
AN APPROACH FOR DETECTION OF BLACK HOLE

ATTACK IN SOFTWARE DEFINED NETWORKS

By

Kinza Saeed

A thesis submitted to the faculty of Information Security Department, Military College of

Signals, National University of Sciences and Technology, Rawalpindi in partial fulfillment of

the requirements for the degree of MS in Information Security

August 2021

THESIS ACCEPTANCE CERTIFICATE

Certified that final copy of MS Thesis written by Ms. Kinza Saeed, Registration No.

00000203961, of Military College of Signals has been vetted by undersigned, found complete

in all respects as per NUST Statutes/Regulations/MS Policy, is free of plagiarism, errors, and

mistakes and is accepted as partial fulfillment for award of MS degree. It is further certified that

necessary amendments as pointed out by GEC members and local evaluators of the scholar have

also been incorporated in the said thesis.

Signature: _________________________________

Name of Supervisor: _________________________

 Date: _____________________________________

Signature (HOD): ___________________________

Date: _____________________________________

Signature (Dean/Principal) ____________________

Date: _____________________________________

Declaration

I hereby declare that no portion of work presented in this thesis has been submitted in

support of another award or qualification either at this institution or elsewhere

ii

Dedication

This thesis is dedicated to MY FAMILY, TEACHERS AND FRIENDS for their love,

endless support and encouragement

iii

Acknowledgement

It would not have been possible to write this thesis without the help and support of

kind and cooperative people around me, some of whom deserve to be given particular

mention here.

First and foremost, I want to express my gratitude to my supervisor, Asst Professor

Bilal Rauf, for providing me with expert guidance, support, and patience throughout my

master’s research. His vast knowledge and experience have been a source of inspiration

for me in every phase of the research.

I am forever indebted to my committee member Asst Proffessor Muhammad Waseem

Iqbal for his immense support, encouragement and motivation throughout my academic

career at Military College of Signals,NUST.

I would like to thank Asst Professor Dr Yawar Abbas for clearing my concepts about

working of Software Defined Networking.

Words are not enough to appreciate the continuous support and motivation given by my

colleague Lt Hafiz M. Shafeeq during challenging times of my thesis. I am extremely

grateful to my colleague Mr Abdul Rehman Janjua for always being ready to help me

in coding and software use.

I wish to acknowledge the cooperation of Department Head clerk, Hadayat Khattak for

assistance in my thesis documentation formalities especially during my stay at Karachi.

I am forever grateful to my parents and my brothers for their encouragement and support

iv

in difficult times. Last but not the least would like to appreciate myself for keeping up

the faith in hard times.

v

Abstract

Software Defined Network(SDN) is a novel networking architecture based on separa-

tion of data and control plane. SDN enables the controller to have a logically central-

ized view of the complete network [1]. It allows routing applications that run on top

of the control plane to discover the best routes and to manage and design traffic flow

efficiently. To do so, the controller must first know the whole SDN infrastructure’s net-

working topology in order to attain centralized control and visibility. However, topol-

ogy information of the network can be manipulated by an attacker to carry out black

hole attack [2] by dropping or steering all the traffic passing through it towards itself and

use the information in the packets to serve as a launching pad to carry out further lethal

attacks. Therefore, it is critical to detect the attack at an earlier stage and isolate the

malicious/compromised black hole node. Hence, we propose a dynamic routing frame-

work that finds routing paths based on the behavior of hosts and then chooses the best

path considering past behavior of hosts. It helps in reducing probability of attacks and

multi-hop communication between hosts to confuse attackers and expand exploration

space for carrying out targeted attack. Furthermore, our framework detects black hole

attack from malicious node by continuously analyzing the traffic statistics on nodes so

that the attack can be detected and prevented nearest to the malicious host (from where

it originates) and dynamically reconfigures route after isolating the malicious node. Our

simulations were performed using mininet emulator and RYU controller. Throughput,

packet delivery ratio and end to end delay are recorded periodically and whenever they

fall out of threshold boundaries an alert is generated and malicious node is removed

vi

from the routing path. Results show that the values of network parameters resume to

normal shortly after our detection and mitigation of attack.

vii

Contents

1 Introduction 2

1.1 Motivation . 3

1.2 Scope and Objectives . 4

1.3 Definition and benefits of SDN . 4

1.3.1 Definition of SDN . 4

1.3.2 Benefits of SDN . 6

1.4 Contribution . 7

2 Theoretical Background and Related Work 8

2.1 Software Defined Network Architecture 8

2.1.1 Forwarding Plane . 8

2.1.2 Control Plane . 10

2.1.3 Application Plane . 12

2.1.4 Southbound Interfaces . 12

2.1.5 Northbound Interface . 13

2.1.6 Westbound/Eastbound Interface 14

2.2 Communication Protocol . 14

viii

2.2.1 Openflow . 14

2.2.2 OpenFlow Architecture . 15

2.2.3 OpenFlow compliant switch 16

2.2.4 Flow Tables . 17

2.2.5 Matching flow . 17

2.2.6 Actions taken on the flows . 18

2.2.7 Counters . 19

2.2.8 Flow types . 19

2.2.9 Packet forwarding mechanism 21

2.2.10 OpenFlow communication messages 22

2.2.11 Explanation of messages exchanged in OpenFlow network . . . 24

2.3 Network Protocols . 26

2.3.1 Adress Resolution Protocol 27

2.3.2 Link Layer Discovery Protocol(LLDP) 27

2.4 Vulnerabilities of Network Protocols and Black Hole attack 28

2.5 Related Work . 31

3 Proposed Methodology 37

3.1 Methodology . 38

3.1.1 Algorithm . 38

3.2 System Architecture . 40

3.3 Implementation . 40

3.3.1 Control Layer . 40

3.4 Simulation Environment . 41

ix

3.4.1 System Specifications . 41

3.5 Simulation Structure . 42

3.5.1 Software Tools Used in Experiments 42

3.5.2 Simulation Topology . 44

3.6 Mininet Topology . 44

3.6.1 Mininet Topology Code . 44

3.7 Detection Metrics . 45

3.7.1 Throughput . 45

3.7.2 End to End Delay . 46

3.7.3 Packet Delivery Ratio . 46

3.8 Anomaly Detection . 46

4 Implementation 48

4.1 Proposed Methodology . 48

4.1.1 Algorithm . 48

4.1.2 Detection Parameters . 49

4.2 Simulation Environment . 49

4.2.1 System Specifications . 50

4.2.2 Software Tools Used For Implementation and Experiments . . . 50

4.2.3 Simulation Topology . 52

4.3 Implementation Modules . 52

4.3.1 Controller . 53

4.4 Implementation Steps(Normal Mode) 56

4.5 Results and Analysis . 58

x

4.5.1 Graphs and Values of Detection Parameters under Normal Op-

eration . 58

4.6 Discussion of Results . 60

4.6.1 Graph for PDR . 60

4.6.2 Graph for End-to-End Delay 61

4.6.3 Graph for throughput . 61

5 Conclusion 73

References 75

A Source Codes 80

xi

List of Figures

2.1 Fields in a flow entry . 9

2.2 Packet forwarding method in SDN . 9

2.3 SDN Architecture . 13

2.4 Openflow Network Architecture . 16

2.5 Basic Packet Process mechanism for Openflow switch 17

2.6 Basic Packet Process mechanism for Openflow switch 22

2.7 Network Topology using mininet . 24

2.8 Communication Messages between switch and controller 25

2.9 Ping process between h1 and h2 . 26

2.10 Network Topology Discovery in SDN using LLDP 28

3.1 Architecture of our proposed model 41

3.2 Command Run on MiniEdit GUI . 43

3.3 Command To Start Ryu Controller . 43

3.4 Screenshot of Simulation Topology Script 45

3.5 Topology in Miniedit . 46

3.6 Mininet Topology Code Snippet . 47

xii

4.1 Command Run on MiniEdit GUI . 51

4.2 Command To Start RYU Controller 51

4.3 RYU Controller started . 51

4.4 Simulation Topology 1 in MiniEdit . 53

4.5 Simulation Topology 2 in MiniEdit . 53

4.6 Simulation Topology 3 in MiniEdit . 54

4.7 Simulation Topology 4 in MiniEdit . 54

4.8 Simulation Topology 5 in MiniEdit . 55

4.9 Simulation Topology 6 in MiniEdit . 55

4.10 Simulation Topology 7 in MiniEdit . 56

4.11 Simulation Topology 8 in MiniEdit . 56

4.12 Flow Management in Our Implementation 57

4.13 Host h9 requesting connection to host h1 57

4.14 Controller running . 62

4.15 Running mininet topology script . 62

4.16 Terminals for all hosts in topology . 63

4.17 Terminal of n-1 host in ten host topology 63

4.18 Entering destination details in terminal of n-1 host in ten host topology . 63

4.19 Entering destination details in terminal of n-1 host in ten host topology . 64

4.20 Path selected in our test example . 64

4.21 Message traversing from source to destination through multiple hops . . 64

4.22 Entering destination details in terminal of n-1 host in ten host topology . 64

4.23 PDR of 3 host topology . 64

xiii

4.24 Throughput of 3 host topology . 65

4.25 End to End Delay of 3 host topology 65

4.26 Values of 3 host topology . 65

4.27 PDR of 4 host topology . 65

4.28 Throughput of 3 host topology . 65

4.29 End to End Delay of 3 host topology 66

4.30 Values of 4 host topology . 66

4.31 Throughput of 5 host topology . 66

4.32 Throughput of 5 host topology . 66

4.33 End to End Delay of 5 host topology 67

4.34 Values of 5 host topology . 67

4.35 Throughput of 6 host topology . 67

4.36 Throughput of 6 host topology . 67

4.37 End to End Delay of 6 host topology 68

4.38 Values of 6 host topology . 68

4.39 PDR of 7 host topology . 68

4.40 Throughput of 7 host topology . 68

4.41 End to End Delay of 7 host topology 69

4.42 Values of 7 host topology . 69

4.43 Throughput of 8 host topology . 69

4.44 Throughput of 8 host topology . 69

4.45 End to End Delay of 8 host topology 70

4.46 Values of 8 host topology . 70

xiv

4.47 PDR of 9 host topology . 70

4.48 Throughput of 9 host topology . 70

4.49 End to End Delay of 9 host topology 71

4.50 Values of 9 host topology . 71

4.51 PDR of 10 host topology . 71

4.52 Throughput of 10 host topology . 71

4.53 End to End Delay of 10 host topology 72

4.54 Values of 10 host topology . 72

xv

List of Tables

1.1 SDN vs Traditional Networks . 6

2.1 Fields in a flow table for OpenFlow 16

2.2 List of virtual ports for the “Required” forward action 18

2.3 List of virtual ports for the “Optional” forward action 19

2.4 Required list of counters for use in statistics messages 20

3.1 System Specifications . 42

3.2 Software Tools Used For Implementation and Experiments 42

4.1 Software Tools in Implementation and Experiments 50

xvi

List of Abbreviations and Symbols

Abbreviations

SDN Software Defined Networks

IP Internet Protocol

DOS Denial of Service

DDOS Distributed Denial of Service

ONF Open Networking Foundation

TLS Transport Layer Security

BGP Border Gateway Protocol

OVSDB Open vSwitch Database

ROFL revised open-flow library

HAL Hardware abstraction layer (HAL),

PAD Programmable Abstraction of Data path

NAT Network Address Translation

ARP Address Resolution Protocol

OSI Open Standards International

xvii

IGMP Internet Group Management Protocol

LLDP Link Layer Discovery Protocol

DCN Data Center Networks

VM Virtual Machine

OS Operating System

ICMP Internet Control Message Protocol

PDR Packet Delivery Ratio

xviii

[utf8]inputenc

1

Chapter 1

Introduction

Computer networks are playing a pivotal role in the modern day life because of the

