Elastic analysis of 3D frames using MATLAB software

A Part of the FINAL YEAR PROJECT UG - 2017

By
Naimat Ali (G.L) 00000210272
Tahir Ali Khan 00000219592
Usama Fazal 00000237572
Hafiz Muhammad Ahmad 00000220559

NUST Institute of Civil Engineering (NICE)
School of Civil and Environmental Engineering (SCEE)
National University of Sciences and Technology (NUST)

Islamabad, Pakistan
Year 2021

This is to certify
that the Final
Year Project

Titled

Elastic analysis of 3D frames using MATLAB software

submitted by

Naimat Ali — 210272

Tahir Ali Khan — 219592
Usama Fazal — 237572
Muhammad Ahmad — 220559

has been accepted towards the
requirements for the undergraduate
degree

in

CIVIL ENGINEERING

Samiullah Khan Bangash
Lecturer
NUST Institute of Civil Engineering
School of Civil and Environmental Engineering
National University of Sciences
and Technology, Islamabad, Pakistan

ABSTRACT

People looking for software to solve linear elastic problems in structures face myriad
challenges. The graphical user interface of the available software — such as ETABs —
has a steep learning curve. If someone wants quick results — e.g., about deflections in

a linear elastic structure — the procedure is laborious and time consuming.

While it is imperative to have a firm grasp on these structural softwares, sometimes a
tool that does just one job but does it faster and in a simpler and more direct way is
what is needed. After consulting with various students, it was ascertained that the
initial learning curve of the existing structural softwares deterred many of them from
even getting started. This is exactly where our software comes in and fills the gap.
Quicker linear elastic structure analysis and in a way that is user friendly to even an

undergrad student.

The quickness of the MATLAB based software depends on the way it is coded. Smart
and efficient coding is the core of our project. Further, the friendliness of the GUI was
determined by various experiments involving many trial runs — which were conducted

with the help of our fellow batchmates.

The final aim of our project was to provide a pathway for students who want to develop
a similar software. The steps of creating the code, the GUI, and the content used is
provided in this thesis. It was imperative to our initial goals to have a project which
contributed to the expansion of knowledge for anyone who wants to delve into
programming as it is related to civil engineering. The mechanics of the code, the
appearance of the GUI and the trials performed, they are all listed here in detail to help

people interested in learning how to create a similar software.

COPYRIGHT NOTICE

In the spirit of knowledge and our love for civil engineering, we make the entire work
done in this thesis to be available for use by the general public. The very purpose of
our project was to make a product that was accessible to the general student — not only
when it comes to a user-friendly interface, but also the code. Keeping in mind our main
target that we initially set out, it is declared that the contents of this thesis may be used
as by anyone. However, it is a reasonable expectation that our work be cited whenever

it is used in another academic paper.

Further, it is stated that the work done in this dissertation is entirely our own. From the
code to the explanations written here in this thesis. Any references taken from research

papers, books, and journals are appropriately mentioned.

DEDICATION

The primary dedication of this project was to facilitate engineers interested in
understanding the underlying codes and working of structural problem-solving
software. The motivation for this project came when we faced inaccessibility to the
underlying workings of structural software. The software that are commercially

available, their source codes are not available to the public.

Further, the interface of these software is not user friendly to someone who is looking
to get started. The dedication was to create a simpler and straight forward experience

for users, who would obtain quick results for their linear elastic structures.

ACKNOWLEDGEMENTS

First and foremost, we would like to acknowledge the role played by our advisor during
this project. It was due to his profound insights, sharp intellect, openness in
communication, and dedication to the art that is civil engineering that we were able to

accomplish the goals we set out to achieve.

There were many moments during our project where we needed direction. And it is
our pleasure and good fortune that Engr. Samiullah Bangash was able to guide us. Be
it the efficiency of the MATLAB code, of the way the graphical user interface (GUI)
appeared, his insights were always valued and gave the direction that we needed in

achieving the final product.

TABLE OF CONTENTS

1.0 INTRODUCTION ... 12
I R €1 1< - | RSP RTR PP 12
1.2 Problem Statementccco i 12

2.0 LITERATURE REVIEW.............c oo, 13
2.1 DSM MENOU... ..o 13

2.1.1 System StIffNESS MAtriX.......coviiiiiiiieieic e 19
2.2 GEOMELIIC STNESSviiviiiieieiesie e 19
2.3 Element Stiffness Matrix for Axial EffectS..........ccccociviiiiiiiieneiencess 22
2.4 Coordinate TransSformMationcccoceiiiiiiiieie e 23
2.5 Local and Global Coordinate SYStEMS.........cccccueiveieiieiierece e 26
P T o £ o] T LI = i =Tod i3S 27
2.7 Stiffness Matrix: Grid EIBMENtccoooeiiiiiiieceee e 28
2.8 Element StIFfNESS IMALFiX.......covviieiieieiie e 29
2.9 Transformation of COOrdiNALESc.cccverieiiiiieiiee e 30

3.0 METHODOLOGY ..o 35
3.1 Initialize Matrices and Degree of Freedom:...........cccoveiieiiiieiicve e, 37
3.2 Transformation MALIiX:cccoeiiereeiesie et 37
TR B 1) 1 LTSS 1Y o U SR 38
3.4 Compartmentalizing the KC MatriX:ccooereriniiinininineiee e 39
3.5 FINdINg DiSPIaCemMENTS:ceiiiiiiieieieeeeeee e 40
3.6 Finding SUPPOrt REACHIONS:eciviiiiiieie et 40
3.7 FINAING MEMDEI FOICES: ...cviiiiiitieiie ettt sra e 41
3.8 Plotting the frame:......c..oiiee e 41
3.9 Guide To Make Application Using App DeSIgNer.........cccvviieieeieiie i, 45

3.9.1 Creating @a Main GUIcccooiiiiiiiiiiic s 45
3.9.11 MATLAB COUB......oeivieitiicie ettt 45
3.9.12 APP designer and MATLAB COUEcoceiiiiiirininieiee e 45
3.9.1.3 Design view of Main GUI.........cccooiiiiiiiiiiiicee e 46
3914 PIOPEITIES ...ttt bbb 49

3.9.15 Start UP FUNCHION......cciiiiieiieeie e 49

3.9.1.6 Directory Function in File Menu:........cccccecvveviiieiieese e 50
3.9.1.7 Import Data Function in File Menu:.........ccccooeiiieviiiie e 51
3.9.1.8 Quit Function in File MENU:cocvveivieiieeciec e 52
3.9.1.9 Define Nodes in NOde MEeNU:cceviiieiieiinie e 52
3.9.1.10 Settlement in NOe MENU:coceiiiiiiiiieiee e 52
3.9.1.11 CONNECHIVILY IMBNU: ...t 53
3.9.1.12 Material PropertieS MENU:ccocuiieiiiiiie i 53
3.9.1.13 Sectional PropertieS MenU:.........ccccveveieeieeie e 53
3.9.1.14 Nodal Load MENU:....c.coiiiiiiiiesiesiieieeee e 54
3.9.1.15 RUN BUHON: ... 54
3.9.1.16 ShOwW ReSUILS BULION:cvoviiiiiiiiiieiieieee e 58
3.9.1.17 Back to Figure BULON:cccoiiiiiiiiice e 58

3.9.2 CREATING A SUB GUILL...cc e 59

N o0 {23 €10 1 SRS 59

3.9.3 Settlement GUI ..o 64
3.9.4 CONNECLION GUIL c.oiiiiiiiieie e e 69
395 Material GUI ..o s 74
3.9.6 Sectional Properties GUI:covoieiiiii e 78
3.9.7 NOodal LOAA GUI ..o 83
310 WaYS t0 SNAIE ADPP . ..cieiieiiieiieiesie sttt 89
3.10.1 Share MATLAB Files DireCtly:.......cccooiiiiiiiiiiiieieeee s 89
3.10.2 PACKAGING APPS IN APP-DESIGNER:......cccccooviiiiecee e, 90
3.10.3 Creating @ WED APP: oo s 91
3.10.4 Creating a Standalone Desktop Application:c.ccooveviiereicienineiee 92
4.0 RESULTS AND DISCUSSION ..o, 93
4.1 Comparison With MASTANZ: ..o s 93
A2 GrAPNS: e 95
5.0 CONCLUSION ... 96
6.0 REFEIENCES ..o 97

LIST OF FIGURES

Figure 2.1 Beam segment showing forces and displacement at the nodal coordinates............... 13
Figure 2.2 Beam element displaying static deflection curves because of a unit displacement at
one Of the NOAal COOTAINALES......ccviiiiie i sttt esbeeesaees 15

Figure 2.3 (a) “Beam element loaded with arbitrary distributed axial force, (b) Beam element
acted on by nodal forces resulting for, displacement 62 =1 undergoing a virtual displacement

3 PRSP 20
Figure 2.4 Differential segment of deflected beam in Fig. 2.3cooiviiiiiiiiiiiiicee e 21
Figure 2.5 Beam element showing nodal axial loads P1, P2, and corresponding nodal

Lo [y o] = TolYa g T=Y N d o R 23
Figure 2.6 Beam element showing nodal forces Pi in local (x, y, z) and nodal forces P1, in global
COOTAINGLE AXES (X, Y, Z) eutiieieiiiieeecieee ettt e e e ctte e e e tte e e e s bae e e e satte e e e e abee e e astaeeeansbaeeeanssaeeeennseneeennsenas 25
Figure 2.7 Components of nodal displacements for a grid member. (a) Local coordinate system.
() I Lo] Y WeleYe] o [T e LI V2 =T o o[RS 27
Figure 2.8 Nodal torsional coordinates for a beam element.........cccccvveeeeciieiicciiee e 28
Figure 2.9 Beam segment of a space frame showing forces and displacements at the nodal

oo Yo T fe [T o - =TSR STR 29
Figure 2.10 Components of a general vector A in local and global coordinates..........ccccecvveennes 31
Figure 3.1:MATLAB Code for getting data from input filecccuvviiiiieiiei e, 37
Figure 3.2: MATLAB Code for making Transformation matriX.........c.ccceeeecvieeeecieeeccciiee e 38
Figure 3.3: MATLAB Code for making Local Stiffness matrixX........cccecvvveeieciiee e 39
Figure 3.4: MATLAB Code for making Global Stiffness matriX.......ccccoceeiviieiinciieiicciee e 39
Figure 3.5: MATLAB Code for finding restrained and unrestrained nodal co-ordinates............... 40
Figure 3.6: MATLAB Code for finding deflections..........coovciiiiiiciiii e 40
Figure 3.7 MATLAB Code for SUPPOIt rEACLIONSccccvvieeieiiiieeciieeececiieeeeectte e e e ecite e e e etre e e e eareeeeeanes 41
Figure 3.8: MATLAB Code for finding member forcescooviiciiiiieciee e 41
Figure 3.9: MATLAB Code for plotting actual frameccccveiivciiee e 42
Figure 3.10: General deformation functions for 3D frame element in x-direction 42
Figure 3.11: General deformation functions for 3D frame element in y-direction.............cc......... 43
Figure 3.12: General deformation functions for 3D frame element in z-directionc.ccocuc.... 43
Figure 3.13: Deformed co-ordinates of frame elements...........cceeereciieeicciiee e 44
Figure 3.14: MATLAB Code for plotting defelected shape of frame.......ccccoceevvceeiiiciiee e, 44
Figure 3.15: Interface of MATLAB APP d@SIGNEI.....cccuiiieieiieee et cecte e eectte e e e evtee e e etee e e e e eateeeeeanes 45
Figure 3.16: Call back option in MATLAB APP deSIGNET........coeeecuiieeeetieee et et eectvee e e evreee e 46
Figure 3.17: Components Of OUr GUIcocuiiiiiiiiiie et e et e e e e e ebae e e e eanes 48
Figure 3.18: Layout Of Main GUIcc.uuiiiiiiiiee ettt ettt e e e tte e e e ette e e e ebeee e e enreeaeeanes 48
Figure 3.19: Property Function in MATLAB APP d@SIZNETcceccuiieeiiciiieeeecieee et eeere e e evee e 49
Figure 3.20: Start up function in MATLAB APP d@SISNErccceciieiiiiiieeeccieee et eeeee e e eiveee e 50
T =(O] IS T e DT =Tt o] VA ¥ Tt o o NS 50
Figure 3.22:1mMPort Data......ciiiiiiiiiiiiiiiccceeeeeeeeeeeeeeeeeeeeee e e e e e e e e e e e s e e e e e s e e e e e e e s e e e s e e e e s e e e e e e e e eaaeaaes 51
(8 IS T0C 2L @ LW) a1 o ot f [o TP RS 52
Figure 3.24Calling NOAES GUIeuriiiiieeee ettt e ettt e e e e e e e e b e e e e e e e s e esnnreaeeeaaeeeenas 52

Figure 3.25: Calling Settlement GUI.......ccocuiiiiiciiiie et et e e et e e e ebae e e e eaees 53

file:///C:/Users/Tahir/Desktop/usamafazal%20folder/Final%20Thesis/ThesisFYP.docx%23_Toc75946427
file:///C:/Users/Tahir/Desktop/usamafazal%20folder/Final%20Thesis/ThesisFYP.docx%23_Toc75946428
file:///C:/Users/Tahir/Desktop/usamafazal%20folder/Final%20Thesis/ThesisFYP.docx%23_Toc75946430

Figure 3.26:

