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Abstract

In this Thesis, we discuss rings and modules, which are the fundamental

algebraic structures of Abstract Algebra. Moreover, we discuss two algebraic

invariants of a module which are Stanley depth and depth of a module. In

addition, we discuss how the regular element property helps in determining

the depth of a module. Then, we discuss some recent results of depth and

Stanley depth of edge ideals associated with different graphs. Thereafter, we

find the Stanley depth of some modules and edge ideals using the method

of posets. Lastly, we compute the Stanley depth and depth of the quotient

ring of edge ideals associated with different classes of graphs. These classes

include some lobster trees and unicyclic graphs. Then, we show that the

values of depth and Stanley depth are equal and can be stated in terms of n

and m. In addition, we prove the Stanley’s inequality for modules associated

with these classes of graphs.
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Introduction

Richard P. Stanley is known for his contributions in Combinatorics and its

connections to Algebra and Geometry, particularly in the theory of simplicial

complexes. The relationship between Combinatorics and Commutative Alge-

bra is studied using monomial ideals. Combinatorics problems are converted

to monomial ideals, which are then solved using methods and techniques

from Commutative Algebra. In [27], Stanley defined the Stanley depth of

Zq-graded modules over a graded commutative ring. He used square-free

monomial ideals to connect Combinatorics and Commutative Algebra.

According to Stanley conjecture, Stanley depth of a module is at least the

depth of a module. Later in [8], Duval et al established that the Stanley con-

jecture is not valid for the modules of type ℵ/Υ, where ℵ is the polynomials

ring in q variables and Υ is the monomial ideal of ℵ. However, finding classes

that nonetheless meet the inequality is still a difficult task.

In general, there is no known procedure for calculating the Stanley depth of a

module. However in [15], it was proposed that, when a Zq-graded ℵ-module

i is of the type Υ1/Υ2, where Υ2,Υ1 are monomial ideals of ℵ and Υ2 ⊂ Υ1,

then the Stanley depth of i can be determined in finite number of steps using

posets.
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For the quotient ring of edge ideals associated with some lobster trees

and a unicyclic graph, the precise values of Stanley depth and depth are

determined in this Thesis. We calculate these values using the induction

approach.

This Thesis has four chapters.

The essential principles, basic definitions, and findings of Abstract Alge-

bra and Commutative Algebra are covered in chapter 1. It covers the types,

fundamental attributes, standard operations, and primary decomposition of

ideals. It also covers the exact sequences, graded rings, polarizaton of mono-

mial ideals as well as other fundamentals of Module Theory.

Chapter 2 covers the fundamentals of Graph Theory as well as the most

common graph types. The chapter wraps off with a view of lobster trees and

uncylcic graphs.

Chapter 3 starts with the introduction of depth and its examples, then

it moves on to the Stanley decomposition, Stanley depth of modules and the

Stanley conjecture. In this chapter, the techniques for finding the Stanley

depth of square-free monomial ideals are also covered.

In chapter 4, the edge ideals associated with some lobster trees and a uni-

cylclic graph are introduced. The depth and Stanley depth of the quotient

ring of edge ideals associated with some lobster trees and a unicyclic graph is

then determined using the mathematical induction approach and the depth

lemma on short exact sequences.
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Chapter 1

Ring Theory and Module
Theory

1.1 Introduction

Rings are algebraic structures (a nonempty set and a collection of op-

erations on that set must meet the relevant axioms to form an algebraic

structure) that enable the generalization of fields and it includes two binary

operations such as addition and multiplication.

Problems and ideas from Algebraic Number Theory and Algebraic Geome-

try have influenced the development of rings. In the 19th century, it became

a universal approach to obtain an integer solution of polynomial problems

using the rings of higher degree algebraic numbers (an algebraic number x

have degree q if it is the zero of some irreducible qth-degree polynomial with

integer coefficients). An early attempt to prove Fermat’s last theorem led to

the emergence of the basic idea of a ring. In an attempt to find the algebraic

numbers that are the solutions of

x2 + 2 = 0, (1.1)

which is similar to finding its factorization in the ring of integers of quadratic
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field Q(
√
−2). Similarly, for a positive integer p, the polynomial cp − bp (

which is relevant for solving the Fermat equation ap + bp = cp ) can be

factored over the ring Z[ζq], where ζq is a primitive q-th root of unity.

Later, in [9] and [14] significant contributions to the development of rings

were made.

1.2 Rings, Fields and Integral domains

The concept of a group comes from a set of mappings or permutations of

sets to itself. So far, we’ve just looked at sets with one binary operation. On

the other hand, in rings, we have two binary operations.

Definition 1.2.1 Let ℵ be a non-empty set. A map ∗ : ℵ × ℵ → ℵ is said

to be a binary operation on ℵ, if for any m,n ∈ ℵ, we have m ∗ n ∈ ℵ. In

this situation, we may say that ℵ is closed under ∗.

Example 1.2.2 For example, the sum of two real numbers is a real number,

so ∗ (ζ1, ζ2)=ζ1 + ζ2 is a binary operation on the set of real numbers.

The addition operation is a commutative and associative binary operation

on Z, N and Q. But + is not a binary operation on the set ℵ={0,1}, because

for 1 ∈ ℵ, we have 1 + 1 = 2 6∈ ℵ.
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Definition 1.2.3 Let ℵ be a non empty set, + and × are binary operations

on ℵ. Then, the structure (ℵ, +, ×) is a ring if it satisfies the below axioms.

1. (ℵ, +) is an abelian group, that is for any ζ1, ζ2, ζ3, ζ ∈ ℵ, we have

• ζ1+ζ2 ∈ ℵ.

• (ζ1+ζ2)+ζ3=ζ1+(ζ2+ζ3).

• ζ+0=ζ=ζ+0.

• ζ+(−ζ)=(−ζ)+ζ=0.

• ζ1+ζ2=ζ2+ζ1.

2. (ℵ, ×) is a semi group, i.e for all ζ1, ζ2, ζ3 ∈ ℵ, we have

• ζ1 × ζ2 ∈ ℵ.

• (ζ1 × ζ2) × ζ3=ζ1 × (ζ2 × ζ3).

3. Multiplication is distributive on both the left and right sides, i.e for all

ζ1, ζ2, ζ3 ∈ ℵ, we have

• ζ1 × (ζ2+ζ3)=(ζ1 × ζ2)+(ζ1 × ζ3).

• (ζ2+ζ3) × ζ1= (ζ2 × ζ1) + (ζ3 × ζ1).

Definition 1.2.4 Let (ℵ, +, ×) be a ring. If the multiplication of ℵ is

commutative, that is for any ζ1, ζ2 ∈ ℵ, we have ζ1 × ζ2 = ζ2 × ζ1, we call

it a commutative ring.

Remark 1.2.5 If there exists 1 ∈ ℵ, such that for all ζ ∈ ℵ, we have ζ × 1

= 1 × ζ = ζ, we say that ℵ is a ring with identity.

.
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Example 1.2.6 1. Set of integers, set of rationals, set of reals, and the

set of complex numbers are all commutative rings having the same

identity that is 1.

2. There is no identity in the commutative ring 2Z.

3. Mq(Z) and Mq(C) are rings with 1 under standard matrix addition and

multiplication, but they are not commutative unless q = 1.

4. Polynomials with real coefficients form a commutative ring with iden-

tity, which we refer to as R[x].

Following that, we write down some ring-related basics. To keep the asser-

tions simple, we focus on commutative rings.

Definition 1.2.7 Let ℵ be a ring and Υ be a non empty subset of ℵ. Then

Υ is a subring of ℵ iff ∀ υ1, υ2 ∈ Υ, we have

1. υ1-υ2 ∈ Υ,

2. υ1×υ2 ∈ Υ.

Example 1.2.8 1. Z and Q are subrings of R.

2. R is a subring of C with elelments of the type a+ 0i, for a ∈ R.

3. For each ζ ∈ N, ζZ={ ζk : k∈Z} is a subring of Z.

Definition 1.2.9 Assume that ℵ1 and ℵ2 are rings. The direct product

ℵ1×ℵ2 of rings is a ring, in which the binary operations are defined in terms

of coordinates, such that for any ζ1, ζ ′1 ∈ ℵ1 and ζ2, ζ ′2 ∈ ℵ2, we have

(ζ1, ζ2) + (ζ ′1, ζ
′
2) = (ζ1 + ζ ′1, ζ2 + ζ ′2)
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and

(ζ1, ζ2)× (ζ ′1, ζ
′
2) = (ζ1 × ζ ′1, ζ2 × ζ ′2).

We show that all of the ring axioms hold for the direct product ℵ = ℵ1×ℵ2.

• Clearly ℵ is closed under + and ×, because ℵ1 and ℵ2 are closed under

addition and multiplication.

• Here + is associative on ℵ due to the associativity of +1 on ℵ1 and +2

on ℵ2. The operation + is also commutative due to the commutativity

of +1 on ℵ1 and +2 on ℵ2.

• Multiplication × is associative on ℵ due to the associativity of ×1 on

ℵ1 and ×2 on ℵ2. The operation × is also commutative due to the

commutativity of ×1 on ℵ1 and ×2 on ℵ2.

• The identity on + is (01, 02), where 01 is the identity of +1 on ℵ1 and

02 is the identity of +2 on ℵ2. While (−ζ1, −ζ2) is the additive inverse

of (ζ1, ζ2). Furthermore, if ℵ1 and ℵ2 have the same identity, ℵ1 × ℵ2

have the same identity that is (1, 1).

• Left distributivity holds, because (ζ1, ζ2) × [(ζ ′1, ζ
′
2)+(ζ3, ζ4)]=(ζ1, ζ2)

× (ζ ′1 + ζ3, ζ
′
2 + ζ4)=([ζ1× ζ ′1] + [ζ1× ζ3], [ζ2× ζ ′2] + [ζ2× ζ4])=(ζ1, ζ2)×

(ζ ′1, ζ
′
2)+(ζ1, ζ2)× (ζ3, ζ4).

• Right distributivity holds, because [(ζ1, ζ2) + (ζ ′1, ζ
′
2)]× (ζ3, ζ4)=(ζ1 +

ζ ′1, ζ2 +ζ ′2) × (ζ3, ζ4)=([ζ1×ζ3]+[ζ ′1×ζ3], [ζ2×ζ4]+[ζ ′2×ζ4])=(ζ1, ζ2)×
(ζ3, ζ4)+(ζ ′1, ζ

′
2)× (ζ3, ζ4).

Example 1.2.10 Under the coordinatewise operations derived from R, R4

and more generally Rq is a commutative ring with 1, for some q > 2.
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Definition 1.2.11 If a structure (V, +, ×) meets the below conditions (where

+ and × are binary operations on V ),

• (V , +) is an abelian group.

• (V \{0},×) is an abelian group.

• The distributive laws hold.

then it is called a field.

Example 1.2.12 Q, R and C are fields. The commutative rings with iden-

tity that fails to be field are Z and polynomial ring V [ζ], here V can be R,

C, or any other field.

Definition 1.2.13 Let ℵ be a commutative ring. If for any ζ1 6= 0 ∈ ℵ,

there exists ζ2 6= 0 ∈ ℵ corresponding to ζ1, such that ζ1ζ2 =0, we call an

element ζ1 a zero divisor in ℵ.

Definition 1.2.14 If a commutative ring with identity has no zero divisors,

it is called an integral domain. In integral domains, if for any ζ1, ζ2, ζ3 ∈ ℵ,

we have ζ1ζ2=ζ1ζ3 and ζ1 6= 0, then ζ2=ζ3.

Example 1.2.15 2 and 3 are zero divisors in Z6 = {0, 1, 2, 3, 4, 5}.

Example 1.2.16 1. To show that any field is an integral domain. As-

sume that for any ζ1, ζ2 in field, we have ζ1.ζ2=0. If ζ1 6= 0, then their

exists ζ−1
1 in field, such that 0=ζ−1

1 .0=ζ−1
1 .(ζ1.ζ2)=(ζ−1

1 .ζ1).ζ2= 1.ζ2 =ζ2

and similarly, if we reversed the roles of ζ1 and ζ2.

2. Z and V [ζ] are integral domains that aren’t fields.

8



3. R3 is a commutative ring with identity that fails to be an integral do-

main with coordinatewise addition and multiplication, i.e for (0, 1, 0),

(1, 0, 0) ∈ R3, we have (0, 1, 0)(1, 0, 0) =(0, 0, 0).

Theorem 1.2.17 An integral domain having a finite number of elements is

a field.

Definition 1.2.18 Let ℵ be a commutative ring with 1. Let for any ζ1 ∈ ℵ,

if there exists ζ2 ∈ ℵ corresponding to ζ1, such that ζ1ζ2= 1, then ζ1 is a unit

in ℵ. As a result, the units are those (necessarily non-zero) elements whose

multiplicative inverses exist.

Example 1.2.19 1. Every non-zero element in a field is a unit.

2. In Z, the units are {+1,−1}.

3. The non-zero constant polynomials are the units in the ring of real and

complex polynomials.

Definition 1.2.20 Let ℵ be a ring, if ζ2=ζ for any ζ ∈ ℵ, then ζ is called

an idempotent element.

Definition 1.2.21 A ring is called a boolean ring if each of its element is

idempotent. It is also a commutative ring.

1.3 Ring of polynomials

One of the oldest problems in mathematics is determining the roots of

polynomials or solving algebraic equations. The elegant and functional no-

tations we use now date back to the early 1400s. Equations were previously

written in words. Leonardo Fibonacci achieved a near approximation of the
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cubic equation x3 +2x2 +cx = d in the early 1300s. René Decartes, a famous

mathematician from the 16th century, invented Analytic Geometry, in which

he converted the geometric problems into algebraic equations.

A polynomial ring is a sort of ring that is formed by set of polynomials with

variables from another ring. Polynomial rings appear in many areas of Math-

ematics including Number Theory, Commutative Algebra, Ring Theory and

Algebraic Geometry.

Definition 1.3.1 Let

P := η0 + η1ζ
1 + · · ·+ ηqζ

q

be a polynomial with cofficients in V , where V be a commutative ring with

unity (often a field) and q be an integer that is non-negative. Then, the set

ℵ = V [ζ] of all polynomials with coefficients in V is a commutative ring with

unity under the usual addition and multiplication of polynomials.

Theorem 1.3.2 1. V [ζ] is a commutative ring with 1, in which the mul-

tiplicative identity is the constant polynomial 1.

2. We say that P ∈ V [ζ] has multiplicative inverse, or P is a unit if and

only if P is a non-zero constant.

3. V [ζ] is not a field but is an integral domain, because for any polynomials

P1, P2 ∈ V [ζ], we have P1.P2 = 0 implies P1 = 0 or P2 = 0.

Definition 1.3.3 Let V [ζ1, ζ2] = V [ζ1][ζ2] be a polynomial ring in two vari-

ables ζ1, ζ2 with coefficients in V , then the polynomial ring in q variables

ζ1, ζ2, . . . , ζq is defined as V [ζ1, ζ2, . . . , ζq] = V [ζ1, . . . , ζq−1][ζq] with coeffi-

cients in V . This means that the polynomials in q variables with coefficients

in V are now considered as the polynomials in only one variable ζq, in which

the coefficients are the polynomials in q − 1 variables.

