

Rapidly Re-planning RRT*

A Novel Re-Planning Algorithm

Author

USAMA TARIQ KHAN

Regn # 00000206755

Supervisor

Dr. YASAR AYAZ

DEPARTMENT OF ROBOTICS & ARTIFICIAL INTELLIGENCE

SCHOOL OF MECHANICAL & MANUFACTURING ENGINEERING

 NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

AUGUST, 2021

Rapidly Re-planning RRT*

A Novel Re-Planning Algorithm

Author

USAMA TARIQ KHAN

Regn 00000206755

A thesis submitted in partial fulfillment of the requirements for the degree of

MS Robotics & Intelligent Machine Engineering

Thesis Supervisor:

Dr. Yasar Ayaz

Thesis Supervisor’s Signature: ____________________________________

DEPARTMENT OF ROBOTICS & ARTIFICIAL INTELLIGENCE

SCHOOL OF MECHANICAL & MANUFACTURING ENGINEERING

 NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

AUGUST, 2021

National University of Sciences & Technology

i

MASTER THESIS WORK

We hereby recommend that the dissertation prepared under our

supervision by: Mr. Usama Tariq Khan, Reg. # 0000206755 Titled:

“Rapidly Re-planning RRT* - A Novel Re-Planning Algorithm” be

accepted in partial fulfillment of the requirements for the award of MS

Robotics & Intelligent Machine Engineering degree. (Grade: _____)

Examination Committee Members

1. Name: Dr. Sara Ali Signature:_______________

2. Name: Dr. Ahmed Hussain Qureshi Signature:_______________

3. Name: Mr. Zaid Tahir Signature:_______________

Supervisor’s name: ___________________ Signature: _______________

Date:___________________

Head of Department

Date

COUNTERSINGED

Date:__________

Dean/Principal

FORM TH-4

i

Thesis Acceptance Certificate

It is certified that the final copy of MS Thesis written by Mr. Usama Tariq Khan

(Registration No. 00000206755), of Department of Robotics and Intelligent

Machine Engineering (SMME) has been vetted by undersigned, found complete in

all respects as per NUST statutes / regulations, is free from plagiarism, errors and

mistakes and is accepted as a partial fulfilment for award of MS Degree. It is further

certified that necessary amendments as pointed out by GEC members of the scholar

have also been incorporated in this dissertation.

Signature: __________________

Name of Supervisor: Dr. Yasar Ayaz

Date: __________________

Signature (HOD): __________________

Date: __________________

Signature (Principal): __________________

Date: __________________

ii

Plagiarism Certificate (Turnitin Report)

This thesis has been checked for Plagiarism. Turnitin report endorsed by Supervisor is attached.

Usama Tariq Khan

Regn # 00000206755

Dr. Yasar Ayaz

Supervisor

iii

Declaration

I certify that this research work titled “Rapidly Re-planning RRT* - A Novel Re-Planning

Algorithm” is my own work. The work has not been presented elsewhere for assessment. The

material that has been used from other sources it has been properly acknowledged / referred.

Usama Tariq Khan

Regn # 00000206755

iv

Copyright Statement

 Copyright in text of this thesis rests with the student author. Copies (by any process) either

in full, or of extracts, may be made only in accordance with instructions given by the author

and lodged in the Library of NUST School of Mechanical & Manufacturing Engineering

(SMME). Details may be obtained by the Librarian. This page must form part of any such

copies made. Further copies (by any process) may not be made without the permission (in

writing) of the author.

 The ownership of any intellectual property rights which may be described in this thesis is

vested in NUST School of Mechanical & Manufacturing Engineering, subject to any prior

agreement to the contrary, and may not be made available for use by third parties without

the written permission of the SMME, which will prescribe the terms and conditions of any

such agreement.

 Further information on the conditions under which disclosures and exploitation may take

place is available from the Library of NUST School of Mechanical & Manufacturing

Engineering, Islamabad.

v

Acknowledgements

All praise and thanks is for Almighty Allah, the Source of all knowledge and wisdom,

without Whose divine help and guidance nothing is possible.

I am thankful to my Supervisor Dr. Yasar Ayaz for his continuous guidance, inspiration

and support throughout this work and during the tenure of MS program.

I would also like to pay thanks to Dr. Ahmed H. Qureshi for always being there with his

knowledgeable suggestions and support, despite his busy schedule and 12 hrs. time difference.

Similarly, I would also like to thank Mr. Zaid Tahir for his support and guidance.

I am also grateful to Mr. Mudassar Ayub for crucial support in the time of need.

Finally, I would like to express my gratitude to all fraternity of SMME for making this

place a wonderful hub of learning.

vi

Dedicated to the Squad: Mumtaz, Hussain, Faateh & Rafay

vii

Abstract

Sampling based motion planning algorithms such as RRT* provide an optimal path from a start to

goal point. However, any change in either of these points requires re-spawning of the tree from

scratch or using a multi-query algorithm, both of which are time consuming options. An alternative

is to re-use the existing tree to find path between the new start and goal points. A novel algorithm,

Rapidly Re-planning RRT* [R4T*], is being presented here which caters for these requirements.

R4T* builds a Smart-Graph using an existing RRT* tree to find optimal paths between any two

points in the workspace. The graph can be developed from an existing RRT* tree or alongside one

being built. The algorithm caters for a real-time environment, where the robot starts moving as

soon as a path to goal is found. If the goal is changed at any stage, the algorithm yields a path from

current position of the robot to the new goal.

The path found has comparable cost to a 7000 node RRT* algorithm run for the same start and

goal points. The research work thus presents an optimal re-planning algorithm which yields

optimal real-time paths between any two points in the workspace with minimum computational

overload.

Key Words: Path planning, Re-planning, RRT*, Motion planning, Robotics,

viii

Table of Contents

FORM TH-4 ... i

Thesis Acceptance Certificate ... i

Plagiarism Certificate (Turnitin Report).. ii

Declaration.. iii

Copyright Statement .. iv

Acknowledgements ... v

Abstract .. vii

List of Figures .. x

List of Tables .. xi

CHAPTER 1: INTRODUCTION .. 1

1.1 Path Planning Significance & Basics ... 1

CHAPTER 2: SAMPLING BASED PATH PLANNING ALGORITHMS 3

2.1 Rapidly Exploring Random Tree [RRT] .. 3

2.2 Rapidly Exploring Random Tree* [RRT*] .. 4

Variations of Rapidly Exploring Random Tree* [RRT*] ... 4

2.3 Any Time – RRT* .. 4

2.4 Potential Functions based Sampling Heuristic for Dynamic Domain RRT (P-RRT*) 5

2.5 RRT*-Smart ... 7

2.6 Triangular Geometrized Sampling Heuristic for Fast Optimal Motion Planning 8

2.7 Bi-directional RRT* (B-RRT*) ... 8

2.8 Intelligent bidirectional RRT* for optimal motion planning in complex cluttered

environments ... 9

2.9 PB-RRT* / PIB-RRT (Potentially guided RRT* for fast Optimal Path Planning in

Cluttered Environments).. 9

file:///C:/Users/Usama/OneDrive/Documents/Thesis/Paper/Writeup/MS%20Thesis%20-%20Usama%20Tariq%20Khan%20-%20206755.docx%23_Toc79767765

