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Abstract

In present dissertation, two papers are discussed. Firstly, the magneto-hydrodynamics

(MHD) movement of copper (Cu) nanoparticles under the action of water with an

oscillating pressure gradient among two concentric ducts is reviewed. Nanoparticles

addition is assumed to have significantly improved thermal performance near surface

for turbulent and laminar flow. The standard governing equations are partial dif-

ferential equations and comprises effective thermal conductivity, base fluid viscosity

and thermophysical characteristics of water based Cu nanoparticles. The exact so-

lutions are obtained in the form of the modified Bessel functions of first and second

kind. Pressure difference, vorticity, temperature and velocity distribution are analyzed

graphically for several flow controlling parameters. Outcomes affirmed that velocity,

temperature and heat transfer rate can be modified with the help of external magnetic

field and nanoparticles addition. Secondly, considering the magnetic field, the flow and

heat transfer of nanofluids through a stretching cylinder is discussed. A similarity so-

lution is suggested, which transforms the constitutive equations into the set of ODEs.

Various type of nanoparticles like alumina (Al2O3), copper (Cu), silver (Ag), and tita-

nium oxide (TiO2) are considered, alongwith water (H2O) as a base fluid. Significant

fluid dynamics concepts such as heat transfer rate, skin friction coefficient, velocity

distribution, Nusselt number etc. are analyzed and plotted graphically. Furthermore,
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radiation effects on heat transfer and MHD flow of nanofluids in a porous medium is

analyzed. The solution of the system of equations is evaluated numerically by MAT-

LAB function bvp4c. The impact of flow controlling parameters like heat generation or

absorption parameter (Q), porosity parameter (K), thermal radiation (Nr), and vol-

ume fraction (ϕ) on temperature and velocity profiles for Cu-water nanoparticles are

investigated. The graphical and tabular results demonstrates that these parameters

provide a remarkable change in Nusselt number and skin friction coefficient.
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Chapter 1

Introduction

Flow through a cylindrical shaped objects is of great importance at industrial scale as

well as in our daily life challanges. For example, heart pumping and blood distribution

in body through blood vessels, water distribution through cylindrical pipes, gas used

for cooking purpose is also stored in cylindrical shaped cylinders. The main reason

of using cylindrical shape duct is to minimize drag force effect on surface so that

fluid can move easily. Pressure is applied in appropriate manners to control fluid

movement. This phenomenon of flow movement under pressure is termed as pulsatile

flow. Keeping the aforementioned in mind, numerous studies have been conducted for

better understanding of pulsatile flow.

Nanofluids acquire a lot of attention due to their potential developments. Nanoflu-

ids are nanoparticles (< 100 nm in size) suspension in fluid that exhibit considerable

enhancement properties even at low nanoparticle concentration. The most frequently

used nanoparticles are metals (Ag,Cu,Au), oxides (CuO,Al2O3, T iO2, etc.), carbon

nanotubes, and carbides (SiC) whereas water, ethylene glycol, and oil are considered

as base fluid. Choi [1] was the one who first came up with the idea of nanofluids and
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use of these in a wide range of industries, including energy production, electronics,

textiles, and paper manufacturing. Due to increased stability and thermal conductiv-

ity, nanofluids are extensively used as heat transfer media, even with small volume

fractions of suspended nanoparticles. Suspended fluid particles are expected to have

higher thermal conductivitiy as compare to ordinary fluids. Nanoparticle suspension

in the fluid enhance heat transfer, effective thermal conductivity, viscosity and thermal

diffusivity [2]. Heat transfer induced by fluid flow is a major research field of fluid

mechanics. Therefore, in recent years, researchers have paid attention to heat trans-

fer mechanism. Analysis of the heat transfer model is affected by many factors, such

as volume fraction, flow geometry, boundary conditions and thermal characteristics of

nanoparticles and base fluid characteristics. Buongiorno [3] introduced nanofluids heat

transfer through a considerable slip mechanism. In the presence of a magnetic field,

Akbar and Nadeem [4] studied a viscoelastic fluid model with mixed convection. Later

on, researchers discussed and analyzed fluid flow phenomenon for various nanoparticles

having different geometries [5-9].

Vardanyan [10] develops a variety of interesting analytical models to analyze the in-

fluence of magnetohydrodynamics (MHD) on flow through cylinderical ducts. Richard-

son and Tyler [11] confirmed the presence of maximum flow velocity near the nozzle.

Atabek and Chang [12] presented the fundamental concepts and numerical solutions

for the velocity profile for unsteady flow in a cylinderical duct. Sucec [13] analyzed

the reaction characteristics of mean temperature and wall temperature across laminar

fluid drift and horizontal flate plate. Due to pulsatile flow, oscillatory body acceler-

ation effect on the blood movement is described by Chaturani and Palanisamy [14].

They use finite Hankel and Laplace transform to find analytical solution of pulsatile

blood flow. As the diameter of tube grows, axial velocity causes fluid momentum to
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be transferred from the tube’s axis to the adjacent portion of the tube wall. Recently,

Shahed [15] achieved the closed form solutions using Hankel and Laplace transforms

for flow inside the porous channel with the pulsating blood flow. Furthermore, results

are obtained in the form of Bessel-Fourier series by using Hankel and Laplace trans-

form. Majdalani and Chibli [16] found the exact solution of Navier-Stokes equation,

which determines pulsatile flow through a duct. The pressure gradient influence on

velocity with phase difference is explored by Yakhot and Grinberg [17]. Under normal

circumstances, Sanyal and Biswas [18] demonstrated that blood circulation in the hu-

man body is dependent on the coronary heart pumping blood. This phenomena takes

place due to pressure gradient throughout the body.

In this thesis, review of [19] is presented which analyze the magneto-hydrodynamics

flow of water oriented copper (Cu) nanoparticles between two concentric cylinders .

Flow is induced by means of oscillatory pressure gradient. Cu nanoparticles have sigi-

ficant importance in the field of biomedicine, optics, nanofluids, and electronics. Cu

nanoparticles are used to cure diseases such as thyroid glands, eradicate tumor, repair

of tissues, reduce cholesterol, and help in the production of red blood cells. The funda-

mental governing equations are derived from basic momentum and heat equations, and

then solved analytically to obtain exact solutions in the form of Bessesl functions. The

results acquired for temperature and velocity distribution and for pressure gradient

are used to illustrate graphical results for various physical parameters. The pressure

gradient is evaluated for various time intervals.

Research of magnetic field effects has attracted great attention due to its numerous

applications in flow meters, pumps, liquid metal cooling systems, MHD generators,

and metallurgy. The MHD basic concept is to induce current through a magnetic field

in a moving conductive fluid, and the induced current tends to generate a force that
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acts on ions in the conductive fluid. Initially, Bansal [20] introduced the concept of

magnetohydrodynamics (MHD). The most frequent problem used in fluid mechanics

in the presence of a transverse magnetic field is the hydromagnetic behavior of the

boundary layer across static or moving surfaces. For incompressible fluid, Crane [21]

examined the steady boundary layer flow. Existence of steady viscous flow across a

stretching sheet explored by Miklavcic and Wang [22]. While working on the fluid flow

across unsteady stretching sheet Wang [23] discussed flow across stretching sheet. Fang

and Zhang [24] analyzed magnetic field influence on shrinking sheet flow and discussed

how the strapping magnetic field maintains a constant steady state flow. Pavlov [25]

studied the transverse magnetic field influence on the movement of a conductive liquid

flowing across a stretching surface. Ishak et al. [26] examined the stagnation point

two-dimensional MHD flow of stretched layers with different surface temperature, and

revealed that at surface heat transfer tends to increase due to magnetic parameter.

In a rectangular duct, magnetic field influence on the natural convection is analyzed

by Rudraiah et al. [27], and revealed that magnetic field slows down the heat trans-

fer rate. Kumaran et al. [28] examined the MHD boundary layer transition across

a stretching sheet and found that as the magnetic parameter increases, skin friction

coefficient and wall temperature decreases. Cooling and fluid heating is important for

transportation and manufacturing. Different cooling strategies are designed for high

energy systems. Owing to low thermal performance effects, fluids including ethylene

glycol, engine oil and water have low heat transfer capacity. The conductive liquids

can be supressed or controlled by the body’s electromagnetic force (Lorentz force). In-

teraction between electric current and applied magnetic field affects the Lorentz force.

Fluid flow in a porous medium has been an area of intense research over the years.

Natural convection with saturated porous material in a vertical annulus analyzed by
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Parsad et al. [29]. Yih [30] examine the radiation influence on natural convection

across vertical cylinder. Badruddin et al. [31] analyzed the viscous dissipation and

radiation effect in annular porous channel. Butt et al. [32] determined the influence of

MHD flow across stretching cylinder in a porous media, and observed that momentum

boundary layer thickness depreciates for large magnetic parameter and permiability

parameter. Thermal conductivity, heat source or sink, and dynamic viscosity influence

on nanofluid in the presence of porous strecthed tube is determined by Ahmed et al.

[33]. Ishak et al. [34] analyzed suction/injection effect on steady, incompressible fluid

across a permeable stretching tube, and proposed that skin friction coefficient esclates

as Reynolds number grows.

The problem [35] is governed by non-linear differential equation of third order, which

leads to an exact similarity solution of the momentum equation. For a conductive in-

compressible viscous fluid outside a stretching cylinder, flow and heat transfer in the

presence of a transverse magnetic field is discussed by Ishak et al. [36]. Nonlinearity

is inherent throughout many mathematical problems. It is crucial to devise effective

strategies to resolve them. Despite the development of high-performance computers

and computation tools, obtaining analytical approximation of non-linear partial differ-

ential equations is still a challenging task. To analyze convective flow of nanofluids,

researchers formulated a variety of models and methods to solve complex geometries

of multiple problems. In a semi-annulus enclouser filled with nanofluid, Sheikholeslami

et al. [37] explored the natural convection heat transfer and revealed that inclination

has a significant impact on the local Nusselt number maximum and minimum values,

isotherms and streamlines. Sheikholeslami et al. [38] examined nanoparticles and mag-

netic field influence on the Jeffery-Hamel flow, and found that for increasing values of

Hartmann number, backflow turns down. To reduce backflow at increasing angles or
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Reynolds number, large values of Hartmann number are required. In addition, find-

ings claimed that increasing values of naoparticle volume fraction (ϕ) gives rise to the

thickness of momentum boundary layer. Domairry et al. [39] analysis revealed that

momentum boundary layer enlarges for greater volume fraction (ϕ), while reverse trend

is observed for thermal boundary layer. In a horizontal cylinderical tube containing

nanofluid, radial magnetic field influence on natural heat transfer convection is explored

by Ashorynejad et al. [40]. Further, observations claimed that local Nusselt number

will increase as the volume fraction and Rayleigh number increases, but due to strong

magnetic field this effect diminshes.

