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Abstract

This dissertation deals with the algebraic invariants such as depth and dimension as
well as geometric invariant Stanley depth of some particular classes of graphs. Earlier,
we have some general bounds for these invariants. The present thesis is primarily
concerned with the value of depth and Stanley depth of edge ideals and their quotient
rings (cyclic modules) related to some classes of graphs. In some cases we have an
exact value, otherwise, we give very sharp bounds. In the end, we obtain a very strong
lower bound for the dimension of the quotient rings of the edge ideals associated with
these graphs. our results are general in nature, i.e., they hold for any non-negative

integer. Also, we examine conjecture of Herzog and question of Rauf.
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Introduction

In this thesis some exact values and improved lower and upper bounds of depth
and Stanley depth are computed for the edge ideals and their quotient rings (cyclic
modules) associated with some particular classes of graphs. Also, we have adequate
results for the dimension of quotient rings (cyclic modules) of the edge ideals of some
graphs. Moreover, in many cases we prove a conjecture of Herzog presented in [25] and

question of Rauf given in [18]. This thesis comprises of five chapters.

Chapter 1 offers the overview, definitions and results related to abstract algebra and
commutative algebra. This chapter covers the basics of ring and module theory. This
chapter also illustrates the quick introduction of fundamental graph theory and the

prominent operations of graphs.

Chapter 2 reviews the basic theory of depth and Stanley depth and Stanley decom-
position of ideals and modules. Furthermore, previously known results are discussed

in detail.

In Chapter 3, quotient rings (cyclic modules) of edge ideals associated with some
graphs are introduced and their depth and Stanley depth are computed by using in-

duction and some previously known results and Depth Lemma on short exact sequences.

In Chapter 4, depth and Stanley depth of edge ideals related to some graphs are

calculated by using induction and some known results.



In Chapter 5, the results are briefly justified by making comparison with previously
known results. It can be seen that there are positive answers in many cases for both

conjecture of Herzog and question of Rauf.



Chapter 1

Ring theory, module theory and graph
theory

1.1 Introduction

The basic idea of a ring established from an early attempt to prove Fermat’s last
theorem, which could be traced back to Richard Dedekind [1]. Adolf Fraenkel [2]
introduced the first axiomatic definition of ring, however, his axioms were more rigorous
than those in the most recent definition. After certain attempts from different fields,
primarily number theory, the generalized and modern notion of ring (commutative)

was established by Emmy Noether and Wolfgang Krull [3].

Nowadays, the idea of associating a graph with a specific algebraic structure and
exploring the interactions between the structure of the algebraic objects and the graph
theoretic properties of the graphs connected with them is an absorbing and active area
of research. The idea of associating a graph to a commutative ring was initiated by 1.
Beck in [4].

1.2 Ring theory

In the principality of algebra, the algebraic structures are dealt under the banner of

ring theory, which have defined operations of multiplication and addition.



Definition 1.2.1. A ring P is a set with two binary operations, addition (denoted by
e+ f) and multiplication (denoted by ef ), such that the following axioms hold in P :

1. Foralle,f€eP ,e+f=f+e (commutativity w.r.t addition).
2. Foralle,f,g€P, e+ (f+g) = (e+ f)+g (associativity w.r.t addition).

3. There is an additive identity 0, that s, there is an element 0 in R such that

e+0=e, forallceP
4. For alle € P, there is an element —e € P such that e + (—e) =0
5. Multiplication is associative, that is, e- (f -g) = (e- f) - g, for all e, f,g € P.

6. For alle, f,g € P, the left distributive law, e- (f +g) = (e- f) + (e g) and the
right distributive law, (e + f)-g=(e-g)+ (f - g) hold.

Definition 1.2.2. A ring P is called commutative if multiplication is commutative in

P, that is, pqg = qa, for all p,q € P.

Definition 1.2.3. If there is an element e € P such that pe = p = ep, for all p € P,
we say P is a ring with multiplicative identity (or a ring with unity). Multiplicative

wdentity or unity of P is denoted by symbol 1.

Example 1.2.4. We have some examples of ring.

1. R, Q, C and Z form rings w.r.t usual addition and multiplication. All these rings

are commutative with unity.

2. The set of even integers i.e 2Z = {0, £2,+4, £6, ...} forms a commutative ring

without unity.

1.2.1 Polynomial ring

The polynomial ring is a type of ring which is formed by a set of polynomials. These

polynomials are in one or more than one variables, where the coefficients belong to a



ring. Polynomial rings are used in different fields of mathematics and the examination
of their properties is among the primary insight for the evolution of Commutative

Algebra and Ring Theory.

Definition 1.2.5. Let P be a commutative ring containing unity, a polynomial in

variable ¢ has the form
po+pit + -+ puoat" T+ put”,

with n € Z* U {0} and every p; € P. The polynomial is of degree n if p,, # 0. The set

of such polynomials is denoted by
Plt] = {po+pit+ -+ poat" " +pat" :n € ZT U {0}, p; € P}

P[t] is a commutative ring with unity under polynomial addition and polynomial mul-

tiplication and the unity of P[t] is the unity of coefficient P.

Definition 1.2.6. The polynomial ring in the variables uy, us, ..., u, and coefficients

belonging to P (commutative with identity) is defined inductively
Plur, ug, ..., uy| = Plug, ug, ..., Up_1][tn].

A ring homomorphism is a map from one ring to another which preserves the same

additive and multiplicative structures.

Definition 1.2.7. Consider two rings P, and P,. A ring homomorphism is a map

O : P — P,, provided that for all g1, go € P, the following are satisfied:

e O(g1+ g2) = O(g1) + O(g2);

e O(g192) = O(g1)O(g2)-

A ring homomorphism which is both injective and surjective is known as ring isomor-

phism.



1.2.2 Ideals

Proposition 1.2.8. A non-empty subset J of a ring P is known to be an ideal if and

only ifiy, —io € J ,ip € J and pi € J for all i1,i5,1 € I and p € P.

Definition 1.2.9. For a proper ideal J, a quotient ring P/J can be formed, which

consists of cosets p + J, where p € P, and the product of cosets is defined as:
(p1+ J)(p2+ J) = pip2 + J.

There are isomorphism theorems for rings.

Theorem 1.2.10. (Isomorphism Theorems)

1. For a ring homomorphism w : Py — Py of two rings Py and Py, w(Py) is isomor-
phic to Py /ker(m), i.e.,
Py [ker(m) = w(P).

2. Consider the ideals Iy and Iy of ring Py, with Iy C I, then Iy/1; is an ideal of
pl/ll- Also
(/1) (1)) = Py /L.

Definition 1.2.11. Assume that Z; and Z, are the ideals of ring P. Product of two
ideals, say Z; and Z,, is a set consisting of all possible finite sums of the form o,

where 1, € Z; and iy € Zy. It is represented by Z,Z.

Example 1.2.12. Let I; = 8Z and I, = 127 in Z. Then I; + I, comprises all integers
of the form 8s; + 1255 with s1, s € Z. For each such type of integer is divisible by 4,
so 8Z + 127 C 47Z. On the other hand, 4 = 8(2) + 12(—1) shows that 47Z is contained
in 8Z + 127, hence 8Z + 127 = 47. In general, p1Z + poZ = dZ, whereas d = (p1, p2)
is greatest common divisor and py, po are any integers. The product 11, comprises all
possible finite sums of the components of the form (8s1)(12s3), where s1, s3 € Z, which

clearly gives the ideal 96Z.

For ideals I and J of the ring P, the set of sums i + 7 with ¢ € I, j € J is not only

a subring of P but also is an ideal in P.



Definition 1.2.13. A maximal ideal M in a ring P is a ideal such that there is no
proper ideal in between M and P.
In other words, if J is an ideal containing M, then either M = 7 or J = R.

Definition 1.2.14. Local ring is a ring P with unique maximal ideal.

Definition 1.2.15. For a ring P, principal ideal be an ideal with a single element
in its generating set. Finitely generated ideal is an ideal with a finite elements in its

generating set.

Example 1.2.16. Ideal generated by (2) = {0,2,4,6} is the maximal ideal in Zs. (2)

is also the unique maximal ideal in Zg. So Zg is a local ring.

Definition 1.2.17. A prime ideal J is a proper ideal of a ring P such that if for
p1,p2 € P, p1p2 € J, then either p; € J or py € J.

Definition 1.2.18. Let P be a ring and Z is an ideal of P. Then (0 : Z) is an ideal

known as the annihilator of Z represented as Ann(Z) defined as
Ann(Z) ={p e P : pZ = 0}.

Definition 1.2.19. For a ring P, let us suppose two ideals Z; and Z,. Then their ideal
quotient is defined as

(Il ZIQ) :{pGP : pIg gl—l}

Definition 1.2.20. An ideal IC of P is primary ideal if p1py € K, for p1, ps € P, then
either p; € IC or p} € K for some n > 1.

When K is a primary ideal, J is a prime ideal and also J = \/E, then I is called
J-primary.

1.2.3 Monomial ideal

Let S =T[&,...,&)] be a ring over field 7', monomials forms the natural T-basis for

S. Let ¢ = (c1,...,¢,) € R™ where every ¢; > 0. A monomial is any product of the



form &' ... &8 with ¢; € Zy. If v = &7 .. & is a monomial, then we write v = £¢

with ¢ = (¢1,...,¢,) € Z7, and

561502 — 501-&-62‘

An ideal whose generating set only consists of monomials is said to be a monomial
ideal. Mon(S) denotes the set of all monomials in S and it forms the basis of S. For

any polynomial g € S and for ¢, € T

where support of g is defined as
supp(g) = {w € Mon(S) : ¢, # 0}.
Proposition 1.2.21. Consider two monomial ideals K1 and Ky. Then

1. K1 N Ky is a monomial ideal, and {lem(a,b) : a € G(K;),b € G(K3)} is the
generating set of K1 N Ks.

2. (Ki: K3) is a monomial ideal and (Ki : K2) = [Ny, (K1 1 (b))

A monomial y€ is said to be squarefree if ¢ has components 0 and 1. An ideal with a
generating set containing only squarefree monomials is known as squarefree monomial

ideal.

1.3 Module theory

Definition 1.3.1. Consider a commutative ring P, a P-module N is a commutative
group w.r.t addition, together with a scalar multiplication map - : P x N — N, defined
as - ((5,0)) = Po, which holds the succeeding axioms.

L. B(o1 + 02) = Bor + Boo,

2. (BL+ B2)o = Bro+ Bao,



3. (B1B2)o = Bi(B20),
4. 1Q:Q7 vﬁlaﬁQEPanthQQEN-

Examples 1.3.2. 1. For a commutative group U, let j € U, q € Z and define

- Z xU — U, such that
(=) 4+ (=), i q <0
(¢.j)=aj=q j+j+-+7, if q>0;
0, if q=0.

Then U is a Z-module.
2. The ideals of the ring P are also P-modules.

Definition 1.3.3. For a ring P, let us assume C' and D be P-modules. A function

g : C — D is known as P-module homomorphism if

e g(o1 +02) = g(o1) + g(02), for all g1, 00 € C,

e g(po) = pg(o), forallpe P, o€ C.

If ¢ is injective and onto then it becomes a P-module isomorphism.

Examples 1.3.4. 1. For a ring P, consider P-module P. Then P-module homo-
morphism (even from P into itself) needs not to be a ring homomorphism. Con-

sider P = Z, then Z-module homomorphism u — 2u is not a ring homomorphism.

2. When P = F[u], the ring homomorphism ¢ : j(u) + j(u?) is not an F[u]-module

homomorphism.

Definition 1.3.5. Consider a ring P, and a submodule W of P-module A'. Then
(additive abelian) quotient group N /W becomes a P-module by using scalar multipli-

cation defined as

oj+W)=0j+W

VoeP,j+WeN/W.



1.3.1 Generation of modules

For any subset V of P-module N, let
PV ={pivoy+ - +pun : p1,- P €EP,v1,...,v, €V and n € Z"}.

If V is a finite set {v1,...,v,}, then PV = Pv; + Puvy + --- + Puv,. Call PV the
submodule of N generated by V.

Definition 1.3.6. Let N/ be an P-module then it is called free on the subset Y of
N if for 0 # n € N, there are unique non-zero elements py,...,p; of P and unique

&,...,& in Y, such that
”:p1§1+---+pk§k.

1.3.2 Noetherian ring and Noetherian module

Proposition 1.3.7. Let v be a poset with respect to <. Then the following are equiv-

alent.

1. Any increasing sequence oy < as < ... < «a, < ... in 7y is stationary, that is

there exist r € N for which as = «,., for all s > r.

2. Any ) £ W C v possesses a mazimal element.

Let ~y be the set of submodules of N which is ordered w.r.t the relation C then statement
1 is known as ascending chain condition and statement 2 is known as the mazimal

condition.

Definition 1.3.8. Let P be a commutative ring, a P-module N is known to be Noethe-
rian if each ascending chain of P-submodules of A is stationary. A ring P is Noetherian

if P is Noetherian as a P-module.

Examples 1.3.9. 1. A finite abelian group (as Z-module) satisfies both ascending
chain condition and descending chain condition. That is, every finite abelian

group is noetherian.
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2. The polynomial ring K [d1, da, . .. | over the field K satisfies neither chain condition
on ideals, the sequence (0) C (d1,d2) C ... is strictly increasing and the sequence

(61) D (62) D (63) ... is strictly decreasing.

Definition 1.3.10. Let A be finitely generated P-module where P is a Noetherian
ring, an associated prime ideal of a module is a prime ideal ) of the ring P such that
@ = Ann(n), where Ann(n) = {e € P : en = 0}. The set of associated prime ideals of
N is represented by Ass(N).

Definition 1.3.11. Let P be a commutative ring, consider a chain of prime ideals in

the ring
QoG Q1 CQ2C - S Qy,

then dimension of ring P is defined as
dim P = sup{a;}.
Suppose N be a P-module, then Krull dimension of N is
dim(N) = dim(P/Ann(N)).
For the modules of the type P/Z

dim(P/Z) = max{dim(P/J;) : J; € Ass(P/I)}.

1.3.3 Exact sequences

Definition 1.3.12. Let P be a commutative ring, consider a sequence of

P-homomorphisms on P-modules.

hi

hit1 hia
o— Vi > Vi A i1 .

It is exact at V; if Im(h;) = ker(h;41). The sequence is known to be exact if it is
observed to be exact at every V. Particularly, 0 — U’ —%5 V is exact at U’ if and

only if ¢ is one to one, and V Ly U" — 0 s exact at U” if and only if A is onto.

11



Proposition 1.3.13. The sequence
0— Uy -50"— 0
is an exact sequence if and only if h is one to one, g is onto and Im(h) = ker(g).

Remark 1.3.14. The sequence in Proposition 1.3.13 is called a short exact sequence.

1.3.4 Graded rings

Consider a commutative semigroup (w.r.t addition) W. A W-graded ring is such type

of a ring P having a decomposition
P = @ P (as a group),
wew

such that P, P, C Pyiv, V w,v € W.

Then for p € P, we can write a unique expression
p= Z Pw,
weW

where p,, € P, and almost all p,, = 0. The element p,, is called the wth homogeneous
component and if p = p,, then p is homogeneous of degree w. Plc] and Plec,d] are

Z-graded rings as:

e Pl=P®PchPEOPEOPHOPE® -+

e Plc,d] =P & (Pc+Pd)® (P +Pcd+ Pd*) & (Pc + Pc*d + Ped* + Pd?) & - - -
For a W-graded ring P and P-module N/

N = @ N, (as a group),

weWw

with PN, C Ny, for all w,v € W, then N is said to be a W-graded module. A non
zero element of NV, is called a homogeneous element of degree w.

For a polynomial ring P defined over the field T, suppose ¢ € Z", then p € P

12



is said to be homogeneous of degree ¢ when p has the form [¢¢, where § € T and
£=(&,&,...,&). Also P is Z™-graded with graded components:
Do T¢C, if c e ZY;
N 0,  otherwise.
An P-module N is Z"-graded if N' = @, yn N and P, Ng, C Ne, e, for all c1,co €
7"

1.4 Graph theory

Finite graphs are very straightforward formation in Mathematics. For this specific
aspect, before any systematic study of graph theory itself, many graph-theoretic prob-
lems remained unsolved. Leonhard Euler’s 1735 Konigsberg bridges Problem [5] is the
famous instance of such a problem and the Four-Color Problem which Francis Guthrie
initially introduced in 1852, as a coloring problem of the map of England’s counties.
Such worthy experiments include research on polyhedra cycles by Thomas Kirkman
and William Hamilton [6], the circuit laws by Gustav Kirchhoff |7]|, and research by
Arthur Cayley and James Sylvester [8] that had ties to theoretical chemistry to the
structure of molecules in particular. In 1878, it was Sylvester who suggested the name

of "Graph" to the structure he was researching.

In this chapter primary definition and notion of graph theory are given. This chapter
provides a detailed overview of individual types of graphs, distinct operations of graph

and results which we will use in our last two chapter.

1.4.1 Fundamental graph theory

Graph theory comprises of the study of graphs, while the graphs are the mathematical
structure used to establish the relation among the objects. The fundamental ideas of

graph theory are introduced in this section.

13



Definition 1.4.1. A graph G is an ordered paired G = (V, E') where V is a (finite) set

of elements called vertices and FE is a set of 2-subsets of V' called edges.

Definition 1.4.2. An edge with same end points is known as a loop. The edges
with exactly the same set of endpoints are known as multiple edges. A simple graph

is a graph with no multiple edges and loops. Given below is a graph with vertices

{Cla 02703764765766} and edges {91792ag3ag4a957967g77987g9}'

€4 94 s Js Co
gs
gr Je
g3

Figure 1.1: A simple Graph

Consider an edge with endpoints ¢, c5. Then ¢y, ¢y are said to be adjacent and they
are neighbors of each other. The focus is restricted to only simple graphs in various

important applications.

Definition 1.4.3. The total edges incident on vertex u of a graph W is known as

degree of u, which is commonly represented by dy (u) or d(u).

Definition 1.4.4. The total vertices in vertex set V(W) is known as the order of graph
W, represented by n(W). Whereas the total edges in edge set E(W) indicates the size
of graph, written as e(W).

Definition 1.4.5. A star graph G is a graph on m wvertices, in which one vertex has

degree m — 1 and all other vertices have degree 1.

Definition 1.4.6. A path graph is a sequence of vertices uy, uo, ..., u, where there is

an edge connecting v, and u,,q for 2 =1,2,...,n — 1.

14



A graph of n vertices (n > 3) is called cycle graph if we join first and last vertices of
path graph by an edge. A cycle and path on n vertices are represented by C,, and P,

respectively.

Figure 1.2: P;

Definition 1.4.7. A subgraph B of a graph C, written as B C C is a type of graph
such that V(B) C V(C) and E(B) C E(C) and the endpoints of edges in B are exactly

the same as in C.

Lemma 1.4.8. [1/(Handshaking lemma) The sum of the degrees of the vertices of a
graph G is twice the number of edges,

Definition 1.4.9. (Fusion /Merged/Identified)
The vertices uy and us in a graph W is said to be fused, if these two vertices are replaced

by a single new vertex u such that every edge that was adjacent to either uy or us or

both, is adjacent to u.
Uz
Uy

Uus
U7

Uyg

Ug
Us

Figure 1.3: C;

15



Proposition 1.4.10. Any graph with a vertices and b edges has at least a — b com-

ponents.

Definition 1.4.11. If the vertex set can be written as a union of two disjoint inde-

pendent sets then the graph is called bipartite graph.

Definition 1.4.12. Let us have a s,d-path in graph W. The distance from c to d
is the minimum length of ¢, d-path, written as d(c,d). The path with the maximum
length in W gives the diameter i.e.,

diamW = max d(c,d).
e, deV (W)

Definition 1.4.13. A wvertex cover of a graph is a collection of vertices that contains
at least one endpoint of each edge of the graph. A minimal vertex cover is an vertex

cover of a graph that is not a proper subset of any other vertex cover.

1.4.2 Graph operations

Definition 1.4.14. Consider two graphs W and & with vertex sets V(W) = {wy, wo
oo wyt and V(X)) = {01,09,...,0,}, respectively. The Cartesian product of W and
X is a graph, with V(WOX) = V(W) x V(X)) (the cartesian product of sets), and for
(wy, 6;), (wg, &) € VOWDOX), (w;, 6;)(wg, 6;) € E(WOX), whenever

e ), = ¢ and w,wy, € E(W) or

¢ ;0 € E(X) and w; = wy,

16



Figure 1.4: Cartesian product of Ps and Ps (PsP5)

Definition 1.4.15. The pth power H? of graph H is another graph that has the same
set of vertices, but in which two vertices are adjacent when their distance in H is at

most p.

Definition 1.4.16. The union of two simple graphs Hy = (Vi, E1) and Hy = (V3, Es)
1s a simple graph with vertex set Vi, UV, and edge set E1 U Ey. The union of Hy and
Hy is denoted by Hy U H,.

Definition 1.4.17. Consider two graphs Q and R with vertex set V(Q) = {a1, a9, as, ..., a,}
and V(R) = {b1, by, bs, ..., b,} respectively. The standard strong product of Q and K

is a graph, with V(QXR) = V(Q) x V(R) (the cartesian product of sets), and for

(a;, b)), (ag, by) € V(QRR), (ai,bj)(ak, by) € E(QXR), whenever

e a;b € E(R) and a; = ay, or

e b; = b and a;a, € E(Q) or

o a, cV(Q),b e V(R), bjb, € E(R) and a;a), € E(Q) or

e a, € V(Q),b € V(R), bjb, € E(R) and a,ax, € E(Q).

17



Definition 1.4.18. If n > 2, then the Cartesian product of two paths Py and P, is
called ladder graph. Similarly, For n > 3, the Cartesian product of Py and C,, is said

to be a circular ladder graph.
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Chapter 2

Depth, Stanley depth and some known
results on depth and Stanley depth

This chapter deals with the Stanley depth (named after Richard Stanley [10] in
1982) and depth of Z"-graded modules over polynomial ring in n variables over a field,

including the Stanley’s conjecture. From now to onward, ring P has identity 1 # 0.

2.1 Depth

Definition 2.1.1. Consider a P-module N. A zero divisor of a module N is an element

0 # p € P such that pn = 0, where 0 # n € N.

Definition 2.1.2. Let N be a P-module. An element p of P which is non-zero is N’

regular if for every n € N, pn = 0 implies n = 0.

Definition 2.1.3. A sequence 3 = f31,..., 3, of elements of P is said to be N-regular

if it satisfies the given axioms:
1. B;is N/(B1,. .., Bj—1)N regular for any j;

2. N % (B)N.

Example 2.1.4. Consider R = Klay, as, as] as a module over itself. As a; is regular
in R/(0)R, ag is regular in R/(a1)R, ag is regular in R/(a1,a2)R. ai,as,as is the

N-regular sequence in R.
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Definition 2.1.5. Let R be a local Noetherian ring with unique mazimal ideal m and
M be a finitely generated R-module. The common length of all maximal M -sequences

in m is called the depth of M and is denoted by depth(M).