Calling ConNNECHIVITY GUl..ccc.eviiieiiiee ettt e e e e e e s e eaee e e 53

Figure 3.27: Calling Material properties GUIccoiviiiiiiiiiiee ittt sveee e snree e 53
Figure 3.28: Calling sectional properties GUIcccueiiieiiiieeciiee et evve e e e enree e e 54
Figure 3.29: Calling NOdal 10ad GUIcccoiiiiiiciieee ettt e e e e ebae e e e eanes 54
Figure 3.30: Clearing all data plotted in OUr APPuiii i 55
Figure 3.31: APP designer code for Saving data from user in variable..........cccccoveiecneeicciieeeens 55
Figure 3.32: APP designer code for pop-Up WIiNAOWccciiiiiiiieeiiiiiee e eeieeeeeivee e ssvneee e 55
Figure 3.33: APP designer code for pop-Up WINAOWccceeiiiciiiiiiiiiee e scieeessieeeessvaeee e 56
Figure 3.34: Saving support reactions in property variable..........ccccocviiiieciii e 56
Figure 3.35: Saving deformations in property varaiblecccoocvveiiiiiiiiincii e 56
Figure 3.36: APP designer code to plotting framec..oeeecciiie e 57
Figure 3.37: APP designer code for plotting deflected shape of frame........ccccccoveevvciveeicciieennns 57
Figure 3.38: SHOW results FUNCLIONuviiiiiecc e e e 58
Figure 3.39: Back tO figUre DULLONeiiiieeecee et e bte e e e eanes 59
Figure 3.40: Design View Of NOAES GUIuuiiiiiiiiieiciiie sttt s svree e s st e e e 60
Figure 3.41: Inspector Window in APP deSIBNETccccuiiiiiiciiiie ittt eree e e e et ee e 61
Figure 3.42: Property FUNCLIONcociiiiieiecccccecceeeeeeeeeeeeeeeeeeeeeeeee e e e e e e e e e e e e e e se e e e e e e e e e e s e s e e s eeseseseeeseeees 61
Figure 3.43: Add to table fUNCLIONuiii e e 62
Figure 3.44: Resetting values in add to table functionccccvveiieiii e, 63
Figure 3.45: Delete row fUNCHIONcuviii et vte e e s e bae e e s ebae e e e eanes 63
Figure 3.46: Done BUtton fUNCLIONuiiiiiieie et e e e 64
Figure 3.47: Design view of Settlement GUI..........cooouiiiiieciiie ettt e 65
Figure 3.48: Property Function in Settlemet GUIcoooviiiiiiiiiiii e 65
Figure 3.49: Start up function for Settlement GUL..........coooviiiiiiiiiiiccee e 66
Figure 3.50: Add to table function for Settlement GUIcccvviiiiiiiie i 67
Figure 3.51: adding input data in Variable ... e 67
Figure 3.52:Resetting variable in add to table functionccceeeieiiii e 67
Figure 3.53: Delete row function for Settlement GUI..........cccooeciiiiiiiiiie e 68
Figure 3.54: Done function for Settlement GUI........ccueiiiiiiiiiiciiee e 68
Figure 3.55: Design view of CoNNeCctiVIty GUI.........coociiiiiiiiiieicieee ettt et et e e 70
Figure 3.56: : Start up function for Connectivity GUIcceeeivciiiiiiiiiie e 71
Figure 3.57: : Add to table function for Connectivity GUIccoeeiiiiiiiiniiii e 72
Figure 3.58: adding input data in variablec.eee it 72
Figure 3.59: Resetting all variablescoouiiiiiiiiee e 72
Figure 3.60: Delete Row function for Connectivity GUL..........ccccuvieieciiieieciiee e 73
Figure 3.61: : Done function for Connectivity GUl.........ccocuiiiiiciiie it eetree e 73
Figure 3.62: Design view of Material Properi€s........ccueiiccieieiccieee e e e eree e 74
Figure 3.63: Property FUNCLIONccoiiiiieeeeceeeee ettt ee e e e e eseeeeeeenes 75
Figure 3.64: Startup functcion For Material properties GUl..........cccccvveeiiciieeeeciiee e 75
Figure 3.65: Add to table function for Material properties GUI...........cccoecvveiivciieeiecieee e 76
Figure 3.66: : adding input data in variable ... 76
Figure 3.67: ReSetting a@ll VAlUEScccuvieiiieee ettt e bte e e e 77
Figure 3.68: Delete row function in Material properties functioncccceeeeciieeeeciiieeccciieeeens 77

Figure 3.69:Done function in Material properties GUI..........coocciieiiiiiiee i e 78

file:///C:/Users/Tahir/Desktop/usamafazal%20folder/Final%20Thesis/ThesisFYP.docx%23_Toc75946445
file:///C:/Users/Tahir/Desktop/usamafazal%20folder/Final%20Thesis/ThesisFYP.docx%23_Toc75946455

Figure 3.70:Design view of Sectional Properties GUIc.c.coeevciieiiiciiee et eevree e 79
Figure 3.71: Property Function for Sectional Properties GUIcccocouveeiiciieiircieeeescieee e eieee e 79
Figure 3.72: Startup function for Sectional Properties GUIcccoecvveeieiieieecciiee e 80
Figure 3.73: Add to table function for Sectional Properties GUI..........ccceecvveeeecieeeeeciiee e 81
Figure 3.74: Adding input data in variablesc.eee e 81
Figure 3.75: ReSEHING @Il VAIUES ...cooeeeiieeeeee et et e et e e e bte e e e eanes 81
Figure 3.76: Delete row function for Sectional Properties GUIcccvevvcieeiiicieeesvciiee s ccieee e 82
Figure 3.77: Done function for Sectional Properties GUIcccvivvciieeiiiiiee et eevee e 82
Figure 3.78: Design view of Nodal Load GUIL..........ccoocuiiiiiiiiiiiiciiee ettt e 84
Figure 3.79: Properties for Nodal Load GUI..........coiiiiiiiiiiiiiiei e seree e svee e siree e 84
Figure 3.80: Startup function for Nodal Load GUIccoeciiiiiiciiie et 85
Figure 3.81: Add to table function for Nodal Load GUIccocciiiiiiiiieicieee e 86
Figure 3.82: Adding input data in variablesc..ceeiiieiicciiie e 86
Figure 3.83: RESELHING Al VAIUES ...coeoneeiieeeeee ettt et e e e bte e e e eanes 86
Figure 3.84: Delete row function for Nodal Load GUIc.ceevviiiiiiiiiiiii e eeree e 87
Figure 3.85: Done button function for Nodal Load GUI.........ccoccuiiiiiiiiiiiniieee e 87
Figure 3.86: Saving aplication Data in MATLAB APP deSigNer........cccveeeieciiieeeciieee e eieee e 89
Figure 3.87: Ways t0 SNAre APP ..ottt ettt e e st e e st e e s sbte e e s sbaeeessbteeeesanes 90
Figure 3.88: Window for creating MATLAB APPuiiiiiiiee ettt ettt eettee e e etre e e e nteeeeenes 91
Figure 3.89: Window for creating stand alone softwareccoveeeeciieeiccieee e 92
Figure 4.1 3D fixed jointed frame in MASTANZccooiiirinieeeeere et 93
Figure 4.2 3D fixed jointed frame deflection in MASTANZ.......c.ccoeveiieceieceee e 94
Figure 4.3 Linear Elastic Frame Solver (LEFS) Deflection..........cccccvveviveneneneneneeeeencneen 94
Figure 4.4 Reaction forces comparison of LEFS with MASTANZ.........ccccevivveeceneneene e 95
Figure 4.5 Deflection comparison of LEFS with MASTANZ ..o, 95

file:///C:/Users/Tahir/Desktop/usamafazal%20folder/Final%20Thesis/ThesisFYP.docx%23_Toc75946499
file:///C:/Users/Tahir/Desktop/usamafazal%20folder/Final%20Thesis/ThesisFYP.docx%23_Toc75946501

CHAPTER1
1.0 INTRODUCTION

1.1 General

Using the direct stiffness method, a software with a user-friendly GUI was created to
solve linear elastic problems.

The procedure of the development of the GUI has been included in detail in the thesis
to help anyone make their own software.

Further, the results provided the software have been verified after comparison to other

software.

1.2 Problem Statement

To solve linear elastic problems, using the manual method is time consuming. Further,
as the number of variables increase, it gets cumbersome to keep all the calculations
and to avoid errors. Finally, there is a lot of wastage of paper and the process of writing
is laborious.

Secondly, the software available in the market do not have any open source code
available. This is a problem because if someone wants to understand the operating
principles of such software, they cannot use that software to learn that.

Lastly, there is no guide available to make a GUI for such software.

CHAPTER 2
2.0 LITERATURE REVIEW

2.1 DSM Method

If we consider a beam element of x-sectional MOI I, modulus of elasticity E, and length L
as displayed in Fig. 2.1. It is possible to get a relation for the moments and forces named
as P1, P2, P3 and P4 and the related linear and angular displacements d1, d2, d3and o4 at the
ends of the beam element as shown in Fig. 2.1. This relation that we get is the stiffness
matrix eq. The displacements ¢; and forces Pt are at the nodal coordinates at the ends for
the beam element (Paz & Kim, 2019).

The renowned equation for small transverse displacements of a beam element, is given

by the following differential equation

2

d“u
Elﬁ = M(x) (2.1)

where u is the transverse displacement and M(x) is the bending moment at a cross-

section ‘x’ of the beam.

Y
GQ,P.‘
&2, P, ~. El /’\
...... r X
A A
L
51, P4 b3, P3

Figure 2.1 Beam segment showing forces and displacement at the nodal coordinates

The differential Equation (2.1) present for a uniform beam element is equal to

4

d*u
El— = P(x) (2.2)
dx

since

M(x)
El——=V(x) (2.3)
dx
and
EI@ = P(x) (2.4)
dx

In which V(x) is the shear force and p(x) is the load of the beam per unit of length.
First, we state the definition of the stiffness coefficient, designated by ki, that is, ki is
the force at nodal coordinate | because of a unit displacement at nodal coordinate j
while the rest of the nodal coordinates are kept at O displacement. “Figure 2.2
demonstrates the displacement curves and the equivalent stiffness coefficients because
of a unit displacement at each of the 4 nodal coordinates of the beam element (Paz &
Kim, 2019). For the determination of expressions for the stiffness coefficients kij, we
start by the equations for displaced curves demonstrated in Figure 2.2. First, we take
the beam element in Figure 2.1 with no loads [p(x) = 0], with the exception of the
forces P1, P2, Pz and P4 applied at nodal coordinates” (Paz & Kim, 2019). Here, Eq.
(2.2) is reduced:
d*u

Further integrations of Eq. (2.4) gives

d3u

FPEae!

2
d_u_Clx+CZ

dx?

__l;”\ Ny(x) K41 K33 N3(x) /_L
5, =1 e x N 63 =1
Ky K34 K13 K33
(a) (b)

Kn 252 N g aa o
{T‘/’l ‘T—'x e X

I wm
KIZ K32 K14 ‘() 8; i 1 K34
(c)

Figure 2.2 Beam element displaying static deflection curves because of a unit
displacement at one of the nodal coordinates

du 1
1
u =€C1x3 +C2 X2 +C3X+C4, (26)

where C1, Cy, C3 and C4 are constants of integration to be found by the usage of
boundary conditions. As an example, for the determination, the function N(x) for the
curve displayed in Fig. 2.2a, we use these boundary conditions:

du(0)

atx =0 u(0)=1land ——==0 (2.7)
dx
du(L)
atx =L u(L) =OandW=0 (2.8)

By using the above conditions in Egs. (2.5) and (2.6), gives a system of four algebraic
equations which can be used to find the constants C1, C2, C3 and Ca.
The further substitutions of above-mentioned constants into Eqg. (2.6) give us the

equation for the deflected curve for the beam element in Fig. (2.2a) as
X X
Ny(x)=1- 3(2)2 + Z(Z)3 (2.9a)

where Ni(x) is used in the place of u(x) to correspond to condition ¢1 = 1 applied on

the beam element. Going on in similar way, we get the following equations for the

equations of the deflected curves:

Ny(x) = x(1 — %)2 (2.9b)
Ny () =30 +2)° (2.9¢)
N, (x) = %2 + (% -1) (2.9d)

As we know that N1(x) is the deflection equivalent to a unit displacement ¢1 = 1, the
displacement obtained from a random displacement 41, is N1(x) J1. “In the same way,
the deflection obtained from nodal displacements o2, d3 and ds are N2(x) d2, N3(x)d3 and
Na(x)os. Hence, the combined deflection u(x) at coordinate x because of random
(arbitrary) displacements at nodal coordinates of beam element is produced by
principle of superposition as
u(x) = Ny(x)6; + Ny(x)8, + N3(x)83 + Nu(x)5, (2.10)
The equations of shape, given by Egs. (2.9a, b, ¢ and d) and which are related to unit
displacements at nodal coordinates of a beam element, can be utilized to find
expressions of stiffness coefficients (Paz & Kim, 2019). For instance, take into acount
the beam in Fig. 2. For this beam in the balanced position, we say that a virtual
displacement which is equal to the deflection curve displayed in Fig. 2.2a happens.
After that we apply the principle of virtual work, which tells us that, for an elastic
system, work performed by external forces is the same as the work of internal forces
during the virtual displacement. To apply this principle, we notice that external work
WE is equal to the multiplication product of the force ki2 displaced by 61 = 1, which is
Wg = k1,6, (2.11)

This work is the same as the work done by elastic forces during the virtual
displacement” (Paz & Kim, 2019). Taking into account the work done by the bending-

moment, we get for the internal work this equation
L
w; =f M (x)do (2.12)
0

in which d@ is the incremental angular displacement of this section of the element and

M(x) is the bending moment at section x of the beam.

For the virtual displacement, the transverse deflection of the beam is found by

Eq. (2.9b), which is connected to the bending moment by the differential Eq. (2.1).

Substitution of the second derivative N 2(x) of Eq. (2.9b) into Eq. (2.1) gives us
EIN",(x) = M(x) (2.13)

The angular deflections d6 formed during virtual displacement is connected to the

transverse deflection of the beam N1(x) by

do d*N,(x)
o ae W
or
dd =N";(x)dx (2.14)

Making equal the external virtual work, We from Eq. (2.11) with the internal virtual
work Wy from
Eqg. (10.12) after using M(x) and d0, respectively, from Egs. (2.13) and (2.14)

ultimately results in stiffness coefficient:

L
ki, = j EIN",(x)N",(x)dx (2.15)
0

Generally, any stiffness coefficient kjj in relation with beam flexure, can be expressed

as.
L
ki, = f EIN" (x)N";(x) dx (2.16)
0

As observed from Eqg. (2.16) that kij = k;i, because the swapping of indices needs only
an interchange of 2 factors, N";(x) and N"';(x) in Eq. (2.16). This equivalence of ki;
= kji is a special case of Betti’s theorem; however, it is more appropriately known as
Maxwell’s reciprocal theorem.

It is important to notice that even though the “shape functions, Egs. (2.9a, b, ¢ and d),
were found for a uniform beam, in practical applications they are also used in finding
out the stiffness coefficients for non-uniform beams (Paz & Kim, 2019).