The main purpose of present research is to analyze heat transfer and nanofluid flow

in the presence of a magnetic field, across a stretched cylinder in a porous medium.

Tiwari and Das [41] suggested nanofluid model for current problem [35]. Moreover,

nanoparticle volume fraction (ϕ), thermal radiation (Nr), Reynolds number (Re),

porosity parameter (K), rate of heat generation or absorption coefficient (Q), and mag-

netic parameter (M) influence on local Nusselt number and skin friction coefficient are

discussed and analyzed. Water is used as a base fluid for copper nanoparticles. The

MATLAB tool bvp4c is used to find similarity solutions. Numerical solution of reduced

ordinary differential equations are evaluated using bvp4c. The velocity, temperature,

and pressure distribution for various fluid parameters are analyzed graphically .

The overview of this thesis is given as:

Chapter 2 comprises of basic definitions of fluid flow, basic governing equations

(continuity, momentum, energy) and heat transfer. Apart from these definitions, di-

mensionless quantities, thermophysical properties of nanofluids and all other necessary

concepts are discussed in this chapter.

Chapter 3 is a review work of Shehzad et al. [19]. Mathematical model is es-
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tablished for MHD flow of water-driven copper nanoparticles among two concentric

cylinders. Closed form solutions are obtained in terms of Bessel functions. The effect

of several parameters on pressure gradient, temperature and velocity profile is depicted

graphically in the confined domain.

Chapter 4 is a review work of Ashorynejad [35], in which heat transfer of nanofluids

in the existence of magnetic field through stretching cylinder is explored. Using simi-

larity transformations, the governing partial differential equations convert to the set of

ordinary differential equations with suitable boundary conditions. Compact solutions

are obtained by using MATLAB package bvp4c. For various nanoparticles, graphical

illustrations are presented for different parameters like Reynolds number, local Nus-

selt number, magnetic parameter, skin friction coefficient, and nanoparticle volume

fraction.

Chapter 5 extends the mathematical model presented in Chapter 4 with effect

of thermal radiation in a porous medium. Graphs and tabular results are obtained

for several controlling parameters (such as magnetic parameter, porosity parameter,

thermal radiation, nanoparticle volume fraction, heat absorption coefficient).

Chapter 6 sums up the concluding remarks of this dissertation.
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Chapter 2

Preliminaries and basic concepts

This chapter contains specific concepts of fluid flow, specific equations with respect to

fluid flow and heat transfer along with physical parameters of nanofluid.

2.1 Fluid and fluid flows

A fluid is a particular kind of matter that goes through steady distortion under applied

pressure, substances that have ability to flow are termed as fluids. This includes liquids,

gases, plasma’s and some plastic solids. The phenomenon in which fluid continuously

deforms itself is known as fluid flow.

2.2 Compressible and incompressible flows

A fluid fow in which the density variations are negligble is known as the incompressible

flow. All liquids are considered as incompressible fluids. Contrarily, compressible fluids

are fluids with variable density. Most commonly encountered gases are compressible.
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Continuity equations for compressible and incompressible flows are respectively:

Dρ

Dt
+∇.(ρV) = 0, (2.1)

∇.V = 0, (2.2)

where ρ indicates fluid density, V represents velocity vector and
D
Dt

is material deriva-

tive which is given as:
D
Dt

=
∂

∂t
+∇.V. (2.3)

2.3 Laminar and turbulent flows

Laminar flow is the type of fluid flow in which fluid moves smoothly in parallel layers.

The path lines of fluid flow do not cross each other. This flow usually occurs while

dealing with low Reynolds number. The fluid flow in which fluid particles continuously

changes their direction is known as turbulent flow. The flow is either turbulent or

laminar is specified by Reynolds number.

2.4 Steady and unsteady flows

Flows in which properties of fluid at a particular point remains constant with time is

known as steady flow. Mathematically steady flow is expressed as:

Du

Dt
= 0, (2.4)

In above equation t is time and u is any fluid properity. Contrarily, flows in which

fluid at particular point changes its properties with time is known as unsteady flow.
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Mathematically, unsteady flow is expressed as:

Du

Dt
̸= 0. (2.5)

2.5 Pulsatile flow

Flow with periodic variations is known as pulsatile flow. Peristaltic motion of food in

intenstine, blood supply through an artery are examples of pulsatile flow.

2.6 Newtonian and non-Newtonian fluids

Newtonian fuids are specified as fluids that obey Newton’s law of viscosity. Most

common Newtonian fluids are air, water, sugar solution, organic solvents, gasoline,

and glycerine etc. Non-newtonian fluids have the property that their shear stress is

not linearly proportional to their deformation rate. Ketchup, jams, butter, blood, soap,

yogurt, shampoo, honey, and toothpaste are few examples of non-newtonian fluids.

2.7 Axi-symmetric flow

A flow pattern is referred as axi-symmetric flow when it is identical in every plane that

passes through certain straight line.

2.8 Viscosity

Viscosity is a quantity that shows fluid opposition to the deformation or shear stress

and measured by the coefficient of viscosity (µ).
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Mathematically:

µ =
shear stress

deformation rate
. (2.6)

In Eq.(2.6) µ is absolute or dynamic viscosity and it has S.I unit (N.s/m2).

The other type of viscosity is termed as kinematic viscosity ν, which is the ratio of

dynamic viscosity (µ) to density (ρ).

Mathematically:

ν =
µ

ρ
. (2.7)

S.I unit of kinematic viscosity is (m2/s). The fluids having non-zero viscosity are known

as viscous fluids while those having zero dynamic viscosity are known as inviscid fluids.

2.9 Conservation laws

The analysis of a fluid dynamic problems usually involves the velocity field to describe

flow pattern. The fluid in motion must satisfy the fundamental principles of mechan-

ics (laws of mass, momentum and energy conservation) a constitutive relation and

associated boundary conditions.

2.9.1 Continuity equation

From law of conservation of mass, continuity equation is derived. According to this

law, amount of mass entering or leaving a fixed area (control volume) remains constant.

Mathematically:
Dρ

Dt
+∇.(ρV) = 0, (2.8)
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where V represents velocity vector and ∇ is the differential operator. If ρ is constant,

then for incompressible fluid Eq. (2.8) becomes

∇.V = 0. (2.9)

2.9.2 Momentum equation

From Newtons second law of motion, momentum equation is derived. According to

this law momentum in a system remains invarient until an external force is applied. It

is also known as Navier-Stokes equation and can be expressed as:

ρ
DV
Dt

= ∇.τ + ρg, (2.10)

where ρg denotes the body force in the system and τ is Cauchy stress tensor.

∇.τ = µ∇2V −∇p. (2.11)

where p is pressure and ∇.τ represent surface forces. Then Eq. (2.10) becomes:

ρ
DV
Dt

= −∇P + µ∇2V + ρg. (2.12)

.

2.9.3 Energy equation

From first law of thermodynamics, energy equation is derived. This law states that

rate of work done owing to body or surface forces and rate of heat addition is equal to
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rate of change of fluid energy within a control volume. It can be defined as:

ρcp
DT
Dt

= ∇.(κ∇T) + f.V. (2.13)

In Eq. (2.13) f is body or surface force, cp denotes specific heat at a constant temper-

ature, and κ is thermal conductivity of the fluid,.

2.10 Porous medium

A porous medium or porous material is a substance composed of presistent solid par-

ticles (solid matrix) and the remaining void space can be filled with one or more fluids

such as oil, gas, and water. Foam cemented sandstone, sand, bread, and soil are ex-

amples of porous medium.

2.11 Vortex

A region in a fluid in which flow revolves around an axis line is known as vortex

(vortices). It may be curve or straight, whirlpool and tornado are examples of vortex

flow. Vortex is curl of velocity field. Mostly, vortices have maximum fluid velocity

along their axis.

2.12 Boundary conditions

Boundary conditions are defined as a set of conditions that must be satisfied in a region

where the system of differential equations acquire to be solved.
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2.12.1 Slip condition

The phenomenon in which fluid velocity at surface is proportional to shear stress present

at surface is termed as slip boundary condition.

2.12.2 No-slip condition

In this phenomenon fluid flowing over a solid surface has zero velocity relative to

boundary.

2.13 Magnetohydrodynamics

Magnetohydrodynamics (MHD) is a branch of engineering that investigates the behav-

ior of magnetic field in electrically conducting fields. The set of equations that identifies

MHD flow is obtained by combining Maxwell’s equation and equations of motion. The

momentum Eq.(2.10) with electromagnetic force for MHD fluid flow is

ρ
DV
Dt

= ∇.τ + (J × B), (2.14)

where J is the current density, B is total magnetic field and has a following expression:

B = Bo + Bi, (2.15)

where Bi is the induced magnetic field and Bi is assumed to be very small thus it can

be neglected when compared with external magnetic field. This is justified for MHD
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flow with small Reynolds number. According to Ohm’s law, J is stated as:

J = σ(E + V × B). (2.16)

The electrical field E is assumed to be zero and σ is electrical conductivity. After

simplification

J × B = σ(V × B)× B. (2.17)

as B = Bo, since induced magnetic field is neglected. Using Eq. (2.17), momentum

Eq. (2.14) becomes:

ρ
DV
Dt

= ∇.τ − σBo
2V. (2.18)

2.14 Heat transfer mechanism

Heat transfer takes place among two bodies with distinct tempeature. Heat moves from

high to low temperature (warm body to cold one) until the equiblirum is achieved. The

heat transfer process occurs by convection, radiation, and conduction.

2.14.1 Convection

In this process, heat transfer takes place by movement of particles in liquid. Within

the process energy transfer takes place from a heigher temperature region to lower

temperature region. Mathematically form is expressed as:

Q = hA(T − T∞), (2.19)

15



where Q is heat transfered per unit time, h is coefficient of convection, A is cross-

sectional area, T is temperature and T∞ is temperature outside the environment.

2.14.2 Radiation

Radiation occurs by photons of light or waves emitted from a surface volume. Radiation

can also occurs in vacuum. Stefan-Boltzman law is used to calculate the amount of

heat transfer through radiation. Mathematically:

Q = σ∗.T 4, (2.20)

where, σ∗ denotes Stefan-Boltzmann’s constant and T is temperature.