10



Proposition 1.3.4 For any P1, P2 ∈ V [ζ], deg(P1P2) = deg(P1)+deg(P2).

Example 1.3.5 If V1 is a subring of V2, then V1[ζ] is a subring of V2[ζ].

1.3.1 Ring homomorphism

Let ℵ1 and ℵ2 be two rings. A map L : ℵ1 → ℵ2 is said to be a ring

homomorphism, if it meets the following criteria, i.e for any ζ1, ζ2 ∈ ℵ1

• L(ζ1 + ζ2) = L(ζ1) + L(ζ2),

• L(ζ1ζ2) = L(ζ1)L(ζ2).

and if it is one-one and onto, it’s called an isomorphism.

Example 1.3.6 Let ℵ={ζ1 + ζ2

√
2 : ζ1, ζ2 ∈ Z} be a ring, then the map L

from ℵ to itself defined as,

L(ζ1 + ζ2

√
2) = ζ1 − ζ2

√
2

is a ring homomorphism.

Definition 1.3.7 If L is the above-mentioned ring homomorphism, then the

kernal of L is the set of all those elements for which L(ζ) =0′, where 0′ is

the additive identity of ℵ2. Kernal and image of L are subrings of ℵ1 and ℵ2,

respectively.

1.3.2 Ideals and Operations on Ideals

Definition 1.3.8 Let Υ be a non-empty subset of a ring ℵ, then it is said

to be an ideal, if for any υ1, υ2 ∈ Υ and ζ ∈ ℵ, we have υ1-υ2 ∈ Υ and υ1ζ

∈ Υ.
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Remark 1.3.9 Every ideal is a subring, but every subring is not necessary

an ideal.

Example 1.3.10 Z is a ring of integers and 4Z is a subring of Z. The

subring 4Z is also an ideal of Z.

Theorem 1.3.11 If we have two ideals Υ1 and Υ2 of a ring ℵ, then

1. Υ1 ∩Υ2 is an ideal of ℵ.

2. Υ1 + Υ2 = {υ1 + υ2 : υ1 ∈ Υ1, υ2 ∈ Υ2} is an ideal of ℵ.

Remark 1.3.12 1. For any ideal Υ of ℵ, if 1 ∈ Υ, then Υ = ℵ.

2. The only proper ideal of a field is {0}.

Definition 1.3.13 If for any ζ ∈ ℵ, we have Υ = ζℵ, then the ideal Υ of

ℵ is called principal, and if every ideal is principal in ℵ, then the ring ℵ is

called principal.

Example 1.3.14 The ring of integers is an example of a principal ring.

Definition 1.3.15 The set ℵυ = {ζυ : ∀ ζ ∈ ℵ} is an ideal of ℵ.

Definition 1.3.16 Let Υ be an ideal of ℵ and ℵ1 be a subring of ℵ, then

Υ ∩ ℵ1 is an ideal of ℵ.

Definition 1.3.17 Let ℵ be a ring and Υ be an ideal of ℵ. Then the set

ℵ/Υ = {ζ + Υ : ζ ∈ ℵ} of cosets of Υ in ℵ is a ring. This ring is known as

the quotient ring. For any ζ1, ζ2 ∈ ℵ, the multiplication and addition are

defined as,

(ζ1 + Υ) + (ζ2 + Υ) = ζ1 + ζ2 + Υ.

(ζ1 + Υ)(ζ2 + Υ) = ζ1ζ2 + Υ.

12



Remark 1.3.18 If ℵ is a commutative ring with unity, then ℵ/Υ is a com-

mutative ring with unity, where 0 + Υ, 1 + Υ are additive and multiplicative

identities of ℵ/Υ, respectively.

Theorem 1.3.19 For an ideal Υ of ring ℵ, there is an epimorphism (onto

homomorphism) given by, L : ℵ → ℵ/Υ, with Ker (L) = Υ.

Next there are the isomorphism theorems for the rings.

Theorem 1.3.20 (Isomorphism Theorems)

1. Let ℵ1 and ℵ2 be rings and L : ℵ1 → ℵ2 be a ring homomorphism.

Then:

• the Kernal of L is an ideal of ℵ1,

• the image of L is a subring of ℵ2,

• ImL ∼= ℵ1/ kerL.

If L is surjective, then ℵ2
∼= ℵ1/ ker(L).

2. Assume that ℵ be a ring, let ℵ1 be a subring of ℵ and Υ be an ideal of

ℵ. Then:

• ℵ1 + Υ is a subring of ℵ,

• ℵ1 ∩Υ is an ideal of ℵ1, and

• (ℵ1 + Υ)/Υ ∼= ℵ1/(ℵ1 ∩Υ).

3. Let ℵ1 be a ring. Υ1 and Υ2 are ideals of ℵ1, such that Υ1 ⊆ Υ2. Then

Υ2/Υ1 is an ideal of ℵ/Υ1 and

(ℵ1/Υ1)/(Υ2/Υ1) ∼= ℵ1/Υ2.
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Definition 1.3.21 Let ℵ be a ring and Υ1 be a proper ideal of ℵ, it is said

to be a maximal ideal, if there are no other ideals contained between Υ1 and

ℵ, and if for any other ideal Υ2 of ℵ, we have Υ1 ⊂ Υ2, then Υ1 = Υ2 or

Υ2 = ℵ.

Definition 1.3.22 If the only ideals in a ring are {0} and ℵ, then the ring

ℵ is called simple.

Example 1.3.23 The ideals (2) and (3) are the maximal ideals of Z, but

(4) is not maximal, because it is contained in (2).

Theorem 1.3.24 In the ring of integers, an ideal (ζ) is maximal iff ζ is

prime.

Remark 1.3.25 Let Υ be an ideal of ℵ and take ζ ∈ ℵ, such that ζ /∈ Υ

and (ζ) is an ideal of ℵ, then Υ + (ζ) = {υ1 + ζη : η ∈ ℵ, υ1 ∈ Υ} is an ideal

of ℵ. It is called an ideal generated by Υ ∪ (ζ), denoted as (Υ, ζ).

Theorem 1.3.26 Let Υ be an ideal of a ring ℵ, then Υ is maximal iff

(Υ, ζ) = ℵ, for any ζ /∈ Υ.

Theorem 1.3.27 Let ℵ be a commutative ring with unity and Υ be a proper

ideal of ℵ. Then, Υ is maximal iff ℵ/Υ is a field.

Definition 1.3.28 An ideal Υ of ℵ is said to be prime, if for any ζ1, ζ2 ∈ ℵ,

we have ζ1ζ2 ∈ Υ, then ζ1 ∈ Υ or ζ2 ∈ Υ.

Theorem 1.3.29 Let ℵ be a commutative ring and Υ be an ideal of ℵ, then

Υ is prime iff ℵ/Υ is an integral domain.
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Definition 1.3.30 If any ring ℵ meets the following criteria, it is called a

Neotherian ring.

1. There is a maximal element in every non-empty subset of ideals.

2. Every ascending chain Υ0 ⊆ Υ1 ⊆ Υ2 . . . of ideals of ℵ stabilizes at

some point, i.e Υn=Υm ∀ m ≥ n.

Theorem 1.3.31 If ℵ is a Neotherian ring, then the polynomial ring ℵ[ζ] is

also neotherian.

Proposition 1.3.32 If ℵ1 is a Neotherian ring and ℵ2 is homomorphic image

of ℵ1, then ℵ2 is also Neotherian.

Definition 1.3.33 Let Υ be an ideal of ℵ, then the radical of Υ, denoted

by
√

Υ is also an ideal of ℵ, defined in this way

√
Υ = {ζ ∈ ℵ | ζq ∈ Υ, for some q > 0}.

Example 1.3.34 Let ℵ = V [ζ1, ζ2, ζ3, ζ4] be a polynomial ring and

Υ = (ζ2
1ζ

2
2 , ζ

2
2ζ

2
3 , ζ

2
3ζ

2
4 , ζ

2
4ζ

2
1 ) be an ideal of ℵ, then

√
Υ = {ζ1ζ2, ζ2ζ3, ζ3ζ4, ζ4ζ1}.

Remark 1.3.35
√

Υ = Υ, for all prime ideals Υ of ℵ.

Definition 1.3.36 The local ring is a ring with unique maximal ideal.

Example 1.3.37 The ideal (2) = {0, 2, 4, 6} is maximal ideal in Z8, and it

is also unique. Thus, Z8 is a local ring.

Definition 1.3.38 Let ℵ be a commutative ring and Υ be a proper ideal of

ℵ. Then Υ is said to be primary, if for any ζ1, ζ2 ∈ ℵ, we have ζ1ζ2 ∈ Υ,

then ζ1 ∈ Υ or ζq2 ∈ Υ, for some q > 0.

Definition 1.3.39 Let Υ1 be a primary ideal and Υ2 be a prime ideal of ℵ,

if Υ2 =
√

Υ1, then Υ1 is called Υ2-primary.
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1.3.3 Monomial ideal

Let V be a field and ℵ = V [ζ1, ζ2, . . . , ζq] be a ring of polynomials over

V . The term monomial refers to a product of this type ζb11 . . . ζ
bq
q , with

br ∈ N, this imply that p=ζb11 . . . ζ
bq
q is a monomial. We let p = ζb, where

b = (b1, . . . , bq) ∈ Nn. The term monomial ideal refers to an ideal whose

generating set is made up entirely of monomials. The set of all monomials

that form the basis for any polynomial in ℵ, is denoted by Mon(ℵ). If we

take any polynomial h ∈ ℵ and for zp ∈ V , then this polynomial can be

written as

h =
∑

p∈Mon(ℵ)

zpp,

where support of h is defined as

supp(h) = {p ∈Mon(ℵ) | zp 6= 0}.

Definition 1.3.40 If the components of b are 0 and 1, then the monomial ζb

is called a square free monomial and the ideal generated by these monomials

is called a sqaure free monomial ideal.

Proposition 1.3.41 If an ideal is generated by monomials, then it has a

unique minimal set of monomials that generates the monomial ideal.

Example 1.3.42 The ideal Υ = (ζ3
1ζ

3
2 , ζ

3
2ζ

3
3 , ζ

4
2ζ

3
3 , ζ

3
1ζ

4
2 ) has a unique mini-

mal set of generators, given by G(Υ)={ζ3
1ζ

3
2 , ζ

3
2ζ

3
3}.

Definition 1.3.43 For any monomial η, supp(η) = {j : ζj|η} and for an

ideal Υ generated by monomials, supp(Υ) = {j : ζj|η, for some η ∈ G(Υ)},
here G(Υ) is the unique minimal set of monomial generators of Υ.

Proposition 1.3.44 Let Υ1 and Υ2 are monomial ideals of ℵ, then the

intersection of these two monomial ideals is again a monomial ideal. The set

{lcm(ζ, η) : ζ ∈ G(Υ1) , η ∈ G(Υ2)} is a generating set for Υ1 ∩Υ2.
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Definition 1.3.45 Let Υ1 and Υ2 are monomial ideals of ℵ, then the colon

ideal of Υ1 with respect to Υ2 is also an ideal of ℵ, given as,

(Υ1 : Υ2) =
⋂

ζ′∈G(Υ2)

Υ1 : (ζ ′).

Where,

(Υ1 : ζ ′) = {ζ/ gcd(ζ, ζ ′) : ζ ∈ G(Υ1)}.

.

Example 1.3.46 Assume Υ = (ζ1ζ2, ζ2ζ3) and G(Υ) = {ζ1ζ2, ζ2ζ3}, then

(Υ : ζ3) = (ζ1ζ2, ζ2) = (ζ2).

1.3.4 Primary decomposition of monomial ideals

A classic pillar of ideal theory is the breakdown of an ideal into its funda-

mental ideals.

Definition 1.3.47 A monomial ideal Υ is said to be an irreducible ideal, if

for any two ideals Υ1 and Υ2, we have

Υ = Υ1 ∩Υ2.

Then, either Υ = Υ1 or Υ = Υ2.

Proposition 1.3.48 A monomial ideal Υ is generated by pure powers of

variables, i.e Υ = (ζ
bi1
i1
, . . . , ζ

biq
iq

) iff it is irreducible.

Definition 1.3.49 When an ideal is expressed as the intersection of primary

ideals, it is referred to as a primary decomposition, i.e

Υ =

q⋂
b=1

Υb,

where each Υb is a primary ideal.
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Proposition 1.3.50 Primary decomposition is the process of splitting an

ideal into irreducible ideals.

Remark 1.3.51 For decomposing a monomial ideal Υ, we write it in inter-

section of irreducible monomial ideals that are generated by pure power of

variables.

Examples of monomial ideals are shown below.

Example 1.3.52 Let we have an ideal Υ = (ζη, ζ3 − ζ2 , ζ2η − ζη ), then

Υ = (ζ, ζ2(ζ − 1), ζη(ζ − 1) ) ∩ (η, ζ2(ζ − 1), ζη(ζ − 1) )

= (ζ) ∩ (η , ζ2(ζ − 1) )

= (ζ) ∩ (η , ζ2 ) ∩ (ζ − 1 ).

So, ideal Υ is decomposed here.

1.4 Polarization

Polarization is used to convert the monomial ideals into square-free monomial

ideals. Diverse types of polarization have been used in literature for various

reasons in Algebra and Algebraic Combinatorics. One of the most useful

properties of polarization is the chain of substitutions that transforms a given

monomial ideal into a square-free monomial ideal, that can be expressed

in terms of regular sequences. We can specify the depth of modules by

using these regular sequences [20]. The advantage of this method is that

numerous Combinatorics tools deal with square-free monomial ideals. The

Facet Theory developed by authors in [10], [11] and [12], is another tool for

analysing monomial ideals.
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Definition 1.4.1 Let ℵ = V [ζ1, . . . , ζq] be a polynomial ring over field V .

Let Υ1 = ζη11 ζ
η2
2 . . . ζ

ηq
q be a monomial in ℵ. Now, we characterize the polar-

ization of Υ1, which is a sqaure-free monomial,

P (Υ1) = ζ1,1ζ1,2...ζ1,η1ζ2,1...ζ2,η2 ...ζq,1...ζq,ηq

in the polynomial ring ℵ′ = V [ ζi,j| 1 ≤ i ≤ q, 1 ≤ j ≤ ηi ]. Let Υ be a mono-

mial ideal, it is generated by monomials Υ1,Υ2 . . . ,Υq, then the polarization

of Υ is given as,

P (Υ) = (P (ℵ1), P (ℵ2), P (ℵ3), . . . , P (ℵq) ).

It is a sqaure free monomial ideal in the polynomial ring ℵ′.

Here is an illustration of how polarization works.

Example 1.4.2 Let Υ = (ζ2
1 , ζ1ζ2, ζ

3
2 ) ⊆ ℵ = V [ζ1, ζ2] be a monomial ideal

in ℵ. Then, the polarization of Υ in the polynomial ring

ℵ′ = V [ζ1,1, ζ1,2, ζ2,1, ζ2,2, ζ2,3] is given by,

P (Υ) = (ζ1,1ζ1,2, ζ1,1ζ2,1, ζ2,1ζ2,2ζ2,3).

