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Abstract 

Sampling based motion planning algorithms such as RRT* provide an optimal path from a start to 

goal point. However, any change in either of these points requires re-spawning of the tree from 

scratch or using a multi-query algorithm, both of which are time consuming options. An alternative 

is to re-use the existing tree to find path between the new start and goal points. A novel algorithm, 

Rapidly Re-planning RRT* [R4T*], is being presented here which caters for these requirements.  

R4T* builds a Smart-Graph using an existing RRT* tree to find optimal paths between any two 

points in the workspace. The graph can be developed from an existing RRT* tree or alongside one 

being built. The algorithm caters for a real-time environment, where the robot starts moving as 

soon as a path to goal is found. If the goal is changed at any stage, the algorithm yields a path from 

current position of the robot to the new goal.  

The path found has comparable cost to a 7000 node RRT* algorithm run for the same start and 

goal points. The research work thus presents an optimal re-planning algorithm which yields 

optimal real-time paths between any two points in the workspace with minimum computational 

overload. 

 

 

Key Words: Path planning, Re-planning, RRT*, Motion planning, Robotics, 
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CHAPTER 1: INTRODUCTION 

1.1 Path Planning Significance & Basics 

Robotics & Artificial Intelligence are amongst the most promising fields of science and technology 

in today’s world. These technologies are increasingly being utilized in every walk of human life. 

Their applications are see in a variety of fields such as large-scale manufacturing, warehousing, 

autonomous vehicles, robotic surgeries along with various commercial, domestic and military 

avenues. This variety has led to greater interaction of robots with their environment and increased 

the complexity of robotics design and control. As path planning is one of the crucial components 

of Robotics, it has been subject of heavy research for several past decades. Besides robotics, path 

planning has its applications in other fields including video games, animations etc. 

Path Planning algorithms attempt to find a series of control inputs which will take the robot from 

current configuration (start configuration) to desired configuration (goal) while avoiding the 

obstacles along the way.    

Let X represent the configuration space of the robot with Xobs defining the space occupied by 

obstacles. Xfree is the free space, void of obstacles, defined as Xfree = X\Xobs. The initial point is 

defined as zstart while the goal point is defined as zgoal. The path planner attempts to find a series of 

control inputs u = [0, T] which result in a feasible path x(t) ϵ Xfree, such that x(0) = zstart and x(T) = 

zgoal.  

The obstacle configuration is generally difficult to be represented explicitly using geometric 

representation. Therefore, it is represented in the form of collision checking algorithm which returns 

‘None’ if the configuration falls in the obstacles space.  

The path planning algorithms generally focus on two parameters to judge the efficiency of the 

algorithm. These include completeness and optimality. Completeness refers to the ability of an 

algorithm to return a path in finite time (if the path is available) or return failure if the path does not 

exist. The optimality of the path is also main concern of these algorithms, which focuses to return 

optimal path between given start and goal points in minimum possible.  

Overall, these algorithms are divided into two main types: single query and multi query algorithms.  

The single query algorithms are optimized for single use, whose focus is to find an optimal path 

between given start and goal pair in minimum possible time.  
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The multi-query algorithms focus on developing a graph which can be used to find path between 

multiple points in the environment. This requires a pre-planning phase which develops the graph in 

a comprehensive manner followed by execution phase, where the paths between different points 

are yielded by searching through the paths.  

On the basis of completeness, path planning algorithms can be categorized as follows. 

 Complete algorithms – These algorithms return a solution in finite time or correctly report 

failure if there is no solution.  

 Resolution Complete Algorithms – These algorithms are guaranteed to return a path, if the 

resolution of the underlying grid is set to fine enough value as required by the algorithm. In 

case the path does not exist or the resolution is not fine enough, they report failure. 

 Probabilistically complete algorithms – The probability of these algorithms returning a 

solution approaches one as the number of samples approaches infinity.  
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CHAPTER 2: SAMPLING BASED PATH PLANNING ALGORITHMS  

Sampling based path planning algorithms are quite popular and fairly practical algorithms. These 

algorithms have been proven to be probabilistically complete and are generally able to return an 

optimized path between two goal points. The sampling based algorithms include both single query 

and multi-query algorithms. Popular sampling based single query algorithms include RRT, RRT* 

and its variations while popular multi-query sampling based algorithms include PRM, PRM* etc.  

This section will focus on main single-query sampling based algorithms and their popular 

variations.  

2.1 Rapidly Exploring Random Tree [RRT] 

Rapidly Exploring Random Tree or RRT was one of the primary algorithms which successfully 

explored non-conventional, high-dimensional spaces by randomly building a tree. The tree is 

configured to be rooted at the start point. Random samples are drawn from the configuration space. 

A node is added to the tree in the direction of the sample drawn if the node does not come in the 

obstacle space. The node is connected to the existing tree if the path connecting the node to its 

parent also lies in the obstacle free space.  

The algorithm is described in Table 2.1. 

1.  T.init (qstart) 

2.  for k = 1 to nodesmax do 

3.  qrand ← RAND_CONF() 

4.  qnear ← NEAREST_VERTEX(qrand, T) 

5.  qnew ← NEW_CONF(qnear, qrand, Δq)+ 

6.  T.add_vertex(qnew) 

7.  T.add_edge(qnear, qnew) 

8.  return T 

Table 2.1 – RRT Algorithm 

 

The tree T is initialized with the start node. This is followed by expansion of the tree for a maximum 

of nodesmax nodes. The RAND_CONF function returns a random point in Cfree. The 

NEAREST_VERTEX function returns a node qnear which is nearest to the random point in the tree 
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T. A new node qnew is added to tree T such that it is at a distance Δq from qnear by NEW_CONF. 

The next line adds a new edge between qnear and qnew. Both NEW_CONF and add_edge functions 

ensure that the new node qnew and the edge connecting qnew to qnear lie in free space Cfree.  

The algorithm was, however, shown to always converge to a non-optimal path. This led to 

development of other algorithms which deal with the non-optimality problem. 

2.2 Rapidly Exploring Random Tree* [RRT*] 

RRT* is asymptotically optimal version of RRT, i.e., it is proven to converge to optimal solution 

and possesses probabilistic completeness property. Like RRT, the algorithm samples points in the 

configuration space. It attempts to find optimized path from the start point to all the points in the 

configuration space. In doing so, the algorithm finds an optimal path to the goal point zgoal. 

RRT* algorithm achieves optimality by using the Rewire algorithm. After addition of new node 

qnew to the tree, the Rewire function checks all the nodes in the neighborhood of qnew to see if the 

cost to reach these nodes is less through qnew than their existing cost to reach (through their existing 

parents). If the cost to reach a particular node is less through qnew then that node is rewired as a 

child of qnew and its connection with existing parent is severed. In this way, the nodes which are 

already present in the tree are optimized with the addition of new nodes. This optimization makes 

RRT* different from RRT and results in asymptotic optimality.  

RRT* algorithm is discussed in detail in chapter 5.  

Variations of Rapidly Exploring Random Tree* [RRT*] 

Many variations of RRT* have been proposed over the years to increase its speed of convergence 

to an optimal solution.  Following is an overview of these algorithms.  

