
Elastic analysis of 3D frames using MATLAB software

A Part of the FINAL YEAR PROJECT UG - 2017

By

Naimat Ali (G.L) 00000210272

Tahir Ali Khan 00000219592

Usama Fazal 00000237572

Hafiz Muhammad Ahmad 00000220559

NUST Institute of Civil Engineering (NICE)

School of Civil and Environmental Engineering (SCEE)

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

Year 2021

This is to certify

that the Final

Year Project

Titled

Elastic analysis of 3D frames using MATLAB software

submitted by

Naimat Ali – 210272

Tahir Ali Khan – 219592

Usama Fazal – 237572

Muhammad Ahmad – 220559

has been accepted towards the

requirements for the undergraduate

degree

in

CIVIL ENGINEERING

 Samiullah Khan Bangash

Lecturer

NUST Institute of Civil Engineering

 School of Civil and Environmental Engineering

National University of Sciences

and Technology, Islamabad, Pakistan

ABSTRACT

People looking for software to solve linear elastic problems in structures face myriad

challenges. The graphical user interface of the available software – such as ETABs –

has a steep learning curve. If someone wants quick results – e.g., about deflections in

a linear elastic structure – the procedure is laborious and time consuming.

While it is imperative to have a firm grasp on these structural softwares, sometimes a

tool that does just one job but does it faster and in a simpler and more direct way is

what is needed. After consulting with various students, it was ascertained that the

initial learning curve of the existing structural softwares deterred many of them from

even getting started. This is exactly where our software comes in and fills the gap.

Quicker linear elastic structure analysis and in a way that is user friendly to even an

undergrad student.

The quickness of the MATLAB based software depends on the way it is coded. Smart

and efficient coding is the core of our project. Further, the friendliness of the GUI was

determined by various experiments involving many trial runs – which were conducted

with the help of our fellow batchmates.

The final aim of our project was to provide a pathway for students who want to develop

a similar software. The steps of creating the code, the GUI, and the content used is

provided in this thesis. It was imperative to our initial goals to have a project which

contributed to the expansion of knowledge for anyone who wants to delve into

programming as it is related to civil engineering. The mechanics of the code, the

appearance of the GUI and the trials performed, they are all listed here in detail to help

people interested in learning how to create a similar software.

COPYRIGHT NOTICE

In the spirit of knowledge and our love for civil engineering, we make the entire work

done in this thesis to be available for use by the general public. The very purpose of

our project was to make a product that was accessible to the general student – not only

when it comes to a user-friendly interface, but also the code. Keeping in mind our main

target that we initially set out, it is declared that the contents of this thesis may be used

as by anyone. However, it is a reasonable expectation that our work be cited whenever

it is used in another academic paper.

Further, it is stated that the work done in this dissertation is entirely our own. From the

code to the explanations written here in this thesis. Any references taken from research

papers, books, and journals are appropriately mentioned.

DEDICATION

The primary dedication of this project was to facilitate engineers interested in

understanding the underlying codes and working of structural problem-solving

software. The motivation for this project came when we faced inaccessibility to the

underlying workings of structural software. The software that are commercially

available, their source codes are not available to the public.

Further, the interface of these software is not user friendly to someone who is looking

to get started. The dedication was to create a simpler and straight forward experience

for users, who would obtain quick results for their linear elastic structures.

ACKNOWLEDGEMENTS

First and foremost, we would like to acknowledge the role played by our advisor during

this project. It was due to his profound insights, sharp intellect, openness in

communication, and dedication to the art that is civil engineering that we were able to

accomplish the goals we set out to achieve.

There were many moments during our project where we needed direction. And it is

our pleasure and good fortune that Engr. Samiullah Bangash was able to guide us. Be

it the efficiency of the MATLAB code, of the way the graphical user interface (GUI)

appeared, his insights were always valued and gave the direction that we needed in

achieving the final product.

TABLE OF CONTENTS

1.0 INTRODUCTION .. 12

1.1 General ... 12

1.2 Problem Statement ... 12

2.0 LITERATURE REVIEW .. 13

2.1 DSM Method .. 13

2.1.1 System Stiffness Matrix .. 19

2.2 Geometric Stiffness .. 19

2.3 Element Stiffness Matrix for Axial Effects .. 22

2.4 Coordinate Transformation .. 23

2.5 Local and Global Coordinate Systems ... 26

2.6 Torsional Effects .. 27

2.7 Stiffness Matrix: Grid Element .. 28

2.8 Element Stiffness Matrix .. 29

2.9 Transformation of Coordinates .. 30

3.0 METHODOLOGY ... 35

3.1 Initialize Matrices and Degree of Freedom: ... 37

3.2 Transformation Matrix: .. 37

3.3 Stiffness Matrix: ... 38

3.4 Compartmentalizing the KC matrix: .. 39

3.5 Finding Displacements: .. 40

3.6 Finding Support Reactions: .. 40

3.7 Finding Member Forces: .. 41

3.8 Plotting the frame: .. 41

3.9 Guide To Make Application Using App Designer ... 45

3.9.1 Creating a Main GUI .. 45

3.9.1.1 MATLAB code .. 45

3.9.1.2 APP designer and MATLAB code .. 45

3.9.1.3 Design view of main GUI .. 46

3.9.1.4 Properties ... 49

3.9.1.5 Start Up Function... 49

3.9.1.6 Directory Function in File Menu: .. 50

3.9.1.7 Import Data Function in File Menu: .. 51

3.9.1.8 Quit Function in File Menu: .. 52

3.9.1.9 Define Nodes in Node Menu: .. 52

3.9.1.10 Settlement in Node Menu: ... 52

3.9.1.11 Connectivity Menu: ... 53

3.9.1.12 Material Properties Menu: ... 53

3.9.1.13 Sectional Properties Menu: .. 53

3.9.1.14 Nodal Load Menu: ... 54

3.9.1.15 Run Button:.. 54

3.9.1.16 Show Results Button: .. 58

3.9.1.17 Back to Figure Button: .. 58

3.9.2 CREATING A SUB GUI.. 59

Nodes GUI: .. 59

3.9.3 Settlement GUI: .. 64

3.9.4 Connection GUI: ... 69

3.9.5 Material GUI: .. 74

3.9.6 Sectional Properties GUI: ... 78

3.9.7 Nodal Load GUI: .. 83

3.10 Ways to Share App ... 89

3.10.1 Share MATLAB Files Directly: .. 89

3.10.2 PACKAGING APPS IN APP-DESIGNER: ... 90

3.10.3 Creating a Web App: .. 91

3.10.4 Creating a Standalone Desktop Application: .. 92

4.0 RESULTS AND DISCUSSION 93

4.1 Comparison with MASTAN2: ... 93

4.2 Graphs: ... 95

5.0 CONCLUSION ... 96

6.0 References ... 97

LIST OF FIGURES

Figure 2.1 Beam segment showing forces and displacement at the nodal coordinates 13

Figure 2.2 Beam element displaying static deflection curves because of a unit displacement at

one of the nodal coordinates ... 15

Figure 2.3 (a) “Beam element loaded with arbitrary distributed axial force, (b) Beam element

acted on by nodal forces resulting for, displacement δ2 = 1 undergoing a virtual displacement

δ1 = 1” .. 20

Figure 2.4 Differential segment of deflected beam in Fig. 2.3 .. 21

Figure 2.5 Beam element showing nodal axial loads P1, P2, and corresponding nodal

displacements δ1, δ2 ... 23

Figure 2.6 Beam element showing nodal forces Pi in local (x, y, z) and nodal forces P1, in global

coordinate axes (X, Y,Z) .. 25

Figure 2.7 Components of nodal displacements for a grid member. (a) Local coordinate system.

(b) Global coordinate system ... 27

Figure 2.8 Nodal torsional coordinates for a beam element ... 28

Figure 2.9 Beam segment of a space frame showing forces and displacements at the nodal

coordinates .. 29

Figure 2.10 Components of a general vector A in local and global coordinates 31

Figure 3.1:MATLAB Code for getting data from input file ... 37

Figure 3.2: MATLAB Code for making Transformation matrix ... 38

Figure 3.3: MATLAB Code for making Local Stiffness matrix ... 39

Figure 3.4: MATLAB Code for making Global Stiffness matrix ... 39

Figure 3.5: MATLAB Code for finding restrained and unrestrained nodal co-ordinates 40

Figure 3.6: MATLAB Code for finding deflections .. 40

Figure 3.7 MATLAB Code for support reactions .. 41

Figure 3.8: MATLAB Code for finding member forces ... 41

Figure 3.9: MATLAB Code for plotting actual frame .. 42

Figure 3.10: General deformation functions for 3D frame element in x-direction 42

Figure 3.11: General deformation functions for 3D frame element in y-direction 43

Figure 3.12: General deformation functions for 3D frame element in z-direction 43

Figure 3.13: Deformed co-ordinates of frame elements ... 44

Figure 3.14: MATLAB Code for plotting defelected shape of frame .. 44

Figure 3.15: Interface of MATLAB APP designer .. 45

Figure 3.16: Call back option in MATLAB APP designer ... 46

Figure 3.17: Components of our GUI ... 48

Figure 3.18: Layout of Main GUI .. 48

Figure 3.19: Property Function in MATLAB APP designer ... 49

Figure 3.20: Start up function in MATLAB APP designer ... 50

Figure 3.21: Directory Function ... 50

Figure 3.22:Import Data ... 51

Figure 3.23:Quit Function .. 52

Figure 3.24Calling Nodes GUI .. 52

Figure 3.25: Calling Settlement GUI ... 53

file:///C:/Users/Tahir/Desktop/usamafazal%20folder/Final%20Thesis/ThesisFYP.docx%23_Toc75946427
file:///C:/Users/Tahir/Desktop/usamafazal%20folder/Final%20Thesis/ThesisFYP.docx%23_Toc75946428
file:///C:/Users/Tahir/Desktop/usamafazal%20folder/Final%20Thesis/ThesisFYP.docx%23_Toc75946430

Figure 3.26: Calling Connectivity GUI ... 53

Figure 3.27: Calling Material properties GUI ... 53

Figure 3.28: Calling sectional properties GUI .. 54

Figure 3.29: Calling Nodal load GUI ... 54

Figure 3.30: Clearing all data plotted in our APP ... 55

Figure 3.31: APP designer code for Saving data from user in variable .. 55

Figure 3.32: APP designer code for pop-up window ... 55

Figure 3.33: APP designer code for pop-up window ... 56

Figure 3.34: Saving support reactions in property variable ... 56

Figure 3.35: Saving deformations in property varaible ... 56

Figure 3.36: APP designer code to plotting frame ... 57

Figure 3.37: APP designer code for plotting deflected shape of frame ... 57

Figure 3.38: Show results function .. 58

Figure 3.39: Back to figure button ... 59

Figure 3.40: Design view of nodes GUI .. 60

Figure 3.41: Inspector window in APP designer .. 61

Figure 3.42: Property Function .. 61

Figure 3.43: Add to table function ... 62

Figure 3.44: Resetting values in add to table function .. 63

Figure 3.45: Delete row function ... 63

Figure 3.46: Done Button function .. 64

Figure 3.47: Design view of Settlement GUI .. 65

Figure 3.48: Property Function in Settlemet GUI .. 65

Figure 3.49: Start up function for Settlement GUI ... 66

Figure 3.50: Add to table function for Settlement GUI ... 67

Figure 3.51: adding input data in variable ... 67

Figure 3.52:Resetting variable in add to table function .. 67

Figure 3.53: Delete row function for Settlement GUI .. 68

Figure 3.54: Done function for Settlement GUI ... 68

Figure 3.55: Design view of Connectivity GUI .. 70

Figure 3.56: : Start up function for Connectivity GUI .. 71

Figure 3.57: : Add to table function for Connectivity GUI ... 72

Figure 3.58: adding input data in variable ... 72

Figure 3.59: Resetting all variables .. 72

Figure 3.60: Delete Row function for Connectivity GUI ... 73

Figure 3.61: : Done function for Connectivity GUI ... 73

Figure 3.62: Design view of Material properies ... 74

Figure 3.63: Property Function .. 75

Figure 3.64: Startup functcion For Material properties GUI .. 75

Figure 3.65: Add to table function for Material properties GUI .. 76

Figure 3.66: : adding input data in variable ... 76

Figure 3.67: Resetting all values .. 77

Figure 3.68: Delete row function in Material properties function .. 77

Figure 3.69:Done function in Material properties GUI .. 78

file:///C:/Users/Tahir/Desktop/usamafazal%20folder/Final%20Thesis/ThesisFYP.docx%23_Toc75946445
file:///C:/Users/Tahir/Desktop/usamafazal%20folder/Final%20Thesis/ThesisFYP.docx%23_Toc75946455