Lemma 2.1.6. (Depth Lemma)[11] Given a short exact sequence 0 — 11 — 19 —

N3 — 0 of P-modules where P is a local ring, then
1. depth(ny) > min{depth(ns), depth(n;)}.
2. depth(ns) > min{depth(n,), depth(n;) + 1}.

5. depth(m) > min{depth(n;) — 1, depth(n2)}.

2.2 Stanley decomposition and Stanley depth

Definition 2.2.1. Let P = K[f4, ..., 8,] be a ring of polynomials over the field K and
consider Z"-graded P-module N. Suppose n € N and also consider U C {f1, ..., Bn},
then n/C[U] represents the K-subspace of N, whose generating set comprises of elements
(homogeneous in degree) of the form nr, where r is a monomial in K[U]. If nK[U] is
a free K[U]-module then it is known as a Stanley space of dimension |U|. A Stanley

decomposition of N is defined as:

J

D : N: @’I"JC[U,],

i=1

and
sdepthD = min{ |U;],i=1,...,5}.
Also,
sdepth,(N) = max{sdepthD : Dis a Stanley decomposition of N'}.

Lemma 2.2.2. [18] Let
0=-X—=>Y—=>2-0

be a short exact sequence of Z™-graded S-modules. Then
sdepth(Y") > min{sdepth(X), sdepth(Z)}.
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2.2.1 Stanley’s conjecture

In 1982, Stanley [10] presented a conjecture.
depth(N') < sdepth(N).

It has been extremely noteworthy as it examined a relation between two very different
invariants of modules. For a ring of polynomials P in m number of variables, let I C P
be the monomial ideal, then for m < 3, m = 4 and m = 5 the conjecture for P/I is
proved by Apel [12], Anwar [13] and Popescu [14], respectively. But in 2016, Duval et
al. [15] proved that Stanley’s conjecture is generally false, by giving a counter example

for the module of type P/I for which the conjecture does not hold.

Conjecture 2.2.3. Herzog in [25] presented a conjecture. Let I C S be a monomial
ideal then
sdepth(7) > sdepth(S/I).

The above conjecture has been proved in some special cases by Popescu and Qureshi in
[27] and Rauf in [18]. Recently, Keller and Young [26] proved the above conjecture for

any squarefree monomial ideal in the polynomial ring with at most 7 variables.

Question 2.2.4. Rauf [18] gave a question that is the strong form of Herzog’s conjec-
ture. Let I C S be a monomial ideal. Does the following inequality hold

sdepth(I) > sdepth(S/I) + 17

2.2.2 Method of computing Stanley depth for squarefree mono-
mial ideals

In 2009, Herzog et al. [16] granted a method of computing the lower bound for Stan-
ley depth of monomial ideals in finite number of steps by using posets. Let A be a
squarefree monomial ideal with G(A) = (ay,...,a,). The characteristic poset of A

w.rt g=(1,...,1), written as 'HS """ Y is defined as
7-[1(41 """ Y = {y C [m] | v contains supp(a;) for some j},
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where supp(a;) = {i : 6;la;} C [m] := {1,...,m}. For each p,0 € ’HS """ Y where
p C o, and

Let H : HS """ V= Us_1[v;, my] be a partition of 7-[1(41 """ Y and for every j, suppose
s(j) € {0,1}"™ is the tuple with supp(z°*?)) = ~;, then the Stanley decomposition D(H)
of A is given by

D(H) : A= DO x|k € ;)]

Clearly, sdepth D(H) = min{|n|, ..., |n.|} and

In the following example we are going to find stanley depth of edge ideal as well as

quotient of edge ideal.

Example 2.2.5. Consider P = K[¢1,¢27¢37¢4,¢5]7 U= (¢1¢3,¢2¢4,@/}1¢4¢5) C
K[tn,19, 13,14, 15] be a square-free monomial ideal and J = 0. Set v; = (1,0, 1,0,0),
v = (0,1,0,1,0) and v3 = (1,0,0,1,1). Thus U is generated by ¢ 172 ¢ and
choose g = (1,1,1,1,1). The poset H = HgU/J is given by

# ={(1,0,1,0,0),(0,1,0,1,0),(1,1,1,0,0), (1,1,0,1,0), (1,0,1,1,0),
(1,0,1,0,1),(1,0,0,1,1),(0,1,1,1,0),(0,1,0,1,1),(1,1,1,1,0),
(1,1,1,0,1),(1,1,0,1,1),(1,0,1,1,1),(0,1,1,1,1),(1,1,1,1,1)}.
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Partitions of H are given by

M1+ [(1,0,1,0,0),(1,0,1,0,0)] | J[(0,1,0,1,0),(0,1,0,1,0)] | J
[(1,1,1,0,0),(1,1,1,0,0)]  J[(1,1,0,1,0), (1,1,0,1,0)] | J
[(1,0,1,1,0),(1,0,1,1,0)]  J[(1,0,1,0,1),(1,0,1,0,1)] | ]
[(1,0,0,1,1),(1,0,0,1,1)] | J[(0,1,1,1,0),(0,1,1,1,0)] |
[(0,1,0,1,1),(0,1,0,1, 1) | J[(1,1,1,1,0),(1,1,1,1,0)] |
[(1,1,1,0,1),(1,1,1,0,1)] | J[(1,1,0,1,1),(1,1,0,1,1)] | ]
[(1,0,1,1,1),(1,0,1,1,1)] [ J[(0,1,1,1,1),(0,1,1,1,1)] | ]
[(1,1,1,1,1),(1,1,1,1,1)].

Ho @ [(1,0,1,0,0),(1,0,1,1,1)] U [(0,1,0,1,0),(0,1,1,1,1)]
(1,1,1,0,0),(1,1,0,1,1)]  J[(1,1,0,1,0),(1,1,1,0,1)]
[(1,0,0,1,1), (1,1,1,1,0)] | J[(1,1,1,1,1),(1,1,1,1, 1)},

And the corresponding Stanley decomposition is
D(H1) = 13 K[y, s3] ® opa K Yo, Yu] & 1thaths K (11, 12, 03]
V1Y2a K[, o, ha] © rhapa K [Pn, Y3, Ya] © Yr1hshs K[, 3, 5] @
V1Yas K[, tha, 5] © hopaha K (P2, U3, Ya] © Yathaths K (102, b, 5]
V123 Pa K[, o, s, ha] © rhopahs K [, Y2, Y3, ¥5] B
V12ats K[, o, tha, 5] © ihahahs K[, ¥3, ¥a, P5] B
Vo3ats K [th, 3, tha, 5] @ 10ahsipatfs K[, Yo, 3, a, ).
D(Ha) = 13 K[th1, 103, ¥4, ¥s] © orpa K [th, 3, b, 15]B
V1atps K[, o, tha, ] © h1potpa K [P, 2, U3, P5]

U1haths K [0, 0o, 3, 1ha] @ Yrhathshaths K i, o, U3, tha, U5).
Then

sdepth(U) > max{sdepth(D(H,)), sdepth(D(H2))}
= max{2,4}
= 4.
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Now for P /U, the poset F = fg/U is given by

F ={(0,0,0,0,0),(1,0,0,0,0),(0,1,0,0,0),(0,0,1,0,0), (0,0,0,1,0),

(0,0,0,0,1),(1,1,0,0,0),(1,0,0,1,0),(1,0,0,0,1),(0,1,1,0,0

(0,1,0,0,1),(0,0,1,1,0),(0,0,1,0,1),(0,0,0,1,1),(1,1,0,0, 1),
0 0

)
),
)

(0,1,1,0,1),(0,0,1,1,1)}.

Partitions of F are given by

.Fli

.FQ:

0,0,0,0,0),(0,0,0,0,0 1,0,0,0,0),(1,0,0,0,0

It ) ( )]
[(0,1,0,0,0),(0,1,0,0,0)] | J[(0,0,1,0,0),(0,0,1,0,0
(0,0,0,1,0),(0,0,0,1,0)] | }[(0,0,0,0,1),(0,0,0,0,1
(1,1,0,0,0),(1,1,0,0,0)] | J[(1,0,0,1,0),(1,0,0,1,0
(1,0,0,0,1),(1,0,0,0,1)]

[(1,1,0,0,1),(1,1,0,0,1)] | J[(0,1,0,0,1),(0,1,0,0,1
It ) ( )

It ) ( )]

It ) ( )]

0,0,1,1,0),(0,0,1,1,0 0,0,1,0,1),(0,0,1,0,1

cCccCccccccc

( ) ( )]
( ) ( )]
( ) ( )l
( ) ( )]
(0,1,1,0,0), (0,1,1,0,0)]
( ) ( )]
( ) ( )]
( ) ( )]

CCccccccc

0,0,0,1,1),(0,0,0,1,1 0,1,1,0,0),(0,1,1,0,0

0,0,1,1,1),(0,0,1,1,1

[(0,0,0,0,0),(0,0,1,1,1)] | J[(1,0,0,0,0),(1,1,0,0,1)] | ]
[(0,1,0,0,0),(0,1,1,0,1)] {_J[(1,0,0,1,0),(1,0,0,1,0)].

And the corresponding Stanley decomposition is

V1K1, 4] © U1bs K11, 5] @ o103 K [1ha, 3] B

D(F1) = 01 K[h] @ oK [th] © Y3 K [13] © Vu K [Yhs] © V1902 K (1)1, 10| ®

V1ohs K (11, 12, 5] @ haths K [tha, 5] @ h3ths K [z, 1)4]@

V35 K [h3,1)5] © Y4105 K [0y, 5] @ harps K1), 13, | D

Y3y )5 K 03, 14, 1)s5).
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Then

sdepth(P/U)

max{sdepth(D(F})), sdepth(D(F2))}
max{1,2}
= 2.

Example 2.2.6. Consider P = K[t)1, ¥y, V3,04, 0s5] , V = (11, PYarbs, 1¢siPs) C
K1, 19, 13,104, 15] be a square-free monomial ideal and J = 0. Set v, = (1,0,0, 1,0),

72 = (0,1,1,0,0) and 3

(1,0,1,0,1) . Thus V is generated by 1", ¢ 47 and

choose g = (1,1,1,1,1). The poset H = Hgf/J is given by

H = {(1,0,0,1,0),(0,1,1,0,0), (1,0,1,0,1), (1,1,0,1,0), (1,0,0,1,1), (1,0,1,1,0),
(1,1,1,1,0),(1,1,0,1,1),(1,0,1,1,1),(1,1,1,1,1),(1,1,1,0,0), (0,1, 1, 1,0),

Partitions of H are given by

Hi |
[
[
[
[
[
[
[

1,0,0,1,0),(1,0,0,1,0)]
1,0,1,0,1),(1,0,1,0,1)]
1,0,0,1,1),(1,0,0,1,1)]
1,1,1,0,0),(1,1,1,0,0)]

1,1,1,0,1),(1,1,1,0,1)]

( ), ( )
( ), ( )
( ), ( )
( ), ( )
(0,1,1,0,1),(0,1,1,0,1)]
( ), ( )
(1,0,1,1,1),(1,0,1,1,1)]
( ), ( )

(0,1,1,0,1),(1,1,1,0,1),(0,1,1,1,1)}.

[(0,1,1,0,0), (0,1,1,0,0)]
[(1,1,0,1,0),(1,1,0,1,0)]
[(1,0,1,1,0),(1,0,1,1,0)]
[(0,1,1,1,0),(0,1,1,1,0)]
[(1,1,1,1,0), (1,1,1,1,0)]
[(1,1,0,1,1),(1,1,0,1,1)]
[( ) ( )]

cCccCccCccccc
cCccCcccccc

0,1,1,1,1),(0,1,1,1,1

1,1,1,1,1),(1,1,1,1,1)].
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Hgi

[
[
[
[

[(1,0,0,1,0),(1,1,0,1,1)]  J[(0,1,1,0,0),(1,1,1,0,1)]
[(1,0,1,0,1),(1,0,1,1,1)]  J[(1,0,1,1,0),(1,1,1,1,0)]

(

,(1,0,1,1,1
1,0,1,1,0),(1,1,1,1,0
0,1,1,0,1),(0,1,1,1,1)].

(1,0,0,1,0),(1,1,0,1,0)]  J[(0,1,1,0,0),(0,1,1,1,0)] | J
(1,0,1,0,1
(
(

JI@0,0,1,1),(1,1,1,1,1)] |

)]
)]
) J1(1,1,1,0,0).(1,1,1,0,1)] | J
)]

C C

[(0,1,1,1,0),(1,1,1,1,1)].

And the corresponding Stanley decomposition is

D(H

Then

1) = Uia K1, ¥a] © PYorb3 K [h, 3] @ 11315 K [th1, 3, 15| D

V1Y2a K[, Yo, ] © 1pahs K1, ¥a, ¥5]  Y1hsha K [1h1, 3, tha] @
V1P K (11, o, 3] © atbstha K [tha, Y3, 1ha] © thathsths K [tha, s, 5]
V1Yathstha K[, o, b3, 10a] @ 1horpafs Kb, b2, 3, Ys] @

V12as K[th, o, tha, 5] © rhshahs K [Yn, Y3, Ya, ¥5] B
Vothsthaths K [tha, 3, tha, 5] @ 1horpshaths K (11, 2, Y3, Ya, 5.

D(Hz) = 10aK b1, g, Ya] © Vot K [1)g, 13, 1)4]®

D(Hs

sdepth(U)

U3 s K11, s, a, 5] @ 01hahs K[, V2, 3, 4, 5B
V13a K[, o, 3, 4] © Yrbaths K[h1, 1o, 103, 5] B
Voth3ths K [1g, 13, 1)y, 5]

) = ViK1, 9, 04] © Yorhs K1y, 1ha, 103, 15|®

U135 K [11, 103, 14, 5| © rbsha K[, 102, 13, 4| D
Vosty K [h1, 102, 03, 14, s).

> max{sdepth(D(H;)), sdepth(D(Hs)), sdepth(D(H3))}
= max{2,3,3}
= 3.
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Now for P/V, the poset F = .7-"7%/‘, is given by

f:

{(0,0,0,0,0), (1,0,0,0,0), (0,1,0,0,0), (0,0, 1,0,0), (0,0,0,1,0),
(0,0,0,0,1),(1,1,0,0,0), (1,0,0,1,0),(1,0,0,0,1), (0,1,0, 1,0
(0,1,0,0,1),(0,0,1,1,0), (0,0,1,0,1),(0,0,0,1,1), (1,1,0,0, 1),

0 0,0,1,1,1)}.

(0,1,0,1,1),(

Partitions of F are given by

.FQ:

fgi

0,0,0,0,0),(0,0,0,0,0 1,0,0,0,0),(1,0,0,0,0

It ) ( U ) ( )]
[(0,1,0,0,0),(0,1,0,0,0)] | J[(0,0,1,0,0),(0,0,1,0,0)]
[(0,0,0,1,0),(0,0,0,1,0)] | J[(0,0,0,0,1),(0,0,0,0,1)]
(1,1,0,0,0),(1,1,0,0,0)] | J[(1,0,1,0,0),(1,0,1,0,0)]
(1,0,0,0,1),(1,0,0,0,1)] | J[(0,1,0,1,0),(0,1,0,1,0)]
(0,1,0,1,1),(0,1,0,1,1)] | J[(0,1,0,0,1),(0,1,0,0,1)]
It ) ( U ) ( )]
It ) ( U ) ( )]
It ) ( )l

0,0,1,1,0),(0,0,1,1,0 0,0,1,0,1),(0,0,1,0,1

CCccccccc
CcCCcCcCccCccccc

0,0,0,1,1),(0,0,0,1,1 1,1,0,0,1),(1,1,0,0,1

0,0,1,1,1),(0,0,1,1,1)].

[(0,0,0,0,0),(0,0,1,1,1)]
[(0,1,0,0,0),(0,1,0,1,1)]

[(1,0,0,0,0),(1,1,0,0,1)]
[(1,0,1,0,0),(1,0,1,0,0)].

-

0,0,0,0,0),(1,0,0,0,0

( ), ( )1 J1(0,1,0,0,0),(0,1,0,1,1)] | J
(0,0,1,0,0),(0,0,1,1,1)
( ) ( )
( ) ( )

[(0,0,0,1,0),(0,0,0,1,1)] | J

0,0,0,0,1),(1,0,0,0,1)] | J[(1,1,0,0,0),(1,1,0,0,1)] | J

CCC CC

[ ]
[ ]
[ ]
[ ]

1,0,1,0,0),(1,0,1,0,0)].
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And the corresponding Stanley decomposition is
D(F1) = i K[t] © o K[tha] © s K[ths] © aK[ths] © s K[ths] © th1ha K[thr, o]
V13 K[, s3] © s K[, ¥s] © Yaha K [1h2, 1ha]®
Vooaths K [2, Ya, 5] © 1hots K [1h2, 5] © thatha K 13, ¥hu]®
V35 K [Ys, 5] © Yaths K (4, P5] © Y1haths K [1h1, o, 5]
Vst K [¥3, ¢, 5.
D(F2) = K3, Ya, 5] ® V1 K[th1, 002, 15] © oK [2, Ya, 5] © 1903 Kb, 3]
D(F3) = K] ® oK[tha, ¥, ¥s] ® V3K 3,14, 5] © s K[tha, ¢s]D
Vs K1, 5] © i K1, Yo, 5] © Pr19ps K i1, 3]
Then
sdepth(P/V) > max{sdepth(D(F})), sdepth(D(Fz)),sdepth(D(F3))}
= max{1,2,1}
= 2
Example 2.2.7. Consider P = K[, 19,03, %4] , W = (1103, Y104, a3, 1hothy) C
K[tbr, s, s, bs] be a square-free monomial ideal and J — 0. Set v = (1,0,1,0),
ve = (1,0,0,1) , 75 = (0,1,1,0) and 74 = (0,1,0,1) . Thus V is generated by
P 2 4p73 9h7 and choose g = (1,1,1,1,1). The poset H = ’H{’jV/J is given by
H =1{(1,0,1,0),(1,0,0,1),(0,1,1,0),(0,1,0,1),(1,1,1,0),(1,1,0,1),(1,0,1,1),
(0,1,1,1),(1,1,1,1)}.

Partitions of H are given by

M1 [(1,0,1,0),(1,0,1,0)] | J[(1,0,0,1),(1,0,0,1)] [ J[(0,1,1,0),(0,1,1,0)]
JI(0,1,0,1),(0,1,0,1)] [ J[(1,1,1,0),(1,1,1,0)]  J[(1,1,0,1),(1,1,0,1)]
U [(1,0,1,1),(1,0,1,1)] U[(0,1,1,1),(0,1,1,1)} U[(1,1,1,1),(1,1,1,1)].

My [(1,0,1,0),(1,0,1,1)]  J[(1,0,0,1),(1,1,0,1)] [ J[(0,1,1,0),(1,1,1,0)]
JI0,1,0,1), (0,1, 1, 1))  J(1,1,1,1),(1,1,1,1)].
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M [(1,0,0,1),(1,0,1,1)]  J[(1,0,1,0),(1,1,1,0)] [ J[(0,1,1,0),(0,1,1,1)]
JI(0,1,0,1),(1,1,1,1)].
And the corresponding Stanley decomposition is
D(H1) = is K11, ¥3] & i K[th1, ] © Yaths K (12, 3]
Voha K (2, Y] & 103 K11, 12, ¥3] @ hrpapa K [thr, b2, 1Pa]®
V1haha K (11, 3, a] @ orbspa K o, ¥, 1ha] © h1¢athaha K[th1, 2, b3, 4]
D(Ha) = 13 K11, 93, ¥a] & h1iaK[thr, b, 1Pa]®
Vo3 K (11, 12, V3] @ Yoha K [ta, 103, 14]®
V123 Pa K [th, o, 3, thal.
D(H3) = Y1paK 1, s, ha] ® b K[, 2, P3] &
Vo3 K[tha, b3, tha] © thotha K (1, Y2, 93, 14
Then
sdepth() > max{sdepth(D(H1)) , sdepth(D(Ha)) , sdepth(D(H))}
— max{2,3,3)
= 3.

Now for P/W, the poset F = F%/W is given by
F = {(07 07 07 0)7 (17 07 07 O)’ (07 17 07 0)7 (O’ 07 17 0)7 <O7 07 07 1)7 (17 17 07 0)7 <O7 O? 17 1)}
Partitions of F are given by

Fi: 1(0,0,0,0),(0,0,0,0)] [ J[(1,0,0,0),(1,0,0,0)] [ J[(0,1,0,0),(0,1,0,0)]
[J[(0,0,1,0),(0,0,1,0)] _J[(0,0,0,1),(0,0,0,1)] | J[(1,1,0,0),(1,1,0,0)]
LJ1(0,0,1,1),(0,0,1, 1)].

F: 1(0,0,0,0),(0,0,1,1)] | J(1,0,0,0),(1,1,0,0)].
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Fs: [(0,0,0,0),(1,0,0,0)] | J[(0,1,0,0),(1,1,0,0)] |_J[(0,0,1,0),(0,0,1,1)]
[J1(0,0,0,1),(0,0,0,1)].
And the corresponding Stanley decomposition is

D(F1) = i1 K[1] @ oK [1ho] © Y3 K [hs] @ 4K [1)4] © 11pa K2y, 2] ®
V3104 K [th3, 4]

D(F2) = Kthg, 1ha] © 1 K[th1, ¢a].
D(F3) = K[1] ©@ VoK [th1, 5] © V3K [th3, 4] © s K [thy].
Then
sdepth(P/W) > max{sdepth(D(F7)), sdepth(D(Fz)),sdepth(D(F3))}

= max{1,2,1}
= 2.

2.3 Some elementary results on Stanley depth and
depth of P-modules

Let P = K[01,0s,...,0,] be the polynomial ring in these variables over the field K,
then we have different results for depth and Stanley depth of different types of modules.

Corollary 2.3.1. [17] ([Corollary 1.3]). Let L C P be a monomial ideal. Then
sdepth(P/L) < sdepth(P/(L : 1)) for all monomials | ¢ L.

Corollary 2.3.2. [18] ([Corollary 1.3]). Let L C P be a monomial ideal. Then
depth(P/L) < depth(P/(L : 1)) for all monomials | ¢ L.

Theorem 2.3.3. [19] (Theorems 3.1 and 4.18]). Let G be a connected graph and
I = I(G) be the edge ideal of G. If d = diam(G), then

depth(P/I), sdepth(P/I) > {ﬂ]
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Theorem 2.3.4. [20, Theorem 1.3] Let iy, ..., i, be some positive integers, then

. , m
sdepth((vy',...,vim)) = sdepth((vy, ..., v)) = {5-‘

In particular, for any 1 <n < m.

sdepth((vl,...,u")) =m —n + [g—‘
Proposition 2.3.5. [17] For L C M and ¥V v ¢ L, sdepth (L : v) > sdepth,,(L).