Remark 1.4.3 Note that by recognizing each ζi by ζi,1, one can say that ℵ′

is a polynomial extension of ℵ. Precisely, the number of variables in ℵ′ con-

sistently rely on what we polarize. As long, we are keen on the polarization

of finitely many monomial ideals, ℵ′ will be a finite polynomial ring.
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Basic properties of polarization

Suppose that ℵ = V [ζ1, . . . , ζq] be a polynomial ring over a field V . Υ1 and

Υ2 are two monomial ideals of ℵ, then

1. P (Υ1 + Υ2) = P (Υ1) + P (Υ2).

2. Let η1 and η2 be two monomials in ℵ, then η1|η2 if and only if P (η1)|P (η2).

3. P (Υ1 ∩Υ2) = P (Υ1) ∩ P (Υ2).

Example 1.4.4 Let Υ = (ζ2
1 , ζ

3
2 , ζ1ζ2) be an ideal of ℵ, then primary de-

composition of Υ is given by,

Υ = (ζ1, ζ
3
2 ) ∩ (ζ2

1 , ζ2).

The polarization of Υ is given as

P (Υ) = (ζ1,1ζ1,2, ζ2,1ζ2,2ζ2,3, ζ1,1ζ2,1).

P (Υ) is a sqaure free monomial ideal.

20



1.5 Module Theory

Definition 1.5.1 Let ℵ be a commutative ring, then the ℵ−module i is an

additive abelian group together with the map

· : ℵ × i→ i

defined by · (ζ, η) = ζη, that meets the following four requirments i.e ∀ ζ1, ζ2 ∈
ℵ and η1, η2 ∈ i,

1. ζ(η1 + η2) = ζη1 + ζη2,

2. (ζ1 + ζ2)η = ζ1η + ζ2η,

3. (ζ1ζ2)η = ζ1(ζ2η),

4. 1η = η.

Remark 1.5.2 Our above definition of left ℵ-module i is based on a func-

tion from ℵ × i to i. If, we reverse the order of ℵ and i in this cartesian

product and make further notational changes that seem natural, we obtain

the definition of a right ℵ-module.

If ℵ is a commutative ring and i be a left ℵ-module, we can make i into a

right ℵ-module by defining ζη = ηζ ∀ ζ ∈ ℵ and η ∈ i. If ℵ is not a com-

mutative ring then axiom (2) in general will not hold with this definition, so

every left ℵ-module is not right ℵ-module.

Module satisfying axiom 4 are called left unital modules and throughout this

thesis we consider left unital modules. If ℵ is commutative ring with unity,

then every left unital ℵ-module is right ℵ-module, therefore it is enough to

consider left unital ℵ-modules and we will call the unital left ℵ-module simply

ℵ-module.
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Example 1.5.3 Every additive abelian group i may be regarded as a Z-

module by defining ζη, for any ζ ∈ Z and η ∈ i, as follows:

1. If ζ > 0, then ζη is the sum of ζ copies of η,

2. If ζ = 0, then ζη = 0,

3. If ζ < 0, then ζη is the sum of −ζ copies of η.

Where, Z is the ring of integers.

Example 1.5.4 1. Each ring ℵ can be viewed as an ℵ module, as follows:

for abelian group, use ℵ with its additive structure and use ring mul-

tiplication for the scalar multiplication of the ring ℵ into the abelian

group (ℵ, +). Each of the four conditions in the definition of module

ℵ can be derived from the usual conditions in the definition of ring.

2. The smallest of all ℵ-modules is the module that has one element,

namely an additive identity. We will denote this module by (0).

Example 1.5.5 Let i be a vector space over a field V with dim(i) = q and

ℵ be the ring of q×q matrices with entries in V , then i is a right ℵ−module,

with scalar multiplication being the usual multiplication of a vector by a

matrix.

Definition 1.5.6 Let i be an ℵ-module. A subset i1 of i is said to be a

submodule of i, if it is a subgroup of i, and for any ζ ∈ ℵ and η ∈ i1, we

have ζη ∈ i1.
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Example 1.5.7 1. Let ℵ be a field, then the submodules of ℵ-module

(that is to say, a vector space over ℵ) are precisely the familiar sub-

spaces.

2. Let Υ be an ideal of ℵ and i be an ℵ-module, then the set Υi consisting

of all elements of the form υ1η1 + · · · + υnηn (υi ∈ Υ and ηi ∈ i ) is a

submodule of i.

Definition 1.5.8 Let ℵ be an arbitrary ring and i1 be a submodule of ℵ-

module i. Since i1 is a subgroup of the abelian group i, then the factor

group i/i1 is also defined. Here question arises, how does the scalar opera-

tion of ℵ on i provide the scalar operation of ℵ on i/i1. For this, let η1 and

η2 be elements of i, belonging to the same coset modulo i1. That is to say,

η1 + i1 = η2 + i1 if and only if difference between η1 and η2 belongs to i1.

Then, for any ζ ∈ ℵ and η1 − η2 ∈ i1, we have ζ(η1 − η2) = ζη1 − ζη2 ∈ i1

(because i1 is a submodule of ℵ-module i ), and ζη1 and ζη2 belongs to the

same coset modulo i1, i.e ζη1 +i1 = ζη2 +i1. Thus, we have a well-defined

operation of ℵ on i/i1, given by ζ(η + i1) = ζη + i1. Now, using this

operation, we will verify the four conditions of module for i/i1,

1. ζ[(η1 + i1) + (η2 + i2)] = ζ[(η1 + η2) + i1] = ζ(η1 + η2) + i1 =

(ζη1 + ζη2) + i1 = (ζη1 + i1) + (ζη2 + i1) = ζ(η1 + i1) + ζ(η2 + i1),

2. (ζ1 + ζ2)(η + i1) = (ζ1 + ζ2)η + i1 = (ζ1η + ζ2η) + i1 = (ζ1η + i1) +

(ζ2η + i1) = ζ1(η + i1) + ζ2(η + i1),

3. (ζ1ζ2)(η+i1) = (ζ1ζ2)η+i1 = ζ1(ζ2η)+i1 = ζ1[(ζ2)η+i1] = ζ1[ζ2(η+

i1)],

4. 1(η + i1) = 1η + i1 = η + i1.
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The module i/i1 is called the factor module of i by i1.

Definition 1.5.9 Let i1 and i2 be ℵ-modules. A function L from i1 to i2

is called an ℵ-homomorphism if and only if

• L(η1 + η2) = L(η1) + L(η2), ∀ η1, η2 ∈ i1.

• L(ζη) = ζL(η), ∀ ζ ∈ ℵ, η ∈ i1.

If L is (1-1) and onto, then it is called an ℵ-module isomorphism.

Examples 1.5.10 1. When ℵ is a field, then the ℵ-homomorphisms are

the familiar ℵ-linear transformations studied in linear algebra.

2. The 0 map from i1 to i2, which maps every element of i1 to 0 is an

example of ℵ-homomorphism.

Definition 1.5.11 Let L be an ℵ-homomorphism from an ℵ-module i1 to

ℵ-module i2. The set of elements of i1, for which we have L(η) = 0, referred

to as the kernel of L. This set is denoted by Ker(L), and it is a submodule

of i1.

Definition 1.5.12 Let i be an ℵ-module, then the annihilator of ℵ- module

i is given as, Ann(i) = {ζ ∈ ℵ |ζi = 0}. It is an ideal of ℵ.
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Definition 1.5.13 Let ℵ be a ring and {ij| j ∈ A} be a family of ℵ-

modules, indexed by an arbitrary nonempty index set A. From this indexed

family of modules, we can form an ℵ-module i given as,

i =
∏
j∈A

ij.

It is called the direct product of the modules ij, whose elements are the

collections {ηj}, where ηj ∈ ij and j ∈ A. In i, the operation of addition is

the componentwise addition and the scalar multiplication is distributed all

over the components, i.e for any ζ ∈ ℵ and ηj ∈ ij, we have ζ{ηj} = {ζηj}.

Definition 1.5.14 Let i be defined as above in definition 1.5.13, then the

subset i0 of ℵ-module i consisting of finitely many non zero elements, this

subset is called the coproduct (or often direct sum) of {ij|j ∈ A}, and it is

denoted by, ⊕
j∈A

ij

or ∐
j∈A

ij.

Definition 1.5.15 Let ℵ be a ring. Let i1 be a right ℵ-module, i2 be a left

ℵ-module, and P be an abelian group. A map

L1 : i1 × i2 → P

is said to be ℵ-balanced product, if for all η′1, η′2 ∈ i1, η1, η2 ∈ i2, and ζ ∈ ℵ,

the following holds

1. L1(η′, η1 + η2) = L1(η′, η1) + L1(η′, η2).

2. L1(η′1 + η′2, η) = L1(η′1, η) + L1(η′2, η).
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3. L1(η′ · ζ, η) = L1(η′, ζ · η).

Definition 1.5.16 Let ℵ, i1, i2 and P are defined as above. Then, the

abelian group i1 ⊗ℵ i2 is called the tensor product of i1 and i2, together

with an ℵ-balanced map

L2 : i1 × i2 → i1 ⊗ℵ i2,

and for every abelian group P and ℵ-balanced map

L1 : i1 × i2 → P

there is a unique abelian group homomorphism

L3 : i1 ⊗ℵ i2 → P,

such that

L1 = L3 ◦ L2.

Definition 1.5.17 Let i1 be a subset of ℵ-module i, if for any η ∈ i, there

are ζ1 . . . ζq ∈ ℵ and υ1 · · · υq ∈ i1, such that

η = ζ1υ1 + ζ2υ2 · · ·+ ζqυq,

then, we say that i1 is the generating set of i over ring ℵ.

More generally, for any subset i2 of i, the ℵ-submodule of i generated by

i2 is the submodule of this type, i′′ = ℵi̇2. This submodule consists off all

limited sums of this sort ζ1υ
′
1 + ζ2υ

′
2 · · ·+ ζqυ

′
q, where ζq ∈ ℵ and υ′q ∈ i2.

Definition 1.5.18 If i1 and i2 are submodules of ℵ-module i, then i1+i2

is a submodule of i consisting of all elements of the form υ1ζ1 + υ2ζ2, where

υq ∈ iq and ζq ∈ ℵ. The submodule i1 + i2 is generated by i1

⋃
i2.
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Definition 1.5.19 If there exists a finite subset i1 of i, such that i is

generated by i1, then we say that i is finitely generated. If i1 = η is a

single element set, such that i = ℵ · η, then we say that i is cyclic with

generator η.

Definition 1.5.20 If i is finitely generated module, there exists a gener-

ating set of minimal cardinality. Such a generating set is called minimal

generating set.

Definition 1.5.21 Assume that the subset i1 generates ℵ-module i. Then,

i1 freely generates i, if for every η ∈ i, there are distinctive ζ1, . . . , ζq ⊆ ℵ
and υ1, . . . , υq ⊆ i1, such that

η = υ1ζ1 + · · ·+ υqζq.

Corollary 1.5.22 For any neotherian ring ℵ, we have

dimℵ[ζ1, . . . , ζq] = q + dimℵ.

For any field V , dimV [ζ1, . . . , ζq] = q and dimV [ζ1, . . . ] =∞.

1.5.1 Exact sequences

Definition 1.5.23 The sequence of ℵ-modules and ℵ-homomorphisms, given

by

· · · −→ ib−1
Υb−−−→ ib

Υb+1−−−→ ib+1
Υb+2−−−→ . . .

is said to be exact at ib, if

Im (Υb) = ker(Υb+1).

If the sequence is exact at every ib, then it is called an exact sequence. The

particular sequence

0 −→ i1
Υ1−−−→ i
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is said to be exact at i1 iff Υ1 is one-one, and the sequence

i Υ2−−−→ i2 −→ 0

is exact at i2 iff Υ2 is onto.

Proposition 1.5.24 This particular sequence

0 −→ i1
Υ1,−−−→ i Υ2−−−→ i2 −→ 0

is said to be short exact iff Υ1 is one-one, Υ2 is onto and

Im(Υ1) = ker(Υ2).

.

1.5.2 Graded modules

Definition 1.5.25 Let G be a abelian-semi group with addition, then the

ring ℵ is said to be a G-graded ring if it has a decomposition

ℵ =
⊕
b∈G

ℵ′b,

such that ℵ′b1ℵ
′
b2
⊂ ℵ′b1+b2 , ∀ b1, b2 ∈ G. Then for ζ ∈ ℵ, we can write ζ in a

unique expression

ζ =
∑
b∈G

ζb,

where ζb ∈ ℵb and almost all ζb = 0 and ζb is called the p-th homogeneous

component and If ζ = ζb, then ζ is called homogeneous of degree b.

Definition 1.5.26 Let ℵ be a G-graded ring and i be an ℵ-module, then

i is said to be a G-graded module if it has a decompostion

i =
⊕
b∈G

ib,

such that ℵb1ib2 ⊂ ib1+b2 ∀ b1, b2 ∈ G.
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Example 1.5.27 Let ℵ = V [ζ1, . . . , ζq] be a ring of polynomials over field

V . For b = (b1, · · · , bq) in Zq, we set ζb = ζb11 · · · ζ
bq
q and if P ∈ ℵ has the

form cζb, where c ∈ V , it is called a homogeneous element of degree b, then

the induced Zq-grading of polynomial ring ℵ is given by

ℵ =
⊕
b∈Zq

ℵ′b,

where ℵ′b =

{
V ζd, if b ∈ Zq+;
0 , otherwise.

Definition 1.5.28 An ℵ-module i is said to be Zq-graded if

i =
⊕
b∈Zq

ib,

and ℵbid ⊂ ib+d ∀ b, d ∈ Zq.

Example 1.5.29 • Let ℵ = V [ζ] be a polynomial ring. When b = 0, we

have ℵ′0 = V ζ0 = V, if b = 1, we have ℵ′1 = V ζ1 = V ζ, and for b = 2,

ℵ′2 = V ζ2, then V [ζ] is Z-graded with decomposition

ℵ = V ⊕ V ζ ⊕ V ζ2 ⊕ V ζ3 ⊕ · · ·

• V [η, ζ] is Z-graded, because we have following decomposition

V [η, ζ] = V⊕(V η+V ζ)⊕(V η2+V ηζ+V ζ2)⊕(V η3+V η2ζ+V ηζ2+V ζ3)⊕···
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Chapter 2

A brief overview of Graph
Theory

2.1 Introduction

Mathematical and non-mathematical problems can be solved using dia-

grams. The diagrams involved in such problems represent a more or less

subtle rewrite of the problems, and the quest to solve such problems gave

rise to Graph Theory.

In recent years, there has been a surge of interest in utilizing combina-

torial approaches to model algebraic problems. This technique of using a

combinatorial object to describe the behavior of an algebraic problem has

yielded impressive results. This approach has allowed us to characterize the

algebraic properties of edge ideals in terms of the combinatorial behavior of

associated graphs.

Since the introduction of edge rings, there have been many papers studying

algebraic properties of the edge rings of graphs. Studying invariants of the

rings, such as depth in [16] and [17] are examples of algebraic properties that
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have been investigated.

In this chapter, we discuss the fundamentals of Graph Theory. We also

discuss different types of graphs which we will use later.