Figure 3.70:Design view of Sectional Properties GUI .. 79

Figure 3.71: Property Function for Sectional Properties GUI .. 79

Figure 3.72: Startup function for Sectional Properties GUI ... 80

Figure 3.73: Add to table function for Sectional Properties GUI ... 81

Figure 3.74: Adding input data in variables ... 81

Figure 3.75: Resetting all values .. 81

Figure 3.76: Delete row function for Sectional Properties GUI ... 82

Figure 3.77: Done function for Sectional Properties GUI .. 82

Figure 3.78: Design view of Nodal Load GUI .. 84

Figure 3.79: Properties for Nodal Load GUI ... 84

Figure 3.80: Startup function for Nodal Load GUI ... 85

Figure 3.81: Add to table function for Nodal Load GUI ... 86

Figure 3.82: Adding input data in variables ... 86

Figure 3.83: Resetting all values .. 86

Figure 3.84: Delete row function for Nodal Load GUI ... 87

Figure 3.85: Done button function for Nodal Load GUI ... 87

Figure 3.86: Saving aplication Data in MATLAB APP designer ... 89

Figure 3.87: Ways to share APP ... 90

Figure 3.88: Window for creating MATLAB APP .. 91

Figure 3.89: Window for creating stand alone software ... 92

Figure 4.1 3D fixed jointed frame in MASTAN2 ... 93

Figure 4.2 3D fixed jointed frame deflection in MASTAN2 ... 94

Figure 4.3 Linear Elastic Frame Solver (LEFS) Deflection .. 94

Figure 4.4 Reaction forces comparison of LEFS with MASTAN2 ... 95

Figure 4.5 Deflection comparison of LEFS with MASTAN2 ... 95

file:///C:/Users/Tahir/Desktop/usamafazal%20folder/Final%20Thesis/ThesisFYP.docx%23_Toc75946499
file:///C:/Users/Tahir/Desktop/usamafazal%20folder/Final%20Thesis/ThesisFYP.docx%23_Toc75946501

CHAPTER 1

1.0 INTRODUCTION

1.1 General

Using the direct stiffness method, a software with a user-friendly GUI was created to

solve linear elastic problems.

The procedure of the development of the GUI has been included in detail in the thesis

to help anyone make their own software.

Further, the results provided the software have been verified after comparison to other

software.

1.2 Problem Statement

To solve linear elastic problems, using the manual method is time consuming. Further,

as the number of variables increase, it gets cumbersome to keep all the calculations

and to avoid errors. Finally, there is a lot of wastage of paper and the process of writing

is laborious.

Secondly, the software available in the market do not have any open source code

available. This is a problem because if someone wants to understand the operating

principles of such software, they cannot use that software to learn that.

Lastly, there is no guide available to make a GUI for such software.

CHAPTER 2

2.0 LITERATURE REVIEW

2.1 DSM Method

If we consider a beam element of x-sectional MOI I, modulus of elasticity E, and length L

as displayed in Fig. 2.1. It is possible to get a relation for the moments and forces named

as P1, P2, P3 and P4 and the related linear and angular displacements δ1, δ2, δ3 and δ4 at the

ends of the beam element as shown in Fig. 2.1. This relation that we get is the stiffness

matrix eq. The displacements δi and forces Pt are at the nodal coordinates at the ends for

the beam element (Paz & Kim, 2019).

The renowned equation for small transverse displacements of a beam element, is given

by the following differential equation

𝐸𝐼
𝑑2𝑢

𝑑𝑥2
= 𝑀(𝑥) (2.1)

where u is the transverse displacement and M(x) is the bending moment at a cross-

section ‘x’ of the beam.

Figure 2.1 Beam segment showing forces and displacement at the nodal coordinates

The differential Equation (2.1) present for a uniform beam element is equal to

𝐸𝐼
𝑑4𝑢

𝑑𝑥4
= 𝑃(𝑥) (2.2)

since

𝐸𝐼
𝑀(𝑥)

𝑑𝑥
= 𝑉(𝑥) (2.3)

and

𝐸𝐼
𝑉(𝑥)

𝑑𝑥
= 𝑃(𝑥) (2.4)

In which V(x) is the shear force and p(x) is the load of the beam per unit of length.

First, we state the definition of the stiffness coefficient, designated by kij, that is, kij is

the force at nodal coordinate I because of a unit displacement at nodal coordinate j

while the rest of the nodal coordinates are kept at 0 displacement. “Figure 2.2

demonstrates the displacement curves and the equivalent stiffness coefficients because

of a unit displacement at each of the 4 nodal coordinates of the beam element (Paz &

Kim, 2019). For the determination of expressions for the stiffness coefficients kij, we

start by the equations for displaced curves demonstrated in Figure 2.2. First, we take

the beam element in Figure 2.1 with no loads [p(x) = 0], with the exception of the

forces P1, P2, P3 and P4 applied at nodal coordinates” (Paz & Kim, 2019). Here, Eq.

(2.2) is reduced:

𝑑4𝑢

𝑑𝑥4
= 0 (2.4)

Further integrations of Eq. (2.4) gives

𝑑3𝑢

𝑑𝑥3
= 𝐶1

𝑑2𝑢

𝑑𝑥2
= 𝐶1𝑥 + 𝐶2

Figure 2.2 Beam element displaying static deflection curves because of a unit

displacement at one of the nodal coordinates

𝑑𝑢

𝑑𝑥
=
1

2
𝐶1𝑥

2 + 𝐶2 𝑥 + 𝐶3 (2.5)

𝑢 =
1

6
𝐶1𝑥

3 + 𝐶2 𝑥
2 + 𝐶3𝑥 + 𝐶4 (2.6)

where C1, C2, C3 and C4 are constants of integration to be found by the usage of

boundary conditions. As an example, for the determination, the function N1(x) for the

curve displayed in Fig. 2.2a, we use these boundary conditions:

at 𝑥 = 0 𝑢(0) = 1 and
𝑑𝑢(0)

𝑑𝑥
= 0 (2.7)

at 𝑥 = 𝐿 𝑢(𝐿) = 0 and
𝑑𝑢(𝐿)

𝑑𝑥
= 0 (2.8)

By using the above conditions in Eqs. (2.5) and (2.6), gives a system of four algebraic

equations which can be used to find the constants C1, C2, C3 and C4.

The further substitutions of above-mentioned constants into Eq. (2.6) give us the

equation for the deflected curve for the beam element in Fig. (2.2a) as

𝑁1(𝑥) = 1 − 3(
𝑥

𝐿
)2 + 2(

𝑥

𝐿
)3 (2.9a)

where N1(x) is used in the place of u(x) to correspond to condition δ1 = 1 applied on

the beam element. Going on in similar way, we get the following equations for the

equations of the deflected curves:

𝑁2(𝑥) = 𝑥(1 −
𝑥

𝐿
)2 (2.9b)

𝑁3(𝑥) = 3(
𝑥

𝐿
)2 + 2(

𝑥

𝐿
)3 (2.9c)

𝑁4(𝑥) =
𝑥

𝐿

2

+ (
𝑥

𝐿
− 1) (2.9d)

As we know that N1(x) is the deflection equivalent to a unit displacement δ1 = 1, the

displacement obtained from a random displacement δ1, is N1(x) δ1. “In the same way,

the deflection obtained from nodal displacements δ2, δ3 and δ4 are N2(x) δ2, N3(x)δ3 and

N4(x)δ4. Hence, the combined deflection u(x) at coordinate x because of random

(arbitrary) displacements at nodal coordinates of beam element is produced by

principle of superposition as

𝑢(𝑥) = 𝑁1(𝑥)𝛿1 + 𝑁2(𝑥)𝛿2 + 𝑁3(𝑥)𝛿3 + 𝑁4(𝑥)𝛿4 (2.10)

The equations of shape, given by Eqs. (2.9a, b, c and d) and which are related to unit

displacements at nodal coordinates of a beam element, can be utilized to find

expressions of stiffness coefficients (Paz & Kim, 2019). For instance, take into acount

the beam in Fig. 2. For this beam in the balanced position, we say that a virtual

displacement which is equal to the deflection curve displayed in Fig. 2.2a happens.

After that we apply the principle of virtual work, which tells us that, for an elastic

system, work performed by external forces is the same as the work of internal forces

during the virtual displacement. To apply this principle, we notice that external work

WE is equal to the multiplication product of the force k12 displaced by δ1 = 1, which is

𝑊𝐸 = 𝑘12𝛿1 (2.11)

This work is the same as the work done by elastic forces during the virtual

displacement” (Paz & Kim, 2019). Taking into account the work done by the bending-

moment, we get for the internal work this equation

𝑊1 = ∫ 𝑀
𝐿

0

(𝑥)𝑑𝜃 (2.12)

in which dθ is the incremental angular displacement of this section of the element and

M(x) is the bending moment at section x of the beam.

For the virtual displacement, the transverse deflection of the beam is found by

Eq. (2.9b), which is connected to the bending moment by the differential Eq. (2.1).

Substitution of the second derivative N’’
2(x) of Eq. (2.9b) into Eq. (2.1) gives us

𝐸𝐼𝑁′′
2(𝑥) = 𝑀(𝑥) (2.13)

The angular deflections dθ formed during virtual displacement is connected to the

transverse deflection of the beam N1(x) by

𝑑𝜃

𝑑𝑥
=
𝑑2𝑁1(𝑥)

𝑑𝑥2
= 𝑁′′

1(𝑥)

or

𝑑𝜃 = 𝑁′′
1(𝑥) 𝑑𝑥 (2.14)

Making equal the external virtual work, WE from Eq. (2.11) with the internal virtual

work W1 from

Eq. (10.12) after using M(x) and dθ, respectively, from Eqs. (2.13) and (2.14)

ultimately results in stiffness coefficient:

𝑘12 = ∫ 𝐸
𝐿

0

𝐼𝑁′′
1(𝑥)𝑁

′′
2(𝑥)𝑑𝑥 (2.15)

Generally, any stiffness coefficient kij in relation with beam flexure, can be expressed

as:

𝑘𝑖𝑗 = ∫ 𝐸
𝐿

0

𝐼𝑁′′
𝑖(𝑥)𝑁

′′
𝑗(𝑥) 𝑑𝑥 (2.16)

As observed from Eq. (2.16) that kij = kji, because the swapping of indices needs only

an interchange of 2 factors, 𝑁′′
𝑖(𝑥) and 𝑁

′′
𝑗(𝑥) in Eq. (2.16). This equivalence of kij

= kji is a special case of Betti’s theorem; however, it is more appropriately known as

Maxwell’s reciprocal theorem.

It is important to notice that even though the “shape functions, Eqs. (2.9a, b, c and d),

were found for a uniform beam, in practical applications they are also used in finding

out the stiffness coefficients for non-uniform beams (Paz & Kim, 2019).

