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ABSTRACT 

 

An effective lubrication of journal bearings is jeopardized due to the formation and 

activity of air cavities in the lubricant. Cavitation affects the buildup of hydrodynamic 

pressures adversely & lowers the hydrodynamic load carrying capacity of journal 

bearing. The cavitation effects are quite pronounced for varying speed and 

eccentricity ratios of journal bearing. In an extreme case, cavitation may cause wear 

and seizure of the journal bearing. This work will model the cavitation phenomenon 

and its effects on the journal bearing lubrication numerically using Universal 

Cavitation Algorithm leading to a single Reynolds equation which is valid for both 

the full film (liquid) and cavitation zones. The parametric study at commercially 

available different lubricating oils for varying eccentricity ratios of the journal to bush 

radial clearances will be conducted for optimization under the stated cavitation 

conditions for an in-depth analysis for the logical conclusions. 
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1. INTRODUCTION 

Beauchamp Tower, an engineer by profession, at the end of the nineteenth century 

noticed serious understanding of hydrodynamics in lubrication when he noticed that 

the oil in a journal bearing leaked out of a hole located underneath the load. The oil 

leakage created so much nuisance that he plugged the hole with a cork, however, oil 

still managed to ooze out. He then plugged the hole with a hard wooden bung. The 

original idea of provision of hole at bearing was to allow oil supply into the bearing 

for its lubrication. Later Mr. Tower made it realized that some unknown mechanism 

was forcing the oil to get pressurized and that mechanism pushed the hard wooden 

bung out of the oil supply hole as well. Inspired by the human instinct of 

inquisitiveness Mr. Tower measured the oil pressure and revealed that a hydraulic 

force could separate the sliding surfaces [2]. 

During that era of late nineteenth century, Sir Osborne Reynolds and other 

theoreticians were working on the theory of hydrodynamic lubrication and 

Beauchamp Tower's discovery alongwith its detailed data provided the experimental 

evidence of hydrodynamic lubrication given by Sir Reynolds. Later in 1886, theory of 

hydrodynamic lubrication was published in the Proceedings of the Royal Society 

London [3]. 

Sir Osborne Reynolds analytically proved first time in the history of mankind in his 

famous research published at Royal Society of London in 1886 that two sliding 

surfaces can be physically separated by hydrodynamic pressure of a viscous liquid 

within the surfaces which also resulted in less friction and zero wear theoretically. 

Osborne Reynolds in his landmark paper of 1886 investigated the case of two 

cylindrical bearing surfaces operating eccentrically with respect to each other. In his 

same classical paper, he also clearly accepted the possible influence of cavitation in 

lubricant films on bearing behavior. The cavities formation and their manifestation 

clearly affect the hydrodynamic pressure generated within a lubricant’s continuous 

thin film, resulting compromise of journal bearings operational performance and 

reliability.  
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1.1. JOURNAL BEARING 

Journal bearing is very common engineering component. It is used in almost every 

type of engineering machinery. Efficiency and reliability of rotary equipment like IC 

engines, pumps, compressors, turbines & generators mainly depend on journal 

bearings. Journal bearing has a shaft rotating within a stationary bush. The lubricant 

film help support the load by the generation of hydrodynamic pressure generated by 

the moving shaft within the bush of the bearing [4].  

 

 

 

 

 

 

 

 

 

Analysis of journal bearing has two basic aspects. The first aspect covers the basic 

analysis of its load carrying capacity, friction generated between moving surfaces and 

lubricant flow rate as a function of speed, load and any other controlling parameters 

[4]. The second aspect covers the practical issues with its operation, which include its 

design improvement to suppress cavitation and vibration, lubricant supply 

methodology, degree of misalignment to accommodate fit for its operation, and 

heating of introduced lubricant due to friction [4]. 

1.2. BEARING GEOMETRY 

Journal bearing’s geometry is shown at figure: 1-2 below: 

Figure 1-1 : Journal Bearing (adapted from [1]) 
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Figure 1-2 : Geometry of the journal bearing (adapted from [4]). 

Where  

R1 = Radius of the bush,  

R2 = Radius of the shaft,  

OB = Centre of the bush,  

Os = Centre of the shaft. 

OS
A

C

θ  a

R1

OB

hR2

e

B

 

Figure 1-3 : Geometry detail of lubricant film shape in journal bearings (adapted from [4]). 

Where:  

e = Eccentricity (distance OsOB between the axial centres of shaft and bush during 

bearing's operation) 

h = Lubricant film thickness. 
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Consider ΔOsOBA from figure-1.2 which is shown in detail at figure: 1-3. It should be 

noted that the angle ' ' is very small. From inspection of the triangle ΔOsOBA it can 

be written: 

hRReAO

or

BABOCACOAO

s

sss





21 coscos 

----------------------------------------------------- (Eq:1.1) [4] 

thus:  

21 coscos RReh   --------------------------------------------------------------- (Eq:1.2) [4] 

Making use of sine rule we get 





sinsin

sinsin

1

1

R

e

Re





------------------------------------------------------------------------- (Eq:1.3) [4] 

As 

1cossin 22   ------------------------------------------------------------------------- (Eq:1.4) [4] 

Making use of sin  yields: 

 2

2

1

2 sin1sin1cos 









R

e
--------------------------------------------- (Eq:1.5) [4] 

Since  1
1


R

e
 then: 

1cos  ------------------------------------------------------------------------------------- (Eq:1.6) [4] 

Making use of above in eq (1.1) yields: 

"coscos" 21 ceRReh   ---------------------------------------------------- (Eq:1.7) [4] 

Where 21 RRc  =Clearance (Difference between Radii of shaft & bush [4]. 

or: 

 "cos1"  ch ------------------------------------------------------------------------ (Eq:1.8) [4] 

Where  ,  is eccentricity ratio [4] 
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""
c

e
 --------------------------------------------------------------------------------------- (Eq:1.9) [4] 

Equation (1.3) gives a description of film shape in journal bearings with an accuracy 

of 0.1% [4, 5]. 

1.3. PRACTICAL AND OPERATIONAL ASPECTS OF 

JOURNAL BEARING 

Nowadays journal bearings are designed for a number of rotary machinery with 

varying requirements of design as per their operational requirements. Due to variety 

of design requirements there are some issues associated with the operation and their 

practical implementation for journal bearings. For example, in many applications the 

lubricating oil is usually fed under pressure, for that reason some critical shaft speeds 

to be avoided due to resonance frequencies of the bearing [4]. In order to insert shaft 

as per its fits requirement, a tolerance is usually specified as per Hole Basis or Shaft 

Basis System. So the shaft is usually misaligned i.e. eccentric and there are always 

some effects of cavitation of lubricating films. And elastic deformation of the bearing 

surfaces will certainly happen. All of these issues affect the reliability and 

performance of a journal bearing to some level so allowance should be made during 

the design and operation of the journal bearing. 

1.4. CAVITATION 



In stationary situation, cavitation of liquid occurs if its pressure falls below its vapour 

pressure at that temperature. In a dynamic and transient condition, the pressure may 

fall significantly below the vapor pressure and may be even lower than the vacuum 

pressure. In the latter scenario, surface tension generated within the fluid [6] before 

the film ruptures and starts cavitation. As this phenomenon is of the transient nature 

and has its negligible effect on its steady-state condition, so null pressure gradient or a 

constant pressure value is the boundary conditions specified for the cavitated region 

[5].  
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According to Young, Cavitation is the formation and activity of bubbles (or cavities) 

in a liquid and is of four different kinds [7]. 

a. Hydrodynamic Cavitation 

Hydrodynamic cavitation is produced by pressure variations in a flowing liquid due to 

the geometry of the system [7]. 

b. Acoustic Cavitation 

Acoustic Cavitation is produced by sound waves in a liquid due to pressure           

variations [7]. 

c. Optic Cavitation 

Optic Cavitation is produced by photons of high intensity (laser) light rupturing                  

in a liquid [7]. 

d. Particle cavitation  

Particle cavitation is produced by any other type of elementary particles, e.g. a proton, 

rupturing as in a bubble chamber [7].  