2.3 Any Time – RRT* 

The algorithm focuses on finding a quick path to the goal point. Once the execution phase of the 

plan is started, i.e., once the robot starts moving, the plan is improved towards an optimal solution. 

It takes advantage of the fact that most robotic systems take more time in execution, so that time is 

used to optimize the trajectory.  

RRT* is used to find an initial solution. After that two main programs are employed: i) committed 

trajectory ii) branch and bound tree adaptation. Once the path has been found, the robot starts to 

execute the first portion of the trajectory for committed time. This portion is known as committed 
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trajectory. The end of committed trajectory is taken as the new root of the tree and the path is 

improved from the new root to the goal. Once the robot reaches the end of committed trajectory, 

the process is repeated until the robot reaches the goal.  

2.4 Potential Functions based Sampling Heuristic for Dynamic Domain RRT 

(P-RRT*) 

The algorithm functions to optimize the memory and time utilization by RRT*. It incorporates 

artificial potential field algorithm in RRT* to overcome time and memory limitations. The 

incorporation of APF result in decrease of number of iterations of RRT* leading to efficient 

memory utilization and accelerated convergence rate.  

Artificial Potential Fields [APF] is a resolution complete method, i.e., the method is able to 

effectively plan optimal paths if the resolution of the grid is properly optimized. Using APF directly 

results in pure exploitation which makes the planner greedy as it assumes that the provided 

information is sufficient for path computation. Pure exploitation allows APF to quickly find the 

solution but it also causes the algorithm to suffer from local minima problem. On the other hand, 

sampling based algorithms perform pure exploration of the configuration space so as to improve 

the planner’s understanding of the space. So the idea of idea of potentially guided, directionalized 

sampling by incorporating APF into RRT* results in guided exploration of the environment.  

APF utilizes gradient descent planning that tries to minimize artificial potential energy. The main 

robot and the goal are assigned attractive potentials while the obstacle regions are assigned 

repulsive potentials. These attractive and repulsive potentials cause the robot to experience a force 

F, equal to the negated gradient of the potentials. F = - ▼ U. 

Under the influence of both attractive and repulsive potentials the robot moves down the slope and 

reaches the goal region without any collisions. Two constants Ka and Kr are used to scale the 

magnitude of attractive and repulsive potential. A circular region (dg) is defined around the goal, 

the robot moves rapidly if it is outside this region. Inside this region the potential starts to vary 

conically causing the robot to move slowly when it comes close to the goal preventing it from 

overshooting.  



 

6 

 

The attractive forces are computed as follows. The attractive potential varies quadratically when 

the distance is greater than dg. A distance dobs defines the minimum distance from the obstacles 

while current distance from the closest vertex of the obstacle is denoted by dmin. If dmin > dobs, 

denoting that the robot is far from obstacle, then the repulsive force becomes zero and the robot is 

allowed to move freely. 

The repulsive forces are calculated as follows. Repulsive potential is 0 if distance is greater than 

dobs. X’ is the nearest obstacle vertex. The overall potential is the sum of both attractive and 

repulsive potentials.  

 

Potential Function based RRT* incorporates APF into RRT*. Its working is described as follows. 

After a random sample xrand is generated by RRT*, it is improved by APG function and labelled as 

xprand. After this, normal RRT* functioning is resumed with xprand as the random sample. The 

Attractive Potential Gradient (APG) function utilizes only quadratic variation in the attractive 

potential fields instead of shifting between quadratic and conical versions. Overshooting is not an 

issue here since it’s not the robot but the random sample which is being guided. The function 

computes the attractive force. Minimum distance (dmin) from the nearest obstacle is computed. If 

the random sample is close to the obstacle, then the random sample is returned as xprand. Otherwise, 

xprand is guided towards the goal using the following function.  
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2.5 RRT*-Smart 

The algorithm aims to accelerate convergence time of RRT* using two techniques namely Path 

Optimization and Intelligent Sampling. The algorithm starts with RRT* and continues until a path 

is found. Once an initial path is found, the Path Optimization kicks in. Path Optimization starts an 

iterative process from zgoal and moves up to zinit, optimizing the path based upon triangular 

inequality. The triangular inequality is shown in figure 2.1. The path from znode to zparent and from 

zparent to zparent-to-parent is higher in cost than a direct path from znode to zparent-to-parent.  If a direct path is 

possible from znode to zparent-to-parent, then the algorithm checks with latter’s parent and so on 

until direct connection is not possible due to an obstacle. It checks for direct connections with 

successive parents of each node until the collision free condition fails or the start node zinit is 

reached. In this way, the complete path is optimized with straight line connections wherever 

possible.  This substantially reduces the number of nodes present in the path as compared to original 

path. The nodes at which the path breaks are termed as beacon nodes, Zbeacons, which forms the basis 

of intelligent sampling.  

Intelligent sampling generates nodes as close as possible to the beacons ensuring that path around 

the corners is optimized as much as possible. It is started once the initial path has been found. 

Intelligent sampling ensures early optimization around obstacles, something that happens when the 

number of samples in standard RRT* approaches infinity.  

Figure 2.1: Triangular Inequality 

Table 2.2: RRT*-Smart Algorithm 
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2.6 Triangular Geometrized Sampling Heuristic for Fast Optimal Motion 

Planning  

The algorithm uses triangular geometrized sampling heuristic for optimized sampling to ensure 

quicker optimization of the path. The successful methods include Incentre (intersection of 3 angles 

bisectors) and Centroid (point of intersection of three medians). The algorithm works in the 

following manner: when a random sample grand is generated, the algorithms redirects the sample by 

computing the geometric center of ginit, ggoal and grand. The geometric center is taken as the new 

random sample, denoted by gnrand. 

The random sample is directed for a fixed number of iterations denoted by variable k, after that 

uniform sampling is carried out. The value of k is selected to maintain a balance between 

exploitation and exploration. This allows the proposed planner to exploit the configuration space 

by sampling the region closer to initial state and goal region and then begin exploring by sampling 

the remaining region.  

2.7 Bi-directional RRT* (B-RRT*)  

The algorithm grows two trees each from start and goal point to ensure quick path finding and 

optimization. The algorithm works as follows. A sample is taken from the configuration space and 

then various operations are performed on the sample similar to RRT*. After the sample (xnew) has 

been inserted into the Tree (e.g., Ta), bidirectional action is carried out to connect with the other 

Tree (Tb in this case). Nearest vertex operation is carried to find nearest vertex in the Tree Tb to the 

inserted sample xnew. The nearest node in tree Tb is denoted as xconn. Then, connect procedure is 

carried out on xnew, xconn and Tb. Connect procedure is a slight variation of greedy RRT-Connect 

heuristic. It first employs the extend function to generate a new node in Tree Tb which is closer to 

the newly inserted node of Tree Ta, than xconn. That is, it generates a new node in Tb which lies 

between xconn of Tb and xnew of Ta. This node is denoted as xnew. Next, it uses NearVertices to find 

near vertices Xnear to xnew. It sorts these near vertices according to cost in a list Ls. Best parent is 

chosen from amongst these vertices. If such a node is found, then xnew of Ta is connected to this 

parent of Tb. The connect function returns the cost of this new path (from xinit to xgoal). If this path 

cost is less than the existing best path cost then the best path cost is updated to this one.   