Lemma 2.3.6. [11, Lemma 3.6] Let K and L be two monomial ideals with L C K,
suppose P' = P|dp+1], then

depth(KP'/LP") = depth(KP/LP) + 1.
sdepth(KP'/LP'") = sdepth(K'P/LP) + 1.

Lemma 2.3.7. [17] Assume that K C P’ = Kl[01,...,0,],L C P" = K[0r41,.-.,0n]

are monomial ideals, with 1 < r <mn, then
depthy(P/(KP + LP)) = depthp (P'/K) + depthp, (P"/L).

Lemma 2.3.8. [16] Consider a monomial ideal K C P and P = P[0pi1,- - -, Onsr] be

a ring of polynomials, then
depth(P/KP) = depth(P/KP) +r and sdepth(P/KP) = sdepth(P/KP) +r.

Question 2.3.9. [18] Let I C P be a monomial ideal. Does the following inequality
hold
sdepth(I) > sdepth(P/I) + 17

Herzog conjectured in [25], a weaker form of the above inequality:

Conjecture 2.3.10. [25] Let I C P be a monomial ideal then

sdepth(I) > sdepth(P/I).
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Proposition 2.3.11. [16] Let K C P be a monomial ideal, then
sdepth(K) > max{1,n — G(K) + 1}.
Proposition 2.3.12. /28] Let K C P be a monomial ideal, then
sdepth(P/K) > n — G(K).

Proposition 2.3.13. Let K C P be a monomial ideal, minimally generated by m
monomaials. Then

sdepth(K) > n — L%J

Theorem 2.3.14. [28] Let K C P be a monomial ideal which is not principal. Assume
K =pl' , where p € P is a monomial and K' = (K : p). Then

sdepth(P/K) = sdepth(P/K'). And
sdepth(K) = sdepth(K').

Proposition 2.3.15. [17, Proposition 1.1] Let I C P' = Klby,...,0,],J C P" =
K[b41,-.-,0n] be monomial ideals, where 1 < r < n. Then we have the following

mequalities:
1. sdepthp(IP N JP) > sdepthp (1) + sdepthp, (J);
2. sdepthp(P/(IP + JP)) > sdepthp (P'/I) + sdepthp, (P”/J);

3. sdepthp(P/(IP N JP)) — 1 = depthp(P/(IP + JP)) = depthp (P'/I) +
depthpr(P"/J).

Proposition 2.3.16. [17, Theorem 1.3] Let I C P’ = K[01,...,0,],J CP" = K[0y11, ..., 0n]

be monomial ideals, where 1 < r < n. Then we have the following inequalities:

1. sdepthp(IP) > sdepthp(IP + JP) > min{sdepthp(IP), sdepthp,(J) +
sdepthp, (P'/1)};

2. sdepthyp(P/IP) > sdepthp(P/IPNJP) > min{sdepthy(P/IP),sdepthp.(P"/.J)
+ sdepthy, (I)}.
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Corollary 2.3.17. [17, Corollary 1.6] Let I C P' = K|[dy,...,d,| be a monomial and
J=(u1,...,up) CP"=Kl[bps1,...,0,] be monomial ideal. Then:

1. sdepthp(IP) > sdepthp (IP +JP) > min{sdepthy(IP), sdepthp(P/IP)—|F]};
2. sdepthp(IP N JP) > sdepthp(IP) — [ 5 ];

3. sdepthp(P/IP) > sdepthp(P/(IPNJP)) > min{sdepthp(P/IP),sdepthy(I'P)—

m};
4. sdepthp(P/(IP + JP)) > sdepthp(P/IP) —m.

Corollary 2.3.18. [17, Corollary 2.5] Let I C P be a monomial ideal and v € P a

monomial, then:
1. sdepthp (I N (u)) > sdepthp(1).
2. sdepthy(I,u) > min{sdepthy,(I), sdepth,(P/I)}.
3. sdepthp(P/(I,u)) > sdepthp(P/I) — 1.
4. sdepthp(P/(I N (u))) > sdepthp(P/I).

Corollary 2.3.19. [17, Corollary 2.11] Let k > 2 be an integer, and let J; C P be

some monomial ideals, where 1 < 7 < k. Then:

1. sdepthp(Jy N ...N Jg) > sdepthp(Jy) + - - - + sdepthp(J) — n(k — 1).

2. sdepthp (Ji+---+Ji) > min{ sdepthp(J1), sdepthy (Jo)+sdepthy(P/J1)—n, .. .,
sdepthp(J;) + sdepthp(P/Jp—1) + - - - + sdepthp(P/J1) — n(k — 1)}

3. sdepthp(P/(J1N...NJg)) > mm{ sdepthp(P/Jy), sdepthy (P /J2)+sdepthy (J1)—
n,...,sdepthp(P/Jy) + sdepthp(Jy_1) + . .., +sdepthp(P/Jy) — n(k — 1)}.

4. sdepthp(P/(Jy + -+ Ji)) > sdepthp(P/Jy) + - - - + sdepthp(P/Jx) — n(k — 1).
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Theorem 2.3.20. /23] For a monomial ideal J of P with |G(J)|=t, we have

sdepth(J) < max{l,n - EJ }

Theorem 2.3.21. [29] Let J(P¥) be the edge ideal of the k-th power of a path P, on

n vertices. Where k is any positive integer. Let t > 3, then

depth(P/J(PL)) = sdepth(P/I(P) = [ 5],

Theorem 2.3.22. [29, Theorem 4.5/ Let J(CF) be the edge ideal of the k-th power of

a cycle Cy on t vertices. Where k is any positive integer.Let t > 3, then

depth(P/J(Cf)) =1,  if t<2k+1,

t—k
depth(P/J(CF)) > [% - J, if t>2k+2.

Theorem 2.3.23. [29, Theorem 4.6/ Let J(CF) be the edge ideal of the k-th power of

a cycle Cy on t vertices. Where k is any positive integer. Let t > 3, then

sdepth(P/J(CF)) =1, if t<2k+1,

t—k
sdepth(P/J(CF)) > [2k+ J, if t>2k+2.

Theorem 2.3.24. [29, Theorem 5.2] Let t > 2, then sdepth(J(PF)) > {ﬁw + 1.

Theorem 2.3.25. [29, Theorem 5.4] Let t > 3, then

sdepth(J(CY)) > 2, if t<2k+1;
k t—k .
sdepth(J(CF)) > [% . J Y1, if > 2% 42

Proposition 2.3.26. [29, Theorem 5.3] Let t > 2k + 1, then

n+k+1w

sdepth(J(CF)/J(PF)) > [ 2% + 1

Consider P, = K[UL1{y15, Y2, - - - » Ys; 1] be the polynomial ring in these variables
over the field K. We denote P; for m = 0. We have some results.
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Lemma 2.3.27. [30, Lemma 3.2] Let 1(P,,,) denotes the edge ideal of strong product
of two paths of length t and m, respectively. Let t > 1 and m = 2, then

depth(Pm/](Pt,g)) = sdepth(Ptjg/I(Pt,Q)) = ’VE-‘ .

3
Proposition 2.3.28. /30, Lemma 3.3] Fort > 1 and m = 3, we have
t
depth(Ps/1(Ps)) = sdepth(Pos/1(Pra)) = | 5.

Proposition 2.3.29. [30, Theorem 3.4] Let I1(C},,) denotes the edge ideal of strong
product of path and cycle of length t and m respectively. Lett > 3 and m = 2, then

depth(P2/1(Cya)) = sdepth(Pra/I(Cya)) = [%]

[T22] < depth(Pys/(Cus). skepth(Prs/ 1(Crs)) < [ 1]

Proposition 2.3.30. /30, Proposition 4.6] Fort > 3 and m = 2, we have

sdepth(1(Co)/1(P2)) > [22].

Proposition 2.3.31. [31, Lemma 3.1] Let J,, denotes the edge ideal of line graph of
ladder graph. Letn > 2 | then

[g} < depth(P,/J,), sdepth(P,/J,) < n — 1.

Proposition 2.3.32. /31, Theorem 3.6/ Let K,, denotes the edge ideal of line graph of
circular ladder graph. Let n > 3, then

m < depth(P,/K,) <n — 1.

And
{g-‘ < sdepth(P,/K,) < n.

Proposition 2.3.33. [31, Proposition 3.8] Let n > 2 , we have that dim(P,/J,,) > n.
Proposition 2.3.34. [31, Proposition 3.9] Let n > 3 , we have that dim(P,,/K,) > n.

Theorem 2.3.35. [27, Lemma 1.2] Let @ be a monomial primary ideal P. Then
depth(P/Q) = sdepth(P/Q) = dim(P/Q).
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2.3.1 Computations in Commutative Algebra (CoCoA)

We sincerely appreciate the contribution of the computer algebra system CoCoA [32]
for our experiments. It is very helpful for initial cases i.e., for small positive integers.
It saves our time by verifying desired results very quickly. It can easily work up-to

eighteen variables.
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Chapter 3

Depth and Stanley depth of cyclic
modules associated to some graphs

Let A be the graph, as shown in Figure 3.1, then n copies of A graph are shown in
Figure 3.2 for i varies from 1 to n, where n > 1 and m > 0. Now the union of n copies

of A graph is defined as follow
Bn,m = U Ai,m-
i=1

Clearly |V (By.m)|= 2nm + 3n+ 1. The graph B, ,, has 2n and 2nm vertices of degree
2, n — 1 vertices of degree 4m + 6 and two vertices of degree 2m + 3. So by using
Lemma 1.4.8, we have |E(B,, ,|= 4nm + 5n. For examples of B, ,, graph see Figures
3.3 and 3.4. For m > 0, if n = 1, then B, ,, graph has diameter 1. And for n > 2,

diameter is n.

We label the vertices of the B, ,, graph by using five sets of variables {01, da, ..., 0,1},
{517627 cee 75n+1}7 {w17w2a s 7wn}7 {{,ullv M1z, - - 7Mlm}7{ﬂ21a 22, - . 7;“2771}7 R

{,unlalun% o 7,unm}} and {{V117 Vg, ... 7V1m}a{7/217 Voo, ..., VZm}a sy {ana Un2y--+, Vnm}}
see ﬁgure 3.4. Let Sn,m = K[51,52,. .. 76717517527‘ .. ,§n+1,w1,w2,. ey Wy U115 125 - - 5 U1m

s H21, U222y o s U2m - - o5 HUnly Un2s- - o5 Pnms V11, V125 - - 3 Vim,y V21, V225 - - s Vo - oy Upl, Un2,. ..

, Vnm) be the ring of polynomials in these variables over the field K. Then I, ,,, is square-

free monomial ideal of S, ,,,. Now with the labelling as shown in Figure 3.4, we have:
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Figure 3.1: A (A) Graph

ML) = {0} U U 060U Udsewd U U106 U Ui} U
OdéaratU UtgmadU - U U4t U O 46w} U UtewatU oo U
Uit U UG} U U e U oo U UG U U6} U

=1

iq{&HVn}U yoets Uiq{fwwz'm}},

where I(P,11) = J{&&+1} is a path on n + 1 vertices and M(I,,,,,) stands for the

=1
minimal set of monomial generators of monomial ideal I, ,,.

Let us consider a supergraph D, ,, of the graph B, ,,. The vertex and edge sets of
Dn,m are V(Dn,m> = V(Bn,m) U{5n+17 Wnt1, b(n4+1)1, B(n4+1)25 -+ - s B(n+1)m> V(n+1)15 V(n+1)2
PRI V(nJrl)m} and E(Dn,m) = E<Bn,m> U{5n+1£n+1a gn—l—lwn—i-l; €n+1ﬂ(n+1)17 5n+1/1'(n+1)27

s agn—i—l,u(n—ﬁ—l)ma §n+ly(n+1)la €n+ly(n+1)27 s 7€n+ly(n+l)m}' For example of graph Dmm;

see Figure 3.5. We denote the edge ideal of graph D, ,, with I, where I is the
monomial ideal of the polynomial ring S;m = Spm[0nt1, Wt 1y U(nt 1)1, H(nt1)2s - - - 5
P(n+1)ms Vint 1)1 Vint1)2s - - - 5 V(n+1)m]. The minimal set of monomial generators of I, is
M(IZ,M = M(Inm) U{0n116n+1, Enriwni, §n+1,u(n+1)1, §n+1u(n+1)2, i 7§n+1,u(n+1)m7

£n+1l/(n+1)17 fn+1V(n+1)2, cee ,§n+11/(n+1)m}-
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Figure 3.6: Kite Graph

3.1 Depth and Stanley depth of the cyclic module
assoclated to the graph B, ,,

We find the value of depth and Stanley depth of the cyclic module S, ./ I, associated
to the graph B, ,, when n = 1(mod 2), and give tight bounds when n = 0(mod 2).
For this purpose, we first find depth and Stanley depth of the cyclic module S}, /I
associated to the super graph D, ,,. And we will use these results in our main proof.

For m = 0 we denote S, ,, =S, and S}, = S, similarly, I, ,,, = I, and I}, = I.

Proposition 3.1.1. Let n > 1 and m = 0, then depth(S}/I}) = sdepth(S}/I}) =

(%51

Proof. We will prove this by induction on n. When 1 < n < 4, then by using CoCoA
it is an easy exercise to see that the result holds. Suppose that n > 5. Consider the

short exact sequence
0 — S3/(I3 2 €un) =5 S/ 1 — 3/ (L7 i) — 0. (3.1)
By Depth Lemma
depth(S/12) > min{depth(S;/ (I} : €ua1)), depth(S: /(17 Euin))}-
(I:L : §n+1) = (I:;fza5n75n+17€n7wn7wn+1)-

We have S;;/([;: . €n+1) = K[él, (52,. .. 7511717517527- .. ,gn,1,€n+1,wl,(¢)2,. ey
sWno1]/1:_o = (SE_o /(1% _5))[én+1]- By induction on n and [16, Lemma 3.6],

Qepth(S3/(I; : £41)) = depth(S; /(I3 ) +1= [ "2 2] w1 = [M21).

2 2
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Now as
(I:Lafn—i-l) = (I;—hén-‘rl)»

we obtain S /(1% &,11) = K[01, 02, ., 0ns1, 81,80y -+, Eny W1, Wase oy W]/ LE 4

=S /I {[0n+1,wns1]. Thus by induction on n and [16, Lemma 3.6],

depth(S;/(I}, &) = depth(S;_,/(I;_))) + 2 = [25F] + 2 = [2H]. Also since
depth(S;/ (I}, &ns1)) = depth(Sy:/ (17 : €u41)) by Depth Lemma depth(S;; /1) = [254].
For Stanley depth applying Lemma 2.2.2 instead of Depth Lemma on the short exact
sequence 3.1, [16, Lemma 3.6] and induction on n. We have sdepth(S};/(1})) > [2].
For the upper bound since ,,+1 ¢ I} by Corollary 2.3.1, we get sdepth (S} /%)

< sdepth(S; /(I : &u41)). This implies that sdepth(S;/I%) <[], Thus
sdepth(S;/I7) = [2]. O

Proposition 3.1.2. Let n,m > 1, then depth(S; . /I, ) = sdepth(S; /I ,.) =
Sl
Proof. If n = 1, observe the short exact sequence
00— i/ (I €2) 2 S7 /= S (I s 2) — 0, (3.2)
applying Depth Lemma
Aepth(S7 /17 ) > min { depth(S7,,,/(I},, : €)). depth (S, /(I7 . 62)) }.

(Ifm &) = (61,02, &1, W1, Wa, f11s 12, - - - 5 fmy 215 1225 - - - 5 M2ms V11, V12, - - + 5 Vims Vat,
V9y s Vom)s
We have St /(17 ,, : §&2) = K[&], since depth and sdepth of polynomial ring K[ = 1.
So

depth(S, /(1] €2)) = 1.

Consider (I7,,, &) = (0181, §1wr, Euptan, E1piaz, - - -5 Eftam, §1v11, §1vi2, - -+ §1Vim, §2)

= (g1,m,&2), where g1, = (0161, §1wr, &g, §upans - - - ELpiam, §1vin, E1t1a, - - §lim) 1S
the edge ideal of Star graph. Since depth and sdepth of quotient module A; ,,, /g1, asso-

ciated to Star graph is 1, where Ay, = K01, &1, w1, par, flaz, - - -5 flim, Vi1, V12, - - - 5 Vi)
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is the polynomial ring in these variables over the field k.
We have ST, /(I}
Ay im/g1.m[02, ws]. Hence by depth of star graph and [16, Lemma 3.6], we get

>~

1,m» ) K[51,527517w1,w2,ul1,u127- <oy 1m, V11, V1250 - - V1m]/g1,m

Since depth(S,,/ (I} ,,,&2)) > depth(S},,/(I5,, : &)), so using Depth Lemma

@mmeJﬁﬁ)zlz[lii]

2

For Stanley depth if n = 1 then by applying Lemma 2.2.2 instead of Depth Lemma
on the short exact sequence 3.2, [16, Lemma 3.6] , sdepth of polynomial ring and
sdepth of quotient module associated to star graph, we have sdepth(ST,, /(1] ,,,&2)) >
L. For the upper bound since &, ¢ I7,, by Corollary 2.3.1, we get sdepth(Sy,, /17 ,,) <
sdepth(SY,,/(I7,, : §&2)). This implies sdepth(S7,,/I7,,) < 1. Thus

1+1
s@mmgmﬂggz1:ﬁ%%w
For n = 2. Considering the short exact sequence
0— SQ,m/(‘[Q,m : 53) _3> SZm/‘[Q,m — SQ,m/( 2m7£3) (33>

using Depth Lemma

Aepth(S5,,/13,,) = min { depth(S3,,,/(13,,, &), depth(S3,,/ (I3, &)) }-

([5,m 1 €3) = (G1,m> 02, 03, §2, Wa, W, Hat, 122, - -+ 5 Hamy 315 -+ - 5 H3ms Va1, V22, - -+ + 5 Vam, V31,
V32, s Vam)-

We have S5, /(I5,, &) = K[01,81, 83, w1, pas 12, - - fim, V115 Y125+ - - Vim) /G1m
Arm/91.m[€3]. By [16, Lemma 3.6], depth(S3,,/(15,, : &)) = depth(Ay,n/(91.m)) +1 =

2.

Now by taking (3,,,&3) = (I7,,,&3), we have S5, /(15,,,&3) = K[01,02,05,&1, &2, wi,

W2, W3, U115 H125- « 5 Kimy 215 4225 - -5 H2my U315 H325- - 5 U3ms V115 V125 -+ Vim, V21, V22, - - s Vom,
V31, V325« 5 Vam) [ 1} 1y = ST /15 03, W3, 131, 132, - - 5 [13m5 V31, V32, - - V3] Thus by in-

duction on n and [16, Lemma 3.6], depth(S5 ,/(I5,,,&3)) = 1 +2m + 2.

2
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Since depth(S5 ./ (I5,,,&3)) > depth(S5,./(15,, : &3)), using Depth Lemma

depth(S5,,/5,) = 2= [ i 1] .

2
For Stanley depth applying Lemma 2.2.2 instead of Depth Lemma on the exact se-
quence 3.3, by induction on n, [16, Lemma 3.6] and sdepth of quotient module asso-

ciated to star graph, we have sdepth(S;,,/(15,,,&3)) > 2. For the upper bound since

2m7

&3 ¢ I3, by Corollary 2.3.1, we get sdepth(S5,,/15,,) < sdepth(S;,,/(I5,, : £3)). This
implies sdepth(S;5,,/15,,) < 2. Hence

1
sdepth(S;m/I;’m) =2= {n;— -‘
When n > 3 | we have short exact sequence
* * gn *
0— Sn,m/([n,m : £n+1) +1 nm/ m T Sn m/( n,m? §n+1) — 07 (34>

by Depth lemma, we have
Aepth(S;,,/ T ) = min { depth(S;,, /(11 + €ns1))s depth(S] /(1 s €n11)) }-

(I’;:,m : gn—f—l) - (IEkn 2),m’ 5n> 6n+1> g’na Why Wn+t1y Unls Bn2; - - -y Knm, ,u(n+1)17 ﬂ'(n+1)27 ceey

H(n+1)yms Vnl, Vn2y - - - s Vnmy V(nt 1)1 V(n+1)25 - - V(n—l—l)m) .
Now S;;m/( n,m €n+1) K[617527 "75714*17517527"'7§n*17£n+17w17w27"'7wn717,u11

7#127' .. ,,Ulm, ,u217 /.1,22,. .. >M2m ey ,u(nfl)la ,u(nfl)Qy' .. 7u(n71)ml/11a V124« o s Vim, V21, V22,. - .

Vam -y V=11, Yn—1)2,- - - 5 V(n—l)m]/](*n—z),m =Sy om/ Ly o mléns1]. By induction on
n and [16, Lemma 3.6], depth(S;; /(I : &uy1)) = depth(S;: o, /(I} 5,,)) +1 =
(23] + 1= [,

Now as (I} &n+1) = (L1, nt1), We have S5 /(15 &nyr) = K[01, 02,0 .., 6p11, &

7527' o 7§n7w17w27' <oy Wity B11, H125- - -5 Bamy H215 1225 - -5 Hom - - - ,U/(n—‘rl)h :u(’rl-‘rl)Qr ce
,U(nJrl)m; i, Y12;- - - Vim, V21, V225 - -y Vo -+ - Vit 1)1, V(nd1)25- - -5 V(n+1)m]/](*n_1),m
n 1 m/ [ n+1s Wnt1, B(nt+1)15 B(nt+1)25- « - s B(nt1)ms V(nt1)1s V(nt+1)2s- - - 5 V(nJrl)m]- Thus

by 1nduct10n on n and [16, Lemma 3.6, depth(S;; ., /(I ., §ns1)) =
depth(S;_y o /(I5_1 ) +2m + 2 = [P + 2m + 2 = [2H4] + 2m. Since
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depth(S; /(1 0. €ns1)) > depth(S;,,. /(17  &141)) , 50 by Depth Lemma

Aepth (S /i) = [ il 1]

2

For Stanley depth applying Lemma2.2.2 instead of Depth Lemma on the short exact se-
quence 3.4, [16, Lemma 3.6] and induction on n we obtain sdepth(S;; . /(L ., &ns1)) >
[2+1]. And for the upper bound, since &,41 ¢ I;,, by Corollary 2.3.1, we get
sdepth(S;; ./ L .,) < sdepth(S}: /(I ., : &uv1)). This implies that sdepth(S;; /1 .,) <

[2£1]. Therefore

Aepth(S,/L1) = [,

2
[l

Remark 3.1.3. Clearly forn > 1 and m > 0 diam (D,,,,) =n+1 by Theorem 2.5.5,
we have

depth(S; ../ 1% ), sdepth (S /17 ) > [%2]. While, our proposition 8.1.1 shows that
depth(S; .,/ 1% ), sdepth (S | /1% ) = [%2]. Thus we find a better result for depth

and Stanley depth of this class of cyclic module.