If we consider the case of a uniform beam element of length L and cross-sectional

moment of inertia I, we may calculate any stiffness coefficient from Eqs. (2.16) and

the use of Eqs. (29a, b, c and d).” (Paz & Kim, 2019)

Specifically, the stiffness coefficient k12 is found as below:

From Eq.(2.9a), get

𝑁′′
1(𝑥) = −

6

𝐿2
+
12𝑥

𝐿3

from Eq. (2.9b)

𝑁′′
2(𝑥) =

4

𝐿
+
6𝑥

𝐿2

Substitution in Eq. (10.15) gives us

𝑘12 = 𝐸𝐼 ∫ (
𝐿

0

−6

𝐿2
+
12𝑥

𝐿3
)(
−4

𝐿
+
6𝑥

𝐿2
)𝑑𝑥

doing integration gives us

𝑘12 =
6𝐸𝐼

𝐿2

“Because the stiffness coefficient k1j is described as the force at the nodal coordinate

1 because of unit displacement at the coordinate j, the forces at coordinate 1 due to

displacements δ1, δ2, δ2 and δ4 at the 4 nodal coordinates are given as: k11 δ1, k12 δ2, k13

δ3 and k14 δ4. So, the total force P1 at coordinate is found by the superposition of the

resulting forces:

𝑃1 = 𝑘11𝛿1 + 𝑘12𝛿2 + 𝑘13𝛿3 + 𝑘14𝛿4

In the same manner, the forces at the other nodal coordinates obtained from the nodal

displacement δ1, δ2, δ3, δ4 are: Eq. (2.17)

𝑃2 = 𝑘12𝛿1 + 𝑘22𝛿2 + 𝑘23𝛿3 + 𝑘24𝛿4

𝑃3 = 𝑘31𝛿1 + 𝑘32𝛿2 + 𝑘33𝛿3 + 𝑘34𝛿4

𝑃4 = 𝑘41𝛿1 + 𝑘42𝛿2 + 𝑘43𝛿3 + 𝑘44𝛿4

The above equations are better written in matrix notation as below:

{

𝑃1
𝑃2
𝑃3
𝑃4

} = {

𝑘11 𝑘12 𝑘13 𝑘14
𝑘21 𝑘22 𝑘23 𝑘24
𝑘31 𝑘32 𝑘33 𝑘34
𝑘41 𝑘42 𝑘43 𝑘44

}{

𝛿1
𝛿2
𝛿3
𝛿4

} (2.18)

or summarized:

{𝑃} = [𝑘]{𝛿} (2.19)

The use of Eq. (2.16) in the manner displayed above to determine the coefficient k12

gives us the way to calculate all the coefficients” (Paz & Kim, 2019). For a uniform

beam element:

{

𝑝1
𝑃2
𝑝3
𝑝4

} =
𝐸1

𝐿3
{

12 6𝐿 −12 6𝐿
6𝐿 4𝐿2 −6𝐿 2𝐿2

−12 −6𝐿 12 −6𝐿
6𝐿 2𝐿2 −6𝐿 4𝐿2

}{

𝛿1
𝛿2
𝛿3
𝛿4

} (2.20)

2.1.1 System Stiffness Matrix

So far, we have a relation between nodal forces (forces and moments) and nodal

displacements (linear and angular). Now, we have to find a similar type of connection

for the nodal forces and the nodal displacements; but for the whole structure, which is

the ‘system stiffness equation’.

2.2 Geometric Stiffness

When there is an addition of an axial force on top of flexural force, the stiffness

coefficients are altered by the existence of the axial force. The alteration is known as

“the geometric stiffness coefficient kGij, defined as the force corresponding to the nodal

coordinate I due to a unit displacement at coordinate j and resulting from the axial

forces in the structure (Paz & Kim, 2019). Coefficients can be calculated by the

principle of virtual work. If we consider a beam element subjected to a spread axial

force per unit of length N (x), as portrayed in Fig. 2.9a. In the drawing in Fig. 2.9b, the

beam section is subjected to a unit rotation of the left end, δ2 ¼ 1. The nodal forces

due to this displacement are the corresponding geometric stiffness coefficients.” (Paz

& Kim, 2019) Now if we suppose for this deformed beam a unit displacement δ1 = 1,

the external work is

Figure 2.3 (a) “Beam element loaded with arbitrary distributed axial force, (b) Beam

element acted on by nodal forces resulting for, displacement δ2 = 1 undergoing a

virtual displacement δ1 = 1”

𝑊𝑒 = 𝑘𝐺12𝛿1

or

𝑊𝑒 = 𝑘𝐺12 (2.21)

because δ1 = 1.

The internal work is found by taking into account a differential element of length 𝑑𝑥

which we take from the beam in Fig. 2.3𝑏 and displayed in a larger size in Fig. 2.4.

Work done by the axial force 𝑁(𝑥) during the virtual displacement:

𝑑𝑊𝐽 = 𝑁(𝑥)𝛿𝑒 (2.22)

where 𝛿𝑒 denotes the relative displacement taking place by the normal force 𝑁(𝑥)

acting on the differential element during the virtual displacement. From Fig. 2.4, by

similar triangles (triangles 1 and 11), we get

𝛿𝑐
𝑑𝑁1(𝑥)

=
𝑑𝑁2(𝑥)

𝑑𝑥

or

Figure 2.4 Differential segment of deflected beam in Fig. 2.3

𝛿𝑒 =
𝑑𝑁1(𝑥)

𝑑𝑥
⋅
𝑑𝑁2(𝑥)

𝑑𝑥
𝑑𝑥

𝛿𝑒 = 𝑁1
′(𝑥)𝑁2

′(𝑥)𝑑𝑥

in which 𝑁1
′(𝑥) and 𝑁2

′(𝑥) are the derivatives.

Substituting 𝛿𝑒 in Eq. (2.22), gives us

𝑑𝑊𝐼 = 𝑁(𝑥)𝑁1
′(𝑥)𝑁2

′(𝑥)𝑑𝑥 (2.23)

After that by integrating the expression and equalizing the result to the external work,

Eq. (2.21), eventually gets us

𝑘𝐺12 = ∫ 𝑁
𝐿

0
(𝑥)𝑁1

′(𝑥)𝑁2
′(𝑥)𝑑𝑥 (2.24)

Generally, any geometric stiffness expression:

𝑘𝐺𝑖𝑗 = ∫ 𝑁
𝐿

0
(𝑥)𝑁𝑖

′(𝑥)𝑁𝑗
′(𝑥)𝑑𝑥 (2.25)

Normal force 𝑁(𝑥) is assumed to be independent of time. When the displacement

equations, Eqs. (2.9𝑎, 𝑏, 𝑐 𝑎𝑛𝑑 𝑑) , are referenced in Eq. (2.25) to find out the

geometric stiffness coefficients, the result is known as the consistent geometric

stiffness matrix. When the axial force is uniform along the length, use of Eqs. (2.25)

and (2.9𝑎, 𝑏, 𝑐 and d) provides us the geometric stiffness matrix equation:

{

𝑃1
𝑃2
𝑃3
𝑃4

} =
𝑁

30𝐿
{

36 3𝐿 −36 3𝐿
3𝐿 4𝐿2 −3𝐿 −𝐿2

−36 −3𝐿 36 −3𝐿
3𝐿 −𝐿2 −3𝐿 4𝐿2

}{

𝛿1
𝛿2
𝛿3
𝛿4

} (2.26)

The combined stiffness matrix [𝐾𝑐⌋ for the structure is given by

[𝐾𝑐] = [𝐾] − [𝐾𝐺] (2.27)

here [𝐾⌋ is the combined elastic stiffness matrix for the structure and [𝐾𝐶⌋ the

geometric stiffness matrix.

2.3 Element Stiffness Matrix for Axial Effects

The presence of axial forces in the stiffness matrix of a flexural beam element needs

the stiffness coefficients for axial loads. For finding out the stiffness matrix, look at

Fig. 2.5. For a uniform and prismatic beam segment of cross sectional 𝐴 and length 𝐿,

it is easy to get the stiffness relation for axial effects by using the Hooke’s law (Paz &

Kim, 2019). The displacements 𝛿1 made by 𝑃1 at node 1 while node 2 is fixed (𝛿2 = 0)

is:

𝛿1 =
𝑃1𝐿

𝐴𝐸
 (2.28)

From Eq. (2.28) and 𝑘11, we get

𝑘11 =
𝑃1

𝛿1
=

𝐴𝐸

𝐿
 (2.29a)

The balance of the beam segment by the force 𝑘11 needs a force 𝑘21:

𝑘21 = −𝑘11 = −
𝐴𝐸

𝐿
 (2.29b)

The other stiffness because of displacement at node 2 (δ2 = 1):

𝑘22 =
𝐴𝐸

𝐿
 (2.29c)

More:

𝑘12 =
𝐴𝐸

𝐿
 (2.29d)

Contents of Eq. (2.29a) are a part of the stiffness matrix relating displacement and

axial forces for a uniform beam segment:

{
𝑃1
𝑃2
} =

𝐴𝐸

𝐿
{
1 −1
−1 1

} {
𝛿1
𝛿2
} (2.30)

The stiffness matrix shown in Fig. 2.6 is found by the combination in one matrix the

stiffness matrix for flexural effects and the stiffness matrix for axial effects, Eq. (2.30),

Eq. (2.20) (Paz & Kim, 2019). The matrix obtained from this relates the displacements

𝛿1 and the forces 𝑃𝑖 at the coordinates shown in Fig. 2.6:

 𝐴, 𝐸

Figure 2.5 Beam element showing nodal axial loads P1, P2, and corresponding nodal

displacements δ1, δ2

{

𝑃1
𝑃2
𝑃3
𝑃4
𝑃5
𝑃6}

=
𝐸𝐼

𝐿3

{

𝐴𝐿2

𝐼

0 12
0 6𝐿 4𝐿2

−
𝐴𝐿2

𝐼
0 0

𝐴𝐿2

𝐼

0 −12 −6𝐿 0 12
0 6𝐿 2𝐿2 0 −6𝐿 4𝐿2}

{

𝛿1
𝛿2
𝛿3
𝛿4
𝛿5
𝛿6}

 (2.31)

or, in concise notation,

{𝑃} = [𝐾]{𝛿} (2.32)

2.4 Coordinate Transformation

The stiffness matrix for any element of a plane frame in Eq. (2.31) is defined by

coordinate axes fixed on beam. “These axes are known as local or element coordinate

axes; the coordinate axes for the complete structure are called global or system

coordinate axes. Figure 2.6 displays a beam element containing nodal forces 𝑃1, 𝑃2, …,

𝑃6 called the local coordinate axes 𝑥, 𝑦, 𝑧, and 𝑃1 ,𝑃2, …, 𝑃6 referred to global

coordinate set of axes 𝑋, 𝑌, 𝑍. The goal: transform the element matrices from local to

global. This transformation is needed because the matrices for all the elements relate

to the identical coordinates. We start by stating the forces (𝑃1, 𝑃2, 𝑃3) as forces (𝑃1,

𝑃2, 𝑃3). Because these 2 sets of forces are equal, we get from Fig. 2.6 these

relationships.” (Paz & Kim, 2019)

For node one: Eq. (2.33)

P1= 𝑃1𝑐𝑜𝑠𝜃 + 𝑃2𝑠𝑖𝑛𝜃

P2 = − 𝑃1𝑠𝑖𝑛𝜃 + 𝑃2𝑐𝑜𝑠𝜃

𝑃3 = 𝑃3

The equations of Eq. (2.33) can be written as:

{
𝑃1
𝑃2
𝑃3

} = {
𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 1

} {

𝑃1
𝑃2
𝑃3̅̅ ̅

̅̅̅} (2.34)

Similarly, we get for the forces on node two: Eq. (2.35)