Next, the trees are swapped and the process restarts, i.e., now sampling is done with Tb and 

connection is done with Ta.  
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2.8 Intelligent bidirectional RRT* for optimal motion planning in complex 

cluttered environments 

This algorithm is an improved variant of both RRT* and bi-directional RRT*. The algorithm 

introduces intelligent sample insertion heuristic for fast convergence to optimal path solution using 

uniform sampling heuristic. The algorithm is designed for complex cluttered environments where 

exploration of configuration space is difficult. Contrary to standard Bi directional RRT*, both trees 

are taken in parallel. 

The algorithm works as follows: A random sample is generated whose near vertices are found from 

both trees denoted as Xa
near and Xb

near. If both Xa
near and Xb

near are empty then the nearest vertex is 

found and added to Xa
near and Xb

near and connection variable is set to False. If Xa
near and Xb

near are 

not empty then Xa
near and Xb

near are sorted according to cost into La
s and Lb

s. The best selected 

triplets from Ta and Tb are assigned to {xa
min, c

a
min, σ

a} ∈ La
s and {xb

min, C
b

min, σ
b} ∈ Lb

s respectively. 

The new node is attached to the Tree with which least cmin is associated and rewiring of vertices of 

that tree is carried out. If the cost of the concatenated path is less than the cost of existing end to 

end path, then the end to end collision free path is updated. Connection between the two trees is 

carried out if the Connection variable set during NearVertices call is true. This denotes that there 

are nodes of both trees present in the ball around the random sample. This makes the algorithm less 

greedy, i.e., it only makes a connection if there are nodes of both trees present in the circle.   

2.9 PB-RRT* / PIB-RRT (Potentially guided RRT* for fast Optimal Path 

Planning in Cluttered Environments) 

B-RRT* and Bi-RRT* don’t work well in cluttered environments as both perform pure exploration. 

The algorithm incorporates Artificial Potential Field (APF) to Bi-directional RRT* and to 

Intelligent Bi-directional RRT* through the new functions: potentially guided bidirectional RRT* 

(PB-RRT*) and potentially guided intelligent bidirectional RRT* (PIB-RRT*). Both algorithms 

use a Bi-directional Potential Gradient [BPG] function, to guide the random sample using APF, rest 

of the algorithm performs normal B-RRT* and Bi-RRT* using the guided sample. The BPG 

function works as follows: 

If the iteration number is even, the random sample is passed to BPGgoal function which computes 

the attractive force Fatt on the sample, given zgoal as the attractive pole. Then the distance from 
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nearest obstacle d*
nearest is computed. If it is less than a constant d*

obs, then the random sample is 

returned directly. Otherwise sample zpb is directed downhill in the direction of decreasing potential 

towards goal region in ε sized small steps. The process is repeated for n iterations. 

If the iteration number is odd, the random sample is passed to BPGinit function which computes 

the attractive force Fatt on the sample, given zinit as the attractive pole. The rest of the procedure is 

same as above. The process is repeated for n iterations or until d*
nearest remains greater than d*

obs. 

For PB-RRT*, this operation is performed once on Ta (growing from root) and then on Tb (growing 

from goal) resulting in pulling both trees towards each other and a faster convergence than RRT*. 

For PIB-RRT* the sample is connected to the tree it is closer to and so on.  
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CHAPTER 3: REPLANNING ALGORITHMS 

The challenges faced by a robot working in real-life environment are quite different. It is highly 

probable that the mobile robot will face changes in some or all of the following. 

 Change in the goal point 

 Change in the position of the robot as it starts to move 

 Change in the obstacles of its environment  

 Change of the environment altogether 

Therefore, an algorithm that is envisaged to work in real-life shall be able to cope with all of these 

changes. Traditional single query and multi query algorithms can handle these changes, albeit with 

certain limitations.  

3.1 Using Single Query Algorithms for Re-planning 

In this section, we will see consider how single query algorithms can be used to respond to the 

changes mentioned above and what are the limitations associated with them. As RRT* is one of the 

most successful single query algorithms, it will be used for the comparison. Any adaptabilities or 

limitations of RRT* against these requirements can be extrapolated to apply to all sampling based 

single query algorithms.  

 

  Figure 3.1: RRT* in a Typical Environment 
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A single query algorithm such as RRT* can be modified to handle goal point changes. As shown 

in figure 3.1 above, the RRT* tree already contains optimal paths to almost all points in the 

configuration space. In case of any change in the goal point, a simple reverse traversal from the 

point closest to the new goal point to the root would provide the optimized path to the new goal 

point. Therefore, RRT* shall be able to cope up with goal point changes, however, this might not 

be possible with the movement of the robot.  

In a real-life environment, the robot will not be content with just finding the optimized path to the 

goal. Rather it will have to walk the talk, i.e., it will have to follow the path down to the goal. RRT* 

is able to provide an optimized path to the goal and the robot can be programmed to move once the 

path is found. The RRT* tree, however, becomes obsolete as soon as the robot starts movement. It 

will not be able to handle any goal changes after the movement of the robot, as the tree root is no 

longer centered at the robot’s current position. Such a scenario will require running the algorithm 

from scratch which will be infeasible. Some alternate algorithms keep the tree root centered with 

the movement of the robot. This adaptation can enable the algorithm to handle goal changes as the 

tree will remain intact and a path can be traced from any point back to the root which is the current 

position of the robot.  

Other variations of RRT* enable the algorithm to handle dynamic obstacles during execution. 

However, changes in any major obstacles during the execution of the program do not make sure 

that optimality is retained. The algorithm also becomes intractable when major changes are done. 

If the environment is changed altogether, e.g., the robot moves to a new environment, RRT* needs 

to be restarted from scratch and it consumes a lot of time to find an optimized path in the new 

environment.  

As explained above, standard RRT* is meant for single time use. It is not able to cope up with the 

requirements faced by a robot in practical usage. A few variations of RRT* are able to partially 

respond to some of these changes but none would be able to respond to all of them in real-time. 

Thus single query algorithms would not be useful for real-time movement of the robot.  

3.2 Using Multi Query Algorithms for Re-planning 

Multi-query algorithms, as described in previous chapter, are quite robust but require extensive pre-

processing time. However, the amount of time taken for construction of the graph during the 

preprocessing phase would be compensated by its re-usability. 
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These algorithms, such as PRM*, can easily handle any goal point changes, as the new path from 

start to goal point is only a search away. The start point of the robot can be kept updated along with 

the movement of the robot. Additionally, no requiring would be required with the robot’s movement 

as is required by single query algorithms such as RRT*.  

Handling of dynamic obstacles along the way seems to be a cumbersome task for multi query 

algorithms as any movement of the obstacle would affect a complete portion of the graph. New 

edges will have to be defined between the vertices followed by search for an alternate path.  

If the environment is changed altogether, the complete graph will have to be regenerated from 

scratch, before the robot can take a single step along the path. This would be expensive both in 

terms of time and computations, which cannot be performed in real-time.  

Therefore, both single and multi-query algorithms are in-efficient when it comes to real-life 

environment where the robot should be able to respond in a real-time manner.  

3.3 Re-planning Algorithms  

Re-planning algorithms focus on reusing the existing solution to respond to any changes in the goal, 

the obstacles or the environment. Recently proposed re-planners include Online RRT* & FMT*, 

RT-RRT * etc. To cater for demands of real-life environment, the algorithms perform various tasks 

as described below.  

