Thomas and Pandya [24]

x = rsinθcosφ, y = rsinθsinφ, z = rcosθ, w =
r2

2L
. (2.65)
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Thus by equation (2.65) the Euclidean metric

ds2 = dx2 + dy2 + dz2 + dw2, (2.66)

takes the form

ds2 =

(
1 +

r2

L2

)
dr2 + r2(dθ2 + sin2θdφ2). (2.67)

Here comparing equation (2.67) with equation (2.2) yields

e2λ = 1 +
r2

L2
, (2.68)

Thus, the interior stellar structure in a spherically symmetric, parabolidal spacetime

is given by metric

ds2 = −e2νdt2 +

(
1 +

r2

L2

)
dr2 + r2(dθ2 + sin2θdφ2). (2.69)

For anisotropic �uid distribution the components of energy momentum tensor Tab are

Tab = diag(−ρ, pr, pt, pt). (2.70)

So the �eld equations along with mass are given as

1

r2

(
r
(
1− e−2λ

))′
= ρ, (2.71)

e−2λ2

r
ν ′ − 1

r2
(
(
1− e−2λ

)
= pr (2.72)

e−2λ

(
ν ′′ + ν ′2 − ν ′λ′ + 1

r
(ν ′ − λ′)

)
= pt, (2.73)

1

2

∫ r

0

w2 (ρ(w)) dw = m(r). (2.74)

here `′' shows derivative with respect to r. Assuming the polytropic equation of state

along with the transformations

pr = kρ1+1/η − β, (2.75)

x =
r2

L2
,

y2(x) = e2ν(r), (2.76)

z(x) = e−2λ(r),
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here k and β are constants. Thus, by these substitutions the system of equations are

given as

ρ =
1

L2

(
1− z
x
− 2ż

)
, (2.77)

pr = kρ1+ 1
η − β, (2.78)

∆ =
1

L2

(
4xz

ÿ

y
+ ż

(
1 + 2x

ẏ

y

)
+

1− z
x

)
, (2.79)

ẏ

y
=

k

4L2/ηz

(
1− z
x
− 2ż

)1+ 1
η

+
1− z
4xz

− −βL
2

4z
, (2.80)

m(x) =
L3

4

∫ x

0

√
w (ρ(w)) dw, (2.81)

where `·' represents derivative with respect to x. Rewriting the gravitational potential

z by utilizing the transformation given by (2.76) in equation (2.68)

z =
1

1 + x
. (2.82)

Polytropic Models

This paper proposes following models for di�erent variations of η i.e. η = 1, 2.

Case: I

When η = 1, then equation (2.80) implies

ẏ

y
=

k

4L2

(3 + x)2

(1 + x)3
− βL2(1 + x)

4
+

1

4
, (2.83)

integrating above equation yields the gravitational potential y as

y = d1(1 + x)
k

4L2 × exp
[

1

8

(
x(2− βL2(2 + x))− 4k(3 + 2x)

L2(1 + x)2

)]
. (2.84)

The system becomes

e2λ = 1 + x, (2.85)

e2ν = d2
1(1 + x)

k
2L2 × exp

[
1

4

(
x(2− βL2(2 + x))− 4k(3 + 2x)

L2(1 + x)2

)]
, (2.86)
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ρ =
3 + x

L2(1 + x)2
, (2.87)

pr = kρ2 − β, (2.88)

pt = pr + ∆, (2.89)

∆ =
f1(x)

4L6(1 + x)7
, (2.90)

f1(x) = x[(3 + x)(L4(1 + x)5 + k2(3 + x)3 + 2kL2(1 + x)2(−14 + x+ x2))]

− 2L2(1 + x)4(L2(1 + x)2(2 + x) + k(3 + x)2 + β + L8(1 + x)8β2). (2.91)

Case: II

When η = 2, then equation (2.80) implies

ẏ

y
=

k

4L

(3 + x)
3
2

(1 + x)2
− βL2(1 + x)

4
+

1

4
, (2.92)

integrating above equation yields the gravitational potential y as

y = d2

(√
3 + x−

√
2

√
3 + x+

√
2

) 3k

4
√
2L

× exp
[
x

8

(
x(2− βL2(2 + x))− 4k(3 + 2x)

L2(1 + x)2

)]
. (2.93)

The system becomes

e2λ = 1 + x, (2.94)

e2ν = d2
2

(√
3 + x−

√
2

√
3 + x+

√
2

) 3k

2
√

2L

× exp
[
x

4

(
x(2− βL2(2 + x))− 4k(3 + 2x)

L2(1 + x)2

)]
,

(2.95)

ρ =
3 + x

L2(1 + x)2
, (2.96)

pr = kρ
3
2 − β, (2.97)

pt = pr + ∆, (2.98)

∆ =
f2(x)

4L4(1 + x)5
√

3 + x
, (2.99)

f2(x) = x
[
k2(3 + x)

7
2 + 2kL(−27− 30x+ 2x2 + 6x3 + x4 − L2(1 + x)3(3 + x)2β)

+L2(1 + x)3
√

3 + x× (3 + x− 2L2(1 + x)(2 + x)β + L4(1 + x)3β2)
]
. (2.100)
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Discussion

At boundary r = R authors have matched their solution to the Schwarzschild exterior

spacetime i.e.

