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Abstract

It is perceived that the addition of nanoparticles has increased the heat transfer ca-

pabilities of ordinary �uids signi�cantly for both turbulent and laminar �ow regimes.

This dissertation analyzes the e�ects of two di�erent types carbon nanotubes (CNTs)

on �ow and heat transfer characteristics of viscous �uid between two concentric cylin-

ders in the presence of thermal radiation e�ects. The �ow of MHD viscous �uid in a

Darcy type porous medium is driven by the pressure gradient, assumed as a periodic

function of time. The �uid is taken as optically thick and radiations can travel only

a short distance within the �uid. The magnetic �eld is applied perpendicular to the

direction of �ow and the induced magnetic �eld is considered negligible. The conven-

tional governing equations are based upon partial di�erential equations a�ected by the

viscosity of the base �uid, e�ective thermal conductivity, and thermophysical charac-

teristics of CNTs nanoparticles. The exact solutions are obtained in the form of the

modi�ed Bessel functions of the �rst and second kind. The e�ect of the �ow control

parameters like thermal radiation parameter Nr, nanoparticles volume fraction φ, and

Darcy number Da are illustrated through graphs. Based on a comprehensive analysis,

it is concluded that the addition of single-walled carbon nanotubes (SWCNTs) pro-

vides higher velocity and temperature distribution of nano�uid when compared with

the multi-walled carbon nanotubes (MWCNTs).
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Chapter 1

Introduction

The most signi�cant and basic natural and industrial processes are the �ow through

a cylindrical shape. For example, water distribution through pipes, heart siphoning,

blood distribution through cylindrical-shaped blood vessels, gas distribution through

iron pipes and ducts, automated food processing, heat exchangers, cooling systems,

refrigeration, chemical plants, solar collectors, nuclear reactor system, optical modula-

tors, optical switches. The use of cylindrical forms for all such processes is to decrease

the drag force with the surface so the �uid can move easily. Though in certain cases

�ow through cylinders stabilizes by application of external forces. There are many

ways to control or generate �uid movement in cylindrical form, pressure is an e�ective

process to improve the tendency of �uid movement. This phenomenon of �ow under

pressure is known as pulsatile �ow. Keeping the aforementioned in view there have

been several experiments performed to understand the characteristics of the pulsatile

�ow. Richardson and Tyler [1] through their model con�rmed the presence of maxi-

mum �ow velocity close to the pipe rim. Later analyses of Womersley [2] and Uchida [3]

veri�ed this result in the study of sinusoidal motion in the horizontal pipe containing

incompressible oscillating �uid. The fundamental concepts and analytical results for

the velocity pro�le for unsteady �ow in cylindrical pipes are presented by Atabek and

Chang [4]. Kakac [5] obtained solutions within the case of forced �ow between two

adjacent surfaces. Stud et al. [6] observed the in�uence of a dynamic magnetic �eld in

blood �ow and found that the application of an e�ective magnetic �eld improves the
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blood �ow rate. Sucec [7] used the �nite di�erence method to analyze the response

functions of the wall temperature and the mean temperature due to the laminar �uid

�ow. Agrawal and Anwarudin [8] presented a mathematical model that discusses how

magnetic force a�ects blood �ow through channels with identical branches. They have

found that the magnetic force can be used as a blood pump to wear heart processes

to treat artery diseases. Similarly, Chaturani and Palanisamy [9] describe the e�ect

of oscillatory body acceleration on blood movement. They have evaluated the ana-

lytical result of the pulsatile motion of blood �ow through �nite Laplace and Hankel

transform methods. It is noteworthy that an increase in the velocity provides the

transformation of �uid momentum from the tube axis to the closest tube wall area.

Majdalani and Chibli [10] obtained the results of the momentum equations governing

the pulsative �ow through a cylindrical duct where pressure was replaced by the sum

of pulses described in terms of the Fourier series. Shahed [11] achieved the closed-form

solutions using Laplace and Hankel transforms for �ow inside the porous channel with

the pulsatile motion of blood �ow. He stated that the velocity distribution is an in-

creasing function of the permeability parameter and shows a comparative analysis for

the limiting case. Yakhot and Grinberg [12] examined the impact of an increase in the

velocity and the pressure gradient with a phase di�erence. Eldesoky and Mousa [13]

discussed the peristaltic �ow of non-Newtonian Maxwell �uid via permeable media in a

cylinder. Hassan and Mohammed [14] analyzed the pulsatile �ow of a non-Newtonian

�uid within a non-Darcy porous medium between two permeable parallel sheets. In

the case of pulsatile �ow, Majdalani [15] achieved the exact solutions for optimizing

the velocity distribution and the stress coe�cient.

Heat transfer caused by �uid �ow is a thrust area of research in the �eld of �uid

mechanics. Therefore processes including heat transfer have been given great atten-

tion by the researchers in recent years. Analysis of any model which includes heat

transfer is in�uenced by many factors like the geometry of the �ow, a viscosity of

the �uid, �ow medium, boundary conditions, thermal conductivity, etc. Nano�uids

are reported to enhance the poor thermal conductivity of ordinary �uids and improve
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their thermal performance. This invention was �rst conceived by Choi et al. [16] and

showed an anomalous enhancement in thermal conductivity due to the suspensions

of nanoparticles. They noticed that nanomaterial gives the highest enhancement of

thermal conductivity and coe�cient of conventional heat transfer of ordinary �uid.

Nano�uids require some physical physiognomies of �uid and nanoparticles such as heat

di�usivity, viscosity, heat conductivity and comparable coe�cients of convective heat

transfer [17�19]. Buongiorno [20] introduced the carriage of nano�uid through an essen-

tial slip mechanism. Researchers discussed the nano�uid �ow phenomena for di�erent

types of �uids and nanoparticles for di�erent geometries [21�26].

Carbon nanotubes (CNTs) are thin, long cylinders of carbon atoms with a diam-

eter usually measured by nanometers (0.7-50 nm). There are two kinds of carbon

nanotubes based upon the number of graphene layers. These are called single-walled

(SWCNTs ) and multiple-walled (MWCNTs) carbon nanotubes respectively. In several

�elds of technology, such as electronics, optics, electronic sensors, composite materials,

biosensors, and in materials science applications, carbon nanotubes are used to improve

thermal performance. Analysis of the characteristics of CNTs on the �uid movement

and heat transportation of nano�uid is therefore very signi�cant. The properties of

SWCNTs and MWCNTs are similar but have some noticeable variations as well. The

terminology of CNTs was �rst introduced by Iijima [27] by producing the MWCNTs.

The reliable use of CNTs for electrical technologies were proposed by Ramasubrama-

nian et al. [28]. Xue [29] discussed the theoretical and experimental theories of CNT's.

Ding et al. [30] studied the heat transfer behavior of CNTs nano�uids �owing through

a horizontal pipe. They found an important enhancement in the convective heat trans-

fer and observed that the enhancement depends on the Reynolds number and solid

volume fraction of CNTs. Kamali and Binesh [31] explored improvement in heat trans-

port by using the non-Newtonian model for Nano�uids with CNTs in a straight pipe.

The results showed the heat transfer coe�cient is highest near the boundary region

due to the non-Newtonian behavior of CNTs based nano�uid. Wang et al. [32] set

up an experimental investigation to study the heat transfer of nano�uids-based upon

3



CNTs. They showed that the nano�uids at low concentration enhance the heat trans-

fer at the boundary. Hayat et al. [33] studied rotating �uid �ow through CNTs, using

the permeable medium of Darcy Frochheimer. Manevitch et al. [34] investigate the

e�ect of nonlinear radiation and optical motions on SWCNT. Mahanthesh et al. [35]

investigated the e�ect of nonlinear thermal radiation with Marangoni convection in

carbon nanotubes(CNTs) based on nano�uids �ow. Nadeem [36] investigated the peri-

staltic �ow in an inclined cylindrical form pipe having porous walls in the presence of

SWCNT. He observed that bolus increases by adding carbon nanotubes. Haq et al. [37]

presented an MHD slip �ow with convective heat transport in the presence of single

and multi-walled carbon nanotubes. They found that the presence of CNTs plays an

signi�cant role in the improvement of thermal conductivity. Hamid et al. [38] studied

the �ow behavior of CNTs nano�uid in a partially heated rectangular �n-shaped cavity

with an inner cylindrical barrier. They showed that carbon nanotubes have unique

physical and chemical characteristics. Thus, CNTs nanoparticles can be considered as

the best enhancing heat transfer candidate. Xiao et al. [39] investigated the natural

free-convection �ow in a perpendicular cylinder of viscous carbon nanotubes nano�uids

in the presence of a magnetic �eld by observing memory e�ects for the thermal equa-

tion using Fourier's law. Oktay et al. [40] examined the mixed convection and entropy

generation using local thermal nonequilibrium (LTNE) model in an annulus with a

rotating heated inner cylinder for SWCNT�water nano�uid �ow. They showed that

the inclusion of SWCNTs to based �uid leads to a decrease in the value of minimum

total entropy generation. Recent investigations studying carbon nanotubes nano�uid

�ow may be found in [41�43].