The re-planners interleave various tasks which include movement of the robot, shifting of tree root 

to the robot’s new position, rewiring of the tree, further expansion of tree and acceptance of new 

goal.  

The robot starts moving as soon as a path to the goal is found. The algorithm has to ensure that 

current position of robot is always maintained as the tree root. This is achieved by rewiring of the 

tree along with movement of the robot. Once the robot has taken a single step along the path, that 

is, from tree root to the child of the root along the path, the root is also shifted to its first child on 

the path. The parent child relationship of the first child and original root is inverted. The child is 

made the root of the tree by setting its parent to None while the original root’s parent is changed to 

new root. Rewiring of the tree is then carried out to update the costs (and parents) according to the 

new root. The rewiring process gets computationally expensive as the tree size increases. So some 

algorithms do selective rewiring based upon gird based spatial indexing, selective rewiring or 

random rewiring.  
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This process is also accompanied by sampling of new points in the configuration space.  To keep 

the tree size within limits, the algorithms do not add points beyond the predefined tree size. 

However, new sampling remains in progress and is used to optimize the rewiring process.  Online 

RRT* & FMT* sample a new point but do not add it to the tree. The point is used to select point of 

rewiring, i.e., least cost node is selected in the neighborhood of the newly sampled point which is 

used for standard RRT* rewiring. The algorithms also accept any goal change whose path is yielded 

from the same start point.  

The current re-planning algorithms are able to find paths to alternate goal points in real-time and 

enable robot’s movement along with it, but they do not focus on the optimality of the paths 

generated by the algorithm and focus only on providing a path in real-time.       
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CHAPTER 4: RAPIDLY RE-PLANNING RRT* 

4.1 Background  

In the previous chapters, we have seen the utility of current motion planning algorithms for real 

time path planning. An overview of single query path planning algorithms and re-planning 

algorithms was presented.  

The existing single query algorithms are not meant for real-time use or for re-planning. They have 

to be run from scratch every time there is a change in the environment, the location of the robot, 

the location of its goal point or any change in the environment. If there is a change in the location 

of the robot, the root of RRT* tree would no longer remain at position of the robot rendering all 

path planning through the tree useless. Since the RRT* tree provides an optimized path to all points 

of the workspace, handling the change in goal point should be straight forward, however, no such 

provision exists in the current algorithms. If there is any change in the environment, some 

algorithms exist for handling dynamic obstacles but no algorithms exist for handling major 

environmental changes, such as those in which the major obstacles are changed or where the robot’s 

location is changed altogether.  

All of these changes would require the algorithms to be restarted from scratch which is expensive 

in terms of time and computation. Any single query algorithm fashioned for real-time use would 

also be non-optimal due to the requirement of providing the result in real-time. Additionally, 

restarting the tree at every step of the robot would be highly inefficient.  

The multi-query algorithms are not suitable for real-time use as well. The first problem is the time 

required for pre-planning phase. If the environment is changed at an instant, the whole pre-planning 

is also rendered useless and has to be restarted from scratch.  

Re-planners provide a solution for handling real-time movement of the robot. The current re-

planning algorithms, however, do not consider optimality of the path yielded by the algorithm.  

 

 

 

 

 

 



 

16 

4.2  Introduction to Rapidly Re-planning RRT* 

Rapidly Re-planning RRT* or R4T* is a re-planning algorithm which aims to address the 

requirements necessary for the robot to perform efficiently in a real-time environment. It enables 

the robot to move in a new environment as soon as a path to the given goal point is found. The robot 

starts movement along the path which is further optimized on the go. Any new goal point, which is 

given to the robot during this process can also be handled by the algorithm. The new goal point can 

be assigned irrespective of whether the robot has reached the goal point or not. The algorithm 

immediately searches for the path from the current position of the robot to the new goal point. The 

new path is followed by the robot immediately.  

The Rapidly Re-planning RRT* algorithm initially starts with RRT*, which is used to yield initial 

path to the goal. The algorithm enables continuous optimization of the path along with further 

spawning of the RRT* tree. Any change in the goal point, at this point, is handled by RRT* which 

gives an optimal path from the goal to robot’s position. During spawning of RRT* tree, a Smart-

Graph is built after every n-thousandth nodes of the RRT* tree. Once the predefined number of 

nodes of RRT* have been reached, further paths are yielded by the Smart-Graph. If the environment 

is changed altogether, the algorithm restarts with RRT* followed by other elements of the 

algorithm. 

Consider a real world scenario, where for instance a pet robot is required to follow a particular 

object such as a human being. Using this algo., when the pet reaches a new room, it is able to find 

the path to the human using R4T*. As soon as the path is found, the robot starts its approach towards 

the human following this path. The path is continuously improved using RRT*. If the human moves 

about the robot is able to update the goal and find a new path to the target. After the initial 

development of the algorithm, the paths are yielded by the Smart-Graph which ensures optimized 

paths to any new goal points in the given environment. If the human moves to a new environment 

the process is restarted. However, the pet is able to move immediately in the new environment as 

soon as the path is found.  
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4.3  Overview of Rapidly Re-planning RRT* Algorithm 

The algorithm builds upon RRT* to generate a real-time algorithm able to respond to real-life 

requirements faced by the robot. Contrary to the re-planners previously described, the algorithm is 

able to yield paths to alternate goal points which are equal or exceeding in optimality when 

compared to the path generated by a 7000 node standard RRT* algorithm. 

To perform this task, the R4T* algorithm develops a Smart-Graph which comprises of RRT* nodes 

present around the corners of the configuration space obstacles. The Smart-Graph is essentially a 

visibility graph which the vertices are the nodes at the corners of the obstacles while the edges are 

formed between the vertices which are mutually visible to each other. Developing a visibility graph 

directly in high dimensional spaces is computationally difficult whereas a Smart-Graph can easily 

be built in high-dimensional spaces where RRT* already works efficiently. The following figures 

show a typical visibility graph.   

 

Figure 4.1: Visibility Graph 

 

These nodes are found using a modification of RRT*-Smart algorithm. The RRT*-Smart algorithm, 

as described earlier, searches for nodes around the corners of configuration space obstacles. These 

nodes are then used for further sampling of nodes close to these corner nodes in order to optimize 

RRT* path around the corners.  
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Randomly Re-planning RRT*, however, uses only the first part of RRT*-Smart. The algorithm is 

used to find the nodes around the corners of the configuration space obstacles after every n x 1000 

nodes of RRT* tree have been spawned. These nodes are added to a graph called Smart-Graph. 

Unlike other re-planners, RRT* is stopped once a predefined number of nodes has been achieved 

after which all the paths are yielded by Smart-Graph. The algorithm enables the Smart-Graph to be 

developed from an existing RRT* tree or it can be developed alongside an RRT* tree being built. 

At the end of this phase, we have a Smart-Graph with small number of vertices which is able to 

yield optimized paths between any two points with computation time equivalent only to the time 

invested in searching through the graph. The paths between the any pair of start and goal points can 

be found by adding both of these points to the Smart-Graph and finding the optimized path from 

start to goal point. The optimized path is found using Dijkestra’s algorithm. Due to reduced number 

of nodes in the Smart-Graph, the time taken to find the paths is only equal to the search time of 

Dijkstra’s algorithm.   