2.2 Graph fundamentals

Definition 2.2.1 A graph is made up of two sets, ℵV and ℵE. The elements

of ℵV are the vertices of graph, while the elements of ℵE are the edges of

graph.

Definition 2.2.2 If the ends of an edge coincides, then the edge is called a

loop.

Definition 2.2.3 A multiple edge is formed when two edges have same pair

of end points.

Definition 2.2.4 If an edge connects two vertices such as η1 and η2, then

they are considered adjacent, also η1 and η2 are said to be neighbours of each

other.

If a point isn’t an endpoint of an edge, it is considered isolated.

Definition 2.2.5 Let H = (V (H), E(H)) be a graph on q vertices, ℵ be a

polynomial ring in q variables over a field V , then the edge ideal I = I(H)

of H be the ideal generated by all monomials of the type ζjζj+1, where

{ζj, ζj+1} ∈ E(H).

Definition 2.2.6 The degree of a vertex in a graph is the total number of

its neighbours and it is identified as dH(η).
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Figure 2.1: An example of simple graph without loop and multiple edges.

Figure 2.2: A graph with loop.

Figure 2.3: An example of graph with multiple edges.
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Figure 2.4: Graph on left with its subgraph on right.

Definition 2.2.7 The cardinallity of the vertex set of a graph determines

its order and the cardinallity of the edge set of a graph determines its size.

Definition 2.2.8 For a graph H = (ℵV , iE), If ℵV1 is a subset of vertex set

ℵV and iE1 is a subset of edge set iE, and any edge in iE has its end points

in ℵV1 , then H1 = (ℵV1 , iE1) is a subgraph of H.

For example see Fig 2.4.

Definition 2.2.9 Let H1 be a subgraph of H, if all the vertices of H are in

H1, then the subgraph H1 of H is called a spanning subgraph of H, and for

any vertices η1, η2 ∈ H1, if all edges between η1 and η2 belong to H1, then

the subgraph H1 is said to be an induced subgraph of H.

For example see Fig 2.5.
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Figure 2.5: The top left graph with its spanning subgraph on top right and
induced subgraph below.

Definition 2.2.10 A graph Pq = (ℵV , iE) comprising of vertex set

{η1, η2, . . . , ηq} and an edge set {η1η2, η2η3, . . . , ηq−1ηq} is called a path

graph, denoted by Pq and the length of a path is the number of edges it

contains. On the other hand, a cycle is a graph with vertex and edge sets

are given by {η1, η2, . . . , ηq} and {η1η2, η2η3, . . . , ηq−1ηq, η1ηq}.
For example see Fig 2.6.

Definition 2.2.11 A graph is said to be connected if there is a path with

the vertex sequence {η1η2, η2η3, . . . , ηq−1ηq} for every pair of vertices.

Definition 2.2.12 A complete graph H = (ℵV , iE) is a graph in which any

two vertices in the vertex set ℵV are adjacent.
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Figure 2.6: Path P7 and cycle graph C7.

Figure 2.7: Bipartite graph.

Definition 2.2.13 For a graph H = (ℵV , iE), if there is a subdivision of

vertex set ℵV given by ℵV = ℵV1
⋃
ℵV2 , and for every edge η1η2 of ℵV , we

have η1 ∈ ℵV1 and η2 ∈ ℵV2 or η1 ∈ ℵV2 and η2 ∈ ℵV1 , then the graph is called

bipartite graph.

For example, see Fig 2.7.

Definition 2.2.14 A regular graph is a graph in which every vertex has the

same degree.

For example, see Fig 2.8.
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Figure 2.8: Franklin 3-regular graph.

Definition 2.2.15 The distance between two vertices in a graph is the num-

ber of edges in the shortest path.

Definition 2.2.16 The diameter of a graph is the maximum distance be-

tween the pair of vertices.

Definition 2.2.17 1. The eccentricity of a vertex η in a graph is the

maximum distance between vertex η and any other vertex η′ of graph.

2. The radius of a graph is the least of all eccentricities of its vertices.

3. The centre of a graph is a set of vertices with the least eccentricity.

Definition 2.2.18 A tree is a graph with no cycles and there exists a path

connecting every pair of vertices.

Remark 2.2.19 Every tree of order q is q − 1 in size.
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Definition 2.2.20 A vertex with degree at least 2 is considered as an inner

vertex. Similarly, a vertex of degree 1 is called a leaf or terminal vertex.

Definition 2.2.21 A caterpillar is a tree of order 3 or more in which a path

graph is produced by deleting the leaves and their incident edges.

For example, see Fig 2.10.

Definition 2.2.22 A J-star is a tree with one internal vertex and J − 1-

leaves.

Definition 2.2.23 The centre of every tree is made up of one or two adjacent

vertices. Every longest path has a centre, which is the middle vertex or the

middle two vertices.

2.3 Lobster trees and uniclyclic graphs

Definition 2.3.1 A lobster tree is a tree in which removing the leaf nodes

leaves a caterpillar graph.

For example, see Fig 2.9.

Definition 2.3.2 A connected graph with precisely one cycle is called a

unicyclic graph.

For example, see Fig 2.11.

37



Figure 2.9: A lobster tree on the top, with its caterpillar subgraph below.
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Figure 2.10: An example of caterpillar tree.

Figure 2.11: An example of unicyclic graph.
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Chapter 3

Depth and Stanley depth

In this chapter, we discuss how the regular element property helps in de-

termining the depth of modules. We discuss the Stanley depth([27]) of Zq-
graded modules. We also discuss some recent results of the Stanley depth

and depth of edge ideals associated with different graphs.

3.1 Depth

3.1.1 The regular element property

Definition 3.1.1 Let ℵ be a commutative ring and i be an ℵ−module, then

for any subset Υ of ℵ, the set

Anni(Υ) = {η ∈ i | ηΥ = 0}

is called annihilator of Υ in i and it is a submodule of i.

Definition 3.1.2 An element ζ 6= 0 in ℵ is said to be i-regular if Anni(ζ) =

0.

Definition 3.1.3 We say that ℵ has regular element property if for each

finitely presented ℵ-module i, and finitely generated ideal Υ of ℵ, we have

Anni(Υ) = 0, then Υ contains a i-regular element.
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Definition 3.1.4 Let i be an ℵ-module, a sequence ζ = ζ1, ζ2, . . . , ζq ∈ ℵ
is said to be i-regular sequence if

1. ζr is i/(ζ1, ζ2, . . . , ζr−1)i−regular for each r.

2. i/(ζ1, . . . , ζq)i 6= 0.

Definition 3.1.5 Let ℵ be a neotherian ring and i be a finitely generated

ℵ-module, then the depth of i is the common length of all maximal i-regular

sequences in the maximal ideal Υ of ℵ.

Definition 3.1.6 The depth of a local neotherian ring ℵ as an ℵ-module is

the utmost length of a regular sequence in the maximal ideal.

Theorem 3.1.7 Let i be an ℵ-module, then sdepth(i), depth(i) ≤ dimi,

where dimi is the krull dimension of i.

Example 3.1.8 Let ℵ = V [ζ1, ζ2] be a module over itself. Then ζ1 is

ℵ−regular because

ζ1 · ζr 6= 0,

for all ζr 6= 0 ∈ ℵ. This indicates that

Annℵ (ζ1) = 0

Hence ζ1 is ℵ-regular. Also ζ2 is i = ℵ/(ζ1)ℵ-regular becuase

Anni(ζ2) = 0,

where ideal Υ′ = (ζ1)ℵ is the set of all possible finite sums of elements of

form ζ ′η′, where ζ ′ ∈ (ζ1) and η′ ∈ ℵ.

As a result ζ = ζ1, ζ2 is ℵ-regular sequence in the maximal ideal (ζ1, ζ2), this

gives us

depth(ℵ) = 2.
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In general, if ℵ = V [ζ1, ζ2, · · · , ζq] is a module over itself. Then the reg-

ular sequence ζ = ζ1, ζ2, . . . , ζq is maximal in the maximal ideal Υ =

(ζ1, ζ2, . . . , ζq). As a conclusion, we have

depth(ℵ) = q.

Example 3.1.9 Let ℵ = V [ζ1, ζ2, ζ3, ζ4] be polynomial ring and

i = (ζ1, ζ2ζ3)/(ζ2ζ4) be an ℵ module. The ideal Υ = (ζ1, ζ2, ζ3, ζ4) is

maximal in ℵ and the sequence ζ = ζ1, ζ3 in Υ is i−regular, because ζ1 is

i/(0)i = i−regular and ζ3 is i/(ζ1)i-regular, i.e

Ann(ζ1) = 0 = Ann(ζ3).

While,

Ann(ζ2) 6= 0 6= Ann(ζ4).

Then, depth(i) = 2.

Example 3.1.10 Let ℵ = V [ζ1, ζ2, · · · , ζq] be a polynomial ring and

Υ = (ζ2
2 , ζ2ζ1, ζ2ζ3, ζ2ζ4, . . . , ζ2ζq) is an ideal of ℵ. Let i = ℵ/Υ be an

ℵ−module, then for each ζr ∈ ℵ, we have

Ann(ζr) 6= 0.

To verify this, let for ζ1, we have ζ1 · (ζ2 + Υ) = 0, but ζ1 6= 0. As a result,

depth(i) = 0.

Lemma 3.1.11 ([4]) (Depth Lemma) Let we have a short exact sequence

0→ i1 → i2 → i3 → 0 of modules over a local ring ℵ, then

1. depth(i2) ≥ min{depth(i3), depth(i1)}.

2. depth(i1) ≥ min{depth(i2), depth(i3) + 1}.

3. depth(i3) ≥ min{depth(i1)− 1, depth(i2)}.
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3.2 Stanley decomposition and Stanley depth

Definition 3.2.1 Let ℵ = V [ζ1, . . . , ζq] be a polynomial ring and i be a

finitely generated Zq-graded ℵ-module. Then, the V -subspace of i denoted

by ηV [D] is the subspace made up of all ηυ-type homogenous elements, where

η ∈ i is a homogeneous in terms of degree, υ represents a monomial in V [D]

and D ⊂ {ζ1, ζ2, . . . , ζq}. The space ηV [D] is called a Stanley space of

dimension |D| if it ia a free V [D] module, here |D| refers to the number

of indeterminates in D. In Stanley decomposition, the V -vector space i is

decomposed into a finite direct sum of Stanley spaces as

A : i =
h⊕
b=1

ηbV [Db].

The Stanley depth of decomposition is given as

sdepthA = min{ |Db| , b = 1, . . . , h}.

The Stanley depth of i is given by

sdepth(i) = max{ sdepthA : A is a Stanley decomposition of i}.

In [27], Stanley proposed the following conjecture for Zq-graded ℵ-modules,

given by

depth(i) ≤ sdepth(i),

known as the Stanley conjecture. In [3], [2] and [22], the conjecture for ℵ/Υ
was proved when q ≥ 3, q = 4 and q = 5, respectively, where ℵ is a ring of

polynomials in q variables and Υ be an ideal of ℵ. But later In [8], it was

proved that the Stanley conjecture does not hold for the modules of type

ℵ/Υ.
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3.2.1 An approach for obtaining the Stanley depth of a
monomial ideal.

In general, there was no method for computing the Stanley depth of modules.

However, in [15] Herzog proposed that the Stanley depth of a module can

be determined in finite number of steps using posets, when a Zn graded R-

module M is of the following type M = Υ1/Υ2, where Υ2 ⊂ Υ1 ⊂ ℵ are

monomial ideals. Let ζυ1 , ζυ2 , . . . , ζυt be the monomial set of generators of

Υ1 and ηυ
′
1 , . . . , ηυ

′
t be the monomial set of generators of Υ2. The monomial

ζ
υ(1)
1 ζ

υ(2)
2 · · · ζυ(q)

q is denoted by ζυ.

Now we fix δ ∈ Nq with the condition υi ≤ δ and υ′j ≤ δ, where ≤ stands

for partial ordering in Nq. The subposet AδΥ1/Υ2
of Nq is defined as the

characteristic poset with consideration to δ, given by

AδΥ1/Υ2
= {υ ∈ Nq : ζυ ∈ Υ1/Υ2, υ ≤ δ}.

Since our goal is to determine the Stanley depth of a square free monomial

ideal Υ1, we choose Υ2 = 0 and δ = (1, . . . , 1). For any υ, ω ∈ AΥ(1,··· ,1) ,

we establish

[υ , ω] = {ϕ ∈ A(1,...,1)
Υ1

: υ ⊆ ϕ ⊆ ω}.

Partition of A(1,...,1)
Υ1

is the following disjoint union of intervals

L : A(1,...,1)
Υ1

= ∪mb=1[ϕb, ϕ
′
b].

The Stanley decomposition of Υ1 is induced by each partition of A(1,...,1)
Υ1

into

intervals and is given by

D(L) : Υ1 =
h⊕
b=1

ζϕ(b) V [{ ζc | c ∈ ϕ′b }].

Appaerently, sdepthD(L) = min{ |ϕ′b| : b = 1, . . . , h} and

sdepth(Υ1) = max{ sdepthD(L) }.
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Remark 3.2.2 If the module is of type i = ℵ/Υ, then the Stanley depth of

i can be determined using the same approach as above by replacing Υ1 with

ℵ and Υ2 with Υ. However, in some cases, finding all possible partitions of

the characteristic partial order set for finding Stanley depth is impossible.

Example 3.2.3 Let Υ1 = (ζ1ζ4, ζ3ζ4) ⊂ V [ζ1, ζ2, ζ3, ζ4] be a square-free

monomial ideal and Υ2 = 0. We set ζυb = ζ
υ(1)b
1 ζ

υ(2)b
2 ζ

υ(3)b
3 ζ

υ(4)b
4 and Υ1 is

generated by ζυ1 , ζυ2 , where

υ1 = (υ(1)1, υ(2)1, υ(3)1, υ(4)1) = (1, 0, 0, 1) and

υ2 = (υ(1)2, υ(2)2, υ(3)2, υ(4)2) = (0, 0, 1, 1). Here, we choose δ = (1, 1, 1, 1).

Then, the poset A(1,...,1)
Υ1

is given by

A(1,...,1)
Υ1

= {(1, 0, 0, 1), (0, 0, 1, 1), (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1), (1, 1, 1, 1)}.

Partitions of A
Υ

(1,...,1)
1

are given by:

L1 : [(1, 0, 0, 1), (1, 0, 0, 1)]
⋃

[(0, 0, 1, 1), (0, 0, 1, 1)]
⋃

[(1, 1, 0, 1), (1, 1, 0, 1)]
⋃

[(1, 0, 1, 1), (1, 0, 1, 1)]
⋃

[(0, 1, 1, 1), (0, 1, 1, 1)]
⋃

[(1, 1, 1, 1), (1, 1, 1, 1)].

L2 : [(1, 0, 0, 1), (1, 1, 0, 1)]
⋃

[(0, 0, 1, 1), (1, 0, 1, 1)]
⋃

[(0, 1, 1, 1), (1, 1, 1, 1)].