ix

CHAPTER 3: REPLANNING ALGORITHMS .. 11

3.1 Using Single Query Algorithms for Re-planning .. 11

3.2 Using Multi Query Algorithms for Re-planning .. 12

3.3 Re-planning Algorithms ... 13

CHAPTER 4: RAPIDLY RE-PLANNING RRT* ... 15

4.1 Background .. 15

4.2 Introduction to Rapidly Re-planning RRT* ... 16

4.3 Overview of Rapidly Re-planning RRT* Algorithm ... 17

4.4 Structure of the Algorithm ... 18

4.5 Related Work.. 19

4.5.1 RRT* Algorithm ... 19

4.5.2 RRT*-Smart Algorithm .. 21

4.5.3 Rapidly Re-planning RRT* [R4T*].. 22

4.5.4 Performance of R4T* ... 30

CHAPTER 5: CONCLUSION & FUTURE WORK ... 41

REFERENCES .. 42

x

List of Figures

Figure 2.1: Triangular Inequality 7

Figure 3.1: RRT* in a Typical Environment 11

Figure 4.1: Visibility Graph 17

Figure 4.2: RRT*-Smart Implementation 25

Figure 4.3: Moving the Start Point 29

Figure 4.4: Env.-I; Smart-Graph at 1000 and 5000 RRT* nodes 31

Figure 4.5: Env.-II; Smart-Graph at 1000 and 5000 RRT* nodes 32

Figure 4.6: Env.-III; Smart-Graph at 1000 and 5000 RRT* nodes 33

Figure 4.7: Paths generated by Smart-Graph in Environment-I 35

Figure 4.8: Paths generated by Smart-Graph in Environment-II 36

Figure 4.9: Paths generated by Smart-Graph in Environment-III 37

xi

List of Tables

Table 2.1: RRT Algorithm

Table 2.2: RRT*-Smart Algorithm

Table 4.1: RRT* Algorithm

Table 4.2: Rapidly Re-planning RRT* Algorithm

Table 4.3: RRS Algorithm

Table 4.4: SmartPath Algorithm

Table 4.5: MoveRw Algorithm

Table 4.6: RRT* Path Costs for Different Environments

Table 4.7: Smart-Graph vs RRT* Path Costs in Env-I

Table 4.8: Smart-Graph vs RRT* Path Costs in Env-II

Table 4.9: Smart-Graph vs RRT* Path Costs in Env-III

1

CHAPTER 1: INTRODUCTION

1.1 Path Planning Significance & Basics

Robotics & Artificial Intelligence are amongst the most promising fields of science and technology

in today’s world. These technologies are increasingly being utilized in every walk of human life.

Their applications are see in a variety of fields such as large-scale manufacturing, warehousing,

autonomous vehicles, robotic surgeries along with various commercial, domestic and military

avenues. This variety has led to greater interaction of robots with their environment and increased

the complexity of robotics design and control. As path planning is one of the crucial components

of Robotics, it has been subject of heavy research for several past decades. Besides robotics, path

planning has its applications in other fields including video games, animations etc.

Path Planning algorithms attempt to find a series of control inputs which will take the robot from

current configuration (start configuration) to desired configuration (goal) while avoiding the

obstacles along the way.

Let X represent the configuration space of the robot with Xobs defining the space occupied by

obstacles. Xfree is the free space, void of obstacles, defined as Xfree = X\Xobs. The initial point is

defined as zstart while the goal point is defined as zgoal. The path planner attempts to find a series of

control inputs u = [0, T] which result in a feasible path x(t) ϵ Xfree, such that x(0) = zstart and x(T) =

zgoal.

The obstacle configuration is generally difficult to be represented explicitly using geometric

representation. Therefore, it is represented in the form of collision checking algorithm which returns

‘None’ if the configuration falls in the obstacles space.

The path planning algorithms generally focus on two parameters to judge the efficiency of the

algorithm. These include completeness and optimality. Completeness refers to the ability of an

algorithm to return a path in finite time (if the path is available) or return failure if the path does not

exist. The optimality of the path is also main concern of these algorithms, which focuses to return

optimal path between given start and goal points in minimum possible.

Overall, these algorithms are divided into two main types: single query and multi query algorithms.

The single query algorithms are optimized for single use, whose focus is to find an optimal path

between given start and goal pair in minimum possible time.

2

The multi-query algorithms focus on developing a graph which can be used to find path between

multiple points in the environment. This requires a pre-planning phase which develops the graph in

a comprehensive manner followed by execution phase, where the paths between different points

are yielded by searching through the paths.

On the basis of completeness, path planning algorithms can be categorized as follows.

 Complete algorithms – These algorithms return a solution in finite time or correctly report

failure if there is no solution.

 Resolution Complete Algorithms – These algorithms are guaranteed to return a path, if the

resolution of the underlying grid is set to fine enough value as required by the algorithm. In

case the path does not exist or the resolution is not fine enough, they report failure.

 Probabilistically complete algorithms – The probability of these algorithms returning a

solution approaches one as the number of samples approaches infinity.

3

CHAPTER 2: SAMPLING BASED PATH PLANNING ALGORITHMS

Sampling based path planning algorithms are quite popular and fairly practical algorithms. These

algorithms have been proven to be probabilistically complete and are generally able to return an

optimized path between two goal points. The sampling based algorithms include both single query

and multi-query algorithms. Popular sampling based single query algorithms include RRT, RRT*

and its variations while popular multi-query sampling based algorithms include PRM, PRM* etc.

This section will focus on main single-query sampling based algorithms and their popular

variations.

2.1 Rapidly Exploring Random Tree [RRT]

Rapidly Exploring Random Tree or RRT was one of the primary algorithms which successfully

explored non-conventional, high-dimensional spaces by randomly building a tree. The tree is

configured to be rooted at the start point. Random samples are drawn from the configuration space.

A node is added to the tree in the direction of the sample drawn if the node does not come in the

obstacle space. The node is connected to the existing tree if the path connecting the node to its

parent also lies in the obstacle free space.

The algorithm is described in Table 2.1.

1. T.init (qstart)

2. for k = 1 to nodesmax do

3. qrand ← RAND_CONF()

4. qnear ← NEAREST_VERTEX(qrand, T)

5. qnew ← NEW_CONF(qnear, qrand, Δq)+

6. T.add_vertex(qnew)

7. T.add_edge(qnear, qnew)

8. return T

Table 2.1 – RRT Algorithm

The tree T is initialized with the start node. This is followed by expansion of the tree for a maximum

of nodesmax nodes. The RAND_CONF function returns a random point in Cfree. The

NEAREST_VERTEX function returns a node qnear which is nearest to the random point in the tree

4

T. A new node qnew is added to tree T such that it is at a distance Δq from qnear by NEW_CONF.

The next line adds a new edge between qnear and qnew. Both NEW_CONF and add_edge functions

ensure that the new node qnew and the edge connecting qnew to qnear lie in free space Cfree.

The algorithm was, however, shown to always converge to a non-optimal path. This led to

development of other algorithms which deal with the non-optimality problem.

2.2 Rapidly Exploring Random Tree* [RRT*]

RRT* is asymptotically optimal version of RRT, i.e., it is proven to converge to optimal solution

and possesses probabilistic completeness property. Like RRT, the algorithm samples points in the

configuration space. It attempts to find optimized path from the start point to all the points in the

configuration space. In doing so, the algorithm finds an optimal path to the goal point zgoal.

RRT* algorithm achieves optimality by using the Rewire algorithm. After addition of new node

qnew to the tree, the Rewire function checks all the nodes in the neighborhood of qnew to see if the

cost to reach these nodes is less through qnew than their existing cost to reach (through their existing

parents). If the cost to reach a particular node is less through qnew then that node is rewired as a

child of qnew and its connection with existing parent is severed. In this way, the nodes which are

already present in the tree are optimized with the addition of new nodes. This optimization makes

RRT* different from RRT and results in asymptotic optimality.

RRT* algorithm is discussed in detail in chapter 5.

Variations of Rapidly Exploring Random Tree* [RRT*]

Many variations of RRT* have been proposed over the years to increase its speed of convergence

to an optimal solution. Following is an overview of these algorithms.

2.3 Any Time – RRT*

The algorithm focuses on finding a quick path to the goal point. Once the execution phase of the

plan is started, i.e., once the robot starts moving, the plan is improved towards an optimal solution.

It takes advantage of the fact that most robotic systems take more time in execution, so that time is

used to optimize the trajectory.

RRT* is used to find an initial solution. After that two main programs are employed: i) committed

trajectory ii) branch and bound tree adaptation. Once the path has been found, the robot starts to

execute the first portion of the trajectory for committed time. This portion is known as committed

5

trajectory. The end of committed trajectory is taken as the new root of the tree and the path is

improved from the new root to the goal. Once the robot reaches the end of committed trajectory,

the process is repeated until the robot reaches the goal.

2.4 Potential Functions based Sampling Heuristic for Dynamic Domain RRT

(P-RRT*)

The algorithm functions to optimize the memory and time utilization by RRT*. It incorporates

artificial potential field algorithm in RRT* to overcome time and memory limitations. The

incorporation of APF result in decrease of number of iterations of RRT* leading to efficient

memory utilization and accelerated convergence rate.

Artificial Potential Fields [APF] is a resolution complete method, i.e., the method is able to

effectively plan optimal paths if the resolution of the grid is properly optimized. Using APF directly

results in pure exploitation which makes the planner greedy as it assumes that the provided

information is sufficient for path computation. Pure exploitation allows APF to quickly find the

solution but it also causes the algorithm to suffer from local minima problem. On the other hand,

sampling based algorithms perform pure exploration of the configuration space so as to improve

the planner’s understanding of the space. So the idea of idea of potentially guided, directionalized

sampling by incorporating APF into RRT* results in guided exploration of the environment.