If we consider the case of a uniform beam element of length L and cross-sectional

moment of inertia I, we may calculate any stiffness coefficient from Egs. (2.16) and

the use of Egs. (29a, b, c and d).” (Paz & Kim, 2019)
Specifically, the stiffness coefficient ki is found as below:
From Eq.(2.9a), get

, 6 12x
NG ==+ 5
from Eq. (2.9b)
4 6x
N Z(X) = Z + L—Z

Substitution in Eg. (10.15) gives us
L' 6 12x -4 6x
K1z = EI f (Fr) %

doing integration gives us

6E1
2=

“Because the stiffness coefficient kyj is described as the force at the nodal coordinate
1 because of unit displacement at the coordinate j, the forces at coordinate 1 due to
displacements d1, d2, 02 and o4 at the 4 nodal coordinates are given as: K11 d1, K12 d2, K13
03 and Ki4 J4. So, the total force P; at coordinate is found by the superposition of the
resulting forces:

Py = k1167 + k1267 + k1303 + k146,
In the same manner, the forces at the other nodal coordinates obtained from the nodal
displacement o1, d2, d3, d4 are: Eq. (2.17)

Py = k1281 + k226, + k2383 + k2464

Py = k3161 + k330, + k3303 + k3404

Py = k4161 + k4362 + k4363 + k4sly

The above equations are better written in matrix notation as below:

= (2.18)

or summarized:

{P}=[kl{6} (2.19)

The use of Eq. (2.16) in the manner displayed above to determine the coefficient ki,
gives us the way to calculate all the coefficients” (Paz & Kim, 2019). For a uniform
beam element:

P1 12 6L —12 6L (6

P _E1)6L 41> —6L 2L*|)9;

ps(13)—12 —6L 12 —6L()8 (2.20)

Pa 6L 212 —6L 412)\s,

2.1.1 System Stiffness Matrix

So far, we have a relation between nodal forces (forces and moments) and nodal
displacements (linear and angular). Now, we have to find a similar type of connection
for the nodal forces and the nodal displacements; but for the whole structure, which is
the ‘system stiffness equation’.

2.2 Geometric Stiffness

When there is an addition of an axial force on top of flexural force, the stiffness
coefficients are altered by the existence of the axial force. The alteration is known as
“the geometric stiffness coefficient kgij, defined as the force corresponding to the nodal
coordinate | due to a unit displacement at coordinate j and resulting from the axial
forces in the structure (Paz & Kim, 2019). Coefficients can be calculated by the
principle of virtual work. If we consider a beam element subjected to a spread axial
force per unit of length N (x), as portrayed in Fig. 2.9a. In the drawing in Fig. 2.9b, the
beam section is subjected to a unit rotation of the left end, 62 Y4 1. The nodal forces
due to this displacement are the corresponding geometric stiffness coefficients.” (Paz
& Kim, 2019) Now if we suppose for this deformed beam a unit displacement 01 = 1,

the external work is

N(x)

Magnitude of axial force, N(x)

__________ W HWIWmTﬁmﬂmﬂ)

(a)
Y
Oy(x) = Ny(x)84
S~ N
—F k622 — ‘[______ klMZ
81=1 O\ O
515 Fod T X
. >
T A —x—a| t
kmz (b:l kG32

Figure 2.3 (a) “Beam element loaded with arbitrary distributed axial force, (b) Beam
element acted on by nodal forces resulting for, displacement 62 = 1 undergoing a
virtual displacement 61 = 1”

We = kg1261
or

We = ke12 (2.21)

because 6; = 1.
The internal work is found by taking into account a differential element of length dx
which we take from the beam in Fig. 2.3b and displayed in a larger size in Fig. 2.4.
Work done by the axial force N(x) during the virtual displacement:
dwW; = N(x)é, (2.22)
where &, denotes the relative displacement taking place by the normal force N(x)
acting on the differential element during the virtual displacement. From Fig. 2.4, by
similar triangles (triangles 1 and 11), we get

6. dN, (x)

dN;(x) dx

or

dN4(x)

N (x)

dx

Figure 2.4 Differential segment of deflected beam in Fig. 2.3

_ dN;(x) dN,(x)
O =~ Tax ¥
8, = N!(X)N4(x)dx

in which N{(x) and N, (x) are the derivatives.

Substituting &, in Eq. (2.22), gives us
dW; = N(x)N{(x)N,(x)dx (2.23)

After that by integrating the expression and equalizing the result to the external work,
Eqg. (2.21), eventually gets us

keiz = [y NN GON;(x)dx (2.24)
Generally, any geometric stiffness expression:

keij = [, N GON/ ()N} (x)dx (2.25)
Normal force N(x) is assumed to be independent of time. When the displacement

equations, Egs. (2.9a,b,c and d) , are referenced in Eq. (2.25) to find out the

geometric stiffness coefficients, the result is known as the consistent geometric
stiffness matrix. When the axial force is uniform along the length, use of Egs. (2.25)
and (2.9aq, b, c and d) provides us the geometric stiffness matrix equation:

Py 36 3L -36 3L) (6

P, N J3L 412 3L -L*()6;

P;(" 300)—36 —3L 36 —3L()&; (2.26)

P, 3L -1 3L 412)\§,

The combined stiffness matrix [K,| for the structure is given by
[K.] = [K] - [Kq] (2.27)
here [K] is the combined elastic stiffness matrix for the structure and [K.| the

geometric stiffness matrix.

2.3 Element Stiffness Matrix for Axial Effects

The presence of axial forces in the stiffness matrix of a flexural beam element needs
the stiffness coefficients for axial loads. For finding out the stiffness matrix, look at
Fig. 2.5. For a uniform and prismatic beam segment of cross sectional A and length L,
it is easy to get the stiffness relation for axial effects by using the Hooke’s law (Paz &
Kim, 2019). The displacements §, made by P; at node 1 while node 2 is fixed (5, = 0)

IS:

8 == (2.28)
From Eq. (2.28) and k,,, we get
P. AE

The balance of the beam segment by the force k,; needs a force k,;:
AE

kpp = —ky = === (2.29b)
The other stiffness because of displacement at node 2 (6, = 1):
kyy == (2.29¢)
More:
AE

(2.29d)

Contents of Eq. (2.29a) are a part of the stiffness matrix relating displacement and

axial forces for a uniform beam segment:

=70 M) e
The stiffness matrix shown in Fig. 2.6 is found by the combination in one matrix the
stiffness matrix for flexural effects and the stiffness matrix for axial effects, Eq. (2.30),
Eq. (2.20) (Paz & Kim, 2019). The matrix obtained from this relates the displacements

&, and the forces P; at the coordinates shown in Fig. 2.6:
AE

8, Py —> —» 5,,P,

Figure 2.5 Beam element showing nodal axial loads P1, P2, and corresponding nodal
displacements o1, 62

2

P, (%) (61
P, 0 12 6,
P3\ _Er)o 6L 412 83
P, _L—3<_A_L2 . ,ow ><64> (2.31)
Ps ! ! Js
p 0 -12 —-6L 0 12 5

° L0 6L 212 0 —6L 412/ ¢

or, in concise notation,
{P} = [K]{s} (2.32)

2.4 Coordinate Transformation

The stiffness matrix for any element of a plane frame in Eq. (2.31) is defined by
coordinate axes fixed on beam. “These axes are known as local or element coordinate
axes; the coordinate axes for the complete structure are called global or system

coordinate axes. Figure 2.6 displays a beam element containing nodal forces P;, P,, ...,

P, called the local coordinate axes x, y, z, and Pi1 ,Pa, ..., Ps referred to global

coordinate set of axes X, Y, Z. The goal: transform the element matrices from local to

global. This transformation is needed because the matrices for all the elements relate

to the identical coordinates. We start by stating the forces (P, P,, P;) as forces (P1,

P», P3). Because these 2 sets of forces are equal, we get from Fig. 2.6 these

relationships.” (Paz & Kim, 2019)

For node one: Eqg. (2.33)
P1= Picos® + P2sind
P, = — P1sin@ + P2cos@
P, =P3

The equations of Eq. (2.33) can be written as:

Py cosO sind 0} (P,

{le = {—sin@ cosO O} P,

Ps 0 0 1P_3

Similarly, we get for the forces on node two: Eq. (2.35)

Ps= Pacos@ + Pssind

Ps = — Pasinf + Pscosf

(2.34)

Figure 2.6 Beam element showing nodal forces Pi in local (x, y, z) and nodal forces P1,
in global coordinate axes (X, Y,Z)

Equations (2.33) and (2.35) in matrix form:

P, cos® sinf 0 0 0 o0y ()
P, (—sin@ cos6 0 0 0 0] &
Pl _JO 0 1 0 0 o]~
P)0 0 0 cos® sinf Of) P, ((236)
Ps 0 0 0 —sin® cos® 0 P
P o 0o 0 0 o V(g
Condensing:

Py=[r{P} (237
Where {P} and {ﬁ} are vectors of the element nodal forces in local coordinates and
global coordinates and [T is the transformation. Going over the same process, we get
a relation: nodal displacements (J;,d,, ..., 8¢) in local, and nodal displacements in

global (8,85, ... , 8):

(51 (cos® sind 0 0O 0 o0y (%)
52 —sin@ cosf 0 0 0 0 %
1 _)0 0 1 0 0 0|)6
) 84 (= 0 0 0 «cosf sinf 0O) A ((2.38)
05 0 0 0 —sinf cosf 0 35
\S 0 0 0 0 0 1 =
6 \5¢/
or
{6} = [T] {6} (2.39)

The substitution of {P} from Eq. (2.37) and {6} from Eqg. (2.39) in stiffness equation
{P} = [K]{6} gives us:
[TK P}=IK]ITH 63
or
{P}=[T1'KIITI(6} (2.40)
where [T|~1 is the inverse of matrix [T|. However, the transformation matrix [T| in

Eq. (2.36) is an orthogonal matrix, [T|~* = [T]T. Thus

{P} = [TI"[K][T]{5} (2.41)
Or more conveniently,

{P} = [K]{6} (2.42)
where

{K} = [T1"[K][T] (2.43)

is the stiffness matrix.

2.5 Local and Global Coordinate Systems

“For a grid frame element, the local orthogonal axes are maintained in a way that the
x-y plane will coincide with the plane of the structural system and x defines the
longitudinal centroidal axis of the member. The z axis defines the minor-principal axis
of the x-section, the y axis defines the bigger axis of the x-section. The grid member
may have either a constant cross section along its length or variable. In Fig. 2.7, the
possible nodal displacements with respect to the local or to the global systems of
coordinates are identified. It is observable that the linear displacements along the Z
direction for the global system and along the z direction for local axes are similar
because the two axes match. Generally, rotational components at the nodal coordinates
differ for coordinate systems. Thus, a transformation of coordinates is needed to
transform from the local to the global coordinates.” (Paz & Kim, 2019)

Figure 2.7 Components of nodal displacements for a grid member. (a) Local coordinate
system. (b) Global coordinate system

2.6 Torsional Effects

The determination of the torsional stiffness and mass coefficients is needed. For the

axial problem, the differential equation for the displacement function is given by

du P
el (2.44)
Similarly, the DE for torsional displacement:
a6 _ T
=76 (2.45)

Comparing equations (2.44) and (2.45), we write these results obtained already for

axial effects. The displacement functions:

6,(x) = (1-7) (246)

0,(x) = f (2.47)

7'
~
A 4

6, Py ———» ——>—>8,,P;

m, A,J,.G

Figure 2.8 Nodal torsional coordinates for a beam element

The stiffness coefficients for torsional effects can be found by
L ! !
kij = fo] GO; (x)0; (x)dx (2.48)
The consistent mass matrix coefficients for torsional effects:
L ,
m;j = fo Lz 0;(x)8; (x)dx (2.48.1)
This moment of inertia may be expressed as the product of the mass m per unit length
times the radius of gyration squared, k2. The mass polar moment of inertia per unit
length I,,, is:
Im =M= (248.2)
Egs. (2.48) and (2.48.1) gives the stiffness and mass matrices for torsional effects:
T1 _JG 1 -1 61
{Tz} a T{—1 1 }{62} (2.49)
and
T mr(2 1 (1
{Tz} - T{1 2} - (250)
52

in which I,,, is found by Eq. (2.48.2), and T;, T, are torsional moments.

2.7 Stiffness Matrix: Grid Element

The flexural stiffness matrix, Eq. (2.20) is combined with the torsional stiffness matrix,
Eqg. (2.49), for finding the stiffness matrix for an element of a grid frame. Relating to
the local coordinate system shown in Fig. 2.7a, the stiffness equation for a uniform

element:

(JGL?/EI
0
0

—JGL?/EI

Pi| _m
Paf 13
Ps
Pe
Condensing:

\0

0

2.8 Element Stiffness Matrix

Y\ (61)
412)
—6L 12 | 3 [
0 0 JGL?/EI 84
212 —6L 0 412 Js
6L —12 0 6L 12/ \&6/
{P} = [K]{d} (2.52)

(2.51)

“The stiffness matrix for a 3-D beam segment is found by the superposition of the
torsional stiffness matrix from Eq. (2.48.2), the axial stiffness matrix from Eq. (2.30),
and the flexural stiffness matrix in Eg. (2.20). Combining these matrices in an

appropriate manner, we get in Eq. (2.53) the stiffness equation:;

84,P4 81:

63.P3

86, P6

P,

*65,[’5 ?811")11
82, P, G.E,1,m,J.A ;8}:8 810, P10
I
/.
’ 50,7y ¥
812,Py2

Figure 2.9 Beam segment of a space frame showing forces and displacements at the

nodal coordinates

E
L
12El,
0 =
P, o o = &
P, GI S,
P, 0 0 - 5,
P, 0 o = o ¥ A
Ps L L (5
N R o o o o = 187
PS L L S
—12EI, —6EI, 12El, 8
P9 0 L3 0 0 0 12 0 L3 59
Py 0 0 —12EI, 0 6ELy 0 0 0 12El, 810
Py, L3 L2 L3 611
—-GI GI
P12 0 0 0 T 0 0 0 0 0 T k612
o o =2 o X o0 o 0o = o £
o ¥z o o o0 Xz o =z o o o ¥t
L L L L
Condensing,

{P} = [K] = {6} (2.54)
where 1, and I, are the cross-sectional moments of inertia with respect to the principal
axes labeled as y and z in Fig. 2.9, and L, A, and] are respectively the length, cross-

sectional area, and torsional constant of the beam element.” (Paz & Kim, 2019)

2.9 Transformation of Coordinates

The stiffness matrix in Eq. (2.53), is referred to local coordinates axes fixed on the
beam segment. Figure 2.10 displays these reference systems, the x, y, z axes denoting
the local and the X, Y, Z axes denoting the global system of coordinates. “Displayed
in this figure is vector A with components X, YZ along the global coordinates. Vector
A can represent any displacement or force at the nodal coordinates of one of the joints
of the structure. To get the components of vector A along one of the local axes x, y, z,
it is important to add the projections with that axis of the components X, Y, Z. The
component x of vector A along the x coordinate:

x =XcosxX +Y cosxY +ZcosxZ (2.55a)

in which cos xY is the cosine of the angle between axes x and Y and corresponding

definitions for other cosines. The y and z components of A are

(2.53)

y=XcosyX +YcosyY +ZcosyZ (2.55b)
z=XcoszX+YcoszY +ZcoszZ (2.55cC)
Equations (13.6a, 13.6b, and 13.6¢) are conveniently written in matrix notation as
A cosxX cosxY cosxZ) (X
y(= jcosyX cosyY cosyZi Y (2.56)
Z coszX coszY coszZ) \Z

or in short notation
{4} = (T, }{4} (2.57)
in which {A}and{A} are the components in the local systems and global systems of

the general vector A and [T | the transformation matrix found by:

cosxX cosxY cosxZ
[T1] = ycosyX cosyY cosyZ; (2.58)
coszX coszY coszZ

The cosines needed in the transformation matrix [T} | are normally found in computer
codes from the global coordinates of 3 points. The 2 points defining the 2 ends of the
beam element along the local x axis and the 3rd point located in xy local plane where
y is the principal axes of the x-sectional area. The input data including the global
coordinates of these 3 points are enough for the evaluation of all cosine terms in Eq.