Proposition 3.1.4. Let n > 1 and m = 0. If n =0 (mod2), then

[gw < depth(S,/1I,),sdepth(S,/1I,) < [n - 1—‘_

And if n =1 (mod?2), then

depth(S,/I,,) = sdepth(S,/I,) = {” il 1]

Proof. If 1 < mn <5, then by using CoCoA it is an uncomplicated exercise to see that

the result satisfies. Assume that n > 6. Let us have a short exact sequence
0 — Sp/(In : €ni1) % Sy /Iy — Su/(Ins€ni1) — 0, (3.5)

using Depth lemma, we get

depth(S,/1,) > min { depth(S,/ (I : &ny1)), depth(S,/ (1, fn—i—l))}
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([n : gn—i-l) = (12_275n75nawn)-

Now Sn/(]n : gn-‘rl) = K[517 527' c 5TL—17§17£27' c 7€n—17§n+17w17w27' e JWTL—l]/I:Lf?
= (S o/(I}_5))[€n+1]- So by proposition 3.1.1 and [16, Lemma 3.6/,

n—2+1 n+1
—]H:{ ]

depth(S,/ (I : €11)) = depth(S;_o/ (1)) +1 = | = .

Also

n—2+1 n—+1
—]+1:{ ]

depth(Sy/ (I : €us1)) = sdepth(S;_o/ (1)) +1 = [ .

Now as

(Inagn-‘rl) = (]:;—17571-1—1)7
we have S,/ (I, &ni1) = K[01, 02, ., 0n, &1, 80y o Enywr, way. oy wy) /15 =2 SE ) TF .
So by proposition, 3.1.1

depth(S,/(In, {ny1)) = depth(S;_ /(1 1)) = {n_THl-‘ - {g-‘

And

sdepth(S, /(1) = sdepth (53, /(1) = [ = [5]

Note that if n = 1(mod2), then depth(S,,/ (I, &ms1)) = depth(S,/ (I, : £ui1)) so by
Depth Lemma depth(S,/I,,) = [*]. And if n = 0 (mod 2), then depth(S, /(1. &nv1))
< depth(S, /(I : £u41)), again by Depth Lemma depth(S,/I,) > [§]. Same result
holds for sdepth in both cases. For the upper bound, since &,,1 ¢ I, by Corollary
2.3.2, we get depth(S,/1I,) < depth(S, /(I : &1)), this shows depth(S,/I,) < [2£4].

In a consequence
n -+ 1“

5| < deptn(si/n) < |

For Stanley depth if n = 1(mod 2), then by applying Lemma 2.2.2 instead of Depth
Lemma on the short exact sequence 3.5, we get sdepth(S,,/(I,) > [%1]. For the upper
bound since §,,41 ¢ I,, by Corollary 2.3.1, we have sdepth(S,,/I,,) <

sdepth(S, /(I : &u+1)). This exhibits that sdepth(S,/1,) < [%]. Therefore

sdepth(S,,/1,,) = {n il 1—‘.

2
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Moreover, if n = 0 (mod2), then by applying Lemma 2.2.2 instead of Depth Lemma
on the short exact sequence 3.5, we have sdepth(S,,/(I,)) > [5]. Eventually

2] e < [15]

]

Remark 3.1.5. In this case i.e., for m = 0 the B,, graph is equivalent to union of n

copies of kite graph, where kite graph is shown as in figure 3.6.

Remark 3.1.6. Clearly diam(B,,) = n by Theorem 2.3.3, we have depth(S,/1I,)
,sdepth(S,/I,) > [™2+]. Our Proposition 3.1.4 shows that if n = 0(mod2), then
depth(S,/1,),sdepth(S,/I,) > [5]. And if n =1 (mod2), then depth(S,/I,),
sdepth(S,,/1,) = (”THW Thus in both cases we find a good results for depth and stanley
depth of this type of cyclic modules.

Proposition 3.1.7. Let n,m > 1. If n =0 (mod2) , then

[g-‘ < depth(Sym/Inm), sdepth(Spm/Lnm) < [n ;L 1-‘.
And if n =1 (mod?2) , then
depth(Spm/Inm) = sdepth(Snm/Inm) = V’; 1].
Proof. Assume that n = 1. Let us have a short exact sequence
0 — St/ Iim : &) "2 St/ T — St/ (Iim, &) — 0, (3.6)

by Depth lemma

depth(S1m/T1m) > min { depth(S1m/(Iim : &), depth(Sym/ (L1 m, 52))}.

(11,m : 52) = (517517001,#11#12, <oy Haimsy 5 V11, V12, - -,V1m)-

Also Sipm/(Iim @ &) = K[&)]. Since depth K[&] = 1, where K[¢] is the polynomial
ring in variable & over the field K. So depth(Si ,,,/(L1m : &2)) = 1.
Now let (11, &2) = (0181, &1, S, §aptnz, - - -5 Efiam, E1va1, Evaz, - oo, §1ims §2) = (G1,m: &2)
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where g1, = (0161, §101, §1 a1, §1a2s - - §1flim, §1v11, §1012, - - -, §1V1m) 18 the edge ideal
of Star graph. Since depth of quotient module A, ,, /g1 ., associated to Star graph is 1,

where Ay, = K[01, &1, w1, a1, 12y -« -5 fim, Vi1, V12, - - -, Vim| 1S the polynomial ring in
these variables over the field k. We have S} ,,,/(11m, &) = K[d1, &1, was pa1,

L2, - s Hams V11, V125 -« s Vim) [ 91m = A1m/g1.m. Thus by depth of quotient module of
star graph depth(S1 .,/ (I1.m, &2)) = 1. Since depth(S1 ,m/({1.m, &2)) = depth(S1m/(L1m
&), so by Depth Lemma depth(Si,/I1,,) =1 = [2].

Now as for as Stanley depth is concerned, applying Lemma 2.2.2 instead of Depth
Lemma on the short exact sequence 3.6 , sdepth of polynomial ring and sdepth of
quotient module associated to star graph, we have sdepth(S},,/(l1.m,&)) > 1. For
the upper bound since & ¢ Ih,, by Corollary 2.3.1, we get sdepth(S1,,/l1m) <
sdepth(S1m/(I1,m : &2)). This implies that sdepth(S1,,/I1m) < 1. As a result

n+1
sdepth(S1,/lim) =1 = { 5 W
When n = 2. By taking the short exact sequence
0 — Som/(Tom : &3) &, Som/Tom — Som/(I2m,§3) — 0, (3.7)

applying Depth lemma
depth(S2,m/l2,m) > min { depth(S2,m/(I2m : €3)), depth(S2,m/ (I2,m, 53))}-

(IQ,m : 53) = (91,m7 527527002,M21, Ho22, - - .y Hom, V21, V22, ..., V2m)-

)

We have So,/(Iom @ &) = K[01,&1, &3, w1, a1, 12, - - 5 my V11, V125 -« Vi) [G1m =
At/ g1,m[&3]- By [16, Lemma 3.6], depth(S3,,,/ (13, : &)) = depth(A1m/(g1,m)+1 = 2.
Now consider (Iom,&3) = (I7,,,§3), we have So /[ (I2,m, &3) = K[01, 02, &1, 2, wi, W, fi11
s 12, - o5 Himsy H215 42250 - 5 H2ms V115 V125 - -+ Vim, Vo1, V22, - - Vzm]/fik,m = Sim/Iim' Thus
by Proposition 3.1.2, depth(S2,,/(I2,m,&3)) = 1. Also by Depth Lemma
depth(S2m/lom) > 1 = [§]. And for the upper bound since & ¢ I,,, by Corollary
2.3.2, we get depth(Sa,,/Iom) < depth(S2.m/(L2,m : €3)). This shows that
depth(Ss,/I2.m) < 2. Thus

241

@-‘ < depth(Sa.m/Iam) < {T—‘
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For Stanley depth applying Lemma 2.2.2 as an alternative of Depth Lemma on the short
exact sequence 3.7, Proposition 3.1.2, [16, Lemma 3.6] and sdepth of quotient module
associated to star graph. We have sdepth(S2.,/(I2,m,&3)) > 1. For the upper bound
since &3 ¢ I, by Corollary 2.3.1, we get sdepth(S2.m/l2,) < sdepth(Sa,m/(lam : &3)).
This shows that sdepth(Sa,,/I2,,) < 2. So

[;W < sdepth(S2,m/Tom) < [%W

Finally for n > 3. consider the short exact sequence

O — Sn,m/(ln,m : §n+1> ﬁ) Sn,m/]n,m — Sn,m/(jn,mu fn—i—l) — Ou (38>

by using Depth lemma

depth(Sym/Inm) > min { depth(Sym/(Inm : €ns1)), depth(Sum /L m, gnﬂ))}.

(Inm @ En1) = (IE"n Q)m,én,ﬁn,wn,,unl Hn2s - -+ s s Vnds Vn2s - -+ s Vm ) -

Also we have S, ../ (Lnm : Ent1) = K01, 025 -, 001, &1, &0ve o+ 3 Enm1, Enp1, W1, Wase - -
Wn—1, 115 125+ - -5 f1my 215 U225+ -+ H2m - -+ H(n—1)15 B(n—1)25- - -y H(n—1)m> V11, V125- - -+, Vim,
Vo1, V225 - Vam + - V(n—1)1, Yn—1)25- - - » V }/In 2)m = (Sy o/ _5.0))[€ns1]- By

Proposition 3.1.2 and [16, Lemma 3.6],

n—2+1 n-+1
) [

Aepth( S/ (Ingn : &us1)) = Aepth(S; g,/ (Fig,)) +1 = [ .

And

n—2+1 n+1
—1+1:[ ]

SAepth(Sp pm/ (Tnm = nt1)) = sdepth(Se_ . /(I7 5 )41 = { > .

NOW as (In,m7€n+1> (I:L 1m7€n+1)7 we have Sn,m/(ln,magn—i-l) = K[51,52,. .. 7(57“51,52,

'76717("-)17(-"-}27"'>wn7ﬂlla,ul2>'"7M1m7:u217:u227"":u2m coe Mnly Un2se - oy Bpms V11, V1250 -4
Vlmy V21, V22, « s Vam « -+ Vnly Vn2se ooy Vnml /151 0 = S0 v/ I}y ,,- So by Proposition
3.1.2, depth(Spm/(Inms éns1)) = depth(S: 1m/( * ) = [251] = (2] And

sdepth(Sym/(Inm, &n1)) = sdepth(S; /(I ) = [ 1 = [5].
Note that if n =1 (mod2), then depth(S}; ./ (I} ., &ns1)) = depth (S . /(L 0t €nt1)),
so by Depth Lemma depth(Sym/Inm) = [254].
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And if n = 0 (mod 2), then depth(S;; /(L ., §nv1)) < depth(Sy /(L - &ny)). This
implies that depth(Sy m/Inm) > [5]. For the upper bound since &,41 & Iy, by Corol-
lary 2.3.2, we get depth(Sym/lnm) < depth(Snm/(Inm : &ns1)). This implies that
depth(Sym/Lnm) < ["T“} Hence

1
[2] < depth(Sun/Tum) < [,
For Stanley depth if n = 1 (mod2), then replacing Depth Lemma by Lemma 2.2.2 on
the short exact sequence 3.8, we get sdepth(Sy,m/(Inm) > [42]. For the upper bound
since &,41 ¢ I, by Corollary2.3.1, we get sdepth(Sym/lnm) < sdepth(Sym/(Lnm :
€n+1)). This implies that sdepth(S,, ./ Lnm) < ("THW Thus

1
sdepth(Sym/Lnm) = {n—;— —‘
Moreover, if n = 0 (mod 2), then by applying Lemma 2.2.2 as an alternative of Depth
Lemma on the short exact sequence 3.8, we have sdepth(Sym/(Inm) > [5]. To con-

clude

2] bt <[]

]

Remark 3.1.8. Apparently for n = 1 diam(By,,) = 2 and for n > 2 diam(B,,,,) =
n. So by Theorem 2.5.3, for n = 1 we have depth(S1,m/I1m),sdepth(St m/I1m) >
[%} and for n > 2 we have depth(S, m/Inm),sdepth(Spm/Inm) > [”T“} Our
Proposition3.1.7 shows that if n = 0 (mod 2), then depth(Sy, ./ Inm), sdepth(Snm/ Ln.m)
> [2]. And ifn = 1 (mod 2), then depth(S,, u/Inm), sdepth(Spm/lnm) = [“52]. Thus
in both cases we find a sharp results for depth and Stanley depth of this class of quotient

module.

If we fuse vertices §; and &, in graph B, ,,,, we get a new graph called £, ,, graph.
For example of this new graph, see Figure 3.7. Distinctly |V (E,.)|= 2nm + 3n.
Furthermore, The graph E, ,, has 2n and 2nm vertices of degree 2 and n vertices of
degree 4m+ 6 so by using Lemma 1.4.8, we have |E(E,, ,,|= 4nm + 5n. Also for m > 0
and n > 3, E,,, graph has diameter d = [2£1].
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We label the vertices of the £, ,, graph by using five sets of variables {01, d2,...,0,},
{&, ..., &yt {wr,wa,y oo wn ), {{,uu,ulg, o Mam by 21, 22, oy fo2m )y e s
{tn1; tin2s - - - ,,unm}} and {{1/11, 12y« o Vim J{V21, V22, - s Vom by -+ o5 AVl Vn2y - - - 5 I/nm}.
Let Ty i= K[01, 09, .., 0ns Uy Eaye ooy Eny W1, Wase o oy Wiy 15 1125+ -« - 5 Moy H215 1225 - - 5 H2m,
s ey Mnds 2y - s Moy V115 V125e « + s Vims V21, V925« « s Vo «« oy Unly Vn2ye -+ Vp] be the ring
of polynomial in these variables over the field K. Then .J, ,,, is squarefree monomial ideal
of T}, . Now with the labelling as shown in figure 3.7, we have:
M) = { U6} Uloea Utnn U U063 U010} U U (6} U} U

U 1860 U0t U U o) Ut} U U G} Ul U U {6} Uoc)

=1

U s U O} Ul U U6} Ut} U O e} U} U - U
U6 Ut} U'U (6} Uty } U U e} Ut} U - U
U t6ssatin} Ut} U'U (6501000} Ut U U {60 U} U - U

n—1
U {&1vim} U{yynm}} Where M(J, ) stands for the minimal set of monomial gen-
i=1

erators of monomial ideal J,, ,,.

Let us first consider super graph F), ,, of the graph D,, ,,,. The vertex and edge sets
of Fpm are V(Fom) = V(Do) U{a1,01, 1, @25 -« -, @y 71,725 -« s T} and E(F, ) =
E(Dnm) U{a16n11, 6101, 6102, - - -, E1Gm, §171, 6172, - -+, €17 } - For example of graph
F,. . see Figure 3.8. We denote the edge ideal of graph F,, ,,, with J;,m, where J;';m is the
monomial ideal of the polynomial ring 7}; , = S;“L’m[al, b1, Qs Qs oy Qs T15 T2+« s T

The minimal set of monomial generators of J;;  is M) = M1 ,,) J{a1&1, 4101}
U L_Jl{fl(Z(nH)i} U !1{517”(n+2)i}-
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3.2 Depth and Stanley depth of the cyclic module
assoclated to the graph £, ,,

We find out the value of depth and Stanley depth of the cyclic module T}, .,/ Jpnm
associated to the graph ), ,,,. For this motive, we first find depth and Stanley depth of
the cyclic module Ty, /J» . associated to the super graph F, ,, of D,,,, graph, where
D,, ,, graph is a super graph of graph the B, ,,. These results will be used in our main

proof.

Proposition 3.2.1. Letn > 1 and m > 0. If n = 0(mod 2), then

2
depth(T;,m/JZ,m) = sdepth(T;,m/J:L,m) - Wl . —‘

2
And if n = 1 (mod 2), then

5
depth(T7:,./ J7 ) = sdepth(T:,./J5) = 2m + [" ; ] |
Proof. For n = 1. We have a short exact sequence
00— 150/ (S &) 5 Ti ) Ty = T/ (T €2) — 0, (3.9)

by Depth lemma

Aepth(Ty,,/J;,) = min { depth(T},./(J;,, : €2)),depth (T}, /(J;, &) .

(Jik,m 1 &) = (01, 02, §1, W1, W, (115 125 - - - 5 i 215 H225 - - - 5 H2ms s V11, V125 - - - Vim, Va1,
Voo, s Vo).

We have 17, /(Jf,, : &) = K[&,a1,b1,q1,42,- -+, Gm, 71,72, - -+, Tm]. Since depth of
polynomial ring K[, a1, b1, q1, G2, - -, s 71572, - -, Tm] = 2m+3, so depth(T7,, /(J5,, :
&)) = 2m + 3.

Now let (J7,,,&2) = (91 &),

where g7, = (91,m, @161, 6101, 6101, 61G2, - - -, E1Gm> §171, 6172, - -+, €17 18 the edge ideal
of Star graph. Since depth of quotient module A7,, /93 m associated to Star graph is

1, where A}, = A1 a1, 01,q1,02, -, Gms 71,72, - - -, Tm| is the polynomial ring in these
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variables over the field k. We have Ty, /(J},,, &) = K[01,02, &1, wi, Wapti1, fazs- - -
[y 215 14225+ - - s f2my V115 V125- -+ Vims V21, V22,- -+ > Vam, 01, 01,1, Gy - o Gy T1, T2, -+ -5 T
/gim ~ Aim/gim[ég, Wy 121, [22,- - -y f2ms V21, V22,- - - » Vam|. Thus by depth of star graph
and [16, Lemma 3.6], depth(T7,./(J7,,,&2)) = 1+ 2m + 2 = 2m + 3. Also since
depth(T7,,/(J} ., &2)) = depth(T7,,/(J5 . : §2)), by Depth Lemma depth(77,,/J5,,,) =
2m + 3 = 2m + [£2].

For Stanley depth applying Lemma 2.2.2 instead of Depth Lemma on the short exact
sequence 3.9, [16, Lemma 3.6], sdepth of polynomial ring in 2m+3 variables and sdepth
of quotient module associated to star graph. We have sdepth(T7,,/(J},,)) > 2m + 3.
For the upper bound since & ¢ Jf,, by Corollary 2.3.1, we get sdepth(77,,/J7,,) <
sdepth(77,,/(J5,,  &2)). This implies sdepth(7TY,,/J; ) < 2m + 3. Thus

145
sdepth(17,,/J7,,) = 2m + 3 = 2m + [%-‘
When n = 2. We have a short exact sequence
0 — T3/ (S 8) 5 T/ Ty — T/ (&) — 0, (3.10)

applying Depth lemma

Aepth(T5,,/J5 ) = min { depth(T3,/ (15, : €)),depth (5, /(J5,0, ) |-

(Jg,m : 53) = (Qim, 02,03, §2, Wa, W3, a1, [22, - - - 5 H2ms U315 - - - » H3m, V21, V22, - - - » Vam, V31,
V32y ey Vam)-

Also we have T3, /(J5,, : §3) = K[61, 1,83, W15 11, H125- - - 5 i Vi1, V125 - - 5 Vim, Q15 D1,
QG255 Qs T1, T2, Tl /G5 = AT 0/ 91 m[€3]- Now by [16, Lemma 3.6],
depth(73,,/(J3,, : €3)) = depth(A] .,/ (g7 ,m)) +1 = 2.

As (J3,m,83) = (70 &3), we get T3,/ (U5, €3) = K01, 09, 03, &1, §2, w1,

Wo, W3, 115 H125- -« 5 B1ms 215 H225- - - 5 H2ms 315 4325+ - « 5 H3my V11, V1250 - -5 Vim, V215 V22,5 -+ Vomy,
* ~Y * *

V31, V32, - s Vams G0, 01, @1, @2, -+ 5 Gons 715 T2 - T [ ISy 2T 0/ T 03, w3, phan, 132, - -

U3m, V31, V32,- - -, Vam]. Hence by induction on n and [16, Lemma 3.6],

depth(T5,,,/(J3 ., &3)) = 2m + 3 + 2m + 2. Moreover, since depth(75,,/(J5,,,&3)) >

depth(TZ*’m/(J;’m : &3)), using Depth Lemma depth(T{m/J;,m) = [%}
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As for as Stanley depth is concerned using Lemma 2.2.2 instead of Depth Lemma on the
exact sequence 3.10, by induction on n |16, Lemma 3.6] and sdepth of quotient module
associated to star graph, we have sdepth(75,,/(J5,,)) > 2. For the upper bound since
&3 ¢ Jy,, by Corollary 2.3.1, we get sdepth(T5,,/J5,,) < sdepth(T5,,/(J5,, : &)). This
implies that sdepth(7%,,/J5,,) < 2. As a consequent sdepth(T5,,/J5,,) = 2 = [%2].

Now let us assume n = 3. And examine the short exact sequence
0 — T3/ (i €0) 5 T T — T/ (Ji &) =0, (311)
applying Depth lemma
depth(Ty,,,/3,,) = min { depth(T,,/(J3,, : €1)), depth(T,,,/(J5,,.€0)) .

* . _ *
<J37m . 54) - (Jl,ma (537 54,53,0)3,0)4, 31, 132y - - -5 U3my 415 K42, - -+ 5 Hdm; V31, V32, - -+,

V3m7V41,V42,-~-7V4m)-
We get T;,m/(‘]g,m 1 &y) = K[01, 09,81, &, §uy wr, Wa, a1, fa2se -+ s fims Moty H225 - - 5 H2m,
V11, V125 -+ s Vim,y V21, V22, . ., Vom, A1, b17q17QQ7 e Gmy T, T2, 7rm]/']f,m = Tlim/‘]im[fll]

By induction on n and [16, Lemma 3.6|, depth(T5,,/(J3,, : &)) = depth(17,,/(J},,))+
1. And sdepth(73,,/J3,, : &4) = sdepth(T7y,,/J; ) +1=2m+3+1=2m +4. Now as
(J:;m» 54) = (‘];,ma 64)7 we have T{;m/<*]§,m7 54) = K[(Sla 627' e 7547 517 527' e 7537 Wi, Wa;. - .

s Wa,y, 11y 125« 5 B1my 215 U225 oy Hom -+« 41, 42, - oy Ham, V11, V125 - - s Vim, V21, V22, - .
* * *

s Vom o+ Va1, V425 -, Vam, G1, 01,1, G2y -+ oy Qs T1, T2, - - 77“m]/<]2,m = Tz,m/Jz,m[54;W4

s 41y [442,- « + 5 fdims Va1, Va2, - - Vam]. Therefore by induction on n and [16, Lemma 3.6],

depth(T5,,,/(J3 ., €)) = depth(T5,,/(J5,,)) +2m +2 =2+ 2m + 2 = 2m + 4. As
depth(T5,,,/(J3 s €4a)) = depth(T5,,/(J5,, : £&4)) and by Depth Lemma depth(T%,,,/J5 ,,)
=2m+4=2m+ (%} For Stanley depth applying Lemma 2.2.2 as an alternative of
Depth Lemma on the short exact sequence 3.11, [16, Lemma 3.6] and induction on n
we have sdepth(7%,,/(J5,,)) > 2m +4. For the upper bound as &, ¢ J3,, by Corollary
2.3.1, we get

sdepth(73,,/J3,,) < sdepth(T3, /(J;,, : &)). This implies sdepth(73,,/J5,,) <
2m + 4. Thus

n+51

sdepth(73,,/J3,,) = 2m + 4 = 2m + { 5
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Now in general, for n > 4. Consider the short exact sequence
00— T/ i+ €ns1) =5 T/ T — T reni1) — 0, (3.12)
using Depth Lemma
Aepth(T;,,/ ;) = min { depth(T;, /(T + €nv1)), Aepth(Ty /(T s nsn) |

(J;’:,m : €n+1) = (J(*n,Q)Ww 5717 5n+17 5717 Why Wn+t1y Unls Hn2s - - -y Hnm, ,u(nJrl)la ,UJ(n+1)27
e B Dms Vnds Vn2s -« s Vnms V(n1)1s Y(ng1)25 - - - » YVt 1)ym)- We have T;:m/(J;m :

fn+1) [51, 0253 0n—1,€1, 82, -+, §nt,s Ent1s W1, W2, ooy Wi 1, U115 4125+ - - 5 Ml

H21, H225- - -5 2m - - o HU(n—1)1) H(n—1)25- - « y H(n—1)mV11, V12;- - - s Vim, V21, V225 - s Vo -
V(n—l)la”(n—l)?u-"7V(n—1)m7a17b17q1?QQ7‘"7Qm7rlar27'”7rm]/ n—2,m ( 2m/
(5 _2.m))[éns1]- By induction on n and [16, Lemma 3.6, depth(7T}; . /(J5 . : &nt1))

= depth(T;_, ./ (J5_am)) + 1.