L3 : [(1, 0, 0, 1), (1, 0, 1, 1)]
⋃

[(0, 0, 1, 1), (0, 1, 1, 1)]
⋃

[(1, 1, 0, 1), (1, 1, 1, 1)].
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The Stanley decomposition of these partitions are given as:

D(L1) := ζ1ζ4V [ζ1, ζ4]⊕ ζ3ζ4 V [ζ3, ζ4]⊕ ζ1ζ2ζ4V [ζ1, ζ2, ζ4]

⊕ζ1ζ3ζ4V [ζ1, ζ3, ζ4]⊕ ζ2ζ3ζ4V [ζ2, ζ3, ζ4]⊕ ζ1ζ2ζ3ζ4V [ζ1, ζ2, ζ3, ζ4].

D(L2) := ζ1ζ4V [ζ1, ζ2, ζ4]⊕ ζ3ζ4V [ζ1, ζ3, ζ4]⊕ ζ2ζ3ζ4V [ζ1, ζ2, ζ3, ζ4].

D(L3) := ζ1ζ4V [ζ1, ζ3, ζ4]⊕ ζ3ζ4V [ζ2, ζ3, ζ4]⊕ ζ1ζ2ζ4V [ζ1, ζ2, ζ3, ζ4].

Then,

sdepth(Υ1) ≥ max{sdepth(D(L1)) , sdepth(D(L2)) , sdepth(D(L3))}

= max{2, 3, 3}

= 3.

Example 3.2.4 Let Υ1 = (ζ1, ζ2, ζ3) ⊂ V [ζ1, ζ2, ζ3] be a monomial ideal

and Υ2 = 0. We set ζυb = ζ
υ(1)b
1 ζ

υ(2)b
2 ζ

υ(3)b
3 and Υ1 is generated by ζυ1 , ζυ2 ,

ζυ3 , where υ1 = (υ(1)1, υ(2)1, υ(3)1) = (1, 0, 0), υ′2 = (υ(1)2, υ(2)2, υ(3)2) =

(0, 1, 0) and υ3 = (υ(1)3, υ(2)3, υ(3)3) = (0, 0, 1). Here, we choose δ =

(1, 1, 1, 1). The poset A(1,...,1)
Υ1

is given by

A(1,...,1)
Υ1

= {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}.

Partitions of A
Υ

(1,...,1)
1

are given by:

L1 : [(1, 0, 0), (1, 0, 0)]
⋃

[(0, 1, 0), (0, 1, 0)]
⋃

[(0, 0, 1), (0, 0, 1)]
⋃

[(1, 1, 0), (1, 1, 0)]
⋃

[(1, 0, 1), (1, 0, 1)]
⋃

[(0, 1, 1), (0, 1, 1)]
⋃

[(1, 1, 1), (1, 1, 1)].

L2 : [(1, 0, 0), (1, 0, 1)]
⋃

[(0, 1, 0), (1, 1, 0)]
⋃

[(0, 0, 1), (0, 1, 1)]
⋃

[(1, 1, 1), (1, 1, 1)].
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L3 : [(1, 0, 0), (1, 1, 0)]
⋃

[(0, 1, 0), (0, 1, 1)]
⋃

[(0, 0, 1), (1, 0, 1)]
⋃

[(1, 1, 1), (1, 1, 1)].

The Stanley decomposition of these partitions are given as:

D(L1) := ζ1V [ζ1]⊕ ζ2 V [ζ2]⊕ ζ3V [ζ3]⊕

ζ1ζ2V [ζ1, ζ2]⊕ ζ1ζ3V [ζ1, ζ3]⊕ ζ2ζ3V [ζ2, ζ3] ⊕ ζ1ζ2ζ3V [ζ1, ζ2, ζ3].

D(L2) := ζ1V [ζ1, ζ3 ]⊕ ζ2V [ζ1, ζ2]⊕ ζ3V [ζ2, ζ3]⊕ ζ1ζ2ζ3V [ζ1, ζ2, ζ3].

D(L3) := ζ1V [ζ1, ζ2 ]⊕ ζ2V [ζ2, ζ3]⊕ ζ3V [ζ1, ζ2]⊕ ζ1ζ2ζ3V [ζ1, ζ2, ζ3].

Then

sdepth(Υ1) ≥ max{sdepth(D(L1)) , sdepth(D(L2)) , sdepth(D(L3))}

= max{1, 2, 2}

= 2.

The following example demonstrates how to calculate the Stanley depth of

ℵ/Υ.

Example 3.2.5 Let Υ = (ζ1ζ4, ζ3ζ4) ⊂ V [ζ1, ζ2, ζ3, ζ4]. Here, we choose

δ = (1, 1, 1, 1, 1). The poset A(1,...,1)
ℵ/Υ1

is then given by

A(1,...,1)
ℵ/Υ = {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1),

(1, 1, 0, 0), (1, 0, 1, 0), (0, 1, 1, 0), (0, 1, 0, 1), (1, 1, 1, 0)}.
Partitions of Aℵ/Υ(1,...,1) are provided by:

L1 : [(0, 0, 0, 0), (1, 0, 0, 0)]
⋃

[(0, 1, 0, 0), (0, 1, 0, 0)]
⋃

[(0, 0, 1, 0), (0, 0, 1, 0)]
⋃

[(0, 0, 0, 1), (0, 0, 0, 1)]
⋃

[(1, 1, 0, 0), (1, 1, 0, 0)]
⋃

[(1, 0, 1, 0), (1, 0, 1, 0)]
⋃

[(0, 1, 1, 0), (0, 1, 1, 0)]
⋃

[(0, 1, 0, 1), (0, 1, 0, 1)]
⋃

[(1, 1, 1, 0), (1, 1, 1, 0)] .
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L2 : [(0, 0, 0, 0), (1, 1, 0, 0)]
⋃

[(1, 0, 0, 0), (1, 0, 1, 0)]
⋃

[(0, 1, 0, 0), (0, 1, 1, 0)]
⋃

[(0, 0, 0, 1), (0, 1, 0, 1)]
⋃

[(0, 0, 1, 0), (1, 1, 1, 0)] .

L3 : [(0, 0, 0, 0), (0, 1, 0, 0)]
⋃

[(1, 0, 0, 0), (1, 1, 0, 0)]
⋃

[(0, 0, 1, 0), (1, 0, 1, 0)]
⋃

[(0, 0, 0, 1), (0, 1, 0, 1)]
⋃

[(0, 1, 1, 0), (1, 1, 1, 0)] .

The Stanley decomposition of these partitions is as follows:

D(L1) := V [ζ1]⊕ ζ2V [ζ2]⊕ ζ3V [ζ3]⊕ ζ4V [ζ4]⊕ ζ1ζ2V [ζ1, ζ2]⊕

ζ1ζ3V [ζ1, ζ3]⊕ ζ2ζ3V [ζ2, ζ3]⊕ ζ2ζ4V [ζ2, ζ4]⊕ ζ1ζ2ζ3V [ζ1, ζ2, ζ3].

D(L2) := V [ζ1, ζ2]⊕ ζ1V [ζ1, ζ3]⊕ ζ2V [ζ2, ζ3]⊕ ζ4V [ζ2, ζ4]⊕ ζ3V [ζ1, ζ2, ζ3].

D(L3) := V [ζ2]⊕ ζ1V [ζ1, ζ2]⊕ ζ3V [ζ1, ζ3]⊕ ζ4V [ζ2, ζ4]⊕ ζ3ζ2V [ζ1, ζ2, ζ3].

Then

sdepth(ℵ/Υ) ≥ max{sdepth(D(L1)) , sdepth(D(L2)), sdepth(D(L3))}

= max{1, 2, 1}

= 2.

The following are some basic results of depth and Stanley depth that will

be used in chapter 4.

Lemma 3.2.6 Let the sequence 0 → i1 → i2 → i3 → 0 of Zq-graded

ℵ-modules is short exact. Then

sdepth(i2) ≥ min{sdepth(i1), sdepth(i3)}.
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Lemma 3.2.7 ([19], Lemma 2.8) Let Υ be an edge ideal associated with

Pq, where q ≥ 2, then

depth(ℵ/Υ(Pq)) = dq
3
e.

Lemma 3.2.8 ([26], Lemma 4) Let Υ be an edge ideal associated with Pq

and q ≥ 2, then

sdepth(ℵ/Υ(Pq)) = dq
3
e.

Proposition 3.2.9 ([6], Proposition 1.3) Assume q ≥ 3, then

depth(ℵ/Υ(Cq)) = dq − 1

3
e.

Proposition 3.2.10 ([1]) Let Υ be an edge ideal of q-star, then sdepth(ℵ/Υ) =

1 and depth(ℵ/Υ) = 1.

Proposition 3.2.11 ([5], Proposition 2.7) Let Υ ⊂ ℵ be a monomial

ideal and for any monomial ζ /∈ Υ, we have

1. sdepthℵ(Υ : ζ) ≥ sdepthℵ(Υ), ([23], Proposition 1.3)

2. depthℵ(ℵ/(Υ : ζ)) ≥ depthℵ(ℵ/Υ), [24]

3. sdepthℵ(ℵ/(Υ : ζ)) ≥ sdepthℵ(ℵ/Υ).

Lemma 3.2.12 [19] Let Υ ⊂ ℵ to be an ideal generated by monomials. Let

ℵ′ = ℵ ⊗K V [ζq+1] = ℵ[ζq+1], then depth(ℵ′/Υ′ℵ′) = depth(ℵ/Υ) + 1 and

sdepth(ℵ′/Υ′ℵ′) = sdepth(ℵ/Υ) + 1.

Lemma 3.2.13 ([5], Proposition 1.1) Let Υ′ ⊂ ℵ′ = V [ζ1, . . . , ζr] and

Υ′′ ⊂ ℵ′′ = V [ζr+1, . . . , ζq] be the ideals generated by monomials, where

1 ≤ r ≤ q, then

depthℵ(ℵ/(Υ′ℵ+ Υ′′ℵ)) = depthℵ′(ℵ′/Υ′) + depthℵ′′(ℵ′′/Υ′′).
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Lemma 3.2.14 ([5], Proposition 1.1) Let Υ′ ⊂ ℵ′ = V [ζ1, . . . , ζr] and

Υ′′ ⊂ ℵ′′ = V [ζr+1, . . . , ζq] be the ideals generated by monomials, where

1 ≤ r ≤ q, then depthℵ(ℵ′/Υ′ ⊗K ℵ′′/Υ′′) = depthℵ(ℵ/(Υ′ℵ + Υ′′ℵ)) =

depthℵ′(ℵ′/Υ′) + depthℵ′′(ℵ′′/Υ′′).

Theorem 3.2.15 ([24], Theorem 3.1) Let Υ′ ⊂ ℵ′ = V [ζ1, . . . , ζr] and

Υ′′ ⊂ ℵ′′ = V [ζr+1, . . . , ζq] be the ideals generated by monomials, where

1 ≤ r ≤ q, then

sdepthℵ(ℵ/(Υ′ℵ+ Υ′′ℵ)) ≥ sdepthℵ′(ℵ′/Υ′) + depthℵ′′(ℵ′′/Υ′′).

Lemma 3.2.16 Let Υ′ ⊂ ℵ′ = K[ζ1, . . . , ζr] and Υ′′ ⊂ ℵ′′ = K[ζr+1, . . . , ζq]

be the ideals generated by monomials, where 1 ≤ r ≤ q, then

sdepthℵ(ℵ′/Υ′ ⊗K ℵ′′/Υ′′) ≥ sdepthℵ′(ℵ′/Υ′) + sdepthℵ′′(ℵ′′/Υ′′).

Proof: From ([24], Proposition 2.2.20), we have

ℵ′/Υ′ ⊗K ℵ′′/Υ′′ ∼= ℵ/(Υ′ℵ+ Υ′′ℵ).

Then, by using Theorem 3.2.15 we get our required result.

Theorem 3.2.17 ([13], Theorem 3.1 and 4.18) Let H be a connected

graph and Υ(H) be the edge ideal associated with H. Let p be the diameter

of graph, then

depth(ℵ/Υ), sdepth(ℵ/Υ) ≥ dp+ 1

3
e.

Lemma 3.2.18 ([15], Lemma 3.6) Let Υ ⊂ ℵ be an ideal and

ℵ′ = ℵ[ζq+1, . . . , ζq+t] be a polynomial ring, then

depth(ℵ′/Υℵ′) = depth(ℵ/Υℵ)+t and sdepth(ℵ′/Υℵ′) = sdepth(ℵ/Υℵ)+t.
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Proposition 3.2.19 ([7]) Let Υ ⊂ ℵ = V [ζ1, . . . , ζq] be a monomial ideal

minimally generated by t elements, then

sdepth(ℵ/Υ) ≥ q − t.

Theorem 3.2.20 ([25]) Let Υ ⊂ ℵ = V [ζ1, . . . , ζq] be a monomial ideal

minimally generated by t elements, then

sdepth(Υ) ≥ q − b t
2
c.

Theorem 3.2.21 ([21]) Let Υ ⊂ ℵ be a monomial ideal, it is minimally

generated by t monomials. Then,

sdepth(Υ) ≥ max{1, q − d t
2
e}.

Theorem 3.2.22 ([15]) Let Υ ⊂ ℵ be a monomial ideal, it is minimally

generated by t monomials. Then,

sdepth(Υ) ≥ max{1, q − t+ 1}.

Lemma 3.2.23 ([18]) Let Υ ⊂ ℵ be a monomial ideal that is square-free

with supp(Υ) = [q], let z := ζi1ζi2 · · · ζir ∈ ℵ/Υ, such that ζmz ∈ Υ, for all

m ∈ [q]\ supp(z). Then, sdepth(ℵ/Υ) ≤ r.
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Chapter 4

Depth and Stanley Depth of the Quotient Ring of
Edge Ideals Associated with Some Classes of Lobster
Trees and Unicyclic Graphs

In this chapter, we compute depth and Stanley depth of the cyclic modules

associated with lobster tree Pn,m,h, where m = h. We prove for this lobster

tree, the depth and Stanley depth values are equal. In addition, the Stanley’s

inequality hold for these values. Furthermore, we use lobster tree results to

find the values of depth and Stanley depth of the quotient ring of edge ideal

associated with unicyclic graph Cn,m,h. We show that the depth and Stanley

depth values for this unicyclic graph are equal. We also give some bounds

for the dimension of cyclic modules Sn,m,h/In,m,h and Sn,m,h/I
′
n,m,h. In the

end, we give some future directions.

Throughout this chapter, we assume

Sn,m,h := K[x1, x2, . . . , xn, y1, y2, . . . , ymn, z1, z2, . . . , zhmn], where n is the

number of vertices of path Pn and length of cycle Cn in P(n,m,h) and C(n,m,h)

respectively. Here m is the number of vertices attached at each vertex xi of

Pn and h is the number of pendant vertices attached at each vertex yj, where

j = 1, . . . , mn. We also have m = h.
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Figure 4.1: From top to bottom P1,3,3 and P3,2,2.

Definition 4.0.1 Let n ≥ 1, m ≥ 2, and m = h. Then Pn be a path on

n vertices with vertex set {x1, x2, · · · , xn}. We construct a lobster tree by

connecting m vertices to each vertex xi of Pn and h pendant vertices to each

vertex yj, where j = 1, · · · ,mn and r = 1, · · · ,m2n. This lobster tree is

denoted by Pn,m,h.