(2.58).” (Paz & Kim, 2019)To show

Y
y A
\
Y \ X
\ {,/"’
I ././/.
-
o— X = > ¥
|
z .I
b
z]
z

Figure 2.10 Components of a general vector A in local and global coordinates

this: “designate x;, y;, z; and x;, y;, z; the coordinates of point | and J at the two ends
of a beam element and by x,, y,, z,, the coordinates of a point P placed on the local

xy plane. The direction cosines of local axis x along the beam element are found by

Viey:
, cosxY = %

-X;

cos xX = x’T , COS xZ = % (2.59)

where L is the length of the beam element given by

L=\(x—x)?+ U —y)*+ (z —2)? (2.60)

The direction cosines of the z axis can be calculated from the condition that any vector

Z along the z axis must be perpendicular to the plane formed by any two vectors in the
local x-y plane. These two vectors could simply be the vector X from point | to point J
along the x axis and the vector P from point | to point P. The orthogonality condition
is then expressed by the cross product between vectors X and P as

Z=XxP (261

or substituting the components of these vectors as

z,l + 2] + z,k = |x; i X Y iyi zj E zi| (2.62)
Xp = Xi Yp— Vi Zp—Zi
where 1,7, and k are unit vectors along the global coordinate axes X, Y, and Z,
respectively.
Then, the direction cosines of axis z are given by

coszX = 22 coszY = Z—y, coszZ = = (2.65)
1Z| 1Z] 1Z]

in which: Eq. 2.66

Zy == Y1) (Zp—2) — (zj — z) Op — Vi)

2y = (2 — z) (xp — %) — (% — %) (2 — z;)

z, = (% = x) W —¥i) — (v =y (xp — x;)
and

2= JZE+ 25+ 2 (2.67)
The direction cosines of the local axis y are calculated from the condition of
orthogonality between a vector ¥ along the y axis and the unit vectors X, and Z; along
the x and z axes, respectively. Hence,
Y =X, XZ;

or in expanded notation

~ i Ji k
Vel + ¥yJ + Y2k = |cosxX cosxY cosxZ| (2.68)
coszX coszY coszZ
Therefore,
Yy Yz

cosyY=m, cosysz

Vx

cos yX = m,

where: Eq. 2.69
Yy = cosxY cos zZ — cos xZ cos zY
Yy = cos zX cos zX — cos xX cos zZ
Yy, = cos xX cos zY — cos xY cos zX

and

Y| = Jyxz +y7 +y,°

It is shown that knowing the coordinates of points at the 2 ends of an element of a point

P on the local plane x - y are enough to find the direction cosines.

In another way, the direction cosines can be found by the nodal coordinates (x;, y;, z;,)

and (x;, y;, z;) at the two ends of the beam element and if we know the angle of rolling.

For a 3-dimensional figure, the transformation is required at every joint of the segment.

Then, a beam element of a space frame needs, for 2, the transformation of 4

displacement vectors. Transformation of the 12 nodal displacements {6} global

coordinates to the displacement {6} in local coordinates can be abbreviated as:

{6} = [T1{6} (2.70)

where

Similarly, the transformation from nodal forces {P} in global coordinates to nodal

forces {P} in local coordinates is:

{P}y=[TI{P} (27)

Eventually, to get the stiffness matrix [K] in reference to the global system of
coordinates, substitute, into Eq. (2.54), {6} from Eq. (2.70) and [P| from Eq. (2.72) to
obtain
[T1{P} = [K][T]{6}

or

(P} = [TI"[KIITI{S} (272)
since [T] is an orthogonal matrix. From Eq. (13.21), we may write

{P} = [K]{e} (2.73)
in which |K| is defined as

[K] = [T]"[K][T] (2.74)”
(Paz & Kim, 2019)

CHAPTER3
3.0 METHODOLOGY

Define / Input Value

Extract

v v v v

[Nodes] [Member] [Material] [Geumetri(F‘mperties]

Properties

Length

Cross-sectional Area

x-coordinates

z-coordinates

E

Using material and geometric properties, i
Assemble local stiffness matrix for each member. K
\ 4
Use T function to calculate transformation matrix T
for each member.
v

| Kowal=TI0KIT]_|

A

y
Assemble System’s global stiffness matrix. ‘ K
y

A

Kuu, Kur , Keu, Ker
Outputs
A 4
D, = Kuurl (Fu - KruDr) }_'| Du |
A 4

Fr = KurDU + Kerr _>| Fr |
A 4

\ 4

[d] = [T][D]

A 4

Plot Member
deflection

In the first step of the program is to get input from the user. The input can be provided
in one of the two following ways:
e From an excel file.
e Through Graphical User Interface (GUI).
The program stores the provide input in arrays named according to their types i.e.
e Nodal data is extracted in array “nodal data”.
e Nodal data is further categorized into different arrays like:
o Number of nodes are stored in array “Nnodes”.
o X, Y and z-coordinates are stored into arrays “X17, “X2”, “Y1”, “Y2”,
“Z1”, and “Z2”, respectively. Where 1 and 2 signifies starting and
ending coordinates of the members.
e Member data is stored in array “member_data”.
o Length of members is stored in array “I”.
o Area of the member is stored in array “Area”.
o Moment of inertia for y and z are stored in arrays “iy” and “iz”
respectively.
o Modulus of Elasticity is stored in array “E”.

(P4

o Shear Modulus is stored in array “g”.

(1352}

o Torsional constant is stored in array “j”.

o Mass per unit length is stored in array “m”.

% Connectivity

nl
n2

X1
Y1
z1
X2
Y2
Z2

member data(:,2); % lst Node of member n
member data(:,3); % Znd Node of member n

nodal data
nodal data
nodal data
nodal data
nodal data
nodal data

nl,2)
nl,3
nl,4
nz2,2
n2,3
n2,4

H
N
H
H
N
H

)
)
)
)
)

% Material and Geometric properties

1 = sgre((¥2-¥1) .72 + (Y2-Y1)."2 + (B2-E1)."2);
Area = member data(:,4);

member_ data(:,

member data(:,7

member data(:,8);

member data(:,9);
member data(:,1
(:,2

)i %Shear effect on beams
member data ;

Figure 3.1:MATLAB Code for getting data from input file

3.1

Initialize Matrices and Degree of Freedom:

Depending on the number of nodes and number of matrices, following matrices

are defined in this section and are modified later in the program:

dof: each member will have 12 degrees of freedom. Therefore, we define zero

matrix of order 12x1 for each member.

T: each member will have its own transformation matrix of 12x12 depending

upon its orientation in space.

u_global: this would be a column matrix of order 6n, where n is the number of

nodes.

q_local: each member will have 6 reactions for each end. Hence, we have to

define a zero matrix of order 12x12 for each member.

Q_global: zero matrix of order 6nx1, where n is number of nodes.

3.2 Transformation Matrix:

The Program calculates the transformation matrix for each member by calling

function “T_matrix”. The process is iterated for each member by using for loop.

% Decide Degrees of Freedom + Initialize Matrices
dof = zeros(12,1,Nmembers); % 12 Degrees of Freedom for every member
T = zeros(12,12,Nmembers); % Transforamtion Matrix currently set to zeros
u_global = zeros(é*Nnodes,1);
g_local = zeros(12,1,Nmembers);
Q_global = zeros(6*Nnodes,1);
for k = 1:Nmembers
$Note: Degrees of Freedom correspomding to node i are
%[6i-5 6i-4 6i-3 6i-2 6i-1 6i]
dof(:,:,k) = [6*nl(k)-5; 6*nl{k)-4; 6*nl(k)-3; €*nl(k)-2; 6*nl(k)-1; 6&*nl(k);
6*n2(k)-5; 6*n2(k)-4; 6*n2(k)-3; 6*n2(k)-2; 6*n2(k)-1; 6*n2(k)]:
end
for k = 1:Nmembers
T(:,:,k) = T_matriz(X1(k),¥1(k),21(k),%2(k),¥2(k),52(k));
end
all dof = (l:6*Nnodes)"';
restraints = nodal data(:,17:22)'; % Restrained Supports, column 17 to 22 of Excel File

restrained dof = find(restraints==1);
unrestrained dof = setdiff(all_dof,restrained dof):

Figure 3.2: MATLAB Code for making Transformation matrix

3.3 Stiffness Matrix:

Stiffness matrix is assembled using the extracted material and geometric
properties as explained above. The problem calls the external function
“klocal combined” and provides with the necessary arguments to calculate the
stiffness matrix. Analogously, the process is iterated for each member by using for
loop. The local combined stiffness matrix is then transformed into global stiffness

matrix by using the following relation:

k' gtobar] = [TT] X [K'tacar] X [T]

The global stiffness matrices are then combined to form a system global matrix KC.

£ Local Combined Stiffness Matrix

KLocal = zeros(12,12,Nmembers);

for k=1:Nmembers

L =1(k);:

e = E(k);

Iz = iz(k);

Iy = iy(k):

A = Area(k)ﬂ

J = J(k);

G = g(k);

KLocal(:,:,k) = klLocal combined(e,A,L,Iz,1y,G,J); % Calling function of kLocal combined

end
% Global Combined Stiffness Matrices

% Member Global
KG Member = zeros(12,12,Nmembers) ;

for k=1:Nmembers
KG Member(:,:,k) = (T(:,:,k))'*KLocal(:,:,k)*T(:,:,k); % Calling Transformation Matrix Function

end

% System Global
KGlobal = zeros(6*Nnodes);

Figure 3.3: MATLAB Code for making Local Stiffness matrix

for k=1:Nmembers
KGlobal (dof(:,:,k),dof(:,:,k)) = KGlobal(dof(:,:,k),dof(:,:,k)) + KG Member(:,:,k);
end

% Combined Global Stiffness Matrix
KC = KGlobal;

Figure 3.4: MATLAB Code for making Global Stiffness matrix

3.4 Compartmentalizing the KC matrix:

The system global matrix is compartmentalized into:
e Ky (unrestrained, unrestrained).
e Ky (restrained, unrestrained).
e K.yr (unrestrained, restrained).

e K (restrained, restrained).

% Compartmentalizing the K Matrix and the Force Vector

Kuu = KC(unrestrained dof,unrestrained dof);
Kru = KC(restrained dof,unrestrained dof):
Kur = KC(unrestrained dof, restrained dof);
Krr = KC(restrained dof, restrained dof);

% Considering Support Settlement & Nodal load

for k = l:Nnodes
support settlement (6*k-5:6%k,1) = nodal data(k,5:10)"';
F nodal (€*k-5:6%k,1) = nodal data(k,11l:16)";
restraints (6*k-5:6%*k,1) = nodal data(k,17:22)"';

end

P = F_nodal;

F active = P(unrestrained dof);
u_restrained = support_settlement (restrained dof);

Figure 3.5: MATLAB Code for finding restrained and unrestrained nodal co-ordinates

3.5 Finding Displacements:

Global displacements are found out by following relation:
[Dyu] = [K_luu] X ([F.] = [Krul[Dr])

% Finding Displacement

u global = zeros(6*Nnodes,1);

u unrestrained = Kuu\F active - Kur*u restrained;
u global (restrained dof,1) = u restrained;
u_global (unrestrained dof,1)= u_unrestrained;

u _global

u local = zeros(12,1,Nmembers);

for k = l:Nmembers
u local(:,:,k) =u local(:,:,k) + T(:,:,k)*u global (dof(:,:,k),1):
end

Figure 3.6: MATLAB Code for finding deflections

3.6 Finding Support Reactions:

The support reactions will be found out by following relation:

[F] = [Kur][Dy] + [Kr][D;]

% Support Reactions

Q global = Kru*u unrestrained

Figure 3.7 MATLAB Code for support reactions

3.7 Finding Member Forces:
The internal reactions for the member are found out by following relation:

[q] = [K'][T][D]

% Member Forces
for j = 1l:Nmembers

q local(:,:,J) = (KLocal(:,:,3}*T(:,:,J)*u global(dof(:,:,3)));
end

Figure 3.8: MATLAB Code for finding member forces

3.8 Plotting the frame:

e Plotting original frame:

%% Plotting the Frame

o

original coordinates = [X1 Y1 Z1 X2 Y2 Z2];

original coordinates X = [X1 X2];
original coordinates ¥ = [Yl Y2];
original coordinates Z = [21 22];

for k = 1l:Nmembers

figure (1)

plot3(original coordinates X(k,:),original coordinates Z(k,:), original coordinates ¥(k,:),'k")
title ('Displacement')

xlabel ('X coordinate (in)"')

ylabel ('Z coordinate (in)"')

zlabel ('Y coordinate (in)"'")

hold on; axis egual

% camup ([0 1 071)

end

Figure 3.9: MATLAB Code for plotting actual frame

e Plotting deformed frame:

% D=[(1 - x/1L);

% (2*x~3) /L*3 — (3*x~2)/L~2 + 1;
% (2*x~3) /L"3 - (3*x"2)/L"2 + 1;
% (1 - x/L);

% (x*{x/L — 1)*2);

% (x* (/L - 1)~2);

% (X/L):

% (3*x"2) /L°2 - (2*x"3) /L"3;

% (3*x~2) /L2 — (2*x"3) /L"3;

% (X/L);

% (x~2*%(x/L - 1))/L;

% (x*2*(x/L - 1))/L1;

SYms x

Figure 3.10: General deformation functions for 3D frame element in x-direction

% Displacement Functions for Y-Direction

Dy = [0;
(2*%x~3) /L*3 - (3*x"2)/L"2 + 1;
0;
0;
0
(X*(x/L - 1)°2);
0;
(3*x~2) /L~2 - (2*x"3)/L*3;
0;
0
0;
(x~2*(x/L - 1))/L1:

% Displacement Functions for X-Direction
Dx = [(1 - x/L);

Figure 3.11: General deformation functions for 3D frame element in y-direction

% Displacement Functions for Z-Direction
Dz = [0;

0;

(2*x~3) /L~3 - (3*x"~2)/1L~2 + 1;

0;

(x* (/L - 1)"2);

0;

0;