P4 = 𝑃4𝑐𝑜𝑠𝜃 + 𝑃5𝑠𝑖𝑛𝜃

P5 = − 𝑃4𝑠𝑖𝑛𝜃 + 𝑃5𝑐𝑜𝑠𝜃

𝑃6 = 𝑃6

Figure 2.6 Beam element showing nodal forces Pi in local (x, y, z) and nodal forces P1,

in global coordinate axes (X, Y,Z)

Equations (2.33) and (2.35) in matrix form:

{

𝑃1
𝑃2
𝑃3
𝑃4
𝑃5
𝑃6}

=

{

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0 0 0 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0 0 0 0
0 0 1 0 0 0
0 0 0 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
0 0 0 −𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 0 0 0 1}

{

𝑃1̅
𝑃2̅̅ ̅

𝑃3̅̅ ̅

𝑃4̅
𝑃5̅̅ ̅

𝑃6̅̅ ̅}

 (2.36)

Condensing:

{𝑃} = [𝑇]{𝑃} (2.37)

Where {𝑃} and {𝑃} are vectors of the element nodal forces in local coordinates and

global coordinates and [𝑇⌋ is the transformation. Going over the same process, we get

a relation: nodal displacements (𝛿1, 𝛿2, … , 𝛿6) in local, and nodal displacements in

global (𝛿1, 𝛿2, … , 𝛿6):

{

𝛿1
𝛿2
𝛿3
𝛿4
𝛿5
𝛿6}

=

{

𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0 0 0 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0 0 0 0
0 0 1 0 0 0
0 0 0 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃 0
0 0 0 −𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0
0 0 0 0 0 1}

{

𝛿1̅
𝛿2̅̅ ̅

𝛿3̅̅ ̅

𝛿4̅̅ ̅

𝛿5̅̅ ̅

𝛿6̅̅ ̅}

 (2.38)

or

{𝛿} = [𝑇] {𝛿} (2.39)

The substitution of {𝑃} from Eq. (2.37) and {𝛿} from Eq. (2.39) in stiffness equation

{𝑃} = [𝐾⌋{𝛿} gives us:

[𝑇]{ 𝑃}=[𝐾][𝑇]{ 𝛿}

or

{𝑃} = [𝑇]−1[𝐾][𝑇]{𝛿} (2.40)

where [𝑇⌋−1 is the inverse of matrix [𝑇⌋. However, the transformation matrix [𝑇⌋ in

Eq. (2.36) is an orthogonal matrix, [𝑇⌋−1 = [𝑇⌋𝑇. Thus

{𝑃} = [𝑇]𝑇[𝐾][𝑇]{𝛿} (2.41)

Or more conveniently,

{𝑃} = [𝐾]{𝛿} (2.42)

where

{𝐾} = [𝑇]𝑇[𝐾][𝑇] (2.43)

is the stiffness matrix.

2.5 Local and Global Coordinate Systems

“For a grid frame element, the local orthogonal axes are maintained in a way that the

x‐y plane will coincide with the plane of the structural system and 𝑥 defines the

longitudinal centroidal axis of the member. The 𝑧 axis defines the minor-principal axis

of the x-section, the 𝑦 axis defines the bigger axis of the x-section. The grid member

may have either a constant cross section along its length or variable. In Fig. 2.7, the

possible nodal displacements with respect to the local or to the global systems of

coordinates are identified. It is observable that the linear displacements along the 𝑍

direction for the global system and along the 𝑧 direction for local axes are similar

because the two axes match. Generally, rotational components at the nodal coordinates

differ for coordinate systems. Thus, a transformation of coordinates is needed to

transform from the local to the global coordinates.” (Paz & Kim, 2019)

Figure 2.7 Components of nodal displacements for a grid member. (a) Local coordinate

system. (b) Global coordinate system

2.6 Torsional Effects

The determination of the torsional stiffness and mass coefficients is needed. For the

axial problem, the differential equation for the displacement function is given by

𝑑𝑢

𝑑𝑥
=

𝑃

𝐴𝐸
 (2.44)

Similarly, the DE for torsional displacement:

𝑑𝜃

𝑑𝑥
=

𝑇

𝐽𝐺
 (2.45)

Comparing equations (2.44) and (2.45), we write these results obtained already for

axial effects. The displacement functions:

𝜃1(𝑥) = (1 −
𝑥

𝐿
) (2.46)

,

𝜃2(𝑥) =
𝑥

𝐿
 (2.47)

Figure 2.8 Nodal torsional coordinates for a beam element

The stiffness coefficients for torsional effects can be found by

𝑘𝑖𝑗 = ∫ 𝐽
𝐿

0
𝐺𝜃𝑖

′(𝑥)𝜃𝑗
′(𝑥)𝑑𝑥 (2.48)

The consistent mass matrix coefficients for torsional effects:

𝑚𝑖𝑗 = ∫ 𝐼𝑚̅
𝐿

0
𝜃𝑖(𝑥)𝜃𝑗

′(𝑥)𝑑𝑥 (2.48.1)

This moment of inertia may be expressed as the product of the mass 𝑚 per unit length

times the radius of gyration squared, 𝑘2. The mass polar moment of inertia per unit

length 𝐼𝑚 is:

𝐼𝑚̅ = 𝑚
𝐼0

𝐴
 (2.48.2)

Eqs. (2.48) and (2.48.1) gives the stiffness and mass matrices for torsional effects:

{
𝑇1
𝑇2
} =

𝐽𝐺

𝐿
{
1 −1
−1 1

} {
𝛿1
𝛿2
} (2.49)

and

{
𝑇1
𝑇2
} =

𝐼𝑚̅̅̅𝐿

6
{
2 1
1 2

} {

.⋅
𝛿1
.⋅
𝛿2

} (2.50)

in which 𝐼𝑚 is found by Eq. (2.48.2), and 𝑇1, 𝑇2 are torsional moments.

2.7 Stiffness Matrix: Grid Element

The flexural stiffness matrix, Eq. (2.20) is combined with the torsional stiffness matrix,

Eq. (2.49), for finding the stiffness matrix for an element of a grid frame. Relating to

the local coordinate system shown in Fig. 2.7a, the stiffness equation for a uniform

element:

{

𝑝1
𝑃2
𝑃3
𝑝4
𝑃5
𝑃6}

=
𝐸𝐼

𝐿3

{

𝐽𝐺𝐿2/𝐸𝐼

0 4𝐿2

0 −6𝐿 12
−𝐽𝐺𝐿2/𝐸𝐼 0 0 𝐽𝐺𝐿2/𝐸𝐼

0 2𝐿2 −6𝐿 0 4𝐿2

0 6𝐿 −12 0 6𝐿 12}

{

𝛿1
𝛿2
𝛿3
𝛿4
𝛿5
𝛿6}

 (2.51)

Condensing:

{𝑃} = [𝐾]{𝛿} (2.52)

2.8 Element Stiffness Matrix

“The stiffness matrix for a 3-D beam segment is found by the superposition of the

torsional stiffness matrix from Eq. (2.48.2), the axial stiffness matrix from Eq. (2.30),

and the flexural stiffness matrix in Eq. (2.20). Combining these matrices in an

appropriate manner, we get in Eq. (2.53) the stiffness equation:𝐼
𝑟

Figure 2.9 Beam segment of a space frame showing forces and displacements at the

nodal coordinates

{

𝑃1
𝑃2
𝑃3
𝑃4
𝑃5
𝑃6
𝐹7
𝑃8
𝑃9
𝑃10
𝑃11
𝑃12}

=

{

𝐸𝐴

𝐿

0
12𝐸𝐼𝑧

𝐿3

0 0
12𝐸𝐼𝑦

𝐿3

0 0 0
𝐺𝐼

𝐿

0 0
−6𝐸𝐼𝑦

𝐿2
0

4𝐸𝐼𝑦

𝐿

0
6𝐸𝐼𝑧

𝐿2
0 0 0

4𝐸𝐼𝑦

𝐿
−𝐸𝐴

𝐿
0 0 0 0 0

𝐸𝐴

𝐿

0
−12𝐸𝐼𝑧

𝐿3
0 0 0

−6𝐸𝐼𝑧

𝐿2
0

12𝐸𝐼𝑧

𝐿3

0 0
−12𝐸𝐼𝑦

𝐿3
0

6𝐸𝐼𝑦

𝐿2
0 0 0

12𝐸𝐼𝑦

𝐿3

0 0 0
−𝐺𝐼

𝐿
0 0 0 0 0

𝐺𝐼

𝐿

0 0
−6𝐸𝐼𝑦

𝐿2
0

2𝐸𝐼𝑦

𝐿
0 0 0

6𝐸𝐼𝑦

𝐿2
0

4𝐸𝐼𝑦

𝐿

0
6𝐸𝐼𝑧

𝐿2
0 0 0

2𝐸𝐼𝑧

𝐿
0

−6𝐸𝐼𝑧

𝐿2
0 0 0

4𝐸𝐼𝑧

𝐿 }

{

𝛿1
𝛿2
𝛿3
𝛿4
(5

𝛿6
𝛿7
𝛿8
𝛿9
𝛿1𝑂
𝛿11
𝛿12}

Condensing,

{𝑃} = [𝐾] = {𝛿} (2.54)

where 𝐼𝑦 and 𝐼𝑧 are the cross-sectional moments of inertia with respect to the principal

axes labeled as 𝑦 and 𝑧 in Fig. 2.9, and 𝐿, 𝐴, and 𝐽 are respectively the length, cross-

sectional area, and torsional constant of the beam element.” (Paz & Kim, 2019)

2.9 Transformation of Coordinates

The stiffness matrix in Eq. (2.53), is referred to local coordinates axes fixed on the

beam segment. Figure 2.10 displays these reference systems, the 𝑥, 𝑦, 𝑧 axes denoting

the local and the 𝑋, 𝑌, 𝑍 axes denoting the global system of coordinates. “Displayed

in this figure is vector 𝐴 with components 𝑋, 𝑌𝑍 along the global coordinates. Vector

𝐴 can represent any displacement or force at the nodal coordinates of one of the joints

of the structure. To get the components of vector 𝐴 along one of the local axes 𝑥, 𝑦, 𝑧,

it is important to add the projections with that axis of the components 𝑋, 𝑌, 𝑍. The

component 𝑥 of vector 𝐴 along the 𝑥 coordinate:

𝑥 = X cos 𝑥𝑋 + 𝑌 cos 𝑥𝑌 + 𝑍 cos 𝑥𝑍 (2.55a)

in which cos 𝑥𝑌 is the cosine of the angle between axes 𝑥 and 𝑌 and corresponding

definitions for other cosines. The 𝑦 and 𝑧 components of A are

(2.53)

𝑦 = 𝑋 𝑐𝑜𝑠 𝑦𝑋 + 𝑌 cos 𝑦𝑌 + 𝑍 cos 𝑦𝑍 (2.55b)

𝑧 = 𝑋 𝑐𝑜𝑠 𝑧𝑋 + 𝑌 cos 𝑧𝑌 + 𝑍 cos 𝑧𝑍 (2.55c)

Equations (13.6𝑎, 13.6𝑏, 𝑎𝑛𝑑 13.6𝑐) are conveniently written in matrix notation as

{
𝜆
𝑦
𝑍
} = {

𝑐𝑜𝑠𝑥𝑋 𝑐𝑜𝑠𝑥𝑌 𝑐𝑜𝑠𝑥𝑍
𝑐𝑜𝑠𝑦𝑋 𝑐𝑜𝑠𝑦𝑌 𝑐𝑜𝑠𝑦𝑍
𝑐𝑜𝑠𝑧𝑋 𝑐𝑜𝑠𝑧𝑌 𝑐𝑜𝑠𝑧𝑍

} {
𝑋
𝑌
𝑍
} (2.56)

or in short notation

{𝐴} = {𝑇1}{𝐴} (2.57)

in which {𝐴}𝑎𝑛𝑑{𝐴} are the components in the local systems and global systems of

the general vector A and [𝑇1⌋ the transformation matrix found by:

[𝑇1] = {
𝑐𝑜𝑠𝑥𝑋 𝑐𝑜𝑠𝑥𝑌 𝑐𝑜𝑠𝑥𝑍
𝑐𝑜𝑠𝑦𝑋 𝑐𝑜𝑠𝑦𝑌 𝑐𝑜𝑠𝑦𝑍
𝑐𝑜𝑠𝑧𝑋 𝑐𝑜𝑠𝑧𝑌 𝑐𝑜𝑠𝑧𝑍

} (2.58)

The cosines needed in the transformation matrix [𝑇1⌋ are normally found in computer

codes from the global coordinates of 3 points. The 2 points defining the 2 ends of the

beam element along the local 𝑥 axis and the 3rd point located in xy local plane where

𝑦 is the principal axes of the x-sectional area. The input data including the global

coordinates of these 3 points are enough for the evaluation of all cosine terms in Eq.