Hydrodynamic liquid cavitation has three recognized forms as follows [8]. 

a. Gaseous cavitation 

Gaseous cavitation usually occurs when pressure of one or more dissolved gases falls 

below its saturation pressure in the liquid [8]. 

b. Pseudo-cavitation 

Pseudo-cavitation is a form of gaseous cavitation during which the gas bubble 

expands on account of depressurization without further gas mass diffusion from the 

liquid to the gas phase [8]. 

c. Vaporous cavitation  

Vaporous cavitation is the result of a thermodynamic non-equilibrium event when the 

pressure falls below the vapour pressure [8]. 
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2. LITERATURE REVIEW 

2.1 INTRODUCTION 

Literature review on cavitation in thin liquid films in bearings couldn’t be completed 

if we miss three symposia held on cavitation. Such first symposium in modern age 

was organized by General Motors Research Labs in 1962 [8, 9], which is organized 

by and edited by Davies. This was the first ever symposium held about cavitation at 

one place and many of its participants are today considered as forefathers in 

developing knowledge about bubble dynamics [10, 11], surface tension [12, 13] and 

thin film rupture [8, 14-16] . 

The second such symposium was held in 1974 as 1st Leeds-Lyon Symposium, edited 

by Dowson et al. [17], was the first in history to focus singly on cavitation phenomena 

related to lubrication technology [8]. Its report contains information about the 

fundamentals of vaporous and gaseous cavitation and classical theories were 

presented to address film rupture conditions in static and dynamically loaded bearings 

alongwith the research related to cavitation damage as well [8]. 

The third symposium regarding cavitating films was held in 1988 at NASA Lewis 

Research Center (Cleveland, Ohio, USA), Brewe et al. [18] edited the most recent 

advances and the improved version of models were presented for basic fundamental 

concepts of cavitation already presented in 1974 at Lyon [8, 17]. The 1988 

symposium offered novel theoretical algorithms in particular for a more realistic 

simulation and numerical implementation of lubricant film cavitation problems [8]. 

2.2 FILM RUPTURE THEORIES 

Cavitation, a rupture in the continuity of the liquid film either comes from the 

lubricating film (in case of gaseous cavitation) or from the environment (in case of 

vaporous cavitation) [8]. Researchers faced a huge challenge in the context of the 

solution to the Reynolds equation due to this discontinuity at the bubble interface. 

Sommerfeld [19] did not take into account film rupture and didn’t solve for a full film 

around the circumference as shown in figure: 2-1 [8].  
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Figure 2-1 : Typical pressure distribution in a journal bearing with an eccentric shaft: 2D full 

Sommerfeld curve circumferential cross section through the symmetry line of pressure 

distribution in a convergent–divergent clearance with a normal velocity ±V to the main flow 

direction (adapted from [8]). 

In 1914 Gumbel [20] was the first to consider for the film ‘rupture’. According to 

him, “for a steadily loaded bearing operating at constant angular velocity, the rupture 

originates in the immediate vicinity of the film’s minimum clearance, at a 

predetermined pressure Pcav and remains constant at that value for the entire divergent 

region [8]” as shown in figure-2.1. Film reformation and mass continuity was not 

considered in his approach [8]. As the circumferential pressure distribution allows 

only the convergent film zone, i.e. positive pressure region, so the Gumbel condition 

is also known as the ‘half-Sommerfeld’ condition figure: 2-2(a) [8]. 
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Gumbel’s condition represents an early simplistic approach that only that recognized 

the physical reality of the film rupture and basis for an analytical and numerical 

simulation [8]. Later, a better alternative to the ‘half-Sommerfeld’ condition was 

offered by two researchers Swift  [21] and Stieber [22] independently of each other as 

shown at figure: 2-2(a) [8]. In 1932 Swift [21] described that a zero derivative of the 

pressure is a suitable condition for onset of cavitation and called it to be a ‘stability 

condition’ [8]. In 1933 Stieber [22] published a full solution for a 360 degree journal 

bearing considering cavitation [8]. This solution was done for a zero tensile strength 

lubricant. Later Floberg adapted the different approaches for the zero and non-zero 

tensile stress for the cavitation of lubricant film [8, 23].  
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Figure 2-2 : Circumferential pressure development based on film rupture theories: (a) Gumbel 

[20]; (b) Swift–Stieber [21, 22]; (c) JFO and Floberg; and (d) Elrod [24], and Vijayaraghavan 

and Keith [25, 26] (adapted from [8]) 
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Stieber, like Swift considered continuity condition as a zero-pressure gradient at the 

start of the cavitation zone. Both while approaching it from different angles came to 

the same conclusion regarding its inception and development. These cavitation zone 

formation conditions are now famous as the Swift–Stieber conditions as shown at 

figure: 2-2(b) are: 

""&"0" cavPP
y

p

x

p










--------------------------------------------------------- (Eq:2.1)[8] 

The above conditions consider the whole cavitation zone at cavPP   and do not allow 

for the existence of sub-cavitational or variations in the pressure inside the cavitation 

region [8]. After the rupture of film, Poiseuille (flow between the plates due to 

pressure difference across their separation) flow component of the circumferential and 

axial velocities becomes zero, and only the Couette (flow between two parallel plates, 

caused by relative motion of the plates) flow component is sole responsible for 

carrying lubricant in between the gas cavities as shown in figure: 2-3 [8]. 

Surface Motion

U

Line of Film Rupture

cavPP

y

p

x

p












0

Gas Cavities 

(fingers)

 

Figure 2-3 : Film rupture boundary conditions type-striated gas and liquid fingers (Swift 

Stieber, JFO) 

As null pressure gradient is imposed within the cavitation region by setting a constant 

pressure of lubricant so the pressure gradient calculated within the lubricant has to 

interface with the cavity pressure gradient along the boundary in such a way that at 

certain locations there can be a relatively steep slope (e.g. the point of cavity 

inception) [8].   
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3. REYNOLDS EQUATION 

3.1 INTRODUCTION 

In 1886, Sir Osborne Reynolds gave the basis of lubricating film theory and proved 

with his famous experiment of rotating cylinders with olive oil between them as 

lubricant and explained how a viscous liquid can physically separate two sliding 

surfaces by built up of lubricant’s hydrodynamic pressure which resulted in low 

friction and negligible wear [4]. This theory became the basis for the mechanism of 

lubrication by the generation of a viscous liquid film between the sliding surfaces [4]. 

Lubricant between two sliding surfaces provides the load carrying capability when 

first surface is being inclined to the second at a certain angle and other moves 

relatively to the first with an certain velocity. Reynolds equation can be a simplified 

version of the Navier-Stokes momentum and continuity equation by neglecting inertia 

and body forces. Or, this equation can also be derived by applying the continuity of 

flow principle by considering the continuity of flow in a column subjected to viscous 

shear. Reynolds equation is very useful in determining hydrodynamic pressures 

generated between rigid moving surfaces [4].  

3.2 PRINCIPLE OF HYDRODYNAMIC PRESSURE 

GENERATION 

Principle of hydrodynamic pressure generation between moving non-parallel surfaces 

is schematically illustrated at figure: 3-1. 