Note that if n = 0(mod2), then n — 2 = 0(mod2). This implies depth(T};,./Jx
&nr1)) = depth(Tip/ Jiom) + 1= [P52] + 1 = [2].

And if n = 1(mod 2), then n — 2 =1 (mod 2). This implies depth(7}; . /J5 ,, : {ny1) =
depth(T}; g,/ J o) + 1 =2m+ [2283] + 1 = 2m + [255].

Now as ( n,m> €n+1) = (J;,Lm, £n+1>7 we have T;,m/<‘]:;,m7 £n+1) = K[517 02;- - - 75n+17 &1

7527'"a€n7w17w27"';wn-i-la/lel)l’[’l?a'"7“1777,7#217”227"'7[1’2m /vL(n+1)17,u(n+1)27"'a

M(n+1)m,V11,V12,...,Vlm,VQhVQQ,...,VQm V(n—i—l)h”(n-&-l)?a"'7V(n+1)m7a17b17q17q27"'7
* A Tk

Qm77’1,7“27-~-,7“m]/c](n_1), =T, 1m/ [n+1,wn+1,M(n+1)1,u(n+1)2,---,M(n+1)m,

Vint )15 Yn+1)25- - - Vint1)m]. Thus by mductlon on n and [16, Lemma 3.6, depth(7};,,/
(‘];;,mvfn-f—l)) = depth(7}; 1m/< n— 1m>>+2m+2'

Now if n = 0 (mod 2), then n—1 = 1 (mod 2). This implies depth(T7: . /(J} €n+1))
sdepth(Ty_y /i 1) 4+ 2m 42 = 2m + [2=22 1+51+2m+2_4m+["+81
if n = 1(mod 2) then n — 1 = 0(mod2). This implies depth( nm/( mm,fnﬂ)) =
depth(Tyy /% 1) +2m 42 = f”_;”} +2m+2=2m+ f”+51
To sum up, if n = 0(mod?2), then depth(T; /() .,&nr1)) = depth(T .. /(J5 .
&nt1)), by Depth Lemma depth(T};,./J; ) = [*:2]. And
if n =1(mod?2), then depth(7T}; . /(J5 .; Ens1)) = depth(Ty . /(S + §nv1)), by Depth
Lemma depth(T}; .,/ J5 ) = 2m + [252].
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To examine Stanley depth, apply Lemma 2.2.2 instead of Depth Lemma on the short
exact sequence 3.12, [16, Lemma 3.6], and induction on n we have if n = 0 (mod 2),
then sdepth(T7r /(5 ,,)) > [%2]. And if n = 1 (mod 2), then sdepth(T};,,/(J5 ) >
2m + (”T*Eﬂ For the upper bound since &,11 ¢ I;,, by Corollary 2.3.1, we get
sdepth(7;,./Jx ) < sdepth(Ty;, /(Jy . : &us1)). This implies that if n = 0 (mod 2),
then sdepth(77,./Jx..) < [*2]. Thus sdepth(75,./J5,,) = [%2]. And if n =
1 (mod2), then sdepth(Ty,,/Jx,.) < 2m + [%£2]. To conclude, sdepth(T5,,/J5,,) =
2m + [2£2]. O

Remark 3.2.2. Apparently diam(F, ) =n+ 2 so by Theorem 2.3.3, we have depth
(T o/ T ), sdepth (T3 /J% ) > [%52]. Whereas, our Proposition 8.2.1 shows that
if n = 0(mod2) then depth(T,./Jy..) = sdepth(T7, /Jx ) = [%2]. And if n =
1 (mod?2), then depth(T} ./ J: ) = sdepth(Ty:,./Jx ) = 2m + [2£2]. Thus we have
better results for depth and stanley depth of this class of cyclic modules.

Proposition 3.2.3. Let n >3 and m > 0. If n = 0 (mod 2), then

A (T, 1/ ) = Skepth(Ty /) = [ 2]

And if n = 1 (mod 2), then

depth(Thm/ Jnm) = sdepth(Tym/ Jnm) = 2m + [n : 3-‘ '

Proof. Firstly lets us have n = 3. Considering the short exact sequence

0— T/ (J3m : Y) 2 T/ J3m — Tsm/(J3m,y) — 0, (3.13)

and Depth lemma, we have

depth(7%,,/J3.m) > min { depth(T3 1/ (J3.m : y)), depth(T5 m/ (J5m, y))}

(Jam 2 y) = (01,03, &2, §3, W1, W3, fha1s f12, - - -5 [l H315 M2+« + 5 H3my V11, V125« « + 5 Vim, V31,
V32, s Vam)-

We have T5,,/(Jsm : y) = K02, y, w2, , fto1, 122, - - - fom, Va1, V22, - - ., Vo ].  Since
Depth of polynomial ring K [0a, y, w2, , fa1, 492, - - - s f2m, V21, V22, - - - 5 Vo] = 2m + 3, SO

60



depth(T5,m/(J3m 1 y)) = 2m + 3.

Now let (J3m,y) = (1, ), We have Ts,,/(Jsm, y) = K01, 2, 03, &2, §3, w1, wa, ws, fia1,
125+ -y Blmye - 5 H315 4325+ -y B3my V115 Y125+ -+ Vimse -+ V31, V325 - -5 Vs [ oy = T [T -
Thus by Proposition 3.2.1, depth(75,,,/(J5.m,y)) = 2m + 3. Also since
depth(T5 ./ (J3,m,y)) = depth(T5,,/(J3m : ¥), so by Depth Lemma depth (73 ,,,/ J5.,) =
2m + 3 = 2m + [3£2].

For Stanley depth applying Lemma 2.2.2 instead of Depth Lemma on the short
exact sequence 3.13, [16, Lemma 3.6, Proposition 3.2.1 and sdepth of polynomial ring
in 2m + 3 variables. We have sdepth(73 ,,,/(J5.,)) > 2m+ 3. For the upper bound since
y & Js,,m by Corollary 2.3.1, we get sdepth(T5,,/J5,m) < sdepth(T3,,/(J5.m, @ y)). This
implies that sdepth(7%,,/J3.m) < 2m + 3. Thus

3+3
sdepth(T n/ Jsm) = 2m + 3 = 2m + [%] .

Secondly, if n = 4. let us consider the short exact sequence
0 — Tup/(Jam 2 Y) = Tamn/Jam — Tam/(Jam,y) — 0, (3.14)
applying Depth lemma, we get
depth(Ty /J4,m) > min { depth(Tym/(Jam = y)), depth(Tym/(Jsm., y))}

<J4,m : ?J) = (9f,m> 01,04, &2, &4y W15 Way 115 1125 - -+ ol Hals - - - s Pdins V115 V125 - -+ Vi,
Va1, V42, - - -, Vam,). Wehave Ty, /(a1 y) = K [0, 03, Y, wa, W3, o1, 422,- - - 5 flam, H31, H32,
s M3mV21, Va2, - s Vo, V31, V32, -5 Vaml /95 = (AL ,0/95 m)ly]. Now by [16, Lemma
3.6],
depth Ty, /(Jam : 9)) = depth(A7,, /gl ) +1=2.

Further, let (Jym,y) = (J5,,, ), we get Ty /(Jam,y) = K[01, 02,03, 04, &2, &3, Ea, w1, wo,
W3, Wa, K11, #125- - -5 Bims H215 K225 - -5 H2ms 1315 (0325 - - 5 3my M1, {42, - -, Ham V11, V125 -+ 5 Vim,
Vo1, Va2y + - s Vams V31, V32, + 5 Vam, Vals Vazye -+ Vaml [ S5 = 15,/ I3, Thus by Proposi-
tion 3.2.1, depth(Ty,m/(Jam,y)) = 3. Also since depth(Tym/(Jam,y)) >
depth(Ty s/ (Jam : y) so by Depth Lemma depth(Ty ./ Jum) =2 = [5].
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Now for Stanley depth using Lemma 2.2.2 at the place of Depth Lemma on the exact
sequence 3.14 , [16, Lemma 3.6| and Proposition 3.2.1. We get sdepth(Ty .,/ (Jam) > 2.
For the upper bound since y ¢ Jy,,, by Corollary 2.3.1, we have sdepth(Ty .,/ Jsm) <
sdepth(Ty ,m/(Jam : y). This implies sdepth(7y ./ J1m) < 2. Thus

sdepth(Tym/Jim) = 2 = Eﬂ

Thirdly, when n = 5. Examine the short exact sequence
0 — Tsm/(Jsm ) = Tsm/Ism — Tsm/(J5.my) — 0, (3.15)
and using Depth lemma

depth(TE),m/JE),m) 2 min { depth<T5,m/(=]5,m : Z/)), depth(TS,m/(JS,ma y))}

(Jsm 1 y) = (me, 01, 05, 25 5y W1, Ws,y 11, 125 - -+ 5 Mimmy H515 4525 - - 5 Hsms V11, V12
ye s Vims Usl, Vs2, -« oy Vsm)-

We have T5 . /(S5m0 y) = K[02, 03, 04,y &3, §a, Wa, W3, Waflar, o2, - - s fams - - 5 fat, [,

s My V21, Va2, - Vo + s Val, Vazse - Va [ Yy = (15 0/ I3 ) ly]- - By Proposition
3.2.1 and [16, Lemma 3.6], depth(T5 /(J5,m : y) = depth(Ty,,,/(JF,,)) +1=2m +3+
1=2m+4.

Also as (Jsm, y) = (J3,,,y) so we have Ts .,/ (Jsm, y) = K[01,02,. .., 05,2, ., &5, w1,
Wo,. .., Ws, U11, H125- -+ 5 Pb1m; B21, U225 - -5 H2m - -« H515 U525 -+ 5 U5m, V11, V12, « - s Vim, V21,
Vo2y oy Vam « -+ VUs1, V525 -+ Vsl /I3 = T3/ J5 - Hence by Proposition 3.2.1,
Aepth(Ts /(s ) = depth(T,,/(J5,)) = 2m + 4. As depth(Ts m/(Jsm.y)) =
depth

(T5,m/(J5.m = y)) so by Depth Lemma depth(75 .,/ J5.m) = 2m + 4 = 2m + (%}

For Stanley depth, replace Depth lemma by Lemma 2.2.2 on the exact sequence 3.15,
[16, Lemma 3.6] and Proposition 3.2.1, we have sdepth(75 ,,,/(J5.,)) > 2m+4. And for
the upper bound as we know y ¢ J; ,,, so by Corollary 2.3.1, we get sdepth(75 .,/ J5.m) <
sdepth (75, /(J5,m : y)). This implies sdepth(75,,/J5.m) < 2m + 4. To conclude

5+3
sdepth(Ts,m/J5m) = 2m + 4 = 2m + [%W :
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Generally, for n > 6. We examine the short exact sequence
0 — T/ (o 2 Y) 2> Trn/ I — Ton ) (Jpms y) — 0, (3.16)
using Depth lemma

Aepth(Tyn /Jum) = min { depth( T/ (Jum : 9)), depth(Tr /(s )

(Jom 1Y) = (J(*n_4)7m, 01, Oy &9, Eny W1y Wiy [115 [4125 - « - 5 Ml Honls fn2s - - - 5 o
SV, V12, -+ oy Vims Vnly Vn2y - « s V) -
We get Trm/(Jnm 2 y) = K02, 0n-1,4,35 -+ €1, Waye o, Wi, Moty o2y - - H2m
(1)1 B(n—1)25 - s B(n—1)ms V215 V225 -, Vam -+ -+ V(n—1)1, Yn—1)25- - - » Yn—1ym)/

Jn—am = (Th-am/In—1m)[y]. By Proposition 3.2.1 and [16, Lemma 3.6],
depth(Tom/(Jnm : y) = depth(T; 4./ (Jn_y,,)) + 1.

Now if n = 0 (mod 2), then n — 4 = 0 (mod 2). This shows depth(T, ,/Jnm : y) =
depth(T5_ g/ Jnam) + 1= "]+ 1= [5].
And if n = 1(mod2), then n — 4 = 1 (mod2). This implies depth(Z}, ,,/Jnm : y) =
depth(T}; 4/ Jspm) + 1 =2m+ [2=5353] + 1 = 2m + [253].

Now as (Jn may) (‘]* 2,m7y) we have Tn m/( nmay) [517627 . aénaSQa' s 7671;

W1, Wa,. oy Wny 11, H125- - -5 B1my H215 225+ -+ s H2m -+ - HUnly Bn2;- - -5 bnm, V11, Y125+ - -5 Vim, V21,

Voye oy Vam o UnlyVn2se - s Vaml /o = T390/ S 9. Thus by Proposition 3.2.1,

depth(Tom/(Jnm, y)) = depth(T57 5 . /(J7 2m))-

If n = 0(mod2), then n —2 = 1(mod2). This implies depth(T},.m/Jnm,y) =
depth(T};_y /Ty o) = [P=52] = [%]. And if n = 1 (mod 2), then n—2 = 0 (mod 2).
This shows depth( nn/ Jnns y) = depth(Tr_y /5y ) = 2mA [2=2E2] = 2m+ [243].
Therefore if n = 0(mod2), then depth(T,, .,/ (Jnm,y) = depth(T, 1/ (Jnm : y) so by
Depth Lemma depth(7}, 1/ Jum) = [5]. Alsoif n = 1 (mod 2), then depth(T5, m/(Jnm, ¥)
= depth (T}, /(Jnm : y), again by Depth Lemma depth (T, / Jnm) = 2m + [2£2].

To examine Stanley depth, apply Lemma 2.2.2 at the place of Depth Lemma

on the short exact sequence 3.16, [16, Lemma 3.6] and Proposition 3.2.1, we have

if n = 0(mod2), then sdepth(T},,n/(Jnm)) > [5]. And if n = 1(mod2), then
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sdepth(T5m/(Jnm)) > 2m+ ["T*?’} Now for the upper bound as we know that y ¢ J,, .,
so by Corollary 2.3.1, we get sdepth(T}, ,n/Jnm) < sdepth(T}, ,m/(Jnm : y). This implies
If n = 0(mod2), then sdepth(T,m/Jnm) < [5]. So sdepth(T2m/Jom) = [5]. And if
n = 1(mod 2), then sdepth(T,, ,,,/ Jnm) < 2m—+ (”T*?’] To sum up, sdepth(7}, n/ Jn.m) =
2m + [2£2]. O

Remark 3.2.4. As diam(E,,) = [*] so by Theorem 2.3.3, we have

depth(Tom/ Jnm), sdepth(Tym/ Jnm) > [252]. While, our Proposition 3.2.3 shows
that if n = 0(mod?2), then depth(T,m/Jnm) = sdepth(Tym/Jnm) = [5]. And if
n = 1(mod2), then depth(T,,m/Jnm) = sdepth(Tpm/Jnm) = 2m + [2£2]. In a
nutshell, we have better results for depth and stanley depth of this category of cyclic

module.
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Chapter 4

Stanley depth of edge ideals

4.1 Stanley depth of edge ideal of graph B, ,,

In this section we will discuss Stanley depth of the edge ideal I, ,, associated to the
graph B, ,,. For this purpose, we first find Stanley depth of the edge ideal I, associ-
ated to the super graph D,,,, and Stanley depth of edge ideal ¢, ,, of star graph. We
will use these results in our principal proof. Also for m = 0 we denote S, ,,, = S,, and

Sy = Sy, similarly I, ,, = I,, and I}y, = I
Lemma 4.1.1. Let m > 1, then sdepth(gy,,) > m + 2.

Proof. Since sdepth(l) > n — [% |, where n is number of vertices and m is number of

edges of associated graph of edge 1. As vertices of star graph are 2m + 3 and edges
are 2m + 2 so sdepth(gi,,) > 2m + 3 — [222] = 2m +3 —m — 1 = m + 2. Hence
sdepth(gym) > m + 2. O

Proposition 4.1.2. Let n > 1 and m = 0, then sdepth(l}) > [*%7].

Proof. We prove this result by induction on n. Firstly, for n = 1 the result can be

easily verified by CoCoA. Now for n = 2. As 3 € I , so we have

I =T NS @ &sls : &)Ss,
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Figure 4.1: g1, (Star Graph)

where S3* = K1, 02, 93, &1, &2, w1, wa, ws]. Now
I;N Sy = (I7)S5" and
(I3 : &)S5 = (L(Ps), 02, 03, &2, wa, w3).S5.
Thus sdepth(/;) > min { sdepth(17)S5*, sdepth((I(P3), 82, 03, &2, wa, U.)g)S;)}.
Now by [16, Lemma 3.6], we have
sdepth ((1(Py), 83, 03, €2, wz, 3) S5 ) = sdepth ((I(Py), 2,8, &, w2,5)S5" ) + 1.

And by [17, Theorem 1.3],
scepth ((1(Py), 8, 03, 2,5, w3) S5° ) > min { sdepth (1(Py)Ty ) + 5, sdepth ( (8,5, &

s, w3)S5) + sdepth (Ty/I(Py)) T3 },
where Sy = K0y, 3, &2, ws, ws]. Now by [24, Theorems 3.14 and 5.2] and [21], we have

sdepth <([(P3), (52, 53,52,&]2,&]3)5;*) 2 min{7, 3+ 1} = 4. Thus

sdepth <(I(P3), 02, 53,52,w2,w3)55> > 9.

Now by induction on n and [16, Lemma 3.6, we get
sdepth ((If)S;*) = sdepth ((Ii")Sf) +2=6.
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Therefore sdepth I > 5 = {%W
Now for n = 3. Since & ¢ I3, so we have
I; = I; N S5 @ ls : €085,
where S5* = K[61,...,04,&1,. ., &3, w5 .., wy]. Now
I3 NSy = (15)S5" and

(I; : 64)85: = (If,53,54,53,W3,W4)S§
Thus

sdepth(/3) > min { sdepth(13)S5*, sdepth((I7, b3, 64, &3, ws, w4)S§)}.
By using [16, Lemma 3.6], we get
sdepth ( (17, 83,61, &9, ws, 1) S5, ) = sdepth ((£7), 8, 81, €, w, 01, )557) + 1,
and by [17, Theorem 1.3],
sdepth ((If,53,54,£3,w3,w4)5§*) >
min { sdepth ((17)S;) + 5, sdepth (03, 04, &3, w3, w4)S3) + sdepth (Sf/]f)Sf},

where S3 = K|[83, 64, &3, w3, wy]. Now by induction on n, [21], and Proposition 3.1.1, we

have
sdepth ((Iik, (53, 64, 53, W3, W4>S§*) > mm{9, 4} = 4.
Hence
sdepth ((]1,53,5475370037004)53) >5= {T-‘

Now by induction on n and [16, Lemma 3.6], we get
sdepth ((I;)S;*) = sdepth <(I§)S§> +2>7.
Thus

B4

sdepth(l3) > 5 = { 5
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Finally, for n > 4. Since §,1 € I}, thus we have
5= 50 S (I )S:
where S** = K[61,. .., 0n+1,&15 -+, Eny Wise -« s Whp1 ). Now
NS =(I:_,)S and

(I;j : §n+1> S = ((12_275n,5n+1,§nawmwn+1)52>
Therefore

sdepth(/) > min { sdepth(1:_)S:* sdepth((1}_5, dn, Oty Eny W, wnH)SZ)}.

Also by [16, Lemma 3.6], we have

Sdepth ((12—27 5717 5n+17 §n7 Wn, Wn—l—l)S:L)
= sdepth <(I;:_27m, Ons Ontt, Eny Wn, wnH)S;j‘m) +1,

and by [17, Theorem 1.3],

sdepth ((IZ?Q, Ons Ont1s Eny Wh, wnH)SZ*) >
min { sdepth ((I7_5)S% 5) +5,sdepth (6, 6ni1, Ens Wiy Wns1)Sn)+

sdepth((S;_o/L»)S; o) }.

where S, = K[, 0n41,&n, Wn,Wny1]. Now by induction on n, [21], and Proposition
3.1.1, we have
sdepth (13, G, Gt €ns oy 1) Sy ) > min { 25127, 34 1247 b = [225], Thus

n+7“.

sdepth (((I;_Z),5n,5n+1,§n,wn,wn+1)52> > [ 5

Now by induction on n and [16, Lemma 3.6], we get

n -+ 6 n + 10
2|

sdepth <(I;§71)S;"L*> = sdepth ((I;’;,l)SZ,J +2> [ -‘ Therefore

sdepth(I}) > [ i 7} .
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Remark 4.1.3. By [23, Theorem 2.3] sdepth(I}) > 3n+ 3 — |22 ], Thus our lower

bound is sharper than this one.

Proposition 4.1.4. Assume that n,m > 1, then sdepth(I}; ) > [#25] + 2] +1.