(2.58).” (Paz & Kim, 2019)To show

Figure 2.10 Components of a general vector A in local and global coordinates

this: “designate 𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗 and 𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗 the coordinates of point I and 𝐽 at the two ends

of a beam element and by 𝑥𝑝, 𝑦𝑝, 𝑧𝑝, the coordinates of a point 𝑃 placed on the local

xy plane. The direction cosines of local axis 𝑥 along the beam element are found by

cos 𝑥𝑋 =
𝑥𝑗−𝑥𝑖

𝐿
, cos 𝑥𝑌 =

𝑦𝑗−𝑦𝑖

𝐿
, cos 𝑥𝑍 =

𝑧𝑗−𝑧𝑖

𝐿
 (2.59)

where L is the length of the beam element given by

𝐿 = √(𝑥𝑗 − 𝑥𝑖)2 + (𝑦𝑗 − 𝑦𝑖)2 + (𝑧𝑗 − 𝑧𝑖)2 (2.60)

The direction cosines of the 𝑧 axis can be calculated from the condition that any vector

𝑍 along the 𝑧 axis must be perpendicular to the plane formed by any two vectors in the

local x-y plane. These two vectors could simply be the vector 𝑋 from point I to point 𝐽

along the 𝑥 axis and the vector 𝑃 from point I to point 𝑃. The orthogonality condition

is then expressed by the cross product between vectors 𝑋 and 𝑃 as

𝒁 = 𝑿 × 𝑷 (2.61)

or substituting the components of these vectors as

𝑧𝑥𝑖̂ + 𝑧𝑦𝑗̂ + 𝑧𝑧𝑘̂ = |
𝑖̂ 𝑗̂ 𝑘̂

𝑥𝑗 − 𝑥𝑖 𝑦𝑗 − 𝑦𝑖 𝑧𝑗 − 𝑧𝑖
𝑥𝑝 − 𝑥𝑖 𝑦𝑝 − 𝑦𝑖 𝑧𝑝 − 𝑧𝑖

| (2.62)

where 𝑖̂, 𝑗,̂ and 𝑘̂ are unit vectors along the global coordinate axes 𝑋, 𝑌, and 𝑍,

respectively.

Then, the direction cosines of axis 𝑧 are given by

cos 𝑧𝑋 =
𝑧𝑥

|𝑍|
, cos 𝑧𝑌 =

𝑧𝑦

|𝑍|
, cos 𝑧𝑍 =

𝑧𝑧

|𝑍|
 (2.65)

in which: Eq. 2.66

𝑧𝑥 = (𝑦𝑗 − 𝑦𝑖)(𝑧𝑝 − 𝑧𝑖) − (𝑧𝑗 − 𝑧𝑖)(𝑦𝑝 − 𝑦𝑖)

𝑧𝑦 = (𝑧𝑗 − 𝑧𝑖)(𝑥𝑝 − 𝑥𝑖) − (𝑥𝑗 − 𝑥𝑖)(𝑧𝑝 − 𝑧𝑖)

𝑧𝑧 = (𝑥𝑗 − 𝑥𝑖)(𝑦𝑝 − 𝑦𝑖) − (𝑦𝑗 − 𝑦𝑖)(𝑥𝑝 − 𝑥𝑖)

and

|𝑍| = √𝑧𝑥2 + 𝑧𝑦2 + 𝑧𝑧2 (2.67)

The direction cosines of the local axis 𝑦 are calculated from the condition of

orthogonality between a vector 𝒀 along the 𝑦 axis and the unit vectors 𝑿𝟏 and 𝒁𝟏 along

the 𝑥 and 𝑧 axes, respectively. Hence,

𝒀 = 𝑿𝟏 × 𝒁𝟏

or in expanded notation

𝑦𝑥𝑖̂ + 𝑦𝑦𝑗̂ + 𝑦𝑧𝑘̂ = |
𝑖̂ 𝑗̂ 𝑘̂

𝑐𝑜𝑠𝑥𝑋 𝑐𝑜𝑠𝑥𝑌 𝑐𝑜𝑠𝑥𝑍
𝑐𝑜𝑠𝑧𝑋 𝑐𝑜𝑠𝑧𝑌 𝑐𝑜𝑠𝑧𝑍

| (2.68)

Therefore,

 cos 𝑦𝑋 =
𝑦𝑥
|𝑌|

, cos 𝑦𝑌 =
𝑦𝑦

|𝑌|
, cos 𝑦𝑍 =

𝑦𝑧
|𝑌|

where: Eq. 2.69

 𝑦𝑥 = cos 𝑥𝑌 cos 𝑧𝑍 − cos 𝑥𝑍 cos 𝑧𝑌

𝑦𝑦 = cos 𝑧𝑋 cos 𝑧𝑋 − cos 𝑥𝑋 cos 𝑧𝑍

𝑦𝑧 = cos 𝑥𝑋 cos 𝑧𝑌 − cos 𝑥𝑌 cos 𝑧𝑋

and

|𝑌| = √𝑦𝑥2 + 𝑦𝑦2 + 𝑦𝑧2

It is shown that knowing the coordinates of points at the 2 ends of an element of a point

𝑃 on the local plane x‐y are enough to find the direction cosines.

In another way, the direction cosines can be found by the nodal coordinates (𝑥𝑖 , 𝑦𝑖, 𝑧𝑖 ,)

and (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) at the two ends of the beam element and if we know the angle of rolling.

For a 3-dimensional figure, the transformation is required at every joint of the segment.

Then, a beam element of a space frame needs, for 2, the transformation of 4

displacement vectors. Transformation of the 12 nodal displacements {𝛿} global

coordinates to the displacement {𝛿} in local coordinates can be abbreviated as:

{𝛿} = [𝑇]{𝛿} (2.70)

where

[𝑇] =

[

[𝑇1]

[𝑇1]

[𝑇1]

[𝑇1]]

Similarly, the transformation from nodal forces {𝑃} in global coordinates to nodal

forces {𝑃} in local coordinates is:

{𝑃} = [𝑇]{𝑃} (2.71)

Eventually, to get the stiffness matrix [𝐾] in reference to the global system of

coordinates, substitute, into Eq. (2.54), {𝛿} from Eq. (2.70) and [𝑃⌋ from Eq. (2.72) to

obtain

[𝑇]{𝑃} = [𝐾][𝑇]{𝛿}

or

{𝑃} = [𝑇]𝑇[𝐾][𝑇]{𝛿} (2.72)

since [𝑇⌋ is an orthogonal matrix. From Eq. (13.21), we may write

{𝑃} = [𝐾]{𝛿} (2.73)

in which ⌊𝐾⌋ is defined as

[𝐾] = [𝑇]𝑇[𝐾][𝑇] (2.74)”

(Paz & Kim, 2019)

CHAPTER 3

3.0 METHODOLOGY

FLOWCHART

Define / Input Value

Extract

K’

Kuu , Kur , Kru , Krr

Du = Kuu
-1 (Fu - KruDr)

[d] = [T][D]

Plot Member

deflection

T

[K’
Global] = [T’][K][T]

K

Fr = KurDU + KrrDr

[q] = [K’][T][D]

Du

Fr

q

Using material and geometric properties,

Assemble local stiffness matrix for each member.

Use T function to calculate transformation matrix

for each member.

Assemble System’s global stiffness matrix.

Member Forces

Outputs

In the first step of the program is to get input from the user. The input can be provided

in one of the two following ways:

• From an excel file.

• Through Graphical User Interface (GUI).

The program stores the provide input in arrays named according to their types i.e.

• Nodal data is extracted in array “nodal_data”.

• Nodal data is further categorized into different arrays like:

o Number of nodes are stored in array “Nnodes”.

o x, y and z-coordinates are stored into arrays “X1”, “X2”, “Y1”, “Y2”,

“Z1”, and “Z2”, respectively. Where 1 and 2 signifies starting and

ending coordinates of the members.

• Member data is stored in array “member_data”.

o Length of members is stored in array “l”.

o Area of the member is stored in array “Area”.

o Moment of inertia for y and z are stored in arrays “iy” and “iz”

respectively.

o Modulus of Elasticity is stored in array “E”.

o Shear Modulus is stored in array “g”.

o Torsional constant is stored in array “j”.

o Mass per unit length is stored in array “m”.

Figure 3.1:MATLAB Code for getting data from input file

3.1 Initialize Matrices and Degree of Freedom:

 Depending on the number of nodes and number of matrices, following matrices

are defined in this section and are modified later in the program:

• dof: each member will have 12 degrees of freedom. Therefore, we define zero

matrix of order 12x1 for each member.

• T: each member will have its own transformation matrix of 12x12 depending

upon its orientation in space.

• u_global: this would be a column matrix of order 6n, where n is the number of

nodes.

• q_local: each member will have 6 reactions for each end. Hence, we have to

define a zero matrix of order 12x12 for each member.

• Q_global: zero matrix of order 6nx1, where n is number of nodes.

3.2 Transformation Matrix:

 The Program calculates the transformation matrix for each member by calling

function “T_matrix”. The process is iterated for each member by using for loop.

Figure 3.2: MATLAB Code for making Transformation matrix

3.3 Stiffness Matrix:

 Stiffness matrix is assembled using the extracted material and geometric

properties as explained above. The problem calls the external function

“klocal_combined” and provides with the necessary arguments to calculate the

stiffness matrix. Analogously, the process is iterated for each member by using for

loop. The local combined stiffness matrix is then transformed into global stiffness

matrix by using the following relation:

[𝑘′𝑔𝑙𝑜𝑏𝑎𝑙] = [𝑇
𝑇] × [𝑘′𝑙𝑎𝑐𝑎𝑙] × [𝑇]

The global stiffness matrices are then combined to form a system global matrix KC.

Figure 3.3: MATLAB Code for making Local Stiffness matrix

Figure 3.4: MATLAB Code for making Global Stiffness matrix

3.4 Compartmentalizing the KC matrix:

 The system global matrix is compartmentalized into:

• Kuu (unrestrained, unrestrained).

• Kru (restrained, unrestrained).

• Kur (unrestrained, restrained).

• Krr (restrained, restrained).