For example see Figure 4.1.

Definition 4.0.2 Let n ≥ 3, m ≥ 2, and m = h. Then Cn be an n-verticed

cycle with {x1, x2, · · · , xn} as the vertex set and the edge set is given as

{x1x2, x2x3 · · · , xn−1xn, x1xn}. We construct a unicyclic graph by connecting

each vertex xi of Cn with m vertices, and then connecting each vertex yj with

h pendant vertices, here j = 1, · · · ,mn and r = 1, · · · ,m2n. This unicyclic

graph is denoted by Cn,m,h.

For example see Figure 4.2.

53



Figure 4.2: Unicyclic graph C3,2,2.

Definition 4.0.3 Let n ≥ 1, m ≥ 2 and m = h. Pn,m,h be a lobster tree on

[mn(m+ 1) + n] vertices, then the edge ideal In,m,h = I(Pn,m,h) is given by

In,m,h = (x1y1, x1y2, . . . , x1ym, y1z1, y1z2, . . . , y1zm, y2zm+1, y2zm+2, . . . ,

y2z2m, . . . , ymzm2−m+1, . . . , ymzm2 , . . . , xixi+1, xi+1xi+2, . . . , xn−1xn,

xny(n−1)m+1, xny(n−1)m+2, . . . , xnymn, y(n−1)m+1z(n−1)m2+1, y(n−1)m+1z(n−1)m2+2,

. . . , y(n−1)m+1z(n−1)m2+m, y(n−1)m+2z(n−1)m2+m+1, . . . , y(n−1)m+2z(n−1)m2+2m,

. . . , ymnzm2n−m+1, ymnzm2n−m+2, . . . , ymnzm2n).

Definition 4.0.4 Let n ≥ 3, m ≥ 2 and m = h. Cn,m,h be a unicyclic graph

on [mn(m+1)+n] vertices , then the edge ideal I ′n,m,h = I ′(Cn,m,h) is given by

I ′n,m,h = (In,m,h, x1xn). (4.1)
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Figure 4.3: Lobster tree P1,m−1,h with m = h = 3.

Remark 4.0.5 E(Pn,m,h) = E(Cn,m,h)\
{
n, 1}. Thus |G(I(Pn,m,h))| = mn(m+

1) + n− 1 and |G(I ′(Cn,m,h))| = mn(m+ 1) + n.

Remark 4.0.6 For n ≥ 1, m ≥ 2 and m = h, then d(Pn,m,h) = n+ 3, where

d is the diameter of lobster tree Pn,m,h.

4.1 Lobster tree-related results

In this section, we compute depth and Stanley depth of cyclic modules asso-

ciated with lobster tree Pn,m,h, where m = h. We prove for this lobster tree,

the depth and Stanley depth values are equal. In addition, the Stanley’s

inequality hold for these results. In the end, we give some bounds for the

dimension of cyclic module Sn,m,h/In,m,h.

To prove our major result Theorem 4.1.3 for lobster tree Pn,m,h, we first prove

a Lemma 4.1.1 and a Proposition 4.1.2. The following lemma will help in de-

termining the depth and Stanley depth of cyclic module Sn,m,h/In,m,h, when

n > 1 and m ≥ 2.
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Lemma 4.1.1 Let n = 1, m ≥ 3 and m = h, then

depth(S1,m−1,h/I1,m−1,h) = sdepth(S1,m−1,h/I1,m−1,h) = m− 1.

Proof. We prove this by using induction on m. We consider the following

two cases.

1. Let m = 3, see Fig 4.3. First, we will find the value of depth. Consider

the short exact sequence

0 −→ S1,2,3/(I1,2,3 : y2)
·y2−→ S1,2,3/I1,2,3 −→ S1,2,3/(I1,2,3, y2) −→ 0. (4.2)

Here (I1,2,3 : y2) = (x1, y1z1, y1z2, y1z3, z4, z5, z6). Then, S1,2,3/(I1,2,3 : y2) ∼=
K[y1, z1, z2, z3]/(y1z1, y1z2, y1z3)⊗K[y2]. Using 3.2.10, we get

depth(S1,2,3/(I1,2,3 : y2) = 1 + 1 = 2.Also (I1,2,3, y2) = (x1y1, y1z1, y1z2, y1z3, y2),

then S1,2,3/(I1,2,3, y2) ∼= K[x1, y1, z1, z2, z3]/(x1y1, y1z1, y1z2, y1z3)⊗K[z4, z5, z6].

Thus Proposition 3.2.10 gives us depth(S1,2,3/(I1,2,3 : y2) = 1 + 3 = 4. Using

the depth Lemma on short exact sequence 4.2, we get depth(S1,2,3/I1,2,3) ≥ 2.

For upper bound, since y2 /∈ I1,2,3, from 3.2.11, we have depth(S1,2,3/I1,2,3) ≤
depth(S1,2,3/(I1,2,3 : y2)) = 2. So,

depth(S1,2,3/I1,2,3) = 2. (4.3)

For Stanley depth, applying 3.2.6 and 3.2.11 on short exact sequence 4.2,

we get sdepth(S1,2,3/I1,2,3) ≥ 2. For finding the upper bound, we assume

yj = x1+j, where n = 1, j = 1, 2 and zr = x3+r, where r = 1, · · · , 6. Consider

w1 = x1+1x1+2 ∈ (S1,2,3/I1,2,3), but xlw1 ∈ I1,2,3, for all l ∈ [9]\ supp(w1),

therefore by using Lemma 3.2.23, sdepth(S1,2,3/I1,2,3) ≤ r = 2. We get

sdepth(S1,2,3/I1,2,3) = 2. (4.4)

2. Let m ≥ 4 and m = h. Then

(I1,m−1,h) = (x1y1, x1y2, . . . , x1ym−1, y1z1, y1z2, . . . , y1zm, y2zm+1, y2zm+2,

. . . , y2z2m, . . . , ym−1zm(m−2)+1, ym−1zm(m−2)+2, . . . , ym−1zm2−m).
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Consider following exact sequence

0 −→ S1,m−1,h/I
∗ ·ym−1−−−→ S1,m−1,h/I1,m−1,h −→ S1,m−1,h/I

∗∗ −→ 0.

Here

I∗ = (I1,m−1,n : ym−1) = (x1, y1z1, y1z2, . . . , y1zm, . . . , ym−2zm(m−3)+1,

ym−2zm(m−3)+2, . . . , ym−2zm2−2m, zm(m−2)+1, . . . , zm2−2m),

this yield that,

S1,m−1,h/(I1,m−1,h : ym−1) ∼= K[y1, z1, . . . , zm]/(y1z1, . . . , y1zm)⊗

· · ·K[ym−2, zm(m−3)+1, . . . , zm(m−2)]/(ym−2zm(m−3)+1, . . . , ym−2zm(m−2))

⊗K[ym−1].

Using Proposition 3.2.11 and ([28], Theorem 2.2.21), we get

depth(S1,m−1,h/(I1,m−1,h : ym−1) = m− 2 + 1 = m− 1. (4.5)

Also

I∗∗ = (I1,m−1,h, ym−1) = (x1y1, x1y2, . . . , x1ym−2, y1z1, y1z2, . . . , y1zm, . . . ,

ym−2zm(m−3)+1, . . . , ym−2zm(m−2), ym−1).

Then, S1,m−1,h/(I1,m−1,h, ym−1) ∼= S1,m−2,h/I1,m−2,h ⊗
K[zm(m−2)+1, zm(m−2)+2, . . . , zm(m−1)]. By using induction and ([28], Theorem

2.2.21),

depth(S1,m−1,h/(I1,m−1,h, ym−1) = m− 2 +m = 2m − 2. Then the depth

Lemma is being applied to the exact sequence 4.1.1, we get

depth(S1,m−1,h/I1,m−1,h) ≥ m− 1. For upper bound, since ym−1 /∈ I1,m−1,h,

and from 3.2.11, we have depth(S1,m−1,h/I1,m−1,h) ≤ depth(S1,m−1,h/(I1,m−1,h :

ym−1)). By 4.5, depth(S1,m−1,h/I1,m−1,h) ≤ m− 1. As a result,

depth(S1,m−1,h/I1,m−1,h) = m− 1.
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For Stanley depth, applying 3.2.6 and 3.2.11 on short exact sequence 4.1.1

and by using induction, we get sdepth(S1,m−1,h/I1,m−1,h) ≥ m− 1.

To determine the upper bound, we assume yj = xn+j, where n = 1, j =

1, 2, · · · , (m−1)n and zr = xn+(m−1)n+r, where r = 1, · · · , (m−1)mn. Con-

sider w = x1+1x1+2, · · · , x1+m−1 ∈ (S1,m−1,h/I1,m−1,h), but xlw ∈ I1,m−1,h, for

all l ∈ [m2]\ supp(w), therefore by Lemma 3.2.23, sdepth(S1,m−1,h/I1,m−1,h) ≤
r = m− 1. So,

sdepth(S1,m−1,h/(I1,m−1,h) = m− 1.

Using Lemma 4.1.1, we prove the following Proposition.

Proposition 4.1.2 Let n = 1, m ≥ 2 and m = h, then

depth(S1,m,h/I1,m,h) = sdepth(S1,m,h/I1,m,h) = m.

Proof. We prove this by considering the following cases.

1. Let m = 2. We start by determining the value of depth. Consider the

short exact sequence

0 −→ S1,2,2/(I1,2,2 : y2)
·y2−→ S1,2,2/I1,2,2 −→ S1,2,2/(I1,2,2, y2) −→ 0, (4.6)

Here (I1,2,2 : y2) = (x1, y1z1, y1z2, z3, z4), so we have, S1,2,2/(I1,2,2 : y2) ∼=
K[y1, z1, z2]/(y1z1, y1z2)⊗K[y2]. Using Lemma 3.2.7, we get

depth(S1,2,2/(I1,2,2 : y2) = 1 + 1 = 2. Also (I1,2,2, y2) = (x1y1, y1z1, y1z2, y2).

Then S1,2,2/(I1,2,2, y2) ∼= K[x1, y1, z1, z2]/(x1y1, y1z1, y1z2)⊗K[z3, z4].

By Proposition 3.2.10, we have depth(S1,2,2/(I1,2,2, y2) = 1 + 2 = 3. Using

depth Lemma on short exact sequence 4.6, we get depth(S1,2,2/I1,2,2) ≥ 2.

For upper bound, since y2 /∈ I1,2,2, from 3.2.11, we have depth(S1,2,2/I1,2,2) ≤
depth(S1,2,2/(I1,2,2 : y2)) = 2. So,

depth(S1,2,2/I1,2,2) = 2.
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For Stanley depth, applying 3.2.6 and 3.2.11 on short exact sequence 4.6,

we get sdepth(S1,2,2/I1,2,2) ≥ 2. For finding the upper bound, we assume

yj = x1 +j, where j = 1, 2 and zr = x1+m+r, where r = 1, · · · , m2. Consider

w = x1+1x1+2 ∈ (S1,2,2/I1,2,2), but xlw ∈ I1,2,2, for all l ∈ [7]\ supp(w),

therefore by Lemma 3.2.23, sdepth(S1,2,2/I1,2,2) ≤ r = 2. Then

sdepth(S1,2,2/(I1,2,2) = 2.

2. Let m ≥ 3 and m = h. Then

(I1,m,h) = (x1y1, x1y2, . . . , x1ym, y1z1, y1z2, . . . , y1zm, y2zm+1, y2zm+2, . . . ,

y2z2m, . . . , ymzm(m−1)+1, ymzm(m−1)+2, . . . , ymzm2).

Consider following exact sequence

0 −→ S1,m,h/(I1,m,h : ym)
·ym−−→ S1,m,h/I1,m,h −→ S1,m,h/(I1,m,h, ym) −→ 0.

(4.7)

Here, (I1,m,n : ym) = (x1, y1z1, y1z2, . . . , y1zm, y2zm+1, . . . , y2z2m, . . . , zm2−m+1,

. . . , zm2). This implies,

S1,m,h/(I1,m,h : ym) ∼= K[y1, z1, . . . , zm]/(y1z1, . . . , y1zm)⊗ · · · ⊗

K[ym−1, zm2−2m+1, . . . , zm2−m]/(ym−1zm2−2m+1, . . . , y1zm2−m)⊗K[ym].

Using Proposition 3.2.10 and ([28], Theorem 2.2.21), we get

depth(S1,m,h/(I1,m,h : ym)) = m− 1 + 1 = m. (4.8)

Also

(I1,m,h, ym) = (x1y1, x1y2, . . . , x1ym−1, y1z1, y1z2, . . . , y1zm, . . . ,

ym−1zm2−2m+1, . . . , ym−1zm2−m, ym).
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Then S1,m,h/(I1,m,h, ym) ∼= S1,m−1,h/I1,m−1,h⊗K[zm(m−1)+1, zm(m−1)+2, . . . , zm2 ].

Using Lemma 4.1.1, we get depth(S1,m,h/I1,m,h) = m − 1 + m = 2m −
1. Then the depth lemma is being applied to exact sequence 4.7, we get

depth(S1,m,h/I1,m,h) ≥ m. For upper bound, since ym /∈ I1,m,h, from Propo-

sition 3.2.11, we have depth(S1,m,h/I1,m,h) ≤ depth(S1,m,h/(I1,m,h : ym)).

Therefore by using 4.8, depth(S1,m,h/I1,m,h) ≤ m. As a result,

depth(S1,m,h/I1,m,h) = m.

For Stanley depth, applying 3.2.6 and 3.2.11 on short exact sequence 4.7

and by using Lemma 4.1.1, we get sdepth(S1,m,h/I1,m,h) ≥ m. To find the

upper bound, we assume yj = xn+j, where n = 1, j = 1, 2, · · · ,mn and

zr = xn+mn+r, where r = 1, · · · , m2n. Consider w = x1+1x1+2, · · · , x1+m ∈
(S1,m,h/I1,m,h), but xlw ∈ I1,m−1,h, for all l ∈ [m2 +m+1]\ supp(w), therefore

by Lemma 3.2.23, sdepth(S1,m,h/I1,m,h) ≤ r = m. Hence,

sdepth(S1,m,h/(I1,m,h) = m.
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Using Proposition 4.1.2, we prove our key result for Pm,n,h, where n > 1,

m ≥ 2 and m = h.

Theorem 4.1.3 Let n ≥ 1, m ≥ 2 and m = h, then

depth(Sn,m,h/In,m,h) = sdepth(Sn,m,h/In,m,h) = mn.

Proof. To prove these results, we use induction on n. When n = 1, m ≥ 2

and m = h, then the results hold by Lemma 4.1.2. Let n = 2, m ≥ 2 and

m = h, then

(I2,m,h) = (x1x2, x1y1, x1y2, . . . , x1ym, y1z1, y1z2, . . . , y1zm, y2zm+1, y2zm+2, . . . ,

y2z2m, . . . , ymzm2−m+1, ymzm2−m+2, . . . , ymzm2 , x2ym+1, x2ym+2, . . . , x2y2m,

ym+1zm2+1, ym+1zm2+2, . . . , ym+1zm2+m, ym+2zm2+m+1, . . . , ym+2zm2+2m, . . . ,

y2mz2m2−m+1, y2mz2m2−m+2, . . . , y2mz2m2).