4.4 Structure of the Algorithm  

The algorithm is divided into four basic sections, which handle the following functions. basic 

functions including:  

i) Basic RRT* path planning to the goal, 

ii) Movement towards the goal point as soon as a path is found or max number of RRT* 

nodes has been reached,  

iii) Building/update of Smart-Graph at every nth (user-defined) node of RRT*  

iv) Handling of goal changes at any point. 

The RRT* algorithm is run for user defined number of nodes, after which RRT* and update of 

Smart-Graph is stopped and other functions carry on until the end of the program.  

The algorithm starts with RRT* which is used to find path from a start to goal point (both randomly 

generated). As soon as a path is found, the agent starts navigating it by moving a single step at a 

time. In one step, the robot moves from current root of the tree to first child along the path. To keep 

RRT* algorithm progressing, the tree-root is also moved to the new position of the robot and 

rewiring is carried out accordingly. This is similar to the concept used in RT-RRT* and Online 

FMT* & RRT*. Rewiring in R4T* is carried out at a single level to ensure that minimal time is 

consumed in the process.  
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The Smart-Graph is generated using a modified version of RRT*-Smart, which is applied on leaf 

nodes of RRT* tree after enough new nodes have been generated. RRT*-Smart algorithm finds the 

nodes around the corners of the obstacles, which are subsequently added to the Smart-Graph.   

The R4T* algorithm has the capability of handling goal point changes at any time. Whenever a new 

goal point is selected, its path from the current tree root (agent’s position) is found using both RRT* 

and Smart-Graph. The RRT* path is followed by the agent as long as the RRT* tree (and Smart-

Graph) is being built, afterwards Smart-Graph’s path is followed.  

The algorithm is tested rigorously for multiple start and goal points in three different 2D 

environments with different obstacle configurations. The optimality of Smart-Graph path is shown 

empirically by comparing its generated paths with those generated by a standard RRT* tree for the 

same goal points. The algorithm is shown to generate paths which are similar or better in optimality 

to the corresponding 7000 node RRT* trees. In terms of size, the Smart Graph in a typical 

environment comprises of fewer nodes as compared to RRT*, which enables searching and finding 

new paths with minimal additional overload.   

The R4T* thus provides an efficient multi-query function without the limitations imposed by either 

single-query or multi-query planners.  

4.5 Related Work 

In this section, the algorithms which are used in Rapidly Re-planning RRT* algorithm are explained 

in detail. 

4.5.1 RRT* Algorithm 

A brief description of RRT* is given in this section as it is the basic building block of R4T*. RRT* 

is a sampling based algorithm which incrementally samples points in the configuration space, trying 

to find and optimize the paths to any point in the configuration space from the start point. In doing 

so, it tries to find an optimal path to the goal point zgoal.  

Let X represent the configuration space of the robot with Xobs defining the space occupied by 

obstacles. Xfree is the free space, void of obstacles, defined as Xfree = X\Xobs. The initial point is 

defined as zstart while the goal point is defined as zgoal. The RRT* algorithm attempts to find a control 

input u = [0,T] that results in a feasible path x(t) ϵ Xfree, such that x(0) = zstart and x(T) = zgoal. The 

algorithm constructs and maintains a tree T= (V, E) which comprises of a set of vertices (nodes) V 

joined by edges E, such that both vertices and their interconnecting edges lie completely in Xfree. 
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The algorithm is outlined in Algorithm-4.1. A brief description of the functions of the algorithms 

is given below.  

The algorithm starts with initialization of the tree T with the start node zstart. The nodes are sampled 

to a predefined maximum nodesmax.  

Algorithm-4.1 

RRT* (T, G, nodesmax) 

1.  T ← InitializeTree() 

2.  T ← InsertNode(zstart, T) 

3.  While (i < nodesmax) 

4.  zrand ← RandomSample(i)  

5.  zclosest ← ClosestNode(zrand, T) 

6.  znew ← Extend(zclosest, zrand) 

7.  If ObstacleFree(znew):  

8.  Znear ← CloseNodes(znew, T,|V|) 

9.  zparent ← ChooseParent(znew, Znear) 

10.  T (N, E) ← InsertNode(znew, zparent, T) 

11.  E ← Rewire(znew, Znear, E) 

 

RandomSample:  

The function generates a random point zrand in the obstacle free space in the environment, i.e.,       

zrand ϵ Xfree   

ClosestNode: 

The function returns a node, zclosest, in the tree T which is closest (based on Euclidean distance) to 

the random point zrand, generated by the function RandomSample.   

Extend: 

The function takes a single step from zclosest in the direction of zrand and returns this point in the form 

of znew. 

ObstacleFree: 

The function checks for two things. First that znew lies in Xfree and second that the path from zclosest 

(current parent of znew) to znew completely lies in Xfree. If any of these conditions are not met, the 

function returns 0. 
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CloseNodes: 

The function returns the set of nodes Znear which present around znew in a ball of volume whose 

radius is given by r = γ (log n/n)1/d where γ is a constant, n is the number of nodes and d is the 

dimension of the state space. 

ChooseParent:  

The function chooses a node zparent from Znear, to be the parent of znew through which the cost to 

reach znew from the root of the tree is lowest. 

InsertNode:  

The function adds the node znew to the tree T with zparent as its parent.  

Rewire: 

The function rewires the nodes in Znear, by making them a child of znew if the cost to reach them is 

lower through znew than through their existing parent.  

4.5.2 RRT*-Smart Algorithm 

The algorithm provides optimal paths with a faster rate of conversion, as compared to RRT*, by 

using Path Optimization and Intelligent Sampling.  

Path Optimization: 

This function optimizes the path found by RRT* nodes based upon visibility between the nodes in 

the path. Once a path has been found by RRT*, the algorithm starts from zgoal and tries to connect 

zgoal directly with the parent of its parent through a straight line path which lies completely in Xfree. 

If the connection is possible, the same is checked with the next parent up the tree (i.e., from zgoal to 

its parent’s parents’ parent).  The process is repeated until a node in the path is reached, to which a 

direct connection is not possible. In this case, zgoal is connected directly to the last successful 

connection and the process is restarted from the node to which the connection failed. The process 

is repeated iteratively until the whole path has been traversed and zstart has been reached. The 

process results in an optimized path with least number of nodes which are called beacons.  

Intelligent Sampling: 

Intelligent sampling is carried out using the beacons identified during Path Optimization. As the 

beacons are nodes around the corner of the obstacles, the algorithm tries to sample more points in 

a ball around the beacons enabling further optimization around the corners resulting in an optimized 

path.  
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4.5.3 Rapidly Re-planning RRT* [R4T*] 

This section describes Rapidly Re-planning RRT* algorithm in detail. The pseudo-code is outlined 

in Algorithm-4.2.  