variety of services that internet provides. As a result of this there is an ongoing and

rapid evolution as well as integration of computing technologies. This necessitates the

connectivity of a wide range of devices, including mobile phones, personal computers,

handheld computers, client machines, and server machines, all of which operate on a

variety of operating systems and work using different protocols. The consistent integra-

tion of so many gadgets and entities creates a slew of problems. Establishment of secure

communication between these different service infrastructure involve significant issues

for example how to implement management tasks of these networks is a big issue. In

traditional networks, the control logic is also present on each data plane, and they share

information about how packets are handled on the data plane device, making data plane

setup difficult. An overall picture of the network is not available in traditional networks

because there is no centralization of control plane is, and hence can’t create central-

ized and intelligent networking and management decisions. Operators must devote a

significant amount of time and effort to configure the control plane since it is spread

across devices and lacks a global picture of the network, preventing it from making

good network-wide decisions. To configure each device separately, operators must ex-

pend a significant amount of effort and time. It’s still a work in progress to figure out

2

how to administer these networks while maintaining data security and reliability [3].

Fortunately, the management of networks which was a very difficult task in the tradi-

tional networks has become quite easy thanks to the software defined networks(SDN)

through control plane centralization. However, where on one and this centralization of

control plane has brought a number of benefits it has also opened doors to new vulnera-

bilities and attacks. One such attack is black ole attack were a malicious/compromised

user drops or sniffs off packets leading to a black hole situation were the availability of

services is affected. Since SDN is a novel paradigm, the attacks on SDN also requires

new detection schemes and countermeasures. Hence in this thesis we will discuss a new

scheme for detection of black hole attack in SDN.

1.1 Motivation

The SDN technology brings a number of benefits compared to traditional networks, as

will be discussed in detail in subsequent sections. SDN technology is encouraging data

centers and businesses to adopt it because of the benefits it provides. Open Networking

Foundation (ONF) formulators created it for the growth in specifications and promotion

of the use of SDN[4]. This rapid shift demands security of this technology at the same

rate. Security of data when sending it over networks is extremely crucial. Security of

data does not only mean maintaining privacy but also security and availability. The con-

trol of flow of information on devices of forwarding plane is performed by controller but

there are some limitations. Openflow is the de-facto SDN protocol and makes adoption

of TLS optional and complex. Authentication of users involve overhead. The malicious

node problem is considered less in research. Moreover, topology information can be

spoofed affecting other dependent services like routing resulting in black hole attack

where all the data passing through a node is dropped resulting in reduction of efficiency

of communication, increasing packet loss and exhaustion of computing resources. This

data can be discarded by the node or extracted by an attacker node with malicious intent

3

to incur further security breach attacks in the network causing loss of confidentiality and

availability. Hence establishment of safe and reliable routes to black hole attack to take

full advantage of the benefits provided by SDN.

1.2 Scope and Objectives

This thesis concentrates on the black hole attack arising from malicious/compromised

hosts/end devices. Application plane, northbound interface and black-hole attacks aris-

ing from compromised switches are not within the scope of this thesis. Finally, a simple

scheme is proposed to detect black-hole attacks arising from malicious/compromised

hosts/end devices.

1.3 Definition and benefits of SDN

1.3.1 Definition of SDN

The focus of Open Networking Foundation (ONF) [5] is centered on the research, stan-

dardization, and marketing of Software-defined Network(SDN). SDN is a novel net-

working technology wit idea of a separate control plane and a separate data plane and

enables control plane to be directly programmed by the application plane, according to

the ONF [6][7]. SDN is based on two ideas, according to this definition: control planes

decoupled and separated from data plane, second; control plane programmed through

applications. However, these two SDN elements aren’t wholly novel in network archi-

tecture.

The authors of [8] conducted a comprehensive review of previous attempts, revealing

that a number of past studies investigating network flammability had been conducted.

SwitchWare [9], for example, uses active networking, which lets packets to dynami-

cally adjust activities while traversing via the network. In similar manner, Click [10],

4

XORP [11], Quagga [12], and BIRD [13], for example, made an effort to construct

extended software based forwarding devices by allowing network components adding

programmability to them. The behaviour of these network devices can be altered by

using new routing software or by altering existing routing software.

Furthermore, the idea of separating the control and data planes has been investigated

throughout the previous decade. [13] replaces the idea of inter-domain Border Gateway

Protocol routing with centralised routing control. They believe that this method makes

truly dispersed path computing easier. At the time, the IETF suggested the Forward-

ing and Control Element Separation (ForCES) structure. They separate the aspects of

control and packet routing.

[14] offered a four-dimensional strategy. This technique is based on a four-plane net-

work architecture paradigm. The planes are referred to as "decision," "dissemination,"

"discovery," and "data." Ethane work was introduced in 2007 [15], and it is based on

centralized controller and Ethernet switches tat are flow based. The processing of flows

can be performed this way.

The SDN concept’s distinctiveness stems from the fact that it allows for programmabil-

ity by decoupling the control and data planes - instead of making networking devices

more complicated, SDN provides simple programmable network devices. Furthermore,

in the network design, SDN allows for decoupled forwarding plane and control plane.

This architecture allows for separately perform control of network at control layer with-

out disturbing the flows of data. The network’s intelligence can be taken to the con-

troller from the switches . Meanwhile, software may control the switches without the

need for on-board intelligence. Separating the control and data planes allows for a more

customizable environment as well as more freedom for developers of external applica-

tions to determine a network’s behaviour.

5

1.3.2 Benefits of SDN

SDN gives administrators dynamic control over network configurations. The primary

goal of SDN is to centralise control away from network nodes and toward the con-

troller. The server’s control logic enables easy alteration of program, the protocols, and

the applications, thereby improving the utilization of the resources, moreover network

becomes less complicated, and total revenue rises. Controller provides a holistic picture

of network because of centralized nature of controller. By utilizing clear picture, it can

improve process of management of flows and offer flexibility, high speed and scalability

[2]. The benefits of using SDN over traditional networks are listed in the table below.

Table 1.1: SDN vs Traditional Networks
Criteria Traditional

Networks
Software Defined
Networks

Network management Hard; devices
configured

Easier with cen-
tral

individually Programmability
Global view Hard Central View at

controller
Maintenance
Cost

High Low

Error processing
and update time

Sometimes
months

Quite Easy with
Software

Attack detection
and mitigation

Difficult Easier and Quick

Controller and applications Trivial Non-trivial
authenticity
Forwarding table
Integrity

Important Important

and network state
Controller’s
Availablity

Irrelevant Significant

Resources Utilization Low High

6

1.4 Contribution

The contributions of this thesis are summarized below:

• Proposed a scheme for traffic management in SDN to resist black hole attack. Instead

of static routes, this scheme is based on multi-hops between hosts from source to des-

tination. Multi-hops between hosts confuses the attacker and expands the exploration

space for attacker to carry out black hole attack.

• Extended the controller’s functionality to meet requirements of this thesis by adding

an information gathering module, a path calculation module and a flow management

module.

• Performed simulations of the proposed scheme in mininet containing RYU controller

under normal traffic and also generated black hole attack.

• Evaluated performance parameters like throughput, packet delivery ratio and end to

end delay to detect black hole attack. After detecting black hole attack, malicious node

that caused black hole attack was isolated and new route was constructed for sending

data between source and destination.

7

Chapter 2

Theoretical Background and Related

Work

2.1 Software Defined Network Architecture

There is separated and decoupled data plane and control plane in an SDN network de-

sign, thereby rendering forwarding devices "dumb devices," and total networking logic

is contained in centralised control plane that is programmed by software applications

[17]. The SDN architecture is made up of three layers:

2.1.1 Forwarding Plane

The primary function of these forwarding plane devices is to route incoming pack-

ets to their intended destinations using a centralised and programmable control plane’s

routing policy. Each switch, in the form of a forwarding table, maintains this routing

strategy. Flow rules [1] are what the items in the forwarding table are [1]. Each flow

is made up of three fields, as shown in 2.1: a header field, a counter field, and an ac-

tion field. The packet forwarding method is depicted in 2.2 as follows: When a packet

reaches on switch, it examines its forwarding table for a rule with a pattern field that

8

matches the header value of the packet, such as the (Ethernet port number, the source

IP address, VLAN tag, destination Ethernet or IP port). The value of the counter field

is incremented when a matching rule is found, and the action field associated with the

rule is executed. The actions are shown in 2.1.

Figure 2.1: Fields in a flow entry

Figure 2.2: Packet forwarding method in SDN

9

2.1.2 Control Plane

Single/multiple controllers compose control plane, which formulates policies to regu-

late and operate network traffic. As a result, the control plane can be considered the

"the brain of SDN network". The controller’s primary job should be to provide a cen-

tralised means of managing networks and exchanging the information between the data

layer and the networking applications that program the network. Dynamic access and

administration are enabled by moving the control plane to software. Without having to

touch individual switches or change their rules or configuration, a network administra-

tor can shape traffic from a centralised management console [19]. On the market, there

are more than twenty SDN controllers. The open source and active controllers listed

below are some of the best.

Floodlight

Of all SDN controllers one of for the OpenFlow protocol is Project Floodlight. It is

written in Java and is an enterprise class controller. It has support module-based apps

and the RESTful ones. The former apps are Java applications that are compiled with

the controller. This API can be used to get information from the controller and to send

information regarding route to the controller. In terms of contact with the controller,

the later API is restricted in comparision to the former API with regards to contact wit

controller, but By detaching from the controller via TCP/IP communication, hazardous

network application injection can be caused [20].

Ryu

It is a tiny controller based on components and implemented in Python. Ryu’s core is

tinier than others. Ryu provides software having APIs that are well-defined and make

it straightforward to build new applications for management and control of network. It

supports a number of protocols, like OpenFlow, Netconf, and OF-config) for manage-

ment of networking devices [21]. This controller comes highly promising.

10

OpenDaylight

It is the largest open source collaborative project, with the goal of increasing the rate at

which SDN is adopted and laying the groundwork for Network Function Virtualization

(NFV). The Model-Driven Service Abstraction Layer(MD-SAL) is at the heart of the

OpenDaylight controller. In this controller, all underlying network devices and network

applications are shown as objects or models [7]. The YANG models do this by provid-

ing broad details of capabilities of device/application without needing any party to be

aware of the other’s specifications of implementation details. Furthermore, OpenDay-

light supports a wide range of protocols on the SDN platform, including OpenFlow,

OVSDB, NETCONF, BGP, and many others, which make today’s networks more pro-

grammable and address variety of requirements of users. OpenDaylight is built on top

of a Kafka container, allows it to start and stop in a dynamic fashion without interfer-

ence with other modules [22].

ONOS

For establishing the controller cluster, ONOS is a native distributed SDN controller.

The scalability of deployment is increased by clustering of controller and at the same

time avoids the bane of one-point-of-failure issue of SDN. The control plane capacity

of an ONOS cluster can be increased as required. In case where more switches have to

be added to the network, more ONOS replicas can readily be installed to the cluster and

services wont be disturbed. ONOS, as OpenDaylight, is based on Apache Karaf frame-

work [24]. (OpenContrail. OpenContrail is based on industry protocols and includes

all of the parts required in virtualization of network. ONOS facilitate the development

specifically virtual network management. It also focuses on management of issues of

large-scale environments for eg issues of multi-tenancy,management and segmentation

of network,access management etc [25].

More controllers are also available NOX [24] and POX [25] are the most popular among

them. NOX is the initial OpenFlow controller, which was created concurrently with the

11

protocol [9]. As a result, it drew a lot of research interest. POX is a Python-based

brother of NOX that is commonly used in research for rapid prototyping of network

applications. Open Mul [26] is a C-based OpenFlow controller that focuses on perfor-

mance and reliability. This controller, they argue, is appropriate for "mission-critical"

situations [28]. We will use RYU controller in our thesis because it can operate on any

platform that supports Python and requires no extra configuration [29].

2.1.3 Application Plane

The application set that programme the controller to implement network control and op-

eration logic is known as the application plane. As depicted in 2.3, application plane ap-

plications include routing apps, firewalls, access control lists (ACLs), monitoring, load

balancers,intrusion detection systems (IDS), and DDoS attack mitigation. Network ap-

plications provide rules, which are then translated into southbound (data plane to control

plane)-related commands that programme the forwarding component’s behaviour[30].

The IDS network programme, for example, may keep track of network traffic data, host

migration, and payload of packet etc. When malicious traffic is detected, the IDS ap-

plication may be able to halt it before it infects the network. However, there are still a

number of security vulnerabilities with the network application’s implementation.

2.1.4 Southbound Interfaces

These interfaces (also known as APIs) provide communication between data plane and

control plane and acts as a link between the two planes. This interface allows for ef-

fective network control and enable modifications in networks dynamically in response

to real-time network demands. In contrast with other southbound interfaces he Open

Networking Foundation’s (ONF) OpenFlow is the mostly used as southbound interface,

and it will be addressed in the following subsections. It’s industry based standard that

specifies how the SDN controller communicates with switches/routers for improving

12

Figure 2.3: SDN Architecture

network reactivity as per real time need. OpenFlow allows users to add and remove en-

tries from switches’ and routers’ internal flow tables [27]. Other southbound interface

designs exist, and OpenFlow isn’t the only one that’s available or in the works. This the-

sis will be focused on OpenFlow-based SDN because it is the highly used southbound

interface.

2.1.5 Northbound Interface

It is utilised for communication of network applications in application plane with the

control layer and vice versa. Its programmabe nature helps in innovations and automate

the network for meeting the demands of various applications. It must be able to handle

a wide variety of applications. The northbound interface, for example, might be used

to optimise network applications such as load balancers, IDS, firewalls etc. The north-

bound interfaces of SDN controller is also used for connecting it to NFV orchestrators

or cloud systems like Puppet, Chef, Ansible, and OpenStack. For SDN northbound

interfaces, a range of interfaces such as RESTful APIs, Java APIs, Python APIs, or

13

message queues are available [28].

2.1.6 Westbound/Eastbound Interface

They interaction boundary remains still undecided. They are used for communication

across separate SDN/non-SDN domains in general. This interface is like a communi-

cation link between control layer of SDN and different network domains that are con-

trolled via different controllers in SDN. Establishing of network flows becomes easy

across many domains while also allowing the interchange of network status informa-

tion to impact routing decisions of each controller. Control planes communicate with

non-SDN domains using the eastbound interface [29]. In ideal scenario both domains

must seem to be entirely consistent with each other in this way. Routing protocol used

by non-SDN domains, for example, should be compatible with the SDN domain.

2.2 Communication Protocol

For management of the the routing of network devices on an SDN, many communica-

tion protocols have been established. OpenFlow is the most widely used communication

protocol.

2.2.1 Openflow

Traditional networks have made overall revolutionary improvement in terms of security,

speed, and dependability. In terms of the physical network, network layer devices now

have high-capacity links and more computing power. A number of tools for monitoring

and inspection have arisen as a result of these uses. However, since its inception, the

structure hasn’t changed significantly.

The primary function of a network is to carry out operations such as switching, rout-

14

ing, and access control. In today’s networks, this function is performed by network

devices from several vendors running proprietary firmware, leaving little room for fresh

research concepts such as routing algorithms.This impediment is one of the reasons

why current network architecture is stagnant and inflexible, with no major change in

this direction.

To address this problem, OpenFlow is an open standard protocol. Now, network ad-

ministrators may install and regulate the desired functionality within the software. Fur-

thermore, it enables academics to conduct real-world trials with novel protocols and

algorithms without requiring companies to open up their products.

OpenFlow makes use of flow-tables to construct firewalls, NAT, QoS, and network man-

agement statistics regardless of which vendor is involved. A centralised controller can

develop and modify these flow-tables, which contain match/action rules. Using flow-

based packet forwarding processing, the controller allows network managers to pro-

grammatically govern flows and construct a customised route from source to destina-

tion. It reduces power consumption and network management costs by removing router

packet handling and allocating paths with the help of centralised control plane.

2.2.2 OpenFlow Architecture

Three basic characteristics of the OpenFlow network design are:

1. The data plane is made up of Openflow switches (those that follow the Openflow

protocol/compatible with it).

2. Single/multiple OpenFlow controllers make up control layer.

3. The switches connect with the control plane via a safe control communication

channel .

As indicated in fig. 2.4, data path communication is given by software, whereas control

15

Figure 2.4: Openflow Network Architecture

path communication is provided by a controller and can be made secure by optional

cryptographic protocols such as SSL/TLs, in which both entities are mutually authenti-

cated using symmetric keys. Even though it is a secure method, the controller is prone

to attacks like Man-in-the-Middle and DoS attack such as the Black Hole attack. There-

fore, a good security strategy must be present to protect against these kind of attacks.

2.2.3 OpenFlow compliant switch

A switch that is OpenFlow compliant or based on the protocol is the most basic data

forwarding device. It is in charge of the flowtable and keeps it up to date. It communi-

cates openflow messages with the controller via a secure control pat/channel, as shown

in 2.5.

On the OpenFlow Switch Specification ONF, many versions are available, but in this

thesis, OpenFlow version 1.0 is used.

Header Fields Counters Actions

Table 2.1: Fields in a flow table for OpenFlow

16

Figure 2.5: Basic Packet Process mechanism for Openflow switch

2.2.4 Flow Tables

An openflow switch keeps track of entries in one or more flow tables. As shown in

table 2.1 above, each item has three fields: match, action, and counter table 2.1 above.

After receiving a packet, switch looks into its forwarding/flow table for a matching rule

for the packet’s header. The relevant action field (drop/forward/modify and forward) is

then executed, and the counter is incremented. Counters are saved and used to maintain

record of the statistics of flow, for example the packets counts/bytes counts received, the

duration of the flow, and so on. If the flow table of switch doesnot have any matching

rule, the packet is passed to controller, which then delivers it back to the switch with a

feedback.

2.2.5 Matching flow

The header field in the openflow switch’s flow table contains multiple fields with. Flows

arriving at the switch are compared on each tier of the OSI model as well as on the

switch port. The list of those fields is as follows:

• Incoming switch port

• IEEE 802.3 Ethernet source and destination address

17

• IEEE 802.3 Ethernet type

• IEEE 802.1Q VLAN ID and priority

• IP source and destination address

• IP proto field

• IP Type Of Service (TOS) bits

• TCP/UDP source and destination ports

2.2.6 Actions taken on the flows

If any of the match fields of flow table matches with an incoming packet, an action must

be done on that packet according to flow table. The OpenFlow switch must be capable

of forwarding packets to each physical port. OpenFlow standard also define virtual ports

as special targets to which packets may be routed, as shown in table 2.2 and table 2.3.

There are two types of actions: “required” and “optional”. To be OpenFlow-compliant,

all switches must provide both the required and optional actions, which are useful but

are not in every case in an OpenFlow switch.

Virtual Port Description
All Send the packet to all ports except the one where it was received.
Controller Send the packet to the controller in encapsulated form.
Local Send the packet to the switch’s local networking stack.
Table Execute actions in the flow table. Only for packet-out messages.
In-port Send the packet to the port where it was received.

Table 2.2: List of virtual ports for the “Required” forward action

There are a number of more actions in the flow table of switch other than the forwarding

action:

• Drop: An empty action list indicates a required action. Every packet matching an

empty list of action is dropped.

18

Virtual Port Description
Normal Forward the packet on the basis of traditional forwarding mechanisms,

i.e. traditional L2, VLAN, and L3 processing.
Flood Send the packet along the minimum spanning tree, not including the

incoming interface. All ports in the OpenFlow enabled switch has a
NO_FLOOD-bit, which indicates that the port doesn’t belong to the
minimum spanning tree. The packets that match that flow entry are
e forwarded to the ports that have a NO_FLOOD-bit.

Table 2.3: List of virtual ports for the “Optional” forward action

• Enqueue: This is an optional action for queueing packets related to a port for

providing QoS.

• Modify-field: It is an optional operation used for changing the header field of a

packet that has arrived. The changes that can be made are as follows:

– Stetting up of VLAN ID and priority.

– Stripping off the VLAN header.

– Modification of Ethernet source MAC address and destination MAC ad-

dress.

– Modification of the IP source and destination.

– Modification of IP TOS bits

– Modification in the source and destination ports of transport layer.

2.2.7 Counters

Flow-table of switch have counters that allow it to store statistics such as queue, flow,

and port, as shown in table 2.4

2.2.8 Flow types

The flows are generally classified into micro flows and aggregated flows [31]:

19

Counters Bits
Per table
Active Entries 32
Packet Lookup 64
Packet Matches 64
Per Flow
Received Packets 64
Received Bytes 64
Duration Seconds 32
Duration Nanoseconds 32
Per Port
Received Packets 64
Transmitted Packets 64
Received Bytes 64
Transmitted Bytes 64
Receive Drops 64
Transmit Drops 64
Receive Errors 64
Transmit Errors 64
Receive Frame alignment Errors 64
Receive Overrun Errors 64
Receive CRC Errors 64
Collisions 64
Per Queue
Transmit Errors 64
Transmit Bytes 64
Transmit Overrun Error 64

Table 2.4: Required list of counters for use in statistics messages

20

• Microflows: Small networks, such as campus networks, benefit from these types

of flows. In this form of flow, each flow table entry corresponds to a single flow.

• Aggregated: This sort of flow is appropriate for big networks, backbone networks

for example, where a huge amount of entries of flow table are needed. Here, a

single flow entry (Wild-carded) matches more than one flow from a single cate-

gory.

Both these type of flows can further be classified into Proactive flows and Reactive

flows.

• Reactive: Until the first packet is received by controller from OpenFlow switch

it remains in idle state in this configuration. A new flow table entry is created

after parsing the incoming packet. A little amount of time for setup is required

for every new flow entry. In case of failure of the connection between the switch

and controller the switch is unable to forward packets like a regular switch, the

hosts will not be forwarded the packets.

• Proactive: Controller pre-installs entries into flow table of switch without requir-

ing the first packet of the flow to be received. No additional time is required for

setting up of the flow, and traffic will not be disrupted if the link between the

controller and the switch fails.

2.2.9 Packet forwarding mechanism

Upon receiving a packet switch analyses the header fields to analyze if there a match

entry is present in flow table. In case a match is found, action is performed according

to field. If multiple matches exist for single entry, the flow entry having the highest

priority is chosen. The counter of that flow entry is then incremented, and the packet

is transmitted to a port. In case of no matching flow entry, packet is sent to controller,

21

which determines which logic/action should be applied to that packet and any sub-

sequent packets of a similar nature. The flowchart 2.6 depicts the packet forwarding

method.

Figure 2.6: Basic Packet Process mechanism for Openflow switch

2.2.10 OpenFlow communication messages

In OpenFlow protocol there are following types of communication messages i.e., Controller-

to-switch, Asynchronous and Symmetric messages.

Controller-To-Switch Messages Messages sent to switch from controller are known as

Controller-To-Switch Messages. Following are its types:

• Features: In order to know the features supported by a switch, a ’feature request’

message is sent by controller to it and it replies with a ’features reply’ message

for specifying features it supports.

• Configuration: By this message configuration parameters in the switch are set and

queried by controller.

• Modify-State: For adding/deleting or modifying flow table’s flows and for setting

properties of switch port this message is used.

22

• Read-State: The controller uses these messages for collecting statistics from flow-

tables and/or ports and/or individual flow entries.

• Send-Packet: For sending packets out of specific switch port a controller uses this

message.

• Barrier: In order to check whether previous messages had arrived controller uses

this message. If previous messages have successfully arrived a Barrier Reply

message is sent by switch.

Asynchronous Messages These messages are sent to the controller by switch. Follow-

ing are four main asynchronous messages:

• Packet_in: Controller sends this message in case a switch there is no matching

entry with a received packet. It may also be sent to controller if the matching flow

rule orders the switch to send packet_in message to controller.

• Flow-Removed: The flow table entries have two types of timeout :The idle time-

out means that if no packets match it after this time flow entry is deleted from the

flow table whereas hard timeout is time after which time the flow is deleted from

flow table regardless of whether packets match or not. The controller indicated

them via Flow-Removed messages.

• Port-status: In case status of an existing port changes or if new port is added or if

a port is removed or is modified this message is sent to controller.

• Error: This message is used to inform a controller in case of a switch error.

Symmetric Messages The switch as well as the controller can send symmetric mes-

sages in both directions. Following are the types of these messages:

• Hello: Upon connection start up controller and switch send these messages to

each other.

23

• Echo: They are of two types echo request and echo reply when a switch or con-

troller send an echo message ,echo reply message is sent to show the liveness,

bandwidth or latency of connection between controller and switch.

• Vendor: The vendors can create custom message and provide more functions with

the help of these messages.

2.2.11 Explanation of messages exchanged in OpenFlow network

Mininet [30] was used for explaining process of exchange of messages mentioned above

for simulating host h1 and h2 connected with a switch and controller, as shown in fig

2.7 below. For this demonstration, we’ll go through how to connect to the Switch

Controller, then how to communicate from one host to another using the OpenFlow

switch and controller.

Figure 2.7: Network Topology using mininet

Message establishment between a switch and a controller

Upon joining an OpenFlow network by a switch, a TCP handshake is done between

controller having IP Loopback interface 127.0.0.1 and port 6633(default), as illustrated

24

in fig 2.8. After that, both parties begin exchanging Hello messages with the greatest

OpenFlow version that they support. Controller send a ’Feature request’ message to

switch for knowing the available ports , and switch responds with a Feature reply mes-

sage with port’s list,speed and tables and actions supported. The controller then sends

a set config message to the switch, instructing it to deliver flow expirations. Finally, the

switch and the controller send echo requests and replies periodically to communicate

information about the bandwidth, latency, and liveness of their connection.

Figure 2.8: Communication Messages between switch and controller

Messages exchanged between two hosts

In order to show how the link between two hosts work in SDN network we utilised ping

tool for sending ICMP messages from host h1 to h2 as well as from h2 to h1 . Process

begin when an ARP request is made to the switch by h1, to ask for h2’s MAC address;

since switch is unaware of how to process flow, therefore it sends it to controller as a

packet_in message. After this, the controller sends Feature request message to switch

for knowing about ports available, then switch responds with ’Feature reply’ message

having a list of ports, port speeds, and supported tables and actions. The controller then

sends a list of configuration message to switch, instructing to deliver expiration values

of flows. The OpenFlow controller will then install new flow entries in the flow table of

25

switch, as seen in Fig 2.9.

Figure 2.9: Ping process between h1 and h2

2.3 Network Protocols

To build its perspective of the network topology, different kinds of packets of protocols

like ARP and the LLDP are sent by the switches in form of packet_in messages. Con-

trollers manage LLDP and IGMP messages for topology discovery and multicast group

maintenance, as well as ARP queries and answers, for enabling hosts to construct ARP

caches [31] for facilitation of network communication.

26

2.3.1 Adress Resolution Protocol

ARP Proxy SDN, like IP networks, enables Address Resolution Protocol (ARP), which

determines the relationship between a destination IP address and its corresponding hard-

ware(MAC) address so that hosts can transmit and receive IP packets appropriately.

Layer two switches in IP networks flood an ARP request submitted by a host in order to

receive an ARP reply. A router functions as an ARP proxy, sending back an ARP reply

with the hardware address of its own interface if the target IP address in the ARP request

is not in the local network. An ARP proxy application in the SDN controller handles

ARP packets in SDN. When a host sends an ARP request to a switch, it is transmitted

to the controller as a packet in messages. We used the Ping programme to send ICMP

packets from h1 to h2 and vice versa to demonstrate how the host-to-host link works

in an OpenFlow network. The procedure begins when h1 makes an ARP request to the

switch, requesting h2’s MAC address; the switch is unsure how to handle the packet,

so it sends it to the controller as a packet_in message.Packet_out messages are used to

generate ARP reply packets, which are then routed to the ingress switch. The original

host receives an ARP response as a result.

2.3.2 Link Layer Discovery Protocol(LLDP)

To create their view of the network , SDN controllers process a number of protocol

packets sent by switches using OpenFlow packet_in messages. During process of con-

nection discovery, the controller sends LLDP packets as Packet-out messages to all

switches in the network. When the SDN switch receives an LLDP packet from the con-

troller, it sends it to all of the other switches connected to it. Because there is no similar

forwarding rule in the switch’s FlowTable, when a switch gets an LLDP packet from

another switch, it sends the LLDP packet to the controller as a packet_in message for

assistance. [33] as shown in fig 2.10.

27

Figure 2.10: Network Topology Discovery in SDN using LLDP

2.4 Vulnerabilities of Network Protocols and Black Hole

attack

The described link discovery approach is insecure because LLDP control packets are not

authenticated [34] As a result, any LLDP packet that the controller receives is regarded

as valid. As a result, an attacker can poison the controller’s topology information by

sending counterfeit LLDP control messages. The attacker can forge the content of

LLDP packets or fake link discovery by constructing a link that does not exist [35].

Consider the situation where a host has been compromised. The controller gener-

ates LLDP packets for all of switch S1’s active ports, specifically LLDP packet(S1,

P3) and LLDP packet(S1, P4) (S1, P4). Then, to relay the necessary LLDP packets,

it sends packet_out messages to all active ports, specifically packet_out(S1, P3) and

packet_out(S1, P4). The attacker captures the LLDP packet(S1, P4) and changes it to

LLDP packet(S2, P3) before sending the faked packet to S1. When switch S1 receives

an LLDP packet (through Port P4), it sends a packet_in message to the controller that

includes the sender’s and receiver’s information, as determined by the discovery tech-

nique (Step 3). When LLDP packet(S2, P3) is transferred, S1 transmits packet_in (S2,

28

P3, S1, P4), with the first two parameters from the original. The controller assumes that

a link exists between Switch S2 (through Port P3) and Switch S1 (via Port P4) when it

does not, as the attacker’s goal require [36]. Packet loss happens when the controller

tries to route traffic through these bogus links, and if the link is on a critical path, a

black hole may result.

Attacks like ARP spoofing, which might affect behaviour in a traditional network in

a specific way, can present differently in SDN topologies depending on the controller

implementation. For example, bogus links can be created using Link Layer Discovery

Protocol (LLDP) signals to trick the controller into thinking they exist, resulting in

black hole routing.

ARP spoofing attacks, in which a rogue node sends ARP packets, are also seen on SDN.

Successful attacks have the potential to contaminate network topology data, which is a

key component of fundamental SDN components. As a result of the poisoned network

visibility, the SDN controller’s top layers services and applications may be completely

misconfigured and badly impacted.

SDN also sees ARP spoofing attacks, in which a rogue node transmits ARP packets.

Successful attacks have the potential to poison network topology information, which is

a critical building ingredient for basic SDN components. The top layers services and

applications of the SDN controller may be fully misconfigured and negatively effected

as a result of the poisoned network visibility. In some circumstances, this condition re-

sults in major hijacking, denial of service attacks, and network collapse. Several SDN

investigations reveal that these attacks affect all current main SDN controllers (e.g.,

Floodlight, Open Daylight, Beacon, and POX). If such core network topology informa-

tion is tainted, all dependent network services are damaged instantaneously, resulting

in catastrophic problems [37]. As a result, the controller’s routing services/apps can

be altered to create a black hole route/attack. The controller then sends a Feature re-

quest message to the switch to see which ports are available, and the switch responds

29

with a Feature reply message with a list of ports, port speeds, and supported tables and

actions. The controller then sends a set config message to the switch, instructing it to

deliver flow expirations. When a switch receives an LLDP packet from another switch,

it sends the LLDP packet to the controller as a Packet-in message for assistance because

there is no analogous forwarding rule in the switch’s FlowTable. The SDN controller

can check whether switches are directly connected to one another and design the global

topology after receiving Packet-in notifications via LLDP [33].

Certain communications can be dropped if malicious or aggressive nodes refuse to route

them. A Black Hole Attack occurs when all of the packets are dropped via them. It’s

one of the most damaging routing attacks out there. It generates network traffic and dis-

sipates all network interactions. It made use of a variety of routing metrics. Fake link

quality, shortest path, and other criteria are used. It is a direct attack on the network’s

service availability. If the malicious node does not forward all messages between net-

work devices and the controller, communication will inevitably break down, with data

plane devices unable to contact the controller when necessary.

The black hole attack is a type of DoS attack that generates and disseminates forged

routing information. The rogue node advertises itself as having a proper routing path

between the source and destination via the routing protocol. It then drops the captured

packets rather than forwarding them to other nodes.

Attackers with access to a host directly connected to an SDN, such as a server or a user

workstation, can execute a blackole attack to fool the SDN controller about the network

topology and location of target hosts, allowing them to hijack a target host or traffic of

interest. These are usually ARP-based attacks because the Address Resolution Protocol

(ARP) is one of the few protocols that hosts can use to change the SDN control plane.

According to prior research, hosts can also inject or tunnel LLDP packets.

Attackers with access to a host directly connected to an SDN, such as a server or a

user workstation, can execute a blackole attack to fool the SDN controller about the

30

network topology and location of target hosts, allowing them to hijack a target host or

traffic of interest. These attacks include denial of service (DoS)/DDoS assaults, data

manipulation, repudiation, blackhole attacks, and side channel attacks.

It’s also possible that the controller will be subjected to a false information attack.

Nodes in the network may provide the controller with fake route information, which

the controller may use to construct a false route for certain hosts, resulting in a black

hole. It is relatively easy to create false rules if a controller becomes wicked, resulting

in network disputes.

A hacked program can use OF rules to adjust forwarding behavior invisibly, resulting

in active network exploits like the black hole attack.

2.5 Related Work

Being previously stated, as the key component of the SDN network, the SDN controller

becomes more exposed to a variety of assaults. Successful attacks have the potential

to contaminate network topology information, which is a key component of core SDN

components. If the topology view of the network is altered ten the services of the upper

layer might be totally causing DDoS attacks and breakdown of network. According to

several SDN investigations, these attacks affect all of the current key SDN controllers

(e.g., Floodlight, Open Daylight, Beacon, and POX). All reliant network services are

immediately harmed if such essential network design information is corrupted, perhaps

leading in catastrophic challenges. Even a black hole attack can be launched by cor-

rupting the routing services.

The fundamental risk of LDS in SDN is absence of proper mechanisms of authentica-

tion of openflow discovery protocol (OFDP), a standard utilized for implementing the

link discovery process in mainstream controllers such as Floodlight, OpenDayLight,

POX, and Ryu. OFDP cannot ensure the legitimacy of incoming network packets like

31

LLDP packets, that can cause packets to being received at random, even those that are

manufactured. Attackers can obtain and analyze LLDP packets using network monitor

tools in order to carry out tampering. As a result, the controller is likely to update the

view of network on the basis of forged LLDP packets, and would result in wrong view

of network adversely affecting the management and may also result in collapse of net-

work. Nonetheless, the different methods that have been proposed so far have not been

able to handle the problem effectively.

If an attacker successfully hijacks an OpenFlow-based SDN switch, they gain access to

all flow rules and data [36]. If an attacker gains control of a host, they can imperson-

ate a legitimate user and gather data from other hosts (e.g., tokens and passwords).

[36]developed a False LLDP Injection technique in which an adversary sends fake

LLDP packets onto an OpenFlow network to inject bogus internal links between two

switches. By monitoring traffic from OpenFlow switches, the adversary can recover the

genuine LLDP packet. [36] has created a host location hijacking attack that may fake a

target host’s identity and use its location information without their knowledge. Hong et

al. [38] presented TopoGuard, a security module for OpenFlow controllers that detects

Network Topology Poisoning Attacks automatically and in real time.

A study in [39] presents a solution based on the pre-condition and post-condition of

the host migration to overcome the faked identity problem in SDN. Once the host has

migrated from its current location, it must notify the SDN controller of its prior port

shutdown. The controller confirms that the host is not reachable in the post-condition

by sending ping packets to its prior location. As a result, the controller can efficiently

follow the host’s true location and detect the malicious host’s faked identity. Abdou et

al [3] in their work presented the specific features to differentiate between benign and

malicious users.

Malicious hosts can produce topology poisoning, which results in a black hole attack.

SDN controllers must be accessible to end users, however they are subject to end-user

32

assaults, particularly black hole attacks, in which an attacker can drop/sniff packets,

causing a loss of availability and computational resources, making the controller un-

available to legitimate users. One way to avoid black hole attacks from end users is to

authenticate them.However it results in large over head. Shin et al. [40] presented ways

for improving network security by using an SDN controller to dynamically route flows

through static security devices for attack detection. Attacks, on the other hand, can only

be detected after the Controller has established the flows. As a result, the controller may

be subject to attacks from malicious end hosts. A security management application for

the controller is proposed in [41]. SDN security policies can be specified and evaluated

using this application. These regulations can then be enforced on network flows by se-

curity modules in the switches. This work enables proactive identification of malicious

hosts prior to the controller receiving flow requests.

The use of TLS (Transport Layer Security) has been made optional in the openflow

specification, making it a weak-point and plainly vulnerable to numerous assaults such

as black-hole attacks, according to [42]. As a result, they recommend that an intrusion

detection system (IDS) be used to detect rogue hosts.

Sphinx [31] framework that drew attention to a slew of security issues One issue was

the construction of a bogus topology in the network, among other things. Fake LLDP

packets can be used by a node to alert the controller of a fake route. A switch black

hole is formed by a malevolent host supplying false information about a route in order

to create a black hole. Graph blackholes could be identified by Sphinx by validating the

byte consistency of flow.

The SDN controller is intended to be accessible to end users, however it is vulnera-

ble to end-user assaults, particularly the black hole attack, in which an attacker can

drop/sniff packets, resulting in a loss of availability and computing resources, making

the controller unavailable to end users.Shin et al. [40] offered approaches for improv-

ing network security by using the SDN Controller to dynamically route flows through

33

static security devices in order to identify assaults. Attacks, on the other hand, can only

be detected after the Controller has established the flows. As a result, the Controller

may be subject to attacks from malicious end hosts.A security management application

for the controller is presented by Varadharajan and Tupakula [43]. SDN security poli-

cies can be specified and evaluated using this application. These regulations can then

be enforced on network flows by security modules in the switches. This work enables

proactive identification of malicious hosts prior to the controller receiving flow requests.

The fundamental solution for the data layer malicious node/end user dilemma is encryp-

tion and authorization authentication. However it caused undue overhead and complex

computationn. To authenticate the host identification, AuthFlow [37] employs a RA-

DIUS server. It implements access control for each host based on its level of authority

by mapping host credentials to a set of flows. To ensure the entire SDN communication

process, MM et al. [11] suggested a hybrid control security approach based on TLS.

On the other hand, this method involves the usage of a centralised trust management

module and increases the signature and authentication overhead, both of which have an

impact on system performance. The controller has SLICOTS installed, which monitors

active TCP connection requests and prevents malicious hosts.

WedgeTail [36] is an Intrusion Prevention System (IPS) that monitors a network for ma-

licious devices. They rely on collecting all OpenFlow messages sent between switches

and controllers in an SDN network. They build a virtual network copy in geometrical

space using this information, with each forwarding device represented as a dot and each

packet as an edge linking the dots.The expected route trajectory for each packet is enu-

merated in geometrical space based on historical data. The attack detection engine flags

packets that adopt unusual trajectories or courses in real time, implying that one or more

of the devices that the packet crossed along the trajectory is/are malicious. This study

has been shown to be superior to the SPHINX system, which was an attack detection

method based on a graphical depiction of network traffic flows and a threat model that

ignored trusted devices.

34

SDN’s traffic monitor continuously collects traffic data and flow characteristics from

each switch/router. The controller employs the weighted KNN with GA to classify

whether each switch/router is abnormal or not after gathering these data and parameters.

Then, in the next phase, creates a suspicious list for further testing and confirmation.

Encryption of communication is an old method for preventing packet sniffing attack.

However, availability loss due to blackole attack disrupts the communication. Further-

more, actual applications have a variety of constraints. To begin, both communicating

parties must support the encryption protocol; otherwise, communication would fail.

Second, several common protocols, including HTTP, FTP, Telnet, and SMTP, do not

use encryption, posing a severe security risk to communication using these protocols.

Finally, some encryption systems have security weaknesses that allow attackers to de-

crypt transmission data.

Collaborative modifications to numerous network configurations place greater demands

on network management capabilities. In a typical IP network, where routing protocols

are used to configure the routing table, distributed control is used. The changing net-

work configuration might have major effects in this paradigm, such as service outages

and route inflation [9]. It’s also difficult for traditional networks to alter several network

configurations at the same time. Due to the lack of a global view and flexible resource

allocation, MPLS, a high-speed networking technique utilised in traditional networks,

finds it difficult to execute dynamic resource adjustments.

[9] attempts to enable dynamic changing of host IP configuration in a typical network.

However, because various new gadgets are being released, the cost is substantial. As

a result, collaborative modifications across many network configurations necessitate

effective network management. SDN (software-defined network) [13] is a new way

for achieving dynamic network configuration. SDN uses logic centralised control by

decoupling the control plane from the forwarding plane (data plane). SDN’s robust

network management and control capabilities provide for additional flexibility in the

35

implementation of dynamic network configurations. Because of SDN’s programmabil-

ity, it can directly regulate the flowtable of forwarding devices, avoiding service inter-

ruptions and inflation of routing. Because of SDN’s centralised control, a global view

of the network is possible. As a result, it is possible to make cooperative changes to

numerous network configurations.

36

Chapter 3

Proposed Methodology

The static route configuration is a serious threat to communication security as the attack-

ers can obtain packets and cause black hole attack. Therefore, we propose a hopping

communication approach in which the routing paths are dynamic and pass through mul-

tiple users/hosts that are selected based on their health. This periodic changing of path

increases the ability of network to resist black hole attack.

In hopping communication, our source and destination mac address changes on every

hop making it difficult for attackers to capture traffic and hence drop/absorb it.

The most widely used topology in data center networks is the multi-rooted topology. In

this kind of topology, more than one path are available between source and destination

host. To take full advantage potential of multi-rooted topology, we employ our multi-

hop multiple path routing implementation method instead. It allows for selection three

best paths based on the health of the nodes. The SDN approach is then employed to

achieve control of flow at a finer level: The network state is collected in control plane,

and path allocation is done individually with the help of real-time link information. The

routing rules are then saved in flow table of switch. This method maximizes the use of

network resources and reduces congestion at the same time. This on demand multi-path

routing is done only when a new flow is sent by host.

37

3.1 Methodology

Mostly the topologies used in data-centers are multi-rooted topologies. In such topolo-

gies there are more tan one path between two hosts. In our scheme we therefore employ

a multi-hop multiple path routing approach in order to resist black hole attack. This

dynamic routing with hopping of route will make it less easier for attackers to carry

out targeted packet drop/black hole attack because the data will pass through a num-

ber of hosts and the attacker will have to take control of more hosts in order to carry

out attack. In this approach we select tree best paths between a source and destination

host based on the fitness of the hosts. This fitness is based on past behavior of hosts

and is assumed that they will behave in a similar manner next time. The controller of

SDN gathers real-time statistics and link information and ten selects the path/link with

the hosts with maximum fitness. The fitness of link/routing path is calculated in our

approach by taking product of the fitness of all the hosts involved in that link/routing

path.

3.1.1 Algorithm

In order to explain how our multi-hop multiple path scheme works we use an example

to show the main messages exchanged in a typical scenario

• Suppose host h9 wants to communicate with host h1. First of all packet in mes-

sage is sent by both hosts to the controller for registering to its services. When

this message is received by the controller, it stores this information in a host reg-

istration module and assigns a unique ID to the hosts. In our implementation the

host ID is h1 and h9.

• Next, as host h9 is unaware of the best routing path to host h1, a connection

request message is sent to the controller in order to inquire about the the route

information of host h1. This request is in the form of route request message and

38

is broadcasted to all the hosts.

• When destination i.e., host h9 receives the RREQ message it responds with a

route reply packet

• Controller finds out three best paths available paths as per topology of network

and decides one best path after computing the product of the fitness of hosts

involved in path.

• Host h9 then sends a DATA message to host h1 it then replies back with to host h9

with a REPLYDATA message. All these 4 messages shared serve as connection

establishment.

• After connection establisment, h9 is now able to communicate with host h1 and

it communicates with our hopping communication approach in which the source

and destination MAC addresses change at every hop.

• The values of detection parameters are recorded for the path and if they there is

an anomaly in the range of values alert is generated and connection is terminated.

The algorithm of our routing approach is shown below:

39

3.2 System Architecture

The purpose of writing this research is to give an effective routing mechanism for pack-

ets in SDN that as the capability of detecting black hole attack. This mechanism is

based on collaborative trust with hosts. The trust means that the hosts will behave in a

similar manner next time as they behaved in the past. With the help of multiple paths

through multiple trusted hops in our solution the controller can select the best path

keeping in view the performance of the hosts involved. This will decrease the packet

loss and delay. Whenever a new flow arrives a switch ,the switch sends it to the SDN

controller which then our routing algorithm is used for calculation of the routing path

by controller .

3.3 Implementation

Here, we show the three layer construction of our routing mechanism. We consider a

software defined network consisting of a control layer which performs the task of pat

allocation in coordination with the hosts, a data layer consists of switches and a host

cluster supported by our routing approach tat transmit data and communicated with

control layer for allocation of best path for the flow. Management of the flow used in

our approach is shown in 3.1.

3.3.1 Control Layer

To realize gathering of information, calculation of path, selection of optimum path, and

managing flow, the control layer has following modules:

• Information Gathering Module: This module is responsible for collecting infor-

mation about topology, node and link discovery by sending periodic LLDP mes-

sages. It also collects information about the link for example delay ,throughput

40

Figure 3.1: Architecture of our proposed model

etc for detection of anomalies.

• Path Calculating Module: This module takes the information from the informa-

tion collection module about the topology and link information and utilizes this

information to find out the fitness of the nodes and calculates three available paths.

• Flow Management Module: This module keeps track of flow status and allocates

best path in the current topology.

3.4 Simulation Environment

The details of our simulation environment used in our implementation and experiments

are as follows:

3.4.1 System Specifications

The test was performed on an Intel R© CoreTMDELL laptop with i7-7500U processor

running at 2.70GHz and 2.90GHz and 8GB of RAM. For the Linux environment, we

41

used virtual machines to generate Ubuntu 14.04. We installed the Oracle VM Virtual

box as the virtual machine emulator. For making the testbed, we used Mininet to create

the testbed where one “remote controller” was used with a custom topology with four

switches and ten hosts. The switches were Open vSwitches with OpenFlow protocol.

The controller was Ryu.

3.5 Simulation Structure

The simulation structure used for our implementation and experiment is shown in table

3.1.

Table 3.1: System Specifications
Processor Intel Core i7
System Type 64-bit Operatin System
Oracle Virtual Macine
Ubuntu 14.04
Mininet Installed on Ubuntu 14.04
POX Controller Run on Ubuntu 14.04

3.5.1 Software Tools Used in Experiments

Table 3.2: Software Tools Used For Implementation and Experiments
Software Function Version
Mininet Network Emulator 2.2.2
MiniEdit Graphical User Interface 2.2.0.1
Open vSwitch Software SDN Switch 2.3.90
Ryu SDN Controller Platform 0.5.0
Oracle VirtualBox Virtualisation 6.0.4
Linux(Ubuntu) Host Operatin System 14.04
Python Programming Language 2.7.6

VirtualBox

We may make a virtual network environment using Oracle’s free software [34]. With

its assistance, an entire operating system can operate within another. We also installed

42

Mininet VM using VirtualBox, which makes switching from Windows to Ubuntu and

vice versa instantly.

Mininet

It’s a software emulator that uses SDN to simulate a practical topology [35]. It helps

in simulating large networks on single workstation without the need for a network con-

nection. Mininet can be used to simulate network topology in OpenFlow switches. It

comes with a virtual machine, OpenFlow binaries, and a kernel pre-installed.

MiniEdit

The Mininet network simulator includes MiniEdit, a basic GUI editor for Mininet.

MiniNet can be expanded with MiniEdit, which is a demonstration tool. Mininet’s

Python API was used to construct a graphical user interface (GUI) application. It’s a

simple network editor that lets us drag and drop switches and hosts, wiring them up

together, and to produce a real, functional network just by hitting the "run" button. The

MiniEdit script can be found in Mininet’s examples folder. Fig 4.1 shows the command

to run it.

Figure 3.2: Command Run on MiniEdit GUI

RYU It’s a Python-based open controller that can turn OpenFlow into switch,a load

balancer, a hub, a firewall, and various other devices. We can pass parameters into the

topology in real time. There are provisions for developing custom components as well

as stock components. RYU is a framework for establishing OpenFlow communication

between SDN switches.

To start the RYU Controller, the command in fig 4.2 starts the controller.

Figure 3.3: Command To Start Ryu Controller

43

Ping It’s an utility for system administrators. It sends periodic echo request packets

to a target network address and then returns the packet to the source using the Internet

Control Message Protocol (ICMP). It calculates the round-trip time and displays the

total number of packets transmitted, received, and lost, as well as the lowest, maximum,

and average response times.

Python Scripting We have used python programming language for scripting with SDN

controller application for detection and Mininet. Some of associated python distri-

butions and libraries ,modules etc, we utilised are: Random(accessing iterable object

randomly) ,socket API of python(for TCP and UDP host communication interfaces

) , blessings(API to manipulate terminals for hosts), matplotlib(library for graphical

plotting), subprocess (module that to run external programs and inspect their outputs),

datetime (module to work with dates as date objects(it is not python data type however

can be imported), NumPy library(to work with arrays)

3.5.2 Simulation Topology

In our mininet script, we’ve defined a custom topology with four switches and ten hosts,

as shown in fig 3.4. In the miniedit GUI, the topology is presented in fig 3.5.

3.6 Mininet Topology

As shown in fig 3.5 flat topology is created in Mininet graphical interface Miniedit

consisting of 10 hosts and 4 switches and a Ryu controller.

3.6.1 Mininet Topology Code

For controlling the network and gathering of data from hosts, hosts must register their

information(IP address and port) with the SDN controller. It is saved by the SDN con-

44

Figure 3.4: Screenshot of Simulation Topology Script

troller, and each host is given a unique ID for identification.

3.7 Detection Metrics

The metrics used to detect black hole attack are as follows:

3.7.1 Throughput

Throughput refers to the speed at which a node may send packets over the network. It

is, in fact, the total number of packets successfully transmitted from the origin to the

destination. Following is the formula for throughput calculation:

45

Figure 3.5: Topology in Miniedit

Throughput =
(Total.packets.success f ully.delivered.to.destination)

(Total.packets.sent.by.source)

3.7.2 End to End Delay

It is the time taken by a packet to travel from its sender to its receiver , including routing,

release, and transmission delays is known as end to end delay.

3.7.3 Packet Delivery Ratio

Packet Delivery Ratio refers to the average number of packets that successfully reach

their destination in a given amount of time. The formula for PDR is :

Packet Delivery Ratio =
(Total.packets.at.source)

(Total.packets.received.at.destination)

3.8 Anomaly Detection

Anomaly detection is technique of identifying events in dataset that do not follow the

expected pattern. These occurrences are referred to as anomalies or outliers. In real-

time applications, anomaly detection algorithms have been widely employed to discover

46

Figure 3.6: Mininet Topology Code Snippet

unexpected patterns in a system. Establishing areas of regular behaviour in the data is

a straightforward approach of detecting anomalies, and cases that do not fit into this

category are referred to as anomalies. The anomaly detection technique selected is

influenced by the type of accessible information, its format (labeled/unlabeled), and

nature of anomalies to be identify. We employed a method in which we set detection

metric thresholds and repeated our experiment 100 times in both normal and black hole

attack circumstances. When these metrics exceed our predefined threshold, an alert is

generated, and the malicious node that is dropping/absorbing packets is removed from

the routing path, and a new route is chosen.

47

Chapter 4

Implementation

4.1 Proposed Methodology

4.1.1 Algorithm

The essential messages exchanged in a typical scenario have been included to provide

a clear idea of our suggested solution.

• Let’s say that host h9 wishes to communicate with host h1. To register, both hosts

h9 and h1 must send Packet-In messages to SDN controller which logs informa-

tion about the host in host registration module and assigns a unique ID to each

host when it receives the Packet-In message (h9 and h1 in our implementation).

• Secondly, as host h9 has no idea about how to contact host h1, it makes a connec-

tion request to the controller to inquire about host1’s details. This request is sent

as an RREQ message to all hosts.

• When the RREQ message is received by the destination, i.e., host h9, a RREP

packet is sent back to oriinator i.e., 1 in tis example.

• According to the network topology, the controller obtains three possible paths

and selects the best path after estimating path latency and capacity etc.

48

• After sending a DATA message to host h1, host h1 responds with a REPLYDATA

message to host h9. All four of the messages are used to establish a connection.

• After connection establishment, h9 is now able to communicate with host h1

through a series of trusted ops and in the meanwhile values detection parame-

ters are recorded and if they there is an anamoly in the range of values alert is

generated and connection is terminated.

4.1.2 Detection Parameters

The metrics used in our work are as follows

Throughput The average number of packets that are successfully delivered is called

throughput. We calculate throughput by formula:
(Packet.size)(Number.o f .packets.received)(8)

End.to.End.Delay

End to End Delay The average time from the time of transmission of packet from the

origin to the time it is deduced in the destination, which includes routing, release, and

transmission time [33]. It is given by: End time - Start time

Packet Delivery Ratio The average number of packets that successfully reach des-

tination in a given time is refered to as Packet Delivery Ratio(PDR). It is given by:
(Number.o f .packets.received)(100)

Number.o f .packets.sent

4.2 Simulation Environment

The details of our simulation environment used in our implementation and experiments

are as follows:

49

4.2.1 System Specifications

The test setup was done on Intel R© CoreTM DELL laptop with i7-7500U CPU @2.70GHz

and 2.90GHz processor with 8GB of RAM. We used a virtual machine to create Ubuntu

14.04 for the Linux environment. We used the Oracle VM Virtual box as the virtual ma-

chine emulator. For making the testbed, we used Mininet to create the testbed where

one “remote controller” was used with a custom topology with four switches and ten

hosts. The switches were Open vSwitches with OpenFlow protocol. The controller was

POX.

4.2.2 Software Tools Used For Implementation and Experiments

Table 4.1: Software Tools in Implementation and Experiments
Software Function Version
Mininet Network Emulator 2.2.2
MiniEdit Graphical User Interface 2.2.0.1
Open vSwitch Software SDN Switch 2.3.90
POX SDN Controller Platform 0.5.0
Oracle VirtualBox Virtualisation 6.0.4
Linux(Ubuntu) Host Operatin System 14.04
Python Programming Language 2.7.6

VirtualBox We can use Oracle’s free software to help us create a virtual network

environment[34]. A full operating system can run within another with its help. We

also used VirtualBox to instal Mininet VM, which makes switching from Windows to

Ubuntu a breeze.

Mininet It’s an SDN-based software emulator for creating a realistic virtual topology in

an SDN environment [35]. It allows larger network prototypes to be created on a single

workstation without the requirement for an actual network connection. Mininet can be

used in OpenFlow switches to imitate network topology. It includes a virtual machine,

OpenFlow binaries, and kernel configuration tools pre-installed.

MiniEdit MiniEdit, a small network editor, is included in the Mininet network simu-

50

lator. MiniEdit is a demonstration tool that shows how Mininet can be expanded. By

pressing the "run" button, you can easily drag and drop switches and hosts to build a

live, functioning network. MiniEdit is launched in an xterm.

The MiniEdit script is located in Mininet’s examples folder,fig 4.1 shows the command

to run it.

Figure 4.1: Command Run on MiniEdit GUI

RYU It’s a Python-based open controller that can turn OpenFlow into switch,a load

balancer,a hub,a firewall, and various other devices. We can pass parameters into the

topology in real time. There are provisions for developing custom components as well

as stock components. RYU is a framework for establishing OpenFlow communication

between SDN switches[39].

To start the RYU Controller, the command in fig 4.2 starts the controller. This makes

controller up in our VM1 as shown in fig4.3

Figure 4.2: Command To Start RYU Controller

Figure 4.3: RYU Controller started

Ping Internet Control Message Protocol (ICMP) is a system administrator’s tool. It

calculates the round-trip time and displays the total number of packets transmitted,

received, and lost, as well as the lowest, maximum, and average response times.

51

Python Scripting We have used python programming language for scripting with SDN

controller application for detection and Mininet simulator. Some of the python libraries

,modules and API which are used in our work are Random(accessing iterable python

object randomly) , python socket API(for TCP and UDP host communication inter-

faces) , blessings(API to manipulate terminals for hosts),matplotlib(library for graph-

ical plotting), subprocess (module that to run external programs and inspect their out-

puts). datetime (module to work with dates as date objects,NumPy library(to work wit

arrays)

4.2.3 Simulation Topology

We have defined 8 custom topologies. In first topology (fig 4.4), we have 3 hosts and

two switches. In second topology (fig 4.5), we have 4 hosts and 2 switches. In the third

topology (fig 4.6), we have 5 hosts and 3 switches.In the fourth topology (fig 4.7), we

have 6 hosts and 3 switches. In fifth topology (fig 4.8), we have 7 hosts and 3 switches.

In sixth topology (fig 4.9), we have 8 hosts and 4 switches.In our seventh topology (fig

4.10), we have 9 hosts and 4 switches and our last topology (fig 4.11), has 10 hosts with

4 switches These topologies are made in miniedit GUI.

4.3 Implementation Modules

The flow module is described in this section in three tiers. We investigate an SDN-based

network architecture with a control layer, a data layer, and a host cluster, as depicted in

Figure. The control layer is in charge of the SDN controller’s route allocation of flows.

SDN switches make up the data layer. The host cluster communicates with the control

layer and transmits data.

52

Figure 4.4: Simulation Topology 1 in MiniEdit

Figure 4.5: Simulation Topology 2 in MiniEdit

4.3.1 Controller

The SDN controller is used to implement information collecting, path calculation, path

selection, flow management, and attack detection in the control layer. Our control

layer’s modules are as follows:

In order to establish a connection, the connection initiator sends a message to the con-

troller, inquiring about the destination hosts. According to several SDN investigations,

these attacks affect all of the current key SDN controllers (e.g., Floodlight, Open Day-

53

Figure 4.6: Simulation Topology 3 in MiniEdit

Figure 4.7: Simulation Topology 4 in MiniEdit

light, Beacon, and POX). All reliant network services are immediately harmed if such

essential network design information is corrupted, perhaps leading in catastrophic chal-

lenges. The controller’s routing services/apps, for example, can be changed to start a

black hole. When a switch receives an LLDP packet from another switch, it sends the

LLDP packet to the controller as a packet_in message for assistance because there is no

analogous forwarding rule in the switch’s FlowTable. The SDN controller can check

whether switches are directly connected to one another and design the global topology

after receiving Packet-in notifications via LLDP[33].

This module’s main function is to discover network topology and collect link informa-

54

Figure 4.8: Simulation Topology 5 in MiniEdit

Figure 4.9: Simulation Topology 6 in MiniEdit

tion.

Because hosts have no idea how to get to destination hosts, when they want to connect to

another host, they contact the controller for the destination hosts’ information. In order

to establish a connection, the connection initiator sends a message to the controller,

inquiring about the destination hosts. The Connection Request Handler is a program

that processes packets requesting information from hosts. In the diagram, host h9 is

requesting a connection with host h1.

The path of transmission of the flow is calculated with the help of our routing mech-

55

Figure 4.10: Simulation Topology 7 in MiniEdit

Figure 4.11: Simulation Topology 8 in MiniEdit

anism. On basis of paths available in present topology and information of the link

collected from the Information Collection Module, paths of transmission having the

best performance is selected.

4.4 Implementation Steps(Normal Mode)

First of all the controller is started in VM1 as shown in fig 4.14

Next we run one of our mininet topology scripts. Fig 4.15 shows screen-shot of our

56

57

Figure 4.12: Flow management in our implementation

Figure 4.13: Host h9 requesting connection to host h1

collected from the Information Collection Module, paths of transmission having the best

performance is selected.

58

4.4 Implementation Steps (Normal Mode)

First of all the controller is started in VM1 as shown in fig 4.14

Figure 4.14: Running controller

Next we run one of our mininet topology scripts. Fig 4.15 shows screen-shot of our

topology with 10 hosts.

Figure 4.15: Running mininet topology script

59

After that terminals open up for each of the host in the topology executed , as shown in

fig 4.16.

Figure 4.16: Terminals for all hosts in topology

On each terminal is printed its IP address, MAC address and its port number and the IP

address and Mac address of the neighbors.

On the n-1 terminal, where n is the total number of hosts in the topology executed, the

user has to input the ID, IP address and port number of the destination. Terminal n-1

i.e., h9 for topology with 10 hosts is shown in fig 4.17.

60

Figure 4.17: Terminal of n-1 host in ten host topology

For explaining, we entered destination ID as h1, as shown in fig 4.18.

Figure 4.18: Entering destination details in terminal of n-1 host in ten host topology

After this routes are computed with their BL values. As underlined in fig 4.19, the path

with maximum BL value is selected.

61

Figure 4.19: Entering destination details in terminal of n-1 host in ten host topology

Next the packets pass from hop to hop in such a way that the MAC addresses of source

and destination change on every hop. As shown in fig 4.20, the path opted is from

h9(source)->h5->h2->h10->h8->h6->h4->h3->h7->h1(destination). Fig 4.21 shows

message going from source terminal to destination terminal through the hops included in

path opted in such a way that the MAC address of source and destination address are

such that the MAC address of current hop is the source MAC address and the MAC

address of the next hop is the destination MAC address. In this way the MAC addresses

change at every hop.

Figure 4.20: Path selected in our test example

62

Figure 4.21: Message traversing from source to destination through multiple hops

Measurements of parameters are done fig 4.22 and a graph gets plotted for the

throughput, PDR and End to End Delay. We run experiments a number of times and

record values to get our dataset for each of our topology.

Figure 4.22: Parameter Measurements

Black hole mode

Our goal is to simulate a Black-hole attack. Since we have to make a node work selfishly

and drop packets so we set variable ‘black hole’ as true in our routing script and it starts

dropping packets. Once the values of parameters fall below the threshold a black hole

alert gets generated and black hole node is removed from path.

63

4.5 Results and Analysis

We sent packets from source to destination using our multi-hop routing scheme under

normal operation and in case of black hole attack. The values of the performance

parameters were recorded and their graphs were plotted using matplotlib. It was seen

that in case of black hole attack the values of parameters fall out of the threshold

boundaries. When the black hole attack was detected and malicious node was removed

the graphs show that traffic resumed its normal operation after a short period of time.