Consider following exact sequence

0 −→ S2,m,h/(I2,m,h : y2m)
·y2m−−→ S2,m,h/I2,m,h −→ S2,m,h/(I2,m,h, y2m) −→ 0.

(4.9)

Here

(I2,m,h : y2m) = (I1,m,h, x2, ym+1zm2+1, ym+1zm2+2, . . . , ym+1zm2+m,

ym+2zm2+m+1, ym+2, . . . , ym+2zm2+2m, . . . , y2m−1z2m2−2m+1, y2m−1z2m2−2m+2,

. . . , y2m−1z2m2−m, z2m2−m+1, . . . , z2m2).

It implies, S2,m,h/(I2,m,h : y2m) ∼= S1,m,h/I1,m,h ⊗K
K[ym+1, zm2+1, . . . , zm2+m]/(ym+1zm2+1, . . . , ym+1zm2+m)⊗K · · · ⊗K
K[y2m−1, z2m2−2m+1, . . . , z2m2−m]/(y2m−1z2m2−2m+1, . . . , y2m−1z2m2−m)⊗K
K[y2m]. Using Proposition 3.2.10, Lemma 4.1.2 and ([28], Theorem 2.2.21),

we get

depth(S2,m,h/(I2,m,h : y2m) = m+ (m− 1) + 1 = 2m. (4.10)
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Furthermore

I∗2,m,h = (I2,m,h, y2m) = (x1x2, x1y1, x1y2, . . . , x1ym, y1z1, y1z2, . . . , y1zm,

y2zm+1, y2zm+2, . . . , y2z2m, . . . , ymzm2−m+1, ymzm2−m+2, . . . , ymzm2 , x2ym+1,

x2ym+2, . . . , x2y2m−1, ym+1zm2+1, ym+1zm2+2, . . . , ym+1zm2+m, ym+2zm2+m+1,

. . . , ym+2zm2+2m, . . . , y2m−1z2m2−2m+1, y2m−1z2m2−2m+2, . . . , y2m−1z2m2−m, y2m).

Now, consider following exact sequence

0 −→ S2,m,h/(I
∗
2,m,h : x2)

·x2−→ S2,m,h/I
∗
2,m,h −→ S2,m,h/(I

∗
2,m,h, x2) −→ 0.

(4.11)

Here

(I∗2,m,n : x2) = (x1, y1z1, y1z2, . . . , y1zm, y2zm+1, y2zm+2, . . . , y2z2m, . . . ,

ymzm2−m+1, ymzm2−m+2, . . . , ymzm2 , ym+1, ym+2, . . . , y2m−1, y2m).

Then,

S2,m,h/(I
∗
2,m,h : x2) ∼= K[y1, z1, . . . , zm]/(y1z1, . . . , y1zm)⊗K . . .

⊗KK[ym, zm2−m+1, . . . , zm2 ]/(ymzm2−m+1, . . . , ymzm2)

⊗KK[x2, zm2+1, . . . , z2m2 ].

By using ([28], Theorem 2.2.21), we have

depth(S2,m,h/(I
∗
2,m,h : x2) = depth(K[y1, z1, . . . , zm]/(y1z1, . . . , y1zm)) + · · ·

+ depth(K[ym, zm2−m+1, . . . , zm2 ]/(ymzm2−m+1, . . . , ymzm2))

+ depth(K[x2, zm2+1, . . . , z2m]).

By Proposition 3.2.10, we get depth(S2,m,h/I
∗
2,m,h : x2) = m+m2 + 1.
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Moreover,

(I∗2,m,h, x2) = (I1,m,h, ym+1zm2+1, ym+1zm2+2, . . . , ym+1zm2+m, ym+2zm2+m+1,

. . . , ym+2zm2+2m, . . . , y2m−1z2m2−2m+1, y2m−1z2m2−2m+2, . . . ,

y2m−1z2m2−m, y2m, x2).

Then, S2,m,h/(I
∗
2,m,h, x2) ∼= S1,m,h/I1,m,h ⊗K

K[ym+1, zm2+1, . . . , zm2+m]/(ym+1zm2+1, . . . , ym+1zm2+m)⊗K · · · ⊗K
K[y2m−1, z2m2−2m+1, . . . , z2m2−m]/(y2m−1z2m2−2m+1, . . . , y2m−1z2m2−m)⊗K
K[z2m2−m+1, . . . , z2m2 ]. Using ([28], Theorem 2.2.21), we get

depth(S2,m,h/(I
∗
2,m,h, x2) = depth(S1,m,h/I1,m,h)+

depth(K[ym+1, zm2+1, . . . , zm2+m]/(ym+1zm2+1, . . . , ym+1zm2+m)) + · · ·+

depth(K[y2m−1, z2m2−2m+1, . . . , z2m2−m]/(y2m−1z2m2−2m+1, . . . , y2m−1z2m2−m)

+ depth(K[z2m2−m+1, . . . , z2m2 ]).

By using Proposition 4.1.2 and 3.2.10, we get depth(S2,m,h/I
∗
2,m,h, x2) = m+

(m−1)+m = 3m−1. As depth(S2,m,h/I
∗
2,m,h, x2) > depth(S2,m,h/I

∗
2,m,h : x2).

Now by applying the depth Lemma on sequences 4.11 and 4.9, we get

depth(S2,m,h/I2,m,h) ≥ 2m. For upper bound, since y2m /∈ I2,m,h, from Propo-

sition 3.2.11, depth(S2,m,h/I2,m,h) ≤ depth(S2,m,h/(I2,m,h : y2m)). Therefore

by using equation 4.10, we have depth(S1,m,h/I1,m,h) ≤ 2m. As a result,

depth(S2,m,h/I2,m,h) = 2m. (4.12)

For Stanley depth, applying 3.2.6 and 3.2.11 on short exact sequence 4.11,

4.9 and by using Lemma 4.1.2, we get sdepth(S2,m,h/I2,m,h) ≥ 2m. To find

the upper bound, we assume yj = xn+j, where n = 2, j = 1, 2, · · · ,mn and

zr = xn+mn+r, where r = 1, · · · ,m2n. Consider w = x2+1x2+2, · · · , x2+2m ∈
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(S2,m,h/I2,m,h), but xlw ∈ I2,m,h, for all l ∈ [2m(m+1)+2]\ supp(w), therefore

by Lemma 3.2.23, sdepth(S2,m,h/I2,m,h) ≤ r = 2m. Hence,

sdepth(S2,m,h/(I2,m,h) = 2m.

To prove our result in general, consider n ≥ 3, m ≥ 2 and m = h, then take

the following exact sequence

0 −→ Sn,m,h/(In,m,h : ymn)
·ymn−−→ Sn,m,h/In,m,h −→ Sn,m,h/(In,m,h, ymn) −→ 0.

(4.13)

Over here

(In,m,h : ymn) = (In−1,m,h, xn, y(n−1)m+1z(n−1)m2+1, y(n−1)m+1z(n−1)m2+2, . . . ,

y(n−1)m+1z(n−1)m2+m, y(n−1)m+2z(n−1)m2+m+1, . . . , y(n−1)m+2z(n−1)m2+2m, . . . ,

ymn−1zm2n−2m+1, ymn−1zm2n−2m+2, . . . , ymn−1zm2n−m, zm2n−m+1, . . . , zm2n).

It means,

Sn,m,h/(In,m,h : ynm) ∼= Sn−1,m,h/In−1,m,h⊗K
K[ynm−m+1, zm2n−m2+1, . . . , znm2−m2+m]

(ymn−m+1znm2−m2+1, . . . , ymn−m+1z(m2n−m2+m)
⊗K · · · ⊗K

K[ymn−1, zm2n−2m+1, . . . , zm2n−m]

(ymn−1zm2n−2m+1, . . . , ymn−1zm2n−m)
⊗K K[ymn].

By ([28], Theorem 2.2.21) and Proposition 3.2.10, we get

depth(Sn,m,h/(In,m,h : ymn)) = depth(Sn−1,m,h/In−1,m,h) + (m− 1) + 1.

(4.14)

Now using induction, we get

depth(Sn,m,h/(In,m,h : ymn) = m(n− 1) + (m− 1) + 1 = mn. (4.15)
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Also

I∗n,m,h = (In,m,h, ymn) = (x1y1, x1y2, . . . , x1ym, y1z1, y1z2, . . . , y1zm, y2zm+1,

y2zm+2, . . . , y2z2m, . . . , ymzm2−m+1, . . . , ymzm2 , . . . , xixi+1, xi+1xi+2, . . . ,

xn−1xn, xny(n−1)m+1, xny(n−1)m+2, . . . , xnymn−1, y(n−1)m+1z(n−1)m2+1,

y(n−1)m+1z(n−1)m2+2, . . . , y(n−1)m+1z(n−1)m2+m, y(n−1)m+2z(n−1)m2+m+1, . . . ,

y(n−1)m+2z(n−1)m2+2m, . . . , ymn−1zm2n−2m+1, ymn−1zm2n−2m+2, . . . ,

ymn−1zm2n−m, ymn).

Again consider the following exact sequence

0 −→ Sn,m,h/(I
∗
n,m,h : xn)

·xn−−→ Sn,m,h/I
∗
n,m,h −→ Sn,m,h/(I

∗
n,m,h, xn) −→ 0.

(4.16)

Here

(I∗n,m,h : xn) = (In−2,m,h, xn−1, y(n−2)m+1zm2(n−2)+1, y(n−2)m+1zm2(n−2)+2, . . . ,

y(n−2)m+1zm2(n−2)+m, . . . , ym(n−1)zm2(n−1)−m+1, ym(n−1)zm2(n−1)−m+2, . . . ,

ym(n−1)zm2(n−1), ym(n−1)+1, ym(n−1)+2, . . . , ymn−1, ymn).

This gives us,

Sn,m,h/(I
∗
n,m,h : xn) ∼= Sn−2,m,h/In−2,m,h⊗K
K[ym(n−2)+1, z(n−2)m2+1, . . . , z(n−2)m2+m]

(y(n−2)m+1z(n−2)m2+1, . . . , y(n−2)m+1z(n−2)m2+m)
⊗K · · · ⊗K

K[ym(n−1), zm2(n−1)−m+1, . . . , zm2(n−1)]

(ym(n−1)zm2(n−1)−m+1, . . . , ym(n−1)zm2(n−1))
⊗K K[xn, zm2(n−1)+1, . . . , zm2n].
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From ([28], Theorem 2.2.21), we have

depth(Sn,m,h/(I
∗
n,m,h : xn) = depth(Sn−2,m,h/In−2,m,h)+

depth(
K[y(n−2)m+1, z(n−2)m2+1, . . . , z(n−2)m2+m]

(y(n−2)m+1z(n−2)m2+1, . . . , y(n−2)m+1z(n−2)m2+m)
)

+ · · ·+ depth(
K[ym(n−1), zm2(n−1)−m+1, . . . , zm2(n−1)]

(ym(n−1)zm2(n−1)−m+1, . . . , ym(n−1)zm2(n−1))
)+

depthK[xn, zm2(n−1)+1, . . . , zm2n].

By induction and Proposition 3.2.10, we see that

depth(Sn,m,h/I
∗
n,m,h : xn) = (n− 2)m+m+m2 + 1 = m(n− 1) +m2 + 1.

Furthermore,

(I∗n,m,h, xn) = (In−1,m,h, xn, y(n−1)m+1z(n−1)m2+1, y(n−1)m+1z(n−1)m2+2, . . . ,

y(n−1)m+1z(n−1)m2+m, y(n−1)m+2z(n−1)m2+m+1, . . . , y(n−1)m+2z(n−1)m2+2m,

. . . , ymn−1zm2n−2m+1, ymn−1zm2n−2m+2, . . . , ymn−1zm2n−m, ymn).

Then,

Sn,m,h/(I
∗
n,m,h, xn) ∼= Sn−1,m,h/In−1,m,h⊗K
K[y(n−1)m+1, z(n−1)m2+1, . . . , z(n−1)m2+m]

(y(n−1)m+1z(n−1)m2+1, . . . , y(n−1)m+1z(n−1)m2+m)
⊗K · · · ⊗K

K[ymn−1, zm2n−2m+1, . . . , zm2n−m]

(ymn−1zm2n−2m+1, . . . , ymn−1zm2n−m)
⊗K K[zm2n−m+1, . . . , zm2n].

From ([28], Theorem 2.2.21), we have

depth(Sn,m,h/(I
∗
n,m,h, xn) = depth(Sn−1,m,h/In−1,m,h)+

depth(
K[y(n−1)m+1, z(n−1)m2+1, . . . , z(n−1)m2+m]

(y(n−1)m+1z(n−1)m2+1, . . . , y(n−1)m+1z(n−1)m2+m)
) + · · ·+

depth(
K[ymn−1, zm2n−2m+1, . . . , zm2n−m]

(ymn−1zm2n−2m+1, . . . , ymn−1zm2n−m))
)+depthK[zm2n−m+1, . . . , zm2n].
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Again by induction and Proposition 3.2.10, we see that

depth(Sn,m,h/I
∗
n,m,h, xn) = (n− 1)m+ (m− 1) +m = m(n+ 1)− 1.

As depth(Sn,m,h/I
∗
n,m,h : xn) > depth(Sn,m,h/I

∗
n,m,h, xn). Now applying the

depth Lemma on sequence 4.16, we have depth(Sn,m,h/(In,m,h, ymn) ≥ m(n+

1)− 1. Again applying the depth Lemma on sequence 4.13, we have

depth(Sn,m,h/In,m,h) ≥ mn. To find the upper bound, we use induction on n.

For n = 1, 2 required result holds from Lemma 4.1.2 and equation 4.12. Since

ymn /∈ In,m,h and from 3.2.11, depth(Sn,m,h/In,m,h) ≤ depth(Sn,m,h/(In,m,h :

ymn)). Equation 4.14 gives us

depth(Sn,m,h/(In,m,h : ymn) = depth(Sn−1,m,h/In−1,m,h) + (m− 1) + 1.

Using induction, we get

depth(Sn,m,h/(In,m,h : ymn) ≤ m(n− 1) + (m− 1) + 1 = mn.

Therefore, depth(Sn,m,h/In,m,h) ≤ mn. As a result,

depth(Sn,m,h/In,m,h) = mn.

To find the Stanley depth, we use 3.2.6 and 3.2.11 on short exact sequence

4.16, 4.13 and by using induction, we get sdepth(Sn,m,h/In,m,h) ≥ mn. For

finding the upper bound , we assume yj = xn+j, where n ≥ 3, j = 1, 2, · · · , mn
and zr = xn+mn+r, where r = 1, · · · , m2n. Consider w = xn+1xn+2, . . . ,

xn+mn ∈ (Sn,m,h/In,m,h), but xlw ∈ In,m,h, for all l ∈ [mn(m+1)+n]\ supp(w),

therefore by Lemma 3.2.23, sdepth(Sn,m,h/In,m,h) ≤ r = mn. Finally,

sdepth(Sn,m,h/(In,m,h) = mn.

Theorem 4.1.4 Let n ≥ 1, m ≥ 2 and m = h, then

dim(Sn,m,h/In,m,h) ≥ mn.

Proof: The required result follows from theorem 3.1.7 and 4.1.3.
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Corollary 4.1.5 Stanley’s inequality hold for cylic module Sn,m,h/In(Pn,m,h).

Remark 4.1.6 • For n ≥ 1, m ≥ 2 andm = h we have d(Pn,m,h) = n+3.

From Theorem 3.2.17, we have sdepth(Sn,m,h/In,m,h), depth(Sn,m,h/In,m,h)

≥ dn+4
3
e and from our Theorem 4.1.3, we have sdepth(Sn,m,h/In,m,h),

depth(Sn,m,h/In,m,h) = mn. For example, when n = 6 and m = 5 = h,

then d(P6,5,5) = 9. From Theorem 3.2.17, we have sdepth(S6,5,5/I6,5,5),

depth(S6,5,5/I6,5,5) ≥ d9+1
3
e = 4, but from Theorem 4.1.3, we have

sdepth(S6,5,5/I6,5,5), depth(S6,5,5/I6,5,5) = 30. Thus for any n ≥ 1,

m ≥ 2 and m = h, Theorem 3.2.17, gives us a lower bound far away

from exact value, but Theorem 4.1.3 gives us the exact values of depth

and sdepth for cyclic module Sn,m,h/In,m,h.

• For n = 1, m = 2 = h and I1,2,2 be a monomial ideal minimally gener-

ated by 6 elements, then by Proposition 3.2.19 we have sdepth(S1,2,2/I1,2,2)

≥ 7−6 = 1. Now from our Theorem 4.1.3, we have sdepth(S1,2,2/I1,2,2) =

2. Also when n = 5 and m = 2 = h, by Proposition 3.2.19 we have

sdepth(S5,2,2/I5,2,2) ≥ 35 − 34 = 1. Now from our Theorem 4.1.3, we

have sdepth(S5,2,2/I5,2,2) = 10. As a conclusion, our Theorem 4.1.3

gives us exact values and Proposition 3.2.19 gives us lower bounds

which are far away from the exact values.
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4.2 The results of unicyclic graphs.

In this part, we use previous lobster tree results to determine the values

of depth and Stanley depth of the quotient ring of edge ideal associated

with a unicyclic graph Cn,m,h. We also show that the depth and Stanley

depth values for this unicyclic graph are equal. As a result, for these values,

Stanley’s inequality holds.

Theorem 4.2.1 Let n ≥ 3, m ≥ 2 and m = h, then

depth(Sn,m,h/I
′
n,m,h) = sdepth(Sn,m,h/I

′
n,m,h) = mn.

Proof. Consider n ≥ 3, m ≥ 2 and m = h. Here I ′n,m,h = (In,m,h, x1xn). Take

the following exact sequence

0 −→ Sn,m,h/(I
′
n,m,h : ymn)

·ymn−−→ Sn,m,h/I
′
n,m,h −→ Sn,m,h/(I

′
n,m,h, ymn) −→ 0.

(4.17)

Over here

(I ′n,m,h : ymn) = (In−1,m,h, xn, y(n−1)m+1z(n−1)m2+1, y(n−1)m+1z(n−1)m2+2, . . . ,

y(n−1)m+1z(n−1)m2+m, y(n−1)m+2z(n−1)m2+m+1, . . . , y(n−1)m+2z(n−1)m2+2m, . . . ,

ymn−1zm2n−2m+1, ymn−1zm2n−2m+2, . . . , ymn−1zm2n−m, zm2n−m+1, . . . , zm2n).

It gives us,

Sn,m,h/(I
′
n,m,h : ynm) ∼= Sn−1,m,h/In−1,m,h⊗K
K[y(n−1)m+1, z(n−1)m2+1, . . . , z(n−1)m2+m]

(y(n−1)m+1z(n−1)m2+1, . . . , y(n−1)m+1z(n−1)m2+m)
⊗K · · · ⊗K

K[ymn−1, zm2n−2m+1, . . . , zm2n−m]

(ymn−1zm2n−2m+1, . . . , ymn−1zm2n−m)
⊗K K[ymn].
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By ([28], Theorem 2.2.21), we have

depth(Sn,m,h/(I
′
n,m,h : ymn) = depth(Sn−1,m,h/In−1,m,h)+

depth(
K[y(n−1)m+1, z(n−1)m2+1, · · · , z(n−1)m2+m]

(y(n−1)m+1z(n−1)m2+1, · · · , y(n−1)m+1z(n−1)m2+m)
) + · · ·+

depth(
K[ymn−1, zm2n−2m+1, . . . , zm2n−m]

(ymn−1zm2n−2m+1, . . . , ymn−1zm2n−m)
) + depthK[ymn].

Using Proposition 3.2.10 and Theorem 4.1.3, we get

depth(Sn,m,h/(I
′
n,m,h : ymn) = m(n− 1) + (m− 1) + 1 = mn. (4.18)

Also

I∗∗n,m,h = (I ′n,m,h, ymn) = (x1y1, x1y2, . . . , x1ym, y1z1, y1z2, . . . , y1zm, y2zm+1,

y2zm+2, . . . , y2z2m, . . . , ymzm2−m+1, . . . , ymzm2 , . . . , xixi+1, xi+1xi+2, . . . ,

xn−1xn, x1xn, xny(n−1)m+1, xny(n−1)m+2, . . . , xnymn−1, y(n−1)m+1z(n−1)m2+1,

y(n−1)m+1z(n−1)m2+2, . . . , y(n−1)m+1z(n−1)m2+m, y(n−1)m+2z(n−1)m2+m+1, . . . ,

y(n−1)m+2z(n−1)m2+2m, . . . , ymn−1zm2n−2m+1, ymn−1zm2n−2m+2, . . . ,

ymn−1zm2n−m, ymn).

Again, consider the following exact sequence

0 −→ Sn,m,h/(I
∗∗
n,m,h : xn)

·xn−−→ Sn,m,h/I
∗∗
n,m,h −→ Sn,m,h/(I

∗∗
n,m,h, xn) −→ 0.

(4.19)

Here

(I∗∗n,m,h : xn) = (y1z1, y1z2, . . . , y1zm, y2zm+1, y2zm+2, . . . , y2z2m, . . . ,

ymzm2−m+1, . . . , ymzm2 , In−3,m,h, xn−1, y(n−2)m+1z(m2(n−2)+1,

y(n−2)m+1z(m2(n−2)+2, . . . , y(n−2)m+1zm2(n−2)+m, . . . , ym(n−1)zm2(n−1)−m+1,

ym(n−1)zm2(n−1)−m+2, . . . , ym(n−1)zm2(n−1), ym(n−1)+1, ym(n−1)+2, · · · , ymn−1, ymn).
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This gives us,

Sn,m,h/(I
∗∗
n,m,h : xn) ∼= Sn−3,m,h/In−3,m,h ⊗K

K[y1, z1, . . . , zm]

(y1z1, . . . , y1zm)
⊗K · · · ⊗K

K[ym, zm2−m+1, . . . , zm2 ]

(ymzm2−m+1, . . . , ymzm2)
⊗K

K[y(n−2)m+1, z(n−2)m2+1, . . . , z(n−2)m2+m]

(y(n−2)m+1z(n−2)m2+1, . . . , y(n−2)m+1z(n−2)m2+m)
⊗K

· · ·⊗K
K[ym(n−1), zm2(n−1)−m+1, . . . , zm2(n−1)]

(ym(n−1)zm2(n−1)−m+1, . . . , ym(n−1)zm2(n−1))
⊗KK[xn, zm2(n−1)+1, . . . , zm2n].

By using ([28], Theorem 2.2.21), we have

depth(Sn,m,h/(I
∗∗
n,m,h : xn) = depth(Sn−3,m,h/In−3,m,h)+

depth(
K[y1, z1, . . . , zm]

(y1z1, . . . , y1zm)
) + · · ·+ depth(

K[ym, zm2−m+1, . . . , zm2 ]

(ymzm2−m+1, . . . , ymzm2)
)+

depth(
K[y(n−2)m+1, z(n−2)m2+1, . . . , z(n−2)m2+m]

(y(n−2)m+1z(n−2)m2+1, . . . , y(n−2)m+1z(n−2)m2+m)
) + · · ·+

depth(
K[ym(n−1), zm2(n−1)−m+1, . . . , zm2(n−1)]

(ym(n−1)zm2(n−1)−m+1, . . . , ym(n−1)zm2(n−1))
)+

depthK[xn, zm2(n−1)+1, . . . , zm2n].

Using Theorem 4.1.3 and Proposition 3.2.10, we get

depth(Sn,m,h/I
∗∗
n,m,h : xn) = (n− 3)m+m+m+m2 + 1 = m(n− 1) +m2 + 1.

Also,

(I∗∗n,m,h, xn) = (In−1,m,h, xn, y(n−1)m+1z(n−1)m2+1, y(n−1)m+1z(n−1)m2+2, . . . ,

y(n−1)m+1z(n−1)m2+m, y(n−1)m+2z(n−1)m2+m+1, . . . , y(n−1)m+2z(n−1)m2+2m,

. . . , ymn−1zm2n−2m+1, ymn−1zm2n−2m+2, . . . , ymn−1zm2n−m, ymn).
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Then,

Sn,m,h/(I
∗∗
n,m,h, xn) ∼= Sn−1,m,h/In−1,m,h⊗K
K[y(n−1)m+1, z(n−1)m2+1, . . . , z(n−1)m2+m]

(y(n−1)m+1z(n−1)m2+1, . . . , y(n−1)m+1z(n−1)m2+m)
⊗K · · · ⊗K

K[ymn−1, zm2n−2m+1, . . . , zm2n−m]

(ymn−1zm2n−2m+1, . . . , ymn−1zm2n−m)
⊗K K[zm2n−m+1, . . . , zm2n].

By using ([28], Theorem 2.2.21), we have

depth(Sn,m,h/(I
∗∗
n,m,h, xn) = depth(Sn−1,m,h/In−1,m,h)+

depth(
K[y(n−1)m+1, z(n−1)m2+1, . . . , z(n−1)m2+m]

(y(n−1)m+1z(n−1)m2+1, . . . , y(n−1)m+1z(n−1)m2+m)
) + · · ·+

depth(
K[ymn−1, zm2n−2m+1, . . . , zm2n−m]

(ymn−1zm2n−2m+1, . . . , ymn−1zm2n−m))
)+depthK[zm2n−m+1, . . . , zm2n].

Again by Theorem 4.1.3 and Proposition 3.2.10, we see that

depth(Sn,m,h/I
∗∗
n,m,h, xn) = (n− 1)m+ (m− 1) +m = m(n+ 1)− 1.

Since depth(Sn,m,h/I
∗∗
n,m,h : xn) > depth(Sn,m,h/I

∗∗
n,m,h, xn). Now applying

depth Lemma on sequence 4.19, we get

depth(Sn,m,h/(I
′
n,m,h, ymn) ≥ m(n+ 1)− 1. Again applying depth Lemma on

sequence 4.17, we have depth(Sn,m,h/I
′
n,m,h) ≥ mn. For upper bound, since

ymn /∈ In,m,h, from 3.2.11, we have

depth(Sn,m,h/I
′
n,m,h) ≤ depth(Sn,m,h/(I

′
n,m,h : ymn)). Equation 4.18 gives us

depth(Sn,m,h/(I
′
n,m,h : ymn) = depth(Sn−1,m,h/In−1,m,h) + (m− 1) + 1.

Using Theorem 4.1.3, we get

depth(Sn,m,h/(I
′
n,m,h : ymn) = m(n− 1) + (m− 1) + 1 = mn.

Therefore, depth(Sn,m,h/I
′
n,m,h) ≤ mn. As a result,

depth(Sn,m,h/I
′
n,m,h) = mn.
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We find the Stanley depth by using 3.2.6 and 3.2.11 on short exact se-

quences 4.19, 4.17 and Theorem 4.1.3, we have sdepth(Sn,m,h/I
′
n,m,h) ≥ mn.

Now to find the upper bound, we assume yj = xn+j, where n ≥ 3, j =

1, 2, · · · , mn and zr = xn+mn+r, where r = 1, · · · , m2n. Consider w =

xn+1xn+2, · · · , xn+mn ∈ (Sn,m,h/I
′
n,m,h), but xlw ∈ I ′n,m,h, for all

l ∈ [mn(m+ 1) + n]\ supp(w), therefore by Lemma 3.2.23,

sdepth(Sn,m,h/I
′
n,m,h) ≤ r = mn. Finally,

sdepth(Sn,m,h/(I
′
n,m,h) = mn.

Theorem 4.2.2 Let n ≥ 3, m ≥ 2 and m = h, then

dim(Sn,m,h/I
′
n,m,h) ≥ mn.

Proof: The required result follows from Theorem 3.1.7 and 4.2.1.

Corollary 4.2.3 Stanley’s inequality hold for cyclic module Sn,m,h/I
′(Cn,m,h).

Remark 4.2.4 For n = 6 and m = 3 = h, we have diameter(C6,3,3) = 7.

From Theorem 3.2.17, we have sdepth(S6,3,3/I
′(C6,3,3)), depth(S6,3,3/I

′(C6,3,3))

≥ d7+1
3
e = 3, but from our Theorem 4.2.2 for unicyclic graph Cn,m,h we have

sdepth(S6,3,3/I
′
6,3,3), depth(S6,3,3/I

′
6,3,3) = 18. Thus for any n ≥ 3, m ≥ 2 and

m = h, Theorem 3.2.17 gives us lower bounds far away from exact values, but

our Theorem 4.2.2 gives us the exact values of depth and sdepth for cyclic

module Sn,m,h/I
′
n,m,h.
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4.2.1 Future directions

• When n ≥ 1 and m 6= h, determine the value of sdepth(In,m,h) and one

can verify the Asia’s question [24] and Herzog’s conjecture [15] using

these values.

• Determine the value of sdepth(I ′(Cn,m,h)).

• Find the values of depth and sdepth for cyclic module Sn,m,h/I
∗
n,m,h,

where I∗n,m,h is the edge ideal associated with square of Pn,m,h.

• Let n ≥ 1, m ≥ 2 and m = h, then dim(Sn,m,h/In,m,h) = mn?
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363-372.

[23] Popescu, D. (2009). An inequality between depth and Stanley depth.

Bulletin math´ematique de la Soci´et´e des Sciences Math´ematiques

de Roumanie, 377- 382.

[24] Rauf, A. (2010). Depth and Stanley depth of multigraded modules. Com-

munications in Algebra, 38 (2), 773-784.

[25] Shen, Y. (2009). Stanley depth of complete intersection monomial ideal

and upperdiscrete partitions, J. Algebra 321, 12851292.

[26] Stefan, A. Stanley depth of powers of path ideal. Available from:

http://arxiv.org/pdf/1409.6072.pdf.

[27] Stanley, R. P. (1982). Linear Diophantine equations and local cohomol-

ogy. Inventiones mathematicae, 68 (2), 175-193.

77



[28] Villarreal, R. H. (2001). Monomial algebras, Monographs and Textbooks

in Pure and Applied Mathematics 238, Marcel Dekker, New York.

78


	Adnan Iqbal Th_4.pdf
	Adnan Iqbal_th4300