APF utilizes gradient descent planning that tries to minimize artificial potential energy. The main

robot and the goal are assigned attractive potentials while the obstacle regions are assigned

repulsive potentials. These attractive and repulsive potentials cause the robot to experience a force

F, equal to the negated gradient of the potentials. F = - ▼ U.

Under the influence of both attractive and repulsive potentials the robot moves down the slope and

reaches the goal region without any collisions. Two constants Ka and Kr are used to scale the

magnitude of attractive and repulsive potential. A circular region (dg) is defined around the goal,

the robot moves rapidly if it is outside this region. Inside this region the potential starts to vary

conically causing the robot to move slowly when it comes close to the goal preventing it from

overshooting.

6

The attractive forces are computed as follows. The attractive potential varies quadratically when

the distance is greater than dg. A distance dobs defines the minimum distance from the obstacles

while current distance from the closest vertex of the obstacle is denoted by dmin. If dmin > dobs,

denoting that the robot is far from obstacle, then the repulsive force becomes zero and the robot is

allowed to move freely.

The repulsive forces are calculated as follows. Repulsive potential is 0 if distance is greater than

dobs. X’ is the nearest obstacle vertex. The overall potential is the sum of both attractive and

repulsive potentials.

Potential Function based RRT* incorporates APF into RRT*. Its working is described as follows.

After a random sample xrand is generated by RRT*, it is improved by APG function and labelled as

xprand. After this, normal RRT* functioning is resumed with xprand as the random sample. The

Attractive Potential Gradient (APG) function utilizes only quadratic variation in the attractive

potential fields instead of shifting between quadratic and conical versions. Overshooting is not an

issue here since it’s not the robot but the random sample which is being guided. The function

computes the attractive force. Minimum distance (dmin) from the nearest obstacle is computed. If

the random sample is close to the obstacle, then the random sample is returned as xprand. Otherwise,

xprand is guided towards the goal using the following function.

7

2.5 RRT*-Smart

The algorithm aims to accelerate convergence time of RRT* using two techniques namely Path

Optimization and Intelligent Sampling. The algorithm starts with RRT* and continues until a path

is found. Once an initial path is found, the Path Optimization kicks in. Path Optimization starts an

iterative process from zgoal and moves up to zinit, optimizing the path based upon triangular

inequality. The triangular inequality is shown in figure 2.1. The path from znode to zparent and from

zparent to zparent-to-parent is higher in cost than a direct path from znode to zparent-to-parent. If a direct path is

possible from znode to zparent-to-parent, then the algorithm checks with latter’s parent and so on

until direct connection is not possible due to an obstacle. It checks for direct connections with

successive parents of each node until the collision free condition fails or the start node zinit is

reached. In this way, the complete path is optimized with straight line connections wherever

possible. This substantially reduces the number of nodes present in the path as compared to original

path. The nodes at which the path breaks are termed as beacon nodes, Zbeacons, which forms the basis

of intelligent sampling.

Intelligent sampling generates nodes as close as possible to the beacons ensuring that path around

the corners is optimized as much as possible. It is started once the initial path has been found.

Intelligent sampling ensures early optimization around obstacles, something that happens when the

number of samples in standard RRT* approaches infinity.

Figure 2.1: Triangular Inequality

Table 2.2: RRT*-Smart Algorithm

8

2.6 Triangular Geometrized Sampling Heuristic for Fast Optimal Motion

Planning

The algorithm uses triangular geometrized sampling heuristic for optimized sampling to ensure

quicker optimization of the path. The successful methods include Incentre (intersection of 3 angles

bisectors) and Centroid (point of intersection of three medians). The algorithm works in the

following manner: when a random sample grand is generated, the algorithms redirects the sample by

computing the geometric center of ginit, ggoal and grand. The geometric center is taken as the new

random sample, denoted by gnrand.

The random sample is directed for a fixed number of iterations denoted by variable k, after that

uniform sampling is carried out. The value of k is selected to maintain a balance between

exploitation and exploration. This allows the proposed planner to exploit the configuration space

by sampling the region closer to initial state and goal region and then begin exploring by sampling

the remaining region.

2.7 Bi-directional RRT* (B-RRT*)

The algorithm grows two trees each from start and goal point to ensure quick path finding and

optimization. The algorithm works as follows. A sample is taken from the configuration space and

then various operations are performed on the sample similar to RRT*. After the sample (xnew) has

been inserted into the Tree (e.g., Ta), bidirectional action is carried out to connect with the other

Tree (Tb in this case). Nearest vertex operation is carried to find nearest vertex in the Tree Tb to the

inserted sample xnew. The nearest node in tree Tb is denoted as xconn. Then, connect procedure is

carried out on xnew, xconn and Tb. Connect procedure is a slight variation of greedy RRT-Connect

heuristic. It first employs the extend function to generate a new node in Tree Tb which is closer to

the newly inserted node of Tree Ta, than xconn. That is, it generates a new node in Tb which lies

between xconn of Tb and xnew of Ta. This node is denoted as xnew. Next, it uses NearVertices to find

near vertices Xnear to xnew. It sorts these near vertices according to cost in a list Ls. Best parent is

chosen from amongst these vertices. If such a node is found, then xnew of Ta is connected to this

parent of Tb. The connect function returns the cost of this new path (from xinit to xgoal). If this path

cost is less than the existing best path cost then the best path cost is updated to this one.

Next, the trees are swapped and the process restarts, i.e., now sampling is done with Tb and

connection is done with Ta.

9

2.8 Intelligent bidirectional RRT* for optimal motion planning in complex

cluttered environments

This algorithm is an improved variant of both RRT* and bi-directional RRT*. The algorithm

introduces intelligent sample insertion heuristic for fast convergence to optimal path solution using

uniform sampling heuristic. The algorithm is designed for complex cluttered environments where

exploration of configuration space is difficult. Contrary to standard Bi directional RRT*, both trees

are taken in parallel.

The algorithm works as follows: A random sample is generated whose near vertices are found from

both trees denoted as Xa
near and Xb

near. If both Xa
near and Xb

near are empty then the nearest vertex is

found and added to Xa
near and Xb

near and connection variable is set to False. If Xa
near and Xb

near are

not empty then Xa
near and Xb

near are sorted according to cost into La
s and Lb

s. The best selected

triplets from Ta and Tb are assigned to {xa
min, c

a
min, σ

a} ∈ La
s and {xb

min, C
b

min, σ
b} ∈ Lb

s respectively.

The new node is attached to the Tree with which least cmin is associated and rewiring of vertices of

that tree is carried out. If the cost of the concatenated path is less than the cost of existing end to

end path, then the end to end collision free path is updated. Connection between the two trees is

carried out if the Connection variable set during NearVertices call is true. This denotes that there

are nodes of both trees present in the ball around the random sample. This makes the algorithm less

greedy, i.e., it only makes a connection if there are nodes of both trees present in the circle.

2.9 PB-RRT* / PIB-RRT (Potentially guided RRT* for fast Optimal Path

Planning in Cluttered Environments)

B-RRT* and Bi-RRT* don’t work well in cluttered environments as both perform pure exploration.

The algorithm incorporates Artificial Potential Field (APF) to Bi-directional RRT* and to

Intelligent Bi-directional RRT* through the new functions: potentially guided bidirectional RRT*

(PB-RRT*) and potentially guided intelligent bidirectional RRT* (PIB-RRT*). Both algorithms

use a Bi-directional Potential Gradient [BPG] function, to guide the random sample using APF, rest

of the algorithm performs normal B-RRT* and Bi-RRT* using the guided sample. The BPG

function works as follows:

If the iteration number is even, the random sample is passed to BPGgoal function which computes

the attractive force Fatt on the sample, given zgoal as the attractive pole. Then the distance from

10

nearest obstacle d*
nearest is computed. If it is less than a constant d*

obs, then the random sample is

returned directly. Otherwise sample zpb is directed downhill in the direction of decreasing potential

towards goal region in ε sized small steps. The process is repeated for n iterations.

If the iteration number is odd, the random sample is passed to BPGinit function which computes

the attractive force Fatt on the sample, given zinit as the attractive pole. The rest of the procedure is

same as above. The process is repeated for n iterations or until d*
nearest remains greater than d*

obs.