Following assumptions are made to apply this principle [4]:- 

The bottom surface, here it is called as the 'runner', moves with a certain velocity and 

is covered with lubricant. The top surface is set to be inclined at a specific angle to the 

bottom surface. The bottom surface drags the lubricant alongwith it into the 

converging wedge as it moves along. Doing so, the bottom surface generates a 

pressure field else entering lubricant would be more than leaving the wedge. So the 

increase in lubricant pressure restricts the flow at entry point of the wedge and there is 

a decrease in pressure boosting the exit flow at the exit.  This makes a positive 

pressure gradient which makes the fluid velocity profile to bend inwards at the entry 
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to the wedge and bend outwards at the exit of the wedge, as shown in the figure: 3-1. 

Thus the pressure generated physically separates the two surfaces and helps support a 

specific load. If a curved shape wedge is wrapped around a shaft then it forms a 

typical engineering application called as journal bearing [4]. 

 

 

Figure 3-1 : Principle of hydrodynamic pressure generation between non-parallel surfaces  

(adapted from [4]) 

 

Table-3.1 : Summary of simplifying assumptions in hydrodynamics 

(adapted from [4]) 

 S# Assumption 

1 Body forces are neglected 

2 Pressure is constant through the film 

3 No slip at the boundaries 

4 Lubricant behaves as a Newtonian fluid 

5 Flow is laminar 

6 Fluid inertia is neglected 

7 Fluid density is constant 

8 Viscosity is constant throughout the generated fluid film 
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3.3 DERIVATION OF REYNOLDS EQUATION 

In order to obtain expression of fluid particles and continuity of flow in a column Let 

us consider the equilibrium of a fluid element as shown in figure: 3-2 [4]. 

 

 

 

Consider a small element of fluid from a hydrodynamic film [4]. Assume that forces 

acting on the element are acting in the x-direction only [4]. Since element is in 

equilibrium hence forces at the left balance the forces at the right [4]. Mathematically, 

it is given by  

")()(" dxdydydzdx
x

p
pdxdydz

z
pdydz x

x

x 


 








  ------------------ (Eq:3.1) [4] 

Simplifying, yields 

"" dxdydz
x

p
dxdydz

z

x









  ------------------------------------------------------ (Eq:3.2) [4] 

Assume that volume is non-zero i.e., "0" dxdydz [4] 

""
x

p

z

x









------------------------------------------------------------------------- (Eq:3.3) [4] 

Figure 3-2 : Equilibrium of an element of fluid from a hydrodynamic film; p is the 

pressure, 
x is the shear stress acting in the 'x' direction. 
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Similarly forces acting in ‘y’ direction yield the second equilibrium [4], 

""
y

p

z

y









------------------------------------------------------------------------- (Eq:3.4) [4] 

Applying assumption # 2 from Table-3.1, i.e. pressure is constant through the film [4]. 

Hence, 

0




z

p
------------------------------------------------------------------------------- (Eq:3.5) [4] 

Shear stress can be expressed in terms of dynamic viscosity and shear rate, which is 

given as [4] 

So shear stress acting in the ‘x’ direction  

""
z

u

h

u
x




  ------------------------------------------------------------------ (Eq:3.6) [4] 

And shear stress acting in the ‘y’ direction 

""
z

v

h

v
y




  ------------------------------------------------------------------ (Eq:3.7) [4] 

Putting equation (3.6) into equation (3.3) yields 
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x

p

z

u

z 



















 ------------------------------------------------------------------ (Eq:3.8) [4] 

Putting equation (3.7) into equation (3.4) yields 

""
y

p

z

v

z 



















 ----------------------------------------------------------------- (Eq:3.9) [4] 

Applying assumption # 8 from Table-3.1, i.e. viscosity is assumed to be constant 

throughout the film. So it is not a function of ‘z’ i.e. )(zf  

Equation (3.8) can be rearranged as follows by separating the variables yields 
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
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Integrating both sides 
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Separating variables again yields 
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
  

Integrate it again yields 

"" 1  












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" 21

2
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










---------------------------------------------------- (Eq:3.10) [4] 

3.3.1 Defining Boundary Conditions 

Keeping in view the assumption that there is no slip or velocity discontinuity between 

the liquid and solid at the boundaries of the wedge (assumption # 3 from Table-3.1 i.e. 

velocity of the oil layer adjacent to the boundary is the same as that of the boundary), 

the boundary conditions are defined as 

“u = U2  at   z = 0” 

“u = U1  at   z = h” 

Applying u = U2 at z = 0 in equation (3.10) yields 
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“C2   =  2U ”----------------------------------------------------------------------- (Eq:3.11) [4] 

Applying equation (3.11) and u = U1 at  z = h in equation (3.10) yields 
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Putting equations (3.11) and (3.12) in equation (3.10) yields 
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Equation (3.13) is the required expression for velocity in the ‘x’ direction. Velocity 

profiles at the entry of the hydrodynamic film are shown in figure-3.3 below: 
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Figure 3-3 : Velocity profiles at the entry of the hydrodynamic film.(adapted from [4]) 

Applying assumption # 8, i.e. dynamic viscosity is assumed constant. Hence it is not a 

function of ‘z’ i.e.,  f(z). Equation (3.9) can be re-arranged as: 
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Integrating above will yield 
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Integrating it again,      
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In a similar manner a formula for velocity in the ‘y’ direction is obtained as 
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3.3.2 Continuity of Flow in a Column 

 

Figure 3-4 : Continuity of flow in a column (adapted from [4]) 

Consider a column of lubricant as shown in figure-3.4, such that the lubricant flows 

into the column horizontally at the rates of xq and
yq  [4]. In the vertical direction the 

lubricant flows into the column at the rate of dxdyw0  and flows out at the rate of

dxdywh  [4]. The principle of continuity of flow requires that “the influx of a liquid 

must equal it’s efflux from a control volume under steady conditions” [4]. Keeping in 

view the requirements of this principle and assuming the density of the lubricant to be 

constant, the following relation applies  [4] 
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As 0dxdy [4]  

equation: 3.17 can be rewritten as 
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Flow rates per unit length ( yx qq & ) can be found by integrating the lubricant 

viscosity profile over its film thickness [4]: 
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Putting ‘u’ in equation (3.13) yields 
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which is the required flow rate per unit length in the ‘x’ direction 

Now putting value of ‘v’ from equation (3.15) into equation (3.20) & get 
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which is the required flow rate per unit length in the ‘y’ direction.  
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Now putting equations (3.21) & (3.22) into equation (3.18), we get 
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(Eq:3.22) [4] 

In order to simplify the expression for the equation of continuity of flow in a column, 

we define lubricant velocities in the ‘x’ and ‘y’ directions as follows: 

“U = U1+U2”  ; “V = V1+V2”        

Assume that there is no local variation in surface velocity in the ‘x’ and ‘y’ directions, 

i.e. “U  f(x)” & “V    f(y)” 

Apply the above simplification and assumption in equation (3.23) 
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Then rearranging and simplifying yields 3-D full Reynolds equation: 
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4. MATHEMATICAL MODELING AND 

DISCRETIZATION 

4.1 ELROD ALGORITHM 

The Elrod cavitation model reformulates the Reynolds equation by developing a 

unique differential equation, applicable in both the full lubricant film and the 

cavitation region by formulating the problem in terms of a new variable (different 

from pressure) which helps to avoid the tedious calculation of the cavitation boundary 

and its reformulation [27]. The Elrod algorithm also preserves mass conservation 

within the entire flow domain.  

With the advent of the digital computer, more complex numerical analysis in bearing 

lubrication became practical. Elrod and Adams [28] proposed an algorithm employing 

a switch function to handle both the full-film and cavitated regions with a pseudo-

compressibility concept; finite difference computation of the one-dimensional 

problem was furnished to illustrate the method [27]. In 1981, Elrod [24] added a 

refinement to the Elrod-Adams algorithm, featuring the ADI technique for time-

domain with two dimensional simulation of rupture in the bearing film. The latter 

version is now known as the Elrod cavitation algorithm [27].  

The cavitation algorithm presented by Elrod gained worldwide recognition. A few 

researchers made use of the method to solve specific problems, others tailored the 

technique, some did further ahead by addition of other theories, and some used the 

basic concept as a building block for their own algorithm; e.g. Bayada [29] , Bayada 

et al. [30], Woods and Brewe [31], Vijayaraghavan and Keith [26], Kumar and 

Booker [32], Claro, Miranda [33], Yu and Keith [34] – and the roster is still 

increasing.  

Although Elrod algorithm is widely accepted but it is deficient to explain morphology 

of rupture region as it does not treats the Olsson equation for the ruptured region [27]. 

However, Elrod cavitation algorithm employs a single governing equation for both the 

full film and partial-film zones [27]. A new binary switch function ‘g’ was used with 

has enabled the pressure terms enabling different fluid behavior in both full film and 
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cavitation regions [27]. The two-dimensional Reynolds elliptical equation for the full-

film region with g set to 1 is with Poiseuille flow terms in the ‘x’ (circumferential) 

and ‘z’ (axial) directions alongwith Couette flow, wedging and squeeze film terms 

resulting an elliptic equation. 
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where x is the circumferential direction, z is the axial direction, t is time, p is pressure, 

h is the film thickness,  is fluid density, U is the rotating journal surface speed, h is 

the film thickness and  is the viscosity. In the cavitation region, g is set to 0, 

resulting in a hyperbolic equation with squeeze & wedging terms: 

"0
2

" 















 ρhU

xt

ρh
-----------------------------------------------------------(Eq:4.2) [27] 

In place of pressure p, Equation (4.1) is arranged to solve for a single state variable

, which has a dual meaning. The relationship between p and  is given by 

"exp"

0








 


gβ

pp

Θ ------------------------------------------------------------------(Eq:4.3) [27] 

where 0
p  is the supply pressure (considered ambient here) and   is the bulk 

modulus introduced as a pseudo-compressibility effect [27]. In the full-film region, 

  is a ratio of densities at each point (actual over cavitated) and in the cavitated 

region it is the fractional film content (0 is empty and 1 is full of liquid). The adhered 

film thickness can be obtained from   according to 

"" ΘHH a  ------------------------------------------------------------------------(Eq:4.4) [27] 

""
c

Θ



 --------------------------------------------------------------------------(Eq:4.5) [27] 

In the cavitated region,   it is the fractional film content (0 is empty and 1 is full of 

liquid) [27] 
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""
H

H
Θ a -------------------------------------------------------------------------(Eq:4.6) [27] 

Dimensionless Bulk Modulus ‘B’ is given by 

""
2

UR

C
B




 -----------------------------------------------------------------------(Eq:4.7) [27] 

In full film region  

“ cPPg  ,1 ” 

In cavitation region 

",0" cPPg   
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4.2 FINITE DIFFERENCING 

Using non-dimensional variables, Equation (4.1) can be written in conservative form 

as given below: 

"0" 














Z

G

X

F

T

E
-------------------------------------------------------------(Eq:4.8) [27] 

"" HΘE  --------------------------------------------------------------------------(Eq:4.9) [27] 

"" 1110
X

Θ
aΘaF




 ------------------------------------------------------------(Eq:4.10) [27] 

"" 22
Z

Θ
aG




 -------------------------------------------------------------------(Eq:4.11) [27] 

"
4

" 10
π

H
a  ------------------------------------------------------------------------(Eq:4.12) [27] 

"
48

" 3

211 gH
π

-B
a  ---------------------------------------------------------------(Eq:4.13) [27] 

 
"

48

" 3

222 gH

D
L

-B
a  ---------------------------------------------------------(Eq:4.14) [27] 

Where ‘H’ is the non-dimensional film thickness which is ratio of film thickness to 

clearance of bore/bush diameter of journal bearing, ‘B’ is the non-dimensional bulk 

modulus which is the “lubricants resistance to compression”, or “the measure of 

elasticity of the fluid”, or “the ratio of differential pressure applied at all surfaces to 

the strain of fluid”, and ‘L/B’ is the bearing length to diameter ratio.  

For the solution of full film region when switch function ‘g’ is set as ‘1’, the finite 

difference equation of modified Reynolds equation with Elrod algorithm (eq 4.1) 

takes the form of elliptic equation which is solved with central differencing. And for 

cavitated region when switch function ‘g’ is set as ‘zero’, the finite difference 

equation of modified Reynolds equation with Elrod algorithm (eq 4.2) takes the form 

of hyperbolic equation which is solved with an upwind differencing, so the 
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conservative form of modified Reynolds equation with Elrod algorithm (eq 4.8) 

becomes 
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Solving for Rows Explicitly 
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Tri-diagonal coefficients for solving rows: 
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Solving for columns explicitly 
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Tri-diagonal coefficients for solving columns: 
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5. NUMERICAL COMPUTATION 

5.1 PROGRAMMING USING ADI TECHNIQUE 

An unconditionally stable Alternate Direction Implicit (ADI) technique was used at 

the governing equation in non-dimensional discretized form as shown at equation: 

4.15 which marches in time and reach a steady state solution. Rows and columns were 

solved as per computational molecule discussed at figure: 5-1 implicitly one by one 

by making use of tri-diagonal matrix. Coefficients of tri-diagonal matrix were 

calculated using Jacobi iteration method explicitly. Following is an overview of the 

ADI procedure [27]: 

5.2 ADI PROCEDURE 

Figure: 5-1 shows the computational molecule for the tri-diagonal solve. B1, B0 and B2 

are used with the solver for solving the rows and B3 updates the right-hand side 

explicitly. Then B5, B0 and B4 are used with the tri-diagonal solver for solving the 

columns. Using the technique of Vijayaraghavan and Keith [26], equation: 4.3 was 

broken up to preserve balance in time with the ADI scheme, so nearly half of the 

terms are put into the diagonal solver. The remaining terms are then moved to the 

right-hand side and taken into account as constants during calculations in one 

particular direction (either axial sweep or circumferential sweep) [27]. 

 

Figure 5-1 : Computational Molecule for ADI Technique (adapted from [27]) 
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5.3 FLOW CHART OF ADI SCHEME 
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For full-film region
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Figure 5-2 : Flow Chart of Algorithm 
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6. SIMULATION AND ANALYSIS OF RESULTS 

The hydrodynamic pressure fields generation between the opposing surfaces of 

journal and bush walls was simulated on the model developed by solving the modified 

2-D, transient, compressible Reynolds equation with Elrod algorithm.  

A comprehensive simulation code (see Appendix) was written in Matlab Version 

7.12.0.635 (R2011a) for the simple case by using ambient pressure on all four 

boundaries. Programming details will not be discussed here but we would confine our 

analysis to the relevant technical details and engineering aspects related to this 

simulation. 

The simulation process involves one complete rotation of shaft i.e. 360 degree. The 

hydrodynamic pressure fields and corresponding film thickness corresponding to each 

time step/angle were generated in the simulation.  

Through simulations and by taking an insight look at the model, it was revealed that 

eccentricity ratio and bulk modulus have their pronounced affect for onset of 

cavitation of lubricant, so our discussions will limit to both parameters.  

In order to understand the relative significance of every principal input design 

parameter it is very essential that we carry out a comprehensive parametric study of 

cavitation phenomenon of lubricant film in low speed journal bearing. In our existing 

analysis we have selected three principal input parameters namely, eccentricity ratio 

(ratio of shaft/journal eccentricity to radial clearance between shaft/journal and 

bush/bore), speed of shaft/journal, radial clearance between journal/shaft and 

bush/bore. By going through the mathematical model we can see that the modified 

Reynolds equation with Elrod’s algorithm sums up the effect of speed and radial 

clearance within a parameter of dimensionless bulk modulus by taking into account 

dimensional bulk modulus of lubricant, viscosity of lubricant and radius of 

journal/shaft as well (Non-Dimensional Bulk Modulus is the product of Bulk 

Modulus & Square of Radial Clearance divided by product of Viscosity, Speed & 

Radius). So we have limited our analysis to the effect of eccentricity ratio and non-

dimensional bulk modulus parameters one by one while keeping values of others as 
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fixed and then see what effect it will generate on dimensionless lubricant film 

thickness profile and dimensionless lubricant hydrodynamic pressure profiles. 

6.1 EFFECT OF ECCENTRICITY RATIO 

Refer to figures: 1-2 & 1-3, eccentricity ratio is defined as the ratio of shaft 

eccentricity to the radial clearance. 

Simulation was run for a mesh size of 24x16, with time step as 0.00001sec, for radial 

clearance as 50 Microns, for dimensionless bulk modulus as 12000, journal’s 

rotational velocity as 1m/s, lubricant viscosity as 0.05Pa.s for varying eccentricity 

ratios i.e. 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55 and 0.60.  

These results were plotted on 3D graphs with x-axis as circumferential length of 

bearing, z-axis as breadth of bearing and y-axis as dimensionless lubricant 

hydrodynamic pressure profile & dimensionless lubricant film thickness profile, 

respectively. The plots were discussed for above mentioned eccentricity ratios in the 

subsequent section of the dissertation. 
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6.1.1 Eccentricity Ratio = 0.01 

By taking a close examination of the plot for eccentricity ratio as 0.01, it was revealed 

that dimensionless hydrodynamic pressure profile of lubricant has a very sharp slope 

and dimensionless film thickness profile was almost uniform and at ratio one 

throughout the bearing circumference. This case of eccentricity of shaft at near zero 

i.e. perfectly aligned shaft with hole was studied for simulation purpose only as 

practically this was the ideal case and it never happens due to the limitations of shaft 

to hole fits on the basis of either of shaft or hole base(s) system of fits & clearance 

between them.  

 

Figure 6-1 : Dimensionless Lubricant Hyd. Pressure Profile for Eccentricity Ratio = 0.01 

 

Figure 6-2 : Dimensionless Lubricant Film Thickness Profile for Eccentricity Ratio = 0.01 
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6.1.2 Eccentricity Ratio = 0.05 

By taking a close examination of the plot for eccentricity ratio as 0.05, it was revealed 

that by increasing eccentricity ratio the sharpness of the slope of lubricant’s 

dimensionless hydrodynamic pressure profile has decreased a bit from the middle of 

the profile and there was a corresponding dip in lubricant’s dimensionless film 

thickness profile about same angle along the circumference of the bearing. This was 

the case of very low eccentricity of shaft i.e. nearly aligned shaft with hole. 

 

 

Figure 6-3 : Dimensionless Lubricant Hyd. Pressure Profile for Eccentricity Ratio = 0.05 

 

Figure 6-4 : Dimensionless Lubricant Film Thickness Profile for Eccentricity Ratio = 0.05 
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6.1.3 Eccentricity Ratio = 0.10 

By taking a close examination of the plot for eccentricity ratio as 0.10, it was revealed 

that by increasing eccentricity ratio the sharpness of the slope of lubricant’s 

dimensionless hydrodynamic pressure profile has further decreased from the middle 

of the profile by a rise in its hydrodynamic pressure from the middle with a drop in 

maximum hydrodynamic pressure and there was a corresponding further dip in 

lubricant’s dimensionless film thickness profile about the same angle along the 

circumference of the bearing with a rise from its edges. This was the case of nearly 

low eccentricity of shaft for a nearly aligned shaft with hole. 

 

Figure 6-5 : Dimensionless Lubricant Hyd. Pressure Profile for Eccentricity Ratio = 0.10 

 

Figure 6-6 : Dimensionless Lubricant Film Thickness Profile for Eccentricity Ratio = 0.10 
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6.1.4 Eccentricity Ratio = 0.15 

By taking a close examination of the plot for eccentricity ratio as 0.15, it was revealed 

that by increasing eccentricity ratio the sharpness of the slope of lubricant’s 

dimensionless hydrodynamic pressure profile has further decreased from the middle 

of the profile by a rise in its hydrodynamic pressure from the middle and a rise in 

pressure from the left half side of the bearing circumference with a drop in maximum 

hydrodynamic pressure further and there was a corresponding further dip in 

lubricant’s dimensionless film thickness profile about the same angle along the 

circumference of the bearing with a further rise from its edges. 

 

Figure 6-7 : Dimensionless Lubricant Hyd. Pressure Profile for Eccentricity Ratio = 0.15 

 
Figure 6-8 : Dimensionless Lubricant Film Thickness Profile for Eccentricity Ratio = 0.15 
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6.1.5 Eccentricity Ratio = 0.20 

By taking a close examination of the plot for eccentricity ratio as 0.20, it was revealed 

that by increasing eccentricity ratio the previous trend of lubricant’s dimensionless 

hydrodynamic pressure profile and lubricant’s dimensionless film thickness profile 

has changed by rise in all peaks and humps of hydrodynamic pressure profiles 

alongwith corresponding increase in film thickness profiles about the same angle 

along the circumference of the bearing with a further rise from its edges and centre 

and start of a clear converging diverging hydrodynamic film thickness profile. 

 

Figure 6-9 : Dimensionless Lubricant Hyd. Pressure Profile for Eccentricity Ratio = 0.20 

 

Figure 6-10 : Dimensionless Lubricant Film Thickness Profile for Eccentricity Ratio = 0.20 
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6.1.6 Eccentricity Ratio = 0.25 

By taking a close examination of the plot for eccentricity ratio as 0.25, it was revealed 

that by increasing eccentricity ratio the peak of the lubricant’s dimensionless 

hydrodynamic pressure profile has increased from left half of the bearing and 

decreased from the middle and right half of the profile more than as we saw in the 

case of the eccentricity ratio of 0.15 with a clear sign of converging diverging 

dimensionless hydrodynamic pressure profile. And lubricant’s dimensionless film 

thickness profile has further risen from its edges with a further drop from the middle 

along the same angle along the circumference of the bearing. 

 

Figure 6-11 : Dimensionless Lubricant Hyd. Pressure Profile for Eccentricity Ratio = 0.25 

 

Figure 6-12 : Dimensionless Lubricant Film Thickness Profile for Eccentricity Ratio = 0.25 
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6.1.7 Eccentricity Ratio = 0.30 

By taking a close examination of the plot for eccentricity ratio as 0.30, it was revealed 

that by increasing eccentricity ratio the peak of the lubricant’s dimensionless 

hydrodynamic pressure profile has dropped from right half of the bearing 

circumference with a further dip from the middle of the valley within the centre of the 

peaks and there was a very little change in the peak at left half of the bearing 

circumference with a more pronounced sign of converging diverging dimensionless 

hydrodynamic pressure profile. And lubricant’s dimensionless film thickness profile 

has further risen from its edges with a further drop from the middle along the same 

angle along the circumference of the bearing. 

 

Figure 6-13 : Dimensionless Lubricant Hyd. Pressure Profile for Eccentricity Ratio = 0.30 

 

Figure 6-14: Dimensionless Lubricant Film Thickness Profile for Eccentricity Ratio = 0.30 
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6.1.8 Eccentricity Ratio = 0.35 

By taking a close examination of the plot for eccentricity ratio as 0.35, it was revealed 

that by increasing eccentricity ratio the peak of the lubricant’s dimensionless 

hydrodynamic pressure profile has dropped from right half very sharply along the 

bearing circumference with a further dip from the middle of the valley in centre of the 

peaks and there was an appreciable rise in the peak at the left half of the bearing 

circumference with a an abrupt change of dimensionless hydrodynamic pressure 

profile. It is due to the fact that this sudden drop of lubricant’s hydrodynamic pressure 

profile from the right half of bearing circumference has made the lubricant pressure to 

fall below its vapour pressure with the onset of cavitation which can be clearly seen 

from the plot of lubricant’s dimensionless film thickness profile at the edges of right 

half. 

 

Figure 6-15 : Dimensionless Lubricant Hyd. Pressure Profile for Eccentricity Ratio = 0.35 

 
Figure 6-16 : Dimensionless Lubricant Film Thickness Profile for Eccentricity Ratio = 0.35 
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6.1.9 Eccentricity Ratio = 0.40 

By taking a close examination of the plot for eccentricity ratio as 0.40, it was revealed 

that by increasing eccentricity ratio the peak of the lubricant’s dimensionless 

hydrodynamic pressure profile has now shifted to the left of the bearing 

circumference and at right side of the bearing circumference hydrodynamic pressure 

profile of the lubricant has dropped below its vapour pressure further showing a clear 

sign of cavitation. And we could see a corresponding sudden drop of dimensionless 

lubricant’s hydrodynamic film profile from the right half of bearing circumference 

corresponding to cavitating pressures of the lubricant. 

 

Figure 6-17 : Dimensionless Lubricant Hyd. Pressure Profile for Eccentricity Ratio = 0.40 

 

 
Figure 6-18 : Dimensionless Lubricant Film Thickness Profile for Eccentricity Ratio = 0.40 
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6.1.10 Eccentricity Ratio = 0.45 

By taking a close examination of the plot for eccentricity ratio as 0.45, it was revealed 

that by increasing eccentricity ratio after the onset of cavitation in lubricant pressure 

the profiles of dimensionless hydrodynamic pressure and dimensionless film 

thickness are further building up with rise in their peak values at the left side of the 

bearing circumference and at right side of the bearing circumference we could see a 

shift towards left in the angle of start of cavitation along bearing circumference. 

 

Figure 6-19 : Dimensionless Lubricant Hyd. Pressure Profile for Eccentricity Ratio = 0.45 

 

Figure 6-20 : Dimensionless Lubricant Film Thickness Profile for Eccentricity Ratio = 0.45 
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6.1.11 Eccentricity Ratio = 0.50 

By taking a close examination of the plot for eccentricity ratio as 0.50, it was revealed 

that by increasing eccentricity ratio after the onset of cavitation in lubricant pressure 

the profiles of dimensionless hydrodynamic pressure and dimensionless film 

thickness are further building up with rise in their peak values at the left side of the 

bearing circumference. And at the right side of the bearing circumference we could 

see a further shift towards the left in the angle of the start of cavitation along the 

bearing circumference. 

 

Figure 6-21 : Dimensionless Lubricant Hyd. Pressure Profile for Eccentricity Ratio = 0.50 

 

Figure 6-22 : Dimensionless Lubricant Film Thickness Profile for Eccentricity Ratio = 0.50 
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6.1.12 Eccentricity Ratio = 0.55 

By taking a close examination of the plot for eccentricity ratio as 0.55, it was revealed 

that by increasing eccentricity ratio after the onset of cavitation in lubricant pressure 

the profiles of dimensionless hydrodynamic pressure and dimensionless film 

thickness are further building up with rise in their peak values at the left side of the 

bearing circumference. And at the right side of the bearing circumference we could 

see a further shift towards the left in the angle of the start of cavitation along the 

bearing circumference. 

 

Figure 6-23 : Dimensionless Lubricant Hyd. Pressure Profile for Eccentricity Ratio = 0.55 

 

Figure 6-24 : Dimensionless Lubricant Film Thickness Profile for Eccentricity Ratio = 0.55 
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6.1.13 Eccentricity Ratio = 0.60 

By taking a close examination of the plot for eccentricity ratio as 0.60, it was revealed 

by increasing eccentricity ratio after the onset of cavitation in lubricant pressure the 

profiles of dimensionless hydrodynamic pressure and dimensionless film thickness 

were further building up with a rise in their peak values at the left side of the bearing 

circumference. And at the right side of the bearing circumference we could see a 

further shift towards the left in the angle of the start of cavitation along the bearing 

circumference. 

 

Figure 6-25 : Dimensionless Lubricant Hyd. Pressure Profile for Eccentricity Ratio = 0.60 

 

Figure 6-26 : Dimensionless Lubricant Film Thickness Profile for Eccentricity Ratio = 0.60 
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6.2 EFFECT OF DIMENSIONLESS BULK MODULUS 

Dimensionless bulk modulus of lubricant is the product of its Bulk Modulus & 

Square of Radial Clearance divided by product of Viscosity, Speed & Radius of the 

journal. 

Simulation was run for a mesh size of 24x16, with time step as 0.00001sec, for fixed 

eccentricity ratio as 0.40 and for varying dimensionless bulk modulus as 14000, 

13000, 12750 and 12000 by varying the major parameters affecting dimensionless 

bulk modulus as Radial Clearance and Speed of the journal. 

The results were plotted on 3D graphs with x-axis as circumferential length of 

bearing, z-axis as breadth of bearing and y-axis as dimensionless lubricant 

hydrodynamic pressure profile & dimensionless lubricant film thickness profile, 

respectively. The plots were discussed for above mentioned dimensionless bulk 

modulus in the subsequent section of the dissertation. 
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6.2.1 Dimensionless Bulk Modulus = 14,000 

By taking a close examination of the plot for dimensionless bulk modulus as 14,000, 

it was revealed that by selecting higher value of dimensionless bulk modulus it should 

make lubricant less compressible and same could be seen from the plots below, i.e. 

lubricant’s dimensionless hydrodynamic pressure has a significant converging-

diverging profile along the bearing circumference and the lubricant’s dimensionless 

film thickness has its corresponding profile with valley at the minimum value to 

support the higher load carrying capacity of the bearing. 

 

Figure 6-27 : Dimensionless Lubricant Hyd. Pressure Profile for Dimensionless Bulk 

Modulus = 14,000 

 

Figure 6-28 : Dimensionless Lubricant Film Thickness Profile for Dimensionless Bulk 

Modulus = 14,000 
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6.2.2 Dimensionless Bulk Modulus = 13,000 

By taking a close examination of the plot for dimensionless bulk modulus as 13,000, 

it was revealed that by decreasing dimensionless bulk modulus (either by decreasing 

the radial clearance or increasing the speed for a fixed viscosity and radius and 

constant lubricant bulk modulus) from 14,000 to 13,000; both peaks and valley of 

lubricant’s dimensionless hydrodynamic pressure profile have dropped significantly 

with the similar trend the lubricant’s dimensionless film thickness along the bearing 

circumference with a compromise of load bearing capacity. 