*
1,m>

Proof. The result will be proved by induction on n. Firstly, for n = 1. Since & & 1

thus we have
L =T 0 S0 @B & (1 &) St

Kk
where 1,m — K[51;52751700179027#11,#12;- <oy Himy H215 U225 - - 5 2mV11, V12, - - Vim, V21,

V29,. .., ng]. Now

I} (1575 = (91.)S5%, and

1,m - 1,m
(Iim : fz) im = <51> 02, &1, W1, Wa, (11, 12, - - - 5 iy K215 225 - -+ 5 H2ms V11, V125 - -+ Vim,
Vo1,V22, -, V2m> Sik,m-
Therefore
sdepth(/7,,) > min { sdepth(gi,m) ST, sdepth(d1, 02, §1, wi, wa, a1, f12, - - - 5 ims fo1,
K22, - - -y Hom, V11, V12, - -« Vim, V21, V22, - - - >V2m) ikm}
By using [16, Lemma 3.6|, we have

sdepth ((51, 52, §1, Wi, W2, 11, 125 - - -5 B1m, U215 1225 - - -5 l2m, V11, V12, - - -y V1im, V21, V22,

R ng)Sim> = Sdepth ((51a 52)&17(")1’("}27 K1, f12y - -5 Uimy H215 22, -« - 5 H2m,,

Vi1, V12, + « + s Vim, Va1, Va2, - - -+, Vam) f%) +1,
and by [21],
sdepth ((51, 52, §1,w1,w2, Hi1, K12y - - -5 H1imsy H21, K22, - - -y H2m, V11, V125 - - -y Vim, V21, V22
. dm +5
en)SE) = [AmEE)
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Hence

Sdepth (<5la527617w17w27ull7yf12a"'7/-1/1m7ﬂ217//6227"'7//62777,71/117”127"'7V1m71/217y22)
)5 ) [4m+5w+1 [4m+5w+[1—1w+1
o Vo, = = )
P V2mIELm 2 2 2

Also by Lemma 4.1.1 and [16, Lemma 3.6|, we get
sdepth ((glm)Sﬁn> = sdepth <(gl,m)A17m> +2m+3 > 3m + 5.

Consequently

4 5 1-1
sdepth([im) > [ m+ —‘ + [

— 1.
; ah
Secondly, for n = 2. As §3 & I, so we have

[;,m = I;,m N ;::n @63([;,771 : 53) >2k,m7

Kk
where 2m — K[61, 09, 03,81, &2, wi, Wa, W3, f11, f12,- - - 5 Pl H21, 11225+ - - 5 Hom K31, 132,

c s H3mUL, V125« -y Vim, V21, V22, + - V3m, V31, V32, « -, V3m|. Further

I3, 0 S5 = (I7,,)557%, and

2m

* . * p—
<]27m : fs) 2m — <91,m, 02,03, §2, W2, W3, a1y 122, - - - 5 H2m, K31, K32, - - - » H3m, Va1, Va2,

*

<o Vom, V31, V32, - - 7V3m> 827m

Therefore
sdepth(/;,,) > min { sdepth(/y,,)S1,,, sdepth (glvm, 02, 03, Eo, Wa, W3, o1, f122, - - -

*
Homy 131, 1325 - - - 5 U3my V21, V22, - - - s Vom,; V31, V32, - - V3m> 27m}'

Now [16, Lemma 3.6|, we get

sdepth <<gl,m7 92, 03, 2, Wa, W3, (a1, 122, - - - Moms U315 4325 - -+ 5 3ms V21, V225 - - -, Vo,
V31, V325 -+ V3m)5§,m> = sdepth <(91,m, 02, 03, o, Wa, W3, Hat, 122, - - - 5 Ham [315

kK
[4325 « + + 5 H3ms V21, V22, - - - 5 Vam, V31, V32, - - - V3m) 2,m> +1,
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and by [17, Theorem 1.3],

sdepth ((g1,m, 62, 03, &2, Wa, W3, flot, 22, - - - Ham, 1315 1132, - - - 5 H3m, V21, V22, - - -, Vam,
V31, V32, -+, V3 ) Sor ) > min { sdepth ((g1,m)A1.m) + 4m + 5, sdepth ((52, 03, &9, Wa,
W3, W21y 422y« « « 5 H2m,y U315 432, -« -y U3m, V21, V22, - - -y Vom, V31, V32, - - VBm)S;,m)
+ sdepth ((ALm/gl,m)ALm) }7
where ngm = K02, 03, &2, wa, w3, o1, (122, - -« h2m, 1315 4325 - - - s H3my V21, V22, - « - 5 Vo,

V31,V39, .., V3m]. Now using induction on n, [21], and sdepth of quotient module

associated to star graph, we have

Sdepth ((gl,m7 527 537 527 W, Ws, 21, 422, - - - 5 h2m, (315 132, - - 5 U3m, V21, V22, -+« s Vom,

4 5 4 )
o, vz, o) S50, ) 2 min {5m 7, [FEEE] 1} = [FRE2] 4,

Thus

Sdepth ((gl,m; 527 53) 527 W2, W3, /LQ]_, /-1/227 cee 7[1'2m7 M31a //6327 CIE 7,u3ma V21,22, ...y Vom,

4m +5 4m +5 2-1
1/31,V32,.--,V3m) ;,m>2’7 2 —‘+1+1:’7 2 —‘+’7 2 —‘+1

Also by induction on n and [16, Lemma 3.6], we get

sdepth ((I{‘m) ;‘*m> = sdepth ((Ii"7m)5f,m)+2m+2 = {4m2+ 5} + [1 ; 11 +1+4+2m+-2.
To conclude
sdepth(l3,,) > [4m2+ 5—‘ + [2;;} + 1.
Thirdly, for n = 3. Since § ¢ I3,,, thus we have
=1, NS5, P &s,,  &)Ss.
where S3% = = K[01, 04,8150 -, &3, W1ye ooy Wiy AT 0125 -+ Melmye « - 5 J0a1 s Hd2ye - - 5 Modin
V115 V125 « s Vimye « s Va1, Va2 -+« , Vam]. Moreover
I3 OV S350 = (I* )S3m, and ( f4> = (( 1m753,54753,6037604,#31,#32,---,
[3ms a1y [a2s - - - 5 Hdms V315 V32, « « + 5 V3m, Va1, Va2, - - - Vim) ;m)
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So

sdepth(I3,,) > min { sdepth(I3,,) 55", sdepth ((I;m, Jg, 0a, €9, w3s 6, it flsa, - - -

*
s H3ms a1y 142 - - 5 Hdms V31, V325 -+ V3m, Va1, Va2, - - - Vam) 3,m> }

Also by using [16, Lemma 3.6], we get

*
Sdepth ((ILma 537 647 63,&.13,&14, 31y 032y -+« 5 H3my 41, 42, - - -y Ham, V31, V32, - - -, V3m,
k *
Va1, Va2, - ., V4m)53,m> = sdepth ((Hm, 03, 04, §3, W3, Wi, H31, H32, - - - 5 [43m, Hal, 42,
kok
<oy M4m, V31, V32, - - 3 V3m,y V41, Va2, - - -, V4m) 3,m> + ]-7

and by [17, Theorem 1.3],

sdepth ((If}m, 03,04, &3, W3, Wy, U315 (325 -+« 3my Hdls [442 - « - 5 Mdms V315 V32, « « - V3,
Vi1, V42s - - - 5 Vam) ;*m> > min { sdepth ((Ii“m) ikm) +4m + 5, sdepth ((53, 04, &3, W3, Wy,
31, 14325+« -y B3my a1, H42y - - -y Ham, V31, V32, - - - V3m, Va1, Va2, . . -, V4m)53:m>+
sdepth ((S7,.,/T5,,)81,0) |
where S?:,m = K[537 0a, &3, W3, Wiy (U315 1325 - - - 5 [3my 41y 442, - -+ fdms V315 V32, - - - 5 V3,

Vg1, V42, - -+, Vam]. Now by induction on n, [21], and Proposition 3.1.2, we have

*
sdepth ((h,ma 03, 04, &3, W3, Wi,y U315 4325 - -+ 3my Ha1s 142, -« - 5 [dims V315 V32, -+ - s Vam,

dm+5 -3 4m +5 —1
Va1, Va2, - -+ s Vam) §f;n>2minﬂ m; MVLQ -‘+1+4m+5—[m2+ M[nz W

a5, [0 [P} = [+ 2]

Thus

*
sdepth ((11,m; 03, 04, &3, W3, W,y U315 4325 - - - s M3my Hals 42, - - - s dims V315 V32, - -+ s Vam,

4dm + 5 4m+51+[3—1
2 2

V417V427"'7V4m)5§,m>2’7 —‘+1+1:’7 —‘—i_l

Now by induction on n and [16, Lemma 3.6, we get

4dm + 5
2

sdepth (([;MS;%) = sdepth ((I;m)SSm) +2m+2 = [ W +2+2m+ 2.
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In conclusion

Am+51 3—1
m %ﬁ—]ﬂ.

sdepth([3,,,) > | 5

In general, for n > 4. As &,.1 & I, , so we have

n,m?

I;:,m = [Z,m N S::km @€n+1<[:b,m : ) ;m7

where S;Tm = K[517' e a5n+1a 61)' . 7€naw17' oy Wntdy K115 H125- - -5 Bimse - - B(n+1)15

M(n+1)27' .. ;ﬂ(n—i—l)my V11, V125 - s Vimye - V(n+1)1; V(n+l)27' L V(n-i—l)’m]' NOW

n,m?

and

(I;;m : gn-i-l)S* - ((IZ 2,m> 5717 5n+1> gna Wns Wntls nls Bn2s -« -5 bnmy H(nt+1)15
H(nt1)2s -« -5 B(nt1)my Vnls Vn2s -« - s Vnms V(nk 1)1 V(nt1)25 - -+ V(nd1) )S* )
Thus

sdepth(Z},,,) > min { sdepth(7};_; ,,) S, sdepth ((In 9.m> Oy Ong 15 Eny Wiy Wt 1, Hin

/’l’n27 LI 7/~’an7 ,u(n—‘,-l)h N(n—‘,—l)?v LI 7,u(n+1)m> Vnh Vn27 e vy Vnm7 V(n—l—l)l; V(n+1)27 ceey
Vot 1ym) S |

By applying [16, Lemma 3.6], we have that

Sdepth ((In 2,m» 5717 5n+17 £n7 Wn Wnt1s Bnls Bn2; - - -5 Bnmy R(n+1)15 B(n+1)25 - - -5 B(n+1)m

*
yUnly Un2s - -« s Vnms V(ink 1)1, V(n41)25 - -+ » V(n+1)m>5n7m> - Sdepth <( n—2,m» 5717 5n+1 gna
Wny Wni1s Pnly Bn2s - - - 5 Bnmy Bn4+1)1, B(n41)25 - - -5 B(n+1)ms Vnls Yn2s - - - Vnms V(nd1)1,
*x
Vint1)2y -+ - s V(nt1) )S )

and by [17, Theorem 1.3],

Sdepth ((I;: 2,m? 5n7 5n+17 5717 Wns Wntds Bnls Bn2s -« -5 Bmy U(nd1)15 U(nt1)25 - - - s U(nt1)my Vnl
yUn2s -+« s Unm U(n+1)15 U(n+1)2;5 - - - ’U(n—i-l)m)S::m) > min { Sdepth ((]n 2 m) n—2 m) +4m—+5,
Sdepth <(6na 5n+1a gna Whs Wnt1s nly fn2s - -+ 5 Hnmy H(n+1)1 H(n+1)25 - - - s B(nd+1)my Ynl, Vn2s - - -

y Vnmy Vind- 1)1, V(n4-1)25 - - -5 V(n—l-l)m)s ) + Sdepth (( -2 m/ m) n—2 m)}

73



where Sr:,m = K[5n7 6n+17 fn, Whs Wnt1s nly Bn2s - - - 5 Hnmy H(n4+1)1, B(n+1)25 - - -5 B(nt+1)m;
Vn1s Vn2s - -+ Vnms Vn41)15 Y(n41)25 - - - » Y(n+1)m)- NOw by induction on n, [21], and Propo-

sition 3.1.2, we have

Sdepth ((In 2,m? 5n> 6n+1> €n7 Wny Wnt1s Bnly Bn2s - -« 5 Bnmy Bn4+1)1, B(n41)25 - - -5 B(n+1)m

. . dm + 5 n—1
V1 V2 - - - Vs Vind )1 V125 - - - Vit 1)m) S, >2mm“ 2 %L{ 2 M
4m +5 n—1 4m +5 n—1
w5 [ == |+ B = S [P

Sdepth ((In 2,m>» 5717 5n+17 £n7 Why Wnt1s Bnly Bn2s - - - 5 Bnmy B(n+1)1, B(n+1)25 - - - s B(n+1)m
dm + 5" n {n -1
2 2

yUnly Un2s -+ s Vnms Vint 1)1, V(nd-1)25 - - - » n-l—1)7n)S>'< ) ’V -‘ + 1.

Now by induction on n and [16, Lemma 3.6], we get

sdepth (( 1) S ) = sdepth (( 1) S 1m> +2m+2 = {4m—|—5“ + [n— 1—‘

2 2
+142m+2.

In a nutshell

sdepth(I7,,) > Fm + 5] + % !

1.
oo A e

]

Remark 4.1.5. By [23, Theorem 2.3] sdepth(I} ) > 2nm-+3n+2m-+3— | 2atdnt2mis |

Thus our lower bound is sharper than this one.

Proposition 4.1.6. Let n > 1 and m = 0. If n = 1, then sdepth(l;) = 2. And if
n > 2, then sdepth(I,) > [2£2].

Proof. For n = 1. It can be easily checked by using CoCoA. Also for n = 2, again by

using CoCoA result holds. Now let us have n = 3. Since &, & I3, so we have

I3y =1I3N 53@54([3 :&4) 53,
where S:; = K[(Sl,. .. ,(53,51,. .. ,fg,wl,. .. ,(_A.)g]. Now
I3N Sy = (I3)Sy and
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<I3 : §4> S3 = <<Ifa53,§3,w3)53)

Therefore
sdepth(Z3) > min { sdepth(13) Sy, sdepth((I%, 6, &, w3)53)}.
By [16, Lemma 3.6], we have
sdepth ((1{, 53,53,w3)53) — sdepth ((Jf, 53,53,w3)sg> 41,
and by [17, Theorem 1.3],
sdepth ( (11,3, &5,w9)S} ) 2
min { sdepth ((ms;) + 3, sdepth ((53, £5,w3) S, ) + sdepth ((5; /1;)5;) }

where S; = K|[ds,&3,ws]. Now by Proposition 3.1.1, [21], And Proposition 4.1.2, we

get
sdepth ((If,dg,fg,Wg)Sé) > min { [?W +3,2+ {%W } =2+ [3 ; 1—‘ = [3 ; 3—‘.
Therefore

sdepth ((If,ég,ﬁg,w3)5'3) > [?W

Now by Proposition 4.1.2, we get

sdepth ((1;)55) ~ sdepth ((I;)s;) > {3—;6]
Hence
sdepth(ls) > {%W

Finally, when n > 4. As §,.1 & I,,, so
L= 1,08, @@L : &us1)Sn,
where S, = K[61,...,0n, &1, ., &ny Wiy . ., wy]. Now
I,NnS, = (I*_,)S, and
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(£t €v1) Su = (200 € 0) S0 ). Thus
sdepth(/,,) > min { sdepth(I*_,)S,, sdepth (([;72, Ons &n, wn)Sn> }

By [16, Lemma 3.6], we have

/

sdepth ((1;5,2, 5n,§n,wn)5n> — sdepth ((1;;4, 5n,§n,wn)Sn) 41,
and by [17, Theorem 1.3],
sdepth ((1;;_2, Grns s s, z)s,;) >
min { sdepth (([;_2)5;';_2> +3, sdepth (((5n, &n, wn)S;;> +sdepth ((S;_Q/I;_Q)S;_2> },

where S, = K|[0,,&n,wn]. Now by Proposition 3.1.2, [21], And Proposition 4.1.4, we

have
(5. 5) i[5 2[5 T <275 - 752,
Thus
sdepth (7,6, €0,00)5,) > {”;5]
Now by Proposition 4.1.4, we get
sdepth ((71;_)S,,) = sdepth (1331 ) > ["+ 6] |
To conclude
sdepth(r,) > [* ; 5] .
L]

Remark 4.1.7. By [23, Theorem 2.3] sdepth(I,) > 3n + 1 — [22]. Thus our lower

bound is sharper than this one.

Corollary 4.1.8. For n = 1, sdepth(/;) = sdepth(S:/I1) + 1. And for n > 2,
sdepth(Z,,) > sdepth(S,,/1I,) + 1.

Proposition 4.1.9. If n =1 and m > 1, then sdepth(Iy,,) > m + 2.
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Proof. Since & & I, thus we have

Iy = Tim N Si,m @&(h,m 1 §2)S1m,

where Si,m = K[61, &1, wi, 1, 125 -« Hmy V115 V125 -« Vi) NOW
]l,m N S;,m - (gl,m)Sl’m and

(Il,m : 52)Sl,m = (517617wlaﬂllau127 ooy H1my y V11, V12, - ';Vlm)Sl,mx
Hence

!

sdepth(/y,,) > min { sdepth(g1,m)S ,,, sdepth <(517 §1, W1, 115 125 - - - 5 Hms V11, V12,

e Vlm)Sl,m> }

By [16, Lemma 3.6|, we have

sdepth ((51, E1, Wiy 115 125 - -+ 5 Pim, V11, V12, - - - >V1m>Sl,m)

= sdepth ((51, 51, W1, W11y H125 -« - 5 B1ms 5 Y11, V12, - - -, V1m>Si,m> -+ 17

and by [21],

’ 2m+3
sdepth <(51,§1,W1,M117,U/12,...,,ulm,l/n,Vlg,...,l/lm,)slym) = ’V 5 -‘

Thus

2m + 3
]+1.

sdepth ((517 §1, W15 11, H12, - - 5 Bims V115 V12, - - - V1m>Sl,m> = [ 5

Now by Lemma 4.1.1 , we get

sdepth <(91,m)51,m) = sdepth ((ng)Al,m> >m+ 2.

To sum up

sdepth(/y,,) > m + 2.
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Remark 4.1.10. In this case we have no conclusion about Herzog’s conjecture and

Rauf’s question.

Proposition 4.1.11. If n > 2 and m > 1, then sdepth([,,,,) > [#25] 4 [252] +1.
Proof. Let n = 2. As &3 & 15, 50 we have
I = Ingm N Sy, @53(—72,771 1 §3)S2m,

7
where Sg,m = K[517 02, &1, &o, Wi, Wa, 11, 125+ - - 5 i 215 225 -+ H2ms V115 Y125+ - - 5 Vi,

V21,V99,. .., VZm]- Now

!

IQ,m N Sé,m - (Iim)s

9.m and

(IZ,m : fs)Sz,m = ((91,m7 d2, §o, Wa, a1, 422, - - - 5 H2am, » Va1, V22, - - - 1/2m)52,m)-
Thus

/

sdepth(/3,,) > min { sdepth(I7,,)S] ,,, sdepth <(917m> 02,82, Wa, flat, H22; - - - 5 Hom

y V21, V22, .. -, I/2m)S2,m> }

By [16, Lemma 3.6|, we have

sdepth ((gl,nu 02, &2, W2, 21, 22, - - - f2m, V21, V22, - - - 7V2m>82,m>

!

- Sdepth ((gl,ma 52a §2,w2, Ho1, W2y - - - Hom, 5 Vo1, V22, . .. >V2m)527m> + 17

and by [17, Theorem 1.3],

sdepth ((gl,ma 02, 2, Wa, a1, 22, - - - 5 Hoam, V21, V22, - . - ,VQm)S;,m> >
min { sdepth ((gl,m)Al,m> + 2m + 3, sdepth ((527 §2,Wa, a1, H22, - -+ 2m, V21, V22,

. ,VQm)S;m> + sdepth ((A1,m/91,m)141,m)}7
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where ngm = K09, &, wa, fo1, 122, - - - 5 fom, V21, V22, - - -, Vo). Now by [21], sdepth of

edge ideal and quotient module associated to star graph. We get

!

sdepth ((gl,nu 02, &2, Wa, Moty 22, - - - 5 Hom, Va1, Va2, - - - ,V2m)52,m> > min {3m +95

[ e [

2

Therefore

2m + 3
sdepth ((gl,m, 02, &2, Wa, f21, 22, - - - 5 fom, Vo1, V22, - - . ,V2m)52,m> > { 5 W +1+1

B [2m—|—3" n [2—1“ 4
= 5 5 .

Now by induction on n and [16, Lemma 3.6|, we have

/ 4 ) 1-1
sdepth ((17,,)55,,,) = sdepth ((17,,)81,,.) > | m; |+] > |+1

Hence

sdepth (/) > [2m + 3-‘ + [2 —1

o 1.
ak

Now for n = 3. Since & & I3, this implies

Ism = I3m N S:/),,m @&(fsm : §4)S3,m;

/
where S3,m = K[(Sl,. .. ,(53,51,. .. ,fg,wl,. <y Ws, 11, H125- - -y By - -5 U315 U325 - -5 U3m

Vi1, V125« - s Vim,- - -, V31, V32,. . -, Vsm]- Now

/

I3,m N S:;,m = (I;,m)S

3.m and

<]3,m : 54)53,m = <(Iim,53,§3,w3,u31,u32, e U3my s V31,32, . V3m)53,m>-
Thus

/

Sdepth(13,m) > min { Sdepth(-[;m)s?),m? Sdepth <(Iim7 537 537 W3, 131, 1325 - - - 5 U3m

y V31,32, ..., V3m)53,m> }

79



By [16, Lemma 3.6], we have

sdepth ((Iimv 03, &3, W3, (31, 1432, - - 5 3ms V31, V32, - - - Vsm)53,m>
= Sdepth (([im’ 537 537(*‘}3’ H31, 432, - - -y H3m, , V31, V32, . .. >V3m>S;,7m> + 17

and by [17, Theorem 1.3],

Sdepth ((Iima 537 537 w3, 131, 1432y - -+ 5 H3m,y 5 V31, V32, - - - 7V3m)S:l),,m> Z
min { sdepth ((]fm)sfm> + 2m + 3, sdepth ((537 3, W3, 11315 U325 - - - 5 H3ms » V31, V325 - - -

7 VSm)Sé'7m> + sdepth <(Sfm/1fm)s>1km> }7

where S;,’ym = K03, &3, w3, 431, 4325 - - - » 13m, V31, V32, - - - , V3m|. Now by Proposition 4.1.4,

[21] and Proposition 3.1.7, we have

sdepth ((]l,mv 03,83, W3, U315 132, - - 5 H3m » V31, V32, - - - ,V3m)53,m> > min { { 5 W

s [T LN ] 2]

Consequently

2m+3w+{3—1

1.
2 2 W—i_

sdepth ((Iim, 03, &3, W3, 11315 132, - - - U3my 5 V31, V32, -+ - V3m)53,m> > {

Now by Proposition 4.1.4, we get

sdepth <(I§7m)5;7m> — sdepth ((J;M)s;m) > {4"’; 5] 12

To conclude

sdepth(/s,,) > [2m+ 3—‘ + [3 !

—_— 1.
2 |
Lastly, for n > 4. As &,+1 & I, m, thus we have

In,m = In,m N S;,m @ €n+1 ([n,m : 5n+1)Sn,m>

/
where Sn,m = K[(Sl,. .. 7671751;- .. ,én,wl,. ey Wiy W11y 125+ o5 PImye -+ 5 nly In2y- - -
,Unmal/llaywv-"7V1m7'"7Vn17yn27"'7ynm]' NOW

!