For PB-RRT*, this operation is performed once on Ta (growing from root) and then on Tb (growing

from goal) resulting in pulling both trees towards each other and a faster convergence than RRT*.

For PIB-RRT* the sample is connected to the tree it is closer to and so on.

11

CHAPTER 3: REPLANNING ALGORITHMS

The challenges faced by a robot working in real-life environment are quite different. It is highly

probable that the mobile robot will face changes in some or all of the following.

 Change in the goal point

 Change in the position of the robot as it starts to move

 Change in the obstacles of its environment

 Change of the environment altogether

Therefore, an algorithm that is envisaged to work in real-life shall be able to cope with all of these

changes. Traditional single query and multi query algorithms can handle these changes, albeit with

certain limitations.

3.1 Using Single Query Algorithms for Re-planning

In this section, we will see consider how single query algorithms can be used to respond to the

changes mentioned above and what are the limitations associated with them. As RRT* is one of the

most successful single query algorithms, it will be used for the comparison. Any adaptabilities or

limitations of RRT* against these requirements can be extrapolated to apply to all sampling based

single query algorithms.

 Figure 3.1: RRT* in a Typical Environment

12

A single query algorithm such as RRT* can be modified to handle goal point changes. As shown

in figure 3.1 above, the RRT* tree already contains optimal paths to almost all points in the

configuration space. In case of any change in the goal point, a simple reverse traversal from the

point closest to the new goal point to the root would provide the optimized path to the new goal

point. Therefore, RRT* shall be able to cope up with goal point changes, however, this might not

be possible with the movement of the robot.

In a real-life environment, the robot will not be content with just finding the optimized path to the

goal. Rather it will have to walk the talk, i.e., it will have to follow the path down to the goal. RRT*

is able to provide an optimized path to the goal and the robot can be programmed to move once the

path is found. The RRT* tree, however, becomes obsolete as soon as the robot starts movement. It

will not be able to handle any goal changes after the movement of the robot, as the tree root is no

longer centered at the robot’s current position. Such a scenario will require running the algorithm

from scratch which will be infeasible. Some alternate algorithms keep the tree root centered with

the movement of the robot. This adaptation can enable the algorithm to handle goal changes as the

tree will remain intact and a path can be traced from any point back to the root which is the current

position of the robot.

Other variations of RRT* enable the algorithm to handle dynamic obstacles during execution.

However, changes in any major obstacles during the execution of the program do not make sure

that optimality is retained. The algorithm also becomes intractable when major changes are done.

If the environment is changed altogether, e.g., the robot moves to a new environment, RRT* needs

to be restarted from scratch and it consumes a lot of time to find an optimized path in the new

environment.

As explained above, standard RRT* is meant for single time use. It is not able to cope up with the

requirements faced by a robot in practical usage. A few variations of RRT* are able to partially

respond to some of these changes but none would be able to respond to all of them in real-time.

Thus single query algorithms would not be useful for real-time movement of the robot.

3.2 Using Multi Query Algorithms for Re-planning

Multi-query algorithms, as described in previous chapter, are quite robust but require extensive pre-

processing time. However, the amount of time taken for construction of the graph during the

preprocessing phase would be compensated by its re-usability.

13

These algorithms, such as PRM*, can easily handle any goal point changes, as the new path from

start to goal point is only a search away. The start point of the robot can be kept updated along with

the movement of the robot. Additionally, no requiring would be required with the robot’s movement

as is required by single query algorithms such as RRT*.

Handling of dynamic obstacles along the way seems to be a cumbersome task for multi query

algorithms as any movement of the obstacle would affect a complete portion of the graph. New

edges will have to be defined between the vertices followed by search for an alternate path.

If the environment is changed altogether, the complete graph will have to be regenerated from

scratch, before the robot can take a single step along the path. This would be expensive both in

terms of time and computations, which cannot be performed in real-time.

Therefore, both single and multi-query algorithms are in-efficient when it comes to real-life

environment where the robot should be able to respond in a real-time manner.

3.3 Re-planning Algorithms

Re-planning algorithms focus on reusing the existing solution to respond to any changes in the goal,

the obstacles or the environment. Recently proposed re-planners include Online RRT* & FMT*,

RT-RRT * etc. To cater for demands of real-life environment, the algorithms perform various tasks

as described below.

The re-planners interleave various tasks which include movement of the robot, shifting of tree root

to the robot’s new position, rewiring of the tree, further expansion of tree and acceptance of new

goal.

The robot starts moving as soon as a path to the goal is found. The algorithm has to ensure that

current position of robot is always maintained as the tree root. This is achieved by rewiring of the

tree along with movement of the robot. Once the robot has taken a single step along the path, that

is, from tree root to the child of the root along the path, the root is also shifted to its first child on

the path. The parent child relationship of the first child and original root is inverted. The child is

made the root of the tree by setting its parent to None while the original root’s parent is changed to

new root. Rewiring of the tree is then carried out to update the costs (and parents) according to the

new root. The rewiring process gets computationally expensive as the tree size increases. So some

algorithms do selective rewiring based upon gird based spatial indexing, selective rewiring or

random rewiring.

14

This process is also accompanied by sampling of new points in the configuration space. To keep

the tree size within limits, the algorithms do not add points beyond the predefined tree size.

However, new sampling remains in progress and is used to optimize the rewiring process. Online

RRT* & FMT* sample a new point but do not add it to the tree. The point is used to select point of

rewiring, i.e., least cost node is selected in the neighborhood of the newly sampled point which is

used for standard RRT* rewiring. The algorithms also accept any goal change whose path is yielded

from the same start point.

The current re-planning algorithms are able to find paths to alternate goal points in real-time and

enable robot’s movement along with it, but they do not focus on the optimality of the paths

generated by the algorithm and focus only on providing a path in real-time.

15

CHAPTER 4: RAPIDLY RE-PLANNING RRT*

4.1 Background

In the previous chapters, we have seen the utility of current motion planning algorithms for real

time path planning. An overview of single query path planning algorithms and re-planning

algorithms was presented.

The existing single query algorithms are not meant for real-time use or for re-planning. They have

to be run from scratch every time there is a change in the environment, the location of the robot,

the location of its goal point or any change in the environment. If there is a change in the location

of the robot, the root of RRT* tree would no longer remain at position of the robot rendering all

path planning through the tree useless. Since the RRT* tree provides an optimized path to all points

of the workspace, handling the change in goal point should be straight forward, however, no such

provision exists in the current algorithms. If there is any change in the environment, some

algorithms exist for handling dynamic obstacles but no algorithms exist for handling major

environmental changes, such as those in which the major obstacles are changed or where the robot’s

location is changed altogether.

All of these changes would require the algorithms to be restarted from scratch which is expensive

in terms of time and computation. Any single query algorithm fashioned for real-time use would

also be non-optimal due to the requirement of providing the result in real-time. Additionally,

restarting the tree at every step of the robot would be highly inefficient.

The multi-query algorithms are not suitable for real-time use as well. The first problem is the time

required for pre-planning phase. If the environment is changed at an instant, the whole pre-planning

is also rendered useless and has to be restarted from scratch.

Re-planners provide a solution for handling real-time movement of the robot. The current re-

planning algorithms, however, do not consider optimality of the path yielded by the algorithm.

16

4.2 Introduction to Rapidly Re-planning RRT*

Rapidly Re-planning RRT* or R4T* is a re-planning algorithm which aims to address the

requirements necessary for the robot to perform efficiently in a real-time environment. It enables

the robot to move in a new environment as soon as a path to the given goal point is found. The robot

starts movement along the path which is further optimized on the go. Any new goal point, which is

given to the robot during this process can also be handled by the algorithm. The new goal point can

be assigned irrespective of whether the robot has reached the goal point or not. The algorithm

immediately searches for the path from the current position of the robot to the new goal point. The

new path is followed by the robot immediately.

The Rapidly Re-planning RRT* algorithm initially starts with RRT*, which is used to yield initial

path to the goal. The algorithm enables continuous optimization of the path along with further

spawning of the RRT* tree. Any change in the goal point, at this point, is handled by RRT* which

gives an optimal path from the goal to robot’s position. During spawning of RRT* tree, a Smart-

Graph is built after every n-thousandth nodes of the RRT* tree. Once the predefined number of

nodes of RRT* have been reached, further paths are yielded by the Smart-Graph. If the environment

is changed altogether, the algorithm restarts with RRT* followed by other elements of the

algorithm.