0;

(3*x~2) /L2 - (2*x*3)/L*3;

0;

(x~2*% (2/L - 1)) /L;

01;

% Displacement Functions for Torsion

Dt = [0;

1 - x/L);

Figure 3.12: General deformation functions for 3D frame element in z-direction

for k = l:Nmembers

L = 1(k);
Syms x

magnification = 50;

u global k = u global(dof(:,:,k));
a = magnification*u_global k;

Xo = Dx.*a;
ux = sum(Xo); % uxl + ux2 +ux3 + +uxn
Yo = Dy.*a;

uy = sum(Yo); % uyl + uy2 +uy3 + +uyn

Zo = Dz.*a;

uz = sum(Zo); % uzl + uz2 +uz3 + +uzn
ndivs = 100; % Number of Divisions for member 'k'

subs_ux = subs(ux,x,0:L/ndivs:1);
subs_ux = subs ux(:);
subs_uy = subs(uy,%,0:L/ndivs:L);
subs_uy = subs_uy(:);
subs_uz = subs(uz,x,0:L/ndivs:1);
subs_uz = subs uz(:);

Figure 3.13: Deformed co-ordinates of frame elements

for ii = l:ndivs+l

format shorteng

xyz(ii,1) = X1(k) + (X2(k)-X1(k))*((ii-1)/ndivs);
xyz(ii,2) = Y1(k) + (Y2(k)-Y1(k))*((ii-1)/ndivs);
xyz(ii,3) = E1(k) + (Z2(k)-E1(k))*((ii-1)/ndivs);

% xyz = Xyz*T(:,:,k)
end

x = xyz(:,1) + subs ux;
y = xyz(:,2) + subs uy;
z = xyz(:,3) + subs uz;

plot3(x,z,y, 'k—-")

axis egual ; hold on

% Plotting New Nodal Coordiantes with use of Marker
deformed coordinates X = [x(1), x(end)];

deformed coordinates ¥ = [y(l), y(end)]:

deformed coordinates_2z = [z(l), z(end)]:

plot3 (deformed_coordinates_}(, defarmed_coordinates_z, deformed_coordinates_‘j, "o'...
r 'MarkerFaceColor', 'r', 'MarkerEdgeColor', 'k')

Figure 3.14: MATLAB Code for plotting defelected shape of frame

3.9 Guide To Make Application Using App Designer

3.9.1 Creating a Main GUI

Now we must make a Main GUI which can run 3D Linear Analysis of steel structure,

its detailed steps are given below:

3.9.1.1 MATLAB code

Make the simple code on MATLAB which can run the 3D Analysis of steel structures
which we will use later in Main GUI for Analysis, for making this code its detailed

explanation is given in above paras.

3.9.1.2 APP designer and MATLAB code

Now we have to embed that code into app designer, for it we have to understand the
use of MATLAB APP DESIGNER, it consists of different tools which can easily be
used to make a user-friendly interface.

The figure below shows the component library ,component browser ,design view and

Search =|ea

app.Settlementhlenu
File Nodes Connectivity Material Properties Sectional Properties Nodal Load +

roenl app.ConnectivityMenu
r\J [Pus| Vi
!_ R r app.MaterialPropertieshlenu
Axes Button Check Box BACK TO . .
FIGURE app.SectionalPropertieshlenu
RUN app.NodalLeadMenu
: app.UlAxes

e Reaction Forces | Displacements | +

|3—£17 b ’E‘ ' — o — ~ app.Panel
Date Picker Drop Down Edit Field Degree of ireedom Reaction Forces ~
(Humeric) app.Button
app.RUNButton
app.SHOWREULTSButton
[labe] A app BACKTOFIGUREBUtton
Edit Field (Text) Image Label ¥ app.TabGroup
> app.ReactionForcesTab
yallbacks

E B % —
2 Ob i Search
List Box Radio Button Slider -

Group * TRELE

Figure 3.15: Interface of MATLAB APP designer

inspector.

From component library we can drag and drop any component in our GUI according

N

to requirement of our software and can easily edit using Inspector Menu, Component
browser tells the all components being used to make a user friendly GUI and code view
is used to define the call back behind every component of app designer.

Call back is the background working which should be done when we access that APP
DESIGNER component, for it we make some lines of code which is executed when
we press that button, we can write callback by right click on that APP DESIGNER
component then go to callbacks option then click on callback it will move towards the
code view and callback behind that APP DESIGNER component is made. As shown

Uesign Wisw
File MNodes Connectivity | Material P s 44 Menu Below il Load Menu <+
L+ Add Menu to Right
BACK TO .
Mowve
FIGURE ove -
RUMN Cut

Reaction Forces Displacements Copy

Duplicate

Delete

Callbacks » Go to MaterialPropertiesMenuSelected callback
Help on Selection

Figure 3.16: Call back option in MATLAB APP designer

3.9.1.3 Design view of main GUI

First, we make the main GUI which contain different buttons depends on the need of
software, our software consists of multiple buttons and graph and tables which is
shown below:

a) Run

b) Back to figure

¢) Show Results

d) Define nodes

e) Table

f) Settlement

g) Connectivity

h) Material properties
i) Sectional properties
j) Nodal load
k) Import data
I) Directory
m) Quit
n) Plot
We can easily drag and drop these buttons and plot from component library into design
view of APP designer and easily adjust their positions by using mouse and edit their
appearance and properties by using inspector of each button and plot.
a. First, we drop down the menu bar from component library and make
different menus like file, directory, nodal load etc.
b. We drop down the panel just because of the contrast of color that color
contains three buttons
I. RUN button
ii. SHOW REULTS button
iii. Back to figure button
c. We drop down the Axes from component Library so that we can draw
the shape of the frame and its deflected shape.
d. Then we drop down the Tab Group from component library and make
two tabs, In first tab group we drop table which shows reaction forces
and In 2" Tab group we also drop the Table which the deflections of

each node of frame after analysis.

Design View

File Modes Connectivity Material Properties Sectional Properties Nodal Load +

BACKTO
FIGURE
RUN

Reaction Forces Displacements

Figure 3.17: Components of our GUI

This is the final Layout of our Main GUI:

ke SHOW
REULTS

Figure 3.18: Layout of Main GUI

Now we made the design view of our software now we have to set callback behind

every button, call back is the background working which should be done when we

access that button , for it we make some lines of code which is executed when we press
that button, now we write callback function for every button in code view, these

callbacks are explained in detail in coming steps.

3.9.1.4 Properties

Properties is the built up function in APP DESIGNER in it we can assign any variable
and can be used as a global variable with app.variable_name syntax for calling variable
actually variables assigned in the properties function is stored in the backend directory
of APP DESIGNER. We also define some variables in properties according to need

which is shown below:

propertiss (Access = private)
input_data ¥ Description
check =8
table u
table g
selpath

end

Figure 3.19: Property Function in MATLAB APP designer

3.9.1.5 Start Up Function

It is the built-in function in APP DESIGNER, when we start the program then code

inside this function is evaluated on start of app, our startup function is shown below:

function startupFcniapp)

drawnow;

app.UIFigure.WindowState = 'maximized’;
app.TabGroup.Wisible = 'off"';
app.BACKTOFIGUREButton.Visible = "off’;

app.ULAxes.Color = [©.88,08.88,8.88]
plot3{app.Ulixes,[8 @ 8 @],[6 @ 6 @],[6 @ @ &]);

end

Figure 3.20: Start up function in MATLAB APP designer

In this startup function 1% two lines are used to maximize the window in start of our
app, as default position is not set as maximized so for this, we must use this command.
3" and 4™ line is used to invisible backtofigure and tab group options in design view
for start of application because they are overlapped with another button and graph
respectively.

5™ line is used to change the color of graph from default(white) to black

6" line is used to show the plot in 3-D in start of the application.

3.9.1.6 Directory Function in File Menu:

This function is used to get the directory/Folder from user where user give data for

analysis and can save data in that folder.

% Menu selected function: DirectoryMenu
function DirectoryMenuSelected(app, event)
fdfigure();

drawnow;

app.selpath = uigetdir;

delete(f)

end

end

Figure 3.21: Directory Function

In this code 1% two lines are used because of when we use uigetdir function command

window of MATLAB appear and application window is minimized in APP
DESIGNER so whenever we set directory we have to make the figure and delete it
after getting path of directory, we save directory path in selpath variable as it is
described in properties so we used “app.” To access the variable “uigetdir” is command

which is used to select the path for directory.

3.9.1.7 Import Data Function in File Menu:

This function is used to get the data from the user from the selected directory in above

function.

o

% Menu selected function: ImportDataMenu
function ImportDataMenuSelected(app, event)
% Giving input as excel file
f=figure();
drawnow
app.input_data = uigetfile('*.xlsx',"Select an input file',app.selpath);
app.check =1;
delete(f);|
end

Figure 3.22:Import Data

We take input as a excel file, In this code 1% two lines are used because when we use
uigetfile function command window of MATLAB appear and application window is
minimized in APP DESIGNER so whenever we get data from user we have to make
the figure and delete it after getting data. We save input data in “input_data” variable
which is defined in properties so it can be accessed by using “app.” Infront of variable,
uigetfile is the command which is used to get data from user and selpath is the directory
from where it get that data which is defined by user in above function and check
variable is used because we have both options either give data manually or by excel
file so check variable shows that data is given by excel file or manually and helps in

calculation.

3.9.1.8 Quit Function in File Menu:

This function is used to quit the application

L=

Menu selected function: QuitMenu
function QuitMenuSelected(app, event)

Helete(app);
end

Figure 3.23:Quit Function

3.9.1.9 Define Nodes in Node Menu:

We call the GUI which we built to make data of different nodes, we make call of GUI

by its name:

=

% Menu selected function: DefineNodesMenu

function DefineNodesMenuSelected{app, event)
flodes;

end

Figure 3.24Calling Nodes GUI

“Nodes” is the name of already built GUI which is used to save data for different nodes

of structure.

3.9.1.10 Settlement in Node Menu:

We call the GUI which can take the data of settlement of every node for this we made
GUI with name “Settlement” which we call upon using this button which is show

below:

o

% Menu selected function: SettlementMenu

function SettlementMenuSelected(app, event)
settlement;

end

Figure 3.25: Calling Settlement GUI

3.9.1.11 Connectivity Menu:

We made the GUI which can take data of connection between different nodes, so for
this we made GUI with name “connection” , This GUI is called using connectivity

button, whose command is show below:

[+

Menu selected function: ConnectivityMenu

function ConnectivityMenuSelected(app, event)
lconnection;

end

Figure 3.26: Calling Connectivity GUI
3.9.1.12 Material Properties Menu:

We made the GUI which can take data of different materials being used to build the
structure, so for this we made GUI with name “material” , This GUI is called using

Material properties button, whose command is show below:

o

% Menu selected function: MaterialPropertiesMenu

function MaterialPropertiesMenuSelected(app, event)
| material;

end

Figure 3.27: Calling Material properties GUI

3.9.1.13 Sectional Properties Menu:

We made the GUI which can take data of different sections being used to build the

structure, so for this we made GUI with name “Sectional Properties” , This GUI is

called using Sectional properties button, whose command is show below:

=

% Menu selected function: SectionalPropertiesMenu

function SectionalPropertiesMenusSelected(app, event)
Fectional_Properties;

end

Figure 3.28: Calling sectional properties GUI

3.9.1.14 Nodal Load Menu:

We made the GUI which can take data of different Loads being applied to nodes , so
for this we made GUI with name “Nodal Load”, This GUI is called using Nodal Load

button, whose command is show below:

o

Menu selected function: NodalloadMenu

function NodalloadMenuSelected(app, event)
Modal_Load;

end

Figure 3.29: Calling Nodal load GUI

3.9.1.15 Run Button:

It is the most important button because it contains all the code which run analysis of
structure, first we copy all the code which we made to run 3D analysis of steel structure
in matlab, As the syntax of MATLAB and app designer is little bit different so we have
to do some changes in this code which we already made in MATLAB, specially
plotting is doing different in app designer now detailed changes is explained step by
step:

Button pushed function: Button, RUNButton
function ButtonPushed(app, event)

clearing data in plot if already plotted
cla{app.UIfxes)

Figure 3.30: Clearing all data plotted in our APP

In the start of Run button we use this command so that if we want to do multiple
analysis so first we have to clear the already plotted structure for it “cla” command is
being used and “app.UIAxes” is name of the plot on which we are plotting original

and deflected shape of structure.

#check that input data is in excel file or manually

if app.check == 8

app.input_datd ="'C:\Users\Mr.Smart\Desktop\fyp materialicode‘\Direct Matrixi\1l'
end

Figure 3.31: APP designer code for Saving data from user in variable

After clearing plot, we check that the data given by user is either in excel file or
manually filled by user by different options (i.e. Define Nodes, Settlement, etc.). this
check is done by using the property variable which is also used in Import Data
function. We have built a default excel file with name “1.x1Isx” in it all the data is saved
which user put manually through different options(i.e. Define Nodes, Settlement, etc.)
and we get input in “input_data” property variable which is used further to extract data
from it for analysis of steel structure.

#pop-up window which shows analysis has been started
f = msgbox({'Congratulations:"Analysis has been started"';'Wait for few seconds'}, 'Busy');

Figure 3.32: APP designer code for pop-up window

Above code is used to create a pop-up window to ensure that the | — Busy _ X

Analysis has been started, “msgbox()” is the command used to
Congratulations “Analysis has been started"

create a pop-up window, As shown we can split our message in | Waitfor fewseconds

different lines using semicolon and can also put heading of pop-up

window after comma as we can see Pop up window Figure 3.33: APP designer code

for pop-up window
All the MATLAB code which run 3D Analysis that remains same,
but some changes is done which is shown below:

% Support Reactions

Q global = Kru*u_unrestrained

app.table_g = [restrained_dof,Q_global];

Figure 3.34: Saving support reactions in property variable

varnamesl = ['Dofs', "Reaction forces'];
app.table u = [all dof,u global]

Figure 3.35: Saving deformations in property varaible

In our MATLAB code we just done some minor changes so that we access its data for
showing our results for it we made two property variables which “table u” and
“table_q” which is used to show the deflections of each Node and support reactions

respectively in show results option of GUI.