Figure 3.5: MATLAB Code for finding restrained and unrestrained nodal co-ordinates

3.5 Finding Displacements:

Global displacements are found out by following relation:

[𝐷𝑢] = [𝐾−1
𝑢𝑢
] × ([𝐹𝑢] − [𝐾𝑟𝑢][𝐷𝑟])

Figure 3.6: MATLAB Code for finding deflections

3.6 Finding Support Reactions:

 The support reactions will be found out by following relation:

[𝐹𝑟] = [𝐾𝑢𝑟][𝐷𝑢] + [𝐾𝑟𝑟][𝐷𝑟]

Figure 3.7 MATLAB Code for support reactions

3.7 Finding Member Forces:

 The internal reactions for the member are found out by following relation:

[𝑞] = [𝐾′][𝑇][𝐷]

Figure 3.8: MATLAB Code for finding member forces

3.8 Plotting the frame:

• Plotting original frame:

Figure 3.9: MATLAB Code for plotting actual frame

• Plotting deformed frame:

Figure 3.10: General deformation functions for 3D frame element in x-direction

Figure 3.11: General deformation functions for 3D frame element in y-direction

Figure 3.12: General deformation functions for 3D frame element in z-direction

Figure 3.13: Deformed co-ordinates of frame elements

Figure 3.14: MATLAB Code for plotting defelected shape of frame

3.9 Guide To Make Application Using App Designer

3.9.1 Creating a Main GUI

Now we must make a Main GUI which can run 3D Linear Analysis of steel structure,

its detailed steps are given below:

3.9.1.1 MATLAB code

Make the simple code on MATLAB which can run the 3D Analysis of steel structures

which we will use later in Main GUI for Analysis, for making this code its detailed

explanation is given in above paras.

3.9.1.2 APP designer and MATLAB code

Now we have to embed that code into app designer, for it we have to understand the

use of MATLAB APP DESIGNER, it consists of different tools which can easily be

used to make a user-friendly interface.

The figure below shows the component library ,component browser ,design view and

inspector.

From component library we can drag and drop any component in our GUI according

Figure 3.15: Interface of MATLAB APP designer

to requirement of our software and can easily edit using Inspector Menu, Component

browser tells the all components being used to make a user friendly GUI and code view

is used to define the call back behind every component of app designer.

Call back is the background working which should be done when we access that APP

DESIGNER component, for it we make some lines of code which is executed when

we press that button, we can write callback by right click on that APP DESIGNER

component then go to callbacks option then click on callback it will move towards the

code view and callback behind that APP DESIGNER component is made. As shown

in figure:

3.9.1.3 Design view of main GUI

First, we make the main GUI which contain different buttons depends on the need of

software, our software consists of multiple buttons and graph and tables which is

shown below:

a) Run

b) Back to figure

c) Show Results

d) Define nodes

e) Table

f) Settlement

g) Connectivity

Figure 3.16: Call back option in MATLAB APP designer

h) Material properties

i) Sectional properties

j) Nodal load

k) Import data

l) Directory

m) Quit

n) Plot

We can easily drag and drop these buttons and plot from component library into design

view of APP designer and easily adjust their positions by using mouse and edit their

appearance and properties by using inspector of each button and plot.

a. First, we drop down the menu bar from component library and make

different menus like file, directory, nodal load etc.

b. We drop down the panel just because of the contrast of color that color

contains three buttons

i. RUN button

ii. SHOW REULTS button

iii. Back to figure button

c. We drop down the Axes from component Library so that we can draw

the shape of the frame and its deflected shape.

d. Then we drop down the Tab Group from component library and make

two tabs, In first tab group we drop table which shows reaction forces

and In 2nd Tab group we also drop the Table which the deflections of

each node of frame after analysis.

Figure 3.17: Components of our GUI

This is the final Layout of our Main GUI:

Now we made the design view of our software now we have to set callback behind

every button, call back is the background working which should be done when we

Figure 3.18: Layout of Main GUI

access that button , for it we make some lines of code which is executed when we press

that button, now we write callback function for every button in code view, these

callbacks are explained in detail in coming steps.

3.9.1.4 Properties

Properties is the built up function in APP DESIGNER in it we can assign any variable

and can be used as a global variable with app.variable_name syntax for calling variable

actually variables assigned in the properties function is stored in the backend directory

of APP DESIGNER. We also define some variables in properties according to need

which is shown below:

Figure 3.19: Property Function in MATLAB APP designer

3.9.1.5 Start Up Function

It is the built-in function in APP DESIGNER, when we start the program then code

inside this function is evaluated on start of app, our startup function is shown below:

Figure 3.20: Start up function in MATLAB APP designer

In this startup function 1st two lines are used to maximize the window in start of our

app, as default position is not set as maximized so for this, we must use this command.

3rd and 4th line is used to invisible backtofigure and tab group options in design view

for start of application because they are overlapped with another button and graph

respectively.

5th line is used to change the color of graph from default(white) to black

6th line is used to show the plot in 3-D in start of the application.

3.9.1.6 Directory Function in File Menu:

This function is used to get the directory/Folder from user where user give data for

analysis and can save data in that folder.

Figure 3.21: Directory Function

In this code 1st two lines are used because of when we use uigetdir function command

window of MATLAB appear and application window is minimized in APP

DESIGNER so whenever we set directory we have to make the figure and delete it

after getting path of directory, we save directory path in selpath variable as it is

described in properties so we used “app.” To access the variable “uigetdir” is command

which is used to select the path for directory.

3.9.1.7 Import Data Function in File Menu:

This function is used to get the data from the user from the selected directory in above

function.

Figure 3.22:Import Data

We take input as a excel file, In this code 1st two lines are used because when we use

uigetfile function command window of MATLAB appear and application window is

minimized in APP DESIGNER so whenever we get data from user we have to make

the figure and delete it after getting data. We save input data in “input_data” variable

which is defined in properties so it can be accessed by using “app.” Infront of variable,

uigetfile is the command which is used to get data from user and selpath is the directory

from where it get that data which is defined by user in above function and check

variable is used because we have both options either give data manually or by excel

file so check variable shows that data is given by excel file or manually and helps in

calculation.

3.9.1.8 Quit Function in File Menu:

This function is used to quit the application

Figure 3.23:Quit Function

3.9.1.9 Define Nodes in Node Menu:

We call the GUI which we built to make data of different nodes, we make call of GUI

by its name:

Figure 3.24Calling Nodes GUI

“Nodes” is the name of already built GUI which is used to save data for different nodes

of structure.

3.9.1.10 Settlement in Node Menu:

We call the GUI which can take the data of settlement of every node for this we made

GUI with name “Settlement” which we call upon using this button which is show

below:

Figure 3.25: Calling Settlement GUI

3.9.1.11 Connectivity Menu:

We made the GUI which can take data of connection between different nodes, so for

this we made GUI with name “connection” , This GUI is called using connectivity

button, whose command is show below:

Figure 3.26: Calling Connectivity GUI

3.9.1.12 Material Properties Menu:

We made the GUI which can take data of different materials being used to build the

structure, so for this we made GUI with name “material” , This GUI is called using

Material properties button, whose command is show below:

Figure 3.27: Calling Material properties GUI

3.9.1.13 Sectional Properties Menu:

We made the GUI which can take data of different sections being used to build the

structure, so for this we made GUI with name “Sectional_Properties” , This GUI is

called using Sectional properties button, whose command is show below:

Figure 3.28: Calling sectional properties GUI

3.9.1.14 Nodal Load Menu:

We made the GUI which can take data of different Loads being applied to nodes , so

for this we made GUI with name “Nodal_Load” , This GUI is called using Nodal Load

button, whose command is show below:

Figure 3.29: Calling Nodal load GUI

3.9.1.15 Run Button:

It is the most important button because it contains all the code which run analysis of

structure, first we copy all the code which we made to run 3D analysis of steel structure

in matlab, As the syntax of MATLAB and app designer is little bit different so we have

to do some changes in this code which we already made in MATLAB, specially

plotting is doing different in app designer now detailed changes is explained step by

step:

Figure 3.30: Clearing all data plotted in our APP

In the start of Run button we use this command so that if we want to do multiple

analysis so first we have to clear the already plotted structure for it “cla” command is

being used and “app.UIAxes” is name of the plot on which we are plotting original

and deflected shape of structure.

Figure 3.31: APP designer code for Saving data from user in variable

After clearing plot, we check that the data given by user is either in excel file or

manually filled by user by different options (i.e. Define Nodes, Settlement, etc.). this

check is done by using the property variable which is also used in Import Data

function. We have built a default excel file with name “1.xlsx” in it all the data is saved

which user put manually through different options(i.e. Define Nodes, Settlement, etc.)

and we get input in “input_data” property variable which is used further to extract data

from it for analysis of steel structure.

Figure 3.32: APP designer code for pop-up window

Above code is used to create a pop-up window to ensure that the

Analysis has been started, “msgbox()” is the command used to

create a pop-up window, As shown we can split our message in

different lines using semicolon and can also put heading of pop-up

window after comma as we can see Pop up window

All the MATLAB code which run 3D Analysis that remains same,

but some changes is done which is shown below:

Figure 3.34: Saving support reactions in property variable

Figure 3.35: Saving deformations in property varaible

In our MATLAB code we just done some minor changes so that we access its data for

showing our results for it we made two property variables which “table_u” and

“table_q” which is used to show the deflections of each Node and support reactions

respectively in show results option of GUI.

After it the only changes is done in plotting of original and deflected shape of the

structure which is shown below:

Figure 3.33: APP designer code

for pop-up window

Figure 3.36: APP designer code to plotting frame

Above code shows how the original code is being plotted in APP DESIGNER , it is

just similar to MATLAB code but you have to specify the Axes on which you want to

plot and then define co-ordinates and other properties for plotting , it’s color for

plotting is kept white by using “[1,1,1]” in plot3 command as “[1,1,1]” in APP

DESIGNER denotes white color, hold command is kept on for Axes on which we want

to plot, this hold command is mostly used when we have to plot multiple data on one

plot so we have to also plot the deflected shape so let’s see the command for plotting

of deflected shape:

Figure 3.37: APP designer code for plotting deflected shape of frame

As we can see the code for plotting the deflected shape of structure using Analysis in

it the same procedure is being used for plotting as described above, but we can see we

did not use hold command on because it is already on and after doing all plotting we

make hold command off so that no more plotting is being done on our desired axes.

These all are the minor changes which we done in our MATLAB code to Run in APP

designer.

3.9.1.16 Show Results Button:

In this button we show the results of the Analysis that we have done by using Run

button for it we show the deflections on each node and end reaction by using tables,

tables are being placed at same position on the graph so position off graphs and plot is

same so we use visible command as shown below:

Figure 3.38: Show results function

As we used our two tables in tab group so to show tables we keep visibility of tab

group on by Visible command and we also built the button “BACKTOFIGURE”

which used to show the plot instead of results so we also kept on visibility of

BACKTOFIGURE button, we already dropped two tables in tab group in 1st table we

saved data of end reactions and in 2nd table we saved the deflections along each node.

3.9.1.17 Back to Figure Button:

This button is visible when show results buttons is being used, function of this button

is when user want to go back to show the shape of structure, so this button is being

used its command is shown below:

Figure 3.39: Back to figure button

In this simply tab group visibility is kept off because the results is saved in tab group

and back to figure button visibility button is kept off because it is in similar position

to the show results button and is not in being used further.

Now we have completed the Main GUI now we have to make a GUIs which we use in

callback function of different buttons

3.9.2 CREATING A SUB GUI

Nodes GUI:

Now we have to make the GUIS which is being used in our main GUI to get the data

from user for this we open new GUI in APP DESIGNER, we make the GUI with name

“Nodes” which is being used in callback function of define nodes in main GUI, step

by step guide is shown below to make “Nodes” GUI:

a. Design view of GUI:

For the sake of convenience first we make the design view of our GUI and drop all the

options in Design view which are required, we first drop Panel, numeric edit fields,

buttons, and table according to need as shown below:

Figure 3.40: Design view of nodes GUI

So we make the panel name NODES and it contains x, y and z coordinates

corresponding to every node for support conditions we define two standards 0 means

free and 1 means fixed so along every axes user can specify support conditions as

default condition is set free for every node. For support conditions is either 1 or 0 so

we set limit on all 6 numeric edit field between 0 and 1 and its input is always integer

which is done using inspector window as shown below:

Figure 3.41: Inspector window in APP designer

After this we used some button according to need and delete row option if user want

to edit any entered data and table is also being edited in inspector window like shown

above.

b. Properties:

We used one property variable in which we save the data given by user in form of table

as shown below:

Figure 3.42: Property Function

c. Add to Table Button:

This button saves the data from user in table and show the data in the table dropped in

design view let’s see the callback for this function:

Above code shows that we save the data given by user in certain variables and to access

that data from numeric edit field we used “.Value” corresponding to every numeric

edit field, this is the syntax of APP DESIGNER.

