
i

Reduction of Information Leakage Related to the

Access Patterns in Searchable Symmetric

Encryption

By

Muhammad Awais

A thesis submitted to the faculty of Information Security

Department, Military College of Signals, National

University of Sciences and Technology, Rawalpindi in

partial fulfilment of the requirements for the degree of MS

in Information Security

Aug 2021

MCS

ii

Thesis Acceptance Certificate

Certified that final copy of MS/MPhil thesis written by Mr. Muhammad Awais student of MSIS-

17 Course Reg.No. 00000274121, of Military College of Signals has been vetted by

undersigned, found complete in all respect as per NUST Statutes/Regulations, is free of

plagiarism, errors, and mistakes and is accepted as partial, fulfillment for the award of MS/MPhil

degree. It is further certified that necessary amendments as pointed out by GEC members of the

student have been also incorporated in the said thesis.

 Signature:__________________________________

 Name of Supervisor: Asst. Prof. Dr. Shahzaib

Tahir

 Dated:

 Signature (HoD):

 Dated:

 Signature (Dean):____________________________

 Dated:

iii

Declaration

I hereby declare that except where specific reference is made to the work of others, the

contents of this dissertation are original and have not been submitted in whole or in part for

consideration for any other degree or qualification in this, or any other university. This

dissertation is my own work and contains nothing which is the outcome of work done in

collaboration with others, except as specified in the text and Acknowledgements.

 Muhammad Awais

 August 2021

iv

Dedication

This thesis is dedicated to my Family, Teachers, and Friends, and my supervisor for their love,

endless support, and encouragement

v

Acknowledgement

All praises to Allah Almighty for the strengths and His blessing in completing this thesis. I

would like to convey my gratitude to my supervisor Asst. Prof. Dr. Shahzaib Tahir and co-

supervisor Asst. Prof. Dr. Fawad Khan, for their supervision and constant support. I would like

to thank my committee members; Asst. Prof. Dr. Mir Yasir and Asst. Prof. Dr. Hasan Tahir

(SEECS, NUST) for their support, guidance and knowledge regarding this topic. Their

invaluable help of constructive comments and suggestions throughout the thesis work are major

contributions to the success of this research.

I would also like to thank my friend Ibrahim Yousef for his support, knowledge, and continuous

help in accomplishment of my thesis. I would like to extend my gratitude to my colleague

Mehmood-ul-Hassan, and all my family members for their valuable feedback, support, and

suggestions.

vi

Abstract

Cloud Computing is becoming a necessity with each passing day. As more and more Cloud

Service Provider (CSP) are entering the market, the data security factor, which was the foremost

concern, is still lurking around. As soon as the data is outsourced to a CSP, the original owner

would depend on the CSP for its security. This may pose as a threat to the security of the data if

the confidentiality of data of CSP is breached. Due to these issues, the clients are always

concerned about their data being outsourced to cloud. Searchable encryption gives clients control

over their sensitive data on the cloud. This thesis explores the effects of information leakage

when access patterns are disclosed by searchable encryption scheme to an adversary. It is

observed that in most of the existing schemes, a successful statistical attack can help the

adversary learn the access pattern, provide him with the required document and reveal the

underlying data. This paper addresses these issues by devising a SE scheme which leaks

minimum possible information related to access pattern. The scheme uses an inverted index-

based approach to preserve the high search efficiency inherited from the inverted index while

lifting the one-time-only search limitation of the previous solutions. Compared with the existing

techniques, this solution uses keyword analysis to extract limited words from the documents

based on their occurrence frequency. The test results demonstrate that our scheme is suitable for

practical usage with minimal overhead

vii

List of Abbreviations and Symbols

Abbreviations

AES Advanced Encryption Standard

AE Application Encryption

BBT Balanced Binary Tree

CS Cloud Server

CSP Cloud Service Provider

CSPRNG Cryptographically Secure Pseudo Random Number Generator

EHR Electronic Health Records

FHE Fully Homomorphic Encryption

HVE Hidden Vector Encryption

HE Homomorphic Encryption

IBE Identity-based Encryption

I Index Table

IPE Inner Product Encryption

IP Internet Protocol

viii

MITM Man-in-the-middle

MAC Message Authentication Code

MRSE Multi-keyword Ranked Searchable Encryption

OPE Order Preserving Encryption

OPH Order Preserving Hashing

SO Search Outcome

PHE Partial Homomorphic Encryption

PE Predicate Encryption

PIR Private Information Retrieval

PKE Public Key Encryption

PEKS Public Key Encryption with Keyword Search

RF Relevance Frequency

SE Searchable Encryption

SHE Somewhat Homomorphic Encryption

SSE Symmetric Searchable Encryption

TCP Transmission Control Protocol

UDP User Datagram Protocol

ORAM Oblivious Random-Access Memory

SPP Search Pattern Privacy

ix

APP Access Pattern Privacy

SzPP Size Pattern Privacy

Symbols

K Master key

Tw Trapdoor

IV Initialization Vector

stA State of Adversary

KW Set of keywords KW = kw1, kw2, ... kwn

I Index Table

a ← b a contains the value of b

 security parameter

H(.) Hash function

O(.) Big O notation

id(doc) Document identifier

A Polynomial Time Adversary

x

Table of Contents
Introduction ... 1

1.1 Overview .. 1

1.2 Research Motivation ... 2

1.3 Security Aims .. 3

1.4 Design goals ... 4

1.5 Application of Searchable Encryption .. 4

1.6 Thesis Statement ... 5

1.7 Thesis Contribution .. 6

1.8 Research Methodology ... 7

1.9 Basic Definitions .. 9

1.10 Thesis Structure .. 10

Literature Review ... 11

2.1 Preliminaries ... 12

2.1.1 Symmetric vs Asymmetric Primitives ... 12

2.1.2 Forward privacy vs Backward privacy ... 13

2.1.3 Single Keyword vs Multiple Keyword... 14

2.1.4 Static vs Dynamic Searchable Encryption .. 14

2.1.5 Ranked vs Non-Ranked Searching .. 16

2.1.6 Index-based SE vs Homomorphic-based SE... 17

2.2 Related Work .. 17

2.2.1 Single-Keyword SE Schemes .. 17

2.2.2 Multi-keyword SE Schemes ... 18

2.3 Attacks against SE Schemes ... 19

2.3.1 Frequency Analysis Attack .. 19

2.3.2 IKK Attack .. 20

2.3.3 File-Injection Attack ... 20

Proposed Work.. 22

3.1 Problem Formulation ... 23

xi

3.1.1 Threat Model with Assumptions ... 23

3.1.2 System Model .. 25

3.1.3 Deterministic Encryption ... 26

3.1.4 Probabilistic Encryption ... 27

3.1.5 Phases of Algorithm .. 28

3.2 Correctness .. 28

3.3 Soundness... 29

3.4 Security Definitions ... 29

3.4.1 Keyword-Trapdoor Indistinguishability ... 29

3.4.2 Indistinguishability .. 31

3.5 Scheme Construction .. 32

3.6 Security Analysis ... 37

3.6.1 Leakage Profiles .. 37

3.6.2 Discussion on Leakages .. 38

3.6.3 Formal Security Proofs ... 39

3.7 Updating Index Table ... 40

3.7.1 Addition of New Documents ... 40

3.7.2 Deletion of Existing Documents ... 40

3.8 Correctness and Soundness .. 41

3.8.1 Correctness .. 41

3.8.2 Soundness ... 41

3.9 Defense against attacks ... 42

3.9.1 Defense against frequency analysis attack .. 42

3.9.2 Defense against IKK attack .. 43

3.9.3 Defense against File Injection attack ... 43

3.10 Summary .. 44

Implementation and Performance Analysis ... 45

4.1 Description ... 45

4.2 Algorithmic Analysis .. 46

4.3 Computational Analysis ... 48

4.3.1 System Specification ... 48

4.3.2 Dataset Specification ... 49

4.3.3 Implementation Details ... 49

xii

4.4 Storage Overhead .. 49

4.5 Computational Overhead ... 50

4.5.1 Keygen Phase ... 50

4.5.2 Encryption Phase .. 51

4.5.3 Encoding Phase ... 51

4.5.4 Keyword Extraction Phase ... 52

4.5.5 Phase ... 53

4.5.6 Phase .. 54

4.5.7 Phase .. 54

4.5.8 Decoding Phase .. 55

4.5.9 Decryption Phase... 56

4.5.10 Updating Database .. 57

4.6 Summary .. 57

Conclusion and Future Directions ... 58

5.1 Research Overview ... 59

5.2 Summary of Contributions .. 60

5.3 Challenges and Future Work ... 61

5.3.1 Cloud Server .. 61

5.3.2 Multiple Readers and Multiple Writers .. 61

5.3.3 Searching without Index Table .. 61

References .. 62

xiii

List of Figures

Figure 1: Number of Users per Cloud Storage Service Provider. .. 2

Figure 2: Searchable Encryption. .. 6

Figure 3: Research Methodology .. 8

Figure 4: Types of Searchable Encryptions. .. 11

Figure 5: Generalized System Architecture for Scheme. .. 26

Figure 6: Computational Time for Encryption. ... 51

Figure 7: Computational Time for Encoding. .. 52

Figure 8: Computational Time for Keyword Generation. ... 53

Figure 9: Computational Time for Index Generation with and without keyword analysis......................... 54

Figure 10: Computational Time for Keyword Searching. .. 55

Figure 11: Computational Time for Decoding. .. 56

Figure 12: Computational Time for Decryption. ... 57

xiv

List of Tables

Table 1: Basic Definitions .. 9

Table 2: Research Methodologies Comparison .. 21

Table 3: Complexity of proposed scheme. .. 47

Table 4: System Specifications. ... 48

Table 5: Libraries with versions. ... 49

1

Chapter 1

Introduction

This chapter covers the brief introduction of the research work and problem formulation of

the thesis. It also states the scope, significance and methodology adapted to complete the

research work.

1.1 Overview

Considering the huge storage requirements of data these days, the sole solution lies in the

usage of cloud computing for day-to-day tasks, thus making it a necessary requirement. As

more and more Cloud Service Provider (CSP) are entering the market, the security of the

critical data, which was the primary concern has not been addressed appropriately. It is

evident that cloud computing has provided companies with the opportunity of gaining a

major competitive edge against their competitors who have not adopted this technology.

Cloud Computing has many advantages like the ease of storage, consistent backups,

convenience with easy accessibility and savings on hardware and software maintenance [1].

Multi-tenant customers, who are storing sensitive data in this storage container (cloud),

utilize these storage containers provided by CSPs. This implies that the control of data is

shifted to the CSP and the administrators of the respective CSP. As control is no longer

available to the owner of the data the confidentiality and integrity of data is vulnerable to

internal and external attacks. This could possibly cause catastrophic result if the

confidentiality of data is breached. Due to these issues, the businesses are always concerned

about their data being outsourced to the cloud and where it might be a potential victim of

some sort of data breach [1][2]. As reported by McAfee, about 3.1million external attacks

were carried out in 2020 on the cloud user accounts. Most of these attacks focused on the

vulnerabilities, which involved stolen credentials, IOT, SQL injection attacks along with XSS

and malicious file inclusion [3]. Another way to visualize the prevalent threat is being

realizing that the medical record of patients, which is to be kept confidential at all cost but

2

when outsourced to a cloud and is obviously vulnerable to cloud attacks because of legal

regulations. Another such example would be the criminal records being utilized by the Law

Enforcement Agencies.

SE is a relatively new technology in the field of cryptography which helps not only

individuals but enterprises as well in storing their data on a cloud server in a secure manner.

It gives control to the client over their data on the cloud. The vast usage of cloud and rapid

growth in file sharing over the cloud has forced the researchers for devising newer techniques

to place their data with sufficient amount of trust on a cloud server. A survey [4] conducted in

2019 indicates that 150,000,000 estimated unique visitors visit just Dropbox in a month.

These staggering stats are enough to justify the criticality of the privacy and security of the

clients. Figure 1 shows the approximate number of users that the most popular cloud service

provider are handling.

Figure 1: Number of Users per Cloud Storage Service Provider.

1.2 Research Motivation

According to Gartner, 2020 promises to be a big year for cloud computing. The market is

expected to grow to $266 billion, up from $227.8 billion in 2019 [69]. The expenditure on IT

is expected to increase by 3.2% up on 2019, reaching $3.76 trillion dollars. A study indicates

that 75% of the enterprise are having security concerns related to cloud computing even with

300

250

200

25

300

0

50

100

150

200

250

300

350

iCloud Microsoft OneDrive Google Drive Box Dropbox

M
IL

LI
O

N
S

O
F

U
SE

R
S

(I
N

 M
IL

LI
O

N
S)

iCloud Microsoft OneDrive Google Drive Box Dropbox

3

this much of market. According to Norton, 4.1 billion data records were compromised in

2019 which means that about 130 data records were stolen every second [6]. These are some

serious concerns which prevent people from sharing resources on the cloud. Sharing of

resources has several advantages but the lack of security and confidentiality raises big

concern. For clients, the solution lies in data encryption prior to outsourcing it on any other

platform. The model encryption is straightforward but because of efficiency and sometimes

practicality issues, the deployment of such solutions is quite difficult. A naïve approach

towards outsourcing of data is to encrypt the whole data then outsource it. But what if

someone wants a particular document which contains a specific keyword? Then the whole

data set needs to be downloaded, decrypted and then each document needs to be checked for

the particular keyword matching. To resolve this critical efficiency issue, the scheme of SE is

utilized which helps to search for specifics in terms of keywords over the encrypted data

placed on any cloud platform. The individual generates a trapdoor which is primarily a search

token to search for keywords over the encrypted data. Only the owner of the data has the

authority to perform search by using the credentials in the form of correct trapdoors. Thus, a

SE scheme proves to be a vital part in providing confidentiality and privacy preservation for

the client.

1.3 Security Aims

The primary aim of this research work is to increase security and privacy of client‟s data

while outsourcing it to another entity. Mainly, the focus is on the reduction of information

leakage related to access pattern. The access pattern indicates which particular files were

retrieved when a query word is issued to the cloud. In this way, the adversary can keep a

track by generating a table containing the file identifiers along with the query words issued to

the server. Security and privacy work alongside, so the security aims will lead the associated

privacy concerns. From the previous discussion, the following security aims can be taken into

consideration.

 Authorized Search: Only the owner of the data has the authority to perform search by

using the credentials in the form of correct trapdoors.

 Data Confidentiality: The data outsourced to the cloud should not be tempered with

and it should be in a secure encrypted format. The corresponding index table should

also be secure.

4

 Access Patterns Leakage: The patterns even should either be concealed completely or

the information being leaked does not provide any sort of useful insight to the critical

data.

1.4 Design goals

The proposed construction should follow the following performance and security goals:

Trapdoor Unlinking: As discussed before, we are using probabilistic encryption for 3
rd

 party

adversary. Thus, the goal for trapdoor is that it should be different for the same keyword

throughout a session with a unique key. This helps in avoiding the indistinguishability attacks

in searchable encryption.

Privacy Guarantee: The data should remain obfuscated with minimum access pattern

leakage, whereas the search pattern may or may not leak. The CS and the 3
rd

 party adversary

(polynomial time adversary) must not be able to deduce any important especially information

related to keyword from the secure index table and trapdoors must remain obfuscated at all

time.

Practicality: The proposed scheme should be secure and practical in-terms of efficiency and

must provide the client with ease of use.

1.5 Application of Searchable Encryption

The primary application of SE includes those areas where the privacy of a client is of

foremost concern. The use of SE in healthcare cloud applications can be considered as one of

such examples. The demand in this sector is to protect data privacy and access privacy. In

[10], the author has presented a survey of SE for healthcare clouds. Another important

emerging field which lacks security since day one is IOT. The devices such as Alexa, google

home etc. use the information of the user to store on their respective cloud servers.

Considering this information as private, the leakage of such information results in breach of

confidentiality. In [11], authors have proposed a framework for secure and privacy

preservation of connected cars applications. Another application of SE could be in the field of

Ecommerce.

5

1.6 Thesis Statement

Cloud storage is widely used for providing services including backups or outsourcing data

with minimal cost. However, these servers cannot be completely trusted as they often get

compromised or the administrator can become a potential threat. Furthermore, a trusted cloud

service provider may also outsource data of a customer without his or her consent. To

eliminate these threats altogether, the data should be encrypted completely and then stored on

the cloud. This causes the search capabilities of data owner to be reduced to bare minimum.

To cater this issue, the server can search the data for the data owner by running the search

query and then submit the result to the data owner without ever having to decrypt the

information during the whole communication. Using SE, we can reduce the possibility of

breach of confidentiality along with data searching capability. SE schemes are built on the

client/server model. The server stores the data of a single or multiple clients (writer) on the

server. A single client or multiple clients (readers) can request the server to retrieve the

contents they need. SE comprises of four major architectures:

1. Single reader/Single writer (S/S)

2. Single reader/Multiple writer (S/M)

3. Multi reader/Single writer (M/S)

4. Multi reader/Multi writer (M/M)

The SE scheme is briefly described in Figure 2. This technique, initially lacked security but

with the advancement in cryptography and especially in SSE the security of these schemes is

improving regularly. Some of the prevalent problems in SSE includes information leakages,

which include Search pattern, Index pattern and Access pattern.

6

Figure 2: Searchable Encryption.

A survey of the available schemes has been presented in [5]. From this research work, it was

concluded that almost all of the schemes leak information in some sort of patterns.

Conventional SE schemes [12][13][14] are based on deterministic trapdoors (search query),

i.e., for the same keyword searched again the same trapdoor is generated. Some schemes have

been previously proposed which provide security against access pattern leakage but they are

either computationally expensive or lack practicality

1.7 Thesis Contribution

This thesis explores the possibility of securing data owner‟s confidentiality. The major areas

covered are:

1. For working out the solution, the problems of existing solutions, highlighted in chapter 2,

are analyzed.

2. We propose a practical inverted index based single keyword searchable symmetric

encryption system. Our system removes the one time only search limitation which is a

prevalent issue in the existing systems.

3. We use a probabilistic trapdoor function against 3rd party adversary to break the trapdoor

link ability. This helps to counter attacks launched by 3rd party adversaries.

7

4. The access pattern leakage is reduced by encoding the dataset into multiple fragments

which include false positives as well as true positives. The adversary in polynomial time

is unable to construct the original file. Also, with the help of hashing along with

encryption of keywords, strong security for keywords is ensured.

5. The practicality of the system is also studied through the computation and complexity

overhead analysis. A real-world dataset is used and the simulation results show that the

system is efficient and strong enough for practical usage with minimum overhead.

1.8 Research Methodology

The research work starts from literature review of the existing techniques being used in

searchable encryption. The literature review is done from various academic sources. This

research then narrows down to access patterns leakage reduction in the searchable encryption

while listing down the drawbacks of existing schemes and formulates the problem. Then, it

discusses the access pattern leakage reduction in detail and covers thoroughly the literature,

design and implementation part of the thesis.

Implementation of the scheme is carried out using Python in Spyder (Anaconda) in a Linux

based environment. A client server architecture is implemented by creating an FTP server.

Several modules are also integrated for the complete implementation, which will be discussed

in detail in relevant chapter. In the end, a road map for future research areas in the searchable

encryption will be discussed. Figure 3 represents the major highlights of the research

methodology.

8

Figure 3: Research Methodology

9

1.9 Basic Definitions

Table 1: Basic Definitions

Searchable

Encryption:

A way of protecting user data while providing searching ability on

server side.

Symmetric

Encryption:

An encryption technique which uses same key for encryption and

decryption.

Search Pattern: A unique pattern identified during the searching of a keyword in a

document.

Access Pattern: A unique pattern identified during the access and retrieval of a

document.

Index Pattern: An index patterns directs the server which indexes contain the data a

particular user is interested in.

Trapdoor: A function easy to compute in one direction but difficult to compute in

the opposite direction.

FTP Server: A server having the ability to store files and transfer the files to the

client when a particular query is provided to the server.

Keyword: A unique word in a document.

Index Table: A table that contains all the document ids along with the unique

keywords generated against each document.

File Encoding Split file into several fragments.

Tokenization

Separating each word and punctuation mark for text analysis.

10

1.10 Thesis Structure

In summary, the thesis breakdown is as follows:

 Chapter 2: Literature Review discusses the existing literature on SE. The existing

SE schemes along with their limitations are analyzed. The existing security definitions

are also analyzed. The schemes which help in securing confidentiality and access

patterns are discussed as well.

 Chapter 3: Proposed Work introduces a scheme for the access pattern leakage

reduction. The proposed scheme is based on single keyword SE scheme. The scheme

uses probabilistic trapdoors. The algorithm aims to reduce the leakage of data during

the access of a file. The practical feasibility of the scheme is also discussed in this

chapter.

 Chapter 4: Implementation and Performance Analysis covers the complete

implementation of the proposed scheme in a python-based environment. The scripting

language is python used a Spyder, which is one of the well-known python compilers.

The operating system is Ubuntu because the encoding part of the scheme is only

possible in the Linux based environment. Two datasets are used to provide a

comparative study. The results are generated in the form of graphs and are also

presented in this chapter.

 Chapter 5: Conclusion and Future Work concludes the thesis by discussing the

directions that can be explored in the future research.

11

Chapter 2

Literature Review

Searchable Encryption (SE) is a technique which has provided the clients/data-owners with

the option of searching for a set of keywords over the encrypted data stored in the cloud

while keeping the privacy intact. The privacy preservation is an attribute which reduces the

data leakage to an adversary when any SE scheme is being used. This type of encryption was

firstly introduced in 2000 by Song et al. [20]. The criticality of privacy preservation demands

that the information of a client should not be leaked to any adversary or any cloud service

provider. In the previous chapter, a brief overview of the SE framework is presented. The

chapter presented some brief introduction of techniques which inhabit the property of hiding

access patterns with pros and cons included.

 The design of any SE scheme is linked with the domain usability, the under-lying use case

and the associated cloud infrastructure [24]. The design primitives need to be addressed

before designing any SE scheme. This chapter discusses the pioneering works in SE

including techniques, mechanisms and algorithms which are being used for performing

computations on encrypted data. Each of these techniques are different in terms of

performance, scalability and security. In this section, we categorize the several approaches

that are presented based on the leakage of information, key management and their

summarized limitations. Figure. 4 represents the different types of SE schemes that are being

currently used.

Figure 4: Types of Searchable Encryptions.

12

2.1 Preliminaries

 Inverted Index: Inverted index generates and stores a mapping from words or

numbers to their location in documents. There are two types of inverted indexes.

Record-level inverted index, which maintains a mapping of word to documents.

Word-level inverted index, along with the mapping of words stores the position of

each word within a document as well. The purpose of the inverted index is to allow

quick full-text searches at the cost of increased pre-processing when a document is

added to the database. For better searching, data is usually transformed. This

transformation can be done by dropping the stop words i-e drop the words that have

no semantic weight because these are the words that appear in almost all of the

documents and they do not help in relating any specific information with the

underlying document.

 Erasure Encoding: To tolerate failures in the storage system, erasure encoding is

used. This is done by adding redundancy to the stored data. An erasure code converts

the input message (documents for example) into a longer message. Erasure coding

ensures that message reconstruction is possible even if some parts of the longer

message have been lost. Precisely, for input message of arbitrary length L, a large

message of length M is generated in such a way that reconstruction of input message

is done by using both the parity elements along with data elements.

 Trapdoor Unlinkability: The trapdoors should be probabilistic and must able to

resist distinguish-ability attacks. This will also prevent search pattern leakage. Our

system should provide security against an adaptive polynomial time adversary.

2.1.1 Symmetric vs Asymmetric Primitives

These primitives are related to the constructional requirement of a system. The construction

may take single or multiple parameters depending upon the underlying use-case. An entity

named as a writer, is considered as the data owner of the encrypted documents. The other is

reader, whose is considered as the client who needs to search for a particular keyword inside

that encrypted document set. If the SE scheme is limited to single reader/single writer [20],

then the reader and writer will be the same. In this case, AES [25] algorithm will be used to

generate a master key, while the client generates the trapdoors and thereafter searches the

cipher-texts. If the architecture of the underlying scheme requires the use of multiple keys,

13

then multiple writer/single reader [21], single writer/multiple reader [22] and multiple

writer/multiple reader [26] are used with asymmetric primitives. The requirement of multiple

keys is evident and thus this leads to the use of a mechanism which can generate, store,

manage and revoke the keys across the network. The key management is the responsibility of

a Key Distribution Manager (KDM) [27] or an Application Encryption (AE) [28] server.

2.1.2 Forward privacy vs Backward privacy

Indexing helps in increasing the efficiency of the search process. The forward index helps in

finding the documents containing a particular word or a list of words. The requirement of

forward privacy is that during any update request, no information should be leaked to the

adversary. Chang and Mitzenmacher [29] presented the forward privacy with communication

complexity leading to a linear search against the number of updates for the searched

keyword. This concept was precisely introduced by Stefanov et al. [30]. In the same paper the

concept of backward privacy was also introduced. The authors designed a forward private

Dynamic Searchable Symmetric Encryption (DSSE) scheme which was based on ORAM.

Another SE scheme research work was conducted by Bost [31] who proposed the first

forward private SE scheme with optimal computational and communication complexity,

achieved forward privacy using trapdoor permutation instead of ORAM-like structure. It

provides forward privacy but until the issuance of a new query. This indicates that the

adversary has the potential of learning about files that contain the keyword searched

previously by analyzing and comparing the access pattern of this newer query with the

previous generated queries.

 Backward privacy protects the information leakage when a particular keyword pair is added

to a database and then deleted, the subsequent search queries on the keyword does not reveal

any information about the document. Backward privacy ensures that when two search queries

on the same particular keyword are performed, the information about the previously added

files and later deleted are not leaked. In 2017, Bost et al. [32] presented three levels of

backward privacy on the basis of the meta data leaks about the deleted or inserted records.

The highest privacy level i-e backward privacy with insertion pattern, leaks the records

currently matching each query, when they are inserted, along with the total number of

updates on each matched record. But this proves to be insufficient for defense against record-

injection or file injection attack. The CSP, using insertion times, learn which record was

14

injected by itself or not. It will also aid the CSP in recovering the queries. To avoid this

leakage, [33] has introduced a strong backward privacy technique. In this technique, the CSP

can only identify which records match each query but cannot identify when a record is

deleted or inserted along with update of any record in the system.

2.1.3 Single Keyword vs Multiple Keyword

The scheme with a specific use-case would demand to be constructed either for a single

keyword or multiple keyword query. The use-case is solely dependent on the requirement

specified by the client for query effectiveness. However, the ease of effectiveness comes at a

cost of lack in privacy and overall efficiency of the scheme. The choice between the type of

query needs to be adopted by exploring a balanced approach which maintains a balance

between the challenges which are discussed in the section 2.1.

2.1.4 Static vs Dynamic Searchable Encryption

Several approaches have been adopted which address the information leakage issues. In [34],

Naveed et al, used blind storage that allows the client a storage for files in such a manner that

the server is unable to identify the number of files or the size of the individual file; the server

is limited to the existence knowledge of a file. The contents and file contents are hidden even

if the same file is downloaded multiple times. The problem with this technique is the leakage

of access and search patterns. This scheme only helps in securing the index pattern while

leaking access and search patterns.

 In [35] the authors have presented two dynamic SE schemes with limited amount of

information leakage. Using ORAM algorithms, the authors achieved forward privacy, search

and update complexity. Ishai et al. [36] has presented a technique which is a combination of

Private Information Retrieval (PIR) technique with B-tree data structure. The author has

introduced an SSE scheme design which provides constructions with sub-linear search time

with no limitations of the inverted index approach. The approach is highly parallel yet simple

and can handle updates easily. The construction of this scheme is resistant against adaptive

chosen-keyword attacks (CKA-2) This technique provides protection against both search and

access patterns leakage. Cao et al. [37] designed a static scheme that supports multi keyword

ranked search. This scheme hides trapdoor link-ability. Wang et al. [38] has proposed a

public multi-keyword SE scheme based on Paillier which hides the size, access and search

15

patterns. Wang has proposed an inverted index based public key searchable encryption

scheme. This scheme removes the problem of one-time only search limitation contained in

the available schemes. With support of conjunctive multi-keyword search using a single

trapdoor, the scheme also uses a probabilistic trapdoor linkability. This scheme aims to hide

the access pattern by using an efficient oblivious transfer protocol. Compared to the existing

schemes, this scheme uses only multiplication and exponentiation for improving efficiency.

 In [12], Seny Kamara presented another dynamic SE scheme. This scheme provides the

users with sublinear search time, security against adaptive chosen keyword attacks, compact

indexes along with the ability of addition or deletion of files effectively. The author provides

a formal security definition for dynamic SSE which is CKA2-secure and also achieves the

optimal search time. Their scheme is based on the inverted index approach of [40]. The

implementation of this scheme shows that this SSE scheme is very efficient.

 In [30], stefanov et al. proposed another DSSE scheme which leaks very small information

during searching of the document identifiers that were deleted in the past. This scheme

achieves forward privacy but fails to achieve backward privacy. This scheme is efficient

considering the worst-case search complexity and the space for the data structure.

 Another approach of Dynamic SE via ORAM is presented in [42]. The scheme provides

oblivious access scheme over the encrypted data structure for SE. The scheme is named as

Distributed Oblivious Data structure DSSE (DOD-DSSE). The main idea is to create a

distributed encrypted incidence matrix on two non-colluding servers such that no arbitrary

queries on these servers can be linked to each other. This prevents statistical attacks and

threats exploitation of query link-ability. The problem with these schemes is that their

construction is static and they have no support for update, insert or delete operations. The

author claims that DOD-DSSE ensures the unlinkability of queries and thus offer more

security than the existing DSSE schemes. The performance is also almost two times faster

than Path ORAM because of less no. of communication overhead. The deployment of this

scheme is on Amazon EC2 servers. The search/update time for a query takes no more than

one second with very large datasets while the Path ORAM may take 3-13 minutes.

 Another Dynamic SE proposed by Bost [31] achieves forward privacy by performing

trapdoor permutation but it only provides forward privacy until a new query is issued. These

two techniques fail in providing backward privacy and the CSP can easily learn about the

keywords contained in a file by analyzing the access patterns of a new query with those of

previous queries.

16

 In [17], the author uses ORAM to reduce the access pattern leakage. His work starts off

with four leakage classes and a single keyword scheme for leakage classes. The scheme is

analyzed based on whether it shows performance worse than the streaming entire outsourced

data or they don‟t provide necessary leakage reduction.

 Bosch et al. [44] scheme is based on inner products. The scheme introduces a cryptographic

primitive named as Selective Document Retrieval (SDR). The newer SDR scheme supports

equality test predicates and proves its security in the proposed security model. The

framework can support flexible search features. The proposed scheme can easily be adapted

to support aggregating search results, supporting conjunctive keyword search queries and

advanced keyword search. It uses index generation method proposed by Chang and

Mitzenmacher, which works with homomorphic encryption. This separates query phase from

the document retrieval phase by adding another round of communication. The BTH
+
 works

with PIR for hiding the access patterns, with fulfillment of additional round of

communication.

 Ferretti et al. [46] and Hang et al. [47] have presented two different collision resistant

techniques which support multiuser access to the outsourced data. They have also included

approaches that support the avoidance of key sharing among users. After user revocation it

becomes necessary to generate a new key and again encrypt the data. Sun et al. [48] uses a

CP-ABE (Ciphertext-Policy Attribute-Based Encryption) technique to achieve a scalable

Searchable encryption scheme which has support for multiuser read and write operations

without needing to share any key. In [49], Shangqi et al. proposed a new SSE scheme which

is named as Hidden Cross-Tags (HXT). This removes “Keyword Pair Result Pattern” (KPRP)

leakage for conjunctive keyword search. The two cryptographic primitives being used here

are Hidden Vector Encryption (HVE) and probabilistic (Bloom filter) indexing into the HXT

protocol.

2.1.5 Ranked vs Non-Ranked Searching

Ranked search [50] helps the client by providing the most relevant documents from a corpus.

This is accomplished by identifying the frequency of a keyword within in a corpus. This

returns only the relevant documents but not all the documents that contain the specified

keyword provided by the client during the query evaluation phase. The ranking can be in

ascending or descending order which depends on the settings specified by the server. The

other technique i-e non-ranked search [51] [52] provides all the documents just by identifying

17

whether the specified keyword is in the document or not. The ranking of the document is a bit

computationally expensive than the unranked search.

2.1.6 Index-based SE vs Homomorphic-based SE

For an index-based approach, the client is required to first extract the keywords from all the

documents in a corpus/document set. The keywords act as an identifier for the document

recovery during the query phase. This works in both symmetric and asymmetric modes and

can also be deterministic and probabilistic with both being having their own specific

advantages and leakages as well. On the other hand, the homomorphic-based SE schemes

don‟t require any sort of index for searching over encrypted data. This also eliminates the

need of preprocessing of the data as well. A comparison of both the schemes can be seen in

[53].

2.2 Related Work

This section highlights the existing work that many authors have contributed towards the

Searchable Encryption. This section is divided into 3 major sub-sections which discuss the

various categories of the SE schemes based on the query effectiveness along with pros and

cons of the relevant scheme as well.

2.2.1 Single-Keyword SE Schemes

Song et al. [20] proposed the single keyword search scheme that did not use an index. Due to

this, the server needed to scan each document completely to find the search result. Goh et al.

[54] was amongst the first to propose a bloom filter-based index which supported single

keyword search. Wang et al. [55] proposed a ranked keyword search scheme which uses the

frequency of keywords to rank the results. The scheme uses deterministic encryption due to

which it lacked resistance against distinguishability attacks. Furthermore, the scheme has

been successfully compromised using a differential attack leading to leakage of information.

 Works from authors in [21] [41] also performed single keyword search on encrypted

documents. But, the increase in the requirements of client are growing rapidly and a more

accurate and more secure search result is required. Kamara et al. [12] utilized dynamic SSE

scheme. The dynamic behavior in their scheme provides the ability to add, delete and even

18

modify the document files in the corpus. Additional data structures are used for providing

these additional features. A major contribution of this scheme is the use of homomorphic

encryption to encrypt the pointer; based on homomorphic encryption the server can modify

the file. The problem with this scheme is the use of deterministic trapdoor which makes an

adversary to perform distinguishability attacks.

 In [30], stefanov et al. proposed another single keyword DSSE scheme which leaks very

little information during searching of the document identifiers which were deleted in the past

and match the keyword. This scheme achieves forward privacy but fails to achieve backward

privacy. This scheme is efficient considering the worst-case search complexity and the space

for the data structure.

 In [16], Naveed et al. achieved full adaptive security while revealing minimum information

to the server. This is the first scheme that introduces the concept of blind storage in the field

of SE. The blind storage helps to hide the number of files along with length of each file while

revealing this information only when the same file is downloaded subsequently. The

operation of reading, deleting, writing and modification are hidden from the server. In this

scheme, each file is divided into a collection of blocks which are kept in a pseudorandom

location. The server can only see a superset of locations. The scheme is still lacking security

against actively corrupt servers and uses only single-keyword search.

2.2.2 Multi-keyword SE Schemes

Curtmola et al. [40] introduced the concept of inverted-index data structure, storing a hash

value against each keyword while obfuscating the number of documents matching against

each keyword. This results in complexity proportional to the number of documents matching

the most frequent queried keyword.

 An important work in the field of SE is done by Wang et al. [38], in which the authors have

given the concept of probabilistic trapdoors over inverted index. The scheme uses Paillier

homomorphic algorithm to provide semantic security. An encryption is semantically secure if

the adversary cannot extract any useful information about the plaintext from the ciphertext.

The scheme is efficient but the exponentiations still contribute to the computational overhead

and is a bit more resource intensive than the existing schemes.

 Hongwei Li et al. [39] provided an efficient, secure and accurate search over the encrypted

mobile cloud data using a multi-keyword ranked search scheme. The security analysis of this

19

scheme can effectively achieve confidentiality of trapdoor along with privacy and

unlinkability of documents and index to conceals access pattern of the search user. Efficient

index tends to provide improved search efficiency. This achieves enhanced efficiency in

terms of functionality and search efficiency compared to existing schemes.

 Yanzhi Ren et.al [56] provided a lightweight scheme that also supports multi-keyword

ranked in cloud computing system. The scheme uses polynomial functions for obfuscating

the encrypted keyword and search patterns for efficient multi-keyword search. The scheme is

tested using real world datasets with extensive experiments for providing privacy guarantee

of the proposed scheme. The problem with the scheme is the issue of important information

leakage of search patterns and access patterns in cloud.

 In [57], the authors proposed a multi-keyword multi-user SE scheme. The scheme provides

secure interactions between authorized users and CS. The scheme uses secure trapdoor which

provides IND-CKA. The scheme incorporates dynamic addition and revocation of authorized

users at the same time of dynamic update of the user accessing to files.

 Authors in [58] used another multi-user multi-keyword privacy preserving ranked based

search scheme. In this paper, the two major issues related to privacy preservation issues have

been identified i-e data fetched as a result of queries and acuteness of keywords sent in

queries. For privacy of the documents, the symmetric cipher named Twofish is used. To

retrieve the documents of user interest which will result in accessing the top n ranked

documents. Obfuscating the query pattern will provide privacy preserving access to data. An

index containing hashed values of keywords is used. The authors have analyzed and

implemented lucene indexing algorithm.

2.3 Attacks against SE Schemes

In this section, we present how the existing leakage-based attacks can recover not only the

queries but the plaintext as well. This includes frequency analysis attack [59], the IKK attack

[36] and the file injection attack [60]. Details about these attacks in the context of SE are

discussed below.

2.3.1 Frequency Analysis Attack

In [59], the authors have identified an attack on Privacy Preserving Encryption based SE

schemes, in which the CS could retrieve the items from encrypted databases using the data

20

distribution/frequency information. For a successful attack, the CS would require some

additional information. This includes, details about application, publicly available stats and

some previous versions of the database. This information can be retrieved by a data breach,

dumpster diving or through other social engineering techniques. The data distribution

information for an encrypted database is equivalent to the database in plaintext. Comparing

the leaked information related to frequency of data with obtained stats, which are relevant to

the application, the CS can recover the encrypted data items. Naveed et al. were able to

recover more than 60% of the records during the evaluation of this attack with real world

medical data using CryptDB. This attack does not require any sort of interaction with users.

2.3.2 IKK Attack

This is one of the first attacks that has displayed the potential damage that can be caused by

the exploitation of access pattern leakage. The objective of this attack is to retrieve the

plaintext from the encrypted queries. The adversary needs to know some background

knowledge about the targeted database through which the possible keywords in the dataset

could be recovered. After this, the adversary can guess the keywords in the dataset along with

co-occurrence probability. This information is not difficult to gather and it can be analyzed

whether the files belong to e-g a university‟s admin branch, accounts branch or a student

information portal. The adversary can simulate the expected co-occurrence of any two

keywords by carrying out probabilistic analysis over publicly available online datasets, e-g

the documents and news published on the university‟s website. The adversary guesses n

potential keywords and constructs a matrix M whose elements are the co-occurrence

probability of each keyword pair. The adversary initiates the IKK attack by analyzing the

access pattern revealed by the encrypted queries. Specifically, by checking if any-two queries

match the same files or not, the co-occurrence rate can be reconstructed. Using simulated

annealing technique [19], the adversary can find the best match between M and M and maps

the keywords to the guesses. The IKK attack [18] performed by Islam et al., recovered about

80% of the queries with variable vocabulary sizes.

2.3.3 File-Injection Attack

The file-injection attack is an active attack which is mounted on encrypted file collections,

also known as chosen-document attack. This attack aims to exploit the access pattern in any

21

encrypted file system by recovering encrypted queries. For this attack, the adversary does not

need any sort of auxiliary information; the adversary only requires the keyword universe of

the system. In [60] the authors have proposed first file-injection attack. The authors have

identified that encrypted queries can be retrieved with a small set of injected files. The

adversary sends files which consists of keywords of choice to the user who will encrypt and

upload them to the CS which will be the injected files. The adversary can know the location

of injected files only if no other files are uploaded at the same time. The adversary can check

which of the injected files match the relevant query. By injecting files with several keyword

combinations, the adversary could retrieve the underlying keyword by analyzing the

keywords included in the unmatched and matched injected files. The keywords which are

included in the matched injected files but not in the unmatched injected files are the possible

searched keywords. For example, if the injected files matching any query Q all contain w1

and w2, but w1 is also included in other injected files that unmatched with Q, the keyword

involved in Q must be w1.

Table 2: Research Methodologies Comparison

Schemes

Search

Pattern

Privacy

Access

Pattern

Privacy

Size

Pattern

Privacy

pattern

privacy

Forward

Privacy

Privacy

Remark

Naveed et al. [16] x x  x SSE

Ishai et al. [36]    static ORAM-based

Kamara et al. [41] x x x x SSE

Chen et al. [14] -   static SSE

Stefanov et al. [30] x x x  DSSE

Hang et al. [47] x x x x PEKS

Ferretti et al. [46] x x x x SSE

22

Chapter 3

Proposed Work

Cloud environment enables the clients to access data and utilize on-demand resource sharing

remotely. The major services offered by the cloud services include SaaS, PaaS and IaaS.

Development in the field of cloud has provided the clients with another service i-e Database-

as-a-Service (DaaS) [67] which enables the client to store their data/files on the cloud. The

prevalent problems associated with DaaS are trust, security and performance issues along

with expectations. In the context of DaaS, searching over the encrypted text or SE is a tedious

Sun et al. [48] x x x x SSE

Hoang et al. [42]   x  SSE

Cao et al. [37]  x x static SSE

Wang et al. [38]    static HE-based

Bosch et al. [5]  x x static SSE

Naveed et al. [17]   x x ORAM-based

Proposed     -

23

job and a resource consuming task. Thus, a scheme is required which can perform search

over the encrypted data. This would facilitate the client in maintaining the privacy even when

the data is outsourced while enabling the searching capabilities over the encrypted

documents.

 This chapter covers the proposed scheme in detail, modules required for the

implementation, index generation, keyword searching, file encoding/decoding, file

encryption/decryption and file transfer environment in a client server environment. The

trapdoor generated is probabilistic which helps in resistance against distinguishability attacks

and mitigate the risk of passive attacks.

3.1 Problem Formulation

SE helps the clients in outsourcing their critical data securely. During the outsourcing of the

data, certain significant leakages can be observed by the malicious or curious server. Threat

modelling helps in finding potential exploits which can later become stern threats. Also, a

threat model helps in securing the data from the entities like internal threat actors or external

malicious threats. Our approach is similar to [43] as it also uses a similar symmetric

searchable encryption and also encodes the data for obfuscation of the access patterns. The

threat model works with our system model and helps in establishing the effectiveness of our

scheme using our dataset.

3.1.1 Threat Model with Assumptions

A SE scheme typically has either two or three entities: a data owner, cloud server and

sometimes data user. The client encrypts the data and generates an encrypted index for

searching capability. The documents and the index are outsourced to the cloud server. The

main threat in the system is either the cloud server or any eavesdropper/3
rd

 party adversary.

Some of the characteristics of a possibly malicious adversary are given below:

A) Trusted/Honest but curious server

Besides protection of data from visible threats, the data owners need to keep an eye out for

the servers that have the authority over your data but are needed to be trusted by the client.

These servers are not necessarily corrupt but they may develop an interest in a client‟s data.

24

Recent events of data breaches have forced the researchers to identify the problems

associated with data protection in a cloud-based environment. In our proposed scheme, the

cloud server can only view the encoded files, which even if decoded would give out the

encrypted file. The encrypted file can only be decrypted by the key that was used to encrypt it

in the first place. Even after decrypting the server would get the hashed value of the text that

was present in the document. Thus, we try to limit the amount of useful information being

leaked to the server which in any way affects the confidentiality of the file. We assume that

the cloud server is not completely malicious and thus would not modify the contents of the

data i-e integrity remains intact. In our research, we also try to eliminate maximum exploits.

Thus, integrity check is also ensured here.

B) Polynomial time adversary

The adversary is capable of performing a particular number of operations for guessing the

contents of the file. The polynomial time here can vary for server but would have a well-

defined limit before losing the purpose of all these computations.

C) Adaptive Adversary

The cloud server can maintain a history of all the searches performed over the encrypted data.

This implies that the server knows about the search patterns and access patterns. For security

analysis of the system, the adversary is provided access to the history and capability to

analyze the history by choosing keyword adaptively.

D) Standard Model

A model where it is assumed that the time is limited along with the resources for computation

by an adversary. The system is not ideal and is replaced by a random oracle. The proposed

scheme provides high level of security in this model using the Advance Encryption Standard

(AES). Thus, the adversary with limited resources, cannot possibly decipher data in

reasonable amount of time.

25

3.1.2 System Model

In chapter 1, we described the 4 major architectures which govern the searchable encryption

depending on the requirements of client. For our scheme, we use the single writer, single

reader scheme. A client server model is implemented by assuming an entity named Bob to be

the client, who wants to outsource his data to a cloud server CS. Bob has a collection of

documents D which he intends to upload to the CS. The CS will act as a storage container for

Bob and will not perform any complex computations on behalf of Bob. The only computation

that the CS needs to perform is the keyword matching for relevant document retrieval for

Bob. Before outsourcing his data, Bob must create an inverted or inverted index table which

would contain keywords against respective filenames. The CS would utilize this index as a

lookup table when a query is issued from Bob for document retrieval. The keywords in the

index table are first hashed using SHA-384 and later on encrypted using AES-256; which

provides the appropriate security needed for keywords during index generation. For

documents, we split them into multiple equal sized fragments. The no. of fragments remains

the same for a particular dataset. The fragments are encoded and are then sent over to the CS

for storage.

 Now, client has an index table I and encrypted encoded documents set D which is

outsourced to the CS. If bob intends to search for a particular document containing a specific

word, he would simply compute a probabilistic trapdoor Tw and send it to the CS. CS will use

the trapdoor Tw to search the keyword in its index table I and would return all the relevant

documents matching the particular trapdoor (query).

26

Figure 5: Generalized System Architecture for Scheme.

Figure 5. shows the general system architecture diagram for our scheme. It can be seen that

the cloud server is used as a storage container only and no additional computation except

searching on encrypted data is being performed on it; which is equivalent to a real word

scenario. The major tasks performed by the client are highlighted here. The server returns the

relevant document when search is complete.

3.1.3 Deterministic Encryption

In order to highlight the importance of deterministic encryption for our scheme, we need to

analyze the definition of deterministic encryption introduced by Bellare, Boldyreva, and

O‟Neill [23].

 A deterministic encryption is a triad of (M, K, C), where M is the message space, K is the

key space and C is the ciphertext space s.t for each key k K and each message m M, there

is one and only one ciphertext c C s.t () where c is a unique ciphertext generated

for a message m even when the key k remains constant.

27

The encryption process works as follows:

Depending on the mode of encryption, a message/document is encrypted using a unique key k

 K and sometimes an IV as well. The ciphertext remains same till the key is unchanged for a

message e-g if you know that the message 'hello world' has the ciphertext '&yy/ m/jyp' under

some form of deterministic encryption, then that message will always produce the same

ciphertext. This is used when we consider the server as curious.

 The advantage of using the deterministic encryption is its applicability in searchable

encryption while maintaining efficient search time. The search time in the case of

deterministic encryption is logarithmic on encrypted data while the probabilistic encryption

offers linear search time [20], [21]. The difference is crucial for large outsourced databases

which cannot afford to slow down search. A problem with the deterministic encryption is that

it lacks the classical notions of security of randomized encryption [22].

3.1.4 Probabilistic Encryption

In our version of probabilistic encryption, we consider any third person as an eavesdropper in

the conversation between client and the server. A random number π is generated whenever a

trapdoor is to be generated. The generated the random number is converted into hexadecimal

format before concatenating it with the trapdoor to help the client in achieving the

randomization between two same trapdoors. With the concatenation, the adversary is unable

to identify the length of the trapdoor and thus fails to extract the exact trapdoor for any word.

Thus, our probabilistic encryption is a quadruple of (M, K, C, π), where is M is the

message/document, K is the master key, C is the cipher text and π is the random number.

 For every k K, m M and each c C, there is one and only one m M such that (m,

k, c) Ω, where Ω ⊆ M x K x C.

28

3.1.5 Phases of Algorithm

The scheme comprises of N polynomial time algorithms. Following are the phases involved

in the algorithm.

1. () () : takes as input a security parameter  and outputs

master key K.

2. () () : takes the document set D as input

and after performing keyword analysis generates a list of unique keywords against

each document.

3. (()) () takes the document set D as input as

outputs the encrypted document set.

4. ((()) (()) takes the encrypted

document D, number of data fragments k, number of parity fragments m, and

type of erasure encoding ectype as input as outputs the encoded document.

5. () (()) : takes encoded encrypted fragments

and keywords of the respective documents to build a secure inverted index.

6. () () : takes as input the master key K,

random number num and a keyword kw. It outputs the Trapdoor Tw for the

query.

7. () () : takes as input the encrypted index I and

the trapdoor Tw to output di which is one of the matched fragments, as the search

outcome.

8. () () : takes in the fragments retrieved during the

search outcome and returns the original encrypted document.

9. ((()) takes the encrypted document

Enc(D) and returns the plaintext file.

3.2 Correctness

 An SSE scheme is correct [66] if for the security parameter λ, the master key K generated

by the KeyGen (λ), for I output generated by the () the search using the

trapdoor Tw will always return the correct set of encoded documents fragments.

 If kw belongs to di, then the following must hold with overwhelming probability:

 () ()

29

 If kw does not belong to di, then the following must hold with overwhelming

probability:

 ()

3.3 Soundness

 The scheme is sound [66] if the SearchOutcome does not provide any false positives. This

implies that all the phases are correct and thus the search phase always provides sound

results.

 If kw belongs to Di, then the following must hold with an overwhelming probability:

 ()

 If kw belongs to Di, then the following must hold with an overwhelming probability:

 ()

3.4 Security Definitions

In this section, we propose definitions for the access pattern leakage reduction in our scheme.

A scheme is secure with privacy guarantee if it meets the definitions mentioned in this

section. In section 3.4, we analyze how our scheme works in compliance with these

definitions.

3.4.1 Keyword-Trapdoor Indistinguishability

Keyword-Trapdoor indistinguishability [66] is termed as the process of searching over

encrypted text in order to hide any information that may cause the whole process to reveal

information related to the plain-text of the corresponding cipher-text. This will help in

achieving the security level in which when the same word is searched multiple times, the

scheme will generate a unique trapdoor each time. Considering the fact that the 3
rd

 party

adversary is trying to maintain a complete history of the encrypted keywords that are being

searched against the corresponding keywords, it would not be able to perform further

searches in future. In our scheme, the adversary given polynomial time would still get the

wrong trapdoor because the hidden operation that is performed on the trapdoor before

sending it to the cloud server, is completely hidden from it.

30

Description

First, the challenger C would generate the encrypted index table I for all the words against the

documents of the whole dataset. The Adversary A is going to select a word kw belongs KW

and send this word to the C. C will generate the encrypted trapdoor of the word that it has

received from the adversary. This encrypted trapdoor will be sent to A. This process continues

until A has received polynomial-many encrypted query keyword trapdoors. Later on, A

chooses two keywords kw0, kw1 belongs to KW and sends them to the challenger. In response,

the challenger will send a trapdoor corresponding to the keyword kwi, where i is the outcome

of a fair coin toss. If the adversary somehow in polynomial time has probability greater than

1/2 for guessing the keyword, then it will be established that the adversary has succeeded and

the scheme will completely lack the property of keyword-trapdoor indistinguishability.

However, if the adversary fails to do so, then the challenger will be successful in achieving

the keyword-trapdoor indistinguishability property. Let scheme = (Keygen, KeywordExtraction,

Encryption, Encoding, BuildIndex, SearchOutcome, Decoding, Decryption) be an unranked

Searchable Symmetric Encryption Scheme over the dictionary of keywords KW = {kw1, kw2,

…. kwi}, documents set D = {D1, D2…, Di} with λ being the security parameter and A being

the adversary tapping into the communication channel.

Considering a probabilistic function of ()
 (λ):

 ()
()

 ()

 (())

() (
)

 (
)

()

 * +

() ()

(
) ()

 (
)

 ()

31

stA is used for string representation which records the state of the A. The property of

keyword-trapdoor indistinguishability will hold for polynomial time adversary A.

 * ()
() +

 ()

The probability depends on the selection of c which is a fair coin toss.

3.4.2 Indistinguishability

This definition [66] is related to the complexity offered by the SE scheme. The trapdoor,

index table and keyword must be complex and work in such a manner that they do not

reveal any information related to index table entries prior to the search. This implies that

for a keyword appearing more than one time, the corresponding trapdoor must be

indistinguishable even if the adversary gets hold of some history. Furthermore, if a slight

change occurs in the keyword i-e a bit or a character change, then the whole trapdoor and

index table must reflect this change.

Description:

The challenger C begins by generating an index table I against a collection of Document set

D. The challenger will create an encrypted index table and will send this table and the

encrypted dataset to the cloud server. The A would choose two keywords which he would

want C to encrypt i-e kw0, kw1. C tosses a fair coin b and encrypts the keyword based on the

output of b. This trapdoor is later on sent over to A. A would try to guess the keyword which

is the output of b. If the guess of A has a probability of more than ½ then A having more than

average advantage would be considered a winner otherwise C would win and it would

establish that the scheme provides the trapdoor-index indistinguishability.

Let scheme = (KeyGen, Encoding, Encryption, , , ,

Decoding, Decryption) be an unranked multi-keyword Searchable Symmetric Encryption

Scheme over the dictionary of keywords KW = {kw1, kw2…... kwi}, documents set D = {D1,

D2…, Di}, and λ be the security parameter and A be the adversary tapping into the

communication channel.

32

Consider the following experiment Trapdoor_Index (SE, A) (λ):

 ()

 (())

 let I’ = I[0][x]

 let kw = (kw1, ..., kwi)

() (
)

 (
) ()

 * +

 () ()

 (
) ()

 (
)

 () ()

stA is used for string representation which records the state of the A. The property of

keyword-trapdoor indistinguishability will hold for polynomial time adversary A.

 * ()
() +

 ()

The probability depends on the selection of c which is a fair coin toss.

3.5 Scheme Construction

The details of all the phases described previously are given below:

 (K)  KeyGen (λ): Given a security parameter λ, generate a master key K; such

that * +

33

 Enc(D)  Encryption (K, D): In this phase, the original documents are

encrypted using the master key. Encrypted document set would be returned as a result

of this phase.

 En (Enc(D))  Encoding (k, m, ec_type, fragments, Enc (Di)): In this

phase, the encrypted documents are encoded by taking k, which is no. of data

elements m, which is the no. of parity elements, the algorithm used to use ec_type and

no. of fragments using fragments for file encoding. The output would be a list of

(k+m) fragments against each document.

 (I)  (En (Enc(D), kwlist): Initialize two 1-D List A and kwlist.

Read all documents from document set D = {D1, D2 ..., Dn}. We then encrypt and

encode each document and build a List A which contains all the identifiers of the

encrypted fragments of respective files of the dataset. A ← id (En (Enc(D))). For List

34

kwlist, firstly tokenization is used to separate each word including the punctuation

marks (if any). A collection of words is extracted from each respective document to

build kw = {kw1, kw2..., kwn} a set of words against each document. The punctuation

marks are removed as they are not marker to be used for searching a particular

document. All words are converted into lower-case for generalizing the search query.

All the stop words from the List kwlist are also removed because they are not required

for the search query as all documents contain these words and thus, we cannot use

them as search queries. Stemming is used to retrieve the base/root of the word. This

helps to map a single trapdoor to a word originating from the same stem. For each

document Di, build a kwlist containing specific no. of unique words. After performing

all the text analysis, we generate a list C containing the hashes of the words that were

generated previously. C ← Hk(B). Each hash value is encrypted using AES-256, E ←

Enc (Hk(kw)). Finally, we have a List E which contains a set of unique and distinct

hashed + encrypted keywords occurring in D.

 Tw  (K, kw, IV): let a ← (Hk (kw)) and b ← Enck (Hk (kw)).

Generate a random number π of arbitrary length in hexadecimal format. Concatenate

the random number π with b. This provides the randomization needed for probabilistic

trapdoor generation in the case of 3
rd

 party adversary. Set Trapdoor Tw ←(b||π).

35

 di  (I, Tw): The trapdoor Tw would be matched in the index

table I. The first column in the table contains all the fragment identifiers. Other

column entries against the fragment identifier contains all the encrypted keywords. A

scan would be initiated by the server against the provided Tw. The server checks

against each entry of columns to find a match against the Tw and constantly saves the

fragment identifiers in a list to later on use these identifiers for relevant fragment

retrieval.

 Enc(D)  Decoding (k, m, ec_type, fragments, Di): In this phase, the

encoded fragments are decoded by specifying k, which is no. of data elements, m,

which is the number of parity elements, the algorithm used ec_type and number of

fragments using fragments for file encoding. The output would be a list of (k+m)

fragments against each document. A list is used to append all the fragments of the

same document. Finally, a list within a list is used which contains all the list of

fragments lists against all the retrieved documents.

36

 D  Decryption (K, Enc (D)): Given a set of encrypted documents, decrypt

using the master key K for final output of the search.

Remark 1: The index table I needs to be regenerated whenever any file is added or updated

but work fine if any file needs to be removed. This can be avoided using dynamic searchable

encryption rather than static searchable encryption.

Remark 2: The keywords stored on the CS can be changed using frequency Distribution

function of Natural Language Tool Kit (NLTK) in our scheme. Using the text analysis steps

described earlier, limits the information that an adversary can successfully utilize in

launching an attack on the scheme. As selective words will be chosen and stop words will be

removed, it would become difficult to guess the words in the documents which are already

encrypted. The attacks which make use of access pattern leakage use statistical analysis or

file injection attacks for guessing the underlying words. If the frequency distribution is

changed by the client and stemming is being used then the statistical attack would require a

huge amount of data to uncover the keyword. As words are encrypted, thus we can avoid the

frequency analysis attack as well while providing efficient searching. With the use of

encoding, we can obfuscate the original size of the file as well and maintain privacy as well.

37

For enhanced security, one may use Order Preserving Hashing [64] or Order Preserving

Encryption (OPH) [65].

3.6 Security Analysis

Most of the existing searchable encryption schemes are unable to resolve the issue of access

pattern leakage. The authors in [26] have provided a way that might help to hide the access

patterns. The most important of all are the underlying assumptions of the authors and high

computational overhead. Other schemes that might have used ORAM to hide the access

patterns are theoretically sound but the lack of practicality of their schemes has stopped the

authors from using ORAM in newer schemes. The time required to retrieve a single file using

any ORAM scheme is more or less equal to the retrieval of all dataset to the user. The

searchable schemes work by using a secure index which is sent over to the server for

performing search on server side on behalf of client. The index contains the information

about the documents associated with a keyword. Thus, in any index-based approach the

access pattern leakage on the server will become almost unavoidable. The probable solution

that our scheme presents is the avoidance of such attacks that make use of the access pattern

leakage e-g IKK attack, frequency attack or file injection attack. As discussed before, our

proposed scheme is probabilistic for the 3rd party adversary. We will map our scheme to the

definitions stated in Section 5 and we will also highlight any leakage that is leaked during the

whole process. While highlighting the leakages, we assume that an adversary A in a standard

model and we do not replace our scheme with any weak construction. The leakage is based

on polynomial time and with adversary having limited computational capacity. Following are

the results of the security analysis.

3.6.1 Leakage Profiles

The leakage profiling helps in identifying any leakage significant or insignificant based on

certain assumptions. We will discuss the leakage for the server and 3
rd

 party separately

because the impact of this leakage may be catastrophic or may be ignored based on the

assumptions and scenarios. The leakages being discussed against all the algorithms discussed

during the polynomial time algorithms we use in our proposed scheme. While profiling, it

must be noted that we are considering the adversary to be malicious while the server to be

honest but curious. The security analysis of scheme reveals the following results:

38

i. Leakage L3.1

Description: This leakage is linked with the index table I. It is assumed that the index table is

revealed to the server and the client only.

 () * (() (()+

ii. Leakage L3.2

Description: This leakage is linked with the trapdoor Tw generated for a particular keyword

by the client. We assume that the trapdoor Tw is revealed to the cloud server and the client

but the adversary A gets a different trapdoor than the actual one. The leakage L2 is defined as.

 () * (() +

iii. Leakage L3.3

Description: This leakage is linked with the output of the searching phase against a particular

trapdoor. It is assumed that the search outcome is visible to all the stakeholders which include

client, CSP and the adversary. The leakage L3 is defined as.

 () * () (() +

where SO is the Search Outcome.

3.6.2 Discussion on Leakages

 The trapdoor is generated using a probabilistic encryption algorithm along with a keyed

hash function, therefore the leakage associated with the trapdoor can be regarded as

meaningless, even when it is revealed to the CSP. Now considering the trapdoor in case of

3
rd

 party adversary A, the addition of the random number makes it difficult for him to

associate a particular trapdoor with the search outcome. This means that if we give access of

trapdoor oracle to the adversary accidentally, then the future searches will still be secure

against the adversary. Hiding the access pattern is not possible in any index generated

scheme but with some extra algorithms added in our scheme, we are able to reduce the attack

surface. Also, it is worth mentioning here that the IKK attack performs well when the dataset

is dependent and performs very poorly for an independent set of documents.

 Considering the capability of CS in leakage L3.1 scenario, we realize that a curious server

has access to the main index table, which is supposed to be an index map for document

retrieval. If the server is only curious, then it would only observe the communication as the

39

whole conversation is encrypted. The leakage of Index table is of no concern unless the CSP

itself turns malicious instead of semi-trusted. But that would waive the client because the

fault will be considered on the server side.

 The leakage L3.2 and L3.3 will lead to security and privacy concerns, but we will prove that

these leakages do not reveal any information related to the outsourced data. The leakages and

assumptions are interdependent and interrelated, therefore to maintain security, all the

assumptions must be met.

3.6.3 Formal Security Proofs

Lemma 3.1: The Searchable Symmetric Encryption Scheme present above is “privacy

preserving” because it is (L3.1, L3.2, L3.3) secure and according to the Definition 3.1 and 3.2

we have defined above, L3.1 is associated with the index table I which leaks the information

related to the number of encrypted hashed keywords considered in a document to the cloud

server. The leakage L3.2 is associated with the leakage of trapdoor information to the CS. The

leakage L3.3 is linked with information made available to all the entities involved in the

scheme in terms of search outcome.

Proof Sketch

 The adversary A would first send the challenger C a keyword and the response from C is

in the form of encrypted trapdoor to A. This keeps on going till the adversary gets all the

responses of the keywords and a complete history of all the queried trapdoors is maintained

by the adversary.

 Later on, the adversary chooses two keywords kw0, kw1 belonging to kw and sends them to

the challenger. In response, the challenger will send a trapdoor corresponding to the keyword

kwi, where i is the outcome of a fair coin toss. If the adversary somehow in polynomial time

has probability greater than ½ for guess the keyword, then it will be established that the

adversary has succeeded and the scheme will completely lack the property of keyword-

trapdoor indistinguishability. However, if the adversary fails to do so, then the challenger will

be successful in achieving the keyword-trapdoor indistinguishability property.

40

 As the adversary gets the trapdoor concatenated with a completely random number each

time for a trapdoor for the same word, thus the probability of guessing the keyword becomes

less than ½ in polynomial time and this comes in correspondence to the security definitions.

From this, we can establish that the challenger will win and the proposed technique will

provide the respective indistinguishability property.

3.7 Updating Index Table

Whenever a new file is added or an existing file is removed/deleted from the dataset, it would

be required to modify the existing index table. The deletion is a simple process while the

addition of the documents some more manual work to be done by the client. Both of these are

explained below:

3.7.1 Addition of New Documents

For the addition of new documents in the existing dataset, the client would need to append

the document name against the encrypted keywords extracted from the document and append

it to the existing index table. The newer index table will be sent to the CS, which will use the

newer index table to perform searching.

If there are N documents that need to be added, the client would place them in folder and

point the directory location in code towards this specific location. From there, the client will

encrypt and encode the documents. Later, using keyword extraction, all the keywords from

the newly added documents will be extracted, hashed and encrypted and will be append to the

existing index table and sent over to the CS.

3.7.2 Deletion of Existing Documents

For the deletion one or more documents from the dataset, the client will simply instruct the

CS to delete the documents. The entry of such documents will be removed from the index

table along with the keywords that were extracted previously. For deletion of the files, it is to

be assumed that the CS will perform the operation honestly i-e the CS will perform operations

honestly but will remain curious and will only observe the whole process and not perform

any sort of analytics.

41

3.8 Correctness and Soundness

This section proves the correctness and soundness defined in Section of the proposed scheme.

The scheme comprises of eight polynomial time functions i-e ℿ = (Keygen, Encoding,

Encryption, , , , Decoding, Decryption).

3.8.1 Correctness

The proposed scheme is correct if for the security parameter , the master key K generated

using the KeyGen (), for the keywords identified by the , the search using the

encrypted query keyword generated using and search using the

returns the correct encrypted documents.

Let K represent the output of the Keygen phase, where the master key is K ← {0, 1} λ.

Suppose kw0, kw1 kw, we can verify that the below mentioned properties hold.

 Given Tw = (K, kw), the following equality hold:

 (())

 Given Tw = (K, kw`), and kw0 ≠ kw1 the following inequality holds:

 (())

This indicates that the property can only hold when H(kw0) = H(kw1) which has very

negligible probability.

From the above discussion, we can conclude that a unique trapdoor is mapped to a unique

keyword. As the index table contains all the encrypted hashed document keyword list against

the respective document.

3.8.2 Soundness

The proposed scheme is correct if for the security parameter , the master key K generated

using the KeyGen (), for the keywords identified by the , the search using the

encrypted query keyword generated using and search using the

returns the correct encrypted documents.

42

Let K represent the output of the Keygen phase, where the master key is K ← {0, 1} λ. Suppose kw0,

kw1 KW, we can verify that the below mentioned properties hold.

 If kw belongs to Di, then the following must hold with a huge probability:

 ()

 If kw does not belong to Di, then the following must hold with a huge probability:

 ()

3.9 Defense against attacks

In this section, we will discuss how our scheme is able to counter some of the attacks which

utilize the access pattern leakages for information gathering. The focus is on three attacks

which are discussed mostly in the literature against access patterns.

3.9.1 Defense against frequency analysis attack

The frequency analysis attack relies on the analysis of dataset with respect to the keywords

extracted against each document present in the document set. It is assumed that all the words

are a keyword in the document which will be included in the index table as well. This would

help to establish which keywords occur most in the document and using the frequency of the

words of the underlying language, it would become easy to identify what is the underlying

word against the encrypted trapdoor. Defense against this kind of attack becomes difficult if

the scheme is incorporating every word of the document present in the dataset. This not only

would not increase the size of the index table but would also increase the searching time as

well. To mitigate this kind of threat, our scheme removes almost all the stopwords from the

dataset completely. These include the words which are necessary for building sentence

structure. Otherwise, it becomes impossible to make sense of the underlying text. Next, we

have fixed the number of keywords which can be included against each document in the

dataset. Specifically in our scheme only 50 keywords are being added against each document

at most. These are randomly selected which makes it more difficult to reconstruct the

document using these limited words.

43

3.9.2 Defense against IKK attack

The IKK attack heavily relies on some very unrealistic assumptions. One such assumption is

that the adversary knows the whole unencrypted dataset. Also, this attack works for

dependent dataset only which means that each document in the dataset would have several

keywords which are presented in more than one document and thus would somewhat become

linked with one another. The authors claim that a successful attack has a about 80% recovery

chance. Which means that 80% of the trapdoors can be mapped to correct keywords. To

eliminate this kind of attack, a probable solution is to add redundant data to the original

dataset. Furthermore, it seems that splitting of documents into smaller fragments would also

help against this kind of attack because this would increase the hardness for the adversary

having limited resources. For defense against IKK attack, we have used erasure encoding

which tries to created several fragments of the original document file along with some

redundant fragments as well. Also, we have added some false positives in the dataset as well.

These simple yet effective technique helps to increase the time taken by the adversary to

launch a successful attack on the scheme. Complete mitigation of this attack is difficult

because it can only be eliminated if the access patterns are completely obfuscated.

3.9.3 Defense against File Injection attack

In file injection attack, the adversary would attempt to add his personally selected documents.

After adding personalized document, when he would query the server, he would be returned

with some documents of the actual dataset and maybe he would get one of his own

documents as well. When he receives his personalized file, he would pinpoint that the query

word actually resides in his own document file as well. Then, he would split that document

file in to several smaller fragments and add it to the dataset. Now, when he again queries the

server, he would get a document which would be the smaller fragment containing lesser

words from the bigger document. After several attempts, he would actually get to the exact

keyword. The author in [] claims that with 10,000 such documents he would be able to

decrypt all the underlying keywords. This attack seems to be one of the most dangerous

attacks which uses the access patterns to generate 100% result but the author has made a

major assumption here. Firstly, the author assumes that the index table is being updated out

of nowhere and the client himself is adding these files to the index table which seems

unrealistic. Normally, in any static SE scheme, the index table would need to be updated

44

whenever a file is to be added in the dataset otherwise the index table would contain no entry

of such file and therefore it would never be returned. In our scheme, whenever a file is added,

then the whole index table would need to be regenerated and then it would be stored again on

the server while overwriting the original one. Now the adversary can try to inject the file in

the dataset but if the user has not added any new file in the dataset, he would not generate the

index table again. Suppose, later on somehow, he has injected the files successfully in the

dataset and has also updated the index table accordingly. Even then it becomes a very hard

problem to identify the keyword because his document would obviously several other words

besides this keyword. As we are using a static single reader single writer scheme, therefore

the user would only regenerate the index table only if he himself is adding some file to the

dataset. But if some file from adversary is injected in the dataset, the index table would not be

reconstructed and thus this attack would not work.

3.10 Summary

In this chapter, we have explained about the problem that we are solving by formally defining

a problem statement. Threat model along with the system model has also been discussed in

detail in this chapter. The use of deterministic and probabilistic encryption in different phases

of the algorithm is also a part of this chapter. The details about each phase have been

presented and discussed in detail. In order to prove the security guarantee of the algorithm,

we have presented two security definitions. The security analysis of the scheme provides the

mapping of the definitions against the proposed SE scheme. The correctness and soundness

of the proposed work is also presented in this chapter. A brief discussion on how the scheme

is providing defense against some of the attacks has also been presented in this chapter. In

Chapter 4, we will discuss about the performance analysis of the proposed SE scheme.

45

Chapter 4

Implementation and Performance

Analysis

4.1 Description

This chapter presents the computational analysis and performance of the proposed technique.

The performance analysis is divided into various parts. For the first part, a discussion on the

algorithmic analysis of the proposed scheme is presented. After that a discussion on the

storage overhead and computational analysis is provided in detail. The computational

overhead of each section of the scheme is discussed in detail.

46

4.2 Algorithmic Analysis

In order to check the complexity of the scheme, a brief analysis about each phase with respect

to time is discussed in this section. The complexity is based on the number of documents

present in the dataset. For self-convenience, the number of keywords present in a document is

denoted by m, the dataset by D, and the number of documents by n. The number of keywords

depends upon the size of the document file and the number of words other than the stop-

words in the document. There are approximately 851 stop-words such as and, the, they that,

we, he, she, it etc., which are not going to be considered in the keyword extraction phase of

the code. They don‟t provide any valuable information and thus cannot be interpreted as a

valuable keyword for any document. Dataset consists of 2,438 files with variable size. The

maximum keywords that will be considered for the datasets is 50 per document to eliminate

the threat of frequency analysis attack. The complexity of hash function will be denoted as h

and complexity of AES-256 encryption will be represented as e. The proposed scheme

consists of 9 phases which include KeyGen, Encryption, Encoding, KeywordExtraction,

 , , , Decoding and Decryption. The complexity of each

phase is discussed as follows:

 The key generation and the encryption phases are constant functions and they would

require the amount of time to be performed. Being constant, the time complexity for Keygen

is O (1).

 The Encoding phase would depend upon the number of chunks that are created for each

document of the dataset. Some fragments contain the required encrypted information while

some include redundant data. Thus, the complexity of Encoding phase turns out to be O (u+r)

where u indicates data fragments and r represents redundant fragments. For the

 , the algorithm takes in all the words of the document. After opening each

document for reading in a loop, another loop is used to save each keyword by removing all

the punctuation marks, stop-words, and stemming. As a nested loop is being used here, so the

time complexity comes out to be O (n
2
).

 For the phase, the function takes in a list of keywords and document names to

construct an encrypted index I, which is used later for retrieval of fragments. This indicates

that the complexity of this phase depends upon the number of keywords against each

document in the dataset and the number of documents. The maximum number of keywords

that are considered are 50 while the lowest will be 1. So, the number of columns will be 51,

where first column consists of document identifiers and the rest of the columns consists of the

47

keywords. This indicates that the number of columns is fixed while the number of rows will

vary the number of documents in the dataset. The index generation involves AES encryption

and Hash functions which gives linear complexity. It can be established that with the increase

in number of documents, the time complexity will also increase linearly. Therefore, the

complexity of the is O (n).

 For function, the user provides a word as input which would be used to search

using the index by the CS. The input would be firstly hashed and then encrypted. This means

that one Hash function and one AES encryption function is being utilized for building

trapdoor. This means the time complexity for this function would be O (h + e).

 For the function, the time complexity is fairly straight forward. As

keyword matching is to be done against each document of the dataset, thus the complexity

turns out to be O (nd) where nd is the number of documents in the dataset.

 As each document is going to be explored for finding a keyword match, and the number of

chunks required for reconstruction of the file would exclude the redundant files that were

created earlier and only the useful files will be used for reconstruction of the original

encrypted document. So, the decoding function would have a complexity of O(u) where u

represents the useful chunks of a document. After reconstruction from these important

chunks, the document will be decrypted using AES which returns data in the hash form for

each returned document and at the end, a hash function would be used to get the original

plaintext document from this whole algorithm. Thus, the complexity of decryption function

turns out to be, O (n) where n represents the number of documents to be decrypted.

The complexity of the proposed scheme is presented in tabular form in Table below.

Table 3: Complexity of proposed scheme.

ALGORITHMS COMPLEXITY

Keygen O (1)

Encryption O (n)

Encoding O (n)

KeywordExtraction O (n
2
)

48

BuildIndex O (n)

BuildTrap O (h + e)

Decoding O (n * u)

Decryption O (d + h)

4.3 Computational Analysis

The proposed scheme is further tested and analyzed based on the implementation and testing.

This particular section provides the implementation analysis in detail. The scheme is

implemented in Python language using Anaconda as primary code editor, on a Switchboard-1

Telephone Speech Corpus. Before moving any further, some preliminary details which are

necessary for understanding the computational analysis are provided below:

4.3.1 System Specification

The code of the scheme is done mainly in Windows but due to installation problem with

Pyeclib library, which is needed for encoding of the documents, the environment for this

phase was shifted to Linux. The version of Python 3.8.5 was used and the software used for

managing the code was Pycharm 2020. To represent the encrypted index in a human readable

form, it was generated and written to a MS Excel 2016 file. The specifications of the

Hardware used are mentioned below in Table 1.

Table 4: System Specifications.

The coding part required the usage of some pre-built libraries for efficient and less

computationally expensive code. The details about the libraries are provided in Table 2.

Component Specification

Operating System

Memory

Processor

OS type

Virtualization

Windows 10/Ubuntu 18.04.4 LTS

12GB

Intel Core i5-7500U CPU AT 1.90GHz × 4

64-bit

VMware Workstation 15.5.6 Pro

49

Table 5: Libraries with versions.

Library Name Version

Python

PyCharm Community

NLTK

Hashlib

CSV

Collections

3.7.9

2020.1

3.5.0

2.008

0.0.13

0.3.0

4.3.2 Dataset Specification

Switchboard-1 Telephone Speech Corpus (LDC97S62) dataset is originally collected by

Texas Instruments in 1990-1991 under the sponsorship of DARPA. The Switchboard-1

speech database is aggregation of impulsive conversations addressing the growing need of

larger multi-speaker databases of telephone bandwidth speech. The collection consists of

2430 conversations with 6 minutes average length. This means over 240 hours of recorded

speech and about 3 million words of text which are spoken by over 500 people. The speakers

are of both male and female and dialects are from every major American English dialect. The

dataset consists of 120,000 unique keywords but the keywords in this dataset will be reduced

to 3,828 because the ignored keywords will be removed during the keyword filtering i-e stop-

words removal. This dataset constitutes a realistic dataset of telephonic conversation which

helps in understanding the functionality of SE presented in this thesis.

4.3.3 Implementation Details

To analyze the execution time of the proposed technique, the implementation was done in

Python language on a Windows 10 and a Linux. For the testing of our scheme, we considered

all the files of the corpus which would also give the practicality of the technique in real world

scenario as well.

4.4 Storage Overhead

The proposed scheme consists of eight phases. The keygen phase would generate a master

key which is used both for encryption and hashing. It is generated before the start of the

whole communication between Client and CS. The length of the master key is 256-bit in

length which indicates that the client would need to store

 = 32 Bytes. Typically, the

file size in the dataset considered is not greater than 30000 Bytes and the total files in the

50

dataset are 2,438. So, the total storage overhead for catering the whole dataset becomes

approximately 56,000,000 Bytes. Next the client needs to generate an encrypted index from

the whole document dataset of 2,438 documents. With 50 being maximum considered words

from each document and going through the phases of stop-words removal, punctuation marks

removal, lemmatization etc., and then taking hash of each word and encrypting each hash

with AES, the final storage size for the encrypted Index turns out to be 16,506,000 Bytes. At

the server side, the CS would store the encrypted index, the chunks of the documents and

some storage for processing the query received from the client side. Suppose that in the

scheme, the client generates 9 fragments against each document. Considering the fact that the

CS will perform the search for the client, the server will also store the encrypted index as

well. The dataset has about 2,438 files. The size of dataset is 56.6MB or 56600KB. Thus, the

total storage required on the server side will be (size of index + chunks of dataset + extra

space for processing query) i-e (16,506,000 + 56,000,000 + 100,000,000) Bytes =

172,506,000 Bytes or 172.506 MB.

4.5 Computational Overhead

The running time of each of the functions involved in the schemes are provided in this

section. The overhead in terms of time is analyzed and present in graphical form by

generating graphs in MS Excel. To analyze the running time, the algorithm first takes in a

single document file and then the files are doubled subsequently. The testing was done

multiple times in order to find whether there was any observed error in the analysis. The error

was not more than 0.001 sec even after the code was executed multiple times. The

computation overhead of each individual phase for each dataset is provided below:

4.5.1 Keygen Phase

In this phase, the client will first select a secure password. The plaintext password would be

encoded to convert it in bytes form. A hash of the secret password would be generated and

padding would be done for the data because CBC requires you to pad your data to make sure

the final block is filled with some data. A randomly generated IV will be generated which is

going to be used for the encryption of the data. As all the operations are being done in bytes,

thus the generated IV will also be encoded to convert it into bytes. The AES encryption

would be done by taking private key, selecting AES mode (CBC) and the IV as parameters.

51

4.5.2 Encryption Phase

For the telephonic dataset, the encryption starts with a single file and ends with the

encryption of all the files of the dataset. All the documents are first hashed and later

encrypted to ensure that not a single bit of information can be leaked from them in terms of

confidentiality. For a single file, the execution/encryption time comes out to be 3.1 sec. The

linear trends of this algorithm indicate that the encryption time increases as the number of

files of dataset increase. For the whole dataset, the encryption time takes about 37.52 sec.

Figure 6 shows the graph of encryption phase.

Figure 6: Computational Time for Encryption.

4.5.3 Encoding Phase

For encoding of the dataset, the value selected for k is 5 and for m is 4 (k is the number of

fragments that contain the actual encrypted data, while m is the number of fragments that

contain redundant data). The total fragments that would be generated from this function

would be k + m = 5 + 4 = 9. Execution time for encoding of a single file for the dataset

comes out to be 0.09 sec. The total time taken to encode all 2,438 documents is 2.18 sec. The

encoding time varies with the fragments that are generated against each document. Figure 7

shows the graph of the encoding phase

3.1

6.23

9.37

12.5

15.58

18.74

21.94

25.11

22.30

31.34

35.52

37.52

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000

El
ap

se
d

 T
im

e
(i

n
 s

e
co

n
d

s)

Number of Files
Elapsed Time

52

Figure 7: Computational Time for Encoding.

4.5.4 Keyword Extraction Phase

For the keyword extraction phase, firstly 200 files are taken to extract their keywords and

with the same gap the graph is mapped to 2,438 files. The keyword extraction phase takes

about 13.34 sec for the first 200 files and for the complete dataset it takes about 122.6 sec.

The graph in Figure. 8 provides the computational time foe the keyword generation. In order

to measure the time interval difference for keyword extraction, we have plotted it with and

without keyword analysis phase. It can be observed that it takes almost double the time when

extra functions of keyword analysis are being used. For 2,438 files, it takes 61.02 secs

without the keyword analysis functions while with those functions it takes about 117.78 secs.

Figure 8 shows the computational time analysis graph for the keyword generation.

0.09

0.19

0.41

0.67

0.734

0.94

1.01

0.96

1.33 1.96

2.03

2.18

0

0.5

1

1.5

2

2.5

0 500 1000 1500 2000 2500 3000

El
ap

se
d

 T
im

e
(i

n
 s

e
co

n
d

s)

Number of Files Elapsed Time

53

Figure 8: Computational Time for Keyword Generation.

4.5.5 Phase

The build index phase consists of index generation against the whole document set when it is

neither encrypted nor decoded. The index table will be transmitted to the CS where it will be

utilized as a lookup table. To analyze the execution time of the code on the whole keyword

set identified and extracted from the dataset, we will use construct the index with and without

keyword analysis. This would provide a comparison between the time for all the words of the

document set against the distinct keywords of the documents. The keyword analysis does

pose an overhead in the scheme but the benefit against the overhead is far more and the

analysis of the graphs proves it as well. Figure 9 below represents a comparison between

index generation with keyword analysis and without keyword analysis. The comparison

shows that the overhead of keyword analysis is almost double in terms of time complexity

but in terms of storage overhead of index it provides a much smaller and easy to use index

table. The comparison starts initially with 200 files and moves up to 2,438 files i-e total files

of the dataset. The blue line represents the time required with keyword analysis while the

orange line represents time required without keyword analysis. The total time taken to

generate the circles (with keyword analysis) is 117.78 sec while the triangles (without

keyword analysis) is 61.02 sec.

13.34

26.22

39.2
56.16

65.55

72.45

83.92

89.48

99.94

111.42

116.71 122.6

0

20

40

60

80

100

120

140

0 500 1000 1500 2000 2500 3000El
ap

se
d

 T
im

e
(i

n
 s

e
co

n
d

s)

Number of Files Elapsed…

54

Figure 9: Computational Time for Index Generation with and without keyword analysis.

4.5.6 Phase

The trapdoor is a search token that is generated on client side and is sent over to the CS to

perform search over the encrypted dataset using the index table. The trapdoor function does

not take any specific parameters due to which the time for the trapdoor generation is almost

the same and it does not matter which keyword will be used in trapdoor generation function.

The time taken to generate trapdoor is about 0.0112 seconds.

4.5.7 Phase

As discussed before, the search outcome phase in our case is divided into two sub phases.

After the search has been perform by the CS against the trapdoor provided from client, the CS

will use the index table to find the match for documents that contain the trapdoor and it will

return the encoded documents to the client. The encoded documents will be decoded to get a

single encrypted file. The encrypted file will be later decrypted to get the original plain-text

file. Figure represents the graph generated against the dataset for the keyword "threaten". The

searching takes about 12.06 sec. Most of the time here is consumed in saving the documents

names in a list which is to be sent to the client after search. The labels on the nodes represents

13.19

27.22
40.55

58.34

66.23

80.16

87.38

96.79

104.52

113.75

111.43

117.78

6.12 12.71 19.12

25.79

32.66

39.05

40.82

46.68

46.25

52.18

57.87

61.02

0

20

40

60

80

100

120

140

0 500 1000 1500 2000 2500 3000

El
ap

se
d

 T
im

e
(i

n
 s

e
co

n
d

s)

Number of Files
Elapsed Time with keyword analysis Elapsed Time without keyword analysis

55

the time in seconds against the partition of dataset. The lowest time we get is 1.01 sec against

200 files. Figure 10 shows the computational graph for keyword searching phase.

Figure 10: Computational Time for Keyword Searching.

4.5.8 Decoding Phase

After the fragments have been received on the client side, the client would run the decoding

algorithm that would help in reconstruction of the original encrypted file. The time taken to

reconstruct 200 files for the dataset is 0.11 sec while it takes about 5.71 secs. The graph of

Figure suggests an almost linear trend, because the time of reconstruction increases as the

number of files in the dataset are increased. The decoding phase would take all the fragments

of the files retrieved from the server after query phase. The parameters needed for the proper

reconstruction include fragments of file, library used for encoding, number of fragments that

contain actual data, and number of fragments that contain redundant data. After the relevant

parameters have been passed to the decoding function, the graph in Figure. 11 is obtained.

1.01

2.03

[Y VALUE].00

4.03

5.01

6.16

7.03

8.06

9.97

10.04

11.1
12.06

0

2

4

6

8

10

12

14

0 500 1000 1500 2000 2500 3000

El
ap

se
d

 T
im

e
(i

n
 s

e
co

n
d

s)

Number of Files Elapsed Time

56

Figure 11: Computational Time for Decoding.

4.5.9 Decryption Phase

The decryption phase takes private key, IV, and the decoded fragments to return the actual

plaintext file to the client. The decryption of 200 files for the dataset takes about 3.1 sec

while considering the case where all files are returned to the client, the decryption time would

be 39.1 sec. The retrieval of 2,438 for any query might not be possible but just to provide the

efficiency and complexity analysis, we are assuming that a particular keyword is present all

the documents. Figure 12 shows the computational time graph for the decryption phase.

0.11
0.28

0.6657

1.55

2.06
2.44

2.85

3.29
3.62

4.12

4.65

4.77

0

1

2

3

4

5

6

0 500 1000 1500 2000 2500 3000

El
ap

se
d

 T
im

e
(i

n
 s

e
co

n
d

s)

Number of Files Elapsed Time with
keyword analysis

57

Figure 12: Computational Time for Decryption.

4.5.10 Updating Database

In order to add new documents to the existing dataset and upload them to the CS, the client

would be required to process five major phases which include Keygen, Encryption, keyword

extraction, Encoding, and . After performing all of the above mention functions,

the client is required to just add the filename and extracted encrypted keywords to the

existing index table I and upload the updated index table to the CS along with the encrypted

file.

For deleting any existing file in the dataset, the client would simply delete the relevant entry

in the index table which include the extracted keywords along with the filename. Along with

this, the encrypted file is also deleted from the dataset and the client doesn‟t need to perform

any function on its side. The whole task of deletion is performed on the CS and thus all the

computation would be performed there.

 In order to update a file, which may include addition of text in the existing files, then the

client would have two options. Either use a temp file to add the words in it, take their hashes

and encrypt them and then just add those values to the index table but it would be required to

encrypt the updated file, encode it and then upload it to the CS.

4.6 Summary

This chapter presents a detailed analysis in terms of computation and execution time of the

proposed scheme. The algorithm analysis identifies the time complexity required to process

3.1
6.23

9.37
12.5

15.58
18.74

21.94
25.11

28.03

31.34

35.52

37.52

0

5

10

15

20

25

30

35

40

0 500 1000 1500 2000 2500 3000

El
ap

se
d

 T
im

e
 (

in
 s

ec
o

n
d

s)

Number of Files Elapsed Time

58

each phase. The storage overhead analysis provides the analysis in terms of space that is

needed to store the encrypted files, encoded files, encrypted index tables, keywords

extraction, and counter parts of the some of these algorithms. The computational analysis

provides the system specifications and the details of the implementation that are performed in

this thesis. A discussion on the execution time of each phase is individually discussed and

presented in graphical form. In Chapter 6, a conclusion of this thesis along the future

directions for this thesis would be discussed. The challenges that are still present will also be

discussed in detail in the next chapter.

Chapter 5

Conclusion and Future Directions

Cloud computing marks the beginning of a new era in the field of the information and

communication technology as it brings with an evolution paradigm that has the potential to

shift the way of computing which is never done before. The reliance of clients on a cloud

server is based on a relationship of “trust”. Although the cloud storage offers a great deal of

solutions to the clients that include huge storage space, virtual machines, instances of GPUs

etc. It provides to both individuals and corporate sector with varying charges per use.

However, the security threat to the cloud is still a persistent issue that even after so much

advancement has yet to be regarded as “absolutely secure”. Clients and especially corporate

sector are always concerned with the valuable data they are outsourcing to an entity which

they can only trust. Privacy preservation and the security of the personal information on the

cloud server is still an open challenge for the researchers. To overcome these issues, the

encryption of the documents was considered to be a viable solution earlier on. The ability to

59

process the encrypted documents without needing to decrypt them on either cloud server or

over the communication channel has provided the users with a sense of security them enables

them in believing that their valuable information is not going to misused by any non-trusted

entity.

 Although research in this field has been gaining more and more attention and it is

advancing with time but for the privacy of documents, especially access patterns; the

solutions are very limited and they are not easy to deployed considering the restrictions of

computation, storage, and power on both the client and server end. Now, modern techniques

like Fully Homomorphic Encryption do provide the solution for hiding the access patterns by

performing search over encrypted data without the need of an index table, but the research

work is still a “work in progress” and would take time to mature because the computation for

huge datasets is too much to be handled by a normal user of cloud. A lightweight version of

ORAM is still nowhere to be seen in the near future. Therefore, it is needed to devise newer

schemes that would help in hiding the access patterns completely or at least they should

protect the information that is available to the malicious users which are trying to get

valuable insight about the data of the clients and corporate sector. Theoretical and

experimental analysis suggests that the proposed technique provides adequate security and

performance against a 3
rd

 party adversary. In this chapter, we have presented an overview of

our research, a summary of the contributions along with challenges that still exist and a future

pathway in this field of study.

5.1 Research Overview

As the amount of data is increasing, a secure storage space that is always available to the

users is becoming an increasing necessity. In order to store huge amount of data and at the

same time providing a searching capability on this data is becoming a challenge itself given

the resource constraints of devices. The cloud servers provide “storage as a service” to their

customers. Thus, it becomes easier to store data on a place where the client doesn‟t need to

use in his own storage space. But outsourcing one‟s confidential data requires to trust an

entity that may or may not be trustworthy i-e semi-trusted. The user on the other side is losing

control over its data and thus confidentiality of the data is at stake for the user. The user

needs to perform normal operations over the data to keep the confidentiality of the data intact.

This need of user introduced the concept of searchable encryption schemes. The current

literature of searchable encryption has not given much attention to the leakage of access

60

patterns due to which certain attacks have successfully recovered the encrypted information

that is being exchanged between the client and the cloud server. The use of simulated

annealing technique along with some modern probability-related algorithms, the adversaries

have somehow revealed information that leaks almost all of the information about the dataset

to an unknown entity observing the channel communication.

 In this thesis, we have presented a privacy preserving search over encrypted document

technique which tries to reduce the information that is leaked when the access patterns are

leaked by performing encoding of documents and concatenating a random number to the

keyword trapdoor in order to deceive the adversary into believing that he is getting the actual

trapdoor for the corresponding keyword. A novice user can implement this algorithm as it

provides a complete client server environment where a user is able to interact with a cloud

server which is also part of the implementation of this thesis. The proposed technique is

completely practical and can be used in any real time scenario.

5.2 Summary of Contributions

The research presented in this thesis discusses the security issues associated with the existing

SE techniques which either try to hide the access patterns or reduce the information leaked by

the leakage of access patterns. A review of the existing techniques is provided in Chapter 2.

From there, it is evident that most of techniques are focused towards revealing of the access

patterns by utilizing attacks like IKK attack or file count attack. The authors seem to be more

interested in devising attacks that would find a loophole in the technique or use some sort of

probabilistic technique to retrieve the plaintext information from the encrypted information.

We have introduced a technique that would mitigate these attacks and would preserve the

user‟s privacy by issuing a randomized trapdoor to the adversary, who is always treated as a

malicious actor in any SE scheme as discussed in Chapter 3. The security analysis of the

proposed technique in terms of leakage profiles defined in Chapter 3 and security provided in

terms of keyword-trapdoor indistinguishability and keyword index indistinguishability. The

performance analysis is given in Chapter 4, which shows that proposed technique is efficient

and it can be deployed in real world applications.

61

5.3 Challenges and Future Work

This section discusses the challenges faced during the research of the proposed technique.

The challenges will be addressed in the future work.

5.3.1 Cloud Server

With the outsourcing of data to some other entity, the users including both individuals and

corporate, are actually giving that entity control over their data and the CS would come under

a trust domain. Although major companies don‟t necessarily mess with the data of the users,

but it is still a possibility. E-g an administrator of the cloud service provider might turn rogue

or malicious. If that‟s the case, then the trust between the two parties would take a big hit and

the users would refrain themselves from using the services of the cloud service providers

because of such mishaps. To counter these types of issues is not an easy task because the it is

always difficult to identify an internal threat actor. The companies do have strict policies but

the types of actors still find a way to perform malicious activity including but not limited to

selling of user‟s data on dark web. This issue is a prevalent problem for all SE schemes that

are available today. The issue of a malicious cloud server is still one of the open challenges

and is left as a future work.

5.3.2 Multiple Readers and Multiple Writers

Currently this scheme is limited to a single reader and single write to present a Proof of

Concept for the users and researchers. The is a definite need to have a mechanism which not

only multiple readers but multiple writers as well. As cloud is an open ground for all

organizations because it offers services according to the pricings to any user. This means that

the services are shared and accessed by different entities which can outsource their data on

the cloud. Thus, it is necessary to accommodate the multi-user environment in the technique.

The requirement of multi-user environment and handling of different entities based on their

roles or access controls is essential. The proposed scheme needs to be altered in some ways in

order to support architectures like S/M, M/S or M/M.

5.3.3 Searching without Index Table

A problem that was identified at a later stage of this thesis, is the use of index table. The

index table basically gives complete access to the cloud server for it to at the very least view

62

the table and see what‟s actually inside. The problem becomes a major issue because as soon

as the server would open the index table, it would recognize which files are associated with

which keywords. Now, although the keywords are encrypted and the server wouldn‟t get any

information because decryption is not going to be possible. But according to the definition of

access pattern, when an entity knows which files are returned as a result of a query, then the

access pattern is leaked. This issue is not easy to resolve with the current scheme because the

only probable solution is to remove the index table from the cloud server and somehow

perform the searching without it. Solutions like Homomorphic encryption do provide the

solution against this major issue, but as it is another domain with another solution, so we are

leaving this as a future work.

References

1. M. G. Avram, Advantages and challenges of adopting cloud computing from an enterprise

perspective, Procedia Technology 12 (2014) 529:534.

2. M. Nakayama, C. Chen, C. Taylor, the effects of perceived functionality and usability

on privacy and security concerns about cloud application adoptions, Journal of

Information Systems Applied Research 10 (2) (2017) 529–534.

3. https://www.darkreading.com/attacks-breaches/cloud-customers-faced-681m-

cyberattacks-in-2018/d/d-id/1333721

4. https://www.howtowpblogging.com/popular-file-sharing-websites/

5. Bösch, Christoph & Hartel, Pieter & Jonker, Willem & Peter, Andreas. (2014). A

Survey of Provably Secure Searchable Encryption. ACM Computing Surveys. 47. 1-

51.

63

6. https://us.norton.com/internetsecurity-emerging-threats-2019-data-breaches.html

7. Gavin, G. (2016). An efficient somewhat homomorphic encryption scheme based on

factorization. In International Conference on Cryptology and Network Security, pages

451–464. Springer.

8. Gentry, C. and Boneh, D. (2009). A fully homomorphic encryption scheme, volume

20. Stanford University Stanford.

9. Belland, M., Xue,W., Kurdi, M., and Chu,W. (2017). Somewhat homomorphic

encryption.

10. R. Zhang, R. Xue and L. Liu, "Searchable Encryption for Healthcare Clouds: A

Survey," in IEEE Transactions on Services Computing, vol. 11, no. 6, pp. 978-996, 1

Nov.-Dec. 2018, doi: 10.1109/TSC.2017.2762296

11. Riccardo Coppola and Maurizio Morisio. 2016. Connected Car: Technologies, Issues, Future

Trends. ACM Comput. Surv. 49, 3, Article 46 (December 2016), 36 pages

12. Kamara, S., Papamanthou, C., and Roeder, T. (2012). Dynamic searchable symmetric

encryption. In Proceedings of the 2012 ACM conference on Computer and

communications security, pages 965–976. ACM

13. Curtmola, R., Garay, J., Kamara, S., and Ostrovsky, R. (2011). Searchable symmetric

encryption: improved definitions and efficient constructions. Journal of Computer

Security, 19(5):895–934.

14. Wang, J., Ma, H., Tang, Q., Li, J., Zhu, H., Ma, S., and Chen, X. (2013a). Efficient

verifiable fuzzy keyword search over encrypted data in cloud computing. Computer

science and information systems, 10(2):667–684.

15. Emil Stefanov, Marten Van Dijk, Elaine Shi, T.-H. Hubert Chan, Christopher

Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. 2018. Path ORAM: An

Extremely Simple Oblivious RAM Protocol. J. ACM 65, 4, Article 18 (August 2018),

26 pages.

16. Muhammad Naveed, Manoj Prabhakaran, and Carl A. Gunter. 2014. Dynamic

Searchable Encryption via Blind Storage. In Proceedings of the 2014 IEEE

Symposium on Security and Privacy (SP ‟14). IEEE Computer Society, USA, 639–

654.

64

17. M. Naveed, The fallacy of composition of oblivious ram and searchable

encryption, Cryptology ePrint Archive, 2015.

18. M. S. Islam, M. Kuzu, and M. Kantarcioglu, Access pattern disclosure on searchable

encryption: Ramification, attack and mitigation, NDSS, 2012.

19. Scott Kirkpatrick, D. Gelatt Jr., and Mario P. Vecchi. Optimization by simulated

annealing. Science, 220(4598):671–680, 1983.

20. D. X. Song, D. Wagner, A. Perrig, Practical techniques for searches on encrypted

data, in: Proceedings of IEEE Symposium on Security and Privacy, 2000. S&P 2000.,

2000, pp. 44–55.

21. D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption

with keyword search. In Advances in Cryptology – EUROCRYPT „04, LNCS vol.

3027, pp. 506–522, 2004.

22. Advances in Cryptology – CRYPTO „08, Lecture Notes in Computer Science vol.

5157, D. Wagner ed., Springer-Verlag, 2008

23. M. Bellare, A. Boldyreva, and A. O‟Neill. Deterministic and efficiently searchable

encryption. In Advances in Cryptology– CRYPTO „07, LNCS vol. 4622, pp. 535–

552, 2007.

24. Tahir, S (2018), Privacy Preserving Search in Large Encrypted Databases (PhD

thesis), School of Mathematics, Computer Science and Engineering.

25. Miller, F. P., Vandome, A. F., and McBrewster, J. (2009). Advanced encryption

standard.

26. Bao, F., Deng, R. H., Ding, X., and Yang, Y. (2008). Private query on encrypted data

in multi-user settings. In International Conference on Information Security Practice

and Experience, pages 71–85. Springer.

27. Stallings, W. (2006). Cryptography and Network Security, 4/E. Pearson Education

India.

28. Securosis, L. (2013). Understanding and selecting a key management solution.

Technical report, Technical Report, Feb.

65

29. Chang, Yan-Cheng & Mitzenmacher, Michael. (2004). Privacy Preserving Keyword

Searches on Remote Encrypted Data. IACR Cryptology ePrint Archive. 2004. 51.

30. Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical dynamic

searchable encryption with small leakage. In NDSS 2013, volume 71, pages 72–75,

2014

31. Raphael Bost. Σoϕoς: Forward secure searchable encryption. In SIGSAC 2016, pages

1143–1154. ACM, 2016.

32. Bost, R., Minaud, B., Ohrimenko, O.: Forward and backward private searchable

encryption from constrained cryptographic primitives. In: CCS 2017. pp. 1465– 1482.

ACM (2017)

33. Cui, S.(2019). Secure and Efficient Searchable Encryption with Leakage

Protection [Doctoral dissertation, The University of Auckland].

34. Muhammad Naveed, Manoj Prabhakaran, and Carl A. Gunter. 2014. Dynamic

Searchable Encryption via Blind Storage. In Proceedings of the 2014 IEEE

Symposium on Security and Privacy (SP ‟14). IEEE Computer Society, USA, 639–

654.

35. Panagiotis Rizomiliotis and Stefanos Gritzalis. 2015. ORAM Based Forward Privacy

Preserving Dynamic Searchable Symmetric Encryption Schemes. In Proceedings of

the 2015 ACM Workshop on Cloud Computing Security Workshop (CCSW '15).

Association for Computing Machinery, New York, NY, USA, 65–76.

36. Ishai, Y., Kushilevitz, E., Lu, S., Ostrovsky, R.: Private large-scale databases with

distributed searchable symmetric encryption. In: Sako, K. (ed.) CTRSA 2016. LNCS,

vol. 9610, pp. 90–107. Springer, Cham (2016)

37. Cao, N., Wang, C., Li, M., Ren, K., Lou, W.: Privacy-preserving multi-keyword

ranked search over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 25(1)

222–233 (2014).

38. Wang, B., Song, W., Lou, W., Hou, Y.T.: Inverted index based multi-keyword public-

key searchable encryption with strong privacy guarantee. In: INFOCOM 2015, pp.

2092–2100. IEEE (2015).

66

39. Hongwei Li, Dongxiao Liu,Yuanshun Dai, Tom H. Luan, And Xuemin (Sherman)

Shen “Enabling Efficient Multi-Keyword Ranked Search Over Encrypted Mobile

Cloud Data Through Blind Storage”, December 2014.

40. R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric

encryption: Improved definitions and efficient constructions. In Proc. ACM

Conference on Computer and Communications Security (CCS), pages 79–88, 2006.

41. R. Curtmola, J. Garay, S. Kamara, R. Ostrovsky, Searchable symmetric encryption:

improved definitions and efficient constructions, Journal of Computer Security 19 (5)

(2011) 895–934

42. Thang Hoang, Attila Altay Yavuz, and Jorge Guajardo. 2016. Practical and secure

dynamic searchable encryption via oblivious access on distributed data structure. In

ACSAC 2016, pages 302-313. ACM, 2016.

43. G. Chen, T. Lai, M. K. Reiter and Y. Zhang, "Differentially Private Access Patterns for

Searchable Symmetric Encryption," IEEE INFOCOM 2018 - IEEE Conference on

Computer Communications, Honolulu, HI, 2018, pp. 810-818.

44. Bösch, Christoph & Tang, Qiang & Hartel, Pieter & Jonker, Willem. (2012). Selective

Document Retrieval from Encrypted Database. IEEE Journal on Selected Areas in

Communications - JSAC. 10.1007/978-3-642-33383-5_14.

45. Chang, Yan-Cheng & Mitzenmacher, Michael. (2005). Privacy Preserving Keyword

Searches on Remote Encrypted Data. 442-455.

46. Ferretti, L., Pierazzi, F., Colajanni, M., Marchetti, M.: Scalable architecture for multi-

user encrypted SQL operations on cloud database services. IEEE Trans. Cloud

Comput. 2(4), 448–458 (2014).

47. Hang, I., Kerschbaum, F., Damiani, E.: ENKI: access control for encrypted query

processing. In SIGSAC 2015, pages 183-196, ACM, 2015.).

48. Sun, W., Yu, S., Lou, W., Hou, Y.T., Li, H.: Protecting your right: attribute-based

keyword search with fine-grained owner-enforced search authorization in the cloud.

In: INFOCOM 2014, pp. 226–234. IEEE (2014)

49. Shangqi Lai, Sikhar Patranabis, Amin Sakzad, Joseph K. Liu, Debdeep

Mukhopadhyay, Ron Steinfeld, Shi-Feng Sun, Dongxi Liu, and Cong Zuo. 2018.

67

Result Pattern Hiding Searchable Encryption for Conjunctive Queries. In Proceedings

of the 2018 ACM SIGSAC Conference on Computer and Communications Security

(CCS ‟18). Association for Computing Machinery, New York, NY, USA, 745–762

50. Hwang, R.-J., Lu, C.-C., and Wu, J.-S. (2014). Searchable encryption in cloud

storage. World Academy of Science, Engineering and Technology, International

Journal of Computer, Electrical, Automation, Control and Information Engineering,

8(7):1080–1083] [Du, M., Wang, Q., He, M., and Weng, J. (2018). Privacy-

preserving indexing and query processing for secure dynamic cloud storage. IEEE

Transactions on Information Forensics and Security, 13(9):2320–2332.

51. Wu, L., Chen, B., Choo, K.-K. R., and He, D. (2018). Efficient and secure searchable

encryption protocol for cloud-based internet of things. Journal of Parallel and

Distributed Computing, 111:152–161.

52. Fuhr, T. and Paillier, P. (2007). Decryptable searchable encryption. In International

Conference on Provable Security, pages 228–236. Springer.

53. Prasanna, B. and Akki, C. (2015). A comparative study of homomorphic and

searchable encryption schemes for cloud computing.

54. Goh, E.-J. et al. (2003). Secure indexes. IACR Cryptology ePrint Archive, 2003:216

55. Wang, C., Cao, N., Ren, K., and Lou, W. (2012a). