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ABSTRACT 

      The ratio of production of waste glass annually throughout the world is around millions of 

tons. After transformation to waste, waste glass powder is usually dumped as landfill which 

is undesirable, as they are not biodegradable. In order to promote the usage of waste glass 

powder in concrete, Gene Expresion Programming (GEP) has been utilized in this research 

to develop empirical models and simplified equations to predict the mechanical properties 

of green concrete having waste glass powder as a partial replacement of cement. An 

extensive and reliable database was formed through a detailed literature review. The 

established dataset consists of  310 No.(s) of results for compressive strength, 129 No.(s) 

for split tensile strength and 45 No.(s) for flexural strength of GPC. Based on thorough 

study from literature, 9 No.(s) of influencing parameters were considered as input 

parameters for modelling. These parameters include %age of G.P added (%) as 

replacement of cement in concrete, Total Cementitious Materials (Cement & Glass 

Powder) Content (kg), Water Content (kg), Fine Aggregate Content (kg), Coarse 

Aggregate Content (kg), %age of SiO2 in Glass Powder, %age of Al2O3 in Glass Powder,  

Maximum Size of Glass Powder Particles (microns) and Age of Sample (days). Proposed 

models and simplified mathetical equations can be safely used to predict the mechanical 

properties of GPC. The performance of the models is evaluated by conducting statistical 

analysis of the models. Also, models were re-validated by re-checking the mechanical 

properties on unseen data i.e. testing dataset. The results of analysis imitated that the 

proposed models have great prediction ability and produce correct results. The results of 

this study will encourage the use of waste glass powder in concrete leading to great benefits 

both in terms of economy and environmental safety.  
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1. INTRODUCTION 
 

1.1. INTRODUCTION TO GLASS POWDER CONCRETE: 

 

             Manufacturing process of cement involves extensive amount of energy absorbtion and 

emission of large quantities of CO2 in the atmosphere upto 150kg/m2(Mounika et al., 2017). 

Manufacture of 1 Ton of cement results in emmission of about 1 ton of  CO2 and other greenhouse 

gases (Jena & Paikaray, 2018). The demand of cement is increasing annually which results in 

enhanced rate of CO2 emission. Therefore, using waste materials in concrete in replacement of 

cement has become a necessity rather than an option. The ratio of production of waste glass 

annually throughout the world is around millions of tons. Glass does not produce pollution, so it 

doesn’t damage the environment, but it can affect both humans and animals, if not treated with 

care because it does not decay. Glass is cheaper to store than reused, as conditioners require the 

cost of the renovation process (Singh Shekhawat & Aggarwal, 2007). Therefore, use of new 

skills/procedures is a must. The glass contains a variety of chemicals (Anwar, 2016). After it 

becomes a waste it is usually disposed as landfill which is undesirable, as they are not 

biodegradable (Mirzahosseini et al., 2019). The use of these products in the construction industry 

is the best choice due to the large number of construction sites around the world.  

              Waste glass can be utilized in concrete in two ways either as cement or fine aggregates 

are replaced to some extent. (Khan et al., 2021). Different researches have utilized waste glass 

powder in concrete. Different studies have proposed different results in form of percentage 

replacement for maximum performance of GPC owing to difference in experimental setup, 

conditions, quantities and types of materials used. The aim of this research is to optimize the 

mechanical properties of concrete in which waste glass powder has been used as a partial 

replacement of cement. A vast dataset of GPC having information on the selected input variables 

was established through an extensive literature review. Majority of the factors effecting the 

mechanical properties of GPC were taken into account by considering them as input parameters 

for modeling. The users will be able to predict mechanical properties of GPC by applying the 

proposed simplified mathematical expressions. Also, the users will be able to estimate the optimal 

percentage of glass powder as cement replacement for different ages of concrete for maximum 

strength and durability.  



Page 6 of 81 
 

 

1.2. INTRODUCTION TO ARTIFICIAL INTELLIGENCE AND GENETIC 

ENGINEERING PROGRAMMING (GEP): 

 

                       Artificial intelligence is that particular division of computer science which develops 

Softwares and programs with humanlike intelligence and is replacing classical modelling 

techniques to a large extent. Choosing the best technique for a particular situation with optimized 

results has never been easier and faster before but the use of Artificial Intelligence (AI) techniques 

have been found beneficial for cost and time saving. Also, they result in fastening the decision-

making faster process and error reduction (Salehi & Burgueño, 2018).  Quick decisions can be 

made even without repeated testing and with greater efficiency as compared to conventional 

methods. 

                      There are many types of artificial intelligence (AI).  These approaches have been 

used extensively for safe and reliable prediction of results through model development in 

engineering issues. Data is trained to get the solutions in these methods. The pattern recognition 

capability of AI processes can result in simplifying complex forms, thus working in the field of 

engineering. However, majority of these approaches require a pre-defined basic form thus 

requiring great memory. Similarly, the presence of a massive number of hidden neurons makes it 

hard to build a reliable relationship among predictors and responses using these mechanisms. 

                         The genetic program was developed by Candida Ferreira in 1999 and is a 

breakthrough for Genetic Algorithms and Genetic Programming (Ferreira, 2002). GEP uses the 

same type of GP graphic representation but it creates Expression trees which represent a genome. 

Thus, GEP can provide new and effective solutions to natural calculations (Ferreira, 2002). 

Ferreira's proposed GEP which discovers the advantages of GA and GP; however, it defeats 

failures of both GA and GP (Abdulsalam et al., 2020). In this study, Genetic Expression 

Programming (GEP) will be utilized to predict mechanical properties of GPC which is a 

modification of Genetic Programming (GP) (Gholampour et al., 2017) and has many advantages 

over the typical modeling techniques. The main advantages of GEP which has been utilized and 

taken advantage in this study are as follows: 
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• GEP doesn’t need an existing relationship/equation between the input variables 

to develop the model unlike other optimization algorithms (Iqbal et al., 2020), 

(Abdulsalam et al., 2020) 

• Outputs can be represented in the form of easy mathematical equations which 

are appropriate for real-world applications with a high precision (Iqbal et al., 

2020) 

• GEP has self-optimization characteristics, (Saad & Malik, 2018) therefore, it 

can be utilized for predicting the optimal design of GPC 

• The GEP takes into accounts the advantages of both GA and GP, however, 

overcomes the shortcomings of both the GA and GP (Abdulsalam et al., 2020) 

• The accuracy of GEP models is high as compared to other regression models 

for example MLR (Multi-linear Regression) models (Abdulsalam et al., 2020) 

 

                       GEP has been utilized in this study to predict and optimize the design of Waste glass 

powder concrete for achieving maximum performance. Waste Glass powder concrete is 

advantageous in following terms: 

• For saving cost by reducing the cost of cement due to partial replacement of 

cement by glass waste powder (Islam et al., 2017) (Khmiri et al., 2012) (Özcan, 

2012) (Mounika et al., 2017) 

• For reducing CO2 emissions and contributing to green construction (Islam et 

al., 2017), (Özcan, 2012), (Sayeeduddin & Chavan, 2016), (Hama et al., 2019), 

(Hussain & Chandak, 2015), (Mounika et al., 2017), (Vijayakumar et al., 2008), 

(Hendi et al., 2019) 

• For achieving high and comparable strength of concrete in less cost (Islam et 

al., 2017), (Khmiri et al., 2012), (Özcan, 2012), (Khan et al., 2021), (Khan et 

al., 2021), (Tenpe & Patel, 2020), (Sayeeduddin & Chavan, 2016), (Hama et 

al., 2019), (Nayak & Raju, n.d.)(Hussain & Chandak, 2015), (Mounika et al., 

2017), (Aliabdo et al., 2016), (Vijayakumar et al., 2008), (Eme & Nwaobakata, 

2019), (Nayak & Raju, n.d.), (Hendi et al., 2019) 

• For making the concrete durable (Islam et al., 2017) , (Özcan, 2012), (Khan et 

al., 2021), (Khan et al., 2021), (Sayeeduddin & Chavan, 2016), (Nayak & Raju, 
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n.d.)(Hussain & Chandak, 2015), (Eme & Nwaobakata, 2019), (Nayak & Raju, 

n.d.), (Hendi et al., 2019) 

 

 

1.3. OBJECTIVES: 

 

      This study aims at: 

i. Development of Reliable GEP reliable models and simple equations to predict the 

performance of GPC (fc’, fst, and fb) to a maximum accuracy at different age and 

percentages of glass powder substitution 

ii. Development of Reliable GEP models for fc’, fst, and fb of Glass Powder Concrete 

 

1.4. SIGNIFICANCE OF THIS STUDY: 

          

             Accessibility to trustworthy expressions/equations to find out the mechanical properties 

and design mix proportions of green concrete can result in both time and cost saving and also 

encourage the practice of utilizing waste glass powder in production of concrete. A comprehensive 

literature review was carried out on green concrete incorporating waste glass powder as a partial 

replacement of cement and it was noted that majority of literature consist of experimental data and 

there are rarely 1 or 2 models available to predict only compressive strength of green concrete 

incorporating waste glass powder as replacing cement (Khmiri et al., 2012). Also, no models are 

available till date to forecast the flexural and split tensile strength of Glass Powder Concrete. 

Furthermore, it was noted that the said models have focused on experimental route and are limited 

only to the small data obtained by experimentations during the same study. Thus, these models 

which were developed using the experimental data of a single study lacks the generalization 

capability to be applied on unseen data owing to different conditions and fugues.  

            

           No universal models are available for predicting mechanical properties of waste glass 

powder concrete based on Genetic Expression Programming till date. This topic has been selected 

to fill out this research gap and utilize GEP method to propose simple mathematical expressions 

to predict behavior of GPC with greater generalization ability. A large data from literature from 
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different years have been considered in the development of these models which confirms that these 

models remain valid even for the unseen data. As compared to previous studies, these models will 

be able to predict properties of glass powder concrete (GPC) at different ages of samples and they 

include the combine effect of numerous parameters such as size of glass particles, composition of 

glass powder, effect of age and mix proportions on the properties of GPC. 

 

1.5. RELEVANCE TO NATIONAL NEEDS: 

              

         Concrete, a major building material, is the most extensively used man-made material. 

(Aliabdo et al., 2016).  Cost and environmental friendly construction is the need of every country. 

Waste management has become a significant issue in today’s growing society (Tenpe & Patel, 

2020). Utilizing waste glass powder in concrete industry helps in two ways. It facilitates in the re-

use of powdered glass waste by using waste instead of valuable and expensive natural resources 

thus making it environment friendly, second, the production cost of concrete reduces when 

concrete incorporates waste glasses in replacement of cement. (Khan et al., 2021) 

 

1.6. AREAS OF APPLICATION: 

         The predicted equations would be able to predict the properties of GPC with a higher 

precision in a shorter time and less cost. Waste Glass powder can be used everywhere for 

economical and green construction.  

 

1.7. INTRODUCTION TO THIS THESIS REPORT: 

             This document has been prepared for academic purposes and  presents the post graduate 

research carried out to predict mechanical properties of green concrete incorporating waste glass 

powder by partially replacing cement created with Gene Expression Programming.  

• The first chapter is the introduction of the research.  

• The second chapter describes the literature review already carried out in the field.  

• The third chapter describes the research methodology and sequence.  
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• The 4th chapter represents the results and evalutaion of developed models. The last 

chapter presents the conclusions of the research.  
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2. LITERATURE REVIEW 

 

Figure 1: Literature Review 

       Stability of building materials is an important problem in the construction industry. (Özcan, 

2012) Different researches have been conducted by replacing Portland cement with waste products 

with pozzolanic nature like Fly ash, Silica fume, Bagasse ash etc. Based on the chemical 

composition, glass powders could be stated as pozzolanic materials as per ASTM standards.(Islam 

et al., 2017)  Therefore, waste glass powder may be utilized as a binder material by partially 

replacing cement (Sayeeduddin & Chavan, 2016).  Many researches have been carried out using 

waste glass powder by replacing both cement and fine aggregates with it. The mechanical 

properties and durability of the cement-containing compounds have been the main focus of several 

studies. This chapter presents the published literature related to concrete containing waste glass 

powder either both in the form of experimentations and modelling/machine learning techniques.  

        Different researches have studied the effect of replacing cement with waste glass powder on 

different properties of concrete e.g. fc’, fst,, fb, Rapid chloride permeability (RCP), acidity etc. and 

accordingly proposed different %ages of optimum glass powder content to be added to glass 

powder concrete. Almost all the authors who have worked on Glass Powder Concrete have tested 

the glass powder concrete for its compressive strength and proposed ideal percentage of glass 

Literature Review

Literature Review on 
Experimentations/ 

Testing done on Glass 
Powder Concrete

46 internationally 
published research 

papers

Literature Review on 
model development by 

Genetic Engineering 
Programming & other 
modeling techniques

14 internationally 
published research 

papers
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powder content to be added in concrete for best results. Given below is a summary of the research 

of different authors and their salient findings as given in Tables 1-3: 

Name of 

Authors 

Year of 

Publication 
Salient Findings 

Optimum GP 

content 

suggested by 

authors  
 

Nathan Schwarz 

et. Al., 
2008 

13% reduction in fc’ of GPC at 

optimum GP content 
10%  

Dr. 

G.Vijayakumar 

et. Al.,  

2013 
33.7% rise in fc’ of GPC at 40% 

replacement of cement by GP. 
40%  

N.Kumarappan 2013 
17% rise in fc’ at suggested 

optimum GP content.  
10%  

Mahsa Kamali 

et. Al., 
2014 

15% reduction in fc’ of GPC at 

optimum GP content of 30% 
30%  

T.Subramani et. 

Al., 
2015 

1.5% rise in fc’ of GPC at 

suggested optimum GP content of 

10% 

10%  

Mohd Vasique 

Hussain et. Al., 
2015 

3% rise in Compressive Strength 

of GPC at optimum GP content of 

10% 

10%  

Fasih Ahmed 

Khan et. Al.,  
2015 

12% reduction in fc’ of GPC at 

optimum GP content 
15%  

G. M. Sadiqul 

Islam et Al., 
2016 

2% rise in fc’ of GPC at optimum 

GP content of 20% 
20%  

Ali A. Aliabdo 

et. Al., 
2016 

9% rise in fc’ of mortars at 

optimum GP content 
15%  

Rakesh Sakale 

et. Al., 
2016 

20% rise in fc’ of GPC at optimum 

GP content of 20% 
20%  

Mallikharjuna 

Rao Kelam et. 

Al.,  

2017 
22% rise in fc’ of GPC at optimum 

GP content 
20%  
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Kolusu Maraiah 

Babu et. Al., 
2017 

12% reduction in fc’ of GPC at 

optimum GP content of 20% 
20%  

Gurikini Lalitha 

et. Al., 
2017 

36% rise in fc’ of GPC at optimum 

GP content of 10% 
10%  

Ankit Jena et. 

Al., 
2018 

1% rise in fc’ of GPC at optimum 

GP content of 10% 
10%  

Sajedur Rahman 

et. Al., 
2018 

6% rise in fc’ of GPC at optimum 

GP content of 20% 
20%  

D. B. Eme et. 

Al., 
2019 

4% rise in fc’ of GPC at optimum 

GP content of 6% 
6%  

Miss. Shivani B. 

Mokal et. Al., 
2019 

32% rise in fc’ of GPC at optimum 

GP content of 15% 
15%  

Table 1: Summary of Research carried out on Compressive Strength of GPC 

 

Name of 

Authors 

Year of 

Publication 
Salient Findings 

Optimum GP 

content  
 

Shilpa Raju et. 

Al. 
2014 

22% increase in Split tensile 

Strength at Optimum GP content 
20%  

T.Subramani et. 

Al., 
2015 

7% increase in Split tensile 

Strength at Optimum GP content 
10%  

Mohd Vasique 

Hussain et. Al., 
2015 

10% increase in Split tensile 

Strength at Optimum GP content 
10%  

Prashant M. 

Shiyani et. Al., 
2015 

5.48% increase in Split tensile 

Strength at Optimum GP content 
10%  

Ali A. Aliabdo et. 

Al., 
2016 

6% increase in Split tensile 

Strength at Optimum GP content 
15%  

Bharat Nagar et. 

Al., 
2016 

5.5% increase in Split tensile 

Strength at Optimum GP content 
25%  

Kolusu Maraiah 

Babu et. Al., 
2017 

4.5% increase in Split tensile 

Strength at Optimum GP content 
20%  

Gurikini Lalitha 

et. Al., 
2017 

10% increase in Split tensile 

Strength at Optimum GP content 
10%  
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Sajedur Rahman 

et. Al., 
2018 

 3% increase in Split tensile 

Strength at Optimum GP content 
30% 

 

 
Table 2: Summary of Research on Split Tensile Strength of GPC 

 

Name of Authors 
Year of 

Publication 
Major Testings 

Optimum GP 

content  
 

Dr. 

G.Vijayakumar et. 

Al.,  

2013 
100% increase in Flexural 

Strength at optimum GP content 
40%  

T.Subramani et. 

Al., 
2015 

5% increase in Flexural Strength 

at optimum GP content 
10%  

Prashant M. 

Shiyani et. Al., 
2015 

8.13% increase in Flexural 

Strength at optimum GP content 
10%  

Manoj Kumar et. 

Al., 
2016 

14% increase in Flexural 

Strength at optimum GP content 
20%  

Bharat Nagar et. 

Al., 
2016 

6% increase in Flexural Strength 

at optimum GP content 
25%  

Kolusu Maraiah 

Babu et. Al., 
2017 

24% increase in Flexural 

Strength at optimum GP content 
20%  

Gurikini Lalitha 

et. Al., 
2017 

10% increase in Flexural 

Strength at optimum GP content 
10%  

Table 3: Summary of Research carried out on Flexural strength of GPC 

 

 

An overview of the optimum glass powder %ages proposed for optimal results of compressive 

strength during different years is given below: 
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Figure 2: Year Wise optimum GP% suggested in literature 

It can be seen from the above graph that different authors have concluded their researches with 

different optimum glass powder content starting from 5% to 40% to be added in concrete for 

maximum results. A pictorial summary of the frequency of different percentages of glass powder 

proposed by literature is given below: 

 

Figure 3: Frequency of different optimum GP content suggested by literature 

Conflict of Researchers in proposing optimum glass powder percentage to be utilized in concrete 

highlights the need of a universal equation/ formulation for mix design of glass powder concrete. 

Different results proposed by different authors cause confusions for a new researcher who wants 
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to utilize the technique with maximum results. Different machine learning techniques are utilized 

for this purpose for model development and prediction of results of different technologies 

(Islam et al., 2017) carried research on compressive strength of both mortar and concrete 

specimens by replacing cement with waste glass powder up to an extent. They suggested the 

optimum glass content as 20% for compressive strengths for both mortar and concrete sample at 

age of 90 days. In addition, they concluded that the adding optimum glass content can increase the 

compressive strength by 2% as compared to controlled specimen and the cost of cement production 

can be decreased up to 14% and results in the reduced emission of CO2 from cement production 

and protect the environment to a good extent.  

(Khmiri et al., 2012) worked on the optimization of the mechanical properties of mortars by 

substitution of glass powder in place of cement and gave the output in the form of a cross mixture 

design, with three components i.e. % Portland cement, % of waste glass and % of silica fume and 

additional two variables including fineness and type of waste glass. This cross-mixture design was 

able to maximize the compressive strengths at age of 28 and 90 days. Their proposed cross mix 

design was to replace 20% of pure cement by 20 micro meter waste glass as it gives the maximum 

results for mechanical properties and helps in lowering cost of construction. 

(Sayeeduddin & Chavan, 2016) carried research on both workability and fc’ ’of concrete specimens 

by replacing of cement with GP within some limit. They replaced cement with waste glass powder 

in different ratios starting from 0% to 40%.  They found out that the adding waste glass powder 

decreases the concrete’s workability. Optimum glass content was suggested as 15% due to 

maximum concrete strength at 15% replacement. Strength was found to be about 88.22 percent of 

the control mix at proposed optimum content of 15 

(Hama et al., 2019) researched on the flexural performance of RCC beams containing waste glass 

powder. They settled that the beams containing waste glass resulted in increased load bearing 

capacity and improved flexural behavior at 10% and 15% replacement of cement with glass 

powder. In addition, it was concluded that replacement of cement by 15% glass powder will save 

52.5 kg of cement for 1m3 volume of concrete thus resulting in significant cost savings.  



Page 17 of 81 
 

(Raju & Kumar, 2015) experimented on both compressive strength and flexural strength of glass 

powder concrete. They concluded that concrete containing 20% cement in place of glass powder 

has higher strength.  

(Mounika et al., 2017) focused on Strength Parameters of concrete with Partial Replacement of 

Cement by Glass Powder in their research. They concluded with the result that 20% replacement 

of cement with glass powder results in maximum compressive strength and 30% replacement of 

cement with glass powder results in minimum slump value which indicates good workability. 

(Vijayakumar et al., 2008) researched on the effect of partially replacing cement with glass powder 

on fc’, fst and fb of concrete. The optimum GP% was suggested as 40% which results in 

enhancement of all strengths i.e. compressive strength, the split tensile strength and the flexural 

strength by 33.7%, 4.4% and 100% respectively. 

(Eme & Nwaobakata, 2019) studied the effect of addition of powder glass, replacing cement in the 

concrete production process. It was found that the addition of powdered glass resulted in increase 

of both workability and strength. Therefore, replacement can be done in about 6% of powdered 

glass by weight of cement. 

(Nayak & Raju, n.d.) learned the resistance of concrete-containing concrete from the attack of 

sulfate. They conclude that with or without sulphate, high strength and high resistance is obtained 

when 20% of the cement has been replaced by glass powder in concrete. 

(Hendi et al., 2019) applied Artificial Neural Network to optimize the results of adding glass 

powder in concrete against alkali-silica reactions (ASR) and fc’ of self-consolidating concrete. The 

results showed reduction in fc’ by adding glass in concrete. However, it was found out that 30% 

substitution of cement by glass powder results in reduction of ASR by 52%.  

(Raju & Kumar, 2015) tested both the mortar and concrete samples by replacing cement with glass 

powder in the proportion of 0% to 60% for both M25 grade and M30 grade of concrete. The w/c 

was 0.5 and 0.44 for M25 and M30 grade respectively. Compressive strength, split tensile strength, 

consistency and flexural strength of concrete containing waste glass powder were tested.  The 

results presented betterment in the mechanical properties. The authors settled that the glass powder 

concrete is economical as compared to standard concrete.  
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(Subramani & Ram, 2015) worked on the effect of adding glass powder in place of cement both 

in mortars and in concrete and tested the mortars and concrete for their compressive, flexural and 

tensile strength. The results reported 10% increase in compressive strength of concrete at 10% 

replacement of cement with glass powder. Thus, this research suggested 10% as an optimum Glass 

powder content in concrete for best results. However, 15% was suggested as an optimum glass 

powder content in mortars based on results. The authors suggested the use of glass powder in 

concrete in order to play role in environmental protection.  

(Jena & Paikaray, 2018) replaced the cement in concrete by glass in 0%, 5%, 10%  & 15% 

respectively and determined its effects on fc’, fst, fb and workability at age of 7th, 28th and 45th 

days.  In their research, they observed that addition of glass powder in concrete enhances the 

compressive, flexural and split tensile strengths of concrete at first till it becomes maximum at 

10% replacement of cement by GP but after that, any further addition decreases the strength. 

Therefore, cement may be replaced safely up to 10% by glass powder without compromising on 

the fc’. 

(M & Chandru, 2016) partially replaced the cement with waste glass powder in the percentages of 

30% to 50% and verified for its fc’ up to an age of 28 days. The authors concluded that using glass 

as a partial replacement of cement in concrete is a decent answer to problems related to waste glass 

disposal such as limited disposal space and increasing costs of disposing wastes. Also, using glass 

powder in concrete results in better quality of concrete both in terms of workability and 

compressive strength etc.  

(Babu & Jayaram, 2017) studied the results of swapping cement in concrete by glass in an 

increment of 5% each starting from 5% and ending at 55% replacement of cement by waste glass 

powder. They tested for fc’, fst, fb, Acid Attack and Rapid Chloride Permeability (RCP) of Glass 

Powder Concrete  

(Iqbal et al., 2020) utilized Genetic Expression Programming for modelling of concrete containing 

waste foundry sand. Models were developed for fc’, fst and elastic modulus of concrete 

incorporating waste foundry sand. Performance evaluation of models developed by GEP was 

carried out and the results were found quite satisfactory. Also, simplified equations were developed 

for fc’, fst and elastic modulus of concrete incorporating waste foundry sand.  
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(Gholampour et al., 2017) studied the mechanical properties of concrete containing recycled 

aggregate created by gene expression programming. GEP based equations were formulated for fc’, 

fst, fb and elastic modulus of Recycled Aggregate Concrete (RCA). Models were evaluated for their 

results and it was concluded that the proposed models are accurate and can be safely used for pre-

designing RACs.  

(Saad & Malik, 2018) utilized 1030 datasets from the available literature and used them to develop 

model for strength analysis of high-performance concrete created  by Gene expression 

programming (GEP). Also, the authors compared the results of GEP with other Artificial 

Intelligence Technique i.e., RBF neural Network and the accuracy of the proposed GEP model 

was found to be higher i.e. 98.72% in comparison with RBF with an accuracy of 95.36%. 
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3. RESEARCH METHOLOGY 

Following is the graphical representation of the research methodology: 

 

 

Figure 4: Research Methodology 

 

3.1. OVERVIEW OF GENETIC EXPRESSION PROGRAMMING: 

Gene expression programming (GEP) was proposed by Ferreira (Ferreira, 2002). It is an 

advancement of Genetic Programming (GP). In order to keep and transmit genetic information, 

GEP uses a chromosome of fixed length like a living organism whereas in GP uses non linear 

objects varying in sizes and shapes (Parse Trees). The chromosomes of GEP are then shown as 

expression trees.  

A key characteristic of the GEP is the formation of chromosomes, which could represent any parse 

tree using the Karva language to examine and express data rooted in chromosomes. Chromosomes 

are then expressed as Expression trees (ET). The conversion of the Karva expression (k-

expression) to the ET starts off evolved from the primary position in the ok-expression, as the root 

of the ET, and maintains thru the thread. so as to produce a thread, the ET is converted in contrast 

to K expression using nodes from the foundation layer to the inner most layer. Within the GEP 
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algorithm, because of the previously defined period and consistency of genes and variability in ET 

corresponding length, there are numerous extra factors that do not paintings in the genome 

mapping system. consequently, the length of the K-expression may be much less or identical to 

that of the GEP type. 

 

                                       

Figure 5: Example of an Expression Tree 

                                                        

Figure 6: Mathematical Expression of ET 

               The GEP method can be used in place of the outdated methods and is based on five 

different components: a function set, a terminal set, a fitness function, control parameters, and a 

terminal condition. 
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Figure 7: Components of GEP 

3.2. SELECTION OF INPUT PARAMETERS: 

                 A through and detailed literature review was carried out to carefully select the factors 

influencing the mechanical properties of Glass Powder Concrete (GPC). Strength of a normal 

conventional concrete usually depends upon its mix design proportions. Therefore, mix design 

proportions were taken as basic input parameters. One of the most factor for the strength analysis 

of Glass Powder Concrete was the percentage replacement of cement by waste glass powder. 

Detailed study from literature revealed that the size of glass particles also has significant effect on 

strength and durability of GPC. The size of the glass particles should be at least as fine as the 

cement powder for proper pozzolanic action for strength development (Nwaubani & Poutos, 

2013). Glass particles of sizes less than 75μm contributes to better strength and durability 

(Mounika et al., 2017). Therefore, Maximum size of glass particles has also been considered as an 

input parameter for models’ development.  

               Different types of glasses used in experimentations have found to be affecting the 

strength of GPC (Mirzahosseini et al., 2019). Therefore, in order to develop models with greater 

generalization capability, type of glass used has also been given its due weightage in the form of 

2 input variables i.e. %age of SiO2 and Al2O3 in glass particles which are two major components 

of chemical composition of glass. The effect of aging of concrete samples on its properties cannot 

be neglected. Hence, it has also been considered as an input parameter. After careful consideration, 

9 No.(s) of input parameters were finalized and the models were developed for 3 No.(s) of output 

parameters. Given below is the graphical representation of both input and output variables 

considered for model development. Consequently, the mechanical properties of GPC can be 

presented as a function of following aspects: 
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fc’, fst and ff = f (G.P%, TCM, W, F.A, C.A, SiO2, Al2O3, D, A) 

where 

TCM= Total cementitious Material (kg/m³) 

D= Maximum Size of Glass powder particles (microns) 

W= Water Content (kg/m³) 

FA= Fine Aggregates (kg/m³) 

CA= Coarse Aggregates (kg/m³) 

GP%= Glass powder content as a percentage of Total cementitious materials (%) 

SiO2 = Percentage of SiO2 in glass particles (%) 

Al2O3= Percentage of Al2O3 in glass particles (%) 

A= Age of Sample at testing (days) 
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Figure 8: Input & Output Variables 

 

3.3. DATA COLLECTION: 

A vast literature consisting of several internationally published papers/journals was studied for the 

data collection. (Islam et al., 2017), (Mounika et al., 2017), (Aliabdo et al., 2016), (Vijayakumar 

et al., 2008), (Subramani & Ram, 2015), (Jena & Paikaray, 2018), (Kumarappan, 2013), (Mokal 

& Shirsath, 2019), (S. Kumar & Nagar, 2017), (Mounika et al., 2017), (Sakale et al., 2016), 

(Rahman & Uddin, 2018), (Lee et al., 2018), (Du & Tan, 2014), (Olutoge, 2016), (Eme & 

Nwaobakata, 2019), (Nayak & Raju, n.d.), (Hendi et al., 2019), (R. Kumar & Yadav, 2019), (M & 

Chandru, 2016), (Babu & Jayaram, 2017), (M. Kumar, 2016), (Bharat & Bhargava, 2016), 

(Hussain & Chandak, 2015). As data containing information about all input variables was required. 

Hence, the papers/journals with incomplete information such as lack of information on mix 
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proportions, chemical composition of glass etc. were discarded and their data was not considered 

in the final database. The total dataset consists of 310 fc’, 129 fst and 45 fb  data.  

The collected database contains information about %age of Glass Powder substituted, Content of 

Total Cementitious Materials, Water Content, Fine Aggregates Content, Coarse Aggregates 

Content, %age of SiO2 in Glass powder, %age of Al2O3 in Glass Powder, Maximum Size of Glass 

Particles and Age of Sample. The range of predictors and response parameters is shown below:  

 

Input 

Variables 

fc’  fst fb 

Minimum Maximum Minimum  Maximum Minimum  Maximum 

G.P% 0 60 0 40 0 40 

T.C.M (kg/m3) 330 1440 350 1440 330 1440 

W (kg/m3) 157.5 878.4 157.5 878.4 174.9 619.2 

F.A (kg/m3) 608.19 4112 608.19 4112 608.19 2704 

C.A (kg/m3) 825 5288 992 5288 1184.8 3556.8 

% age of SiO2 

in GP 
66.8 98.1 70.22 72.61 67.33 98.1 

%age of Al2O3 

in GP 
0.33 10.1 0.4 2.54 0.33 2.62 

Max size of GP 

(microns) 
45 300 75 150 75 150 

Age of sample 

(days) 
3 365 7 57 7 60 

Table 4: Range of Input Parameters 

 

Many trials were run for all of the 3 models to check the consistency of the compiled data. Data 

which variated more than 20% from the global trend were discarded. This resulted in 240 fc’, 119 

fst and 45 fb   data that were used for creation of models. The maximum size of glass powder particles 

was missing for a small number of data. Thus, mean value of D was assumed for those datasets. 

The dataset was partitioned into 3 sets; i.e. training data that was used for genetic evolution, 

validation data that was used for validation of the generalization capability of the developed 

models and the testing data was used to test the model on unseen data.  
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3.4. DEVELOPMENT OF GEP BASED MODELS: 

 

The input parameters have already been selected as described above. The whole dataset for each 

model was shuffled randomly through GEP. GEP randomly divided the dataset into training and 

validation dataset. The 1st half of the validation dataset was separated as “Testing dataset” and 

discarded from the data used for model development. After separating the testing dataset, the 

remaining dataset was shuffled again. Random Shuffling was used in the GEP. Fitting parameters 

play a significant role in the development of an accurate model. Therefore, several trials were run 

to select the best fitting parameters. 1st trial for each model was run using the default settings of 

fitting parameters.  Given below is the default setting of fitting parameters in GEP: 

Sr. No. Parameters Settings 

1 Chromosomes 30 

2 Genes 4 

3 Head Size 10 

4 Linking Function Addition 

Table 5: Default Setting of Fitting Parameters in GEP 

 

Different researches have adopted different parameters settings in literature. Different 

combinations of parameters settings were used by the authors. A brief is given below:  

Sr. 

No. 

Fitness 

Parameters 

References 

1 Chromosomes 10 (Saridemir, 2011) 

20  (Özcan, 2012), (Saridemir, 2011)  

30 (Beheshti Aval et al., 2017), (Farooq et al., 2020), (Shah et 

al., 2021)       

50 (Beheshti Aval et al., 2017)  

150  (Khan et al., 2021) 

200 (Mousavi et al., 2012)  

2 Genes 1  (Özcan, 2012)  

2 (Saridemir, 2011)  
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3 (Beheshti Aval et al., 2017), (Khan et al., 2021),  (Mousavi et 

al., 2012)  

4 (Beheshti Aval et al., 2017), (Shah et al., 2021), (Khan et al., 

2021)  

10 (Beheshti Aval et al., 2017) 

3 Head Size 3  (Saridemir, 2011) 

4 (Özcan, 2012), (Saridemir, 2011) 

5  (Mousavi et al., 2012) 

8 (Beheshti Aval et al., 2017), (Mousavi et al., 2012) 

10 (Beheshti Aval et al., 2017), (Khan et al., 2021) 

4 Linking Function Addition: (Beheshti Aval et al., 2017), (Shah et al., 2021), 

(Khan et al., 2021)   

Multiplication: (Özcan, 2012), (Saridemir, 2011), (Khan et al., 

2021), (Mousavi et al., 2012) 

Table 6: Parameters Settings used in literature 

 

                        In order to select the best fit model, different trials were run. Keeping all other 

parameters constant, each parameter was changed one by one and the results were analyzed. The 

running time of the program and complexity of model is controlled by number of chromosomes 

and head size respectively whereas number of genes control the number of sub Expression Tress 

in the model (Iqbal et al., 2020). First of all, all other settings except chromosomes were kept 

constant and chromosome’s settings was changed starting from 10 to 200 as per suggestions from 

available literature. The results of Correlation Coefficient (R), R2, Root Mean Square Error 

(RMSE), MAE etc.  were compared and the chromosomes settings were selected which gave R 

and R2 values close to 1 and error values close to zero. Same procedures were repeated for Head 

Size and number of genes and the best fit models were selected. 

                    The final Settings for the best fit models for fc’, fst and  fb are given below: 
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Sr. 

No. 

Parameters fc’  fst  fb 

1 Chromosomes 100 100 150 

2 Genes 3 3 4 

3 Head Size 10 10 10 

4 Linking 

Function 

Addition Addition Multiplication 

5 Function Set +, -, x, ÷ +, -, x, ÷ +, -, x, ÷ 

Table 7: Final Parameter Settings 

 

Sr. No. Numerical Constants Settings for all 3 

models 

1 Constants per Gene 10 

2 Data Type Floating number 

3 Lower Bound -10 

4 Upper Bound 10 

Table 8: Numerical Constants Settings 

 

Sr. No. Genetic Operators Settings for all 3 models 

1 Mutation Rate 0.00138 

2 Inversion Rate 0.00546 

3 IS Transposition Rate 0.00546 

4 RIS Transposition Rate 0.00546 

5 One-point recombination Rate 0.00277 

6 Two-point recombination Rate 0.00277 

7 Gene Recombination Rate 0.00277 

8 Gene Transposition Rate 0.00277 

Table 9: Genetic Operators Settings 

 

 

3.5. EVALUATION CRITERIA: 
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Correlation Coefficient (R) is the most commonly used performance measure but there are some 

limitations to it such that it is insensitive to multiplication and division of response values to a 

constant value.  Therefore, Mean Squared Error (MSE), Root Mean Square Error (RMSE), Mean 

Absolute Error (MAE), Relative Absolute Error (RAE), Relative Squared Error (RSE) and Root 

Relative Squared Error (RRSE) have also been considered in this study.  
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4. RESULTS & DISCUSSIONS: 

Models were run on the best fit settings and the results were analyzed and described in detail 

below: 

4.1. COMPRESSIVE STRENGTH OF GPC: 

The results of model developed for prediction of fc’ of Concrete incorporating waste glass powder 

is given below: 

4.1.1. EXPRESSION TREE: 

Given below is the expression tree developed through GEP for compressive strength of GPC. 

Input Variables have been represented in the ET by symbolic representation as given below: 

Where; 

 d0: GP%= Glass powder content as a percentage of Total cementitious materials (%) 

 d1: TCM= Total cementitious Material (kg/m³) 

 d2: W= Water Content (kg/m³) 

 d3: FA= Fine Aggregates (kg/m³) 

 d4: CA= Coarse Aggregates (kg/m³) 

 d5: SiO2 = Percentage of SiO2 in glass particles (%) 

 d6: Al2O3= Percentage of Al2O3 in glass particles (%) 

 d7: D=Maximum Size of Glass powder particles (microns) 

 d8: A= Age of Sample at testing (days) 
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Figure 9: ET for compressive strength of GPC 
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4.1.2. FORMULATION OF EQUATIONS: 

The model of fc’ was formulated using gene as 3, therefore, the number of sub ETs are 3 as seen 

in the above given ET. The ET has been converted to simplified equations and these equations can 

be used to predict compressive strength of concrete incorporating different types of Glass powder 

at different ages of samples. 

fc’ (MPa)= A + B + C 

Where 

 A= 
(𝐹.𝐴−𝐴)

(
𝐶.𝐴 𝑥 𝐴𝑙2𝑂3

𝑆𝑖𝑂2
)𝑥 (

𝑇𝐶𝑀+𝐺𝑃%

84.31
)
 

 B= 
14.42𝑇𝐶𝑀+𝐹𝐴−𝐶𝐴

𝑊
−

𝑊

𝐷−28.84
 

 C= (
𝐷 𝑥 𝐴

𝐶𝐴
) − (

𝑆𝑖𝑂2

𝐴
) + 7.05 

And, 

TCM= Total cementitious Material (kg/m³) 

D= Maximum Size of Glass powder particles (microns) 

W= Water Content (kg/m³) 

FA= Fine Aggregates (kg/m³) 

CA= Coarse Aggregates (kg/m³) 

GP%= Glass powder content as a percentage of Total cementitious materials (%) 

SiO2 = Percentage of SiO2 in glass particles (%) 

Al2O3= Percentage of Al2O3 in glass particles (%) 

A= Age of Sample at testing (days) 

 

 

 



Page 33 of 81 
 

4.1.3. SENSITIVITY ANALYSIS/IMPORTANCE OF VARIABLES: 

9 No.(s) of different input variables have taken into account for model development of 

Compressive strength of GPC. The ratio of influence of each parameter has been determined by 

sensitivity analysis. Among all variables, Water Content, TCM (Total Cementitious Materials), 

Age (A) and CA (Coarse Aggregate Content) seem to have the highest impact on Compressive 

Strength of GPC i.e. 24.32%, 19.15%, 16.22% and 15.62% respectively while D (maximum size 

of Glass powder particles) and FA( Fine Aggregates Content) has medium effect and %age of 

Glass Powder, SiO2 and Al2O3 have low impact on Compressive Strength of Glass Powder concrete 

The importance of variables as predicted by GEP model is given below: 

 

 

Figure 10: Importance of Variables for Compressive Strength 
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4.1.4. RELATIONSHIP OF INPUT VARIABLES WITH OUTPUT VARIABLES: 

Parametric Analysis was also done in order to find out the relationship of all input variables with 

output variables. All the predictor variables were kept un-changed at their average values and the 

variation in compressive strength was noted for the increase of input variable from its least to 

highest value. The minimum, maximum and average values of input variables used for the 

development of the said relationships are given below: 

 

Input Variables Minimum 
Average 

Maximum 

G.P% 0 
16 

60 

T.C.M (kg/m3) 330 
644 

1440 

W (kg/m3) 157.5 
290 

878.4 

F.A (kg/m3) 608.19 
1031 

4112 

C.A (kg/m3) 825 
1592 

5288 

% age of SiO2 in GP 66.8 
72 

98.1 

%age of Al2O3 in GP 0.33 
1.95 

10.1 

Max size of GP 

(microns) 
45 

100 
300 

Age of sample (days) 3 
43 

365 

Table 10: Range of Input Variables for Compressive Strength 

 

Graphical representation of relationships of input variables with their output variables are given 

below: 
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Figure 11: Relationship of GP% with Compressive Strength 

 

Figure 12: Relationship of TCM with Compressive Strength 
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Figure 13: Relationship of Water Content with Compressive Strength of GPC 

 

 

Figure 14: Relation of FA with Compressive Strength 

 

64.19

38.53

27.35

20.57
15.71

11.86
8.59

y = 85.788e-0.003x

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

0 100 200 300 400 500 600 700 800 900 1000

C
o

m
p

re
ss

iv
e

 S
tr

e
n

gt
h

 (
M

p
a)

Water Content (kg)

Relationship of Water Content in GPC with 
Compressive Strength

34.31
38.05

41.79 45.54

49.28 53.02
56.77

y = 32.04e0.0001x

2.00

12.00

22.00

32.00

42.00

52.00

62.00

0.00 500.00 1000.00 1500.00 2000.00 2500.00 3000.00 3500.00 4000.00 4500.00

C
O

M
P

R
ES

SI
V

E 
 S

TR
EN

G
TH

 (
M

P
A

)

FINE AGGREGATE CONTENT (KG)

Relationship of Fine Aggregate Content with 
Compressive Strength



Page 37 of 81 
 

 

Figure 15: Relationship of CA with Compressive Strength of GPC 

 

 

Figure 16: Relationship of Silica in GP with Compressive Strength of GPC 
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Figure 17: Relationship of Alumina in GP with Compressive Strength of GPC 

 

 

Figure 18: Relationship of Size of GP with Compressive Strength of GPC 
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Figure 19: Relationship of Age of Sample with Compressive Strength of GPC 
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and different circumstances. The overall effect of addition of glass powder on fc’ of GPC has been 

determined through GEP model development and is shown in Figure 11. The results show that the 

strength varies with type of glass powder used and the percentage of glass powder doesn’t 

significantly affect the compressive strength. A gradual decrease can be seen in fc’ with increase 

in % GP. The relative contribution of Glass powder percentage has been determined as 0.07% for 

fc’ of Glass Powder Concrete which is in agreement with the experimental results. Also, the 

addition of glass in concrete has been taken into account in the form of 4 input variables i.e. % of 

G.P added, Silica in GP particles, Alumina in GP particles and Size of GP particles. The cumulative 

effect of adding of glass powder can be seen by the influence of these 4 input variables.  
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4.1.5.  COMPARISON OF TARGET AND MODEL VALUES: 

The comparison of model values (predicted values) and target values (experimental data) for 3 

data sets i.e. training, validation and testing has been shown in the figure 20. The points close to 

the regression line show that there is a close relationship between predicted and experimented 

values. Linear equations depicting the relationship between target and model values have also been 

developed for all 3 datasets as given below: 

 Training Dataset: y = 0.8811x + 4.2369 

Validation Dataset: y = 0.9375x + 2.6185 

Testing Dataset: y = 0.9312x + 2.652  

Where x=y is an ideal fit. 

 

 

Figure 20: Comparison of Model & Target Values for fc' 
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4.1.6. PERFORMANCE EVALUATION OF MODEL: 

It has been suggested in literature that the ratio of total number of samples / databases to the total 

number of input variables should be three for satisfactory models and five for ideal models. In this 

study, this ratio is quite high i.e. 21 for model of Compressive Strength. Statistical Analysis for all 

3 sets of data i.e. training, validation and testing data has been carried out and the results are shown 

in Table 12. It can be observed that high connection exists between target and model values and 

the values of errors are quite low. The values of MAE, RMSE and RSE for training sets have been 

recorded as 3.87, 4.82 and 0.156 respectively. The values of MAE, RMSE and RSE values for 

testing data have been recorded as 4.027, 4.999 and 0.131. 

Evaluation 
Criteria 

GEP Model 
Remarks 

Training Validation Testing 

R 0.919 0.930 0.934 Strong Relation 

R
2
 0.845 0.865 0.873 Strong Relation 

MAE 3.87 4.188 4.027 Acceptable 

RMSE 4.82 5.204 4.999 Acceptable 

RSE 0.156 0.142 0.131 Acceptable 

Table 11: Statistical Evaluation of fc’ Model 

It can be seen from the above table that the statistical measures for all 3 sets i.e. training, validation 

and testing data do not vary significantly and are effectively similar which reflects the adaptability 

of the model and it can be said that it can be safely applied to predict mechanical properties of 

unseen data.  

Values of model, target and absolute errors were plotted to get an idea about the maximum error 

in the developed models as shown in Fig. 20. It can be observed that the actual experimental values 

are close to the values predicted by the models with an average error of 4 MPa, maximum error 

less than 10MPa. In addition, the rate of maximum error is very low. About 85% of dataset has 

been predicted with absolute error less than 7MPa.  
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Figure 21: Representation of Target, Model & Error Values for fc' 
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4.2. SPLIT TENSILE STRENGTH OF GPC: 

 

The results of model developed for prediction of Split Tensile Strength of Concrete incorporating 

waste glass powder is given below: 

4.2.1. EXPRESSION TREE: 

Given below is the expression tree developed through GEP for split tensile strength of GPC. Input 

Variables have been represented in the ET by symbolic representation as given below: 

Where; 

 d0: GP%= Glass powder content as a percentage of Total cementitious materials (%) 

 d1: TCM= Total cementitious Material (kg/m³) 

 d2: W= Water Content (kg/m³) 

 d3: FA= Fine Aggregates (kg/m³) 

 d4: CA= Coarse Aggregates (kg/m³) 

 d5: SiO2 = Percentage of SiO2 in glass particles (%) 

 d6: Al2O3= Percentage of Al2O3 in glass particles (%) 

 d7: D=Maximum Size of Glass powder particles (microns) 

 d8: A= Age of Sample at testing (days) 
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Figure 22: ET for Split Tensile Strength of GPC 

 



Page 46 of 81 
 

4.2.2. FORMULATION OF EQUATIONS: 

The model of fst was formulated using gene as 3, therefore, the number of sub ETs are 3 as seen 

in the above given ET. The ET has been converted to simplified equations and these equations can 

be used to predict split tensile strength of concrete incorporating different types of Glass powder 

at different ages of samples. 

fst (MPa)= A + B + C 

where 

 A= 
(−3.753 𝑥 𝐺𝑃%)+𝑆𝑖𝑂2

(
𝐹𝐴

𝐴𝑙2𝑂3
)

−  
(𝐺𝑃%+𝑊)

(𝑇𝐶𝑀−𝑊)
− 𝐴𝑙2𝑂3 

 B= 5.713- 
((𝑇𝐶𝑀−𝑊)−191.931) 𝑥 (𝐴−𝐷)

(𝐴+46.944) 𝑥 (𝐹𝐴−445.767)
 

  

 C= ((
𝑊−𝑇𝐶𝑀−𝐴

−4.454
) 𝑥 (

(
𝐴

𝐶𝐴
)

𝐴𝑙2𝑂3+0.617
))- 4.357 

 

And, 

TCM= Total cementitious Material (kg/m³) 

D= Maximum Size of Glass powder particles (microns) 

W= Water Content (kg/m³) 

FA= Fine Aggregates (kg/m³) 

CA= Coarse Aggregates (kg/m³) 

GP%= Glass powder content as a percentage of Total cementitious materials (%) 

SiO2 = Percentage of SiO2 in glass particles (%) 

Al2O3= Percentage of Al2O3 in glass particles (%) 

A= Age of Sample at testing (days) 
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4.2.3. SENSITIVITY ANALYSIS/IMPORTANCE OF VARIABLES: 

9 No.(s) of different input variables have taken into account for model development of Split tensile 

strength of GPC. The ratio of influence of each parameter has been determined by sensitivity 

analysis. Among all variables, TCM (Total Cementitious Materials), Water Content, Al2O3 and 

FA (Fine Aggregates) Content have the highest impact on Split Tensile Strength of GPC i.e. 

29.97%, 18.65%, 18.25% and15.84% respectively while A (Age) and CA (Coarse Aggregate 

Content) have medium impact. However, %age of Glass Powder, SiO2, and D (maximum size of 

Glass powder particles) have low impact on Split tensile Strength of Glass Powder concrete. The 

importance of variables as predicted by GEP model is given below: 

 

 

Figure 23: Importance of Variables for fst of GPC 
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4.2.4. RELATIONSHIP OF INPUT VARIABLES WITH OUTPUT VARIABLES: 

Parametric Analysis was also done in order to find out the relationship of all input variables with 

output variables and all the predictor variables were kept unchanged at their average values and 

the variation in split tensile strength was recorded for the increase of input variable from its least 

to extreme value. The minimum, maximum and average values of input variables used for the 

development of the said relationships are given below: 

Input Variables Minimum 
Average 

Maximum 

G.P% 0 15 40 

T.C.M (kg/m3) 350 663 1440 

W (kg/m3) 157.5 306 878.4 

F.A (kg/m3) 608.19 1160 4112 

C.A (kg/m3) 992 1765 5288 

% age of SiO2 in GP 70.22 71.65 72.61 

%age of Al2O3 in GP 0.4 1.79 2.54 

Max size of GP 

(microns) 
75 88 150 

Age of sample (days) 7 23 57 

Table 12: Range of Input Variables for split tensile Strength 

 

Graphical representation of relationships of input variables with their output variables are given 

below: 
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Figure 24: Relationship of GP with Split tensile Strength of GPC 

 

 

Figure 25: Relationship of TCM with Split Tensile Strength of GPC 
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Figure 26: Relationship of Water content with Split Tensile Strength of GPC 

 

 

Figure 27: Relationship of FA content with Split Tensile Strength of GPC 
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Figure 28: Relationship of CA content with Split Tensile Strength of GPC 

 

 

Figure 29: Relationship of Silica in GP with Split Tensile Strength of GPC 
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Figure 30: Relationship of Alumina in GP with Split Tensile Strength of GPC 

 

 

Figure 31: Relationship of Size of GP with Split Tensile Strength of GPC 
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Figure 32: Relationship of Sample Age with Split Tensile Strength of GPC 
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percentage has been determined as 1.51% for Split Tensile Strength of Glass Powder Concrete 

which does not contradict with the test results from literature. Also, the addition of glass in concrete 

has been taken into account in the form of 4 input variables i.e. % of G.P added, Silica in GP 

particles, Alumina in GP particles and Size of GP particles. The cumulative effect of addition of 

glass powder can be seen by the influence of these 4 input variables which is 20% in case of Split 

tensile strength of GPC.  It may be concluded that mix design proportions are the major influencing 

parameters for all types of strengths which is in confirmation with the experimental results.  
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4.2.5.  COMPARISON OF TARGET AND MODEL VALUES: 

The comparison of model values (predicted values) and target values (experimental data) for 3 

data sets i.e. training, validation and testing has been shown in the figure 33. The points close to 

the regression line show that there is a close relationship between predicted and experimented 

values. Linear equations depicting the relationship between target and model values have also been 

developed for all 3 datasets as given below: 

 Training Dataset: y = 0.8707x + 0.3415 

Validation Dataset: y = 0.8699x + 0.4148 

Testing Dataset: y = 0.7904x + 0.6701  

where x=y is an ideal fit. 

 

Figure 33: Comparison of Model & Target Values for Split tensile Strength of GPC 
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4.2.6. PERFORMANCE EVALUATION OF MODEL: 

As already discussed in the section 4.1.6, the ratio of total number of samples / databases to the 

total number of input variables should be three for satisfactory models and five for ideal models 

(Iqbal et al., 2020). This ratio is significantly higher i.e. 12 for model of Split Tensile Strength. 

Statistical Analysis for all 3 sets of data i.e. training, validation and testing data has been carried 

out and the results are shown in Table 11. It can be observed that high correlation exists between 

target and model values and the values of errors are quite low. The results of MAE, RMSE and 

RSE for training sets have been recorded as 0.306, 0.43 and 0.130 respectively. The values of 

MAE, RMSE and RSE values for testing data have been recorded as 0.359, 0.429 and 0.136. 

Evaluation 

Criteria 

GEP Model 

Remarks 

Training Validation Testing 

R 0.969 0.969 0.933 Strong Relation 

R
2

 0.939 0.94 0.871 Strong Relation 

MAE 0.306 0.277 0.359 Acceptable 

RMSE 0.43 0.433 0.429 Acceptable 

RSE 0.13 0.134 0.136 Acceptable 

Table 13: Statistical Evaluation of Model for fst of GPC 

 

It can be seen from the above table that the statistical measures for all 3 sets i.e. training, validation 

and testing data do not vary significantly and are effectively similar which reflects the 

generalization capability of the model and it can be said that it can be safely applied to predict 

mechanical properties of unseen data.  

Values of model, target and absolute errors were plotted to get an idea about the maximum error 

in the developed models as shown in Fig. 34. It can be observed that the actual experimental values 

are close to the values predicted by the models with an average error of 0.29 MPa, maximum error 

less than 0.7MPa. In addition, the rate of maximum error is very low. About 90% of dataset has 

been predicted with absolute error less than 0.6 MPa.  
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Figure 34: Target, Model & Error Values for Split tensile Strength of GPC 
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4.3. FLEXURAL STRENGTH OF GLASS POWDER CONCRETE: 

 

The results of model developed for prediction of Flexural Strength of Concrete incorporating waste 

glass powder is given below: 

 

4.3.1. EXPRESSION TREE: 

Given below is the expression tree developed through GEP for flexural strength of GPC. Input 

Variables have been represented in the ET by symbolic representation as given below: 

Where; 

 d0: GP%= Glass powder content as a percentage of Total cementitious materials (%) 

 d1: TCM= Total cementitious Material (kg/m³) 

 d2: W= Water Content (kg/m³) 

 d3: FA= Fine Aggregates (kg/m³) 

 d4: CA= Coarse Aggregates (kg/m³) 

 d5: SiO2 = Percentage of SiO2 in glass particles (%) 

 d6: Al2O3= Percentage of Al2O3 in glass particles (%) 

 d7: D=Maximum Size of Glass powder particles (microns) 

 d8: A= Age of Sample at testing (days) 
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Figure 35: ET for Flexural Strength of GPC 
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4.3.2. FORMULATION OF EQUATIONS: 

The model of fst was formulated using gene as 4, therefore, the number of sub ETs are 4 as seen 

in the above given ET. The ET has been converted to simplified equations and these equations can 

be used to predict split tensile strength of concrete incorporating different types of Glass powder 

at different ages of samples. 

fb (MPa)= A x B x C x D 

where 

 A= C.A + [(20.62+A) x ((5.59+Al2O3) x W) – Al2O3 + G.P%] 

 B=
0.62

𝐴𝑙2𝑂3 𝑥 ((𝐴+𝑊+ 
𝑆𝑖𝑂2

𝐴𝑙2𝑂3
)+

𝐺𝑃2

3.83
)
 

 C=
(2 𝑥 𝐴𝑙2𝑂3 𝑥 𝐺𝑃)+𝐷+20.52−𝐴

𝐹.𝐴 𝑥 𝐶.𝐴
 

 D= T.C.M –[ ((9.58 – G.P) x 
𝐴𝑙2𝑂3

𝐴
) x (

 𝐷

−6.19
+ 𝑆𝑖𝑂2) x Al2O3 ] 

And, 

TCM= Total cementitious Material (kg/m³) 

D= Maximum Size of Glass powder particles (microns) 

W= Water Content (kg/m³) 

FA= Fine Aggregates (kg/m³) 

CA= Coarse Aggregates (kg/m³) 

GP%= Glass powder content as a percentage of Total cementitious materials (%) 

SiO2 = Percentage of SiO2 in glass particles (%) 

Al2O3= Percentage of Al2O3 in glass particles (%) 

A= Age of Sample at testing (days) 
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4.3.3. SENSITIVITY ANALYSIS/IMPORTANCE OF VARIABLES: 

9 No.(s) of different input variables have taken into account for model development of Flexural 

Strength of GPC. The ratio of influence of each parameter has been determined by sensitivity 

analysis. Among all variables, CA (Coarse Aggregates Content), FA (Fine Aggregate Content), 

TCM (Total Cementitious Materials), and D (maximum size of Glass powder particles have the 

highest impact on Flexural Strength of GPC i.e. 17.57%, 17.56%, 17.43% and 13.03% respectively 

while, Al2O3 , %age of Glass Powder, A (Age) and Water Content have medium impact on 

Flexural Strength of Glass Powder concrete. However, SiO2 has the least impact on Flexural 

Strength of Glass Powder Concrete. The importance of variables as predicted by GEP model is 

given below: 

 

 

Figure 36: Importance of Variables for Flexural Strength of GPC 

 

 



Page 62 of 81 
 

4.3.4. RELATIONSHIP OF INPUT VARIABLES WITH OUTPUT VARIABLES: 

Parametric Analysis was also done in order to find out the relationship of all input variables with 

output variables. All the predictors variables were kept un changed at their average values and the 

variation in flexural strength was recorded for the increase of input variable from its lowest to 

highest value. The minimum, maximum and average values of input variables used for the 

development of the said relationships are given below: 

Input Variables Minimum 
Average 

Maximum 

G.P% 0 18 40 

T.C.M (kg/m3) 330 834 1440 

W (kg/m3) 174.9 371 619.2 

F.A (kg/m3) 608.19 1209 2704 

C.A (kg/m3) 1184.8 2089 3556.8 

% age of SiO2 in GP 67.33 75 98.1 

%age of Al2O3 in GP 0.33 1.1884 2.62 

Max size of GP 

(microns) 
75 119 150 

Age of sample (days) 7 21 60 

Table 14: Range of Input Variables for Model of Flexural Strength of GPC 

 

 

Graphical representation of relationships of input variables with their output variables are given 

below: 
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Figure 37: Relationship of GP% with Flexural Strength of GPC 

 

 

Figure 38: Relationship of TCM with Flexural Strength of GPC 
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Figure 39: Relationship of Water Content with Flexural Strength of GPC 

 

 

Figure 40: Relationship of FA with Flexural Strength of GPC 
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Figure 41: Relationship of CA with Flexural Strength of GPC 

 

 

Figure 42: Relationship of SiO2 in GP with Flexural Strength of GPC 
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Figure 43: Relationship of Al2O3 with Flexural Strength of GPC 

 

 

Figure 44: Relationship of Size of GP with Flexural Strength of GPC 
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Figure 45: Relationship of Age of Sample with Flexural Strength of GPC 
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contribution of Glass powder percentage has been determined as 8.89% respectively for Flexural 

Strength of Glass Powder Concrete which agrees with the experimental results. Also, the addition 

of glass in concrete has been taken into account in the form of 4 input variables i.e. % of G.P 

added, Silica in GP particles, Alumina in GP particles and Size of GP particles. The cumulative 

effect of adding glass powder can be seen by the influence of these 4 input variables.  It may be 

concluded that mix design proportions are the major influencing parameters for all types of 

strengths which is in confirmation with the experimental results.  
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4.3.5. COMPARISON OF TARGET AND MODEL VALUES: 

The comparison of model values (predicted values) and target values (experimental data) for 3 

data sets i.e. training, validation and testing has been shown in the figure 32. The points close to 

the regression line show that there is a close relationship between predicted and experimented 

values. Linear equations depicting the relationship between target and model values have also been 

developed for all 3 datasets as given below: 

 Training Dataset: y = 0.8707x + 0.3415 

Validation Dataset: y = 0.8699x + 0.4148 

Testing Dataset: y = 0.7904x + 0.6701  

where x=y is an ideal fit. 

 

Figure 46: Comparison of Model & Target Values for flexural Strength of GPC 

 

 

y = 1.0414x - 0.2175 (training) y = 1.0213x - 0.1703 (validation) y = 1.1344x - 0.7159 (testing)

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10

P
re

d
ic

te
d

 (
M

o
d

e
l)

 F
le

xu
ra

l S
tr

e
n

gt
h

Experimental (Target) Flexural Strength 

Comparison of flexural strength of GPC with model predictions

Training Data Validation Data Testing Data



Page 70 of 81 
 

4.3.6. PERFORMANCE EVALUATION OF MODELS: 

As already discussed in the section 4.1.6, the ratio of total number of samples / databases to the 

total number of input variables should be three for satisfactory models and preferably five for ideal 

models (Pavan & Todeschini, 2008). In this study, this ratio is higher i.e. 5 for model of Flexural 

Strength. Statistical Analysis for all 3 sets of data i.e. training, validation and testing data has been 

carried out and the results are shown in Table 11. It can be observed that high link exists between 

target and model values and the values of errors are quite low. The values of MAE, RMSE and 

RSE for training sets have been recorded as 0.439, 0.57 and 0.106 respectively. The values of 

MAE, RMSE and RSE values for testing data have been recorded as 0.359, 0.429 and 0.136. 

Evaluation 
Criteria 

GEP Model 
Remarks 

Training Validation Testing 

R 0.945 0.98 0.938 Strong Relation 

R
2
 0.896 0.961 0.879 Strong Relation 

MAE 0.439 0.221 0.411 Acceptable 

RMSE 0.57 0.251 0.472 Acceptable 

RSE 0.106 0.041 0.135 Acceptable 

Table 15: Statistical Measures for flexural strength of GPC 

It can be seen from the above table that the statistical measures for all 3 sets i.e. training, validation 

and testing data do not vary significantly and are effectively similar which reflects the 

generalization capability of the model and it can be said that it can be safely applied to predict 

mechanical properties of unseen data.  

Values of model, target and absolute errors were plotted to get an idea about the maximum error 

in the developed models as shown in Fig. 47. It can be observed that the actual experimental values 

are close to the values predicted by the models with an average error of 0.37 MPa, maximum error 

less than 0.8MP. In addition, the rate of occurrence of maximum error is very low. About 80% of 

dataset has been predicted with absolute error less than 0.6 MPa.  
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Figure 47: Taregt, Model & Error Values for Flexural Strength of GPC 
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4.5. COMPARISON WITH EXISTING MODELS: 

             To the best of author’s knowledge, there are only 2 models already available to predict the 

compressive strength of Glass powder Concrete proposed in a single study (Mirzahosseini et al., 

2019). There are several flaws/drawbacks in those models. The existing model proposed by 

Mirzahosseini et al., 2019 took into account only experimental results of the same study to develop 

the model. Hence, the model has no generalization capability and is not reliable to predict 

compressive strength of unseen data. In the model under discussion, effect of all influencing 

parameters e.g. concrete mix design ratio, w/c ratio etc. have not been considered. In addition, 

validity of model on unseen data was not checked. Whereas, the model developed in this study has 

addressed the flaws in the existing models to predict the compressive strength of glass powder 

concrete. The proposed model took into account experimental results of several studies so the 

model has great generalization capability and can be safely applied to predict the compressive 

strength of glass powder concrete. Effect of all major contributing factors including concrete mix 

design proportions, size and chemical composition of glass powder have been considered including 

mix proportion ratio of concrete, composition and size of glass powder, age of sample etc. 

Furthermore, validity of model on unseen data was checked and it was found to perform good on 

unseen data. A comparison of statistical measures for existing and model developed in this study 

to predict compressive strength of glass powder concrete is given below: 

 

Statistical 

Measures 

Existing Models 

Developed Model 

Model 1 Model 2 

Training Validation Training Validation Training Validation 

R 0.81 0.81 0.81 0.73 0.919 0.93 

RMSE 5.78 9.42 7.8 10.4 4.82 5.204 

MAE 4.78 7.27 6.62 8.31 3.87 4.188 

Table 17: Comparison with existing models 
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It can be clearly seen that the model developed in this study has better statistical measures i.e. R 

values of 0.919 and 0.93 as compared to 0.81 and 0.73. Also, the values of errors are less in the 

model developed in this study as compared to existing models. 

To the best of author’s knowledge, there are no models already available to predict both the split 

tensile strength and flexural strength of Glass powder Concrete. 
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5. CONCLUSIONS: 

This study proposed the use of gene expression programming (GEP) method for creation of 

models for prediction of mechanical properties of concrete containing waste glass powder as a 

replacement of cement. The proposed models have been developed from a large database from 

experimental results available in literature. These models can be safely applied to a huge 

number of dataset and consider almost every influencing parameter. The results obtained from 

model are in agreement with the experimental results. The statistical checks applied to check 

the accuracy of models also confirmed the validation of models. These models have addressed 

the drawbacks/flaws of existing models. Also, the statistical measures for the proposed model 

are better than the existing models i.e. 0.93 as compared to 0.81 and 0.73, thus the proposed 

model seems to predict better results than the existing models. These models will be a source 

of promotion of use of waste glass powder in concrete and thus contributing towards 

green/sustainable construction. However, more research may be carried out for experimental 

re-validation of the predicted models may be carried out.  
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