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2θdφ2), (2.101)

from which the total mass M and model parameter L are found as follows

M = m(R) =
R3

2(L2 +R2)
,

L =

√
R3

2M

(
1− 2M

R

)
.

(2.102)

Further the boundary conditions imply the expression for constant of integration and

β in both cases as follow

d2
1 =

(
1 +

R2

L2

)−(1+ k
2L2 )
× exp

[
4k(3L2 + 2R2)

(L2 +R2)2
− R2

4L2
(2− β(2L2 +R2))

]
, (2.103)

d2
2 =

(
L2

L2 +R2

)(√
3L2 +R2 −

√
2L√

3L2 +R2 +
√

2L

)− 3k
2
√
2L

× exp

[
− R2

4L2

(
4k
√

3L2 + 2R2

(L2 +R2)2
+ 2− β(2L2 +R2)

)]
, (2.104)

βI =
4kM2(4M − 3R2)

R8
, (2.105)

βII =
√

8k

(
M(3R− 4M)

R4

) 3
2

. (2.106)

Utilizing the mass M = 1.58M� and radius R = 9.1km of the pulsar 4U1820 − 30 in

the above expressions, the conditions of acceptability are checked. The gravitational

potentials are regular whereas density and pressures at center (r = 0) yields ρ(0) = 3
L2

and pr(0) = pt(0) = 9k
4
−β. This implies that (ρ, pr, pt) are positive and monotonically

decreasing throughout the stellar interior, and pressure anisotropy being 0 at origin.
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In these models from ∆ one �gures out that for a certain region in stellar interior the

radial pressure is greater than the tangential pressure implying that core pr > pt that

is more unstable as compared to the crust region where pt > pr. Moving further, the

gradients of density and pressure are negative given as follows

dρ

dr
= −2r(5L2 + r2)

(L2 + r2)3
, (2.107)

dpr
dr

= −4kr(3L2 + r2)(5L2 + r2)

(L2 + r2)5
, (2.108)

dpt
dr

=
1

2L2(L2 + r2)8

[
r(k2(3L2 + r2)3)(3L4 − 13L2 + r2 − 2r4)

−2k(L2 + r2)2(102L8 − 54L6r2 − 9L4r4 + 8L2r6 + r8

+3L2(L− r)(L+ r)(L2 + r2)2(3L2 + r2)β)

+(L2 + r2)(3L4 − L2 + r2 − 2(L2 + r2)(2L4 + 2L2r2 + r4)β

+(L2 + r2)3(L2 + 2r2)β2)
]
. (2.109)

From these the causality condition i.e radial and tangential speed of sound is less than

speed of light in these models (0 < v2
r = dpr

dρ
, v2
t = dpt

dρ
< 1), also the two models are

satisfying the null, weak and strong energy conditions. Thus two acceptable models

for the uncharged anisotropic �uid distribution in parabolidal spacetime are found.
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Chapter 3

Charged Ansisotropic Models with

Generalized Polytropic Equation of

State

3.1 The Einstein-Maxwell Field Equations

In this chapter, the extension of work earlier presented by Thirukkanesh et al [20]

is contemplated by generalizing the polytropic equation of state in the presence of

electromagnetic �eld and anisotropy, on background of paraboloidal geometry. The

modi�ed form of �eld equations (2.28)-(2.31) is attained by considering the transfor-

mations given by equation (2.76) in which x is the new independent coordinate and y,

z are new metric functions.

1− z
x
− 2ż = L2(ρ+ E2), (3.1)

4z
ẏ

y
− 1− z

x
= L2(pr − E2), (3.2)

4xz
ÿ

y
+ (4z + 2xż)

ẏ

y
+ ż = L2(pt + E2), (3.3)

σ2 =
4z

xL2
(xĖ + E)2, (3.4)
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where `·' represents derivative with respect to x. The mass function on the interior

region of sphere having radius r is given as

M(r) =
1

2

∫ r

0

r̃2
(
ρ(r̃) + E2

)
dr̃. (3.5)

utilizing the transformation (2.76) mass becomes

M(x) =
L3

4

∫ x

0

√
x̃
(
ρ(x̃) + E2

)
dx̃. (3.6)

3.2 Exact Solutions with Generalized Polytropic Equa-

tion of State

Considering a common class of barotropic model (i.e. polytropic model) where density

is a function of pressure, the generalized polytropic equation of state is written as

pr = αρΓ + βρ− γ, (3.7)

for the arbitrary constants α, β, γ. Using the generalized polytropic equation of state

and energy density given by equations (3.7) and (3.1) in equation (3.2), we get the

expression

α

(
1− z
xL2

− 2ż

L2
− E2

)Γ

+ (1 + β)