Algorithm-4.2: R4T* () 

1.  T ← InitializeAll() 

2.  T ← InsertNode(zstart) 

3.  While run do: 

4.  If not(path_fnd) do:   

5.  (T,G, path_fnd, nodes_cnt) ← RRS(T) 

6.  if not(path_fnd): 

7.  pathnew ← WindupGoal(zgoal) 

path_fnd ← 1 

8.  If not (Tree_comp) do:  

9.  (T,G) ← RRS50(T) 

10.  (zgoal, pathnew, goal_set) ← RedefineGoal() 

11.   If goal_set do: 

12.  If start_vert in G.vertices: 

13.  G ← RemVert(goal_vert, start_vert) 

14.  (G, pathsmrt, costsmrt) = SmartPath (G, 

zgoal)  

15.  If not(Tree_comp) do: 

16.  T ← MoveRw(pathnew, T) 

17.  else:  

18.  G ← MoveSmrt(pathsmrt, G)  
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The algorithm starts with creation of the Tree T and its initialization with the start node zstart. The 

run variable executes the algorithm until it is terminated by the user. The initial start and goal points, 

zstart and zgoal, are selected randomly at start of the program. This is followed by execution of RRS 

function [line 5] to find an optimal path to zgoal and develop the Smart-Graph along with it. RRS is 

a combination of RRT* and RRT*-Smart algorithms, where RRT*-Smart is executed after every 

1000th node of the RRT* to develop the Smart-Graph.  

In the first part of the algorithm, RRS is run until a path to goal is found or maximum number of 

RRT* nodes have been reached. The function returns to the main program as soon as any of these 

two conditions is met. [lines 4 & 5] 

If the goal has not been found but maximum number of nodes has been reached, then R4T* finds 

the path to the node closest to zgoal through WindupGoal function. [lines 6 & 7]. On the other hand, 

if the goal has been found by RRS but max number of RRT* nodes has not been reached, then the 

further nodes of RRT* are generated through RRS50 algorithm in the second part of the R4T*. By 

the end of first part [lines 4 to 7], the R4T* has yielded a path to the goal or to the closest node to 

goal.  

The second part of the algorithm performs four tasks which are executed iteratively. These tasks 

include: RRT* tree expansion (up to max nodes count), acceptance of new goal with derivation of 

its path from the existing tree, Smart-Graph update and movement of the robot. The variable 

Tree_comp is used to follow the completion of the Tree; it allows further generation of 50 RRT* 

nodes and Smart-Graph update (through RRS50 function) in every iteration [line 8-9]. The function 

RedefineGoal [line 10] selects the new goal point (based on mouse click) and returns it as zgoal. It 

also returns the path to zgoal from current position of the robot as pathnew and a goal_set variable 

which denotes that goal has been changed.  

If the goal has been changed, the function RemVert removes the old start and goal vertices from 

Smart-Graph G, if they exist in the graph. This is controlled by the variable start_vert, which is 

initialized as None in InitializeAll function. Start_vert is assigned a value during first execution of 

SmartPath function, so it would not exist in the graph if the SmartPath function has not been 

executed before.  

SmartPath function [line 14] adds the current position of the robot and new goal point as vertices 

of the graph G and then computes the path from start to goal point by using Dijkstra’s search 
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algorithm. If Tree_comp variable is 0, i.e., the RRT* tree is not complete, the robot follows the 

RRT* path through MoveRw function.  

The RRT* tree root is centered at the robot’s position. The MoveRw function moves the robot from 

the tree root to its first child along pathnew. The tree root is then shifted to the new position of the 

robot and limited level of rewiring is carried out to update the parent-child relationships and the 

associated costs. 

By keeping the tree root at the robot’s current position, path to any new goal point within the 

workspace can easily be found from the robot’s current position.  

If the Tree_comp variable is ‘1’, i.e., the RRT* tree is complete, further spawning of RRT* nodes 

is stopped and robot movement is handled directly by the Smart-Graph through MoveSmrt function. 

The algorithm continues in the same manner until the program is terminated.  

The functions used in the Rapidly Re-planning RRT* algorithm are described in detail below. 

RRS [Algorithm-III] 

RRS is the main function of R4T* which handles three critical functions, which include, modified 

form of RRT*, RRT*-Smart and graph building algorithm. RRS function is outlined in Algorithm-

4.3.   

Algorithm-4.3 

RRS (T, G, nodesmax) 

1.  While (i < nodesmax) 

2.  zrand ← RandomSample(i)  

3.  zclosest ← ClosestNode(zrand, T) 

4.  znew ← Extend(zclosest, zrand) 

5.  Znear ← CloseNodes(znew, T) 

6.  zparent ← ChooseParent(znew, Znear) 

7.  If  zparent then 

8.  T (N, E) ← InsertNode(znew, zparent, T) 

9.  E ← Rewire(znew, Znear, E) 

10.  If dist (znew, zgoal) < step_size then 

11.  path_fnd = 1 

12.  If not (i%1000) or path_fnd then 

13.  L ← FindLeaves(T) 
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14.  Vert ← RRTStarSmart (L)  

15.  G ← DefineVertices(Vert) 

16.  (G,E) ← CompVisbility(G) 

17.  If path_fnd then       

18.  Break 

19.  If not (nodes_cnt < nodesmax) then    

        Tree_comp = 1 

20.  return  (T, G, Tree_comp, nodes_cnt)  

 

The function starts with standard RRT* from line 2–9. RRT* and its functions have already been 

detailed previously.  

The modification starts from line 10. The path_fnd variable is turned to 1, if the new node znew is 

within step_size of the goal. This variable controls exit from the RRS function.  

The next part of the function develops the Smart-Graph [lines 12 to 15]. These lines are executed 

every thousandth node and  before exiting RRS when path_fnd becomes 1. 

There are four functions in this portion of the algorithm, which are detailed below.  

FindLeaves: This function searches the tree T and returns a list, L, of leaf nodes present in the tree. 

The function is followed by RRTStarSmart. 

RRTStarSmart: A slight modification of original RRT*-Smart is used here to find corner nodes in 

the tree T using the list L of leaf nodes. The algorithm takes a leaf node from the list L and starts 

traversing back from it towards the root. It tries to make   a straight line connection between the 

leaf node and its preceding nodes, as shown in Figure 4.2.  

 

 

a 

b 

c 

d 

Figure 4.2: RRT*-Smart Implementation 
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In the figure, the leaf node is shown as ‘a’, its parent nodes are shown as b, c and d while the 

obstacle is shown as blue block. RRTStarSmart tries to connect ‘a’ to ‘b’ through a straight line, 

once it is successful it tries to connect ‘a’ to b’s parent, i.e., ‘c’. This continues until it reaches the 

node ‘d’, with which direct connection is not possible due to presence of the obstacle. The algorithm 

marks ‘c’ and ‘d’ as corner nodes and restarts the process from the last node with which connection 

was unsuccessful, i.e., node ‘d’. Now ‘d’ is taken as the main node and visibility from ‘d’ to its 

ancestors is checked. The process continues until the paths from all the nodes in L have been 

checked and corner nodes found. Any node that has been checked once is not checked again during 

single iteration of RRTStarSmart. The function returns the corner nodes as a list, Vert. 

DefineVertices: This function updates the vertices of graph G, by adding the nodes from Vert which 

are not already present in the graph.  

CompVisibility: The function defines edges between the vertices of the graph G, if a straight line 

connection is possible between them. As the number of nodes in the tree T increases, the Smart-

Graph developed from them represents the workspace in a better manner. Figures 3-5 show the 

Smart-Graph developed after 1000 and 5000 nodes for randomly generated initial start and goal 

points for three different environments.  