4.5.1 Graphs and Values of Detection Parameters under Normal

Operation

The experiment was run 10 times under normal operation for normal topology and under

black hole attack. The values of detection parameters for ten parameters are shown in

table below:

Figure 4.23: PDR of 3 host topology

Figure 4.24: Throughput of 3 host topology

64

Figure 4.25: End to End Delay of 3 host topology

Figure 4.26: Parameter values of 3 host topology

Figure 4.27: PDR of 4 host topology

65

Figure 4.28: Throughput of 4 host topology

Figure 4.29: End to End Delay of 4 host topology

Figure 4.30: Parameter values of 4 host topology

Figure 4.31: PDR of 5 host topology

66

Figure 4.32: Throughput of 5 host topology

Figure 4.33: End to End Delay of 5 host topology

Figure 4.34: Parameter values of 5 host topology

Figure 4.35: PDR of 6 host topology

67

Figure 4.36: Throughput of 6 host topology

Figure 4.37: End to End Delay of 6 host topology

Figure 4.38: Parameter values of 6 host topology

68

Figure 4.39: PDR of 7 host topology

Figure 4.40: Throughput of 7 host topology

Figure 4.41: End to End Delay of 7 host topology

Figure 4.42: Parameter values of 7 host topology

69

Figure 4.43: PDR of 8 host topology

Figure 4.44: Throughput of 8 host topology

Figure 4.45: End to End Delay of 8 host topology

Figure 4.46: Parameter values of 8 host topology

70

Figure 4.47: PDR of 9 host topology

Figure 4.48: Throughput of 9 host topology

Figure 4.49: End to End Delay of 9 host topology

71

Figure 4.50: Parameter values of 9 host topology

Figure 4.51: PDR of 10 host topology

Figure 4.52: Throughput of 10 host topology

Figure 4.53: End to End Delay of 10 host topology

Chapter 5

Conclusion

SDN offers a number of advantages over traditional network. However, security of

SDN is major issue. The global view of the network maintained by the controller can

be spoofed by topology poisoning attacks. Malicious hosts can poison this network

visibility of the controller and carry out black hole attack where availability of services

gets seriously disrupted. The packets absorbed by black hole nodes may also be used

to carry out further lethal attacks. Previous works to solve the problem of malicious

nodes is done by authentication and permission based systems. However, such a so-

lution is not viable because a node may get compromised after permission is granted.

Moreover, static routes in the routing schemes provide ease to the attackers to carry out

targeted black hole attack. Therefore, in our work we used dynamic routes by using

multi-hop communication between hosts. The hosts involved in our multi-hop routing

scheme were those with best behavior and their behavior value was updated after ev-

ery interaction. Performance parameters like throughput, end to end delay and packet

delivery ratio were recorded for normal operation. We also generated black hole attack

and compared the values of performance parameters with those under normal operation

to create our data set for detection of black hole attack. We routed the packets along our

multi-hop routing scheme and recoded throughput,the end-to-end delay and the packet

delivery ratio (PDR). When the values of parameters exceed threshold, an alert is gen-

73

erated and the malicious node is removed from the routing path and a new routing path

is constructed to route the packets between source and destination.

74

References

[1] Dabbagh, M., Hamdaoui, B., Guizani, M. and Rayes, A., 2015. Software-defined

networking security: pros and cons. IEEE Communications Magazine, 53(6),

pp.73-79.

[2] Dayal, N., Maity, P., Srivastava, S. and Khondoker, R., 2016. Research trends

in security and DDoS in SDN. Security and Communication Networks, 9(18),

pp.6386-6411.

[3] Zhang, B., Wang, X. and Huang, M., 2018. Dynamic controller assignment prob-

lem in software-defined networks. Transactions on Emerging Telecommunica-

tions Technologies, 29(8), p.e3460.

[4] Nagase, K., 2016. Software defined network application in hospital. InImpact:

The Journal of Innovation Impact, 6(1), p.1.

[5] Open Networking Foundation (ONF). [Online]. Available: https://www. open-

networking.org/

[6] Software-defined networking: The new norm for networks,” Palo

Alto, CA, USA, White Paper, Apr. 2012. [Online]. Available:

https://www.opennetworking.org/images/stories/downloads/white-papers/wp-

sdnnewnorm.pdf

[7] https://opennetworking.org/sdn-resources/whitepapers/software-defined-

networking-the-new-norm-for-networks/

75

[8] Xia, W., Wen, Y., Foh, C.H., Niyato, D. and Xie, H., 2014. A survey on software-

defined networking. IEEE Communications Surveys Tutorials, 17(1), pp.27-51.

[9] Smith, J.M., Farber, D.J., Gunter, C.A., Nettles, S.M., Feldmeier, D.C. and Sin-

coskie, W.D., 1996. SwitchWare: accelerating network evolution (White paper).

[10] Kohler, E., Morris, R., Chen, B., Jannotti, J. and Kaashoek, M.F., 2000. The

Click modular router. ACM Transactions on Computer Systems (TOCS), 18(3),

pp.263-297.

[11] M. Handley, O. Hodson, and E. Kohler, “XORP: An open platform for network

research,” ACM SIGCOMM Comput. Commun. Rev., vol. 33, no. 1, pp. 53–57,

Jan. 2003

[12] Quagga Routing Software Suite. [Online]. Available:

http://www.nongnu.org/quagga/

[13] The BIRD Internet Routing Daemon. [Online]. Available: http://bird. net-

work.cz/

[14] j. Rexford et al., “Network-wide decision making: Toward a wafer-thin control

plane,” in Proc. HotNets, 2004, pp. 59–64.

[15] Casado, M., Freedman, M.J., Pettit, J., Luo, J., McKeown, N. and Shenker, S.,

2007. Ethane: Taking control of the enterprise. ACM SIGCOMM computer com-

munication review, 37(4), pp.1-12.

[16] Gude N, Koponen T, Pettit J, Pfaff B, Casado M, McKeown N, Shenker S.

NOX:towards an operating system for networks. Proceedings of ACM SIG-

COMM Computer Communication Review 2008; 38(3): 105–110

[17] Nife, F.N., Kotulski, Z. Application-Aware Firewall Mechanism for Soft-

ware Defined Networks. J Netw Syst Manage 28, 605–626 (2020).

https://doi.org/10.1007/s10922-020-09518-z

76

[18] https://searchnetworking.techtargets/definition/data-plane-DP

[19] Mahmoodi, T., 2015. 5G and Software-defined Networking (SDN).

[20]] Big Switch. Floodlight. URL http://www.projectfloodlight.org/.

[21] NTT. Ryu. https://osrg.github.io/ryu/, 2016. Online available

[22]] OpenDaylight foundation. OpenDaylight: A Linux Foundation Collaborative

Project, . URL https://www.opendaylight.org

[23] "Positive Technologies - vulnerability assessment, compliance manage-

ment and threat analysis solutions", Ptsecurity.com. [Online]. Available:

https://www.ptsecurity.com/ww-en/.

[24] NOX Repo. NOX. URL http://www.noxrepo.org/.

[25] NOX Repo . POX . URL http://www.noxrepo.org/pox.

[26] KulCloud Inc Ltd. OpenMUL. http://www.openmul.org/, 2016. Online available

[27] https://www.sdxcentral.com/networking/sdn/definitions/southbound-interface-

api/

[28] Yuchia Tseng. Securing network applications in software defined networking.

Cryptography and Security [cs.CR]. Université Sorbonne Paris Cité, 2018. En-

glish. ffNNT : 2018USPCB036ff. fftel-02468016

[29] Jarschel, M., Zinner, T., Hoßfeld, T., Tran-Gia, P. and Kellerer, W., 2014. In-

terfaces, attributes, and use cases: A compass for SDN. IEEE Communications

Magazine, 52(6), pp.210-217.

[30] Mininet software emulator to create virtual topology, [online] Available:

http://mininet.org/.

77

[31] Dhawan, M., Poddar, R., Mahajan, K. and Mann, V., 2015, February. SPHINX:

detecting security attacks in software-defined networks. In Ndss (Vol. 15, pp.

8-11).

[32] W.-Y. Huang, T.-Y. Chou, J.-W. Hu, and T.-L. Liu, “Automatical end to end

topology discovery and flow viewer on SDN,” in Proc. 28th Int. Conf. Adv. Inf.

Netw. Appl. Workshops (WAINA), May 2014, pp. 910915.

[33] Shu, Z., Wan, J., Lin, J., Wang, S., Li, D., Rho, S. and Yang, C., 2016. Traffic en-

gineering in software-defined networking: Measurement and management. IEEE

access, 4, pp.3246-3256.

[34] T. Alharbi, M. Portmann and F. Pakzad, “The (in) security of topology discov-

ery in software defined networks,” in Proc. IEEE 40th Conf. Local Computer

Network (LCN), 2015, pp. 502–505.

[35] A. Dawoud, S. Shahrestani, and C. Ruan, “Softwaredefined network controller

security: Empirical study,” in Proc. International Conference on Information

Technology and Applications (ICITA), Sydney, Australia, 2017.

[36] Shaghaghi, A., Kaafar, M.A. and Jha, S., 2017, April. Wedgetail: An intrusion

prevention system for the data plane of software defined networks. In Proceed-

ings of the 2017 ACM on Asia Conference on Computer and Communications

Security (pp. 849-861).

[37] Mattos, D.M.F. and Duarte, O.C.M.B., 2016. AuthFlow: authentication and ac-

cess control mechanism for software defined networking. annals of telecommu-

nications, 71(11), pp.607-615.

[38] Hong, S., Xu, L., Wang, H. and Gu, G., 2015, February. Poisoning network

visibility in software-defined networks: New attacks and countermeasures. In

Ndss (Vol. 15, pp. 8-11).

78

[39] M. F. Monir and S. Akhter, "Comparative Analysis of UDP Traffic

With and Without SDN-Based Firewall," 2019 International Conference on

Robotics,Electrical and Signal Processing Techniques (ICREST), 2019, pp. 85-

90, doi: 10.1109/ICREST.2019.8644395.

[40] Shin, S., Xu, L., Hong, S. and Gu, G., 2016, August. Enhancing network security

through software defined networking (SDN). In 2016 25th international confer-

ence on computer communication and networks (ICCCN) (pp. 1-9). IEEE.

[41] Lee, S., Yoon, C. and Shin, S., 2016, March. The smaller, the shrewder: A simple

malicious application can kill an entire SDN environment. In Proceedings of the

2016 ACM International Workshop on Security in Software Defined Networks

Network Function Virtualization (pp. 23-28).

[42] Spooner, J. and Zhu, S.Y., 2016. A review of solutions for SDN-exclusive secu-

rity issues.

[43] Karmakar, K.K., Varadharajan, V., Tupakula, U. and Hitchens, M., 2020, April.

Towards a Dynamic Policy Enhanced Integrated Security Architecture for SDN

Infrastructure. In NOMS 2020-2020 IEEE/IFIP Network Operations and Man-

agement Symposium (pp. 1-9). IEEE.

79

Appendix A

Source Codes

80