(
1− z
xL2

− E2

)
− 2βż

L2
− 4z

L2

ẏ

y
− γ = 0. (3.8)

Equation (3.8) implies

ẏ

y
=
αL2

4z

(
1− z
xL2

− 2ż

L2
− E2

)Γ

+
(1 + β)L2

4z

(
1− z
xL2

− E2

)
− βż

2z
− γL2

4z
. (3.9)

For the sake of exact solution, taking the ansatz E

E2 =
2ξax

(1 + x)
, (3.10)
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where ξ and a are arbitrary real constants. Substituting the values of z given by

equation (2.82) and E in (3.9), we get

ẏ

y
=

(1 + β)(x+ 1)(1− 2ξaxL2) + 2β − γL2(x+ 1)2

4(x+ 1)

+
αL2(1 + x)

4

(
3 + x− 2ξaxL2(x+ 1)

L2(x+ 1)2

)Γ

.

(3.11)

The expressions of energy density, charge density given by equations (3.1) and (3.4)

take the form

ρ =
3 + x− 2ξaxL2(1 + x)

L2(1 + x)2
, (3.12)

σ2 =
2aξ(3x+ 2)2

L2(1 + x)4
. (3.13)

3.2.1 Polytropic Models

In this section exact solutions to �eld equations using polytropic indices η = 1/2, 1, 2

in the presence of anisotropy and electromagnetic �eld are presented

Model I: η = 1/2

For η = 1/2, equation (3.7) becomes

pr = αρ3 + βρ− γ. (3.14)

For the present model using z and E, the tangential pressure takes the form

pt =

(
3αx+ 2α

2(x+ 1)

)
×
(

3 + x− 2ξaxL2(x+ 1)

L2(x+ 1)2

)3

− (3αx)(5 + x+ 2ξaL2(x+ 1))

L2(x+ 1)3
×(

3 + x− 2ξaxL2(x+ 1)

L2(x+ 1)2

)2

+
xL2(x+ 1)2(−2aξ(1 + β)− γ)− 2βx

L2(x+ 1)3

+
4x

L2(x+ 1)
×

(
αL2(x+ 1)

4

(
3 + x− 2ξaxL2(x+ 1)

L2(x+ 1)2

)3

+
(1 + β)(1− 2ξaxL2)

4
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+
2β − γL2(x+ 1)2

4(x+ 1)

)2

+
(x2 + 3x+ 2)[(1 + β)(1− 2ξaxL2)− γL2(x+ 1)]

2L2(x+ 1)3

+
2β(x+ 2)− 2(x+ 1)[1 + 2ξaxL2(x+ 1)]

2L2(x+ 1)3
.

(3.15)

On integrating equation (3.11) by substituting η = 1/2, we get the gravitational po-

tential y as

y = C1(1 + x)m × exp [U(x)] , (3.16)

here constant of integration is C1 whereas m and U(x) are de�ned as

m =
−βα(24a3L6ξ3 + 6aL2ξ)

8L4
,

U(x) =
αx(24aL6ξ3 + 12a2L2ξ2)

4L4
+
α(−24a2L4ξ2 − 6)

8L4(x+ 1)2
− αa3L2ξ3(x+ 1)2

+
α(−8a3L6ξ3 + 36a2L4ξ2 + 18aL2ξ − 1)

4L4(x+ 1)
+
α(−24aL2ξ − 12)

12L4(x+ 1)3

− α

2L4(x+ 1)4
+

(1 + β)x

4
− ξaL2(1 + β)x2

4
− γL2(2x+ x2)

8
.

By means of gravitational potential y and e2λ given by equations (3.16) and (2.68) the

line element becomes

ds2 = −C2
1

(
1 +

r2

L2

)2m

× exp
[
2U

(
r2

L2

)]
dt2 +

(
1 +

r2

L2

)
dr2 + r2(dθ2 + sin2θdφ2).

(3.17)

Model II: η = 1

For η = 1, equation (3.7) becomes

pr = αρ2 + βρ− γ. (3.18)

For the present model using z and E, the tangential pressure takes the form

pt =

(
3αx+ 2α

2(x+ 1)

)
×
(

3 + x− 2ξaxL2(x+ 1)

L2(x+ 1)2

)2

− (2αx)(5 + x+ 2ξaL2(x+ 1))

L2(x+ 1)3
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×
(

3 + x− 2ξaxL2(x+ 1)

L2(x+ 1)2

)
+
xL2(x+ 1)2(−2aξ(1 + β)− γ)− 2βx

L2(x+ 1)3

+
4x

L2(x+ 1)
×

(
αL2(x+ 1)

4

(
3 + x− 2ξaxL2(x+ 1)

L2(x+ 1)2

)2

+
(1 + β)(1− 2ξaxL2)

4

+
2β − γL2(x+ 1)2

4(x+ 1)

)2

+
(x2 + 3x+ 2)[(1 + β)(1− 2ξaxL2)− γL2(x+ 1)]

2L2(x+ 1)3

+
2β(2 + x)− 2(x+ 1)[1 + 2ξaxL2(x+ 1)]

2L2(x+ 1)3
.