2.14.3 Conduction

Transfer of heat by interaction of molecules from one substance to another is known

as conduction. Mostly conduction occurs in solids. Fourier developed a law known as

Fourier’s law of heat conduction. Matematically:

Q = −κA
dT

dx
(2.21)

where Q is heat transfered per unit time, A is cross-sectional area, κ is thermal con-

ductivity, and dT
dx

is temperature gradient.
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2.15 Boundary layer

The layer of fluid over the surface where viscosity effects are significant is called a

boundary layer. Viscosity is maximum near surface and it decreases gradually as fluid

moves away from surface.

2.16 Skin friction coefficient

Measure of resistance between the solid surface and fluid is known as skin friction

coefficient. It is defined as:

Cf =
τw

ρfWw
2 , (2.22)

where τw is total wall shear stress and it is expressed as:

τw = µnf
∂w

∂r
|r=a. (2.23)

2.17 Dimensionless parameters

Some well-known dimensionless parameters in fluid dynamics are mentioned below:

2.17.1 Reynolds number

The dimensionless parameter Re determines the ratio of inertial and viscous forces.

It allows us to differentiate whether the flow is turbulent or laminar. High Reynolds

number suggest turbulent behavior due to dominat inertial forces. Whereas, laminar

behavior is observed at low Reynolds number which shows that viscous forces are

dominant.
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Mathematical expression is written as:

Re =
inertial force
viscous force

=
vL

ν
, (2.24)

where L is characteristic length of fluid, v is velocity, and ν is the kinematic viscosity

of fluid.

2.17.2 Nusselt number

It appears when there is a heat transfer from convection flow to conduction flow in

fluids across boundary. The heat transfer is perpendicular to the surface of boundary.

Mathematically:

Nu =
Q
κ
L

=
QL

κ
, (2.25)

where κ is the thermal conductivity of fluid, Q represents convective heat transfer, and

L denotes characteristic length.

2.17.3 Hartmann number

The ratio of electromagnetic forces and viscous forces is known as Hartmann number,

which mainly exists in the fluid flowing through a magnetic field.

Mathematically:

Ha =
electromagnetic force

viscous force
= BL

√
σ

µ
, (2.26)

where B denotes magnetic filed, σ is electrical conductivity, µ is dynamic viscosity of

nanofluid, and L is characteristic length.

18



2.17.4 Prandtl number

The dimensionless parameter quantifies the ratio of momentum diffusivity (ν) and

thermal diffusivity (α), and it is used to characterize relative thickness of momentum

and thermal boundary layer.

Mathematically:

Pr =
Momentum diffusivity
Thermal diffusivity

=
ν

α
(2.27)

2.18 Nanofluids

Nanofluids are special kind of fluids that have improved thermal conductivity. Nano-

fluids include base fluid (water, oil, ethynol, etc.) in which particles of a nano-meter-

sized scale (1-100 nm) are suspended. Metals (Cu,Ag), oxides (Al2O3, CuO, T iO2)

forms several common nanoparticles used to create nanofluids.

2.19 Thermophysical properties of nanofluid

Following are some thermophysical properties of nanofluids.

2.19.1 Specific Heat

It is amount of energy which require to increase temperature by one degree Celcius per

unit mass. It is denoted by cp and S.I unit is (J/(K.kg)).

Mathematical expression is given by Faisal et al. [19] as:

(ρc)nf = (1− ϕ) (ρc)f + ϕ(ρc)p, (2.28)
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where cp is nanoparticle specific heat and cf is basefluid specific heat capacity.

2.19.2 Density

Amount of mass per unit volume is called density. It is denoted by ρ and S.I unit is

(kg/m3).

Density of nanofluid given by Faisal et al. [19] has following expression :

ρnf = (1− ϕ) ρf + ϕρp, (2.29)

where ρp is nanoparticles density and ρf is density of base fluid.

2.19.3 Dynamic viscosity

Dynamic viscosity is measure of fluid’s viscosity, it determines how dense the fluid is.

The S.I unit is (kg/m.s) and viscosity of nanofluid given by Faisal et al. [19] as:

µnf =
µf

(1− ϕ)2.5
, (2.30)

where µf is dynamic viscosity of base fluid, and ϕ is nanoparticle volume fraction.

2.19.4 Thermal conductivity

Thermal conductivity is defined as materials ability to conduct or transfer heat. It is

denoted by κ and its S.I unit is (W/(m.K)).

Mathematical expression of thermal conductivity given by Faisal et al. [19] is as follows:

κnf = κf

[
κp + 2κf − 2ϕ(κf − κp)

κp + 2κf + ϕ(κf − κp)

]
, (2.31)
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where κp is thermal conductivity of nanoparticle, κnf denotes thermal conductivity of

nanofluids, κf is thermal conductivity of the base fluid.

2.19.5 Electrical conductivity

It is defined as a measure of materials capacity to hold electric current or amount of

current it can bear. The S.I unit is (S/m).

Mathematical expression of electrical conductivity given by Faisal et al. [19] as:

σnf

σf

= 1 +
3
(

σp

σf
− 1
)
ϕ(

σp

σf
+ 2
)
−
(

σp

σf
− 1
)
ϕ
, (2.32)

where σp denotes electrical conductivity of nanoparticles and σf denotes electrical con-

ductivity of the fluid.
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Chapter 3

Water driven copper nanoparticles

between two concentric cylinders with

an oscillatory pressure gradient

This chapter covers the review of [19]. In the presence of copper nanoparticles, the

unidirectional MHD flow of viscous fluid with heat transmission is discussed. Constitu-

tive equations of conservation of mass, energy, and momentum are based upon partial

differential equations which contains thermophysical characteristics for both base fluid

and nanoparticles. Mathematical formulation of flow and heat transfer model, as well

as pressure calculations along with graphical illustrations are discussed in this chapter.

3.1 Problem formulation

Assume the unidirectional MHD flow of viscous, electrically conducting, incompressible

fluid moving among two concentric cylinders. Nanoparticles are added to the base fluid
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to improve its thermal conductivity. In the z-direction, pulsatile pressure gradient is

introduced to move the fluid within the specified channel. The magnetic field Bo

is taken along r-direction. As the fluid flows due to the pulsatile pressure, velocity

at walls of cylinder becomes zero. However, external duct temperature is adiabatic

and temperature of internal duct is uniform (400 Kelvin). Moreover, atmospheric

pressure and temperature are considered to be around 300 Kelvin, with V⃗ =V (u, v, w)

representing velocity field. The geometry of problem is given by [19] in Figure 3.1.

Figure 3.1: Flow field geometry.
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Accounting these assumptions, the constitutive equations that describe the fluid flow

between concentric cylinders are:

∇.V⃗ = 0, (3.1)

ρnf

[
∂V⃗

∂t
+ (V⃗ .∇)V⃗

]
= −∇p+ µnf∇2V⃗ +

(
J⃗ × B⃗

)
, (3.2)

(ρc)nf

[
∂T

∂t
+ (V⃗ .∇)T

]
= κnf∇2T. (3.3)

In cylindrical coordinate system, Eqs. (3.1)-(3.3) becomes:

∂u

∂r
+

∂w

∂z
+

u

r
= 0, (3.4)

ρnf

[
∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z

]
= −∂p

∂r
+ µnf

[
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2
+

∂2u

∂z2

]
, (3.5)

ρnf

[
∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z

]
= −∂p

∂z
+ µnf

[
∂2w

∂r2
+

1

r

∂w

∂r
+

∂2w

∂z2

]
− σnfBo

2w, (3.6)

(ρc)nf

[
∂T

∂t
+ u

∂T

∂r
+ w

∂T

∂z

]
= κnf

[
∂2T

∂r2
+

1

r

∂T

∂r
+

∂2T

∂z2

]
, (3.7)

where T is temperature and p is pressure. Mathematical expression of nanofluid proper-

ties such as, dynamic viscosity (µnf ), electrical conductivity (σnf ), density (ρnf ), ther-

mal conductivity (κnf ), and specific heat ((ρc)nf ) are expressed in Eqs. (2.28)-(2.32).

In Eq. (3.6) (−σnfBo
2w) is derived from Eq. (2.17). In view of above mentioned

parameters, Eqs. (3.5)-(3.7) will takes the following form:
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ρf

[
(1− ϕ) +

(
ρp
ρf

)
ϕ

] [
∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z

]
= −∂p

∂r
+

µf

(1− ϕ)2.5

[
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2
+

∂2u

∂z2

]
, (3.8)

ρf

[
(1− ϕ) +

(
ρp
ρf

)
ϕ

] [
∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z

]
= −∂p

∂z
+

µf

(1− ϕ)2.5

[
∂2w

∂r2
+

1

r

∂w

∂r
+

∂2w

∂z2

]
− σnfBo

2w, (3.9)

(ρc)f

[
(1− ϕ) +

(
(ρc)p
(ρc)f

)
ϕ

] [
∂T

∂t
+ u

∂T

∂r
+ w

∂T

∂z

]
= κnf

[
∂2T

∂r2
+

1

r

∂T

∂r
+

∂2T

∂z2

]
. (3.10)

For this model, corresponding initial and boundary conditions are:

When t = 0,

u(r, z, 0) = w(r, z, 0) = 0, and p(r, z, 0) = Tf (r, z, 0) = 0. (3.11)

At outer cylinder,

u(1, z, t) = w(1, z, t) = 0, and
∂Tf

∂r
(1, z, t) = 0. (3.12)

At inner cylinder,

u(
ri
re
, z, t) = w(

ri
re
, z, t) = 0, and Tf (

ri
re
, z, t) = 1, (3.13)

where ri and re are internal radius of inner cylinder and external radius of outer cylinder

respectively. To non-dimensionlize the Eqs. (3.8)-(3.10) subject to initial boundary
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conditions Eqs. (3.11)-(3.13), the following set of dimensionless variables are introduced

as:

u =
u′

ωre
, w =

w′

ωre
, r =

r′

re
, z =

z′

re
,

t = ωt′, p =
p′

r2eω
2ρf

, T =
T ′ − Tf

Ti − Tf

, νf =
µf

ρf
. (3.14)

Now we transform the above dimensional flow Eqs. (3.8)-(3.10) into non-dimensional

form using Eq. (3.14).