Line 17-18 break the While loop if the path has been found, otherwise the program continues in the 

loop. Once outside the While loop, the program checks for completion of the tree and if so turns 

Tree_comp to 1. Line 20 returns to the main function.  

The RRS function returns updated tree T, graph G, path_fnd variable and the current number of 

nodes in the tree T. 

WindupGoal [line 7, R4T*]: The function returns a path from the tree root to given goal point by 

finding the least cost node in neighborhood of zgoal and traversing back from it to the tree root.  

RRS50: The function is same as RRS function, except the following changes. The nodesmax value 

is set at current number of nodes in the tree + 50 which ensures that only 50 new nodes are added 

to the tree in one call to the function. Secondly, the RRS50 does not have path_fnd variable as the 

path to goal has already been found. Similar to RRS, the function updates the Smart-Graph in case 

the total number of nodes reaches a multiple of 1000 during execution of the function. The function 

is executed in every iteration of R4T* until the predefined number of RRT* Tree nodes are 

achieved. Once the predefined number is achieved Tree_comp is turned 1 which stops the execution 

of this function.  
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RedefineGoal: The function enables acceptance of a new goal. For simulation, it takes the goal 

input directly from the mouse click position. The selected location is returned as zgoal. The function 

also returns the path to zgoal using WindupGoal and sets the goal_set variable 1 when a new goal is 

selected.  

The goal_set variable returned by RedefineGoal denotes that a new goal has been chosen. If the 

variable is 1, the algorithm uses SmartPath function [line 14] to find pathsmrt to the new goal. This 

path, however, has to be found from the current position of the robot to the new goal point zgoal. 

Therefore, the previous start and goal vertices in the graph G, denoted by the variable start_vert & 

goal_vert, have to be removed before the execution of SmartPath. This is achieved by RemVert 

function [line 13].  

RemVert: The function is executed if start_vert and goal_vert vertices have already been added to 

Smart-Graph. These variables are initialized as None in InitializeAll, and assigned during execution 

of SmartPath. Hence, they would still be None during the first execution of the R4T* which would 

skip the execution of RemVert. RemVert removes these vertices from the graph to make way for the 

new ones during the up-coming iteration of SmartPath function.  

SmartPath [Algorithm-4.4]:  

Algorithm-4.4 

SmartPath(pathnew, zgoal ,G) 

1.  start_vert ← Vertex(pathnew[0]) 

2.  goal_vert ← Vertex(zgoal) 

3.  G ← Insert(start_vert, G) 

4.  G ← Insert(goal_vert, G) 

5.  G ← CompVisbility (G) 

6.  G ← Dikestra (G, start_vert) 

7.  pathsmrt ← shortest(goal_vert, G) 

8.  pathsmrt ← Optimize(pathsmrt) 

9.  Return start_vert, goal_vert, pathsmrt 

 

The algorithm starts by adding two new vertices to the Smart-Graph. The first vertex is the current 

position of robot, which is always maintained as the first element of pathnew (the path retuned by 

WindupGoal based on RRT*). The Vertex function defines the current position as an object of 

vertex class. Similarly, zgoal is added as another object of vertex class. Both start_vert and goal_vert 
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are added to the Smart-Graph. CompVisibility [line 5] is used to redefine edges amongst the vertices 

of the updated graph. This is followed by application of Dijkstra’s algorithm to find the minimum 

cost path between start_vert and goal_vert. The algorithm is implemented in two functions namely 

Dikestra and Shortest and the final path is optimized further through Optimize function. Dikestra 

finds minimum cost to reach start_vert from any vertex of the graph, while Shortest starts from the 

goal_vert and makes its way back to the start_vert by following the least cost parent assigned by 

Dikestra. Optimize function further optimizes the generated path by dividing straight lines in the 

pathsmrt into small equal length segments. A vertex is defined at the end of each segment and a mini-

graph of these segments is created, complete with edges and vertices. Dijkstra’s algorithm is applied 

on the mini-graph to yield a further optimized path. Since mini-graph size is very small, the 

improvement in path is substantial with little computational load. The path generated by the 

algorithm is returned as pathsmrt. 

 

MoveRw[Algorithm 4.5]: 

Algorithm-4.5 

MoveRw(pathnew, T) 

1.  If len(pathnew) > 1:  

2.  pathnew[0] ← pathnew[0].RemChild(pathnew[1]) 

3.  pathnew[0].parent ← pathnew[1] 

4.  pathnew[1].parent ← None 

5.  pathnew[1] ← pathnew[1].AddChild(pathnew[0]) 

6.  pathnew[1] ← pathnew[1].Update Cost() 

7.  pathnew ← del ( pathnew[0]) 

8.  E ← GoRewire (pathnew[0], E) 

9.  return Pathnew 

 

This function is utilized in case of RRT* tree not being complete, denoted by Tree_comp variable. 

Its objective is to move the robot to the next point along the path while keeping the tree root centered 

at the new position of the robot. This keeps the RRT* algorithm intact and allows further nodes 
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spawning along finding of path to any new goal point at any time. The concept of moving the root 

along with robot’s position is similar to that presented in [12] and [13]. 

MoveRw moves the robot one step i.e., from current tree root to first child along the path, shifts the 

tree root to the robot’s new position and adjusts the parent-child relationships accordingly. Further 

it rewires around the new root to update the costs and parents according to low cost to reach rule. 

The current position of the robot is at pathnew[0] and the first child along the path is at pathnew[1]. 

Figure 4.3 depicts the movement process where pathnew[0] is shown as red node while pathnew[1] is 

shown as yellow node. Lines 2-5 of Algorithm-V,  shift the tree root from pathnew[0] to pathnew[1]. 

To do so, in line 2, pathnew[1] is removed from children of pathnew[0]. In line 3,  pathnew[1] is made 

the parent of pathnew[0]. Line 4 assigns the parent pointer of pathnew[1] as None because it is now 

the root of the tree and line 5 adds pathnew[0]  to the children of pathnew[1]. The cost of pathnew[1] is 

then updated to reflect that it is now the root of the Tree.  At this point, it is assumed that the robot 

has moved to its new position, so pathnew[0] is removed from the path list.  

With the change in root node of the tree, the cost to approach the root from all the nodes has been 

changed as well. Therefore, rewiring of the tree is required to update the costs and parents (where 

required). Updating the whole tree at every step of the robot is a time consuming process and will 

cause the algorithm to be non-real time. Rewiring is thus limited to a single level around the root 

node. This does not substantially affect the optimality of the paths generated by rewired RRT* and 

speeds up the whole process of movement.  

Rewiring during movement is implemented through GoRewire function. The function rewires the 

nodes present in the neighborhood of the root node and makes the tree root the parent of these 

nodes. The function works exactly like the Rewire function of RRT* except that zroot takes the place 

of znew, and the neighborhood nodes are automatically connected to it because the cost to reach the 

Figure 4.3: Moving the Start Point  
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zroot is only the distance between them. Since a part of the tree is rewired, the path from root to goal 

is recomputed using WindupGoal. The command for actual movement of the robot can easily be 

embedded in the algorithm to ensure physical movement along with update in the tree root.  

MoveSmrt: This function is executed after complete RRT* tree has been spawned and the 

generation of Smart-Graph has been completed. It simply moves the robot to the next vertex in 

pathsmrt and updates pathsmrt by removing the previous vertex. 

4.5.4 Performance of R4T* 

The algorithm starts developing the Smart-Graph after 1000th node of RRT* has been spawned. 

With every additional 1000 nodes, the Smart-Graph is further updated enabling it to cover 

increasing area of the workspace hence yielding optimal results even at fewer nodes as compared 

to RRT*.  

The algorithm was tested in three environments with different obstacles sizes and configurations. 

Figures 4.4, 4.5 and 4.6 shows the coverage status of Smart-Graph in these environments after 1000 

and 5000 nodes of RRT*.  

In the figures above, RRT* tree is shown in Cyan while the Smart-Graph edges are shown in red. 

The vertices of the Smart-Graph are shown as blue dots. As depicted in the figures, by 5000 nodes, 

maximum coverage of the workspace has been achieved by the Smart-Graph which enables it to 

yield optimal paths between any two points in the workspace. 

Number of vertices of the Smart-Graph for different environments is also shown in the figures. In 

Environment-III, which has most obstacles and corners, the maximum number of vertices comes 

out to be 356 against 5000 RRT* nodes. 
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Fig. 4.4: Environment-I; Smart-Graph at 1000(above) and 5000 RRT* nodes (below). 

Number of Vertices: 42 & 163 resp. 
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Fig. 4.5: Environment-II; Smart-Graph at 1000 (above) and 5000 RRT* nodes (below). 

Number of Vertices: 48 & 135 resp. 
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Fig. 4.6: Environment-III; Smart-Graph at 1000 (above) and 5000 RRT* nodes (below) 

Number of Vertices: 90 & 356 resp. 
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As shown in the above figures, the Smart-Graph with a small number of vertices is able to cover 

the configuration space area which is covered by at least a 5000 node RRT* tree. Coverage here 

means having enough nodes or vertices in the configuration space to be able to generate an 

optimized path between any two points in the space. It may be noted that even at this point the 

RRT* tree is only optimized for providing path from a specific start point to all points in the 

configuration space and cannot provide paths between all pair of points. The Smart-Graph on the 

other hand is able to do that, in real time and with computational overload only equivalent to that 

of a Dijkstra. 

In the next phase of the algorithm testing, different goal points were given to the robot during 

different phases of its movement using mouse in all three environments. As shown in the figures 

4.7 – 4.9, the Smart-Graph was able to yield optimized paths between these points.  
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Fig. 4.7: Paths generated by Smart-Graph in Environment-I 
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Fig. 4.8: Paths generated by Smart-Graph in Environment-II 
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Fig. 4.9: Paths generated by Smart-Graph in Environment-III 
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5.5.5 Comparison with RRT* 

The algorithm’s performance (path optimality) was empirically compared with that of a standard 

RRT*. To do so, 5 different pairs of start and goal points were selected. Paths for these pairs were 

computed using a 7000 node RRT* tree, for all three environments. The costs of paths generated 

by RRT* were logged and are shown in Table-4.6 below. 

 

Pair# Start Goal 

7000 Node RRT* Path Cost 

Env – I Env – II Env – III 

1 10,679 648,33 990 1061 975 

2 648,33 514,640 673 646 625 

3 514,640 432,419 316 365 243 

4 432,419 258,17 512 740 471 

5 258,17 29,641 688 714 674 

Table 4.6: RRT* Path Costs for Different Environments 

 

In the next step, R4T* algorithm was run for 5000 RRT* nodes initialized with random start and 

goal points. Its Smart-Graph was used to find paths for the predefined start/goal pairs (shown above) 

and their path costs were noted. The algorithm was run with 10 random start and goal points for 

each Environment. The maximum, minimum and average path costs generated during these test 

runs is shown in the Table 4.7 – 4.9. 
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Pair# Start Goal Min Max Average RRT* 

1 10,679 648,33 988 996 991 990 

2 648,33 514,640 668 811 685 673 

3 514,640 432,419 307 314 309 316 

4 432,419 258,17 503 519 508 512 

5 258,17 29,641 683 686 685 688 

Table 4.7: Smart-Graph vs RRT* Path Costs in Env-I 

 

 

Pair# Start Goal Min Max Average RRT* 

1 10,679 648,33 1052 1069 1058 1061 

2 648,33 514,640 644 647 645 646 

3 514,640 432,419 363 380 367 365 

4 432,419 258,17 727 752 735 740 

5 258,17 29,641 712 714 713 714 

Table 4.8: Smart-Graph vs RRT* Path Costs in Env-II 
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Pair# Start Goal Min Max Average RRT* 

1 10,679 648,33 967 1017 979 975 

2 648,33 514,640 622 622 622 625 

3 514,640 432,419 239 243 240 243 

4 432,419 258,17 470 479 473 471 

5 258,17 29,641 673 675 674 674 

Table 4.9: Smart-Graph vs RRT* Path Costs in Env-III 

 

Tables 4.2 – 4.4 above, show the performance of Smart-Graph when compared to 7000 node RRT*. 

The results show that the path costs generated by R4T* remained consistently equal to or better 

than RRT* path costs in most of the cases. 
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CHAPTER 5: CONCLUSION & FUTURE WORK 

The thesis presents a re-planning algorithm which provides the functionality of finding optimized 

paths between any two points in the workspace using a Smart-Graph built over an RRT* tree.  The 

tree can be built from an already spawned RRT* tree or developed alongside a tree being built. 

Further it provides the provision of interleaving the movements of the robot with path planning. 

The robot is able to move as soon as an initial path to the given goal point is found. The algorithm 

continues path planning along with the movement and keeps on optimizing the path on the go. The 

process continues until a user-defined value of tree density has been achieved after which the path 

planning shifts completely to the Smart-Graph. This results in direct provision of optimized paths 

for the robot along with handling of its movement. The algorithm will be useful in cases where 

start/goal points change on real-time basis during execution of the algorithm or during movement 

of the robot.  

R4T* was empirically compared with a 7000 nodes RRT* tree. The paths generated by the 

algorithm in real-time were shown to have similar optimality to the RRT* tree in comparison. The 

algorithm provides a clear advantage as compared to the existing single and multi-query algorithms. 

In comparison with existing re-planners it stands apart by providing an optimal solution. 

The tree density for the RRT* algorithm is user-defined which can vary along with the environment. 

Future work can focus on defining a tree density based on some property or characteristic of the 

environment.  Similarly, the algorithms implementation in higher dimensions can also be evaluated. 

The algorithm provides optimal solution for start-goal pairs in given environments and needs to be 

restarted if the environment is changed altogether. Even in that scenario, it can enable movement 

early on during the algorithm.  

Future work can focus on using the algorithm to expedite optimized path finding in new 

environments as well. This can be done by combining R4T* with algorithms such as Informed 

RRT*[12], where R4T* can suggest a path using a Smart-Graph built on 1000 or 2000 RRT* nodes. 

This un-optimized path can be fed to Informed RRT* to quickly find optimal paths in any 

environment. Hence, enabling the combo to provide real-time optimized paths in scenarios where 

environments are changing as well. 
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