(3.19)

On integrating equation (3.11) by substituting η = 1, we get the gravitational potential

y as

y = C2(1 + x)n × exp [V (x)] , (3.20)

here constant of integration is C2 whereas n and V (x) are de�ned as

n =
βα(2aL2ξ − 1)2

8L2
,

V (x) =
2xα(aL2ξ(x(x(aL2ξx− 2)− 2aL2ξ − 4)− 6)− 2)

4L2(1 + x)2
+

(1 + β)x

4

+
2aαL2ξ(aL2ξ − 4)− 6α

4L2(1 + x)2
− ξaL2(1 + β)x2

4
− γL2(2x+ x2)

8
.

By means of gravitational potential y and e2λ given by equations (3.20) and (2.68) the

line element becomes

ds2 = −C2
2

(
1 +

r2

L2

)2n

× exp
[
2V

(
r2

L2

)]
dt2 +

(
1 +

r2

L2

)
dr2 + r2(dθ2 + sin2θdφ2).

(3.21)

Model III: η = 2

For η = 2, equation (3.7) becomes

pr = αρ( 3
2) + βρ− γ. (3.22)
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For the present model using z and E, the tangential pressure takes the form

pt =

(
3αx+ 2α

2(x+ 1)

)
×
(

3 + x− 2ξaxL2(x+ 1)

L2(x+ 1)2

) 3
2

− (3αx)(5 + x+ 2ξaL2(x+ 1))

2L2(x+ 1)3

×
(

3 + x− 2ξaxL2(x+ 1)

L2(x+ 1)2

) 1
2

+
xL2(x+ 1)2(−2aξ(1 + β)− γ)− 2βx

L2(x+ 1)3

+
4x

L2(x+ 1)
×

(
αL2(x+ 1)

4

(
3 + x− 2ξaxL2(x+ 1)

L2(x+ 1)2

) 3
2

+
(1 + β)(1− 2ξaxL2)

4

+
2β − γL2(x+ 1)2

4(x+ 1)

)2

+
(x2 + 3x+ 2)[(1 + β)(1− 2ξaxL2)− γL2(x+ 1)]

2L2(x+ 1)3

+
2β(x+ 2)− 2(x+ 1)[1 + 2ξaxL2(x+ 1)]

2L2(x+ 1)3
.

(3.23)

On integrating equation (3.11) by substituting η = 2, we get the gravitational potential

y as

y = C3(1 + x)
β
2 × exp [W (x)] , (3.24)

here constant of integration is C3 and W (x) is de�ned as

W (x) =
−3αIarcsin

(
J√
I

)
− 3αJ

√
I − J2I

2
11
2
√
aL2ξ

−
−3αK2arcsin

(
J√
I

)
2

9
2

√
aξL2

− ξaL2(1 + β)x2

4

− 3α(−K)
√
I

2
7
2

√
aξL2

 I

(
1−
√

1−J2
I

)2

J2 + 1

 −
3(−K)α

√
2aξarctan

 K
√
I

(
1−
√

1−J2
I

)
J

+I√
K2−I


√
K2 − I

− α(−2aL2ξx(1 + x) + x+ 3)
3
2

4L(1 + x)
+

(1 + β)x

4
− γL2(2x+ x2)

8
,
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where I, J and K are given as

I = 4aL4ξ + 20aL2ξ + 1,

J = 4aL2ξx+ 2aL2ξ − 1,

K = 2aL2ξ + 1.

By means of gravitational potential y and e2λ given by equations (3.24) and (2.68) the

line element becomes

ds2 = −C2
3

(
1 +

r2

L2

)β
× exp

[
2W

(
r2

L2

)]
dt2 +

(
1 +

r2

L2

)
dr2 + r2(dθ2 + sin2θdφ2).

(3.25)

3.3 Analysis

Now examining certain conditions in order to check whether the new models are ac-

ceptable or not.

3.3.1 Boundary Conditions

The exterior stellar structure of spherically symmetric, charged anisotropic spacetime

is described by the Reissner-Nordstrom metric

ds2 = −
(

1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1

dr2 + r2(dθ2 + sin2θdφ2). (3.26)

On matching the interior spacetime metric (2.2) at boundary r = R with exterior

spacetime metric given by (3.26), we get

e2ν = e−2λ =

(
1− 2M

R
+
Q2

R2

)
, (3.27)

where the total mass is given by M and charge by Q. The total mass at boundary in

our case by using equation (3.27) becomes

M =
R3 + 2ξaR5

2(L2 +R2)
. (3.28)
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Thus by (3.28), the constant L takes the form

L =

[
R3

2M

(
(1− 2aξR2)− 2M

R

)]1/2

. (3.29)

By the boundary condition (3.27), we get the value of constant of integration for all

models as

C2
1 =

(
L2

L2 +R2

)(1−2m)

× exp

(
−2U

(
R2

L2

))
, (3.30)

C2
2 =

(
L2

L2 +R2

)(1+2n)

× exp

(
−2V

(
R2

L2

))
, (3.31)

C2
3 =

(
L2

L2 +R2

)(1+β)

× exp

(
−2W

(
R2

L2

))
. (3.32)

At boundary of star the radial pressure must vanish i.e. pr(r = R) = 0, this �xes

another constant to �nd the solutions

β =

(
γ(L2 +R2)2

L2(3− 2ξaR2) +R2(1− 2ξaR2)

)
− α

(
L2(3− 2ξaR2) +R2(1− 2ξaR2)

(L2 +R2)2

)Γ−1

.