A1

[
∂u

∂t
+ u

∂u

∂r
+ w

∂u

∂z

]
= −∂p

∂r
+

1

(1− ϕ)2.5Re

[
∂2u

∂r2
+

1

r

∂u

∂r
+

∂2u

∂z2
− u

r2

]
, (3.15)

A1

[
∂w

∂t
+ u

∂w

∂r
+ w

∂w

∂z

]
= −∂p

∂z
+

1

(1− ϕ)2.5Re

[
∂2w

∂r2
+

1

r

∂w

∂r
+

∂2w

∂z2

]
− A2M

2

Re
w,

(3.16)

A3

[
∂T

∂t
+ u

∂T

∂r
+ w

∂T

∂z

]
=

A4

Pr.Re

[
∂2T

∂r2
+

1

r

∂T

∂r
+

∂2T

∂z2

]
. (3.17)

Non-dimensional boundary conditions are:

w = 0,
∂T

∂r
= 0 at r = 1 (3.18)

w = 0, T = 1 at r =
ri
re

= R∗ (3.19)

The dimensionless parameters appearing in partial differential Equations (3.15)-(3.17)

are defined as:

Pr =
µfcf
κf

, M = reBo

√
σf

µf
, Re = α2 =

ωr2e
νf

, (3.20)

where Re is Reynolds number, α is Womerseley number(=
√

Re), M is Hartmann
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number, and Pr is Prandtl number. Coefficients A1, A2, A3 A4 and A5 are expressed

as:

A1 = (1− ϕ) +

(
ρp
ρf

)
ϕ , (3.21)

A2 =
σnf

σf

= 1 +
3
(

σp

σf
− 1
)
ϕ(

σp

σf
+ 2
)
−
(

σp

σf
− 1
)
ϕ
, (3.22)

A3 = (1− ϕ) +

(
(ρc)p
(ρc)f

)
ϕ , (3.23)

A4 =
κnf

κf

=
κp + 2κf − 2ϕ (κf − κp)

κp + 2κf + ϕ (κf − κp)
, (3.24)

A5 =
1

(1− ϕ)2.5
. (3.25)

Velocity field for the fully developed flow is considered as:

V⃗ = [0, 0, w(r, z, t)] . (3.26)

Fluid flow defined in Eq. (3.26) identically satisfies the continuity Eq. (2.9) and the

Eqs. (3.15)-(3.17) can be rewritten as:

A1
∂w

∂t
= −∂p

∂z
+

A5

Re

[
∂2w

∂r2
+

1

r

∂w

∂r

]
− A2M

2

Re
w, (3.27)

A3

[
∂T

∂t
+ w

∂T

∂z

]
=

A4

Re.Pr

[
∂2T

∂r2
+

1

r

∂T

∂r
+

∂2T

∂z2

]
. (3.28)
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3.2 Solution of the problem

The periodic pressure gradient, for the pulsatile flow is stated as follows:

∂p

∂z
= −ACos(ωt) = Real(−Aeiωt). (3.29)

The velocity profile solution is expressed as:

W (r, t) = w(r, t) = Real
[
f(r)eit

]
. (3.30)

In the view of above Eqs. (3.29) and (3.30), Eq. (3.27) will takes the following form:

d2f(r)

dr2
+

1

r

df(r)

dr
− 1

A5

(
A2M

2 + iα2A1

)
f(r) = −Aα2

A5

. (3.31)

The solution to linear second order ordinary differential equation (3.31) is in the form

of Bessel functions,

f(r) = C1I0(βr) + C2K0(βr) +
Aα2

β2A5

, (3.32)

where Io and Ko are zeroth order modified Bessel functions of 1st and 2nd kind respec-

tively, and β =
√

1
A5

(A2M2 + iα2A1).

Eq. (3.30) together with Eq. (3.32) yields,

w(r, t) = Real
[
C1I0(βr) + C2K0(βr) +

Aα2

β2A5

]
eit. (3.33)
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To determine the constants C1 and C2 Eqs. (3.18)-(3.19) are substituted in Eq. (3.33).

After simplification we get,

C1 = − α2BesselK[0, β]A− α2BesselK[0, βR∗]A

β2A5 (BesselI[0, βR∗]BesselK[0, β]−BesselI[0, β]BesselK[0, βR∗])
, (3.34)

C2 = − −α2BesselI[0, β]A+ α2BesselI[0, βR∗]A

β2A5 (BesselI[0, βR∗]BesselK[0, β]−BesselI[0, β]BesselK[0, βR∗])
. (3.35)

To evaluate analytical solution of the Eq. (3.28), the temperature profile solution is

assumed to be as follows:

T (r, z, t) = Real
[
−γ

′
.z + γ

′
.g(r).eit + 1

]
, (3.36)

where γ
′
= re

L
. Equation (3.28) together with equation (3.36) is expressed as:

d2g(r)

dr2
+

1

r

dg(r)

dr
− i

A3Prα2

A4

g(r) =
A3Prα2

A4

f(r). (3.37)

Temperature profile solution will takes the following form:

T (r, z, t) = Real[−γ
′
.z + γ

′
[−iC1I0(βr)− iC2K0(βr) + C3I0(ηr)

+C4K0(ηr)− i
Aα2

β2A5

]eit + 1],
(3.38)
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where η =
√
iA3Prα2

A4
. To determine the constants C3 and C4 use of Eqs. (3.18)-(3.19)

in Eq. (3.38) gives

C3 =
αβ2A5

√
iPrA3BesselK[1, η]ζ1 + β3A5

√
A4BesselK[1, ηR∗]ζ2

αβ2
√
iPr (BesselK[1, ηR∗]BesselI[1, η] +BesselK[1, η]BesselI[1, ηR∗])

,

(3.39)

C4 =
αβ2A5

√
iPrA3BesselI[1, η]ζ1 − β3A5

√
A4BesselI[1, ηR∗]ζ2

αβ2
√
iPr (BesselK[1, ηR∗]BesselI[1, η] +BesselK[1, η]BesselI[1, ηR∗])

,

(3.40)

where,

ζ1 = i

[
C1I0(βR

∗) + C2K0(βR
∗)− i

z

eit
+

Aα2

β2A5

]
, (3.41)

ζ2 = i [C1I1(β)− C2K1(β)] . (3.42)

3.2.1 Pressure

To compute the pressure gradient, Eq. (3.27) can be written as:

∂p

∂z
= −A1

∂w

∂t
+

A5

α2

[
∂2w

∂r2
+

1

r

∂w

∂r

]
− A2M

2

α2
w. (3.43)
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Eq. (3.43) togethers with Eq. (3.33) becomes:

∂p

∂z
= −A1

[
i.eit

(
C1I0(βr) + C2K0(βr) +

Aα2

β2A5

)]
+

A5

α2

[
eit
(
β2(I2(βr) + I0(βr))

2
C1 −

β2(K2(βr) +K0(βr))

2
C2

)]
+

A5

α2

eit

r
[βI1(βr)C1 − βK1(βr)C2]−

A2M
2

α2

[
eit
(
C1I0(βr) + C2K0(βr) +

Aα2

β2A5

)]
.

The non-dimensional pressure gradient is expressed as:

∆p =

∫ 1

0

∂p

∂z
dz. (3.44)

After simplification Eq. (3.44) becomes:

∆p = −A1

[
i.eit

(
C1I0(βr) + C2K0(βr) +

Aα2

β2A5

)]
+

A5

α2

[
eit
(
β2(I2(βr) + I0(βr))

2
C1 −

β2(K2(βr) +K0(βr))

2
C2

)]
+

A5

α2

eit

r
[βI1(βr)C1 − βK1(βr)C2]−

A2M
2

α2

[
eit
(
C1I0(βr) + C2K0(βr) +

Aα2

β2A5

)]
.

In the next section graphical behavior under different parameters is analyzed.

3.3 Graphical analysis

The behavior of velocity and temeperature distribution, vorticity, and pressure gradient

for different controlling parametrs ( such as Prandtl number (Pr), nanoparticle vol-

ume fraction (ϕ), pressure gradient amplitude (A), Hartmann number (M), Reynolds

number (Re), and time (t)) are discussed in separate subsections. These quantities are

discussed for Cu as a nanoparticle. The thermophysical characteristics of nanofluids
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are listed below.

Table 3.1: Thermophysical characteristics of water-based copper nanoparticles.

Phase ρ(Kg/m3) k(W/mK) C(J/kgK) σ(s/m)
H2O 997.1 0.613 4179 0.05
Cu 8933 400 385 5.96× 107

3.3.1 Velocity

The effect of flow development on axial velocity is discussed. For a certain range,

the rate of heat transfer and axial velocity changes from inlet to oulet. The veloc-

ity variance in axial direction against specified volume fraction (ϕ) is determined for

one complete pulsation period of 360◦. There are total of 12 instances for a complete

cycle of 360◦. In all the figures to follow values of parameter t are taken such that

0◦ ≤ t ≤ 360◦. In Figs. 3.2(a)-(b) velocity behavior against volume fraction (ϕ) is ob-

served. Velocity profile follows a parabolic path. Velocity distribution will be heighest

at the channel’s mean position and decreases rapidly for increasing values of ϕ. The

density of whole mixture is increased when nanoparticles are added as shown in Figs

3.2(a)-(b). For base fluid (ϕ = 0), velocity profile has a large and higher disturbance as

shown in Fig 3.2(a). Physically, we assume that incluison of nanoparticles into water

raises the density of whole mixture significantly. When the density of nanofluids in-

creases, the nanofluids motion becomes slower in comparison to base fluid, as observed

in Fig 3.2(b).
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(a)

(b)

Figure 3.2: Velocity profile variance for 0◦ ≤ t ≤ 360◦ when Re = 1 and M = 0.

Figure 3.3(a)-(b) shows that due to annular effect, maximum velocity is located near

cylinder walls with rapid vibrations. Reynolds number tends to rise annular effects.

Further, it is noticed that radial velocity near cylinder wall becomes steeper as the

Reynolds number (Re) increases and as a result frictional forces increase.
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(a)

(b)

Figure 3.3: Velocity profile variance for 0◦ ≤ t ≤ 360◦ when Re = 100 and M = 0

Moreover, the velocity profile shows increasing behavior when Reynolds number

escalate. When Reynolds number increases, viscous forces tends to decrease then as a

result fluid particle movement becomes faster that causes steady increase in velocity

profile as illustrated in Figs. 3.4(a)-(b).
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.

(a)

(b)

Figure 3.4: Velocity profile variance for 0◦ ≤ t ≤ 360◦ when Re = 900 and M = 0.