The principal objective of present research is to analyze the pulsatile �ow and heat

transfer of thermally radiative CNTs based nano�uid. The nano�uid is �owing through

two concentric cylinders in a Darcy type porous medium. Flow is formed by means

of the oscillating pressure gradient. The standard governing equations are developed

based on basic momentum equation and heat equation and then solved analytically

to receive the exact solutions in the form of the Bessel's functions. The obtained
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results for temperature distribution, velocity distribution and dimensionless pressure

are described graphically through variant in physical parameters. Dominant di�erences

can be observed in temperature and velocity pro�les for both water-based SWCNTs and

water-based MWCNTs nano�uids. In addition, the dimensionless pressure gradient is

calculated for di�erent time values.

The thesis is arranged as follows:

Chapter 2 presents basic de�nitions of �uid �ow, heat transfer and basic governing

equations of continuity, momentum and energy in cylindrical coordinates. These pre-

liminary concepts are then employed in the subsequent chapters. Chapter 3 presents

the mathematical model for �ow of Magnetohydrodynamics pulsatile �ow of CNT based

nano�uids between two concentric cylinders. The analysis is carried on engine oil based

carbon nanotubes. The associated governing system of partial di�erential equations are

then transformed into ordinary di�erential equations and solved analytically in term

of Bessel functions. The behaviour of physical parameters which in�uence the model is

delineated in the graphs. In Chapter 4, the mathematical model presented in Chap-

ter 3 is extended by including the e�ect of thermal radiation and porous medium.

The obtained results are presented in the form of graphs. Chapter 6 concludes the

research work and discusses possible future work.
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Chapter 2

Preliminaries and Basic Equations

This chapter contains speci�c concepts of �uid �ow, �ow forms and speci�c equations

with respect to �uid �ow and heat transfer. It also provides an introduction to nano�u-

ids and some of the physical parameters of nano�uid.

2.1 Fluid and Fluid Flow

A �uid is a particular kind of matter that has the ability to continuously deform itself

when shear stress is applied on it. This includes liquids, gases, plasma's and some

plastic solids. The phenomenon in which �uid continuously deforms itself is known as

�uid �ow.

2.2 Steady and Unsteady Flow

A �ow in which properties of �uid at a particular point remain constant with time is

known as steady �ow. Mathematically, it is stated as

Dγ

Dt
= 0, (2.1)

where t is time and γ is any �uid property. A �ow in which �uid at a particular point

changes its properties with time is known as unsteady �ow. Mathematically, it is stated

as
Dγ

Dt
6= 0. (2.2)
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2.3 Laminar and Turbulent Flow

Laminar �ow is a kind of �uid �ow in which �uid moves smoothly in parallel layers.

The path lines of �uid particles do not cross each other. This �ow usually occurs while

dealing with low Reynolds number. The �uid �ow in which �uid particles continuously

changes their direction is known as turbulent �ow.

2.4 Compressible and In-compressible Flow

A �uid �ow in which the density of the �uid remains constant is known as the incom-

pressible �ow, i.e.,
Dρ

Dt
= 0, (2.3)

where, ρ indicates the �uid density and D
Dt

denotes the material derivative which is

de�ned as
D

Dt
=

∂

∂t
+V.∇. (2.4)

A �uid �ow in which the �uid density varies with time is known as compressible �ow.

2.5 Axi-symmetric Flow

An axi-symmetric �ow is the one in which all the streamlines are positioned symmet-

rically around the axis. In this �ow both pressure term p and the cylindrical velocity

components vr, vθ, vz are independent of the angular variable θ.

2.6 Pulsatile Flow

In �uid dynamics, a �ow with periodic variation is known as pulsatile �ow. The

cardiovascular system of chordate animals is a very good example where pulsatile �ow

is found.
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2.7 Viscosity

Viscosity is a quantity that shows �uid opposition to the deformation or shear stresses

and is measured by the coe�cient of viscosity, µ. Mathematically, it is written as

µ =
shear stress

deformation rate
. (2.5)

In the above equation µ is absolute or dynamic viscosity. The other type of viscosity

is called as Kinematic viscosity, ν, which is a ratio of dynamic viscosity to density of

the �uid and has a following expression

ν =
µ

ρ
. (2.6)

The �uids having non-zero viscosity are known as Viscous �uids while those having

zero dynamic viscosity are known as inviscid �uids.

2.8 Newton's Law of Viscosity

This law creates a relationship between stress on �uid and the rate of shear strain. In

other words, shear stress is proportional (linearly) to velocity gradient. Mathematically

it can be written as

τxy = µ
du

dy
. (2.7)

Here, du
dy

is shear strain rate, τ indicates the shear stress and µ is the coe�cient of

viscosity.

2.9 Newtonian and Non-Newtonian Fluids

Newtonian �uids are those �uids which obey the Newton's law of viscosity. Most

ordinary Newtonian �uids are air, water, organic solvents, gasoline etc. The �uids

having the property that, the shear stress is not linearly proportional to the rate of

deformation are called as non-Newtonian �uids. Some of the substances that show non-

Newtonian behavior are ketchup, jams, yogurt, butter, gums, soup solution, cement

slurry, blood, saliva etc.
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2.10 Continuity Equation

Continuity equation is based on law of conservation of mass which states that mass can

neither be generated nor demolished but can be converted from one pro�le to another

inside a control volume. Mathematically, it is written as

∂ρ

∂t
+∇.(ρV) = 0, (2.8)

where V represents velocity vector and ∇ is the di�erential operator. If ρ is constant,

then (2.8) becomes

∇.V = 0, (2.9)

Continuity equation in cylindrical coordinates with velocity �eld ~V=(vr, vθ, vz) is

∂ρ

∂t
+

1

r

∂

∂r
(ρrvr) +

1

r

∂

∂θ
(ρvθ) +

∂

∂z
(ρvz) = 0. (2.10)

2.11 Momentum Equation

Law of conservation of momentum states that net force acting on a particle in �uid is

equal to time rate of change of linear momentum. Momentum equation is derived by

generalizing the law of conservation of momentum. Mathematical form of this law is

known as Navier-Strokes equation and has the form

ρ
DV

Dt
= ∇.τ + ρg, (2.11)

where, τ is Cauchy stress tensor, ρg is body force per unit mass and ∇.τ = (−∇P +

µ∇2V) represent surface forces. Then (2.11) becomes

ρ
DV

Dt
= −∇P + µ∇2V+ ρg. (2.12)

The general form of Navier-Strokes equation, with velocity vector expanded as ~V = (u,

v, w), one can write the vector equation (2.12) in cylindrical coordinates as
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r − component:

ρ

[
∂vr
∂ti

+ vr
∂vr
∂ri

+
vθ
r

∂vr
∂θi
− vθ

2

r
+ vz

∂vr
∂zi

]
= −∂p

∂r
+ µ

[
1

r

∂

∂r

(
r
∂vr
∂ri

)
− v2r
r2
− 2

r2
∂vr
∂θi

+
1

r2
∂2vr
∂θ2

+
∂2vr
∂z2

]
+
µ

3

∂

∂r

[
1

r

∂(rvr)

∂ri
+

1

r

∂vθi

∂θ
+
∂vz
∂zi

]
+ ρgr, (2.13)

θ − component:

ρ

[
∂vθi

∂t
+ vr

∂vθ
∂ri

+
vθ
r

∂vθi

∂θ
+
vrvθ
r

+ vz
∂vθ
∂zi

]
= −1

r

∂p

∂θ
+ µ

[
1

r

∂

∂r

(
r
∂vθ
∂ri

)
+

1

r2
∂2vθ
∂θ2
− v2θ
r2

+
2

r2
∂vθ
∂θi

+
∂2vθ
∂z2

]
+
µ

3

∂

∂θ

[
1

r

∂(rvr)

∂ri
+

1

r

∂vθ
∂θi

+
∂vz
∂zi

]
+ ρgθ, (2.14)

z − component:

ρ

[
∂vz
∂ti

+ vr
∂vz
∂ri

+
vθ
r

∂vz
∂θi

+ vz
∂vz
∂zi

]
= −∂p

∂z
+ µ

[
1

r

∂

∂r

(
r
∂vz
∂ri

)
+

1

r2
∂2vz
∂θ2

+
∂2vz
∂z2

]
+
µ

3

∂

∂z

[
1

r

∂(rvr)

∂ri
+

1

r

∂vθ
∂θi

+
∂vz
∂zi

]
+ ρgz. (2.15)

2.12 Heat Transfer

Heat transfer is a process in which transferring of thermal energy occurs due to tem-

perature di�erence between the physical systems. There are three di�erent ways of

heat transfer, conduction, convection, radiation.