(3.33)

Constants Assumed for Analyzing the Physical and Stability Conditions

In Section 2.4, the acceptability criteria is mentioned in order to check that the pro�les

of all conditions are plotted for the constants ξ = 1, a = 0.0029, L = 4.95, α = 0.232

and γ = 0.001422 for radius r from 0 to 3.5. The value of β and constant of integration

for all three models are computed from equations (3.30)-(3.33) respectively.

Models I : η = 1/2 II : η = 1 III : η = 2

C 0.725982118494 0.777671082366 0.621610450317

β 0.0222219256901 0.00882005986932 −0.0344592129661

Table 3.1: Constants β and C
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3.3.2 Physical Conditions

Metric potential

The most basic and important condition is to check for the regularity of metric po-

tentials i.e (e2λ & e2ν > 0). At the center (r = 0) of star the metric potential e2λ is

1 and e2ν for all three models is equivalent to some positive constant which implies

(e2λ)′ = (e2ν)′ = 0 . Figure 3.1 exhibits the singularity free nature of model param-

eters as they satisfy the above mentioned criteria and are increasing monotonically

throughout the stellar interior.

(a) e2λ (b) e2ν

Figure 3.1: Graph of metric potentials with respect to r

Electric Field Intensity

The behavior of electric �eld intensity is represented in Figure 3.2, where at origin it

is zero and increases while moving towards the boundary of star.
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Figure 3.2: Graph of electric �eld intensity
(E2) with respect to r

Figure 3.3: Graph of energy density (ρ)
with respect to r

Energy Density

The expression of density at the center is obtained as

ρc =
3

L2
> 0. (3.34)

Thus this implies that energy density is free from central singularity and the pro�le is

shown in Figure 3.3, which depicts its decreasing nature.

Radial and Tangential Pressure

The expression of radial and tangential pressure at the center are obtained as

pr(r = 0) = pt(r = 0) = α

(
3

L2

)Γ

+ β

(
3

L2

)
− γ > 0. (3.35)

Thus equation (3.35) implies that the pressures are equal at center and free from the

central singularity. The pro�le in Figure 3.4 show the decreasing behavior of radial

pressure. As for tangential pressure, it is decreasing eventually as we move towards
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the boundary but in Model I for η = 1/2 we have increasing nature in central regions

which is acceptable as identi�ed by Karmakar et al [24] because the quasi-equilibrium

contraction conserves angular momentum of a compact body. Such increasing nature

of tangential pressure earlier showed up in Mafa Takisa and Maharaj [20] charged

models presented using the polytropic equation of state (pr = kρΓ) on static spherically

symmetric spacetime.

(a) η = 1/2 (b) η = 1 (c) η = 2

Figure 3.4: Graph of pressure with respect to r

To substantiate the regularity of any physical solution the Zeldovich's [25] criteria

must be satis�ed that is the pressure density ratios at the center must be less than 1

continuous and positive throughout the stellar interior
(
pr
ρ
, pt
ρ

)
|r=0 ≤ 1. Therefore,

α

(
3

L2

)Γ−1

− γL2

3
+ β ≤ 1. (3.36)

The constants assumed to �nd out the solutions satisfy the condition i.e. values at

the center are obtained for all models to be 0.0141, 0.0256, and 0.0351 respectively, as

shown in Figure 3.5. Equations (3.35) and (3.36) imply

L(2/n)(L2γ − 3β)

3Γ
< α ≤ L(2/n)(3− 3β + L2γ)

3Γ
. (3.37)

Now by equation (3.37) physical constraint emerges for α, in all three cases our choice

of α lies within the range.
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(a) η = 1/2 (b) η = 1 (c) η = 2

Figure 3.5: Graph of pressure-density ratios with respect to r

Trace of Energy Tensor

The trace of energy tensor for our proposed models of compact stars is plotted against

r in Figure 3.7, which is positive in all cases and satis�es Bondi's [26] condition for the

anisotropic �uid sphere that is ρ− pr − 2pt > 0.

Figure 3.6: Graph of anisotropy (∆) with
respect to r

Figure 3.7: Graph of the trace of energy
tensor with respect to r
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Anisotropic Factor

Anisotropy is de�ned as the di�erence between tangential and radial pressure i.e. (∆=

pt − pr), the spherical symmetry pr(0) = pt(0) implies ∆r=0 is zero. For the compact

object it is necessary that ∆ > 0 in the interior structure meaning that the ansiotropic

force is repulsive in nature, it is possible in the case when (pt > pr) . Otherwise, if

radial pressure dominates the tangential one i.e. (pr > pt) then this implies presence of

a new force which is attractive in nature. The pro�le of ∆ for all three cases satisfying

the required condition is expressed in Figure 3.6.