Consider a real world scenario, where for instance a pet robot is required to follow a particular

object such as a human being. Using this algo., when the pet reaches a new room, it is able to find

the path to the human using R4T*. As soon as the path is found, the robot starts its approach towards

the human following this path. The path is continuously improved using RRT*. If the human moves

about the robot is able to update the goal and find a new path to the target. After the initial

development of the algorithm, the paths are yielded by the Smart-Graph which ensures optimized

paths to any new goal points in the given environment. If the human moves to a new environment

the process is restarted. However, the pet is able to move immediately in the new environment as

soon as the path is found.

17

4.3 Overview of Rapidly Re-planning RRT* Algorithm

The algorithm builds upon RRT* to generate a real-time algorithm able to respond to real-life

requirements faced by the robot. Contrary to the re-planners previously described, the algorithm is

able to yield paths to alternate goal points which are equal or exceeding in optimality when

compared to the path generated by a 7000 node standard RRT* algorithm.

To perform this task, the R4T* algorithm develops a Smart-Graph which comprises of RRT* nodes

present around the corners of the configuration space obstacles. The Smart-Graph is essentially a

visibility graph which the vertices are the nodes at the corners of the obstacles while the edges are

formed between the vertices which are mutually visible to each other. Developing a visibility graph

directly in high dimensional spaces is computationally difficult whereas a Smart-Graph can easily

be built in high-dimensional spaces where RRT* already works efficiently. The following figures

show a typical visibility graph.

Figure 4.1: Visibility Graph

These nodes are found using a modification of RRT*-Smart algorithm. The RRT*-Smart algorithm,

as described earlier, searches for nodes around the corners of configuration space obstacles. These

nodes are then used for further sampling of nodes close to these corner nodes in order to optimize

RRT* path around the corners.

18

Randomly Re-planning RRT*, however, uses only the first part of RRT*-Smart. The algorithm is

used to find the nodes around the corners of the configuration space obstacles after every n x 1000

nodes of RRT* tree have been spawned. These nodes are added to a graph called Smart-Graph.

Unlike other re-planners, RRT* is stopped once a predefined number of nodes has been achieved

after which all the paths are yielded by Smart-Graph. The algorithm enables the Smart-Graph to be

developed from an existing RRT* tree or it can be developed alongside an RRT* tree being built.

At the end of this phase, we have a Smart-Graph with small number of vertices which is able to

yield optimized paths between any two points with computation time equivalent only to the time

invested in searching through the graph. The paths between the any pair of start and goal points can

be found by adding both of these points to the Smart-Graph and finding the optimized path from

start to goal point. The optimized path is found using Dijkestra’s algorithm. Due to reduced number

of nodes in the Smart-Graph, the time taken to find the paths is only equal to the search time of

Dijkstra’s algorithm.

4.4 Structure of the Algorithm

The algorithm is divided into four basic sections, which handle the following functions. basic

functions including:

i) Basic RRT* path planning to the goal,

ii) Movement towards the goal point as soon as a path is found or max number of RRT*

nodes has been reached,

iii) Building/update of Smart-Graph at every nth (user-defined) node of RRT*

iv) Handling of goal changes at any point.

The RRT* algorithm is run for user defined number of nodes, after which RRT* and update of

Smart-Graph is stopped and other functions carry on until the end of the program.

The algorithm starts with RRT* which is used to find path from a start to goal point (both randomly

generated). As soon as a path is found, the agent starts navigating it by moving a single step at a

time. In one step, the robot moves from current root of the tree to first child along the path. To keep

RRT* algorithm progressing, the tree-root is also moved to the new position of the robot and

rewiring is carried out accordingly. This is similar to the concept used in RT-RRT* and Online

FMT* & RRT*. Rewiring in R4T* is carried out at a single level to ensure that minimal time is

consumed in the process.

19

The Smart-Graph is generated using a modified version of RRT*-Smart, which is applied on leaf

nodes of RRT* tree after enough new nodes have been generated. RRT*-Smart algorithm finds the

nodes around the corners of the obstacles, which are subsequently added to the Smart-Graph.

The R4T* algorithm has the capability of handling goal point changes at any time. Whenever a new

goal point is selected, its path from the current tree root (agent’s position) is found using both RRT*

and Smart-Graph. The RRT* path is followed by the agent as long as the RRT* tree (and Smart-

Graph) is being built, afterwards Smart-Graph’s path is followed.

The algorithm is tested rigorously for multiple start and goal points in three different 2D

environments with different obstacle configurations. The optimality of Smart-Graph path is shown

empirically by comparing its generated paths with those generated by a standard RRT* tree for the

same goal points. The algorithm is shown to generate paths which are similar or better in optimality

to the corresponding 7000 node RRT* trees. In terms of size, the Smart Graph in a typical

environment comprises of fewer nodes as compared to RRT*, which enables searching and finding

new paths with minimal additional overload.

The R4T* thus provides an efficient multi-query function without the limitations imposed by either

single-query or multi-query planners.

4.5 Related Work

In this section, the algorithms which are used in Rapidly Re-planning RRT* algorithm are explained

in detail.

4.5.1 RRT* Algorithm

A brief description of RRT* is given in this section as it is the basic building block of R4T*. RRT*

is a sampling based algorithm which incrementally samples points in the configuration space, trying

to find and optimize the paths to any point in the configuration space from the start point. In doing

so, it tries to find an optimal path to the goal point zgoal.

Let X represent the configuration space of the robot with Xobs defining the space occupied by

obstacles. Xfree is the free space, void of obstacles, defined as Xfree = X\Xobs. The initial point is

defined as zstart while the goal point is defined as zgoal. The RRT* algorithm attempts to find a control

input u = [0,T] that results in a feasible path x(t) ϵ Xfree, such that x(0) = zstart and x(T) = zgoal. The

algorithm constructs and maintains a tree T= (V, E) which comprises of a set of vertices (nodes) V

joined by edges E, such that both vertices and their interconnecting edges lie completely in Xfree.

20

The algorithm is outlined in Algorithm-4.1. A brief description of the functions of the algorithms

is given below.

The algorithm starts with initialization of the tree T with the start node zstart. The nodes are sampled

to a predefined maximum nodesmax.

Algorithm-4.1

RRT* (T, G, nodesmax)

1. T ← InitializeTree()

2. T ← InsertNode(zstart, T)

3. While (i < nodesmax)

4. zrand ← RandomSample(i)

5. zclosest ← ClosestNode(zrand, T)

6. znew ← Extend(zclosest, zrand)

7. If ObstacleFree(znew):

8. Znear ← CloseNodes(znew, T,|V|)

9. zparent ← ChooseParent(znew, Znear)

10. T (N, E) ← InsertNode(znew, zparent, T)

11. E ← Rewire(znew, Znear, E)

RandomSample:

The function generates a random point zrand in the obstacle free space in the environment, i.e.,

zrand ϵ Xfree

ClosestNode:

The function returns a node, zclosest, in the tree T which is closest (based on Euclidean distance) to

the random point zrand, generated by the function RandomSample.

Extend:

The function takes a single step from zclosest in the direction of zrand and returns this point in the form

of znew.

ObstacleFree:

The function checks for two things. First that znew lies in Xfree and second that the path from zclosest

(current parent of znew) to znew completely lies in Xfree. If any of these conditions are not met, the

function returns 0.

21

CloseNodes:

The function returns the set of nodes Znear which present around znew in a ball of volume whose

radius is given by r = γ (log n/n)1/d where γ is a constant, n is the number of nodes and d is the

dimension of the state space.

ChooseParent:

The function chooses a node zparent from Znear, to be the parent of znew through which the cost to

reach znew from the root of the tree is lowest.

InsertNode:

The function adds the node znew to the tree T with zparent as its parent.

Rewire:

The function rewires the nodes in Znear, by making them a child of znew if the cost to reach them is

lower through znew than through their existing parent.

4.5.2 RRT*-Smart Algorithm

The algorithm provides optimal paths with a faster rate of conversion, as compared to RRT*, by

using Path Optimization and Intelligent Sampling.

Path Optimization:

This function optimizes the path found by RRT* nodes based upon visibility between the nodes in

the path. Once a path has been found by RRT*, the algorithm starts from zgoal and tries to connect

zgoal directly with the parent of its parent through a straight line path which lies completely in Xfree.