2.12.1 Conduction

The process of heat transfer which occurs because of the molecular collisions is known

as conduction. Fourier developed a law known as Fourier's law of heat conduction.

Mathematical form of the law is

Q = −κAdT
dx
. (2.16)
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Here Q is heat �ow rate, κ is thermal conductivity, dT
dx

is temperature gradient, T is

temperature and A is cross-sectional area.

2.12.2 Convection

It is de�ned as heat transfer in �uids from a part with high temperature to a part where

temperature is comparatively low. In convection, Newton's law of cooling governs heat

transfer rate with the expression

Q = hA(T − T∞). (2.17)

Here, A is cross-sectional area, h is coe�cient of convection and T∞ is temperature of

the outside environment.

2.12.3 Radiation

Radiation occurs by photons of light or waves emitted from a surface volume. Radiation

can happen in vacuum also. Stefan-Boltzmann law is used to calculate the amount

transfer through radiation. Mathematically

Q = σ.T 4. (2.18)

Here σ denotes Stefan-Boltzmann's constant.

2.13 Energy Equation

This equation is formed by generalizing the �rst law of thermodynamics which ensures

that rate of change of �uid's energy inside a control volume is equals to rate of work

done due to body or surface forces and rate of heat addition. The governing equation

which includes energy conservation can be composed as

ρcp
DT

Dt
= ∇.(κ∇T ) + f.T, (2.19)
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In the above expression, κ is thermal conductivity of the �uid and cp denote speci�c

heat at a constant temperature and f is body or surface force. In cylinder coordinates

system equation 2.19 will become

ρcp

[
∂T

∂ti
+ vr

∂T

∂ri
+
vθ
r

∂T

∂θi
+ vz

∂T

∂zi

]
= κ

[
1

r

∂T

∂ri
+
∂2T

∂r2
+

1

r2
∂2T

∂θ2
+
∂2T

∂z2

]
. (2.20)

2.14 Magnetohydrodynamics (MHD)

Branch of engineering in which behavior of magnetic �eld in electrically conducting

�elds is studied is known as Magnetohydrodynamics. Combination of equations of

motion and Maxwell's equation of electromagnetism results in the set of equations

which represents MHD �ow. The momentum equation (2.11) with electromagnetic

force term for MHD �uid �ow is

ρ
DV

Dt
= ∇.τ + (J×B), (2.21)

where J shows density of current and B is total magnetic �eld which has following

expression

B = B+B1, (2.22)

where B1 is the induced magnetic �eld. Here B1 is considered very small in comparison

with external magnetic �eld and thus it can be ignored. This is justi�ed for MHD �ow

with small Reynolds number. By Ohms law, J is given as

J = σ(E+V×B), (2.23)

where σ is electrical conductivity and E is electrical �eld. After simpli�cation equation

(2.23) becomes

J×B =
[
0, 0,−σBo

2vz
]
. (2.24)

Using equation (2.23), momentum equation (2.21) becomes

ρ
DV

Dt
= ∇.τ − σBo

2vz. (2.25)
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2.15 Porous Medium

A porous medium (or porous material) is a material composed of a persistent solid

part, called solid matrix, and the remaining pore space (or void space) that can be

�lled with one or more �uids (e.g. oil, water and gas). Typical examples of a porous

medium are soil, karstic limestone, sand, foam cemented sandstone, bread, rubber,

lungs or kidneys.

2.16 Nano�uids

Nano�uids are a special kind of �uids that have improved thermal conductivity.Nano-

�uids include base �uid (water, oil, ethynol, etc.) in which particles of a nano-meter-

sized scale (1-100 nm) are suspended. Metals (Cu, Al, Ag), oxides (Al2O3, CuO),

carbides (SiC, TiC) and carbon nano-tubes form several common nanoparticles used

to create nano�uids.

2.17 Physical Parameters of Nano�uid

Below are some of the physical parameters used in nano�uid discussion

2.17.1 Viscosity

Viscosity of nano�uid is given by Brinkman [44] as

iµnf =
µf i

(1− φ)2.5i
. (2.26)

Here, φ is nanoparticle volume fraction coe�cient and µf is dynamic viscosity of base

�uid.

2.17.2 Density

Density of nano�uid is given by Khanafer et al. [45] as

ρnf = (1− φ) ρf + φρs. (2.27)

Here, ρf is the base �uid density and ρs is the density of solid particles.
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2.17.3 Speci�c heat

Speci�c heat of nano�uid is given by Khanafer et al. [45] as

(ρcp)nf = (1− φ) (ρcp)f + φ(ρcp)s. (2.28)

In the above equation, (cp)s is solid nanoparticle speci�c heat and (cp)f is base�uid

speci�c heat capacity.

2.17.4 Thermal Conductivity

It is given by Xue [29] as

κnf = κf

1− φ+ 2φ
(

κs
κs−κf

)
ln
(
κs+κf
2κf

)
1− φ+ 2φ

(
κf

κs−κf

)
ln
(
κs+κf
2κf

)
 . (2.29)

In the above equation, the thermal conductivity κnf of nano�uid is a function solid

volume fraction φ, thermal conductivity of the base �uid κf and thermal conductivity

of the nanoparticle κs.

2.18 Carbon Nanotube (CNT)

Carbon nanotubes (CNTs) are thin, long cylinders of carbon atoms with a diameter

usually measured by nanometers (0.7-50 nm). There are two kinds of carbon nanotubes

based upon the number of graphene layers. These are called single-walled (SWCNTs )

and multiple-walled (MWCNTs) carbon nanotubes respectively.

2.18.1 Single-walled Carbon Nanotube (SWCNT)

A single-walled carbon nanotube (SWCNT) is a seamless cylinder which consists of

only one layer of graphene. It shows impressively unique electrical properties.

2.18.2 Multi-walled Carbon Nanotube (MWCNT)

A multi-walled carbon nanotube (MWCNT) is also cylindrical in shape, with multiple

concentric layers of graphene composing it. These are comparatively complex structure

and variety.
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Chapter 3

MHD Pulsatile Flow of Engine Oil

Based Carbon Nanotubes Between

Two Concentric Cylinders

This chapter covers a review of the work of Haq et al. [37]. It describes the uni-

directional MHD �ow of viscous �uid with heat transport in the presence of carbon

nanotubes(SWCNTs and MWCNTs). Constitutive equations of conservation of mass,

momentum equation and energy are based upon PDEs that contain thermos-physical

characteristics of both nanoparticles. Section 3.1 deals with the mathematical formu-

lation of the �ow and heat transfer model. Sections 3.2 and 3.3 are about the problem

solution and the pressure calculation respectively. Section 3.4 deals with graphical

results along with their discussions.

3.1 Mathematical Formulation

An incompressible, viscous �uid is �owing between two concentric ducts as shown in

Figure 3.1. The pulsatile pressure gradient is applied in the z-direction to move the

�uid within the given channel. The magnetic �eld Bo is taken along r-direction. The

constitutive equations for conservation of mass, momentum and energy equations for

the �uid are given in equations (2.9), (2.12) and (2.19), respectively. After neglecting

all the body forces and including the Magnetohydrodynamics e�ect, the momentum

equation (2.12) and energy equation (2.19) for the nano�uid reduced to the form
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Figure 3.1: Flow �eld geometry.

iρnf

[
∂~V

∂t
+ ~V .∇~V

]
= −∇P + µnf∇2~V +

(
~J × ~B

)
, (3.1)

(ρcp)nf

[
∂T

∂t
+ ~V .∇T

]
= κnf∇2T. (3.2)
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In cylindrical coordinates system, equations (3.1) and (3.2) will become

ρnf

[
∂vr
∂ti

+ vr
∂vr
∂ri

+ vz
∂vr
∂zi

]
= −∂pi

∂r
+ µnf

[
1

r

∂vr
∂ri

+
∂2vr
∂r2

+
∂2vr
∂z2
− vr
r2

]
, (3.3)

ρnf

[
∂vz
∂ti

+ vr
∂vz
∂ri

+ vz
∂vz
∂zi

]
= −∂pi

∂z
+ µnf

[
1

r

∂vz
∂ri

+
∂2vz
∂r2

+
∂2vz
∂z2

]
− σfBo

2vz, (3.4)

(ρcp)nf

[
∂T

∂ti
+ vr

∂T

∂ri
+ vz

∂T

∂zi

]
= κnf

[
1

r

∂T

∂ri
+
∂2T

∂r2
+
∂2T

∂z2

]
. (3.5)

In above equations (ρcp)nf is the speci�c heat capacity of nano�uid, ρnf is density of

nano�uid, µnf is the viscosity of nano�uid, κnf is the thermal conductivity of nano�uid

and σnf is the electric conductivity of the nano�uid. Where Tf is the �uid tempera-

ture and p represent the pressure. The theoretical framework for CNTs nano�uid was

introduced by Xue [29] and is given as

iρnf = (1− φ) ρf + φρCNT , (3.6)

(ρcp)nf = (1− φ) (ρcp)f + φ(ρcp)CNT , (3.7)

i
κnf
κf

=
1− φ+ 2φ

(
κCNT

κCNT−κf

)
ln
(
κCNT+κf

2κf

)
1− φ+ 2φ

(
κf

κCNT−κf

)
ln
(
κCNT+κf

2κf

) , (3.8)

µnf =
µf i

(1− φ)2.5
. (3.9)

In above expressions ρf represent the density of �uid, κf represent the thermal con-

ductivity of �uid and µf represent the dynamic viscosity of the working �uid. Where

κCNT and cCNT represent the thermal conductivity and heat capacity of the carbon

nanotubes. φ is the nanoparticles concentration. In view of aforementioned quantities,
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equations (3.3)-(3.5) are reduced to

((1− φ) ρf + φρCNT )

[
∂vr
∂ti

+ vr
∂vr
∂ri

+ vz
∂vr
∂zi

]
= −∂p

∂r
+

iµf

(1− φ)2.5

[
1

r

∂vr
∂ri

+
∂2vr
∂r2

+
∂2vr
∂z2
− vr
r2

]
, (3.10)

((1− φ) ρf + φρCNT )

[
∂vz
∂ti

+ vr
∂vz
∂ri

+ vz
∂vz
∂zi

]
= −∂p

∂z
+

iµf

(1− φ)2.5

[
1

r

∂vz
∂ri

+
∂2vz
∂r2

+
∂2vz
∂z2

]
− σfBo

2vz, (3.11)

((1− φ) (ρcp)f + φ(ρcp)CNT )

[
∂T

∂ti
+ vr

∂T

∂ri
+ vz

∂T

∂zi

]
= κnf

[
1

r

∂T

∂ri
+
∂2T

∂r2
+
∂2T

∂z2

]
. (3.12)

The associated initial and boundary conditions of the model are:

Atit = 0

vr(r, z, 0) = vz(r, z, 0) = 0, iandi ip(r, z, 0) = Tf (r, z, 0) = 0. (3.13)

At outer cylinder

vr(1, z, t) = vz(1, z, t) = 0, i iand i
∂Tf
∂r

(1, z, t) = 0. (3.14)

At inner cylinder

vr(
Ri

Re

, z, t) = vz(
Ri

Re

, z, t) = 0, i iandi iTf (
Ri

Re

, z, t) = 1. (3.15)

To non-dimensionlize the equations (3.10)-(3.12) subject to initial boundary conditions

(3.13)-(3.15) following set of dimensionless variables are introduced as

vr =
v′r
ωRe

, vz =
v′z
ωRe

, r =
r′

Re

, z =
z′

Re

,

t = ωt′, p =
p′

R2
eω

2ρf
, T =

T ′ − Tf
Ti − Tf

. (3.16)
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By using the variables de�ned in equation (3.16) to transform the equations (3.10)-

(3.12) into non-dimensional form and here we ignore prime for simplicity.[
(1− φ) +

(
ρCNT
ρf

)
φ

] [
∂vr
∂ti

+ vr
∂vr
∂ri

+ vz
∂vr
∂zi

]
= −∂p

∂r
+

iµf

(1− φ)2.5 ωRe
2ρf

[
1

r

∂vr
∂ri

+
∂2vr
∂r2

+
∂2vr
∂z2
− vr
r2

]
, (3.17)

[
(1− φ) +

(
ρCNT
iρf

)
φ

] [
∂vz
∂ti

+ vr
∂vz
∂ri

+ vz
∂vz
∂zi

]
= −∂p

∂z
+

iµf

(1− φ)2.5 ωRe
2ρf

[
1

r

∂vz
∂ri

+
∂2vz
∂r2

+
∂2vz
∂z2

]
− σfB

2
o

ωρf
vz, (3.18)

[
(1− φ) +

(
(ρcp)CNT
(iρcp)f

)
φ

][
∂T

∂ti
+ vr

∂T

∂ri
+ vz

∂T

∂zi

]
=

κnf

ωRe
2 (ρcp)f

[
1

r

∂T

∂ri
+
∂2T

∂r2
+
∂2T

∂z2

]
. (3.19)

After simpli�cation equations (3.17)-(3.19) reduced to the form

A1

[
∂vr
∂ti

+ vr
∂vr
∂ri

+ vz
∂vr
∂zi

]
= −∂p

∂r
+

i1

(1− φ)2.5Reω

[
1

r

∂vr
∂ri

+
∂2vr
∂r2

+
∂2vr
∂z2
− vr
r2

]
, (3.20)

A1

[
∂vz
∂ti

+ vr
∂vz
∂ri

+ vz
∂vz
∂zi

]
= −∂p

∂z
+

1i

(1− φ)2.5Reω

[
1

r

∂vz
∂ri

+
∂2vz
∂r2

+
∂2vz
∂z2

]
− M2

Reω
vz, (3.21)

A2

[
∂T

∂ti
+ vr

∂T

∂ri
+ vz

∂T

∂zi

]
=

A3

Pr.Reω

[
1

r

∂T

∂ri
+
∂2T

∂r2
+
∂2T

∂z2

]
. (3.22)

The dimensionless parameters appearing in Eqs. (3.20)-(3.22) are de�ned as

Pr =
µf (cp)f
κf

, M = ReBo

√
σf
µf

, Reω = α2 =
ωR2

e

νf
. (3.23)
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The coe�cients A1, A2 and A3 are de�ned as

A1 =

[
(1− φ) +

(
ρCNT
ρf

)
φ

]
, (3.24)

A2 =

[
(1− φ) +

(
(ρcp)CNT

(ρcp)f

)
φ

]
, (3.25)

A3 =
κnf
κf

=
1− φ+ 2φ

(
κCNT

κCNT−κf

)
ln
(
κCNT+κf

2κf

)
1− φ+ 2φ

(
κf

κCNT−κf

)
ln
(
κCNT+κf

2κf

) . (3.26)

The dimensionless form of boundary conditions are

vz = 0, i
∂T

∂r
= 0, i at i r = 1, (3.27)

vz = 0, T = 1, at i r =
Ri

Re

= R∗. (3.28)

Assume the �ow is fully developed and the velocity �eld is of the form

i~V = [0, 0, vz(r, z, t)] . (3.29)

In case of axis-symmetric �ow equations (3.20) and (3.22) becomes,

A1
∂vz
∂t

= −∂p
∂z

+
A4

Reω

[
1

r

∂vz
∂r

+
∂2vz
∂r2

]
− M2

Reω
vz, (3.30)

A2

[
∂T

∂t
+ vz

∂T

∂z

]
=

A3

Pr.Reω

[
1

r

∂T

∂r
+
∂2T

∂r2
+
∂2T

∂z2

]
. (3.31)

3.2 Solution of the Problem

The problem considered in this study deals with the pulsatile �ow and heat transfer,

therefore periodic pressure gradient can be expressed as

∂P

∂z
= −ACos(ωt) = Real(−Aeiωt). (3.32)

The solution of the velocity pro�le can be de�ned as

vz(r, t) = Real
[
f(r)eit

]
. (3.33)
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In view of above equations, equation (3.30) reduce to the form

d2f(r)

dr2
+

1

r

df(r)

dr
− 1

A4

(
M2 + iα2A1

)
f(r) = −Aα

2

A4

. (3.34)

The solution of equation (3.34) is

f(r) = C1I0(ζr) + C2K0(ζr) +
Aα2

ζ2A4

, (3.35)

where Io and Ko are the zeroth order modi�ed Bessel functions of 1st and 2nd kind

and ζ =
√

1
A4

(M2 + iα2A1). Equation (3.33) gives the velocity pro�le as

vz(r, t) = Real

[
C1I0(ζr) + C2K0(ζr) +

Aα2

ζ2A4

]
eit (3.36)

Using boundary conditions (3.13)-(3.15) in the above equation one can �nd

C1 = − α2BesselK[0, ζ]A− α2BesselK[0, ζR∗]A

ζ2A4 (BesselI[0, ζR∗]BesselK[0, ζ]−BesselI[0, ζ]BesselK[0, ζR∗])
, (3.37)

C2 = − −α2BesselI[0, ζ]A+ α2BesselI[0, ζR∗]A

ζ2A4 (BesselI[0, ζR∗]BesselK[0, ζ]−BesselI[0, ζ]BesselK[0, ζR∗])
. (3.38)

In order to �nd the analytical solution of the Eq. (3.31), the solution for the

temperature pro�le is assumed as

T (r, z, t) = Real
[
−γ′

z + γ
′
g(r)eit + 1

]
, (3.39)

where γ
′
= Re

L
. Equation (3.31) together with equation (3.39) reduces to

d2g(r)

dr2
+

1

r

dg(r)

dr
− iA2Prα

2

A3

g(r) =
A2Prα

2

A3

f(r). (3.40)

The solution of Eq. (3.40) is

T (r, z, t) = Real[−γ′
z + γ

′
[−iC1I0(ζr)− iC2K0(ζr) + C3I0(ξr)

+C4K0(ξr)− i
Aα2

ζ2A4

]eit + 1],
(3.41)
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where ξ =
√
iA2Prα2

A3
. To determine the constants C3 and C4 use of Eqs. (3.27)-(3.28)

in Eq. (3.41) gives

C3 =
αζ2A4

√
iPrA2BesselK[1, ξ]δ1 + ζ3A4

√
A3BesselK[0, ξR∗]δ2

αζ2
√
iPrA2 (BesselI[0, ξR∗]BesselK[1, ξ] +BesselI[1, ξ]BesselK[0, ξR∗])

,

(3.42)

C4 =
αζ2A4

√
iPrA2BesselI[1, ξ]δ1 − ζ3A4

√
A3BesselI[0, ξR∗]δ2

αζ2
√
iPrA2 (BesselI[0, ξR∗]BesselK[1, ξ] +BesselI[1, ξ]BesselK[0, ξR∗])

,

(3.43)

where

δ1 = i

[
C1I0(ζR

∗) + C2K0(ζR
∗)− i z

eit
+
Aα2

ζ2A4

]
, (3.44)

δ2 = i [C1I1(ζ)− C2K1(ζ)] . (3.45)

3.3 Pressure Calculation

Substitution of solution obtained for vz(r, t) in equation (3.30) and re-arranging the

terms

∂p

∂z
=− A1

[
i.eit

(
C1I0(ζr) + C2K0(ζr) +

Aα2

ζ2A4

)]

+
A4

α2

[
eit
(
ζ2(I2(ζr) + I0(ζr))

2
C1 −

ζ2(K2(ζr) +K0(ζr))

2
C2

)]

+
A4

α2

eit

r
[ζI1(ζr)C1 − ζK1(ζr)C2]−

M2

α2

[
eit
(
C1I0(ζr) + C2K0(ζr) +

Aα2

ζ2A4

)]
.

(3.46)

The Non-dimensional pressure gradient is de�ned as

∆P =

∫ 1

0

∂p

∂z
dz, (3.47)
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and the substitution of (3.46) gives.

∆P =− A1

[
i.eit

(
C1I0(ζr) + C2K0(ζr) +

Aα2

ζ2A4

)]

+
A4

α2

[
eit
(
ζ2(I2(ζr) + I0(ζr))

2
C1 −

ζ2(K2(ζr) +K0(ζr))

2
C2

)]

+
A4

α2

eit

r
[ζI1(ζr)C1 − ζK1(ζr)C2]−

M2

α2

[
eit
(
C1I0(ζr) + C2K0(ζr) +

Aα2

ζ2A4

)]
.

(3.48)

3.4 Results and Discussion

This segment is devoted to analyze the impact of physical parameters on character-

istics of temperature and velocity distributions, vorticity and pressure increase for

CNTs based nano�uid. The physical parameters are volume fraction of nanoparticles

φ, Prandtl number Pr, Reynolds number Reω, Radiation parameter Nr, magnetic �eld

parameterM , the time t, and the pressure gradient amplitude A. The thermo-physical

characteristics of nano�uid are described in Table 3.1.

Table 3.1: The physical characteristics of base �uid and CNTs.

Physical Characteristics ρ(kg/m3) c(J/kgK) k(W/mK)
Engine oil (Base �uid) 884 1910 0.144
SWCNTs (Nanoparticles) 2600 425 6600
MWCNTs (Nanoparticles) 1600 796 3000

Figures 3.2(a)-(d) presented the in�uence of certain values of nanoparticles volume

fraction on velocity pro�le. Figures 3.2(a)-(d) show that the velocity �eld is maxi-

mum near the center of cylinder and rapidly decreases with increase of nanoparticle

concentration. Figures 3.2(a)-3.2(b) also show that the addition of nanoparticles (both

SWCNTs and MWCNTs) in base �uid increases the density of the mixture. As a result,

when density of nano�uid is boosted then movement of nano�uid becomes relatively

slow as compared to the engine-oil (base �uid) as depicted in Figure 3.2(a)-(b).
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Figures 3.3(a)-(d) demonstrate that inclusion of nanoparticles decreases the maximum

velocity �eld of the ordinary �uid. It is observed that the inertial component increase

with increase of Womersley number Reω. Furthermore, it is also noted that increase of

Reω give rise in velocity distribution. The Womersley number is the ratio of pulsation

to the viscous forces when viscous forces decrease then �uid particles travel faster and

thus increases the velocity pro�le. Figures 3.4(a)-(d) depicts that the maximum of

velocity �eld increases with increase in the value of magnetic �eld parameter M . Yet

there does not hold such observation near to the upper wall. Clearly, an increase inten-

sity of the external magnetic �eld is obviously intended to increase the velocity of the

nano�uid in the middle of the duct. Figures 3.4(a)-(d) often show that the addition of

nanoparticles decreases the overall velocity of the base �uid (engine oil). Furthermore,

from Figure 3.4(a), it is noted that base �uid have a relatively high velocity �eld com-

pared to engine oil-SWCNTs (φ = 0.2). Same behavior can be seen in Figure 3.4(b).

It is also observed from �gures 3.4(a) and 3.4(b) that the magnetic �eld serve as a

resistant force for the �uid �ow that eventually reduces the �ow rate. In addition, the

magnetic �eld gives rise to the elimination of the annular e�ect, which is considered a

pulsatile �ow characteristic.

Figures 3.5(a) and (b) show the e�ect of the Womersley number Reω to examine the

velocity �eld �ow for both nano�uid and base �uid. In �gure 3.5(a) velocity pro�le

shows the increasing behavior for increasing values of Womersley number close to the

surface of the cylinder. It is observed in Figure 3.5(b) that for water based MWCNTs

(φ= 0.2) the behavior of velocity distribution remains the same but it's values remain

low. The decrease in the �ow area ends with the rise in dimensionless velocity �eld

as shown in �gures 3.6(a) and 3.6(b), where the dimensionless velocity �eld reduces

as nanoparticle concentrations increases. Once again it is observed Figures 3.6(a) and

3.6(b) that engine oil-MWCNT have low velocity �eld as compare to the engine oil-

SWCNT.

Figure 3.7(a)-(d) shows that impact of nanoparticles φ on the radial pro�le of vor-

ticity. According to the vortex de�nition results presented in Figure 3.7(a)-(d) shows

the resemblance and it is found that the e�ect of the vortices is signi�cantly higher
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at extreme level of the domain. We observe that the amplitude of the vortices will be

greater if the volume fraction is high for nano�uid. Moreover, the vorticity curves also

change their direction along the channel. The vortex graph for SWCNTs and MWC-

NTs are similar for the same concentration of nanoparticles in base �uid. Figures 3.8

indicates a modi�cation of the pressure gradient in order to maximize the volume of

the nanoparticles. It is observed that the pressure gradient at the mean level of the

channel is maximum but shows the decreasing behavior. It is also observed that there

is a minimum change in the dimensionless pressure gradient for MWCNT as compared

to SWCNT.

Figure 3.9(a)-(c) emphasizes the variation in temperature distribution for di�erent

values of nanoparticle concentration, pressure gradient amplitude, Hartmann number

respectively, for two di�erent nano�uid. Figure 3.9(a) shows the of volume fraction of

nanoparticles φ on dimensionless temperature pro�le for engine oil based CNT nanopar-

ticles. It is observed that with an increase of nanoparticles concentration enhance the

temperature pro�le.Furthermore, SWCNT nanoparticles have higher heat transfer rate

as compare to the engine oil based MWCNT nanoparticles. Figure 3.9(b) shows the im-

pact of pressure gradient amplitude on the dimensionless temperature for both CNTs.

The temperature pro�le is found to be decreasing with the increase in amplitude of the

pressure gradient. Figure 3.9(c) reveals the variance of non-dimensional temperature

pro�le against magnetic parameterM for both nano�uids. We may �nd that the dimen-

sionless temperature pro�le increases by introducing the normal magnetic �eld. Since

magnetic �eld generates the electriccurrent in �uid which generates heat in the �uid,

so the magnetic �eld with thermal radiation improves the enhancementiphenomena.
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Figure 3.2: Variance in velocity distribution when M = 5, Reω = 1:
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Figure 3.3: Variance in velocity distribution when M = 5, Reω = 900
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Figure 3.4: In�uence of M on velocity distribution when Reω = 900, t = 30
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Figure 3.5: In�uence of Reω on velocity distribution when M = 5, t = 30
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Figure 3.6: In�uence of R∗ on velocity distribution when t = 30, M = 5
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Figure 3.7: Variation of vortex pro�le when Reω = 100 and M = 5
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Chapter 4

Pulsatile Darcy Flow of Water-Based

Thermally Radiative Carbon

Nanotubes Between Two Concentric

Cylinders

This chapter extends the model presented by Haq et al. [37]. The current investigation

analyzes the e�ects of thermally radiative carbon nanotubes (CNTs) on �ow and heat

transfer characteristics of viscous �uid in the Darcy type porous medium between two

concentric cylinders. E�ect of variations in parameters on velocity and temperature

pro�les are analyzed graphically by using MATHEMATICA. Sections 4.1 deals with

the mathematical formulation. Section 4.2 is about the solution of problem and section

4.3 deals with graphical results along with their discussions.

4.1 Formulation of the Problem

Consider the unidirectional MHD �ow of viscous �uid moving between two concentric

cylinders. The porous space representing the Darcy expression is �lled by an incom-

pressible viscous �uid. Nanoparticles are introduced within the viscous �uid to improve

the thermal conductivity of the �uid. The nano�uid is produced by inserting CNTs

(SWCNTs and MWCNTs) as nanoparticles. The pulsatile pressure gradient is applied

in the z-direction to move the �uid within the given channel. The magnetic �eld Bo is
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taken along r-direction. The electric �eld is taken zero and the induced magnetic �eld

is considered negligible. The nano�uid �ow taken under the e�ect of thermal radia-

tion. As the �uid �ow due to the pulsatile pressure, therefore the velocity at cylindrical

walls is zero. Further ~V=V (vr, vθ, vz) represents the velocity �eld. Continuity equation

remains same as (2.9) while after including the e�ects of porous medium and thermal

radiation, constitutive equations of momentum and energy are given below

ρnf

[
∂~V

∂t
+ ~V .∇~V

]
= −∇P + µnf∇2~V +

(
~J × ~B

)
− µnf

K
~V , (4.1)

(ρcp)nf

[
∂T

∂t
+ ~V .∇T

]
= κnf∇2T −∇.~qr. (4.2)

Using Rosseland difusion approximation for thermal radiation the radiative fux qr is

sculpted as

~qr = −4σsb
3aR

[
~∇T 4

]
, (4.3)

∇.~qr = −4σsb
3aR

[
∇2T 4

]
= −4σsb

3aR

[
1

r

∂T 4

∂r
+
∂2T 4

∂r2
+
∂2T 4

∂z2

]
, (4.4)

Where, aR is the mean absorption coe�cient and σsb is Stefan Boltzmann constant. It

is supposed that the di�erence in temperature within the �ow is such that T 4 may be

represented as the linear combination of temperature. There expanding T 4 by using

Taylor series about Tf and considering only linear terms gives us

T 4 = 4Tf
3T − 3Tf

4. (4.5)

Substituting above Equation (4.5) into equation (4.4), we get

∇.~qr = −16σsbTf
3

3aR

[
1

r

∂T

∂ri
+
∂2T

∂r2
+
∂2T

∂z2

]
, (4.6)
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In cylindrical coordinates system, equations (4.1) and (4.2) will become

ρnf

[
∂vr
∂ti

+ vr
∂vr
∂ri

+ vz
∂vr
∂zi

]
= −∂p

∂r
+ µnf

[
1

r

∂vr
∂ri

+
∂2vr
∂r2

+
∂2vr
∂z2
− vr
r2

]
− µnf

K
vr, (4.7)

ρnf

[
∂vz
∂ti

+ vr
∂vz
∂ri

+ vz
∂vz
∂zi

]
= −∂p

∂z
+ µnf

[
1

r

∂vz
∂ri

+
∂2vz
∂r2

+
∂2vz
∂z2

]
− σfBo

2vz −
µnf
K

vz, (4.8)

(ρcp)nf

[
∂T

∂ti
+ vr

∂T

∂ri
+ vz

∂T

∂zi

]
= κnf

[
1

r

∂T

∂ri
+
∂2T

∂r2
+
∂2T

∂z2

]
+

16σsbTf
3

3aR

[
1

r

∂T

∂ri
+
∂2T

∂r2
+
∂2T

∂z2

]
. (4.9)

Substitute equations (3.6)-(3.9) into Equations (4.7), (4.8) and (4.9) we obtain

ρf

[
(1− φ) +

(
ρCNT
ρf

)
φ

] [
∂vr
∂ti

+ vr
∂vr
∂ri

+ vz
∂vr
∂zi

]
= −∂p

∂r
+

iµfi

(1− φ)2.5

[
1

r

∂vr
∂ri

+
∂2vr
∂r2

+
∂2vr
∂z2
− vr
r2

]
− µnf

K
vr, (4.10)

ρf

[
(1− φ) +

(
ρCNT
ρf

)
φ

] [
∂vz
∂ti

+ vr
∂vz
∂ri

+ vz
∂vz
∂zi

]
= −∂p

∂z
+

iµfi

(1− φ)2.5

[
1

r

∂vz
∂ri

+
∂2vz
∂r2

+
∂2vz
∂z2

]
− σfB2

ovz −
µnf
K

vz, (4.11)

(ρcp)f

[
(1− φ) +

(
(ρcp)CNT
(iρcp)fi

)
φ

][
∂T

∂ti
+ vr

∂T

∂ri
+ vz

∂T

∂zi

]
= κnf

[
1

r

∂T

∂ri
+
∂2T

∂r2
+
∂2T

∂z2

]
+

16σsbTf
3

3aR

[
1

r

∂T

∂ri
+
∂2T

∂r2
+
∂2T

∂z2

]
. (4.12)
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Now we transform the above dimensional �ow equations (4.10)-(4.12) into non-dimensional

form using variables vr, vz, r, z, t, p and T de�ned in equation (3.16)[
(1− φ) +

(
ρCNT
ρf

)
φ

] [
∂vr
∂ti

+ vr
∂vr
∂ri

+ vz
∂vr
∂zi

]
= −∂p

∂r
+

µf

(1− φ)2.5 ωRe
2ρf

[
1

r

∂vr
∂r

+
∂2vr
∂r2

+
∂2vr
∂z2
− vr
r2

]
− µf

(1− φ)2.5 ωρfK
vr, (4.13)

[
(1− φ) +

(
ρCNT
iρf

)
φ

] [
∂vz
∂ti

+ vr
∂vz
∂ri

+ vz
∂vz
∂zi

]
= −∂p

∂z
+

µf

(1− φ)2.5 ωRe
2ρf

[
1

r

∂vz
∂ri

+
∂2vz
∂r2

+
∂2vz
∂z2

]
− σfB

2
o

ωρf
vz −

µf

(1− φ)2.5 ωρfK
vz, (4.14)

[
(1− φ) +

(
(ρcp)CNT
(iρcp)fi

)
φ

][
∂T

∂ti
+ vr

∂T

∂ri
+ vz

∂T

∂zi

]
=

iκnf

ωRe
2 (ρcp)f

[
1

r

∂T

∂ri
+
∂2T

∂r2
+
∂2T

∂z2

]
+

16σsbTf
3

3aRωRe
2 (ρcp)f

[
1

r

∂T

∂r
+
∂2T

∂r2
+
∂2T

∂z2

]
. (4.15)
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After simplifying the above equations (4.13)-(4.15) we obtain

A1

[
∂vr
∂ti

+ vr
∂vr
∂ri

+ vz
∂vr
∂zi

]
= −∂p

∂r
+

A4

Reω

[
1

r

∂vr
∂ri

+
∂2vr
∂r2

+
∂2vr
∂z2
− vr
r2

]
− A4

Reω.Da

vr, (4.16)

A1

[
∂vz
∂ti

+ vr
∂vz
∂ri

+ vz
∂vz
∂zi

]
= −∂p

∂z
+

A4

Reω

[
1

r

∂vz
∂ri

+
∂2vz
∂r2

+
∂2vz
∂z2

]
− M2

Reω
vz −

A4

Reω.Da

vz, (4.17)

A2

[
∂T

∂ti
+ vr

∂T

∂ri
+ vz

∂T

∂zi

]
=

[
A3

Pr.Reω
+

Nr

Reω

] [
1

r

∂T

∂ri
+
∂2T

∂r2
+
∂2T

∂z2

]
. (4.18)

The dimensionless parameters appearing in Eqs. (4.16)-(4.18) are de�ned as

Pr =
µf (cp)f
κf

, M = ReBo

√
σf
µf

, Reω = α2 =
ωR2

e

νf
,

Da =
K

R2
e

, Nr =
16σsbTf

3

3aRνf (ρcp)f
. (4.19)

Assume the �ow is fully developed and the velocity �eld is of the form

~V = [0, 0, vz(r, z, t)] . (4.20)

The �ow �eld de�ned in equation (4.20) identically satis�es the continuity equation

(2.9) and the eqs. (4.16)-(4.18) can be rewritten as

A1
∂vz
∂t

= −∂p
∂z

+
A4

Reω

[
∂2vz
∂r2

+
1

r

∂vz
∂r

]
− M2

Reω
vz −

A4

Reω.Da

vz, (4.21)

A2

[
∂T

∂t
+ vz

∂T

∂z

]
=

[
A3

Pr.Reω
+

Nr

Reω

] [
∂2T

∂r2
+

1

r

∂T

∂r
+
∂2T

∂z2

]
. (4.22)

In case of axis-symmetric �ow equations (4.21) and (4.22) becomes

A1
∂vz
∂t

= −∂p
∂z

+
A4

α2

[
∂2vz
∂r2

+
1

r

∂vz
∂r

]
− M2

α2
vz −

A4

α2.Da

vz, (4.23)

A2

[
∂T

∂t
+ vz

∂T

∂z

]
=

[
A3

Pr.α2
+
Nr

α2

] [
∂2T

∂r2
+

1

r

∂T

∂r
+
∂2T

∂z2

]
. (4.24)
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4.2 Solution of the Problem

The problem considered in this study deals with the pulsatile �ow and heat transfer,

therefore periodic pressure gradient can be expressed as

∂P

∂z
= −ACos(ωt) = Real(−Aeiωt). (4.25)

The velocity pro�le solution can be described as

vz(r, t) = Real
[
f(r)eit

]
. (4.26)

In view of equations (4.25) and (4.26), we have from equation (4.23)

d2f(r)

dr2
+

1

r

df(r)

dr
−
[

(M2 + iα2A1)

A4

+
1

Da

]
f(r) = −Aα

2

A4

. (4.27)

The solution to linear second order ODE (4.27) is in the form of Bessel's functions

f(r) = C1I0(ηr) + C2K0(ηr) +
Aα2

η2A4

, (4.28)

where I0 and K0 are zeroth order Bessel's function of the �rst kind and the second

kind respectively. η =
√

(M2+iα2A1)
A4

+ 1
Da
. Equation (4.26) together with (4.28) yields

vz(r, t) = Real

[
C1I0(ηr) + C2K0(ηr) +

Aα2

η2A4

]
eit (4.29)

To determine the constants C1 and C2 Eqs. (3.27)-(3.28) are substituted in Eq. (4.29).

After simpli�cation

C1 =
−α2BesselK[0, η]A+ α2BesselK[0, ηR∗]A

η2A4 (BesselI[0, ηR∗]BesselK[0, η]−BesselI[0, η]BesselK[0, ηR∗])
, (4.30)

C2 =
α2BesselI[0, η]A− α2BesselI[0, ηR∗]A

η2A4 (BesselI[0, ηR∗]BesselK[0, η]−BesselI[0, η]BesselK[0, ηR∗])
. (4.31)
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In order to �nd the analytical solution of the Eq. (4.24), the solution for the

temperature pro�le is assumed as

T (r, z, t) = Real
[
−γ′

z + γ
′
g(r)eit + 1

]
, (4.32)

where γ
′
= Re

L
. Eq. (4.24) in light of the above takes the form

d2g(r)

dr2
+

1

r

dg(r)

dr
− i A2Prα

2

A3 + PrNr

g(r) =
A2Prα

2

A3 + PrNr

f(r). (4.33)

The solution of Eq. (4.33) is

T (r, z, t) = Real[−γ′
z + γ

′
[−iC1I0(ηr)− iC2K0(ηr) + C3I0(ξr)

+C4K0(ξr)− i
Aα2

η2A4

]eit + 1],
(4.34)

where ξ =
√
i A2Prα2

A3+PrNr
. To determine the constants C3 and C4 use of Eqs. (3.27)-(3.28)

in Eq. (4.34) gives

C3 =
αη2A4

√
iPrA2BesselK[1, ξ]β1 + η3A4

√
A3 + PrNrBesselK[0, ξR∗]β2

αη2
√
iPrA2 (BesselI[0, ξR∗]BesselK[1, ξ] +BesselI[1, ξ]BesselK[0, ξR∗])A4

,

(4.35)

C4 =
αη2A4

√
iPrA2BesselI[1, ξ]β1 − η3A4

√
A3 + PrNrBesselI[0, ξR∗]β2

αη2
√
iPrA2 (BesselI[0, ξR∗]BesselK[1, ξ] +BesselI[1, ξ]BesselK[0, ξR∗])A4

,

(4.36)

β1 =

[
z

eit
+ i

Aα2

η2A4

+ iC1I0(ηR
∗) + iC2K0(ηR

∗)

]
, (4.37)

β2 = [iC1I1(η)− iC2K1(η)] . (4.38)

4.3 Pressure Calculation

To calculate the pressure gradient, Equation (4.23) can be written as

∂p

∂z
= −A1

∂vz
∂t

+
A4

α2

[
∂2vz
∂r2

+
1

r

∂vz
∂r

]
− M2

α2
vz −

A4

α2.Da

vz (4.39)
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Equation (4.39) together with Eq. (4.29) becomes

∂p

∂z
= −A1

[
i.eit

(
C1I0(ηr) + C2K0(ηr) +

Aα2

η2A4

)]

+
A4

α2

[
eit
(
η2(I2(ηr) + I0(ηr))

2
C1 −

η2(K2(ηr) +K0(ηr))

2
C2

)]

+
A4

α2

eit

r
[ηI1(ηr)C1 − ηK1(ηr)C2]−

M2

α2

[
eit
(
C1I0(ηr) + C2K0(ηr) +

Aα2

η2A4

)]

− A4

α2.Da

[
eit
(
C1I0(ηr) + C2K0(ηr) +

Aα2

η2A4

)]
.

(4.40)

The dimensionless pressure rise is de�ne as

∆P =

∫ 1

0

∂p

∂z
dz (4.41)

∆P = −A1

[
i.eit

(
C1I0(ηr) + C2K0(ηr) +

Aα2

η2A4

)]

+
A4

α2

[
eit
(
η2(I2(ηr) + I0(ηr))

2
C1 −

η2(K2(ηr) +K0(ηr))

2
C2

)]

+
A4

α2

eit

r
[ηI1(ηr)C1 − ηK1(ηr)C2]−

M2

α2

[
eit
(
C1I0(ηr) + C2K0(ηr) +

Aα2

η2A4

)]

− A4

α2.Da

[
eit
(
C1I0(ηr) + C2K0(ηr) +

Aα2

η2A4

)]
.

(4.42)

4.4 Results and Discussion

This segment is devoted to analyze the impact of physical parameters on characteristics

of temperature and velocity distributions, vorticity and pressure increase for CNTs
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based nano�uid. The physical parameters are volume fraction of nanoparticles φ,

Prandtl number Pr, Reynolds number Reω, Radiation parameter Nr, magnetic �eld

parameter M , Darcy parameter Da, the pressure gradient amplitude A and the time

t. The values of various parameters considered are Pr = 6.2, r∗ = 0.1 and z = 3

while other parameters are varied over a range and are mentioned in the caption of the

�gures. The thermo-physical characteristics of nano�uid are described in Table 1.

Table 4.1: The physical characteristics of nanoparticles and base �uid [29].

Physical Characteristics ρ(kg/m3) C(J/kgK) k(W/mK)
SWCNTs (Nano Particle) 2600 425 6600
MWCNTs (Nano Particle) 1600 796 3000
Water (Base Fluid) 997.1 4179 0.613

Figures (4.1)-(4.6) are plotted to see how physical parameters a�ect the velocity

pro�le for CNTs based nano�uid. In Figures 4.1(a)�4.1(d) e�ects of variation in the

solid volume fraction of nanoparticle φ on the velocity pro�les are presented. Each

plotted graph shows that the enhancement of solid volume fraction of nanoparticles

leads to the velocity pro�le attains the highest amplitude at the mean level of the

duct and shows a parabolic curve which swiftly decreases with raise in nanoparticles

concentration In Figure 4.1(a), one can notice that there is a higher and signi�cant

change in the velocity distribution for φ = 0 as compared to the nonzero values of solid

volume fraction of nanoparticles φ. When comparison is made between velocity pro�le

of SWCNT and MWCNT for same concentration of nanoparticles, we notice that the

peak velocity for SWCNT is higher as compared to MWCNT. Figures 4.2(a)-4.2(d)

demonstrate that the highest velocity in pulsatile �ow is found close to the walls of the

cylinders with rapid vibrations due to the annular e�ect. These annular e�ects increase

with increase in Womersley number. In this case again we have lower velocity for the

case of MWCNTs. Overall presence of nanoparticles decrease the velocity pro�le for

pulsatile �ow.
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Figures 4.3(a)-4.3(d) show that the velocity deviate slightly from sinusoidal mean

velocity and gives rise to more signi�cant annular e�ect. Radial velocity close to the

cylinder wall becomes steeper and friction force improves with increase in Womersley

number. Figure 4.4(a)-(d) is plotted to compare the e�ects of Hartmann number. The

presence of magnetic �eld for smaller values of Womersley number develops the uni-

form �ow �eld about the center of cylinder. In this case, the e�ects of SWCNTs and

MWCNTs on velocity �eld are almost similar. Moreover, the velocity distribution for

M = 10 reaches a maximum range at the mean level and follows a parabolic curve (see

Figure 4.4). Figure 4.4(a)-(d) also showed that the maximum velocity of the base �uid

is reduced due to addition of nanoparticles. In addition, the magnetic �eld and low

values of Womersley number give rise to the termination of the annular e�ect which is

perceived to be a response of pulsatile �ow.

Figures 4.5(a)-4.5(b) are plotted to show the e�ects of Hartmann number on the

�uid �ow. It also compares the two di�erent nano�uids behavior under the in�uence of

magnetic �eld. The signi�cant di�erence in the velocity �elds is visible for the presence

and absence of magnetic �eld. The velocity �eld increases with the increase in values

of magnetic parameter. In this case pulsatile e�ects are also visible which were earlier

missing for the smaller values of Womersley number. When SWCNTs and MWCNTs

are compared, generally it is noticed that for MWCNTs velocity variation is more pro-

nounced against magnetic parameter as compared to SWCNTs. Figures 4.6(a)-4.6(b)

show the e�ects of the Womersley number Reω on the �ow velocity for nano�uid and

base �uid. Womersley number appears to be the controlling parameter in determining

the nature of pulsatile �ow. Smaller values of Womersley number means little or no

e�ects of pulsatile motion. However, for larger values a signi�cant variation in velocity

pro�le can be noticed. It changes from being a symmetric �ow about the mean posi-

tion to a pulsative shape. The velocity almost maintain a constant value for r = 0.4

to r = 0.8. It is observed in Figure 4.6(b) that for water based MWCNTs (φ= 0.2) the

behavior of velocity distribution remains the same but it's values remain low. Figures

4.8(a)-4.8(b) show the unsteady velocity distribution at t = 30 for di�erent values of
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R∗. It is observed that the velocity curve is changing it's shape as the values of R∗ are

changed. The velocity curve shape is changing from spanned pulsating shape to steep

parabolic shape. In pulsating shape it has two peaks of equal height. When compar-

ison is made between SWCNTs and MWCNTs, we notice that the general behaviour

remains una�ected by choice of nanoparticles. However, the velocity for the case of

MWCNTs remains to be on lower side. It is observed that the �ow area constructs the

envelope set for di�erent radius values and he velocity distribution reaches the highest

position with respect to increasing radius values.

Figures 4.7(a)-4.7(d) depict the velocity variance for di�erent values of Darcy num-

ber. Since the drag force is inversely proportional to the Darcy number, known as

Darcian force (view last term of Equation (4.23), that is, −w
Da

). Therefore, w increases

with the increase of Da. In addition, with increase in Da, the velocity distribution at-

tains the highest amplitude at the mean position and maintains a parabolic curve. The

SWCNTs have a pronounced e�ect on velocity as compared to the MWCNTs. Figures

4.9(a)-4.9(d) show the volume fraction e�ects on the vorticity distribution. We observe

that the amplitude of the vortices will be greater if the volume fraction is high for

nano�uid. It is also important to realize that for certain processes the vorticity takes

negative values based on the existence of a return �ow for the di�erent values of param-

eters. Vorticity e�ects are more dominant in the absence of nanoparticles (see Figures

4.9(a)-4.9(d)). It appears to be zero at mean position and increase as move away from

mean position in either direction. Moreover, the vorticity curves also change their di-

rection along the channel. The vortex graph for SWCNTs and MWCNTs are similar

for the same concentration of nanoparticles in base �uid. Figures 4.10(a)-4.10(b) in-

dicate a modi�cation of the pressure gradient in order to maximize the volume of the

nanoparticles. It's also observed that the pressure at t = 180o is maximum but obtain

the decreasing behaviour. Although, the pressure gradient at t = 0o and t = 360o is

minimal but it increases with the increase in nanoparticles concentration.

Figures 4.11(a-d) are plotted to see how physical parameters a�ect the tempera-
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ture pro�le for both CNTs. Figures 4.11(a-d) show the in�uences of di�erent physical

parameters on dimensionless temperature distribution. Generally, temperature pro�le

decreases with the raising values of r for both SWCNTs and MWCNTs. However, when

nanoparticles concentration is increased the temperature pro�le raises. Furthermore,

the temperature pro�le for SWCNTs is slightly higher as compared to MWCNTs. The

maximum values of nanoparticles concentration is kept at 0.2 to make sure that the na-

ture of the �uid does not change. Figure 4.11(b) shows the impact of pressure gradient

amplitude on the dimensionless temperature for both CNTs. The temperature pro�le is

found to be decreasing with the increase in amplitude of the pressure gradient. In this

case the gap between the corresponding temperature curves for both CNTs increases

across the radius of cylinder. Which suggests that SWCNTs and MWCNTs behave

di�erently under the applied stress. Overall, the temperature pro�le is higher for

MWCNTs which is opposite to what is observed in �gure 4.11(a). Figure 4.11(c) shows

that the dimensionless temperature distribution decreases with the increase in darcy

number. It is also found that the dimensionless temperature distribution is slightly

lower for SWCNTs as compared to MWCNTs. Figure 4.11(d) shows the variation of

temperature pro�le against thermal radiation parameter. Temperature pro�le increases

with the increase in thermal radiation parameter. It is noticed that the temperature

pro�le for SWCNTs is slightly lower than MWCNTs.
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Figure 4.1: Variation of velocity distribution (a) Base �uid (φ = 0); (b) SWCNTi(φ = 0.2); (c)
MWCNT (φ = 0.1) and (d) MWCNTi(φ = 0.2); when M = 5, Da = 0.1, Reω = 1.
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Figure 4.2: Variation of velocity distribution (a) Base �uid (φ = 0); (b) SWCNTi(φ = 0.2) and (c)
MWCNTi(φ = 0.2); when M = 0, Da = 0.1, Reω = 150.
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Figure 4.3: Variation of velocity distribution (a) Base �uid (φ = 0); (b) SWCNT(φ = 0.2) and (c)
MWCNTi(φ = 0.2); when M = 0, Da = 0.1, Reω = 900.
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Figure 4.4: Variation of velocity distribution (a) Base �uid (φ = 0); (b) SWCNTi(φ = 0.2) and (c)
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Figure 4.6: Variation of velocity distribution for di�erent values of Reω (a) Base �uid (φ = 0); (b)
MWCNTi(φ = 0.2); when M = 5, Da = 0.1, t = 30.
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Figure 4.7: Variation of velocity distribution for di�erent values of Da (a) SWCNT (φ = 0); (b)
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Figure 4.9: Variation of vortex pro�le t for (a) Base �uid (φ = 0); (b) SWCNT (φ = 0.2); (c)
MWCNT (φ = 0.10) and (d) MWCNT (φ = 0.2); when Reω = 100, M = 5 and Da = 0.1
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Figure 4.11: Temperature distribution for SWCNTs and MWCNTs (a) E�ect of φ when Reω =
1,Da = 0.1,M = 10,Nr = 2 ;(b) E�ect of A when Reω = 20,Da = 0.1,M = 20,Nr = 2 ;(c) E�ect of
Da when Reω = 1,M = 0,Nr = 1 ;(d) E�ect of Nr when Reω = 1,Da = 0.1,M = 0 ;
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Chapter 5

Conclusion

In this thesis we studied the Magnetohydrodynamics pulsatile �ow of electrically con-

ducting nano�uid between two concentric cylinder under the impact of a thermal radi-

ation via porous material. The governing partial di�erential equations were �rst trans-

formed to ordinary di�erential equations. The new system was then solved in terms

of modi�ed Bessel functions of �rst and second kind with the help MATHEMATICA.

A analytical solution for velocity distribution, temperature distribution, and pressure

gradient and results are displayed in the form of graphs. We can draw the following

results and conclusions from our research:

� The maximum amplitude of velocity decreases by increasing the CNTs volume

fraction φ while an opposite behavior is observed by increasing the Darcy param-

eter.

� By increasing the Womersley numbers velocity shows increasing behavior close

to the cylinder wall but at mean position and for low values of Womersley num-

bers velocity behaviour rapidly increase. While it is stable for larger values of

Womersley number.

� By increasing the pressure gradient amplitude and Darcy parameter, the tempera-

ture decreases while it increases with the increase in thermal radiation parameter.
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� The inclusion of carbon nanoparticles raises the temperature of ordinary �uid

signi�cantly. Nano�uids are good coolants compared to natural base �uids since

they are enabled to get control of more warmth than average base �uids.

� Temperature pro�le is signi�cantly a�ected due to presence of SWCNTs and

MWCNTs.
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