In Figures 3.5(a)-(b) Hartmann number (M) impact on velocity profile for both base

fluid and nanofluid can be observed in comparison of Figs 3.4(a)-(b). For M = 0,

Figs 3.4(a)-(b) shows the velocity distribution is adjacent along the duct walls. Fig-

ures 3.5(a)-(b) claimed that for M = 10, velocity profile follows a parabolic path and
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highest amplitude is observed at mean position. The amplitude of the velocity profile

compressed when Hartmann number increases, also the inclusion of nanoparticles re-

duce maximum velocity for base fluid as observed in Fig 3.5(b). The flow rate decreases

due to retardant behavior of magnetic field.

(a)

(b)

Figure 3.5: Velocity profile variance for 0◦ ≤ t ≤ 360◦ when Re = 1 and M = 10.
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The varition in velocity profile for both base fluid and nanofluid for large values of

Reynolds number and Hartmann number is depicted in Figs 3.6(a)-(b). It is observed

that magnetic field serves as a resistant force for a fluid flow which results in a reduction

of flow rate. Moreover, the annular effect which is a trait of pulsatile flow, is supressed

by the magnetic field.

(a)

(b)

Figure 3.6: Velocity profile variance for 0◦ ≤ t ≤ 360◦ when Re = 30 and M = 30.
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The velocity increases as the flow area decreases, as observed in Figs 3.7 and 3.8

(a)-(c), increment in nanoparticles volume fraction (ϕ) turns to reduce velocity. For

different values of radius, the flow region formed a series of envelops, and the velocity

field acquired its highest place as radius increases. Inner cylinder radius is less than or

equal to the outer cylinder radius, thus the velocity profile domain is restricted between

0 ≤ r ≤ 1. As a result, the maximum velocity appears in the vicinity of ducts for flow

areas ranging from 0.7 to 1, and the annular effect decreases as the flow area decreases.

Figures 3.8 (a)-(c) revealed that velocity profile gradually decreases as the nanoparti-

cle volume fraction increases. For base fluid (ϕ = 0) maximum velocity distribution is

observed in Fig 3.7.

Figure 3.7: For base fluid, R∗ influence on velocity pofile when Re = 400 and t = 30.
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(a)

(b)

(c)

Figure 3.8: R∗ influence on velocity pofile for different ϕ when Re = 400 and t = 30.
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3.3.2 Vortex

The outcomes of vortex profile obtained in current analysis are close to those pre-

sented by Majdalani [16]. Variations in vorticity radial profile, for varying choice of

ϕ (nanoparticle volume fraction) is observed in Figs. 3.9 and 3.10(a)-(c). A vortex is

an area in a fluid where the flow is spinning, straight or bended way around a pivot

line. According to the vortex concept, the comparison shown in Figs 3.9 and 3.10

demonstrates that vortices magnitude is significantly stronger at the domain’s extreme

level. The vortex distribution becomes more compressed for increasing ϕ, as observed

in Figs. 3.10(a)-(c). Further observations claimed that for varying choice of nanopar-

ticle volume fraction, vortex of certain phases is set to be negative, which indicates the

existence of backflow. Figure 3.9 illustrates that variations observed in vortex profile

are higher for the base fluid (ϕ = 0), rather than variations noticed for increasing values

of ϕ in Figs 3.10(a)-(c).

.

Figure 3.9: For base fluid, variance in vortex pofile for 0◦ ≤ t ≤ 360◦ when M = 5 and
Re = 100.
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(a)

(b)

(c)

Figure 3.10: For different ϕ variance in vortex pofile for 0◦ ≤ t ≤ 360◦ when M = 5
and Re = 100.
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3.3.3 Pressure

Figure 3.11-3.12 depicts that for large values of ϕ, pressure gradient varies. Maximum

pressure gradient is observed at cylinder’s mean position with t = 180◦, but with

decreasing behavior. Moreover, it is noticed that the pressure gradient is minimum

for t = 0◦ and t = 360◦, but it measures increasing behavior as nanoparticle volume

fraction ϕ increases. Figure 3.11 represents maximum change in pressure gradient for

R∗ = 0.2, rather than for R∗ = 0.4 as claimed in Fig 3.12.

Figure 3.11: Pressure gradient at R∗ = 0.2 when Re = 100 and M = 30.

Figure 3.12: Pressure gradient at R∗ = 0.4 when Re = 100 and M = 30.

42



3.3.4 Temperature

The analysis of heat transfer turns around the study of temperature profile located

near cylinder’s surface. Figures (3.13)-(3.16) portrays the variation in temperature

profile against different parameters like Prandtl number (Pr), Hartmann number (M),

Reynolds number (Re), pressure gradient amplitude (A), and nanoparticle volume frac-

tion (ϕ). In Figs 3.13 and 3.14 variation in temperature profile for various choices of

R∗, are plotted against pressure gradient amplitude. In Fig 3.13 it is observed that at

R∗ = 0.1 for large values of pressure gradient amplitude, temperature distribution of

entire area of the two cylinders decreases. In Figs 3.14(a)-(b) for varying values of A,

temperature profile at R∗ = 0.3 and at R∗ = 0.5 changes its behavior in decreasing

manner. At R∗ = 0.7, temperature profile turns its behavior twice as shown in Fig

3.14(c).

Figure 3.13: Pressure gradient (A) influence on temperature profile.
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(a)

(b)

(c)

Figure 3.14: Pressure gradient (A) influence on temperature profile.
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The temperature distribution of water-based copper nanoparticles changes with

nanoparticle volume fraction (ϕ) as observed in Fig. 3.15. It is found that rate of

heat transfer escalates with nanoparticle inclusion. Moreover, observations claimed

that due to effective thermal conductivity, heat transfer rate of water-based copper

nanoparticles is higher than the base fluid. Figure 3.16(a) represents Hartmann number

(M) influence on temperature profile. The implementation of transverse magnetic field

tends to rise fluid temperture. Magnetic field induces an electric current in a fluid that

causes to generate heat in a fluid. As a result magnetic field radiation helps to improve

enhancement process. The time influence on temperature profile is depicted in Figs

3.16(b)-(c), it is observed that temperature profile has increasing behavior for large

values of time (t).

Figure 3.15: Nanoparticle volume fraction (ϕ) influence on temperature profile.
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(a)

(b)

(c)

Figure 3.16: (a) Hartmann number and (b-c) time influence on temperature profile.
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Chapter 4

Heat transfer and nanofluids MHD

flow across stretching cylinder

This chapter covers the review of [35]. It describes MHD flow of nanofluids and

heat transfer through a stretching cylinder. Copper, titanium oxide, silver, and alu-

mina nanoparticles are considered alongwith water as base fluid. Tiwari and Das [41]

nanofluid model is adopted. MATLAB package bvp4c is implemented to obtain numer-

ical solution of flow governing equations. Furthermore, outcomes of the parameters

governing the problem are analysed.

4.1 bvp4c

Flows occuring in physical world are governed by complex non linear PDEs. In order to

get a solution MATLAB programs require the user to provide with the initial guesses

for the solution required and also for parameters involved in the governing equations.

The choice of initial guess vector plays an important role to find aproximate solution
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of interest. MATLAB built in package bvp4c, which implements collocation method,

is capable of solving non-linear problems. A boundary value problem can have several

solutions therefore, it is required to provide initial guess. Selecting a suitable guess

for a specific interval of interest is challenging, the problem is initially solved on a

smaller interval. Later on, problem is then extended to particular interval of interest

after an appropriate initial guess has been obtained. The computations needed to

obtain a numerical solution are extensively influenced by the initial guess. For detailed

discription of this frame work, references [43]-[44] can be consulted.

4.2 Mathematical formulation

The problem under consideration surrounds an incompressible, laminar, steady flow

of an electrically conducting fluid. Flow occurs due to stretched cylinder with radius

a∗. Fluid has no movement in axial direction, r-axis measures the radial direction

and z-axis measures along cylinder axis, as shown in Fig. 4.1. [35]. In radial di-

rection uniform magnetic field is applied that has no influence on induced magnetic

field. Tw > T∞, where T∞ is ambient fluid temperature and surface temperature Tw is

constant. Ohmic heating, viscous dissipation, magnetic Reynolds number are omitted

as they are presumed to be small. Nanoparticles (Cu, T iO2, Ag, Al2O3) and basefluid

(water) with no slip condition is assumed to be in thermal equilibrium. Table 4.1 lists

the thermophysical characteristics of nanofluids.
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Figure 4.1: Physical configuration and coordinate system.

Table 4.1: Thermophysical characteristics of various nanoparticles and basefluid (wa-
ter). [45].

Phase ρ(Kg/m3) k(W/mK) Cp(J/kgK) β × 105(K−1)
H2O 997.1 0.613 4, 179 21
Ag 10, 500 429 235 1.89
Cu 8, 933 401 385 1.67
TiO2 4, 250 8.9538 686.2 0.9
Al2O3 3, 970 40 765 0.85

Accounting these assumptions and following Tiwari and Das model [41], fluid flow
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governing equations over a stretching cylinder are:

∂(ru)

∂r
+

∂(rw)

∂z
= 0, (4.1)

ρnf

(
u
∂u

∂r
+ w

∂u

∂z

)
= −∂p

∂r
+ µnf

[
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2

]
, (4.2)

ρnf

(
u
∂w

∂r
+ w

∂w

∂z

)
= µnf

[
∂2w

∂r2
+

1

r

∂w

∂r

]
− σnfBo

2w, (4.3)(
u
∂T

∂r
+ w

∂T

∂z

)
=

κnf

(ρcp)nf

[
∂2T

∂r2
+

1

r

∂T

∂r

]
, (4.4)

where (ρcp)nf , κnf , ρnf , σnf , and µnf are heat capacitance, thermal conductivity, ef-

fective density, electrical conductivity, and effective dynamic viscosity of nanofluid

respectively.

σnf = (1− ϕ)σf + ϕ σs (4.5)

Mathematical expression of nanofluid properties can be seen in Eqs. (2.28)-(2.31) and

Eq. (4.5). For this mathematical model boundary conditions assumed are given below:

u = uw, w = ww, T = Tw, at r = a∗.

w → 0, T → T∞, as r → ∞, (4.6)

where, T is the fluid temperature, uw = 0 and ww = 2bz for any positive integer b. u

is velocity component in radial direction and w in axial direction.