 

Figure 6-29 : Dimensionless Lubricant Hyd. Pressure Profile for Dimensionless Bulk 

Modulus = 13,000 

 

Figure 6-30 : Dimensionless Lubricant Film Thickness Profile for Dimensionless Bulk 

Modulus = 13,000 
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6.2.3 Dimensionless Bulk Modulus = 12,750 

By taking a close examination of the plot for dimensionless bulk modulus as 12,750, 

it was revealed that by decreasing dimensionless bulk modulus further (either by 

decreasing the radial clearance or increasing the speed for a fixed viscosity, radius and 

constant lubricant bulk modulus) from 13,000 to 12,750; there is a sudden drop in 

peaks of both left and right alongwith the valley of lubricant’s dimensionless 

hydrodynamic pressure profile. As right peak of lubricant’s dimensionless 

hydrodynamic pressure profile has become too much steeper that lubricant pressure 

fell below its vapour pressure with the onset of cavitation clearly seen at the profile 

of the lubricant’s dimensionless film thickness along the outer edges of the bearing 

circumference with a compromise of load bearing capacity of bearing. 

 

Figure 6-31 : Dimensionless Lubricant Hyd. Pressure Profile for Dimensionless Bulk 

Modulus = 12,750 

 

 

Figure 6-32 : Dimensionless Lubricant Film Thickness Profile for Dimensionless Bulk 

Modulus = 12,750 
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6.2.4 Dimensionless Bulk Modulus = 12,000 

By taking a close examination of the plot for dimensionless bulk modulus as 12,000, 

it was revealed that by decreasing dimensionless bulk modulus further (either by 

decreasing the radial clearance or increasing the speed for a fixed viscosity, radius and 

constant lubricant bulk modulus) from 12,750 to 12,000; after the onset of cavitation 

in lubricant pressure the profiles of dimensionless hydrodynamic pressure and 

dimensionless film thickness are further decreasing (unlike as we have seen before in 

case of eccentricity ratios) with drop in their peak values at the left side of the bearing 

circumference with further drop in load carrying capacity of bearing. And at right side 

of the bearing circumference we could see a shift towards left in the angle of start of 

cavitation along bearing circumference. 

 

Figure 6-33 Dimensionless Lubricant Hyd. Pressure Profile for Dimensionless Bulk Modulus 

= 12,000 

 

 

Figure 6-34 : Dimensionless Lubricant Film Thickness Profile for Dimensionless Bulk 

Modulus = 12,000 
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7. FINDINGS AND CONCLUSIONS 

Following are the findings and conclusions of the research: 

 Eccentricity ratio affects the load carrying capacity of bearing significantly 

 Eccentricity ratio affects the contact geometry and the dynamics of the bearing 

 A disturbed Eccentricity ratio in the journal bearing design may lead to premature 

journal bearing failure 

 Journal’s Shaft startup speed invites cavitation and reduced load carrying ability 

of the bearing and hence must be carefully selected to avoid premature bearing 

failure 

 Radial clearance should not be excessive as it invites unnecessary noise and wear 

of the journal bearing due to cavitation  
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8. RECOMMENATIONS FOR FUTURE WORK 

Research should be conducted on the following aspects related to cavitation: 

 Lubricant Bearing Starvation effects 

 Thermal effects on bearing lubrication 

 Surface Texturing of bearing surfaces 

 Solid Lubricant based Surface Coatings 
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APPENDIX  

% In the name of Allah, The Most Beneficent & The Most Merciful 
clc, clear all, close all; 
LbyD = 1;  
Res = 4;  
dt = 0.00001; 
BM = 12000; 
X = 6 * Res; 
Z = round(4 * LbyD * Res); 
ecc = 0.35; 
Pc = 0.0; 
W1 = ([0 360 -LbyD LbyD 0.0 12.0]);  
W2 = ([0 360 -LbyD LbyD 0.0 1.6]); 
XXT = ([0:45:360]);  
YYT = ([-LbyD:LbyD*0.5:LbyD]); 
ZZT = ([0:2:12]);  
ZZZ = ([0.0:0.2:1.6]); 
ecc_str = num2str(round(ecc*10.0)); 
LbyD_str = num2str(LbyD);  
ss_str = num2str(Res); 
movie_file = strcat('eps_0', ecc_str,'_', LbyD_str, 'x', ss_str) 
movie = avifile(movie_file, 'compression', 'FFDS','fps', 1, 

'quality', 100); % output file for movie 
dh = zeros(X+3, Z+2);  
zh = zeros(X+3, Z+2); 
p = zeros(X+3, Z+2);  
press = p; 
TH_mid = ones(X+3, Z+2);  
TH_prev = ones(X+3, Z+2); 
sg = ones(X+3, Z+2); 
dth = 2.0*pi/(X+1); 
dz = 2.0*LbyD/(Z+1); 
L_D = dz/dth; 
for j = 1:Z+2 
for i = 1:X+3 
dh(i,j) = dth * (i-2); 
zh(i,j) = dz * (j-1) - LbyD; 
H(i,j) = 1.0 + ecc * cos(dh(i,j)); 
end; 
end; 
for j = 2:Z+1 
for i = 3:X+2 
theta(i-2,j-1) = dth * (i-2); 
zed(i-2,j-1) = dz * (j-1) - LbyD; 
Ha(i-2,j-1) = 1.0 + ecc * cos(theta(i-2,j-1)); 
end; 
end; 
for j = 2:Z+1 
for i = 3:X+2 
if i <= (X/2 + 2) 
p(i,j) = 20.0; 
TH_mid(i,j) = exp(p(i,j)/(sg(i,j)*BM)); 
p(i,j) = 25.0; 
TH_prev(i,j) = exp(p(i,j)/(sg(i,j)*BM)); 
else 
sg(i,j) = 0.0; 
TH_mid(i,j) = 0.1; 
TH_prev(i,j) = 0.1; 
end; 
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end; 
end; 
omega = 0.1; t = 0.0; rho = 1.5; 
count = 0; delt_n_prev = 0.1; 
k = 1; 
t = t + dt; 
count = count + 1; 
delt_n = 0.0; 
% reset tri-diagonal coefficients 
clear b0 rhs;  
b0 = zeros(1,X); 
rhs = zeros(1,X); 
% solve for rows explicitly one at a time 
for j = 2:Z+1 
for i = 3:X+2 
a1 = dt/(H(i,j)*8.0*pi*dth); 
a2 = BM*dt/(H(i,j)*48.0*pi^2.0*dth^2.0); 
a3 = BM*dt/(H(i,j)*48.0*L_D^2.0*dz^2.0); 
b2(i-2) = a1*(2.0-0.5*(sg(i,j)+sg(i-1,j)))*H(i-1,j)... 
+ a2*(0.5*(H(i,j)+H(i-1,j)))^3.0*sg(i-1,j); 
b0(i-2) = omega + a1*(2.0-0.5*(sg(i,j)+sg(i+1,j)))... 
-0.5*(sg(i,j)+sg(i-1,j))*H(i,j)+a2*((0.5*(H(i,j)+H(i+1,j)))^3.0... 
+(0.5*(H(i,j)+H(i-1,j)))^3.0)*sg(i,j)... 
+a3*((0.5*(H(i,j)+H(i,j+1)))^3.0... 
+0.5*(H(i,j)+H(i,j-1))^3.0)*sg(i,j); 
b1(i-2) = a1*0.5*(sg(i,j)+sg(i+1,j))*H(i+1,j)... 
- a2*(0.5*(H(i,j)+H(i+1,j)))^3.0*sg(i+1,j); 
b5_exp = a3*(0.5*(H(i,j)+H(i,j-1)))^3.0*sg(i,j-1); 
b4_exp = a3*(0.5*(H(i,j)+H(i,j+1)))^3.0*sg(i,j+1); 
b0_exp = omega - a1*(1.0-0.5*(sg(i,j)+sg(i+1,j)))*H(i,j); 
b3_exp = a1*(2.0-0.5*(sg(i,j)+sg(i+1,j))... 
-0.5*(sg(i,j)+sg(i-1,j)))*H(i-1,j); 
b2_exp = -a1*(1.0-0.5*(sg(i,j)+sg(i-1,j)))*H(i-2,j); 
rhs_const = - a2*( (0.5*(H(i,j)+H(i+1,j)))^3.0*sg(i+1,j)... 
- ((0.5*(H(i,j)+H(i+1,j)))^3.0+(0.5*(H(i,j)+H(i-

1,j)))^3.0)*sg(i,j)... 
+ (0.5*(H(i,j)+H(i-1,j)))^3.0*sg(i-1,j) )... 
- a3*( (0.5*(H(i,j)+H(i,j+1)))^3.0*sg(i,j+1)... 
- ((0.5*(H(i,j)+H(i,j+1)))^3.0+(0.5*(H(i,j)+H(i,j-

1)))^3.0)*sg(i,j)... 
+ (0.5*(H(i,j)+H(i,j-1)))^3.0*sg(i,j-1) ); 

  
rhs(i-2) = rhs_const + (omega + b0_exp)* TH_prev(i,j)... 
+ b2_exp*TH_prev(i-1,j) + b3_exp*TH_prev(i-2,j)... 
+ b5_exp*TH_prev(i,j-1) + b4_exp*TH_prev(i,j+1); 
end; 
rhs(1) = rhs(1) - b2(1) * TH_prev(2,j); 
tomas(b3, b5, b1, rhs, k, X); 
for i = 3:X+2 
TH_mid(i,j) = rhs(i-2); 
end; 
end; 
for i = 3:X+2 
for j = 2:Z+1 
a1 = dt/(H(i,j)*8.0*pi*dth); 
a2 = BM*dt/(H(i,j)*48.0*pi^2.0*dth^2.0); 
a3 = BM*dt/(H(i,j)*48.0*L_D^2.0*dz^2.0); 
b5(j-1) = -a3*(0.5*(H(i,j)+H(i,j-1)))^3.0*sg(i,j-1); 
b0(j-1) = omega + a1*(2.0-0.5*(sg(i,j)+sg(i+1,j)))... 
-0.5*(sg(i,j)+sg(i-1,j))*H(i,j)... 
+a2*((0.5*(H(i,j)+H(i+1,j)))^3.0... 
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+(0.5*(H(i,j)+H(i-1,j)))^3.0)*sg(i,j)... 
+a3*((0.5*(H(i,j)+H(i,j+1)))^3.0... 
+(0.5*(H(i,j)+H(i,j-1)))^3.0)*sg(i,j); 
b4(j-1) = -a3*(0.5*(H(i,j)+H(i,j+1)))^3.0*sg(i,j+1); 
b3_exp = -a1*(1.0-0.5*(sg(i,j)+sg(i-1,j)))*H(i-2,j); 
b2_exp = -a1*(2.0-0.5*(sg(i,j)+sg(i-1,j)))*H(i-1,j)... 
+ a2*(2.0-0.5*(sg(i,j)+sg(i+1,j))... 
-0.5*(sg(i,j)+sg(i-1,j)))*H(i-1,j)... 
+a3*(0.5*(H(i,j)+H(i-1,j)))^3.0*sg(i-1,j); 
b0_exp = -a1*(1.0-0.5*(sg(i,j)+sg(i+1,j)))*H(i,j); 
b1_exp = -a1*(0.5*(sg(i,j)+sg(i+1,j)))*H(i+1,j)... 
- a2*(0.5*(H(i,j)+H(i+1,j)))^3.0*sg(i+1,j); 
rhs_const = - a2*( (0.5*(H(i,j)+H(i+1,j)))^3.0*sg(i+1,j)... 
- ((0.5*(H(i,j)+H(i+1,j)))^3.0+(0.5*(H(i,j)+H(i-

1,j)))^3.0)*sg(i,j)... 
+ (0.5*(H(i,j)+H(i-1,j)))^3.0*sg(i-1,j) )... 
- a3*( (0.5*(H(i,j)+H(i,j+1)))^3.0*sg(i,j+1)... 
- ((0.5*(H(i,j)+H(i,j+1)))^3.0+(0.5*(H(i,j)+H(i,j-

1)))^3.0)*sg(i,j)... 
+ (0.5*(H(i,j)+H(i,j-1)))^3.0*sg(i,j-1) ); 
rhs(j-1) = b3_exp*TH_mid(i-2,j) + b2_exp*TH_mid(i-1,j)... 
+ (omega + b0_exp) * TH_mid(i,j) + b1_exp*TH_mid(i+1,j)... 
+ rhs_const; 
end; 
rhs(1) = rhs(1) - b5(1) * TH_mid(i, 1); 
rhs(Z) = rhs(Z) - b4(Z) * TH_mid(i, Z+2); 
tomas(b3, b2, b1, rhs, k, Z); 
for j = 2:Z+1, 
delt_n = delt_n + abs(rhs(j-1) - TH_prev(i,j)); 
TH_prev(i,j) = rhs(j-1); 
end; 
end; 
for j = 2:Z+1 
for i = 3:X+2 
if TH_prev(i,j) >= 1.0 
sg(i,j) = 1.0; 
else 
sg(i,j) = 0.0; 
end; 
end; 
end; 
rho = delt_n / delt_n_prev; 
delt_n_prev = delt_n; 
if count > 20 
for i = 3:X+2 
for j = 2:Z+1 
if sg(i,j) < 1 
Ha(i-2,j-1) = TH_prev(i,j)*H(i,j); 
press(i-1,j) = Pc + 0.0; 
else 
Ha(i-2,j-1) = H(i,j); 
press(i-1,j) = Pc + sg(i,j) * log(TH_prev(i,j)); 
end; 
end; 
end; 
subplot(2,1,1) 
surf(dh*180.0/pi, zh, press) 
axis(W1); set(gca,'XTick', XXT, 'YTick', YYT, 'ZTick', ZZT); 
view(25.0, 25.0); 
mf = getframe(gcf); 
movie = addframe(movie,mf); 
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end; 
count, t 
hold on 
figure(1) 
surf(dh*180.0/pi, zh, press) 
axis(W1); set(gca,'XTick', XXT, 'YTick', YYT, 'ZTick', ZZT); 
view(25.0, 25.0); 
zlabel('Dimensionless Hyd Pressure P',... 
'FontSize', 10, 'FontName', 'New Times Roman'); 
xlabel('Circumferential Location \theta (Degrees)',... 
'FontSize', 10, 'FontName', 'New Times Roman'); 
ylabel('Non-Dimensional Axial Location Z',... 
'FontSize', 10, 'FontName', 'New Times Roman'); 
figure(2) 
surf(theta*180.0/pi, zed, Ha) 
axis(W2); set(gca,'XTick', XXT, 'YTick', YYT, 'ZTick', ZZZ); 
view(25.0, 25.0); 
zlabel('Dimensionless Film Thickness',... 
'FontSize', 10, 'FontName', 'New Times Roman'); 
xlabel('Circumferential Location \theta (Degrees)',... 
'FontSize', 10, 'FontName', 'New Times Roman'); 
ylabel('Non-Dimensional Axial Location Z',... 
'FontSize', 10, 'FontName', 'New Times Roman'); 

 

 