After getting input from user and saving it in variable, we make a cell array of all the

data being given by user it is added as a new row in the table which is dropped in GUI

and “app.Node” is the empty variable then we save the new data of our table in this

variable for further use and to save the previous data.

Figure 3.43: Add to table function

Figure 3.44: Resetting values in add to table function

After saving data in table and variable we reset the values of every numeric edit field

to 0 so that user can easily re-input the data.

d. Delete row Button:

This button is used because if user wants to edit any given data after putting it then we

can easily delete it using this button and its callback is shown below:

Figure 3.45: Delete row function

In 1st line we get input from user and save it in variable “rn” , in 2nd line we take rnth

row and all columns from table and equal it to empty matrix by using empty square

brackets, in 3rd row we modify our edited data by saving it in variable “app.Node” and

in 4th row reset the numeric edit field to zero so that user can easily edit data again.

e. Done Button

This button saves the all the data given by user and quit the GUI and its callback is

shown below:

Figure 3.46: Done Button function

We save the data given by user in excel file which is already built in our directory with

name “1.xlsx” and all sheet names is already made so first two lines is used to save the

path and sheet name in which we save the data, 3rd and 4th is used make an empty

matrix of same size as of the data present in specified excel sheet and 5th row is used

to delete all the data if already present in specified sheet name because this is the only

excel file which is used multiple times and 6th row is used to save the new data in excel

file which is given by user in specified excel sheet, we start writing our data from range

“B2” in excel sheet and in last after saving data in excel, software is being closed using

delete(app) command.

3.9.3 Settlement GUI:

Now we make the GUI with name “Settlement” which is being used in callback

function of Settlement in main GUI, step by step guide is shown below to make

“Settlement” GUI:

a. Design view of GUI:

For the sake of convenience first we make the design view of our GUI and drop all the

options in Design view which are required, we first drop Panel, numeric edit fields,

buttons and table according to need as shown below:

Figure 3.47: Design view of Settlement GUI

So we make the panel name Settlement and it contains deflection and rotations along

x, y and z Axes corresponding to every node, we also used some buttons according to

need and delete row option if user want to edit any data.

b. Properties:

We used one property variable in which we save the data given by user in form of table

as shown below:

Figure 3.48: Property Function in Settlemet GUI

c. Startup Function:

This function is performed when this GUI is called let’s see the call back for this

function:

Figure 3.49: Start up function for Settlement GUI

Above code is used to take the data of nodes being given by user in the define node

option of main GUI, As Nodes data is being saves in excel file “1.xlsx” and “nodes”

sheet so first three lines is used to extract data from excel using “xlsread” command

and saved in data variable as 1st column contains nodes number in data variable which

is being saved in x variable later on, Now we have to show the number of nodes in

drop down menu so that user can easily select it, as data is saved in array but we have

to save each node number into corresponding cell array because drop down menu

consider matrix members as one component of drop down menu so we are converting

into cell array for this for loop is being used as shown above and data of matrix is being

saved in corresponding data of cell array after it using command ”.Items” after drop

down we can assign data of nodes by cell array which is being saved in variable z.

d. Add to Table Button:

This button saves the data from user in table and show the data in the table dropped in

design view let’s see the callback for this function:

Figure 3.50: Add to table function for Settlement GUI

Above code shows that we save the data given by user in certain variables and to access

that data from numeric edit field and drop down we used “Value” corresponding to

every numeric edit field and drop down, this is the syntax of APP DESIGNER.

Figure 3.51: adding input data in variable

After getting input from user and saving it in variable, we make a cell array of all the

data being given by user and it is added as a new row in the table which is dropped in

GUI and “app.load” is the empty variable then we save the new data of our table in

this variable for further use and to save the previous data.

Figure 3.52:Resetting variable in add to table function

After saving data in table and variable we reset the values of every numeric edit field

to 0 so that user can easily re-input the data.

e. Delete row Button:

This button is used because if user wants to edit any given data after putting it then we

can easily delete it using this button and its callback is shown below:

Figure 3.53: Delete row function for Settlement GUI

In 1st line we get input from user and save it in variable “rn” , in 2nd line we take rnth

row and all columns from table and equal it to empty matrix by using empty square

brackets, in 3rd row we modify our edited data by saving it in variable “app.load” and

in 4th row we reset the numeric edit field to zero so that user can easily edit data again.

f. Done Button:

This button saves the all the data given by user and quit the GUI and its callback is

shown below:

Figure 3.54: Done function for Settlement GUI

We save the data given by user in excel file which is already built in our directory with

name “1.xlsx” and all sheet names is already made so first two lines is used to save the

path and sheet name in which we save the data, 3rd and 4th is used make an empty

matrix of same size as of the data present in specified excel sheet and 5th row is used

to delete all the data if already present in specified sheet name because this is the only

excel file which is used multiple times and 6th row is used to save the new data in excel

file which is given by user in specified excel sheet, we start writing our data from range

“B2” in excel sheet and in last after saving data in excel, software is being closed using

delete(app) command.

3.9.4 Connection GUI:

Now we make the GUI with name “connection” which is being used in callback

function of Connectivity in main GUI, step by step guide is shown below to make

“connection” GUI:

a) Design view of GUI:

For the sake of convenience first we make the design view of our GUI and drop all the

options in Design view which are required, we first drop Panel, numeric edit fields,

buttons, and table according to need as shown below:

Figure 3.55: Design view of Connectivity GUI

So we make the panel name Connectivity and it is used to define the connection of

nodes which make member and m(x) for corresponding to every member, we also used

some buttons according to need and delete row option if user want to edit any data.

b) Properties:

We used one property variable in which we save the data given by user in form of table

as shown below:

c) Startup Function:

This function is performed when this GUI is called let’s see the call back for this

function:

Figure 3.56: : Start up function for Connectivity GUI

Above code is used to take the data of nodes being given by user in the define node

option of main GUI, As Nodes data is being saves in excel file “1.xlsx” and “nodes”

sheet so first three lines is used to extract data from excel using “xlsread” command

and saved in data variable as 1st column contains nodes number in data variable which

is being saved in x variable later on, Now we have to show the number of nodes in

both drop down menus so that user can easily select it, as data is saved in array but we

have to save each node number into corresponding cell array because drop down menu

consider matrix members as one component of drop down menu so we are converting

into cell array for this for loop is being used as shown above and data of matrix is being

saved in corresponding data of cell array as shown above cell array is being saved in

variable z, after using command ”.Items” after drop down we can assign data of nodes

by variable z to both drop down items.

d) Add to Table Button:

This button saves the data from user in table and show the data in the table dropped in

design view let’s see the callback for this function:

Figure 3.57: : Add to table function for Connectivity GUI

Above code shows that we save the data given by user in certain variables and to access

that data from numeric edit field and drop down we used “.Value” corresponding to

every numeric edit field and drop down, this is the syntax of APP DESIGNER.

Figure 3.58: adding input data in variable

After getting input from user and saving it in variable, we make a cell array of all the

data being given by user and it is added as a new row in the table which is dropped in

GUI and “app.connect” is the empty variable then we save the new data of our table

in this variable for further use and to save the previous data.

Figure 3.59: Resetting all variables

After saving data in table and variable we reset the values of every numeric edit field

to 0 so that user can easily re-input the data.

e) Delete row Button:

This button is used because if user wants to edit any given data after putting it then we

can easily delete it using this button and its callback is shown below:

Figure 3.60: Delete Row function for Connectivity GUI

In 1st line we get input from user and save it in variable “rn” , in 2nd line we take rnth

row and all columns from table and equal it to empty matrix by using empty square

brackets, in 3rd row we modify our edited data by saving it in variable “app.load” and

in 4th row we reset the numeric edit field to zero so that user can easily edit data again.

f) Done Button:

This button saves the all the data given by user and quit the GUI and its callback is

shown below:

Figure 3.61: : Done function for Connectivity GUI

We save the data given by user in excel file which is already built in our directory with

name “1.xlsx” and it’s all sheet names is already made so first two lines is used to save

the path and sheet name in which we save the data, 3rd and 4th is used make an empty

matrix of same size as of the data present in specified excel sheet and 5th row is used

to delete all the data if already present in specified sheet name because this is the only

excel file which is used multiple times and 6th row is used to save the new data in excel

file which is given by user in specified excel sheet, we start writing our data from range

“B2” in excel sheet and in last after saving data in excel, software is being closed using

delete(app) command.

3.9.5 Material GUI:

Now we make the GUI with name “material” which is being used in callback function

of Material properties in main GUI, step by step guide is shown below to make

“material” GUI:

a. Design view of GUI:

For the sake of convenience first we make the design view of our GUI and drop all the

options in Design view which are required, we first drop Panel, numeric edit fields,

buttons, and table according to need as shown below:

Figure 3.62: Design view of Material properies

So, we make the panel name Material Property and it is used to define the property for

every member, we also used some buttons according to need and delete row option if

user want to edit any data.

b. Properties:

We used one property variable in which we save the data given by user in form of table

as shown below:

Figure 3.63: Property Function

c. Startup Function:

This function is performed when this GUI is called let’s see the call back for this

function:

Figure 3.64: Startup functcion For Material properties GUI

Above code is used to take the data of members being given by user in the connectivity

option of main GUI, As Members data is being saves in excel file “1.xlsx” and

“connectivity” sheet so first three lines is used to extract data from excel using

“xlsread” command and saved in data variable as 1st column contains nodes number

in data variable which is being saved in x variable later on, Now we have to show the

Members in drop down menu so that user can easily select it, as data is saved in array

but we have to save each Member into corresponding cell array because drop down

menu consider matrix members as one component of drop down menu so we are

converting into cell array for this for loop is being used as shown above and data of

matrix is being saved in corresponding data of cell array after it using command

”.Items” after drop down we can assign data of Members by cell array which is being

saved in variable z.

d. Add to Table Button:

This button saves the data from user in table and show the data in the table dropped in

design view let’s see the callback for this function:

Figure 3.65: Add to table function for Material properties GUI

Above code shows that we save the data given by user in certain variables and to access

that data from numeric edit field, text edit field and drop down we used “.Value”

corresponding to every numeric edit field and drop down, this is the syntax of APP

DESIGNER.

Figure 3.66: : adding input data in variable

After getting input from user and saving it in variable, we make a cell array of all the

data being given by user and it is added as a new row in the table which is dropped in

GUI and “app.Material_property” is the empty variable then we save the new data of

our table in this variable for further use and to save the previous data.

Figure 3.67: Resetting all values

After saving data in table and variables we reset the values of every numeric and text

edit field to 0 and empty respectively so that user can easily re-input the data.

e. Delete row Button:

This button is used because if user wants to edit any given data after putting it then we

can easily delete it using this button and its callback is shown below:

Figure 3.68: Delete row function in Material properties function

In 1st line we get input from user and save it in variable “rn” , in 2nd line we take rnth

row and all columns from table and equal it to empty matrix by using empty square

brackets, in 3rd row we modify our edited data by saving it in variable “app.load” and

in 4th row we reset the numeric edit field to zero so that user can easily edit data again.

f. Done Button:

This button saves the all the data given by user and quit the GUI and its callback is

shown below:

Figure 3.69:Done function in Material properties GUI

We save the data given by user in excel file which is already built in our directory with

name “1.xlsx” and it’s all sheet names is already made so first two lines is used to save

the path and sheet name in which we save the data, 3rd and 4th is used make an empty

matrix of same size as of the data present in specified excel sheet and 5th row is used

to delete all the data if already present in specified sheet name because this is the only

excel file which is used multiple times and 6th row is used to save the new data in excel

file which is given by user in specified excel sheet, we start writing our data from range

“B2” in excel sheet and in last after saving data in excel, software is being closed using

delete(app) command.