Gradients

The generalized expressions for density gradient and pressure gradients in radial and

transverse direction for our models are stated below

dρ

dr
=
−4ξarL2(L2 + r2)− 2r(5L2 + r2)

(L2 + r2)3
, (3.38)

dpr
dr

=

(
αΓ

(
3L2 + r2 − 2ξar2(L2 + r2)

(L2 + r2)2

)Γ−1

+ β

)
× −4ξarL2(L2 + r2)− 2r(5L2 + r2)

(L2 + r2)3
.

(3.39)

dpt
dr

=

(
3L2 + r2 − 2ξar2(L2 + r2)

(L2 + r2)2

)Γ(
αr(1 + β)(L2 + r2)2(1− 4ξar2)

L2(L2 + r2)2
− γ(2L2 + r2)

2L2

+
βr2 + 5αL2

(L2 + r2)2
−
(

3L2 + r2 − 2ξar2(L2 + r2)

(L2 + r2)2

)−1

× 2rαΓ((2ξaL2(L4 − r4)− r4))

(L2 + r2)4

+
2rαΓ(5L4 − 8r2L2)

(L2 + r2)4

)
+

(
3L2 + r2 − 2ξar2(L2 + r2)

(L2 + r2)2

)Γ−1(−4ξar(L4 + r2L2)

(L2 + r2)3

+
2r(−5L2 − r2)− 4ξar5

(L2 + r2)3

)
×
(
αΓ(4rL4(L2 + βL2 + r2)− 2r2γ(L2 + r2)3)

4L2(L2 + r2)2

+
αΓ(2L4 + 2r2L2 + r4)(1 + β)(1− 2ξar2)

2L2(L2 + r2)

)
−
(

3L2 + r2 − 2ξar2(L2 + r2)

(L2 + r2)2

)−1

×(
(Γ− 1)ar2Γ(5L2 + r2 + 2ξaL2(r2 + L2))

(L2 + r2)3

)
− 4aξr(2 + β) + 3γ

L2 + r2
− 6r3βL2

(L2 + r2)4
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+
r(1 + β) ((L2 + r2)(1− 4ξa(L2 + r2))− (2L2 + r2)(1− 2ξar2))

(L2 + r2)

+
r(4ξar2(2 + β) + γ(2r2 − L2))

(L2 + r2)2
+
r(6βL2 − γ(2L4 + 3r2L2 + r4)− 2L2)

(L2 + r2)3

+

(
α2r(L2 + 2r2)

2L2
+

Γα2r(L2 + r2)

L4
×
(

3L2 + r2 − 2ξar2(L2 + r2)

(L2 + r2)2

)−1
)
×(

3L2 + r2 − 2ξar2(L2 + r2)

(L2 + r2)2

)2Γ

+

(
2r

L2
+

6βr

L2
+

2r3(1 + β)(1− 2ξaL2)

L4

−4ξar(r2L2 + r4)

L4
− 2rγ(L4 + 2r2L2 + r4)

L6

)
×
(
L4(L2 − 2r2)

4(L2 + r2)4
× [1 + 3β

+
r2(1 + β)(1− 2ξaL2)

L2
− 2ξa(r2L2 + r4)

L2
− γ(L4 + 2r2L2 + r4)

L2

]
+

L2r2

2(L2 + r2)3

×
[
(1 + β)(1− 2ξaL2)− 2ξa(L2 + 2r2)− 2γ(L2 + r2)

])
.

(3.40)

Clearly from the equations decreasing nature of gradients is observed, which is displayed

for all models in Figure 3.8.

(a) dρ
dr (b) dpr

dr (c) dpt
dr

Figure 3.8: Graph of density and pressure gradients with respect to r

Mass-Radius Relation

We have earlier obtained the expression of mass function given in equation (3.28).

Buchdal [27] introduced the concept that mass radius ratio inside a compact star must
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be less than 4/9 i.e. (M/R < 4/9). This is true for any solution with an energy density

greater than zero, for present models the mass radius ratio is M
R

= 0.1785 < 4/9. The

pro�le of mass function is shown in Figure 3.9 which is positive and regular inside the

stellar interior and has an increasing nature with m. The compactness factor for stellar

con�guration is given as

u(r) =
M(r)

r
. (3.41)

It classi�es the compact object as follows [28]

� normal stars: M/r ∼ 10−5,

� white dwarfs: M/r ∼ 10−3,

� neutron star: 10−1 < M/r < 0.25,

� ultra-compact star: 0.25 < M/r < 0.5,

� blackhole: M/r = 0.5,

The pro�le for our case is shown in Figure 3.10 which is increasing monotonically and

is less then 4/9. The redshifts are de�ned as

zs = eλ − 1 =

(
1 +

R2

L2

)1/2

− 1, (3.42)

z = e−ν − 1. (3.43)