If the connection is possible, the same is checked with the next parent up the tree (i.e., from zgoal to

its parent’s parents’ parent). The process is repeated until a node in the path is reached, to which a

direct connection is not possible. In this case, zgoal is connected directly to the last successful

connection and the process is restarted from the node to which the connection failed. The process

is repeated iteratively until the whole path has been traversed and zstart has been reached. The

process results in an optimized path with least number of nodes which are called beacons.

Intelligent Sampling:

Intelligent sampling is carried out using the beacons identified during Path Optimization. As the

beacons are nodes around the corner of the obstacles, the algorithm tries to sample more points in

a ball around the beacons enabling further optimization around the corners resulting in an optimized

path.

22

4.5.3 Rapidly Re-planning RRT* [R4T*]

This section describes Rapidly Re-planning RRT* algorithm in detail. The pseudo-code is outlined

in Algorithm-4.2.

Algorithm-4.2: R4T* ()

1. T ← InitializeAll()

2. T ← InsertNode(zstart)

3. While run do:

4. If not(path_fnd) do:

5. (T,G, path_fnd, nodes_cnt) ← RRS(T)

6. if not(path_fnd):

7. pathnew ← WindupGoal(zgoal)

path_fnd ← 1

8. If not (Tree_comp) do:

9. (T,G) ← RRS50(T)

10. (zgoal, pathnew, goal_set) ← RedefineGoal()

11. If goal_set do:

12. If start_vert in G.vertices:

13. G ← RemVert(goal_vert, start_vert)

14. (G, pathsmrt, costsmrt) = SmartPath (G,

zgoal)

15. If not(Tree_comp) do:

16. T ← MoveRw(pathnew, T)

17. else:

18. G ← MoveSmrt(pathsmrt, G)

23

The algorithm starts with creation of the Tree T and its initialization with the start node zstart. The

run variable executes the algorithm until it is terminated by the user. The initial start and goal points,

zstart and zgoal, are selected randomly at start of the program. This is followed by execution of RRS

function [line 5] to find an optimal path to zgoal and develop the Smart-Graph along with it. RRS is

a combination of RRT* and RRT*-Smart algorithms, where RRT*-Smart is executed after every

1000th node of the RRT* to develop the Smart-Graph.

In the first part of the algorithm, RRS is run until a path to goal is found or maximum number of

RRT* nodes have been reached. The function returns to the main program as soon as any of these

two conditions is met. [lines 4 & 5]

If the goal has not been found but maximum number of nodes has been reached, then R4T* finds

the path to the node closest to zgoal through WindupGoal function. [lines 6 & 7]. On the other hand,

if the goal has been found by RRS but max number of RRT* nodes has not been reached, then the

further nodes of RRT* are generated through RRS50 algorithm in the second part of the R4T*. By

the end of first part [lines 4 to 7], the R4T* has yielded a path to the goal or to the closest node to

goal.

The second part of the algorithm performs four tasks which are executed iteratively. These tasks

include: RRT* tree expansion (up to max nodes count), acceptance of new goal with derivation of

its path from the existing tree, Smart-Graph update and movement of the robot. The variable

Tree_comp is used to follow the completion of the Tree; it allows further generation of 50 RRT*

nodes and Smart-Graph update (through RRS50 function) in every iteration [line 8-9]. The function

RedefineGoal [line 10] selects the new goal point (based on mouse click) and returns it as zgoal. It

also returns the path to zgoal from current position of the robot as pathnew and a goal_set variable

which denotes that goal has been changed.

If the goal has been changed, the function RemVert removes the old start and goal vertices from

Smart-Graph G, if they exist in the graph. This is controlled by the variable start_vert, which is

initialized as None in InitializeAll function. Start_vert is assigned a value during first execution of

SmartPath function, so it would not exist in the graph if the SmartPath function has not been

executed before.

SmartPath function [line 14] adds the current position of the robot and new goal point as vertices

of the graph G and then computes the path from start to goal point by using Dijkstra’s search

24

algorithm. If Tree_comp variable is 0, i.e., the RRT* tree is not complete, the robot follows the

RRT* path through MoveRw function.

The RRT* tree root is centered at the robot’s position. The MoveRw function moves the robot from

the tree root to its first child along pathnew. The tree root is then shifted to the new position of the

robot and limited level of rewiring is carried out to update the parent-child relationships and the

associated costs.

By keeping the tree root at the robot’s current position, path to any new goal point within the

workspace can easily be found from the robot’s current position.

If the Tree_comp variable is ‘1’, i.e., the RRT* tree is complete, further spawning of RRT* nodes

is stopped and robot movement is handled directly by the Smart-Graph through MoveSmrt function.

The algorithm continues in the same manner until the program is terminated.

The functions used in the Rapidly Re-planning RRT* algorithm are described in detail below.

RRS [Algorithm-III]

RRS is the main function of R4T* which handles three critical functions, which include, modified

form of RRT*, RRT*-Smart and graph building algorithm. RRS function is outlined in Algorithm-

4.3.

Algorithm-4.3

RRS (T, G, nodesmax)

1. While (i < nodesmax)

2. zrand ← RandomSample(i)

3. zclosest ← ClosestNode(zrand, T)

4. znew ← Extend(zclosest, zrand)

5. Znear ← CloseNodes(znew, T)

6. zparent ← ChooseParent(znew, Znear)

7. If zparent then

8. T (N, E) ← InsertNode(znew, zparent, T)

9. E ← Rewire(znew, Znear, E)

10. If dist (znew, zgoal) < step_size then

11. path_fnd = 1

12. If not (i%1000) or path_fnd then

13. L ← FindLeaves(T)

25

14. Vert ← RRTStarSmart (L)

15. G ← DefineVertices(Vert)

16. (G,E) ← CompVisbility(G)

17. If path_fnd then

18. Break

19. If not (nodes_cnt < nodesmax) then

 Tree_comp = 1

20. return (T, G, Tree_comp, nodes_cnt)

The function starts with standard RRT* from line 2–9. RRT* and its functions have already been

detailed previously.

The modification starts from line 10. The path_fnd variable is turned to 1, if the new node znew is

within step_size of the goal. This variable controls exit from the RRS function.

The next part of the function develops the Smart-Graph [lines 12 to 15]. These lines are executed

every thousandth node and before exiting RRS when path_fnd becomes 1.

There are four functions in this portion of the algorithm, which are detailed below.

FindLeaves: This function searches the tree T and returns a list, L, of leaf nodes present in the tree.

The function is followed by RRTStarSmart.

RRTStarSmart: A slight modification of original RRT*-Smart is used here to find corner nodes in

the tree T using the list L of leaf nodes. The algorithm takes a leaf node from the list L and starts

traversing back from it towards the root. It tries to make a straight line connection between the

leaf node and its preceding nodes, as shown in Figure 4.2.

a

b

c

d

Figure 4.2: RRT*-Smart Implementation

26

In the figure, the leaf node is shown as ‘a’, its parent nodes are shown as b, c and d while the

obstacle is shown as blue block. RRTStarSmart tries to connect ‘a’ to ‘b’ through a straight line,

once it is successful it tries to connect ‘a’ to b’s parent, i.e., ‘c’. This continues until it reaches the

node ‘d’, with which direct connection is not possible due to presence of the obstacle. The algorithm

marks ‘c’ and ‘d’ as corner nodes and restarts the process from the last node with which connection

was unsuccessful, i.e., node ‘d’. Now ‘d’ is taken as the main node and visibility from ‘d’ to its

ancestors is checked. The process continues until the paths from all the nodes in L have been

checked and corner nodes found. Any node that has been checked once is not checked again during

single iteration of RRTStarSmart. The function returns the corner nodes as a list, Vert.

DefineVertices: This function updates the vertices of graph G, by adding the nodes from Vert which

are not already present in the graph.

CompVisibility: The function defines edges between the vertices of the graph G, if a straight line

connection is possible between them. As the number of nodes in the tree T increases, the Smart-

Graph developed from them represents the workspace in a better manner. Figures 3-5 show the

Smart-Graph developed after 1000 and 5000 nodes for randomly generated initial start and goal

points for three different environments.

Line 17-18 break the While loop if the path has been found, otherwise the program continues in the

loop. Once outside the While loop, the program checks for completion of the tree and if so turns

Tree_comp to 1. Line 20 returns to the main function.

The RRS function returns updated tree T, graph G, path_fnd variable and the current number of

nodes in the tree T.

WindupGoal [line 7, R4T*]: The function returns a path from the tree root to given goal point by

finding the least cost node in neighborhood of zgoal and traversing back from it to the tree root.

RRS50: The function is same as RRS function, except the following changes. The nodesmax value

is set at current number of nodes in the tree + 50 which ensures that only 50 new nodes are added

to the tree in one call to the function. Secondly, the RRS50 does not have path_fnd variable as the

path to goal has already been found. Similar to RRS, the function updates the Smart-Graph in case

the total number of nodes reaches a multiple of 1000 during execution of the function. The function

is executed in every iteration of R4T* until the predefined number of RRT* Tree nodes are

achieved. Once the predefined number is achieved Tree_comp is turned 1 which stops the execution

of this function.

27

RedefineGoal: The function enables acceptance of a new goal. For simulation, it takes the goal

input directly from the mouse click position. The selected location is returned as zgoal. The function

also returns the path to zgoal using WindupGoal and sets the goal_set variable 1 when a new goal is

selected.

The goal_set variable returned by RedefineGoal denotes that a new goal has been chosen. If the

variable is 1, the algorithm uses SmartPath function [line 14] to find pathsmrt to the new goal. This

path, however, has to be found from the current position of the robot to the new goal point zgoal.

Therefore, the previous start and goal vertices in the graph G, denoted by the variable start_vert &

goal_vert, have to be removed before the execution of SmartPath. This is achieved by RemVert

function [line 13].

RemVert: The function is executed if start_vert and goal_vert vertices have already been added to

Smart-Graph. These variables are initialized as None in InitializeAll, and assigned during execution

of SmartPath. Hence, they would still be None during the first execution of the R4T* which would

skip the execution of RemVert. RemVert removes these vertices from the graph to make way for the

new ones during the up-coming iteration of SmartPath function.

SmartPath [Algorithm-4.4]:

Algorithm-4.4

SmartPath(pathnew, zgoal ,G)

1. start_vert ← Vertex(pathnew[0])

2. goal_vert ← Vertex(zgoal)

3. G ← Insert(start_vert, G)

4. G ← Insert(goal_vert, G)

5. G ← CompVisbility (G)

6. G ← Dikestra (G, start_vert)

7. pathsmrt ← shortest(goal_vert, G)

8. pathsmrt ← Optimize(pathsmrt)

9. Return start_vert, goal_vert, pathsmrt

The algorithm starts by adding two new vertices to the Smart-Graph. The first vertex is the current

position of robot, which is always maintained as the first element of pathnew (the path retuned by

WindupGoal based on RRT*). The Vertex function defines the current position as an object of

vertex class. Similarly, zgoal is added as another object of vertex class. Both start_vert and goal_vert

28

are added to the Smart-Graph. CompVisibility [line 5] is used to redefine edges amongst the vertices

of the updated graph. This is followed by application of Dijkstra’s algorithm to find the minimum

cost path between start_vert and goal_vert. The algorithm is implemented in two functions namely

Dikestra and Shortest and the final path is optimized further through Optimize function. Dikestra

finds minimum cost to reach start_vert from any vertex of the graph, while Shortest starts from the

goal_vert and makes its way back to the start_vert by following the least cost parent assigned by

Dikestra. Optimize function further optimizes the generated path by dividing straight lines in the

pathsmrt into small equal length segments. A vertex is defined at the end of each segment and a mini-

graph of these segments is created, complete with edges and vertices. Dijkstra’s algorithm is applied

on the mini-graph to yield a further optimized path. Since mini-graph size is very small, the

improvement in path is substantial with little computational load. The path generated by the

algorithm is returned as pathsmrt.

MoveRw[Algorithm 4.5]:

Algorithm-4.5

MoveRw(pathnew, T)

1. If len(pathnew) > 1:

2. pathnew[0] ← pathnew[0].RemChild(pathnew[1])

3. pathnew[0].parent ← pathnew[1]

4. pathnew[1].parent ← None

5. pathnew[1] ← pathnew[1].AddChild(pathnew[0])

6. pathnew[1] ← pathnew[1].Update Cost()

7. pathnew ← del (pathnew[0])

8. E ← GoRewire (pathnew[0], E)

9. return Pathnew

This function is utilized in case of RRT* tree not being complete, denoted by Tree_comp variable.

Its objective is to move the robot to the next point along the path while keeping the tree root centered

at the new position of the robot. This keeps the RRT* algorithm intact and allows further nodes

29

spawning along finding of path to any new goal point at any time. The concept of moving the root

along with robot’s position is similar to that presented in [12] and [13].

MoveRw moves the robot one step i.e., from current tree root to first child along the path, shifts the

tree root to the robot’s new position and adjusts the parent-child relationships accordingly. Further

it rewires around the new root to update the costs and parents according to low cost to reach rule.

The current position of the robot is at pathnew[0] and the first child along the path is at pathnew[1].

Figure 4.3 depicts the movement process where pathnew[0] is shown as red node while pathnew[1] is

shown as yellow node. Lines 2-5 of Algorithm-V, shift the tree root from pathnew[0] to pathnew[1].

To do so, in line 2, pathnew[1] is removed from children of pathnew[0]. In line 3, pathnew[1] is made

the parent of pathnew[0]. Line 4 assigns the parent pointer of pathnew[1] as None because it is now

the root of the tree and line 5 adds pathnew[0] to the children of pathnew[1]. The cost of pathnew[1] is

then updated to reflect that it is now the root of the Tree. At this point, it is assumed that the robot

has moved to its new position, so pathnew[0] is removed from the path list.

With the change in root node of the tree, the cost to approach the root from all the nodes has been

changed as well. Therefore, rewiring of the tree is required to update the costs and parents (where

required). Updating the whole tree at every step of the robot is a time consuming process and will

cause the algorithm to be non-real time. Rewiring is thus limited to a single level around the root

node. This does not substantially affect the optimality of the paths generated by rewired RRT* and

speeds up the whole process of movement.

Rewiring during movement is implemented through GoRewire function. The function rewires the

nodes present in the neighborhood of the root node and makes the tree root the parent of these

nodes. The function works exactly like the Rewire function of RRT* except that zroot takes the place

of znew, and the neighborhood nodes are automatically connected to it because the cost to reach the

Figure 4.3: Moving the Start Point

parent

Before After

child

Parent: None

Parent:

 None

parent

child

30

zroot is only the distance between them. Since a part of the tree is rewired, the path from root to goal

is recomputed using WindupGoal. The command for actual movement of the robot can easily be

embedded in the algorithm to ensure physical movement along with update in the tree root.

MoveSmrt: This function is executed after complete RRT* tree has been spawned and the

generation of Smart-Graph has been completed. It simply moves the robot to the next vertex in

pathsmrt and updates pathsmrt by removing the previous vertex.

4.5.4 Performance of R4T*

The algorithm starts developing the Smart-Graph after 1000th node of RRT* has been spawned.

With every additional 1000 nodes, the Smart-Graph is further updated enabling it to cover

increasing area of the workspace hence yielding optimal results even at fewer nodes as compared

to RRT*.

The algorithm was tested in three environments with different obstacles sizes and configurations.

Figures 4.4, 4.5 and 4.6 shows the coverage status of Smart-Graph in these environments after 1000

and 5000 nodes of RRT*.

In the figures above, RRT* tree is shown in Cyan while the Smart-Graph edges are shown in red.

The vertices of the Smart-Graph are shown as blue dots. As depicted in the figures, by 5000 nodes,

maximum coverage of the workspace has been achieved by the Smart-Graph which enables it to

yield optimal paths between any two points in the workspace.

Number of vertices of the Smart-Graph for different environments is also shown in the figures. In

Environment-III, which has most obstacles and corners, the maximum number of vertices comes

out to be 356 against 5000 RRT* nodes.

31

Fig. 4.4: Environment-I; Smart-Graph at 1000(above) and 5000 RRT* nodes (below).

Number of Vertices: 42 & 163 resp.

32

Fig. 4.5: Environment-II; Smart-Graph at 1000 (above) and 5000 RRT* nodes (below).

Number of Vertices: 48 & 135 resp.

33

Fig. 4.6: Environment-III; Smart-Graph at 1000 (above) and 5000 RRT* nodes (below)

Number of Vertices: 90 & 356 resp.

34

As shown in the above figures, the Smart-Graph with a small number of vertices is able to cover

the configuration space area which is covered by at least a 5000 node RRT* tree. Coverage here

means having enough nodes or vertices in the configuration space to be able to generate an

optimized path between any two points in the space. It may be noted that even at this point the

RRT* tree is only optimized for providing path from a specific start point to all points in the

configuration space and cannot provide paths between all pair of points. The Smart-Graph on the

other hand is able to do that, in real time and with computational overload only equivalent to that

of a Dijkstra.

In the next phase of the algorithm testing, different goal points were given to the robot during

different phases of its movement using mouse in all three environments. As shown in the figures

4.7 – 4.9, the Smart-Graph was able to yield optimized paths between these points.

35

Fig. 4.7: Paths generated by Smart-Graph in Environment-I

36

Fig. 4.8: Paths generated by Smart-Graph in Environment-II

37

Fig. 4.9: Paths generated by Smart-Graph in Environment-III

38

5.5.5 Comparison with RRT*

The algorithm’s performance (path optimality) was empirically compared with that of a standard

RRT*. To do so, 5 different pairs of start and goal points were selected. Paths for these pairs were

computed using a 7000 node RRT* tree, for all three environments. The costs of paths generated

by RRT* were logged and are shown in Table-4.6 below.

Pair# Start Goal

7000 Node RRT* Path Cost

Env – I Env – II Env – III

1 10,679 648,33 990 1061 975

2 648,33 514,640 673 646 625

3 514,640 432,419 316 365 243

4 432,419 258,17 512 740 471

5 258,17 29,641 688 714 674

Table 4.6: RRT* Path Costs for Different Environments

In the next step, R4T* algorithm was run for 5000 RRT* nodes initialized with random start and

goal points. Its Smart-Graph was used to find paths for the predefined start/goal pairs (shown above)

and their path costs were noted. The algorithm was run with 10 random start and goal points for

each Environment. The maximum, minimum and average path costs generated during these test

runs is shown in the Table 4.7 – 4.9.

39

Pair# Start Goal Min Max Average RRT*

1 10,679 648,33 988 996 991 990

2 648,33 514,640 668 811 685 673

3 514,640 432,419 307 314 309 316

4 432,419 258,17 503 519 508 512

5 258,17 29,641 683 686 685 688

Table 4.7: Smart-Graph vs RRT* Path Costs in Env-I

Pair# Start Goal Min Max Average RRT*

1 10,679 648,33 1052 1069 1058 1061

2 648,33 514,640 644 647 645 646

3 514,640 432,419 363 380 367 365

4 432,419 258,17 727 752 735 740

5 258,17 29,641 712 714 713 714

Table 4.8: Smart-Graph vs RRT* Path Costs in Env-II

40

Pair# Start Goal Min Max Average RRT*

1 10,679 648,33 967 1017 979 975

2 648,33 514,640 622 622 622 625

3 514,640 432,419 239 243 240 243

4 432,419 258,17 470 479 473 471

5 258,17 29,641 673 675 674 674

Table 4.9: Smart-Graph vs RRT* Path Costs in Env-III

Tables 4.2 – 4.4 above, show the performance of Smart-Graph when compared to 7000 node RRT*.

The results show that the path costs generated by R4T* remained consistently equal to or better

than RRT* path costs in most of the cases.

41

CHAPTER 5: CONCLUSION & FUTURE WORK

The thesis presents a re-planning algorithm which provides the functionality of finding optimized

paths between any two points in the workspace using a Smart-Graph built over an RRT* tree. The

tree can be built from an already spawned RRT* tree or developed alongside a tree being built.

Further it provides the provision of interleaving the movements of the robot with path planning.

The robot is able to move as soon as an initial path to the given goal point is found. The algorithm

continues path planning along with the movement and keeps on optimizing the path on the go. The

process continues until a user-defined value of tree density has been achieved after which the path

planning shifts completely to the Smart-Graph. This results in direct provision of optimized paths

for the robot along with handling of its movement. The algorithm will be useful in cases where

start/goal points change on real-time basis during execution of the algorithm or during movement

of the robot.

R4T* was empirically compared with a 7000 nodes RRT* tree. The paths generated by the

algorithm in real-time were shown to have similar optimality to the RRT* tree in comparison. The

algorithm provides a clear advantage as compared to the existing single and multi-query algorithms.

In comparison with existing re-planners it stands apart by providing an optimal solution.

The tree density for the RRT* algorithm is user-defined which can vary along with the environment.

Future work can focus on defining a tree density based on some property or characteristic of the

environment. Similarly, the algorithms implementation in higher dimensions can also be evaluated.

The algorithm provides optimal solution for start-goal pairs in given environments and needs to be

restarted if the environment is changed altogether. Even in that scenario, it can enable movement

early on during the algorithm.

Future work can focus on using the algorithm to expedite optimized path finding in new

environments as well. This can be done by combining R4T* with algorithms such as Informed

RRT*[12], where R4T* can suggest a path using a Smart-Graph built on 1000 or 2000 RRT* nodes.

This un-optimized path can be fed to Informed RRT* to quickly find optimal paths in any

environment. Hence, enabling the combo to provide real-time optimized paths in scenarios where

environments are changing as well.

42

REFERENCES

[1] LaValle, Steven M. (October 1998). "Rapidly-exploring random trees: A new tool for path

planning" Technical Report. Computer Science Department, Iowa State University (TR 98–11).

[2] Khatib, Oussama.; 1986, "Real-time obstacle avoidance for manipulators and mobile robots."

Autonomous robot vehicles. Springer, New York, NY, 1986. 396-404.

[3] LaValle, Steven M.; 1998, "Rapidly-exploring random trees: A new tool for path planning."

(1998): 98-11.

[4] Karaman, Sertac, and Emilio Frazzoli,; 2011, "Sampling-based algorithms for optimal motion

planning." The international journal of robotics research 30.7 (2011): 846-894.

[5] Kavraki, Lydia E., et al.; 1996, "Probabilistic roadmaps for path planning in high-dimensional

configuration spaces." IEEE transactions on Robotics and Automation 12.4 (1996): 566-580.

[6] Qureshi, Ahmed Hussain, and Yasar Ayaz.; 2016, "Potential functions based sampling heuristic

for optimal path planning." Autonomous Robots 40.6 (2016): 1079-1093.

[7] Islam, F., Nasir, J., Malik, U., Ayaz, Y. and Hasan, O.,; 2012, August. RRT∗-smart: Rapid

convergence implementation of rrt∗ towards optimal solution. In 2012 IEEE international

conference on mechatronics and automation (pp. 1651-1656). IEEE.

[8] Qureshi, Ahmed Hussain, et al.; 2013, "Potential guided directional-RRT* for accelerated

motion planning in cluttered environments." 2013 IEEE International Conference on

Mechatronics and Automation. IEEE, 2013.

[9] Qureshi, Ahmed Hussain, and Yasar Ayaz,; 2015, "Intelligent bidirectional rapidly-exploring

random trees for optimal motion planning in complex cluttered environments." Robotics and

Autonomous Systems 68 (2015): 1-11.

[10] Tahir, Zaid, et al.; 2018, "Potentially guided bidirectionalized RRT* for fast optimal path

planning in cluttered environments." Robotics and Autonomous Systems 108 (2018): 13-27.

[11] Kavraki, Lydia E., et al.; 1996, "Probabilistic roadmaps for path planning in high-

dimensional configuration spaces." IEEE transactions on Robotics and Automation 12.4 (1996):

566-580.

43

[12] Siméon, Thierry, J-P. Laumond, and Carole Nissoux.; 2000, "Visibility-based probabilistic

roadmaps for motion planning." Advanced Robotics 14.6 (2000): 477-493.

[13] Naderi, Kourosh, Joose Rajamäki, and Perttu Hämäläinen.; 2015, "RT-RRT* a real-time

path planning algorithm based on RRT." Proceedings of the 8th ACM SIGGRAPH Conference

on Motion in Games. 2015.

[14] Chandler, Bryant, and Michael A. Goodrich.; 2017, "Online RRT∗ and online FMT∗: Rapid

replanning with dynamic cost." 2017 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS). IEEE, 2017.

[15] J.D. Gammell, S.S. Srinivasa, T.D. Barfoot.; 2014, Informed RRT*: Optimal samplingbased

path planning focused via direct sampling of an admissible ellipsoidal heuristic, in: IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2014, pp. 2997–3004.

44

45

46

47

48

49

50