Wang [42] showed that the governing Eqs. (4.3)-(4.4) are reduceable into ODEs by

50



following transformations:

η = (
r

a∗
)2, u = −ba∗(

f(η)
√
η
), w = 2bf ′(η)z, θ(η) =

T − T∞

Tw − T∞
, (4.7)

Eqs. (4.3)-(4.4) along with Eq. (4.6) will convert into following system via Eq. (4.7):

Re.(f ′2 − ff ′′).A1.
(
1− ϕ)2.5 = η.f ′′′ + f ′′ − f ′.(1− ϕ)2.5.M, (4.8)(

1 +
A3

A4

.f.Pr.Re
)
.θ′ + η.θ′′ = 0. (4.9)

where prime indicates differentiation with respect to η. Transformed boundary condi-

tions are:

f(1) = 0, f ′(1) = 1, θ(1) = 1,

f ′(∞) → 0, θ(∞) → 0. (4.10)

We have already discussed coefficients A1, A3 and A4 in Eq. (3.21) and Eq. (3.23)-

(3.24). Prandtl number, magnetic parameter and Reynolds number are defined below:

Pr =
µf (ρcp)f
κfρf

, M =
a∗2.σnf .B

2
o

(4µf )
, Re =

b.a∗2

(2νf )
. (4.11)

Wall shear stress at the surface of cylinder are evaluated as follows:

τw = µnf (
∂w

∂r
)
r=a∗

=
µf

(1− ϕ)2.5
.[
4bz.f ′′(1)

a∗
]. (4.12)
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Eq. (4.12) can be used to evaluate skin friction Cf defined below:

Cf =
τw

ρfw2
w

. (4.13)

Invoking transformation Eq. (4.7), Eq. (4.13) changes to the following form:

Cf (
2z.Re
a∗

) =
1

(1− ϕ)2.5
.f ′′(1). (4.14)

Cooling rate of surface can be determined by calculating Nusselt number defined below:

Nu =
a∗qw

κf (Tw − T∞)
, (4.15)

with wall heat flux as:

qw = −κnf (
∂T

∂r
)r=a∗ = − 2

a∗
[κnf .θ

′(1).(Tw − T∞)]. (4.16)

Using Eq.(4.7) along with Eq. (4.16), Eq. (4.15) converts to the following fom:

Nu = −2.
κnf

κf

.θ′(1). (4.17)

4.3 Numerical method

The boundary value problem given by Eqs. (4.8)-(4.9) along with boundary condition

Eq. (4.10), is solved numerically by using MATLAB package bvp4c. Consider the
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following substitution for obtaining the system of first order differential equations

y1 = f ⇒ y
′

1 = f
′
= y2

y2 = f
′ ⇒ y

′

2 = f
′′
= y3

y3 = f
′′ ⇒ y

′

3 = f
′′′
=

1

η
.[Re.A1. (1− ϕ)2.5 .(y22 − y1y3)− y3

+M.y2 (1− ϕ)2.5]. (4.18)

y4 = θ ⇒ y
′

4 = θ
′
= y5

y5 = θ
′ ⇒ y

′

5 = θ
′′
= −1

η
.(1 + Re.Pr.y1.

A3

A4

).y5 (4.19)

Boundary conditions are:

f(1) = 0 ⇒ y1(1) = 0

f
′
(1) = 1 ⇒ y2(1) = 0

f
′
(∞) = 0 ⇒ y2(∞) → 0

θ(1) = 1 ⇒ y4(1) = 1

θ(∞) → 0 ⇒ y4(∞) → 0 (4.20)

In order to solve Eqs. (4.18)-(4.19) with respective boundary conditions Eq. (4.20),

we relied on the MATLAB built in function bvp4c. We initiate the computations by

choosing small values. The computations are repeated several times until the initial

slopes f ′′′(1) and θ′′(1) becomes consistent. The residuals in boundary condition for far

from cylinder remains less than 10−6. In Table 4.2 numerical evaluations are carried

out to investigate grid independency for water based copper nanoparticles. For the

current problem, 250 grid size is considered to have an independent solution. Table 4.3
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demonstrates that obtained numerical results for −θ′(1) are in excellent match with

those reported by Ishak [36] and Wang [42].

Table 4.2: Comparison of −θ′(1) for various mesh size when M = 10, Pr = 6.2, ϕ = 0.1
and Re = 7.

Mesh size 50 100 150 200 250 300
−θ′(1) 3.4868822 3.4868828 3.4868792 3.4868785 3.4868783 3.4868783

Table 4.3: Comparison with results of −θ′(1) obtained by Ishak [36] and Wang [42]
when Pr = 7, ϕ = 0 and Re = 1.

M Present work Ishak [36] Wang [42]
0 2.05338 2.05338 2.05338

0.01 2.05213 2.05213 2.05338
0.05 2.04723 2.04723 2.05338
0.1 2.04121 2.04121 2.05338
0.5 1.99696 1.99696 2.05338

4.4 Results and discussion

In the presence of a magnetic field, fluid flow and heat transfer are analyzed numeri-

cally. An efficient computing platform bvp4c of MATLAB has been used to evaluate

a representative problem given by Eqs. (4.8)-(4.9) with corresponding boundary con-

ditions Eq. (4.10). To investigate flow behavior, effect of different non-dimensional

parameters such as Reynolds number, nanoparticle volume fraction, and magnetic pa-

rameter for various nanofluids (Cu, Ag, TiO2 and Al2O3) are displayed graphically in

separate subsections. Re and ϕ influence on Nusselt number (Nu) and skin friction

coefficient (Cf ) is determined by Eq. (4.14) and Eq. (4.17).
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4.4.1 Velocity

Velocity distribution against magnetic parameter and nanoparticle volume fraction are

observed in Figs. (4.2)-(4.3). Figure 4.2 demonstrates that velocity profile tends to

increase for increasing values of ϕ, due to increase in energy transmission. Magnetic

parameter outcomes for velocity distribution is interpreted in Fig. 4.3. Velocity profile

demonstrates that rate of transport decreases significantly when magnetic parameter

increases, moreover study claimed that transport mechanism are opposed by transverse

magnetic field. The Lorentz force induced by magnetic field tends to vary when mag-

netic parameter (M) changes due to magnetic field. As a result, Lorentz force causes

transport phenomenona to be more resistant. Higher magnetic parameter improved

the resistance in flow region and thus velocity reduced, as presented in the Fig. 4.3.
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φ = 0.1
φ = 0.2

Cu−Water

Figure 4.2: Variations in velocity distribution against ϕ.
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Figure 4.3: Variations in velocity distribution against M .

4.4.2 Temperature

Temperature distribution for magnetic parameter (M) and nanoparticle volume frac-

tion (ϕ) is observed in Figs. (4.4)-(4.5). Temperature behavior against ϕ is analyzed in

Fig. 4.4. Temperature enhances for increasing size of ϕ. For large values of nanoparti-

cle volume fraction, thermal boundary layer accelerates which is associated to nanofluid

thermal conductivity. Due to increased thermal conductivity, temperature profile will

increase, as observed in Fig. 4.4. Figure 4.5 depicts higher temperature distribution

against magnetic parameter (M). Increase in magnetic parameter tends to increase

Lorentz force among liquid particles and thus temperature boosted. Variations in tem-

perature profile is observed in Fig. 4.6 for various kind of nanofluids, when Re = 1,

Pr = 6.2, M = 5, and ϕ = 0.1. Illustrations shows that inclusion of Ag nanoparti-

cles provides highest temperature, whereas lowest temperature is obtained for TiO2
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nanoparticles.
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Figure 4.4: Temperature profile variance against ϕ.
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Figure 4.5: Temperature profile variance against M .
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Figure 4.6: Temperature distribution for different nanofluids.

4.4.3 Skin friction coefficient and Nusselt number

Nusselt number (Nu) and skin friction coefficient (Cf ) behavior for different parametrs

are observed in Figs. (4.7)-(4.10). It is noted that, Cf tends to increase for rising values

of ϕ. Increasing values of magnetic parameter M will leads to increase absolute values

of Cf , and this trend is prominent when values of ϕ is higher, as shown in Fig. 4.7. A

stretching cylinder creates dragging force on the fluid. Due to this reason, skin friction

coefficient (Cf ) becomes negative. Skin friction coefficient for increasing values of Re

and ϕ, changes its behavior from increasing to decreasing, as observed in Fig. 4.8.

For varying values of Re, Nusselt number behavior against ϕ is observed in Fig. 4.9.

The product of thermal conductivity ratio and temperature gradient is Nusselt number,

as stated in Eq. (4.17).
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Figure 4.7: ϕ and M influence on skin friction coefficient.
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Figure 4.8: ϕ and Re influence on skin friction coefficient.

Observations revealed that Nu shows decreasing trend for large values of Reynolds
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Figure 4.10: ϕ and M Influence on Nusselt number.

number and volume fraction, as depicted in Fig. 4.9. Reynolds number specifies

the importance of inertia effect in comparison of viscous effect. For large magnetic

parameter (M) and volume fraction (ϕ), Nusselt number shows decreasing behaviour

as observed in Fig. 4.10.

For varying choice of nanofluids, the behavior of Nusselt number (Nu) and skin friction

coefficient (Cf ) are determined in Tables [4.4]-[4.7]. For different nanofluids, behavior

of Cf and Nu varies accordingly. Also, for several kind of nanofluids heat transfer rate
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acts differently. Observations claimed that TiO2 nanoparticles have maximum Nu for

different values of magnetic parameter M and nanoparticle volume fraction ϕ, whereas

Ag nanoparticles yield lowest Nu. Furthermore, it is observed that, for all values of

M , maximum amount of skin friction coefficient is obtained by Al2O3 nanoparticles.

On contrary, Ag nanoparticles has less amount of it. Similar results are obtained in

case of volume fraction.

Table 4.4: For various nanofluids, influence of Magnetic parameter on Cf , when ϕ = 0.1,
Pr = 6.2 and Re = 1.

M Ag Cu TiO2 Al2O3

0 −1.42198 −1.37341 −1.21583 −1.20571
1 −1.71397 −1.67442 −1.54958 −1.54176
5 −2.53869 −2.51306 −2.43474 −2.42997
10 −3.26517 −3.24561 −3.18638 −3.1828

Table 4.5: For various nanofluids, influence of M on Nu, when Re = 1, Pr = 6.2, and
ϕ = 0.1.

M Ag Cu TiO2 Al2O3

0 2.95132 3.01055 3.17749 3.09445
1 2.82047 2.87444 3.02409 2.94131
5 2.4903 2.53251 2.64709 2.57055
10 2.26468 2.2993 2.39238 2.32442
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Table 4.6: For various nanofluids, influence of nanoparticle volume fraction on Cf ,
when M = 5, Pr = 6.2 and Re = 1.

ϕ Ag Cu TiO2 Al2O3

0.05 −2.61665 −2.60249 −2.55965 −2.55707
0.1 −2.53869 −2.51306 −2.43474 −2.42997
0.15 −2.44944 −2.41473 −2.30764 −2.30107
0.2 −2.34997 −2.3083 −2.17863 −2.17061

Table 4.7: For various nanofluids, influence of Nanoparticle volume fraction on Nu,
when Pr = 6.2, Re = 1, and M = 5.

ϕ Ag Cu TiO2 Al2O3

0.05 2.79915 2.82399 2.88909 2.84628
0.1 2.4903 2.53251 2.64709 2.57055
0.15 2.22683 2.27964 2.43138 2.32801
0.2 2.00093 2.05838 2.23769 2.11282
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Chapter 5

Darcy and radiation effect on heat

transfer and MHD nanofluid flow

across stretching cylinder

5.1 Introduction

Influence of heat transfer and radiation on nanofluid MHD flow with the effect of porous

medium across a stretching cylinder is discussed in this chapter. Copper nanoparticles

are considered alongwith water as a base fluid. Heat generation or absorption coef-

ficient, Darcy parameter, and radiative heat flux are examined. Tiwari and Das [41]

nanofluid model is adopted. A set of transformation is proposed, which transforms

the governing problem into a coupled differential system, whose numerical solution is

developed by MATLAB package bvp4c. For different parameters, variations in velocity

and temperature distribution are analyzed graphically.
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5.2 Mathematical formulation

The problem under consideration involves laminar, steady and an incompressible flow of

nanofluid in a porous medium across stretching cylinder. Flow occurs due to stretching

cylinder with radius a∗. There is no movement of fluid in axial direction. The r-axis

measures radial direction and z-axis measures along tube axis as shown in Fig. 5.1.

Figure 5.1: Physical model and coordinate system.

In radial direction uniform magnetic field is applied, and have no influence on induced

magnetic field. Tw > T∞, where T∞ is the temperature away from surface and surface

temperature Tw is constant. Ohmic heating, viscous dissipation, magnetic Reynolds

number are omitted as they are presumed to be small. Cu nanoparticles are considered
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aling with water as a basefluid. Table 5.1 lists the thermophysical characteristics of

nanofluids.

Table 5.1: Thermophysical characteristics of various nanoparticles and basefluid [45].

Phase ρ(Kg/m3) k(W/mK) Cp(J/kgK) β × 105(K−1)
H2O 997.1 0.613 4, 179 21
Ag 10, 500 429 235 1.89
Cu 8, 933 401 385 1.67
TiO2 4, 250 8.9538 686.2 0.9
Al2O3 3, 970 40 765 0.85

Accounting these assumptions, fluid flow governing partial differential equations over

a stretching cylinder are (see in Refs [46]- [47]):

∂(ru)

∂r
+

∂(rw)

∂z
= 0, (5.1)

ρnf

(
u
∂u

∂r
+ w

∂u

∂z

)
= −∂p

∂r
+ µnf

[
∂2u

∂r2
+

1

r

∂u

∂r
− u

r2

]
, (5.2)

ρnf

(
u
∂w

∂r
+ w

∂w

∂z

)
= µnf

[
∂2w

∂r2
+

1

r

∂w

∂r

]
− σnfBo

2w − µnf

Ko

w, (5.3)(
u
∂T

∂r
+ w

∂T

∂z

)
=

κnf

(ρcp)nf

[
∂2T

∂r2
+

1

r

∂T

∂r

]
+

Qo(T − T∞)

(ρcp)nf

− 1

(ρcp)nf

∂qr
∂r

, (5.4)

where qr is radiative heat flux. According to Rosseland approximation, qr has the

following expression:

qr = −4

3
.
σ∗

k∗ .
∂T 4

∂r
(5.5)

In above equation k∗ represents mean absorption coefficient and σ∗ is Stefan-Boltzman

constant. Assume that temperature variance within the flow is such that T 4 is expressed
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in the form of Taylor series. Expand T 4 in Taylor series about T∞, ignore the higher

order terms

T 4 ∼= 4T 3
∞T − 3T 4

∞. (5.6)

For this model, boundary conditions are:

u = uw, w = ww, T = Tw, at r = a∗.

w → 0, T → T∞, as r → ∞. (5.7)

where uw = 0 and ww = 2bz for any positive integer b. u is velocity component in

radial direction and w in axial direction. T is nanofluid temperature, (ρcp)nf , κnf , ρnf ,

σnf , and µnf are heat capacitance, thermal conductivity, effective density, electrical

conductivity, and effective dynamic viscosity of nanofluid respectively.

Mathematical expression of above mentioned nanofluid properties can be seen in Eqs.

(2.28)-(2.31) and Eq. (4.5). Similarity transformations given by Wang [42] are as

follows:

η = (
r

a∗
)2, u = −ba∗(

f(η)
√
η
), w = 2bf ′(η)z, θ(η) =

T − T∞

Tw − T∞
, (5.8)

Invoking Eq. (5.8) into Eqs. (5.3)-(5.4) along with Eq. (5.7). Therefore, Eq. (5.3)

becomes

ρf .A1[4b
2.z(f ′2 − f.f ′′)] =

µf

(1− ϕ)2.5
[
4bz

a∗2
(f ′′ + 2.η.f ′′′ + f ′′)]− σnfBo

2(2bf ′(η)z)

or

Re.(f ′2 − ff ′′).A1.(1− ϕ)2.5 = η.f ′′′ + f ′′ − f ′.(1− ϕ)2.5.M −K.f ′. (5.9)

66



Proceeding Eq. (5.4):

2bf ′(η)z.
∂(θ(Tw − T∞) + T∞)

∂z
+

−ba∗.f(η)
√
η

.
∂(θ(Tw − T∞) + T∞)

∂r

=
κnf

(ρcp)nf
[
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∂r2
+

1

r
.
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∂r
] +

Qo

(ρcp)nf
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+
16

3
.
σ∗

k∗ .
T 3
∞

(ρcp)nf
.[
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∂r2
],

−ba∗.f(η)
√
η
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a∗2
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1

r
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a∗2
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(2r)2
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Qo
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16

3
.
σ∗
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T 3
∞

A3.(ρcp)f
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2θ′

a∗2
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+θ′′(Tw − T∞).
(2r)2
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A4.κf

A3.(ρcp)f
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4θ′
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+

4.θ′′

a∗2
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A3.(ρcp)f
+

16

3
.
σ∗

k∗ .
T 3
∞

A3.(ρcp)f
[
2θ′

a∗2
+

4θ′′

a∗2
.η],

−ba∗2

2
.
A3.(ρcp)f
A4.κf

.f.θ′ = θ′ + θ′′.η +
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∗2

4.A4.κf

+
16

3
.
σ∗

k∗ .
T 3
∞

A4.κf

.(
θ′

2
+ θ′′.η),

−Re.Pr.f.θ′.
A3

A4

= θ′ + θ′′.η +
Q.θ

A4

+
Nr

A4

.(
θ′

2
+ θ′′.η),

θ′′(1 +
Nr

A4

).η + θ′(1 +
Nr

2A4

+Re.Pr.
A3

A4

.f) +
Q

A4

.θ = 0. (5.10)

The coefficients A1, A3 and A4 are disussed in Eq. (3.21) and Eq. (3.23)-(3.24). The

dimensionless parameters observed in Eq.(5.9) and Eq.(5.10) are as follows:

Pr =
µf (ρcp)f
κfρf

, M =
a∗2.σnf .B

2
o

(4µf )
, Re =

b.a∗2

(2νf )
,

K =
−a∗2

4Ko

, Nr =
16

3
.
σ∗

k∗ .
T 3
∞
κf

, Q =
Qo.a

∗2

4.κf

(5.11)
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Now the boundary conditions (5.7) will transform to:

f(1) = 0, f ′(1) = 1, θ(1) = 1,

f ′(∞) → 0, θ(∞) → 0. (5.12)

Physical quanatities of interest are Cf and Nu, given by Sheikholeslami [48]. At the

cylinder’s surface wall shear stress is evaluated as follows:

τw = µnf (∂w
∂r
)
r=a∗

=
µf

(1−ϕ)2.5
.[4bz.f

′′(1)
a∗

]. (5.13)

Eq. (5.13) can be used to determine skin friction Cf defined below:

Cf =
τw

ρfw2
w

. (5.14)

Using transformation Eq.(5.8), Eq. (5.14) changes to the following form:

Cf (2z.Re
a∗

) = 1
(1−ϕ)2.5

.f ′′(1). (5.15)

Cooling rate of surface can be determined by calculating Nusselt number defined below:

Nu =
a∗qw

κf (Tw − T∞)
. (5.16)

where qw is wall heat flux and has following expression:

qw = −κnf (
∂T

∂r
)r=a∗ = − 2

a∗
[κnf .θ

′(1).(Tw − T∞)]. (5.17)

68



Using Eq.(5.8) along with Eq. (5.17), Eq. (5.16) converts to the following fom:

Nu = −2.
κnf

κf

.θ′(1). (5.18)

Table 5.2: Comparison of skin friction coefficient for various nanoparticles, when ϕ =
0.1, Pr = 6.2, and Re = 1.

M Ashorynejad [35] Present work Ashorynejad [35] Present work
Copper (Cu) Silver (Ag)

0 −1.37341 −1.37341 −1.42198 −1.42198
1 −1.67442 −1.67442 −1.71397 −1.71397
5 −2.51306 −2.51306 −2.53869 −2.53869
10 −3.24561 −3.24561 −3.26517 −3.26517

Alumina (Al2O3) Titanium oxide (TiO2)
0 −1.20571 −1.20571 −1.21583 −1.21583
1 −1.54176 −1.54176 −1.54958 −1.54958
5 −2.42997 −2.42997 −2.43474 −2.43474
10 −3.1828 −3.1828 −3.18638 −3.18638

Table 5.3: Comparison of Nusselt number for various nanoparticles, when Re = 1,
Pr = 6.2, and ϕ = 0.1.

M Ashorynejad [35] Present work Ashorynejad [35] Present work
Copper (Cu) Silver (Ag)

0 3.01055 3.01055 2.95132 2.95132
1 2.87444 2.87444 2.82047 2.82047
5 2.53251 2.53251 2.4903 2.4903
10 2.2993 2.2993 2.26468 2.26468

Alumina (Al2O3) Titanium oxide (TiO2)
0 3.09445 3.09445 3.17749 3.17749
1 2.94131 2.94131 3.02409 3.02409
5 2.57055 2.57055 2.64709 2.64709
10 2.32442 2.32442 2.39238 2.39238
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Table 5.2 and 5.3 demonstrates that obtained numerical results for skin friction coeffi-

cient and Nusselt number are in excellent match with those reported by [35].