Here, surface redshift (zs) is less than 1 as required for physical acceptance of the

models and is plotted in Figure 3.11a where moving towards the boundary its increasing

nature is depicted. Moreover, gravitational redshift (z) as shown in Figure 3.11b has

decreasing nature in all three models as per requirement.
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Figure 3.9: Graph of mass function with
respect to r

Figure 3.10: Graph of compacti�cation
factor with respect to r

(a) zs (b) z

Figure 3.11: Graph of surface and gravitational redshifts with respect to r
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3.3.3 Stability Conditions

Casuality Condition

The speed of sound in radial and tangential direction for anisotropic �uid distribution

are obtained as

v2
r =

dpr
dρ

=

(
dpr/dr

dρ/dr

)
, (3.44)

v2
t =

dpt
dρ

=

(
dpt/dr

dρ/dr

)
, (3.45)

where in our cases the value of radial and tangential speeds of sound takes the form

dpr
dρ

= αΓ

(
L2(3− 2ξaR2) +R2(1− 2ξaR2)

(L2 +R2)2

)Γ−1

+ β, (3.46)

dpt
dρ

=

[(
3L2 + r2 − 2ξar2(L2 + r2)

(L2 + r2)2

)Γ(
αr(1 + β)(1− 4ξar2)

L2
+
βr2 + 5αL2

(L2 + r2)2
−

γ(2L2 + r2)

2L2
−
(

3L2 + r2 − 2ξar2(L2 + r2)

(L2 + r2)2

)−1

× 2rαΓ((2ξaL2(L4 − r4)− r4))

(L2 + r2)4

+
2rαΓ(5L4 − 8r2L2)

(L2 + r2)4

)
+

(
3L2 + r2 − 2ξar2(L2 + r2)

(L2 + r2)2

)Γ−1(−4ξar(L4 + r2L2)

(L2 + r2)3

+
2r(−5L2 − r2)− 4ξar5

(L2 + r2)3

)
×
(
αΓ(4rL4(L2 + βL2 + r2)− 2r2γ(L2 + r2)3)

4L2(L2 + r2)2

αΓ(2L4 + 2r2L2 + r4)(1 + β)(1− 2ξar2)

2L2(L2 + r2)

)
−
(

3L2 + r2 − 2ξar2(L2 + r2)

(L2 + r2)2

)−1

×(
(Γ− 1)ar2Γ(5L2 + r2 + 2ξaL2(r2 + L2))

(L2 + r2)3

)
− 4aξr(2 + β) + 3γ

L2 + r2
− 6r3βL2

(L2 + r2)4

+
r(1 + β) ((L2 + r2)(1− 4ξa(L2 + r2))− (2L2 + r2)(1− 2ξar2))

(L2 + r2)

+
r(4ξar2(2 + β) + γ(2r2 − L2))

(L2 + r2)2
+
r(6βL2 − γ(2L4 + 3r2L2 + r4)− 2L2)

(L2 + r2)3

+

(
α2r(L2 + 2r2)

2L2
+

Γα2r(L2 + r2)

L4
×
(

3L2 + r2 − 2ξar2(L2 + r2)

(L2 + r2)2

)−1
)
×(

3L2 + r2 − 2ξar2(L2 + r2)

(L2 + r2)2

)2Γ

+

(
2r

L2
+

6βr

L2
+

2r3(1 + β)(1− 2ξaL2)

L4
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−4ξar(r2L2 + r4)

L4
− 2rγ(L4 + 2r2L2 + r4)

L6

)
×
(
L4(L2 − 2r2)

4(L2 + r2)4
× [1 + 3β

+
r2(1 + β)(1− 2ξaL2)

L2
− 2ξa(r2L2 + r4)

L2
− γ(L4 + 2r2L2 + r4)

L2

]
+

L2r2

2(L2 + r2)3

×
[
(1 + β)(1− 2ξaL2)− 2ξa(L2 + 2r2)− 2γ(L2 + r2)

])]
×
(

(L2 + r2)3

−4ξarL2(L2 + r2)− 2r(5L2 + r2)

)
. (3.47)

For physical acceptance the speed of sound inside the interior of relativistic stellar

model must necessarily be less than the speed of light �c = 1� both in radial and

transverse direction i.e. 0 < v2
r , v

2
t < 1. The concept of �cracking� was proposed by

Herrara [29] for anisotropic distribution of matter. Later on Abrue et al [30] using the

�cracking� concept proved that the region is potentially stable where −1 < v2
t − v2

r < 0

and potentially unstable where 0 < v2
t − v2

r < 1 inside the anisotropic �uid sphere, this

implies 0 < |v2
t − v2

r | < 1. The graphical behaviors for all models are shown in Figure

3.12 from which we clearly observe that our models satisfy causality conditions and

the region inside the star is potentially stable.