After it the only changes is done in plotting of original and deflected shape of the

structure which is shown below:

% Plotting the Original Frame
original_coordinates = [X1 ¥1 Z1 X2 Y2 Z2];
original_coordinates_X = [X1 X2];
original_coordinates_ Y = [¥1 Y2];
original_coordinates_7Z = [Z1 Z2];

for k = 1l:Nmembers

plot3(app.Ulaxes,original_coordinates_X(k,:),original_coordinates_Z(k,:), original_coordinates_¥(k,:), 'k',"Color",[1,1,1]);
hold(app.UIAxes, "on");

% camup([@ 1 &])

end

Figure 3.36: APP designer code to plotting frame

Above code shows how the original code is being plotted in APP DESIGNER , it is
just similar to MATLAB code but you have to specify the Axes on which you want to
plot and then define co-ordinates and other properties for plotting , it’s color for
plotting is kept white by using “[1,1,1]” in plot3 command as “[1,1,1]” in APP
DESIGNER denotes white color, hold command is kept on for Axes on which we want
to plot, this hold command is mostly used when we have to plot multiple data on one
plot so we have to also plot the deflected shape so let’s see the command for plotting

of deflected shape:
plot3(app.UIixes,x,z,y, "k--',"Color",[1,1,1]);

% Plotting New Nodal Coordiantes with use of Marker
deformed_coordinates_X

deformed_coordinates_Y
deformed_coordinates_7

x({end);
y(end);
z({end);

plot3(app.UIAxes,deformed_coordinates_X, deformed_coordinates_Z, deformed_coordinates_¥,"Color”,[1,1,1]);
end

hold(app.UIAxes,"off");

Figure 3.37: APP designer code for plotting deflected shape of frame

As we can see the code for plotting the deflected shape of structure using Analysis in
it the same procedure is being used for plotting as described above, but we can see we
did not use hold command on because it is already on and after doing all plotting we
make hold command off so that no more plotting is being done on our desired axes.

These all are the minor changes which we done in our MATLAB code to Run in APP

designer.

3.9.1.16 Show Results Button:

In this button we show the results of the Analysis that we have done by using Run
button for it we show the deflections on each node and end reaction by using tables,
tables are being placed at same position on the graph so position off graphs and plot is
same so we use visible command as shown below:

% Button pushed function: SHOWREULTSButton

function SHOWREULTSButtonPushed{app, event)
app.TabGroup.Visible = "on';
app.BACKTOFIGUREButton.Visible = 'on';

app.UITable.Data = [app.table g];
app.UITable 2.Data=app.table u;
end

Figure 3.38: Show results function

As we used our two tables in tab group so to show tables we keep visibility of tab
group on by Visible command and we also built the button “BACKTOFIGURE”
which used to show the plot instead of results so we also kept on visibility of
BACKTOFIGURE button, we already dropped two tables in tab group in 1% table we
saved data of end reactions and in 2" table we saved the deflections along each node.

3.9.1.17 Back to Figure Button:

This button is visible when show results buttons is being used, function of this button
is when user want to go back to show the shape of structure, so this button is being

used its command is shown below:

Button pushed function: BACKTOFIGUREButton
function BACKTOFIGUREButtonPushed(app, event)
app.TabGroup.Visible = 'off’;
app.BACKTOFIGUREButton.Visible = 'off’;
end

Figure 3.39: Back to figure button

In this simply tab group visibility is kept off because the results is saved in tab group
and back to figure button visibility button is kept off because it is in similar position
to the show results button and is not in being used further.

Now we have completed the Main GUI now we have to make a GUIs which we use in

callback function of different buttons

3.9.2 CREATING A SUB GUI

Nodes GUI:

Now we have to make the GUIS which is being used in our main GUI to get the data
from user for this we open new GUI in APP DESIGNER, we make the GUI with name
“Nodes” which is being used in callback function of define nodes in main GUI, step

by step guide is shown below to make “Nodes” GUI:

a. Design view of GUI:
For the sake of convenience first we make the design view of our GUI and drop all the
options in Design view which are required, we first drop Panel, numeric edit fields,

buttons, and table according to need as shown below:

Design View

NODES
Mode Mumber 0
¥ - coordinate 0 Y - coordinate 0 Z - coordinate 0

support conditions
Dx |0D Dy 0 Dz 0 Ml 0 My 0 Mz 0
Done Add to Table

Row number 0 Delete row

Y7

Figure 3.40: Design view of nodes GUI

So we make the panel name NODES and it contains X, y and z coordinates
corresponding to every node for support conditions we define two standards 0 means
free and 1 means fixed so along every axes user can specify support conditions as
default condition is set free for every node. For support conditions is either 1 or 0 so
we set limit on all 6 numeric edit field between 0 and 1 and its input is always integer

which is done using inspector window as shown below:

Inspector | Callbacks

Search o| E| (2
Label M

- WAl LIE

Value 0

Lirnits 0.1

RoundFractionalValues v

ValueDisplayFormat %011 4g

HerizontalAlignment

Figure 3.41: Inspector window in APP designer

After this we used some button according to need and delete row option if user want

to edit any entered data and table is also being edited in inspector window like shown

above.

b. Properties:
We used one property variable in which we save the data given by user in form of table

as shown below:

propertiss

(Access = private)
Node % De

scription
end

Figure 3.42: Property Function

c. Add to Table Button:

This button saves the data from user in table and show the data in the table dropped in

design view let’s see the callback for this function:

% Button pushed function: AddtoTableButton

function AddtoTableButtonPushed{app, event)
Nodelumber = app.NodelumberEditField.Value;
Xcoordinate = app.XcoordinatekEditField.Value;
Ycoordinate = app.YcoordinatekEditField.Value;
Zcoordinate = app.ZcoordinateEditField.Value;
Dx=app.DxEditField.Value;
Dy=app.DyEditField.Value;
Dz=app.DyEditField.Valus;
Mx=app.MxEditField.Value;
My=app.MyEditField.Value;
Mz =app.MzEditField.Value;

Figure 3.43: Add to table function

Above code shows that we save the data given by user in certain variables and to access

that data from numeric edit field we used “.Value” corresponding to every numeric

edit field, this is the syntax of APP DESIGNER.

nr = {NodeMumber Xcoordinate Ycoordinate Zcoordinate Dx Dy Dz Mx My Mz};
app.UITable.Data = [app.Node;nr]; %New row added
app.Node=app.UITable.Data; %table is modified

After getting input from user and saving it in variable, we make a cell array of all the
data being given by user it is added as a new row in the table which is dropped in GUI
and “app.Node” is the empty variable then we save the new data of our table in this

variable for further use and to save the previous data.

a,

% NOW restting all the wvalues
app.NodeNumberEditField. Valus = @;
app.XcoordinateEditField.Value= @;
app.¥coordinateEditField.vValue=8;
app.ZcoordinateEditField.value=8;
app.DxEditField.Value=8;
app.DyEditField.Value=8;
app.DzEditField.Value=8;
app.MxEditField.Value=8;
app.MyEditField.Value=8;
app.MzEditField.Value=8;

end

Figure 3.44: Resetting values in add to table function

After saving data in table and variable we reset the values of every numeric edit field
to 0 so that user can easily re-input the data.

d. Delete row Button:
This button is used because if user wants to edit any given data after putting it then we
can easily delete it using this button and its callback is shown below:

% Button pushed function: DeleterowButton
function DeleterowButtonPushed(app, event)
rn = app.RownumberEditField.value;
app.UITable.Data(rn,:) = [];
app.Node=app.UITable.Data;

app.RownumberEditField.Valus = 8;
end

Figure 3.45: Delete row function

In 1%t line we get input from user and save it in variable “rn” , in 2" line we take rn™"
row and all columns from table and equal it to empty matrix by using empty square
brackets, in 3™ row we modify our edited data by saving it in variable “app.Node” and

in 4" row reset the numeric edit field to zero so that user can easily edit data again.

e. Done Button
This button saves the all the data given by user and quit the GUI and its callback is

shown below:

o

% Button pushed function: DoneButton
function DoneButtonPushed{app, event)

o

% Enable the Plot Opions button in main app

folder = "C:\Users‘Mr.Smart\Desktop'\fyp materialicode\Direct Matrix\1';
ShestNum="nodes"

[M, T, Raw]=xlsread(folder, Sheethum);

[Raw{:, :}]= deal(NaN);

xl5write{$0lder,Haw,SheetNum,'Bzr);
®lswrite(folder,app.UITable.Data,Sheatlum, "B2");

% Delete the dialog box
delete(app)
end

Figure 3.46: Done Button function

We save the data given by user in excel file which is already built in our directory with
name “1.xIsx” and all sheet names is already made so first two lines is used to save the
path and sheet name in which we save the data, 3" and 4" is used make an empty
matrix of same size as of the data present in specified excel sheet and 5 row is used
to delete all the data if already present in specified sheet name because this is the only
excel file which is used multiple times and 6™ row is used to save the new data in excel
file which is given by user in specified excel sheet, we start writing our data from range
“B2” in excel sheet and in last after saving data in excel, software is being closed using

delete(app) command.

3.9.3 Settlement GUI:

Now we make the GUI with name “Settlement” which is being used in callback
function of Settlement in main GUI, step by step guide is shown below to make
“Settlement” GUI:

a. Design view of GUI:

For the sake of convenience first we make the design view of our GUI and drop all the

options in Design view which are required, we first drop Panel, numeric edit fields,

buttons and table according to need as shown below:

Settlement
MNode | Option 1 r
ux 0 t]
uy 0 ty 0
uz 0 tz]
Done Add to Table
Row number 0 Delete row

Mode

&

(1] ty tz

Figure 3.47: Design view of Settlement GUI

So we make the panel name Settlement and it contains deflection and rotations along
X, y and z Axes corresponding to every node, we also used some buttons according to

need and delete row option if user want to edit any data.

b. Properties:
We used one property variable in which we save the data given by user in form of table
as shown below:
propertiss (Access = private)

load % Description
end

Figure 3.48: Property Function in Settlemet GUI

c. Startup Function:
This function is performed when this GUI is called let’s see the call back for this
function:

% Code that executes after component creation
function startupFcn(app)
shestnum="nodes™;

data = xlsread("1.xls", sheetnum);
® = data(:,1);
¥=x."}
y=length(x);

for i=l:y

z{i}= num2str{x{i));

end|

app.hlodeDropDown. Items = z;
end

Figure 3.49: Start up function for Settlement GUI

Above code is used to take the data of nodes being given by user in the define node
option of main GUI, As Nodes data is being saves in excel file “1.xlsx” and “nodes”
sheet so first three lines is used to extract data from excel using “xlsread” command
and saved in data variable as 1% column contains nodes number in data variable which
is being saved in x variable later on, Now we have to show the number of nodes in
drop down menu so that user can easily select it, as data is saved in array but we have
to save each node number into corresponding cell array because drop down menu
consider matrix members as one component of drop down menu so we are converting
into cell array for this for loop is being used as shown above and data of matrix is being
saved in corresponding data of cell array after it using command ”.Items” after drop
down we can assign data of nodes by cell array which is being saved in variable z.
d. Add to Table Button:
This button saves the data from user in table and show the data in the table dropped in

design view let’s see the callback for this function:

Button pushed function: AddtoTableButton

function AddtoTableButtonPushed(app, event)
MNode = app.MNodeDropDown.Value;
fx=app.uxEditField.Value;
Ty=app.uyEditField.Value;
fz=app.uzEditField.Value;
mx=app.txEditField.Value;
my=app.tyEditFisld.Value;
mz=app.tzEditField.Value;

Figure 3.50: Add to table function for Settlement GUI

Above code shows that we save the data given by user in certain variables and to access
that data from numeric edit field and drop down we used “Value” corresponding to

every numeric edit field and drop down, this is the syntax of APP DESIGNER.

nr = {HNode fx fy fz mx my mz};
app.UITable.Data = [app.load;nr]; %New row added
app.load=app.UITable.Data; %*table is modified

Figure 3.51: adding input data in variable

After getting input from user and saving it in variable, we make a cell array of all the
data being given by user and it is added as a new row in the table which is dropped in
GUI and “app.load” is the empty variable then we save the new data of our table in

this variable for further use and to save the previous data.

a

% NOW restting all the values
app.uxEditField.Value=9;
app.uyEditField.Value=8;
app.uzEditField.Value=8;
app.txEditField.Value=8;
app.tyEditField.Value=8;
app.tzEditField.Value=8;

Figure 3.52:Resetting variable in add to table function

After saving data in table and variable we reset the values of every numeric edit field
to 0 so that user can easily re-input the data.

e. Delete row Button:
This button is used because if user wants to edit any given data after putting it then we
can easily delete it using this button and its callback is shown below:

% Button pushed function: DeleterowButton
function DeleterowButtonPushed(app, event)
rn = app.RownumberEditField.Value;

app.UITable.Data(rn,:) = [1;
app.Node=app.UITable.Data;
app.RownumberEditField.Valuse = B;

end

Figure 3.53: Delete row function for Settlement GUI

In 1% line we get input from user and save it in variable “rn” , in 2" line we take rn'"
row and all columns from table and equal it to empty matrix by using empty square
brackets, in 3" row we modify our edited data by saving it in variable “app.load” and
in 4" row we reset the numeric edit field to zero so that user can easily edit data again.

f. Done Button:
This button saves the all the data given by user and quit the GUI and its callback is
shown below:

% Button pushed function: DoneButton
function DoneButtonPushed(app, event)

% Enable the Plot Opions button in main app
folder = "C:\Usersi\Mr.Smart\Desktop\fyp materialicode\Direct Matrix\l';
SheetNum="settlement";

[M, T, Raw]=xlsread(folder, SheetHum);

[Raw{:, :}]= deal(MNaN);
¥lswrite(folder,Raw,Sheetum, "B2");
®lswrite(folder,app.UITable.Data,Sheetlum, "B2");

% Delete the dialog box

delete(app)
end

Figure 3.54: Done function for Settlement GUI

We save the data given by user in excel file which is already built in our directory with
name “1.xIsx” and all sheet names is already made so first two lines is used to save the
path and sheet name in which we save the data, 3" and 4" is used make an empty
matrix of same size as of the data present in specified excel sheet and 5" row is used
to delete all the data if already present in specified sheet name because this is the only
excel file which is used multiple times and 6" row is used to save the new data in excel
file which is given by user in specified excel sheet, we start writing our data from range
“B2” in excel sheet and in last after saving data in excel, software is being closed using

delete(app) command.