5.3 Numerical method

The bvp4c method is used to perform numerical calculations for nonlinear ODEs. The

system of first order for Eq. (5.9) and Eq. (5.10) along with boundary conditions

Eq.(5.12) is given as:

y1 = f ⇒ y
′

1 = f
′
= y2

y2 = f
′ ⇒ y

′

2 = f
′′
= y3

y3 = f
′′ ⇒ y

′

3 = f
′′′
=

1

η
.[Re.A1. (1− ϕ)2.5 .(y22 − y1y3)− y3

+M.y2 (1− ϕ)2.5 +K.y2]. (5.19)

y4 = θ ⇒ y
′

4 = θ
′
= y5

y5 = θ
′ ⇒ y

′

5 = θ
′′
= − 1

η(1 + Nr
A3

)
.
[
y5(1 +

Nr

2.A4

+Re.Pr.
A3

A4

.y1)

+
Q

A4

.y4
]

(5.20)

Boundary conditions will be:

f(1) = 0 ⇒ y1(1) = 0

f
′
(1) = 1 ⇒ y2(1) = 0

f
′
(∞) = 0 ⇒ y2(∞) → 0

θ(1) = 1 ⇒ y4(1) = 1

θ(∞) → 0 ⇒ y4(∞) → 0 (5.21)
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Eq. (5.19) and Eq. (5.20) gives system of first order along with boundary conditions

Eq. (5.21).

5.4 Results and discussion

The behavior of associated flow variable for temperature and velocity distribution, rate

of heat transfer and surface drag force with the effect of radiation parameter, porosity

parameter, and heat generation or absorption parameter are analyzed in this section.

Graphical and tabular results for Cu-water nanoparticles are observed for different

physcial parameters including porous medium parameter (K), nanoparticle volume

fraction (ϕ), thermal radiation parameter (Nr), magnetic parameter (M), and heat

generation or absorption parameter (Q).

5.4.1 Velocity

Porosity parameter influence on velocity distribution is observed in Fig. 5.1. For in-

creasing values of porosity parameter, velocity profile decreases and as a result bound-

ary layer thickness decelerate. Fig. 5.2 shows magnetic parameter influence on velocity

profile. It is noted that with increasing values of M , velocity profile decreases and as

a consequence boundary layer thickness depricates. For large values of magnetic pa-

rameter, flow field resistance increases and as a result velocity decelerate. For greater

values of ϕ, variance in velocity profile is observed in Fig. 5.3. Thickness of momentum

boundary layer slightly escalates for large values of volume fraction.
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Figure 5.2: Velocity profile against porosity parameter.
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Figure 5.3: Velocity profile against M .
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Figure 5.4: Velocity profile against varying choice of ϕ.

5.4.2 Temperature

For copper-water nanofluid, temperature profile for several controlling parameters are

analyzed in Figs. (5.4)-(5.7). The variation in temperature profile against magnetic

parameter is depicted in Fig. 5.4. Lorentz force tends to increase as the magnetic

parameter grows and thus temperature boosted. In addition, thermal boundary layer

thickness accelerates as values of M increases. Heat generation or absorption parameter

influence on temperature distribution θ(η) is observed in Fig. 5.5. From observations

one can say that, temperature increases for Q thus width of thermal boundary layer

escalates. Figure 5.6 demonstrates radiation parameter effect on temperature profile.

For greater values of Nr, thickness of thermal boundary layer accelerates and nanofluid

temperature gradually increases. Figure 5.7 interprets impact of ϕ on temperature

distribution. Thermal boundary layer thickness accelerates with increasing values of
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ϕ, which is associated to nanofluids thermal conductivity. Therefore, due to increased

thermal conductivity, tempertaure will increase as shown in Fig. 5.7.
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Figure 5.5: Temperature profile against M .
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Figure 5.6: Temperature profile against Q.
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Figure 5.7: Temperature profile against Nr.
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Figure 5.8: Temperature profile against ϕ.
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5.4.3 Skin friction coefficient and Nusselt number

Outcomes of Nusselt number (Nu) and skin friction coefficient (Cf ) for numerous gov-

erning parameters are observed in Figs. (5.8)-(5.12). For increasing values of K and ϕ,

Nusselt number and skin friction coefficient possess opposite behavior. Nusselt num-

ber reduces and skin friction improves when size of nanoparticles increases as observed

in Fig. 5.10 and Fig. 5.8. The influence of thermal radiation parameter along with

nanoparticle volume fraction is observed in Fig. 5.11. Increment in volume fraction

reduces the rate of heat transfer. Nu and Cf behavior for increasing values of heat

source term and volume fraction is portrayed in Fig. 5.9 and Fig. 5.12. Increment in

ϕ and Q tends to increase skin friction coefficient. Observations affirm that for greater

values of Q and ϕ, Nusselt number (Nu) seems to have decreasing behavior.
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Figure 5.9: K and ϕ influence on skin friction coefficient.
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Figure 5.10: ϕ and Q influence on skin friction coefficient.
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Figure 5.11: Nusselt number behavior for varying choices of ϕ and K.
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Figure 5.12: Nusselt number behavior for varying choices of ϕ and Nr.
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Figure 5.13: Nusselt number behavior for varying choices of Q and ϕ .
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Cf and Nu behavior for different controlling parameters are tabulated in Table 5.2. Ta-

ble 5.2 reveals that absolute values of Cf decreases as ϕ increases, whereas Nu exhibits

opposite behavior. For magnetic parammeter (M), absolute values of Cf elevates but

Nu slows down gradually as M increases. Nusselt number decreases for large values

of Nr and Q as observed in Table 5.2. Contrarily, Nr and Q has no influence on skin

friction coefficient. With the effect of porosity parameter (K), Nu decelerates, whereas

absolute values of Cf accelerates as K rises.

Table 5.4: Results of Nu and Cf for varying choices of ϕ, M ,Nr,K and Q with Re = 1
and Pr = 6.2.

ϕ M Nr K Q f ′′(1) −θ′(1)
0 5 0.1 0.2 0.1 −2.72298 2.81274

0.05 −2.64474 2.54267
0.1 −2.557 2.30715
0.2 −2.35659 1.91786
0.1 0 0.1 0.2 0.1 −1.45824 2.77267

1 −1.7434 2.64062
5 −2.557 2.30715
10 −3.27886 2.07972

0.1 5 0.1 0.2 0.1 −2.557 2.30715
0.2 −2.557 2.19408
0.5 −2.557 1.92616
1 −2.557 1.63261

0.1 5 0.1 0.1 0.1 −2.53514 2.31504
0.2 −2.557 2.30715
0.5 −2.62136 2.2843
1 −2.72487 2.24864

0.1 5 0.1 0.2 0.1 −2.557 2.30715
0.2 −2.557 2.22393
0.5 −2.557 1.94514
1 −2.557 1.32598
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Chapter 6

Concluding Remarks

6.1 Water driven copper nanoparticles between two

concentric cylinders with an oscillatory pressure

gradient

Analysis of MHD flow of water based copper nanoparticles between two concentric

cylinders is discussed in this thesis. For pulstaile flow exact solution of pressure, velocity

and temperature distribution is obtained between concentric cylinders. For an extensive

range of M , Re, and ϕ the solutions of temperature, pressure and velocity profiles are

illustrated graphically. However, magnetic field impact on heat transfer investigated

analytically. Most significant outcomes are listed below :

• Velocity amplitude possess decreasing trend for increasing values of nanoparticle

volume fraction .

• Inclusion of copper nanoparticles tends to increase fluid temperature.
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• Rate of heat transfer can be improved with the help of external magnetic field.

6.2 Heat transfer and nanofluids MHD flow across

stretching cylinder

Mathematical model developed for steady two dimensional flow of an electrically con-

ducting nanofluid across stretching cylinder has enabled us to determine volume frac-

tion, Reynolds number, and magnetic parameter influence upon solution profiles. The

important outcomes from the numerical analysis of the governing model are listed

below:

• Increasing values of Reynolds number , nanoparticle volume fraction, and mag-

netic parameter results in the increment of absolute values of Cf .

• Nusselt number shows decreasing behavior for increasing values of nanoparticle

volume fraction (ϕ) and magnetic parameter (M).

• Magnetic parameter (M) has opposite behavior for both velocity and tempera-

ture profiles. Velocity profile will decrease for increasing values of M , whereas

temperature will increase.

6.3 Darcy and radiation effect on heat transfer and

MHD nanofluid flow across stretching cylinder

Flow of an electrically conducting nanofluid in the presence of magnetic field across

a stretching cylinder in a porous medium is numerically analyzed. The governing
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PDEs are reduced to dimensionless ODEs using similarity transformations. Numerical

solution of ODEs with appropriate boundary conditions has been acquired by using

bvp4c. Influence of various controlling parameters such as heat generation or absorp-

tion coefficient (Q), nanoparticle volume fraction (ϕ), thermal radiation (Nr), mag-

netic parameter (M), and porosity parameter (K) on temperature and velocity profiles

are discussed. Nusselt number (Nu) and skin friction coefficient (Cf ) are evaluated.

Significant results of present research are outlined as follows:

• Velocity of nanofluid decelerates with increase in porosity and magnetic param-

eter.

• Temperature and velocity profile increases as nanoparticle volume fraction en-

larges.

• Small values of Nusselt number are obtained corresponding to heat generation or

absorption coefficient as well as thermal radiation parameter.

• Observations claimed that for rising values of porosity parameter, absolute values

of skin friction coefficient accelerates .

• Temperature of nanofluid enhances for escalating values of radiation parameter

and heat generation or absorption coefficient.
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Appendix

Table 6.1: Dimensions

Quantity Symbols Dimension
Time t [T ]

Velocity v [LT−1]
Pressure p [ML−1T−2]
Viscosity µ [ML−1T−1]
Density ρ [ML−3]

Kinematic viscosity ν [L2T−1]
Dynamic viscosity µ [ML−1T−1]

Force F [MLT−2]
Specific heat cp [L2T−2K−1]

Thermal diffusivity α [L2T−1]
Thermal conductivity κ [MLT−3K−1]
Electrical conductivity σ [M−1L−3T 3I2]

Temperature T [K]
Stefan-Boltzmann constant σ∗ [MT−3K−4]

Magnetic field B [MT−2I−1]
Mean absorption k∗ [L−1]
Current density J [IL−2]
Lorentz force FL [LMT−2]
Electric field E [MLT−3I−1]

Positive constant b [T−1]
Permeability Ko [L2]
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