3.9.6 Sectional Properties GUI:

Now we make the GUI with name “Sectional_Properties” which is being used in

callback function of Sectional Properties in main GUI, step by step guide is shown

below to make “Sectional_Properties” GUI:

a. Design view of GUI:

For the sake of convenience first we make the design view of our GUI and drop all the

options in Design view which are required, we first drop Panel, numeric edit fields,

buttons, and table according to need as shown below:

Figure 3.70:Design view of Sectional Properties GUI

So, we make the panel name Sectional Property and it is used to define the sectional

property for every member, we also used some buttons according to need and delete

row option if user want to edit any data.

b. Properties:

We used one property variable in which we save the data given by user in form of table

as shown below:

Figure 3.71: Property Function for Sectional Properties GUI

c. Startup Function:

This function is performed when this GUI is called let’s see the call back for this

function:

Figure 3.72: Startup function for Sectional Properties GUI

Above code is used to take the data of members being given by user in the connectivity

option of main GUI, As Members data is being saves in excel file “1.xlsx” and

“connectivity” sheet so first three lines is used to extract data from excel using

“xlsread” command and saved in data variable as 1st column contains nodes number

in data variable which is being saved in x variable later on, Now we have to show the

Members in drop down menu so that user can easily select it, as data is saved in array

but we have to save each Member into corresponding cell array because drop down

menu consider matrix members as one component of drop down menu so we are

converting into cell array for this for loop is being used as shown above and data of

matrix is being saved in corresponding data of cell array after it using command

”.Items” after drop down we can assign data of Members by cell array which is being

saved in variable z.

d. Add to Table Button:

This button saves the data from user in table and show the data in the table dropped in

design view let’s see the callback for this function:

Figure 3.73: Add to table function for Sectional Properties GUI

Above code shows that we save the data given by user in certain variables and to access

that data from numeric edit field and drop down we used “.Value” corresponding to

every numeric edit field and drop down, this is the syntax of APP DESIGNER.

Figure 3.74: Adding input data in variables

After getting input from user and saving it in variable, we make a cell array of all the

data being given by user and it is added as a new row in the table which is dropped in

GUI and “app.Property” is the empty variable then we save the new data of our table

in this variable for further use and to save the previous data.

Figure 3.75: Resetting all values

After saving data in table and variables we reset the values of every numeric edit field

to 0 so that user can easily re-input the data.

e. Delete row Button:

This button is used because if user wants to edit any given data after putting it then we

can easily delete it using this button and its callback is shown below:

Figure 3.76: Delete row function for Sectional Properties GUI

In 1st line we get input from user and save it in variable “rn” , in 2nd line we take rnth

row and all columns from table and equal it to empty matrix by using empty square

brackets, in 3rd row we modify our edited data by saving it in variable “app.load” and

in 4th row we reset the numeric edit field to zero so that user can easily edit data again.

f. Done Button:

This button saves the all the data given by user and quit the GUI and its callback is

shown below:

Figure 3.77: Done function for Sectional Properties GUI

We save the data given by user in excel file which is already built in our directory with

name “1.xlsx” and it’s all sheet names is already made so first two lines is used to save

the path and sheet name in which we save the data, 3rd and 4th is used make an empty

matrix of same size as of the data present in specified excel sheet and 5th row is used

to delete all the data if already present in specified sheet name because this is the only

excel file which is used multiple times and 6th row is used to save the new data in excel

file which is given by user in specified excel sheet, we start writing our data from range

“B2” in excel sheet and in last after saving data in excel, software is being closed using

delete(app) command.

3.9.7 Nodal Load GUI:

Now we make the GUI with name “Nodal_Load” which is being used in callback

function of Nodal Load in main GUI, step by step guide is shown below to make

“Nodal_Load” GUI:

a. Design view of GUI:

For the sake of convenience first we make the design view of our GUI and drop all the

options in Design view which are required, we first drop Panel, numeric edit fields,

buttons, and table according to need as shown below:

Figure 3.78: Design view of Nodal Load GUI

So we make the panel name Nodal Load and it is used to define the forces and moments

in x, y and z Axes corresponding to every node, we also used some buttons according

to need and delete row option if user want to edit any data.

b. Properties:

We used one property variable in which we save the data given by user in form of table

as shown below:

Figure 3.79: Properties for Nodal Load GUI

c. Startup Function:

This function is performed when this GUI is called let’s see the call back for this

function:

Figure 3.80: Startup function for Nodal Load GUI

Above code is used to take the data of nodes being given by user in the define node

option of main GUI, As Nodes data is being saves in excel file “1.xlsx” and “nodes”

sheet so first three lines is used to extract data from excel using “xlsread” command

and saved in data variable as 1st column contains nodes number in data variable which

is being saved in x variable later on, Now we have to show the number of nodes in

drop down menu so that user can easily select it, as data is saved in array but we have

to save each node number into corresponding cell array because drop down menu

consider matrix members as one component of drop down menu so we are converting

into cell array for this for loop is being used as shown above and data of matrix is being

saved in corresponding data of cell array after it using command ”.Items” after drop

down we can assign data of nodes by cell array which is being saved in variable z.

d. Add to Table Button:

This button saves the data from user in table and show the data in the table dropped in

design view let’s see the callback for this function:

Figure 3.81: Add to table function for Nodal Load GUI

Above code shows that we save the data given by user in certain variables and to access

that data from numeric edit field and drop down we used “.Value” corresponding to

every numeric edit field and drop down, this is the syntax of APP DESIGNER.

Figure 3.82: Adding input data in variables

After getting input from user and saving it in variable, we make a cell array of all the

data being given by user and it is added as a new row in the table which is dropped in

GUI and “app. Load” is the empty variable then we save the new data of our table in

this variable for further use and to save the previous data.

Figure 3.83: Resetting all values

After saving data in table and variable we reset the values of every numeric edit field

to 0 so that user can easily re-input the data.

e. Delete row Button:

This button is used because if user wants to edit any given data after putting it then we

can easily delete it using this button and its callback is shown below:

Figure 3.84: Delete row function for Nodal Load GUI

In 1st line we get input from user and save it in variable “rn” , in 2nd line we take rnth

row and all columns from table and equal it to empty matrix by using empty square

brackets, in 3rd row we modify our edited data by saving it in variable “app.load” and

in 4th row we reset the numeric edit field to zero so that user can easily edit data again.

f. Done Button:

This button saves the all the data given by user and quit the GUI and its callback is

shown below:

Figure 3.85: Done button function for Nodal Load GUI

We save the data given by user in excel file which is already built in our directory with

name “1.xlsx” and it’s all sheet names is already made so first two lines is used to save

the path and sheet name in which we save the data, 3rd and 4th is used make an empty

matrix of same size as of the data present in specified excel sheet and 5th row is used

to delete all the data if already present in specified sheet name because this is the only

excel file which is used multiple times and 6th row is used to save the new data in excel

file which is given by user in specified excel sheet, we start writing our data from range

“B2” in excel sheet and in last after saving data in excel, software is being closed using

delete(app) command.

3.10 Ways to Share App

3.10.1 Share MATLAB Files Directly:

MATLAB gives app details to an operating-systems for providing display in file

browsers. App details further improve the process of packaging/compiling apps. The

“.mlapp file” gives details to interfaces by itself.

Figure 3.86: Saving aplication Data in MATLAB APP designer

3.10.2 PACKAGING APPS IN APP-DESIGNER:

The functionality for packaging in App-Designer is similar to the procedure explains

the Add-Ons>PackageApp option.

1. In App Designer > Designer tab. Then select Share > MATLAB App.

Package App dialog box is opened by MATLAB.

2. The Package App dialog box has these items.

• The name of the application matches the name given to the figure in

App Designer.

• The Main file is the MLAPP file you presently have designated for

editing.

• The installation file will be saved in The Output folder.

Figure 3.87: Ways to share APP

Figure 3.88: Window for creating MATLAB APP

3. Stipulate particulars to show in the app’s gallery. Input suitable info in

required fields: Company, Author Name, Description, Email and

Summary.

4. Products part: choice the products which are needed to operate app.

5. Click Select screenshot: Specify an icon to display gallery of the app.

6. Click Package: create the “.mlappinstall file” to share with users. Click:

Package App button in the App Designer Toolstrip again. The Package

App dialog box gives you the newly altered .prj file for the MLAPP file.

3.10.3 Creating a Web App:

Apps which can run in the browser are called Web Apps.

Creation of deployed web apps needs MATLAB Compiler apps is deployed as web

apps. Further, some functionality is not maintained in deployed apps. Open the Web

App Compiler from inside App Designer by clicking Share in the Designer tab and

choosing Web App when you have MATLAB Compiler on system,

3.10.4 Creating a Standalone Desktop Application:

You get the ability to share the app with users who do not have MATLAB on their

systems by the creation of a standalone desktop application.

It is important to have the MATLAB compiler installed on the system for the creation

of a standalone app. Also, MATLAB runtime systems should be installed on the users’

computer to run the app. The Application Compiler can be opened once you have the

MATLAB compiler. This is done by clicking Designer tab > Share > Standalone

Desktop App.

Figure 3.89: Window for creating stand alone software

CHAPTER 4

4.0 RESULTS AND DISCUSSION

4.1 Comparison with MASTAN2:

 The comparison of results with MASTAN2 show minimum difference as the

results of reaction forces and deflections are overlapping in the Figure 2.14 and Figure

2.15, respectively.

 Figure 4.1 3D fixed jointed frame in MASTAN2

Figure 4.2 3D fixed jointed frame deflection in MASTAN2

Figure 4.3 Linear Elastic Frame Solver (LEFS) Deflection

4.2 Graphs:

Figure 4.4 Reaction forces comparison of LEFS with MASTAN2

Figure 4.5 Deflection comparison of LEFS with MASTAN2

CHAPTER 5

5.0 CONCLUSION

Linear Elastic Frame Solver (LEFS) serves as an effective means to solve complex

engineering structures by following simple instruction provided in the “Instruction

Manual”. MATLAB app designer is a very powerful tool to build and develop apps. It

can also be manipulated and modified since it’s an open source.

 LEFS gives accurate results in Linear Elastic range as the comparison with

commercial softwares validate the said claim. It is developed specially for university

undergraduate students who want to learn structural analysis in MATLAB language.

The students can be able to modify the software freely according to their needs.

6.0 References
Maria Paz, Y. H. (2019). Element Stiffness Matrix for Axial Effects. In Y. H. Maria Paz, Structural

Dynamics (pp. 291-307). Springer Nature Switzerland AG.

Mario Paz, Y. H. (2019). Structural Dynamics. Retrieved from openlibrary.telkomuniversity.ac.id:

https://openlibrary.telkomuniversity.ac.id/pustaka/158883/structural-dynamics.html

• Dynamics of Structures by Anil K. Chopra (4th Ed)

• Structural Dynamics by Mario Paz & Young Hoon Kim

• Introduction to Finite Element Vibration Analysis (2010) by Maurice Petyt

• Dynamics of Structures - CSI (Computers and Structures, Inc.) (2003) by Ray

Clough, Joseph Penzien

• Structural Analysis - Hibbeler-Pearson (2014) - Russell C. Hibbeler

• Matrix Structural Analysis, Second Edition (1999) - William McGuire,

Richard H. Gallagher, Ronald D. Ziemian

• https://openlibrary.telkomuniversity.ac.id/pustaka/158883/structural-

dynamics.html

https://openlibrary.telkomuniversity.ac.id/pustaka/158883/structural-dynamics.html
https://openlibrary.telkomuniversity.ac.id/pustaka/158883/structural-dynamics.html