3.9.4 Connection GUI:

Now we make the GUI with name “connection” which is being used in callback
function of Connectivity in main GUI, step by step guide is shown below to make

“connection” GUI:

a) Design view of GUI:
For the sake of convenience first we make the design view of our GUI and drop all the
options in Design view which are required, we first drop Panel, numeric edit fields,

buttons, and table according to need as shown below:

CONNECTIVITY

Member Mumber 0
15t Mode Cption1 2nd Mode Option1

miz}-mass per unit length 0
Daone Add to Table
Fow number 0 Delete row

Member Mumber Ist-Node 2nd-Mode mix

Figure 3.55: Design view of Connectivity GUI

So we make the panel name Connectivity and it is used to define the connection of
nodes which make member and m(x) for corresponding to every member, we also used

some buttons according to need and delete row option if user want to edit any data.

b) Properties:
We used one property variable in which we save the data given by user in form of table
as shown below:
propertiss (Access = private)

connect ¥ Description
end

¢) Startup Function:
This function is performed when this GUI is called let’s see the call back for this

function:

% Code that executes after component creation
function startupFcn(app)
sheetnum="nodes";

data = xlsread("1.x1s", sheetnum);
® = data(:,1);
w=K."}
y=length(x);
for i=1:y
z{i}= num2str(x(i)).
end

app.stlodeDropDown.Items z;
app.ndNodeDropDown . ITtems rafs
end

Figure 3.56: : Start up function for Connectivity GUI

Above code is used to take the data of nodes being given by user in the define node
option of main GUI, As Nodes data is being saves in excel file “1.xlsx” and “nodes”
sheet so first three lines is used to extract data from excel using “xIsread” command
and saved in data variable as 1% column contains nodes number in data variable which
is being saved in x variable later on, Now we have to show the number of nodes in
both drop down menus so that user can easily select it, as data is saved in array but we
have to save each node number into corresponding cell array because drop down menu
consider matrix members as one component of drop down menu so we are converting
into cell array for this for loop is being used as shown above and data of matrix is being
saved in corresponding data of cell array as shown above cell array is being saved in
variable z, after using command ”.Items” after drop down we can assign data of nodes

by variable z to both drop down items.

d) Add to Table Button:
This button saves the data from user in table and show the data in the table dropped in

design view let’s see the callback for this function:

% Button pushed function: AddtoTableButton
function AddtoTableButtonPushed{app, event)
Membertlumber = app.MemberNumberEditField.Value;
stnode = app.sthlodeDropDown.Value;
ndnode = app.ndNodeDropDown.Value;
mx=app.mxmassperunitlengthEditField.Value;

Figure 3.57: : Add to table function for Connectivity GUI

Above code shows that we save the data given by user in certain variables and to access
that data from numeric edit field and drop down we used “.Value” corresponding to

every numeric edit field and drop down, this is the syntax of APP DESIGNER.

nr = {MemberNumber stnode ndnode mx};
app.UITable.Data = [app.connect;nr]; *New row added
app.connect=app.UITable.Data; %table is modified

Figure 3.58: adding input data in variable

After getting input from user and saving it in variable, we make a cell array of all the
data being given by user and it is added as a new row in the table which is dropped in
GUI and “app.connect” is the empty variable then we save the new data of our table

in this variable for further use and to save the previous data.

% NOW restting all the values
app.MemberMumberEditField.Value = 8;
app.mxmassperunitlengthEditField.Value=8;

Figure 3.59: Resetting all variables

After saving data in table and variable we reset the values of every numeric edit field
to 0 so that user can easily re-input the data.

e) Delete row Button:
This button is used because if user wants to edit any given data after putting it then we

can easily delete it using this button and its callback is shown below:

% Button pushed function: DeleterowButton
function DeleterowButtonPushed(app, event)
rn = app.RownumberEditField.Value;
app.UITable.Data(rn,:) = [];
app.Node=app.UITable.Data;

app.RownumberEditField.Valus = 8;
end

Figure 3.60: Delete Row function for Connectivity GUI

In 1% line we get input from user and save it in variable “rn” , in 2" line we take rn"
row and all columns from table and equal it to empty matrix by using empty square
brackets, in 3" row we modify our edited data by saving it in variable “app.load” and

in 4™ row we reset the numeric edit field to zero so that user can easily edit data again.

f) Done Button:
This button saves the all the data given by user and quit the GUI and its callback is

shown below:

% Button pushed function: DoneButton
function DoneButtonPushed(app, event)

% Enable the Plot Opions button in main app
folder = "C:\Users\Mr.Smart\Desktop'\fyp materialicode’\Direct Matrix\l';
SheetNum="connectivity";

[M, T, Raw]=xlsread(folder, Sheetlum);
[Raw{:, :}]= deal(NalN);
¥1lswrite(folder,Raw,5heetNum, "B2");
¥1lswrite(folder,app.UITable.Data,Shestlum, "'B2");
|
Delete the dialog box
delete(app)
end

Figure 3.61: : Done function for Connectivity GUI

We save the data given by user in excel file which is already built in our directory with
name “1.xIsx” and it’s all sheet names is already made so first two lines is used to save
the path and sheet name in which we save the data, 3 and 4™ is used make an empty

matrix of same size as of the data present in specified excel sheet and 5™ row is used

to delete all the data if already present in specified sheet name because this is the only
excel file which is used multiple times and 6" row is used to save the new data in excel
file which is given by user in specified excel sheet, we start writing our data from range
“B2” in excel sheet and in last after saving data in excel, software is being closed using

delete(app) command.

3.9.5 Material GUI:

Now we make the GUI with name “material” which is being used in callback function
of Material properties in main GUI, step by step guide is shown below to make
“material” GUI:

a. Design view of GUI:
For the sake of convenience first we make the design view of our GUI and drop all the
options in Design view which are required, we first drop Panel, numeric edit fields,

buttons, and table according to need as shown below:

Material Properties

Member | Cplion 1 L

Mame pasisson's ratio 0
Elasticity 0 Shear Modulus 0
Torsional c... 0 Shear constant 0
Done Add to table
Row number 0 Delete Data
Member Mame posisson's ratio | Elasticity | Shear N

Figure 3.62: Design view of Material properies

So, we make the panel name Material Property and it is used to define the property for
every member, we also used some buttons according to need and delete row option if

user want to edit any data.

b. Properties:
We used one property variable in which we save the data given by user in form of table

as shown below:

propertises (Access = private)
Material property % Description

end

Figure 3.63: Property Function

c. Startup Function:
This function is performed when this GUI is called let’s see the call back for this
function:

% Code that executes after component creation
function startupFcn(app)
sheetnum="connectivity”;

data = xlsread("1.xls", sheetnum);

¥ = data(:,1);
¥=x.":
y=length{x);
for i=l:y
Z{it= num2stri{x(i));
end
app .MemberDropDown . Items = z;

2nao

Figure 3.64: Startup functcion For Material properties GUI

Above code is used to take the data of members being given by user in the connectivity
option of main GUI, As Members data is being saves in excel file “1.xIsx” and
“connectivity” sheet so first three lines is used to extract data from excel using

“xIsread” command and saved in data variable as 1% column contains nodes number

in data variable which is being saved in x variable later on, Now we have to show the
Members in drop down menu so that user can easily select it, as data is saved in array
but we have to save each Member into corresponding cell array because drop down
menu consider matrix members as one component of drop down menu so we are
converting into cell array for this for loop is being used as shown above and data of
matrix is being saved in corresponding data of cell array after it using command
”.Items” after drop down we can assign data of Members by cell array which is being

saved in variable z.

d. Add to Table Button:
This button saves the data from user in table and show the data in the table dropped in
design view let’s see the callback for this function:

Button pushed function: AddtotableButton
function AddtotableButtonPushed({app, event)
member=app.MemberDropDown.ItemsData;

Mame = app.MameEditField.Value;
Elasticity = app.ElasticityEditField.Value;
posissonsratio = app.posissonsratioBEditField.Value;
ShearModulus = app.ShearModulusEditField.Value;
torsion =app.TorsionalconstantEditFisld.Value;
shear=app.ShearconstantEditField.Value;

Figure 3.65: Add to table function for Material properties GUI

Above code shows that we save the data given by user in certain variables and to access
that data from numeric edit field, text edit field and drop down we used “.Value”
corresponding to every numeric edit field and drop down, this is the syntax of APP
DESIGNER.

nr = {member Mame posissonsratic Elasticity ShearModulus torsion shear};
app.UITable.Data = [app.Material property;nr];%lew row added
app.Material_property=app.UITable.Data;%table is modified

Figure 3.66: : adding input data in variable

After getting input from user and saving it in variable, we make a cell array of all the

data being given by user and it is added as a new row in the table which is dropped in
GUI and “app.Material property” is the empty variable then we save the new data of

our table in this variable for further use and to save the previous data.

% NOW restting all the values
app.MameEditField.Value = "";
app.ElasticityEditField.Value =8;
app.posissonsratioEditField.Value=8;
app.ShearModulusEditField.Value =8;
app.TorsionalconstantEditField.Value=8;
app.ShearconstantEditFisld.Value = 8;

Figure 3.67: Resetting all values

After saving data in table and variables we reset the values of every numeric and text

edit field to 0 and empty respectively so that user can easily re-input the data.

e. Delete row Button:
This button is used because if user wants to edit any given data after putting it then we
can easily delete it using this button and its callback is shown below:

% Button pushed function: DeleterowButton
function DeleterowButtonPushed(app, event)
rn = app.RownumberEditField.Value;
app.UITable.Data(rn,:) = []1;
app.Node=app.UITable.Data;

app.RownumberEditField.Value = 8;
end

Figure 3.68: Delete row function in Material properties function

In 1%t line we get input from user and save it in variable “rn” , in 2" line we take rn®"
row and all columns from table and equal it to empty matrix by using empty square
brackets, in 3" row we modify our edited data by saving it in variable “app.load” and

in 4" row we reset the numeric edit field to zero so that user can easily edit data again.

f. Done Button:
This button saves the all the data given by user and quit the GUI and its callback is

shown below:

% Button pushed function: DoneButton

function DoneButtonPushed(app, event)

Enable the Plot Opions button in main app
folder = "C:\Users'\Mr.Smart\Desktop'fyp materialicode‘\Direct Matrix\l';
ShestMum="material"™;
[My T, Raw]=xlsread(folder, SheetHum);
[Raw{:, :}]= deal(Nal);
¥lswrite(folder,Raw,Sheetum, "B2");
®lswrite(folder,app.UITable.Data,Shestlum, "B2");

Delete the dialog box
delete(app)
end

Figure 3.69:Done function in Material properties GUI

We save the data given by user in excel file which is already built in our directory with
name “1.xIsx” and it’s all sheet names is already made so first two lines is used to save
the path and sheet name in which we save the data, 3" and 4™ is used make an empty
matrix of same size as of the data present in specified excel sheet and 5" row is used
to delete all the data if already present in specified sheet name because this is the only
excel file which is used multiple times and 6™ row is used to save the new data in excel
file which is given by user in specified excel sheet, we start writing our data from range
“B2” in excel sheet and in last after saving data in excel, software is being closed using

delete(app) command.

3.9.6 Sectional Properties GUI:

Now we make the GUI with name “Sectional Properties” which is being used in
callback function of Sectional Properties in main GUI, step by step guide is shown

below to make “Sectional Properties” GUI:

a. Design view of GUI:
For the sake of convenience first we make the design view of our GUI and drop all the

options in Design view which are required, we first drop Panel, numeric edit fields,

buttons, and table according to need as shown below:

SECTIOMAL PROPERTIES

Member | Cption 1 r
Area 0 Iy 0
Iz 0 Tx 0
Done Add to Table
Fow number] Delete row

MEMEER Are

1]

Figure 3.70:Design view of Sectional Properties GUI

So, we make the panel name Sectional Property and it is used to define the sectional
property for every member, we also used some buttons according to need and delete

row option if user want to edit any data.

b. Properties:
We used one property variable in which we save the data given by user in form of table

as shown below:

properties (Access = private)
Property % Description
end

Figure 3.71: Property Function for Sectional Properties GUI

c. Startup Function:
This function is performed when this GUI is called let’s see the call back for this
function:

Code that executes after component creation
function startupFcn{app)
sheetnum="connectivity"”;

data = xlsread("1.x1s", sheetnum);
¥ = data(:,1);
¥=X.";
y=length{x);

for i=l:y

z{il= num2str(x(i));

and

app.MemberDropDown. Items = z;
end

Figure 3.72: Startup function for Sectional Properties GUI

Above code is used to take the data of members being given by user in the connectivity
option of main GUI, As Members data is being saves in excel file “l.xIsx” and
“connectivity” sheet so first three lines is used to extract data from excel using
“xlIsread” command and saved in data variable as 1% column contains nodes number
in data variable which is being saved in x variable later on, Now we have to show the
Members in drop down menu so that user can easily select it, as data is saved in array
but we have to save each Member into corresponding cell array because drop down
menu consider matrix members as one component of drop down menu so we are
converting into cell array for this for loop is being used as shown above and data of
matrix is being saved in corresponding data of cell array after it using command
. Items” after drop down we can assign data of Members by cell array which is being

saved in variable z.

d. Add to Table Button:
This button saves the data from user in table and show the data in the table dropped in

design view let’s see the callback for this function:

% Button pushed function: AddtoTableButton

function AddtoTableButtonPushed(app, event)
Membar= app.MemberDropDown.Value;
Area=app.AreaEditField.Vvalue;
ix=app.xEditField.Value;
iy=app.yEditField.Value;
iz=app.zEditField.Value;

Figure 3.73: Add to table function for Sectional Properties GUI

Above code shows that we save the data given by user in certain variables and to access
that data from numeric edit field and drop down we used “.Value” corresponding to

every numeric edit field and drop down, this is the syntax of APP DESIGNER.

nr = {Member Area iz iy ix};
app.UITable.Data = [app.Property;nr]; %Hlew row added
app.Property=app.ULTable.Data; #table is modified

Figure 3.74: Adding input data in variables

After getting input from user and saving it in variable, we make a cell array of all the
data being given by user and it is added as a new row in the table which is dropped in
GUI and “app.Property” is the empty variable then we save the new data of our table
in this variable for further use and to save the previous data.
app.Property=app.UITable.Data; %table is modified

% NOW restting all the wvalues

app.&reabEditField.Valus =@;

app.xEditField.Value=8;

app.yEditField.value =8;
app.zEditField.vValue =8;

Figure 3.75: Resetting all values

After saving data in table and variables we reset the values of every numeric edit field

to 0 so that user can easily re-input the data.

e. Delete row Button:
This button is used because if user wants to edit any given data after putting it then we

can easily delete it using this button and its callback is shown below:

% Button pushed function: DeleterowButton
function DeleterowButtonPushed(app, event)
rn = app.RownumberEditField.Value;
app.UITable.Data(rn,:) = [];
app.Node=app.UITable.Data;

app.RownumberEditField.Valus = 8;
end

Figure 3.76: Delete row function for Sectional Properties GUI

In 1% line we get input from user and save it in variable “rn” , in 2" line we take rn™
row and all columns from table and equal it to empty matrix by using empty square
brackets, in 3" row we modify our edited data by saving it in variable “app.load” and

in 4™ row we reset the numeric edit field to zero so that user can easily edit data again.

f. Done Button:
This button saves the all the data given by user and quit the GUI and its callback is

shown below:

% Button pushed function: DoneButton
function DoneButtonPushed{app, event)

a

#% Enable the Plot Opions button in main app

folder = "C:\Users'\Mr.Smart'\Desktopi\fyp materialicode\Direct Matrix\1';

SheetNum="szctional™;

[M, T, Raw]=xlsread(folder, Sheethum);

[Raw{:, :}]= deal(NaN};
®1lswrite(folder,Raw,SheatNum, "'B2");
¥1lswrite(folder,app.UITable.Data,SheetMum, "B2");

% Delete the dialog box
delete{app)
end

Figure 3.77: Done function for Sectional Properties GUI

We save the data given by user in excel file which is already built in our directory with
name “1.x1sx” and it’s all sheet names is already made so first two lines is used to save
the path and sheet name in which we save the data, 3 and 4™ is used make an empty

matrix of same size as of the data present in specified excel sheet and 5™ row is used

to delete all the data if already present in specified sheet name because this is the only
excel file which is used multiple times and 6" row is used to save the new data in excel
file which is given by user in specified excel sheet, we start writing our data from range
“B2” in excel sheet and in last after saving data in excel, software is being closed using

delete(app) command.

3.9.7 Nodal Load GUI:

Now we make the GUI with name “Nodal Load” which is being used in callback
function of Nodal Load in main GUI, step by step guide is shown below to make
“Nodal Load” GUI:

a. Design view of GUI:
For the sake of convenience first we make the design view of our GUI and drop all the
options in Design view which are required, we first drop Panel, numeric edit fields,
buttons, and table according to need as shown below:

NODAL LOAD

Mode | Option 1 v

Fx 0 Mx 0
Fy 0 My]
Fz 0 Mz 0
Done Add to Table
Fow number 0 Delete row
Node Fx Fy Fz iz

Figure 3.78: Design view of Nodal Load GUI

So we make the panel name Nodal Load and it is used to define the forces and moments
in X, y and z Axes corresponding to every node, we also used some buttons according

to need and delete row option if user want to edit any data.

b. Properties:

We used one property variable in which we save the data given by user in form of table
as shown below:
properties (Access = private)

load ¥ Description
end

Figure 3.79: Properties for Nodal Load GUI

c. Startup Function:
This function is performed when this GUI is called let’s see the call back for this
function:

% Code that executes after component creation
function startupFcn{app)
shestnum="nodes™;

data = xlsread("1.x1s", sheetnum);
¥ = data(:,1);
w=x."}
y=length(x);

for i=l:y

z{i}t= num2str(x(i});

end|

app.MNodeDropDown. Items = z;
end

Figure 3.80: Startup function for Nodal Load GUI

Above code is used to take the data of nodes being given by user in the define node
option of main GUI, As Nodes data is being saves in excel file “1.xIsx” and “nodes”
sheet so first three lines is used to extract data from excel using “xIsread” command
and saved in data variable as 1* column contains nodes number in data variable which
is being saved in x variable later on, Now we have to show the number of nodes in
drop down menu so that user can easily select it, as data is saved in array but we have
to save each node number into corresponding cell array because drop down menu
consider matrix members as one component of drop down menu so we are converting
into cell array for this for loop is being used as shown above and data of matrix is being
saved in corresponding data of cell array after it using command ”.Items” after drop

down we can assign data of nodes by cell array which is being saved in variable z.

d. Add to Table Button:
This button saves the data from user in table and show the data in the table dropped in

design view let’s see the callback for this function:

%4 Button pushed function: AddtoTableButton

function AddtoTableButtonPushed(app, event)
MNode = app.NodeDropDown.Value;
Tx=app.FxEditField.Value;
fy=app.FyEditField.Value;
fz=app.FzEditField.Value;
mx=app.MxEditField.Value;
my=app.MyEditField.Value;
mz=app.MzEditFisld.Value;

Figure 3.81: Add to table function for Nodal Load GUI

Above code shows that we save the data given by user in certain variables and to access
that data from numeric edit field and drop down we used “.Value” corresponding to
every numeric edit field and drop down, this is the syntax of APP DESIGNER.

nr = {Hode fx fy fz mx my mz};
app.UITable.Data = [app.leoad;nr]; %New row added
app.load=app.UITable.Data; %table is modified

Figure 3.82: Adding input data in variables

After getting input from user and saving it in variable, we make a cell array of all the
data being given by user and it is added as a new row in the table which is dropped in
GUI and “app. Load” is the empty variable then we save the new data of our table in

this variable for further use and to save the previous data.

a,

MNOW restting all the values
app.FxEditField.Value=8;
app.FyEditFisld.Value=8;
app.FzEditFisld.Value=8;
app.MxEditFisld.Value=8;
app.MyEditFisld.Value=8;
app.MzEditField.Value=@;

Figure 3.83: Resetting all values

After saving data in table and variable we reset the values of every numeric edit field

to 0 so that user can easily re-input the data.

e. Delete row Button:
This button is used because if user wants to edit any given data after putting it then we
can easily delete it using this button and its callback is shown below:

% Button pushed function: DeleterowButton
function DeleterowButtonPushed(app, event)
rn = app.RownumberEditField.Value;

app.UITable.Data(rn,:) = [1;
app.Node=app.UITable.Data;
app.RownumberEditField.Valuse = B;

end

Figure 3.84: Delete row function for Nodal Load GUI

In 1% line we get input from user and save it in variable “rn”, in 2" line we take rn®"
row and all columns from table and equal it to empty matrix by using empty square
brackets, in 3" row we modify our edited data by saving it in variable “app.load” and
in 4" row we reset the numeric edit field to zero so that user can easily edit data again.

f. Done Button:
This button saves the all the data given by user and quit the GUI and its callback is

shown below:

% Button pushed function: DoneButton
function DoneButtonPushed{app, event)

% Enable the Plot Opions button in main app
folder = 'C:'\Users'\Mr.Smart\Desktopifyp materialicode'\Direct Matrix\1';
SheetNum="HNodal";

[M, T, Raw]=xlsread({folder, SheetNum);

[Raw{:, :}]= deal(MNaN);
¥lswrite(folder,Raw,Shesetlum, "B2");
#lswrite(folder,app.UITable.Data,SheetNum, "B2");

% Delete the dialog box

delete(app)
end

Figure 3.85: Done button function for Nodal Load GUI

We save the data given by user in excel file which is already built in our directory with
name “1.xIsx” and it’s all sheet names is already made so first two lines is used to save
the path and sheet name in which we save the data, 3" and 4" is used make an empty
matrix of same size as of the data present in specified excel sheet and 5 row is used
to delete all the data if already present in specified sheet name because this is the only
excel file which is used multiple times and 6" row is used to save the new data in excel
file which is given by user in specified excel sheet, we start writing our data from range
“B2” in excel sheet and in last after saving data in excel, software is being closed using

delete(app) command.

3.10 Ways to Share App

3.10.1 Share MATLAB Files Directly:

MATLAB gives app details to an operating-systems for providing display in file
browsers. App details further improve the process of packaging/compiling apps. The

“.mlapp file” gives details to interfaces by itself.

App Details

Mame

3D-Linear Analysis of Steel Structure| 1.0

Author

Maimat ali

Summanry

This app can run analysis of 3D steel
structures

Description

This app can run analysis of 3D steel structures. this app can only handle nodal
loads on structure, our team is working on considering element load, In near future
our software will do Mon-Linear analysis of steel structure.

App details display in certain situations, such as when you share your app or view
your app in some system file browsers.

Figure 3.86: Saving aplication Data in MATLAB APP designer

3.10.2 PACKAGING APPS IN APP-DESIGNER:

The functionality for packaging in App-Designer is similar to the procedure explains
the Add-Ons>PackageApp option.

1. In App Designer > Designer tab. Then select Share > MATLAB App.

| >

Share Run

- -

MATLAE App
Create an app installation file to share your app with MATLAE users

Web App
Create a deployed web app using MATLAB Compiler

Standalone Desktop App
Create a standalone deskiop application using MATLAE Compiler

Figure 3.87: Ways to share APP

Package App dialog box is opened by MATLAB.

2. The Package App dialog box has these items.

e The name of the application matches the name given to the figure in
App Designer.

e The Main file is the MLAPP file you presently have designated for
editing.

e The installation file will be saved in The Output folder.

4\ App Designer

DESIGNER

New Open Save
-

FILE 1
fyplayout mlapp x

COMPONENT LI

Search

COMMON

Check Box

E

4 Package App

C\Users\Mr.Smart\Desktop'\fyp material\code\Direct Matrix\GUI-code\3D-Linear Analysis of Steel Structure.prj

5 o
I

& fyplayoutmlapp /&

Remove main file

Files included through analysis

These are the files found through
dependency analysis.

Rerun analysis

Shared resources and helper files

Place images, data files, and GUls (fig
files) here if referenced by any
functions.

Also place here:

Functions called using eval
(and its variants)
& Functinns nat an the

Describe your app

@ 3D-Linear Analysis of Steel Structure

Naimat ali

Set as default contact

This app can run analysis of 3D steel structures

BIMEEiz

This app can run analysis of 3D steel structures, this app can only handle nodal loads on structure, our
team is working on considering element load,In near future our software will do Non-Linear analysis of

steel structure.

Package into installation file

Qutput folder k

C\Users\Mr.Smart\Desktop\fyp n
Browse

Package

b
Drop Down EdiField T
(Numeric)
b @
Edit Field (Text) Image

A

Label

=

List Box

Figure 3.88: Window for creating MATLAB APP

w

Stipulate particulars to show in the app’s gallery. Input suitable info in

required fields: Company, Author Name, Description, Email and

Summary.

°o 0 B

Products part: choice the products which are needed to operate app.
Click Select screenshot: Specify an icon to display gallery of the app.
Click Package: create the “.mlappinstall file” to share with users. Click:

Package App button in the App Designer Toolstrip again. The Package

App dialog box gives you the newly altered .prj file for the MLAPP file.

3.10.3 Creating a Web App:

Apps which can run in the browser are called Web Apps.

Creation of deployed web apps needs MATLAB Compiler apps is deployed as web

COMPONENT BRO.

Search

~ app.UIFigure

~ app.FileMenu
app.Director
app.ImportD
app. QuitMer
~ app.NodesMent
app.DefineN
app.Settlems
app.Connectivit
app.MaterialPro
app.SectionalPr
app.Nodalload!
app.UlAxes
~ app.Panel
app.Button
aop. RUNBut

apps. Further, some functionality is not maintained in deployed apps. Open the Web
App Compiler from inside App Designer by clicking Share in the Designer tab and
choosing Web App when you have MATLAB Compiler on system,

3.10.4 Creating a Standalone Desktop Application:

You get the ability to share the app with users who do not have MATLAB on their
systems by the creation of a standalone desktop application.

It is important to have the MATLAB compiler installed on the system for the creation
of a standalone app. Also, MATLAB runtime systems should be installed on the users’
computer to run the app. The Application Compiler can be opened once you have the
MATLAB compiler. This is done by clicking Designer tab > Share > Standalone
Desktop App.

4\ Application Compiler - LinearAnalysisofSteelStructure-30 prj™ - X

EREEE ek |

COMPILER

SR B =l = standaione Aopicetion |

New Open Save
~ Project ~

=
© Runtime downloaded from web Mysppinstallerweb [sMe 400 L4
4 fyplayout.mlapp =
~ Runtime included in package | hyAppinstaller_mer |754 M Setfings Package

FILE TVPE MAIN FILE PACKAGING OFTIONS SETTINGS | PACKAGE

]

Application information

[Linesr_Analysis_of_Steel_Structure_30| 1.0

Maimat ali

Set as default contact

This app can run analysis of 3D steel structures

This app can run analysis of 3D steel structures, this app can only handle nodal loads on structure, our team is working on considering
element load, In near future our software will do Non-Linear analysis of steel structure.

} Additional installer options

Files required for your application to run.

B 1xds # KLocsl_combine.. % Nodal_Load.mlapp £ settlement.mlapp

[&] arrow2-removeb... % material.mlapp # Nodes.mlapp) T_matrixm

#J connection.mlapp] mlocal_combine.. £ Sectional Propert...

Figure 3.89: Window for creating stand alone software

CHAPTER 4
4.0 RESULTS AND DISCUSSION

4.1 Comparison with MASTANZ2:

The comparison of results with MASTANZ2 show minimum difference as the
results of reaction forces and deflections are overlapping in the Figure 2.14 and Figure

2.15, respectively.

Figure 4.1 3D fixed jointed frame in MASTAN2

Figure 4.3 Linear Elastic Frame Solver (LEFS) Deflection

4.2 Graphs:

-1000 -500.509 0

Reaction forces comparsion

500 1000 1500 2000 2500 3000 3500 4000

— e M2 ST80 2

Figure 4.4 Reaction forces comparison of LEFS with MASTAN2

0.1

deflection comparsion
0.7
06
05
04
03
0.2

01

0.6 0.7

— e A STAN 2

Figure 4.5 Deflection comparison of LEFS with MASTAN2

CHAPTER S
5.0 CONCLUSION

Linear Elastic Frame Solver (LEFS) serves as an effective means to solve complex
engineering structures by following simple instruction provided in the “Instruction
Manual”. MATLAB app designer is a very powerful tool to build and develop apps. It
can also be manipulated and modified since it’s an open source.

LEFS gives accurate results in Linear Elastic range as the comparison with
commercial softwares validate the said claim. It is developed specially for university
undergraduate students who want to learn structural analysis in MATLAB language.

The students can be able to modify the software freely according to their needs.

6.0 References
Maria Paz, Y. H. (2019). Element Stiffness Matrix for Axial Effects. In Y. H. Maria Paz, Structural
Dynamics (pp. 291-307). Springer Nature Switzerland AG.

Mario Paz, Y. H. (2019). Structural Dynamics. Retrieved from openlibrary.telkomuniversity.ac.id:
https://openlibrary.telkomuniversity.ac.id/pustaka/158883/structural-dynamics.html

Dynamics of Structures by Anil K. Chopra (4th Ed)
e Structural Dynamics by Mario Paz & Young Hoon Kim
e Introduction to Finite Element Vibration Analysis (2010) by Maurice Petyt

e Dynamics of Structures - CSI (Computers and Structures, Inc.) (2003) by Ray
Clough, Joseph Penzien

e Structural Analysis - Hibbeler-Pearson (2014) - Russell C. Hibbeler
e Matrix Structural Analysis, Second Edition (1999) - William McGuire,
Richard H. Gallagher, Ronald D. Ziemian

e https://openlibrary.telkomuniversity.ac.id/pustaka/158883/structural-
dynamics.html

https://openlibrary.telkomuniversity.ac.id/pustaka/158883/structural-dynamics.html
https://openlibrary.telkomuniversity.ac.id/pustaka/158883/structural-dynamics.html