(a) v2r (b) v2t (c) |v2t − v2r |

Figure 3.12: Graph of radial, tangential speed of sound and stability factor with respect
to r

59



Energy Conditions

For a system to be physically allowable, it should certainly satisfy the following energy

requirements throughout the stellar interior

1. Null Energy Condition: ρ(r) ≥ 0,

2. Weak Energy Condition: ρ(r) + pr ≥ 0 , ρ(r) + pt ≥ 0,

3. Strong Energy Condition: ρ(r) + pr + 2pt ≥ 0.

For stable con�guration Figures 3.3 & 3.13 clearly exhibits the well behaved nature of

energy conditions for all cases.

(a) η = 1/2 (b) η = 1 (c) η = 2

Figure 3.13: Graph of energy condition with respect to r

Adiabatic Index

Two speci�c heats ratio as explicated by Heintzmann and Hillebrandt [31] and Chan

et al. [32] for the stable system is

Γr =
ρ+ pr
pr

dpr
dρ

, (3.48)

Γt =
ρ+ pt
pt

dpt
dρ
.
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The model is physically relevant if the value of Γi is greater than 4/3. In Figure 3.14 the

condition for all models are exhibited in which we can clearly observe that condition

for stability within the relativistic �uid sphere (Γi > 4/3) is satis�ed.

(a) Γr (b) Γt

Figure 3.14: Graph of adiabatic index with respect to r

Equilibrium State Under Various Forces

If the equation given by Tolman-Oppenheimer-Volko� [33] & [34] is satis�ed then the

stellar system is said to be in the state of equilibrium. It is also known as TOV

equation, given as

2

r
(pt − pr)−

dpr
dr
− (ρ+ pr)ν

′ + σEeλ = 0. (3.49)

Writing

Fh = −dpr
dr

,

Fg = −(ρ+ pr)ν
′,
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Fa =
2

r
(pt − pr),

Fe = σEeλ,

thus equation (3.49) takes the form

Fh + Fg + Fa + Fe = 0, (3.50)

where Fh, Fg, Fa and Fe are hydrostaic, gravitational, anisotropic and electric forces

respectively. The pro�le of four di�erent forces is shown in Figure 3.15 in which we

can clearly see that by our presented solutions, the systems are stable and in static

equilibrium since electric force is very small to create any impact. The hydrostatic and

anisotropic forces are dominated by gravitational force which is negative.

(a) η = 1/2 (b) η = 1 (c) η = 2

Figure 3.15: Graph of di�erent forces with respect to r
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Chapter 4

Conclusion

In this thesis, at �rst the foundation of relativity is talked about from where the

theory started and how it transformed over the years until it took its �nal shape

by the genius mind of Einstein. Since the formulation of the famous Einsteins �eld

equations, the work is being carried out to �nd the exact solutions. Some of the earlier

presented solutions are discussed in detail in this thesis, the most important one being

the Schwarzschild solution for point mass and the Reissner-Nordstrom for the charged

point mass presented in 1916 and 1918 respectively. In a research carried out by Delgaty

and Lake [35] only 16 solutions out of 127 passed the acceptability test and from these

16 only 9 solutions were seen satisfying the decreasing nature of the speed of sound

from center to the boundary of the star. Moreover, in this thesis analysis of some

exact solutions determined earlier using the polytropic equation of state (pr = kρΓ &

pr = kρΓ− β) are discussed precisely. These solutions ful�lled all acceptability criteria

along with the decreasing nature of the speed of sound.

In Chapter 3, some new classes of solutions to the charged anisotropic relativistic stars

on paraboloidal spacetime geometry using the generalized polytropic equation of state

are deliberated. A suitable form of electric �eld intensity E2 was introduced for this

purpose which is �nite at origin, if the constant ξ in it is 0 then the uncharged models

can be obtained. The inner geometry of the star described by metric potentials has a
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singularity-free nature which gives a well-behaved form of energy density. Moreover,

the tangential and radial pressure are free from central singularity, are positive inside

the stellar interior, and there equal nature at the center leaves pressure anisotropy to

be �nite at the origin. The notable point here is that for η = 1/2 and 1, more signi�-

cant compact models are developed since pt > pr, this is a piece of important factual

evidence as it induces positive anisotropic factor as shown in Figure 3.4. According to

Gokhroo and Mehra [36] a positive ∆ allows to form more compact objects, in these

models there exists the repulsive force which prevents the system from gravitational

re-collapse. For η = 2 we have radial pressure dominating the tangential pressure

over a small range in the interior of a star which depicts there exists an attractive

force. Nevertheless, for each model all the physical and stability conditions are veri-

�ed including compacti�cation factor which is less than 4/9, redshift being less than 1

and adiabatic index greater than 4/3. Furthermore, the speed of sound in radial and

transverse direction is less than one and the stability factor i.e. 0 < |v2
t − v2

r | < 1 is

satis�ed implying potential stability of models. Also, energy conditions and stability

conditions using the Tolman-Oppenheimer-Volko� equation are acceptable and have

smooth variations in the stellar con�guration.
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