Ly N Sy = (I _1,0)Spm and

n,m
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(In,m . §n+1)Sn,m - (( n—2,m’ 6n7€n7wn>/1m17 Hn2,s -y Bnms s Vnly Vn2y - - - Vnm)Sn,m>-
So

sdepth(Z, ;) > min { sdepth <([;7m)5l ) sdepth ((In 9.5 Oy §ns Wy fhnts P2y -+ -

Mnms Unls Vn2, - - - Vnm)Sn,m> }

By [16, Lemma 3.6|, we have

Sdepth ((In 2m75n7£n7wm,un1 Nn27~--a,unmaynlaVnQa'~~>Vnma)Sn,m>

- Sdepth <([n 2,m» 5717 gnv Wns Mnls Bn2y -« 5 Bnms s Vnls n2, -« - Vnm)Smm) + 17

and by [17, Theorem 1.3],

Sdepth ((IZ 2,m> 671,7 é-n?wnu Hnis Bn2y -5 Bnms s Vnls Vn2, - - - 7Vnm)S1/17m) Z
min { sdepth (( 2.m) S 2m> +2m + 3, sdepth ((5n, Eny Wy [l s fn2s + + - s Mowms Vnls Vn2,

l/nm)S >—|—sdepth (( 2./ In—2.m)Sn— 2m>}

1 o, .
where S, = K[0n,ns Wns fin1, Bn2s - - - 5 s Vnly Vn2s - - - s Vam|. Now by Proposition

4.1.4, |21], and Proposition 3.1.7, we obtain

Sdepth (([n 2m75n>€n7wna,un1 H'n27---a,unma7anayn27---7ynm>5;7m> Z

oin{ [  [15 am [E0 [ [ 5

Therefore

2m + 3
Sdepth ((In 2m>5n>€n7wna,un1 ﬂn2>~"7,unmaynlayn27---aynm)Sn,m> Z ’7 m -‘

Now by proposition 4.1.4, we get

sdepth ((In lm)S;z,m> = sdepth (( o 1m) S 1m> > [4m+5“ + [n— 2-‘ + 1.

To sum up

sdepth(Z,, ) > {Qm;— 3} + [n - 1} + 1.
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Remark 4.1.12. By /23, Theorem 2.3] sdepth(I,, ) > 2nm+3n+1— | 2555 | Thys

our lower bound s finer than this lower bound.

Corollary 4.1.13. Let n > 2 and m > 1, then sdepth(1,,,,) > sdepth(Sym/Lnm) + 1.

4.2 Stanley depth of edge ideal of graph F,, ,,

In this section Stanley depth of the edge ideal J, ., associated to the graph £, ,, will be
discussed. For this purpose, we first find Stanley depth of the edge ideal J; , associated
to the super graph F,, ,, of the graph D, ,,,. And then we will use these results in our

major proof.

Proposition 4.2.1. Let n =1 and m > 0, then

sdepth(Jy,,) > [6771 i 7—‘.

Letn>2 and m > 0. If n =0 (mod?2), then

sdepth(Jz,,) > Fm; 5] + [g] + 1L

And if n = 1 (mod 2), then

sdepth(J, ,,) = {Sm i q + {n il 3]

2 2

Proof. We will prove this result by induction on n. Initially, for n = 1. Since & & J7,,,

thus we have
Tt = T VT D & )T s

*k
where TLm = K[51, 02, &1, W1, Way U115 4125+ - 5 i H215 1225+ - - 5 H2m V115 V125- - - 5 Vim, Val,

V92,. . '7V2m7alablaq1aq27' ceydm,T1,T2,. .. 7rm]' Now

Tt (VT = (g1, T, and

* . * —_—
(J1,m : 52)T1,m = (01, 02, &1, W1, Wa, fa1, 12 - - - 5 By M2ty 4225 - - - 2m, V115 V125« + 5 Vimy

E3
Va1,V22, ..., V2m7G1751791,Q2, sy Qmy T, T2y - 7Tm)T1,m‘
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Therefore

Sdepth(‘]ik,m> Z min { Sdepth ((gim)Tl*;n> ) Sdepth <(517 527 617 W1, Wa, 11, K125 - - - 5 H1m,

ES
H21, 122, -+ s f2ms V11, V12, + - 5 Vim, V21, Y22y -+ - Vam, @1, b1, @1y G2y - ooy Gy T15 T2, - - ,Tm)Tl,m)}-

By [16, Lemma 3.6|, we have

sdepth (51, 52, 51, Wi, W2, 11, H125 « - -y b1ms H21, 22, - - -5 B2m, V11, V12, - - -y V1m, V21, V22,

*
.. -aVQmaa'hbl?qlqua e Gmy T, T2, 7rm>T17m = Sdepth ((51752a§1aw17w27,u117ﬂ'12a
.. 7#17717#217,“227' .. aM?maV117y12)' . '7V1mal/217y227' . -,V2m,a1ab17Q1>CI2,- .. 7Qm77n17r2a

)T ) 1,

and by [21],
sdepth ((51, 02, E1, W1, W,y (U115 12, - -+ 5 My 4215 4225 - -+ H2m, V11, V125 -« + 3 Vi, Vo1, V22,
s 6m + 5
"'7V2m7a17b17QI7QQ7’"quarlvr%"’arm)Tl’m) = ’V 9 —‘
Consequently

Sdepth ((51,52,&1,0)1,&}2,,&11,#12, ey Himy (215 1225 - - -y H2ms V11, V12, - - -, Vim, V21, V22,

. 6m +5 6m + 7
"'7V2m7a17b17q1)q27"'7QW7T17TQJ"‘7rm>T1,m>:’V 9 -‘_’_1:’7 9 -‘

Now by Lemma 4.1.1 and [16, Lemma 3.6], we get
sdepth ((g7,,,)T13, ) = sdepth ((g1,,) A1, ) +2m +2 > 2m + 3+ 2m + 2 = dm + 5.

As a result

sdepth(Jy,,) > [6m + 7—‘ .

Secondly, for n = 2. As §3 & J3,,, so we obtain

T3 = I3 N3 D &5, &) T5 0,
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*x
where T27m - K[517 527 53,61,52,0)1,0)2,0)3, H11, H12y- -« 5 B1my H215 1225 - - 5 U2my U315 132, - -
y M3my V11, V125- - -y Vim, V21, V22, - -, V3m, V31, V32,. . ., V3m, 1, bl?thQa' <oy QmyT1, T2, - 7Tm]‘
Furthermore

B3 VT3 = (J )15, and

( ;m : §3>T2*,m = <(9T,m7 02,03, £, Wa, W3, oty 1422, - -+ 5 [amy 4315 32, - - - 3m, V21, V22,
<oy Vom, V31, V32, - .. ,V3m)T2*,m>-
Consequently
sdepth(.J;,,) > min { sdepth ((me)Tz*jn> ,sdepth ((gim, 02, 03, Ea, wa, W3, fo1, o2, - - -

E3
y H2my 1315 14325 - - - 5 U3my V21, V225 - - - s Vom,; V31, V32, - - Vsm)Tg,m> }

By [16, Lemma 3.6], we have

%
sdepth ((Ql,m,52,53,52@2,@3,#21,#22, ey M2my 1315 U325 - - -5 H3ms V21, V22, - - s
* *
Vom, V31, V32, - - - 7V3m)T2,m) = sdepth ((91,m, 02, 03, &2, W, W3, Hat, 22, - - - f2m
)k
s U315, 132, - - - 5 U3m, V21, V22, - - -y, Vom, V31,V32, ..., ng)TZm) + 1,

and by [17, Theorem 1.3,

*
sdepth ((gl,my 02, 03, {2, Wa, W3, Hat, M2, - -+ 5 M2m, K31, 325 - - - 5 H3ms V21, V22, - - - 5 Vam,

V31, U39, ..., ng)T;;n> > min { sdepth ((gi‘m)A*{m> +4m+5,sdepth ((52, 03, &o, Wa, W,

H21, 122, - - 5 H2m, 1315 (U325 -+« 5 U3m; V21, V22, -« -, Vom, V31, V32, - - -, V3m)52_7m>
+ sdepth ((47,,,/91,) 410 ) |
where S;,m - K[527 637 527 Wo, W3, U21, 422, - - -5 h2m, (315 132, - - 5 U3m, V21, V22, -+« s Vo,
V31,39, . - ., V). Now by Proposition 4.1.1, [21] and sdepth of quotient module asso-

ciated to star graph, we have

*
sdepth ((Ql,w 02, 03, §2, Wa, W3, Hat, 122, - -+ 5 M2m, K31, 325 - - - 5 H3ms V21, V22, - - - 5 Vam,

4 5 4 5
V31,32, « -+ s Vsm) ;”;n) Zmin{6m—|—87[ m2_|_ -‘4_1}: [ m2+ -‘—1—1.
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As a result

*
sdepth ((ng, 02, 03, {2, Wa, W3, Hat, 122, - -+ 5 M2m, K31, 32 - - - 5 H3ms V21, V22, - - - 5 Vam,

Am + 5 dm +7 2
V3171/32,---7V3m)T2*,m)2[m2 W+1+1:{m2 WJFM

Now by induction on n and [16, Lemma 3.6, we get

1 11
sdepth (( Tt ) To, ) — sdepth ((Jim)Tl*,m) +2m+2 > [6m2+ 7 1 +2m+2 = [ 0m2—|— W

To sum up

4 2
sdepth(J;,,) > { mT 7—‘ + [—W
’ 2 2
Thirdly, for n = 3. Since § ¢ J3,,, thus we have
Ty = Ty 0 T @D & + €T3,

*ok
where T3,m = K[51,. .. ,54, gl,. .. ,{g,wl,. coy Way 11y 125 - -y Blmye - - s a1y U425 - - 5 Hdms

1,125 - -y Vimy- - - s Va1, V42,. . -, V4m,a1,bl,q1,q2,. ey m,T1,T2,. .. ,T’m]. NOW

* ok * ok
3,m N T3,m - ( 2,m)T3,m and

x * *
(J?),m : €4>T3,m - <(Jl,m7 537 647 637 W3, Wq, 1315 325 - - - 5 3m, H41, 42, - - - 5 Hdm, V31, V32,

e U3, Vil Vag, - - - ,V4m)T§7m).
As a result
sdepth(J3,,) > min { sdepth ((Jg*m)T;jn> ,sdepth ((me, 03, 04, &3, W3, Wa, fU31, 325 - - -
H3my P41y 42,y - - 5 Hdms V31, V32, -+ -y V3m, Va1, Vag, - - - V4m)T§:m) }
By [16, Lemma 3.6|, we get
sdepth ((Jf,m, 03, 04, §3, W3, W4, U315 32, - - -y M3ms a1, H42s - - - s flams V31, V32, - -+, V3m,

Va1, Va2, - -+, V4m)T§,m> = sdepth ((me, 03, 04, &3, W3, Wi, K31, U325 - - - 5 [3m

o
y a1, Ha2, - - -y Uam, V31, V32, -+« V3m, V41, Va2, . . ., V4m)T37m> + 17
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and by [17, Theorem 1.3],
sdepth ((me, 03, 04, §3, W3, Wa, U315 1325 - - 5 Hdm, Kol Ha2y - - - 5 Hdmm, V31, V32, + -+ 5 Vam
Val, V42,y - - - s 1/4m)T3ijn> > min { sdepth ((me)Tl*m) +4m + 5, sdepth (((53, 04, &3, W3, Wy,
K315 325 -« -5 H3my 41y 425 - - - 5 Hdms V31, V32, - -+ V3m, Va1, V42, - - - V4m)T?:,m>
+ sdepth ((T7,,,/ 7, T5) }-

where T3, = K[53, 04, €3, W3, Way (U315 132, - - - 5 3y HATs J1425 - - - » Hdm, V31, V32, - -+, V3m,

Vg1, V42, - - -, Vam]. Now by induction on n, [21], and Proposition 3.2.1, we have

*
sdepth ((JLW 035 04, €3, W3, Wiy U315 4325 - « - 5 3y a1y 42y - - - 5 [ldms V31, V32, - - -5 Vam,

6 7 14 17 4 5
V41,V42,...,I/4m)T3i>:n) zmin{{ mt —‘+4m+5:[ m2—|— W,{ m2—i— W+2m—i—3
B [8m+1lw}_ {87)14—11}
N 2 N 2 '

Consequently

3
sdepth ((Jl,m, 03, 04, &3, W3, Wi, U31, U325 - -+ 5 Mdmy Ha1y 042 - - 5 Hdgm V315 V325 - - 5 V3, Val,

8m + 11 8m + 13
i) Tiye) =[S g[S 18]

Now by induction on n and [16, Lemma 3.6, we get

4 1
sdepth ((J5,,)T55, ) = sdepth ((J3,,)T,, ) +2m+2 > | m; 9] +omt2 = [M]

2
To sum up
sdepth(J3,,) > {87”; 13} = {Sm; 7} + {#}
Lastly, for n > 4. As we know that .1 € Jy, ,,,, therefore we have

J;Lk,m = J;Lk,m N T;:km @ €n+1<‘];:,m : gn)T;m’

o
where Tn,m - K[(sla' s 75n+17§17' - 7£n7w17‘ <oy W41, K115 H125- - -5 H1my- - - 7/~L(n+1)17
H(n+1)2y- - -5 H(n4+1)m> V11, V125 -+, Vimye « - V(in41)15 V(n+1)25- - - s V(nt1)m, A1, bla 41,42, - -5 qm;
T1,72 s ). Now

Jrn VT = (Ji1 ) T and

n—1m
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(‘];,m : §n+1)T;,m = (( ;72,m7 6”7 5n+17 £n7 Wny Wn+t1s Unly Bn2s - - -5 Bnmy B(n+1)15 H(n+1)2;

*
<oy B(n4+-1yms Vnly Vn2y -« - s Vnmy V(nt 1)1, V(n+1)2s - - - 7V(n+l)m)Tn7m> .

Thus

sdepth(J;,,,) > min { sdepth ((J;_l,m)T;;l) ,sdepth ((J:L—z,m» Ons Ot 1y Eny Wy Wit 1,

Hnly Bn2y -« -y Hnm, M(n+1)1; M(n+1)27 s J,U/(’n,—f—l)m? Un1,Vn2y -+ Vnm, V(n—l—l)l; V(n+1)27 R
V(n—l—l)m)s;;,m) }
By [16, Lemma 3.6], we have that
Sdepth ((J;:—Zma 671’ 5n+1a fn, Whs Wnt1s nly fn2s - -« 5 Hnmy U(nd1)1s U(nd1)25 - - - s U(nd-1)ms Unl,

*
Un2y -+ s Vnm, U(n+1)15 Y(nt1)25 - - - 7v(n+1)m>Tn7m>

= Sdepth <( ;72,m7 57” 5n+17 é-ﬂn Wny Wnt1s Bnly Bn2s - -« 5 Bnmy B(n+1)1 b(n+1)25 - - -

*k
y B(n+-1)yms Vnl, Vn2y - -+ s Vnms V(nt 1)1, V(n+1)25 - - - V(n—i—l)m)Tn,m) + ]-7

and by [17, Theorem 1.3],

sdepth ((J:;flm? 67“ 5n+17 gm Wny Wnt1s Bnls Bn2s -« -5 Bamy B(nd1)1 B(nt1)25 - - 5 B(nt1)m

yVnl; Un2s - -y Vnms V(int- 1)1, V(n+1)25 - - - 7V(N+1)W)T;::n> > min { Sdepth (( . )T:;—2,m>

n—2m

+ 4m _l_ 57 Sdepth ((5717 5n+17 fm Wy wn-i—la ,un17 H’n?a s ,,Unm, ,u(n+1)17 M(n+1)27 s 7,u(n+l)m

yUnly Un2, - -+ s Vnm, V(n—l—l)l: V(n+1)27 ) V(n—i—l)m)Tn,m) +Sdepth ((T;—Zm/‘];—lm)T;—Zm) }?

where Tr;m = K[dna 5n+1a Ens Wiy Wt 15 Pl Hn2s - -+ B H(n+1)15 b(n+1)25 - - -y H(n+1)m,
Vn1s Un2, - -+ Vnms Vint1)15 Y(n41)25 - - - » V(n+1)m)- NOw by induction on n, [21], and Propo-

sition 3.2.1, we have if n = 0 (mod 2), then n — 2 = 0 (mod 2). So

Sdepth ((J;—Q,'rrw 571; 5n+1a Sn; Why Wn+t1s Unls Un2, - - -

y Hnmy (n+1)1, B(n+1)25 - - - s B(n+1)m> Vnl,
Vn2s -+ Vnms Vingd 1)1s V(nd1)25 - - - 5 I/(n_i_]_)m)Tn,m) > min { { 5 —‘ + { 5 —‘ + 4m + 5,

=1+ B =11+ 5
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Thus

Sdepth ((J:;flmﬂ 5”7 5n+17 §n7 Wny Wnt1s Bnls Bn2s - -« s fnmy H(nt1)1y B(nt1)25 -« 5 B(nt1)m,

. 4m + 5 n
anal/nQa---7ynmay(n+1)1>l/(n+1)27'--ay(n+1)m)Tn7m> > ’7 9 —‘ + ’VE-‘ + L.

If n =1 (mod2), then n —2 =1 (mod2). So

Sdepth ((J:;flmﬂ 5”7 5n+17 §n7 Wny Wnt1s Bnls Bn2s -« - s Bamy B(nt1)1, B(nt1)25 - - 5 B(nt1)ms Vnls

) 8m + 7 +1
Un2, -« s Vnm, Vint 1)1, V(n+1)25 - - 'al/(nJrl)m)T;::n) > mln{lr m2 —‘ + ’Vn 9 —‘ +4m+5
[4m+5w+2 +[n+3w} [4m+5w+[n+3w+2 {8m+51+(n+31
m — m = .
’ 2 2 2 2 2 2

As a result

Sdepth ((‘];:—27ma 671’ 5n+1a gna Why Wnt1s Unls Un2y - - -5 Knm, ,U(n+1)1, ,u(n+1)27 oo 7u(n+l)m7 Vn1,
8m +5 n-+3
> 1
)2 [Z5 ]+ ]
B {8m+7w n {n+3w
= 5 5 .
Now by induction on n and [16, Lemma 3.6], if » = 0 (mod 2), then n — 1 = 1 (mod 2).

We get

*
Vn2y -« s Vnmy Vint 1)1, V(n+1)25 - - V(n—i—l)m)Tn,m

sdepth ((J;_Lm)T;j:n) = sdepth ((J;_Lm)T;_Lm) +2m+-2 > {8m2—|— 7—‘ + {n ;_ 3-‘ +2m+-2.

And if n = 1 (mod 2), then n — 1 = 0 (mod 2). We get

4m2+ 7} + m FOm42,

sdepth (1) Ty ) = sdepth (Jiy )Tz ) +2m+2 > | y

In a nutshell

if n =0 (mod2), then

sdepth(J, ,,) > [4m2+ 5} + [EW + 1.

And if n = 1 (mod 2), then

sdepth(J; )

{8m2+ 7“ n VL + 3“ .
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Remark 4.2.2. By [23, Theorem 2.3] sdepth(J; ) > 2nm + 3n +4m + 5 —

LWJ Therefore our lower bound is finer than this one.

Proposition 4.2.3. Let n =3 and m > 0. Then

sdepth(Js3,,) > '4m2+ 8 :
Forn=4andm >0,
sdepth(Jym) > ‘4m2+ 9 .
Finally, forn >5 and m > 0. If n = 0 (mod 2), then
sdepth(Jy, m) > [4m2—{— 5-‘ + {g—‘

And if n =1 (mod 2), then

sdepth(Jy ) > [8m+6w L [n—l— 1-"

2 2

Proof. Initially, for n = 3. Since y ¢ J3,,, thus we have

J3,m = J3,m N T{;m @y(J&m : y)T3,m7

!
where Tg,m = K01, .+, 03,82, &3, W1, -+, W3, 115 125+ + 5 Hdmye - - 5 [131 U325+ - -

s Uimye - -, V31, V32,. .. ,ng]. Now

/

J3,m N Tll,m = (Jik,m)T

1.m and

<J3,m : y)T:s,m = ((51, 03, &2, &3, W1, Wa, Ha1, H12y -5 Himy - - - 5 H315 432, -

<o Vims - o5 V31, V32, -

As a result

y M3mV11, V12,

oy M3m, V11, V12,

< V3m)T3,m) .

Sdepth(J3,m) > min { Sdepth ((‘]im)T?i,m> ) Sdepth ((51, 53a g?a &’n Wi, Ws,; fh11s L1125 - - -5

,ulﬂ%'"7//6317,“327"'7M3m71/1171/127"'7V1m7"'71/317y327"'
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By [16, Lemma 3.6], we have

Sdepth ((517 537 £Q7€3Jw17w37 a1, H12y -5 Hamy - - -5 315 (0325 -« -5 H3ms V11, V125 -« -5 Vim,
-. -, V31, V32, . .. )V3m>T3,m) = sdepth <(51, 03, &2, &3, W1, W3, [11, 125 - - - o,

/
<oy 315 U325 - - H3ms V11, V125 - Vimy -2 V31, V325 - V3m)T3,m> +1,

and by [21],

Sdepth ((517637&27537"‘)17“}37#117#’127 coes Himy - - ey 315 325 - - o5 H3ms V11, V125 - -5 Vimy,

’ 4m+6
...,1/31,1/32,...,ng)T&m) = ’V 2 —‘

Thus

Sdepth ((617537527537(")17(’037”117/1’127 coes Hamy - -ey 315 (325 - - o5 U3ms V11, V125 - -5 Vim,

4m+6w e {4m+8]

...,V31,I/32,...,l/3m>T37m> = ’V 5

Now

sdepth ((Jim)Té’m) = sdepth <(me)T1*m> >6m+ 7.

To sum up

sdepth(J3,,) > Flm * 8-‘.

Furthermore, let us have n = 4. As y & Jy,,, therefore we have

J4,m = J4,m N Tsz @y(J4,m : y>T4,m7

/
where T4,m = K[51w oy 0y &one o €4y W, Wiy 115 125 -+ 5 Pl + - 5 HALs 1425 - - 5 [hdms V115

Y12y« -y Vimse - -y V41, V42,. . . 7V4m]- Now

/

J47m N TZ,IL,m = (J;,m)T

1.m and

<J4,m : y>T4,m = ((gimﬁh54,52,5470117%7#11,#12, coy Wmy Ha1, 42, - -y [, V11,

V19, ooy Vimy Va1, V42, - - . 7y4m)T4,m)'
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Thus

Sdepth(J4,m> > min { Sdepth ((J;,m)Téi,m> > Sdepth ((gima (Sla 54a 62) €47 Wi, Wy, K11, K12,
<oy Himsy a1, 42y - - -5 Bam,y V11, V125 - - - Vim,y Va1, V42, - - - V4m)T4,m> }

By [16, Lemma 3.6], we have

%
sdepth ((gl,m,51,54,52754,0J1,w47lt11,le,---,u1m7u41,u42,---,M4m,V11,V12,---,
*
Vim, Va1, V42, -« -, V4m)T4,m> = sdepth <(91,m, 01,04, &2, Ea, W15 Wa, o115 12, - - - i, [l
/
y 42,y « -+ 5 Ham, V11, V125 - - - s Vim, V41, Va2, - - ., V4m)T47m> -+ 1.

And by [17, Theorem 1.3],

Sdepth ((g;nw 517 (54,52,54,&11,0.14,,&11, K12y - oy Hims H41y 425 - - -5 Bdmy V115, V125 - - -
Vims Va1, Vaz, - - -, V4m)T41,m) > min { sdepth ((Qiﬁm)Aﬂfm> + 4m + 6, sdepth <(517 04, &2,
547011,004, H11, K12y - - -y H1m, Ha1, 42,y - - - 5 Ham, V11, V12, - - - Vim, Va1, Va2, - - -, V4m)Té;m>

+ sdepth <(A>{m/9fm)Aim> }’

where Té;,m = K[51, 547 52, 5476017604, Hi1, 125 - - - 5 H1my H41, H42y - - - 5 Hdm, V11, V12, - - -5 Vim,
Vg1, Va2, - -« Vam]. Now by 4.1.1, [21], and sdepth of quotient module associated to star

graph, we have

Sdepth ((gimaéla54;527547w17w47N11aN127'"a,ulm7[1’417,u427"'7,u4m71/117V127"‘aV1m
4 6 4 6 4 8
=Tl =1

/

s Va1, V42, .. ., l/4m)52’m> Z min {6m+9, ’V

As a result

sdepth ((QT,W 01,04, 2, §ay W1, Wi, H11, 12, -+ 5 omy BTy J042s - - 5 Hdgm, V115 V125 - - -

4m+81 . {4m+10]

V1m7y41)1/42a"'7y4m)T4,m) Z ’7 9

Now by Proposition 4.2.1, we get

/ 4 9
sdepth ((J§7m)T4,m> = sdepth ((’];m)T;m> > [ m2+ W
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To conclude

sdepth(Jy ) > Flm + 9-‘ .

2

Next we have n = 5. Since y & J5 ,,,, therefore we have

J5,m = J5,m N T5/7m @y(JS,m . y)TS,rrw

/
where T57m = K[(sl?' . 755a 527' - 76576")17' <oy Wy 115 B125- - -y By - -y U515 525+ -« 5 B5m,

V117V12)"'7V1m7‘")V517V527"'7V5m]- NOW

/

J5,m M Té,m = (Jg’:,m)T

5.m and

<J5,m : y>T5,m = ((Jf,m,517557527557%,605,#117#127 ooy By H515 2525 - - - Hems V11,

V12,y...,Vim, V51, V52, ... 7V5m>T5,m> .

Consequently

sdepth(J5,,,) > min { sdepth <(J§m)T5lm> ;sdepth ((me 01, 05, &2, &5, W1, Ws, H11, 12,
.. ,[le,ﬂg)l, ,u527 CIEI ;,USma "1, Y12y -« s Vim,y, Vs1, V52, -+ V5m)T5,m> }

From [16, Lemma 3.6], we obtain

Sdepth ((Jinm 517 557627657&)17(/‘)57”117 K12, - oy H1ms U515 U525 - -+ 5 U5ms V11, V12, - - -
Vim, V51, V52, - - - V5m)T5,m> = sdepth ((Jf,m, 01,05, 2, §5, W1, Ws, H11, 125 - - 5 Him

!
, U515, U525 - - - 5 U5m, V11, V12, - - - s V1im, V51, V52, - - -, V5m)T57m) + 1

And by [17, Theorem 1.3],

sdepth (( im,51755752755,6017%7/%117M12,~-->M1m7M517M52,---;/ﬁ5m7V11;V12;---7V1m7
Vs1,V59, ..., V5m)T5/,m> > min { sdepth <(‘]f,m)T1*,m> +4m + 6, Sdepth ((51, 55, 52, 55, w1,
(U5,/J/11,/qu, LI 7,u1ma,u5171u52a o 7/“65777,7 i1, Y125 - - - s Vimy V51, V525 - - - V5m)T5_,m>

+ sdepth (T, 1) ) §
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where T5,m = K[617 (557 527 6576"-)170‘-)57 Hi1, H12y - -+ 5 H1my U515 4525 - -« U5my V115, V12, - - -5 Vim,

Usi, Vs, - - -, Vsm]. Now by Propositions 3.2.1 ; 4.2.1 and [21], we have

*
Sdepth ((JLm? 617 657 527 657(")17("}57 Hi1y H125 - - -y H1my U515 U525 - - -y U5my V115 V12,5 - - -5 Vim,

/ 6 7 14 19 4 6
Usi, Usay - -« s 1/5m)T5’m> > min { { m2+ -‘+4m+6 = [ m2+ -‘, [ m2+ —‘+2m+3 —

==l

So

*
Sdepth ((‘]177717 617 557 527 657(")17(*‘}57 Hi1, H12, - - -5 Himy U515 U525 - -« s U5ms V115, V125 - -+ s Vim,

8m + 12 8m + 14
V51, V525 - -« s V5m)T5,m> > {—-‘ +1= {T—‘

Now by Proposition 4.2.1, we get

8m + 13“

sdepth ((J;m)Tém> = sdepth <(J§m)T§‘m> > { 5

To conclude

sdepth(Js ) > {8m+ 13} _ {8m+ 7} n {EW

2 2 2
Ultimately, for n > 6. Since y & J,, , so we have

Jn,m = Jn,m N T7;,m @y(Jn,m . y)Tn,ma

/
where Tmm = K[51,. .. ,57“52,. .. ,fn,wl,. ey Wiy 115 125+« s Blmye -+ s By Un2y- -+ 5 hnm s
V11, V125 - s Vimse - -5 Vnls Vn2ye - 5 V). NOW

/

Tngn N Ty = (i3 ) Ty and

n—2,m/>"n,m

*

((Jn,m . y)Tn,m> = <( n—4,m> 517 577,7 527 €n7w17wna Hi1, B2y - - -5 Himy Unly Bn2; - - -y Unm
V11, V12, - - 5 Vims Vnly Vn2, - -+ I/nm>Tn,m)-

Thus

Sdepth(Jn,m) Z min { Sdepth ((J;:—Q,m)T;L,m) ) Sdepth <( ;:—4,m7 517 5n7 527 €n7 W1, Wp, H11,

12, - - o Bimy Bnly Bn2s - - o5 Bnm, V11, Y125 - -« 5 Vim, Unly, Un2, - - - l/nm)Tn,m)}-
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From [16, Lemma 3.6|, we get

*
Sdepth ((Jn,4’m, 517 6717 627 é-na W1, Wy B115 K125 - - -5 H1my Bnly Bn2s - - -5 Bnms V115, V125
*
ooy Utms Un1ysVnp2,y - - oy Vnm)Tn,m> = sdepth ((Jnf4,m7 (51, 5117 fg, §n,w1,wn, H11, H12, - - -,
/
Himy Bnls Pn2s -« -5 Bpms V11, V125 -« -5 Vimy Vnls Vn2, - - 7Vnm)Tn’m + 1.

And by [17, Theorem 1.3,

Sdepth <(J:7j—4,ma 617 6717 §2a gn: W1, Wny U115 125+« 5 H1my Bnly Bn2y -« 5 Bnm, V11, V12, -« -
Vtms Vnls Vn2, - -+ s z/nm)TAm) > min { sdepth <(J;‘_4,m)T;:_47m> +4m+6, sdepth ((51, On,
§2,&n, W1, Way 115 1125 -+ - 5 Hoims Bnds fn2s - -+ s Bonms V115 V125« -+ Vims Vil Vn2s - - - Vnm)Tr:,m>

+ Sdepth ((T;74,m/‘];f4,m)T;74,m> }7

where TT:,m = K[dla 5%7 627 énvwhwnu Hit, 125 - -5 Himy Bnls Bn2s - -« Bnmsy V11, V12, - - -
Vims Vnls Vn2s - « - s Vnm). Now by [21], Propositions 3.2.1 and 4.2.1, we have

if n =0 (mod2), then n — 4 = 0 (mod 2). So

*
Sdepth ((‘]n—47ma 517 5717 52; gna W1, Wpy 115 K125« - s H1ms Bnls Bn2y - - -5 bpmy V115, V12, - - -

, Am+ 7 —4 4m + 6 —2
V1m7l/n17yn27°"aynm)Tn,m> Zmln{’V m2+ -‘+’Vn2 -‘+4m+6”7 m2+ -‘—i_’VnQ -‘}

-[F1+ )

To conclude

*
Sdepth ((Jn74’m, 517 6717 527 fna W1, Wy 115 K125 - - -5 H1my Bnly Bn2s - - -5 Bnms V11, V125 - -+

4m + 6 n—2 4m + 6 n
manana'--7annm>>’7 —‘ ’7 —‘ 1:’7 —‘ ’7_—‘
Vims Vnls Vn2 Vi) Tom ) 2 9 T 2 + 2 * 2

And if n = 1 (mod 2), then n — 4 =1 (mod 2). So

*
Sdepth ((‘]n—47ma 517 5n7 52; fna W1, Wy, H’lla ,u127 CRE 7M1ma ,un17 H’n27 CIE ;,unma "1, V12, .- -y

/ 8 7 -1 16 7
l/lm,an,l/n27...,Vnm)Tn’m> > min{[ m;— —‘ + Wl 5 —‘ +4m +6 = {mT—i_w—l—

[ L e [P = [ [ = [P
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Eventually

Sdepth ((J:;_47m,51,5n,£2,§n,(JJ1,UJn,H;11,,U12,...,Mlm,unl,ﬂ;ng,...,,Unm,l/ll,ylg,...,
8m+6" L {n%—l“ L= {8m+81 . {n+11
2 2 B 2 2 I

YimsVn1,Vn2, -+, Vnm)Tn,m> Z ’V

Now by Proposition 4.2.1, if n = 0 (mod 2), then n — 2 = 0 (mod 2). We get

/ 4 7 —2
Sdepth ((J:;—Z,m)Tn,m> = Sdepth ((J;—Z,m)T;—Q,m> Z ’V m2+ —‘ + ’Vn 9 —‘

And if n =1 (mod 2), then n — 2 = 1 (mod 2). So we have

/

sdepth <<J;;—2,m>Tn,m> = sdepth ((J;—Zm)T;—Zm) > [8m2+ 7—‘ + VL —2{— 1-‘ :

In a nutshell

if n =0 (mod2), then

sdepth(Jy, m) > [

And if n = 1 (mod 2), then

O

Remark 4.2.4. By [23, Theorem 2.3] sdepth(J,,m) > 2nm+ 3n — 22242 | Therefore

our lower bound is better than this one.

Corollary 4.2.5. Let n =3 and m > 0, then
sdepth(Jy, ) = sdepth(T, m/Jnm) + 1.
Letn >4, and m > 0. Then

sdepth(Jy, ) > sdepth(T, m/ Jnm) + 1.
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4.3 Bounds for the dimension of cyclic modules asso-
ciated to graphs B, ,, and E,

Proposition 4.3.1. Forn > 1 and m > 0, we have that dim(S, ./ Inm) > 2nm + 2n.

Proof. Let a = {&1,&2,...,&n41} be a subset of a vertex set V(B,,,,). The set « is a
vertex cover because it covers all the edges. Now if we remove §; for some 2 <7 < n or
& or €,41 from the set o, then the resulting set is not a vertex cover. Because the edges
{&i0i—1, §i03, §iwim1, &wi, Sitbii—1)1, Silbii—1)25 - - - Gilbim1ym> Cibtit Eibbizs - - - Eibbims SV (i—1)15
§¢V(i—1)2, e 7§i7/(i—1)m7 §ivir, Sivia, - - - ,&Vz'm} ) {5151, Siwr, S, §1fhazs - - -5 S1lam, S,

&g, . .. 7£1V1m}7 {fn+15n, fn+1wm £n+1ﬂn17 fn+1,un2, . ,5n+1ﬂnm, fn+1l/n1, §n+11/n2, ceey

Ent1Vnm } Will not covered, respectively. This shows that the set o forms a minimal
vertex cover of I, ,,. Thus we have height(Z,, ,,,) < n+1. Since S, is a polynomial ring
of dimension 2nm-+3n+1, which implies that dim(S,,m/Inm) > 2nm~+3n+1—(n+1) =
2nm + 2n. [

Proposition 4.3.2. Forn >3 and m > 0, we have that dim(T, ,,/ Jnm) > 2nm + 2n.

Proof. Assume that § = {y, &, &, ..., &, } be a subset of a vertex set V (£, ,,). The set
B is a vertex cover because it covers all the edges. Now if we remove &; for some 2 < i <
n or y from set [ then the resulting set is not a vertex cover. Because the sets of edges
{&i0i—1, §i03, §iwim1, &wi, Sitbii—1)1, Silb(i—1)25 - - - Gilbim1ym> Cibtits Eibbizs - - - Eibbims SV (i—1)15
&‘V(i—m, . 7€iy(i—1)m7 &ivit, &ilias - - &Vim b and {01, ywr, s, Yz, - - - Yim, Y1,
YU12, -+ s YTy YOmy Yy Ylbns Y2y - « s Ylbnms YWnls Y2, - - - » YWnm } Will nOt covered, re-
spectively. This exhibits that the set 5 forms a minimal vertex cover of .J, ,,,. Therefore,
we have height(J,,,,) < n. As we know that T, ,, is a polynomial ring of dimension

2nm + 3n, which implies that dim(7T,, ./ Jnm) > 2nm + 3n —n = 2nm + 2n. O
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Chapter 5

Conclusion

In this chapter we will justify our results by comparing them with the already known
results in literature. Moreover, we will examine the Herzog’s conjecture given in [25].

And, in some cases Rauf’s Question presented in [18].

5.1 The graph B, ,,, and its super graph D, , with

edge ideals [, ,, and I, , respectively

n,m?

Proposition 5.1.1. Let n > 1 and m = 0, then depth(S)/1}) = sdepth(S}/I}) =
[

Proposition 5.1.2. Let n,m > 1, then depth(S; . /I.) = sdepth(S; /I .,.) =

(%51

Remark 5.1.3. Clearly, forn > 1 and m > 0 diam(D,,,,) = n+ 1, then by Theorem
2.3.3 we have

depth(S;, .,/ 1% ), sdepth(Sy /1% ) > [*2]. Our Proposition 8.1.2 shows that
depth(S; .,/ 1% ), sdepth (S | /1% ) = [%2]. Thus we find a better result for depth
and stanley depth of this class of edge ideal.

Proposition 5.1.4. Let n > 1 and m = 0. If n =0 (mod2), then

[%W < depth(Sy/I,), sdepth(S, /1) < [H 1]
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And if n =1 (mod?2), then

n—|—1"

depth(S,,/1,) = sdepth(S,,/I,,) = ’V 92

Remark 5.1.5. Clearly diam(B,,) = n then by Theorem 2.3.3 we have depth(S,,/I,)
,sdepth(S,/I,) > [™2+]. Our Proposition 3.1.4 shows that if n = 0(mod2), then
depth(S,,/1,),sdepth(S,/I,) > [5]. And if n =1 (mod2), then depth(S,/I,),
sdepth(S,/1,) = [%*]. Thus in both cases we find a better results for depth and

stanley depth of this type of cyclic modules.

Proposition 5.1.6. Let n,m > 1. If n =0 (mod2) , then

1
[E-‘ < depth(Spm/Inm),sdepth(Sy i/ Inm) < [n+ -‘
2 : ’ ’ ’ 2
And if n=1(mod?2) , then
1
depth(Sy, m/Inm) = sdepth(Sy.m/Inm) = {n—;— —‘

Remark 5.1.7. Apparently for n = 1 diam(B;,,) = 2 and for n > 2 diam(B,, ) = n.
So by Theorem 2.3.3 for n =1 we have, depth(Sy /11 m), sdepth(S1m/I1m) > [2_-::11
And forn > 2, we have depth (S, m /I m), sdepth(Sy, m/Inm) = [22]. Our Proposition
3.1.7 shows that if n = 0 (mod 2), then depth(Sy, m/Inm),sdepth(Sym/Lnm)

> [2]. And if n = 1(mod?2), then depth(S,m/Lnm),sdepth(S,m/Inm) = [%1].
Thus in both cases we find a sharp results for depth and stanley depth of this class of

quotient module.

Proposition 5.1.8. Let n > 1 and m = 0 then sdepth([}}) > [%1].

Remark 5.1.9. By [23, Theorem 2.3] sdepth(I}) > 3n+ 3 — |252]. Thus our lower

bound is sharper than this one.
Proposition 5.1.10. Assume that n,m > 1, then sdepth(I};, ) > [#25] 4 [22] 41,

Remark 5.1.11. By [23, Theorem 2.5/ sdepth(I}; ) > 2nm + 3n +2m + 3 —

| dmntdnt2mt2 | - Thus our lower bound is sharper than this one.
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Proposition 5.1.12. Let n > 1 and m = 0. If n = 1, then sdepth(l;) = 2. And if
n > 2, then sdepth(I,) > [2£2].

Remark 5.1.13. By [23, Theorem 2.3/ sdepth(I,) > 3n + 1 — [22]. Thus our lower
bound is sharper than this one.

Corollary 5.1.14. (Rauf’s question) For n =1 and m =0

sdepth(/;) = sdepth(S,/1;) + 1. And for n > 2 sdepth(1,,) > sdepth(S,,/1,) + 1.
Corollary 5.1.15. (Herzog’s conjecture) For n > 1 and m =0

sdepth(7,,) > sdepth(S,/I,).

Proposition 5.1.16. Ifn =1 and m > 1, then sdepth(ly,,) > m + 2.

Remark 5.1.17. In this case, we have no conclusion about Herzog’s conjecture and

Rauf’s question as well.

Proposition 5.1.18. If n > 2 and m > 1, then sdepth([,,,) > [#22] 4 [252] +1.
Remark 5.1.19. By [23, Theorem 2.3] sdepth(I; ) > 2nm+3n+1— #2252 Thus
our lower bound is stronger than this lower bound.

Corollary 5.1.20. (Rauf’s question) Let n > 2 and m > 1, then sdepth(l, ) >
sdepth(Sym/Lnm) + 1.

Corollary 5.1.21. (Herzog’s conjecture) Let n > 2 and m > 1, then sdepth(Z, ,,) >
sdepth(Spm/Lnm)-

5.2 The graph £, , and the super graph £, , of the
graph D, ,, with edge ideals J,,, and J;

s Tespec-

tively

Proposition 5.2.1. Letn > 1 and m > 0. If n =0 (mod 2), then

2
depth(T,;,,/ Ty ) = sdepth(T, ./ T ) = FH W

2
And if n =1 (mod 2), then

)
depth(T}; ./ Jy ) = sdepth(T}; ./ Jy ,,) = 2m + [" + ] |

2
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Remark 5.2.2. Apparently diam(F, ,,) =n+ 2, so by Theorem 2.3.3 we have depth
(T o/ Ty ) sdepth (T, /T ) > [M27]. Whereas our Proposition 3.2.1 shows that
if n = 0(mod2), then depth(Ty, /Jr..) = sdepth(Ty . /Jr ) = [*52]. And if n =
1 (mod?2), then depth(T7,./Jx ) = sdepth(T7, /J: ) = 2m + [*2]. Thus we have
better results for depth and Stanley depth of this class of cyclic modules.

Proposition 5.2.3. Letn >3 and m > 0. If n = 0 (mod 2), then

depth(Thm/ Jnm) = sdepth(Thm/ Jnm) = [g-‘

And if n = 1 (mod 2), then

depth(Tn,m/Jn,m> — sdepth(Tn’m/Jn’m) =2m + [n + 3-‘ )

Remark 5.2.4. As diam(E,,) = [*] so by Theorem 2.3.3 we have

depth(Thm/ Jn.m), sdepth(Ty m/ Jnm) > [7%_31 While our Proposition 3.2.8 shows that

if n = 0(mod2), then depth(T}, ,/Jnm) = sdepth(Tym/Jnm) = [5]. And if n =
1 (mod2), then depth(T, ,n/Jnm) = sdepth(Tym/Jnm) = 2m + [%2]. In a nutshell,

we have good results for depth and Stanley depth of this type of cyclic module.

Proposition 5.2.5. Let n =1 and m > 0, then

sdepth(Jy,,) > [Gm i 7—‘.

Letn >2 and m > 0. If n = 0(mod 2), then

4
sdepth(J;,,,) > [ m; 5] + [g] L1

And if n = 1 (mod 2), then

8m+7w n {n—l—?)]

sdepth(J, ,,) = { 5 5

Remark 5.2.6. By [23, Theorem 2.3/ sdepth(J;; ) > 2nm + 3n +4m + 5 —

| dmndSntdmt2 | - Therefore our lower bound is finer than this one.
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Proposition 5.2.7. Let n =3 and m > 0. Then

_4 -
sdepth(Js3,,) > m2+ s :
Forn=4 and m >0
_4 -
sdepth(Jy ) > m2—{— ! .
Finally, forn >5 and m > 0. If n = 0 (mod 2), then
dm +5 n
> — 1.
sdepth(Jp,.m) > [ 5 —‘ + {QW

And if n =1 (mod 2), then

sdepth(J,, ) > [Sm i 6} + [n - 1—‘ :

2 2

Remark 5.2.8. By [23, Theorem 2.3] sdepth(J,, ) > 2nm +3n — | #2245 ] Therefore

our lower bound is better than this one.

Corollary 5.2.9. (Rauf’s question) Let n = 3, and m > 0. Then

sdepth(Jy, m) = sdepth(T}, 1/ Jnm) + 1.
Letn >4, and m > 0. Then

sdepth(J,m) > sdepth(T), ./ Jnm) + 1.
Corollary 5.2.10. (Herzog’s conjecture) Let n > 3, and m > 0. Then

sdepth(Jy, ) > sdepth(T, m/ Jnm)-
5.3 Bounds for the dimension of cyclic modules asso-
ciated to graphs B, ,, and £, ,,

Proposition 5.3.1. Forn > 1 and m > 0, we have that dim(S;, ./ Im) > 2nm + 2n.

Proposition 5.3.2. Forn >3 and m > 0, we have that dim(T, ,,,/ Jnm) > 2nm + 2n.
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5.4 Open questions and conjecture

Question 5.4.1. Letn > 1 and m > 0. For n =0 (mod?2), is

n—i—lw?

depth(Spm/Inm) = sdepth(Sn ym/Inm) = [ .

Question 5.4.2. Forn > 2 and m > 1. Is sdepth(I,,,,) < [2%F3] + [2-1] 417

Question 5.4.3. Forn =3 and m > 0. Is

4m—|—8“?

sdepth(J3,m) < { i

Forn=4 and m > 0. Is

4m+9“?

sdepth(Jym) < { 5

Finally, for n >5 and m > 0. When n =0 (mod2), is

sdepth(Jy ) < Fm; 5] +[5]?

And when n =1 (mod?2). Is
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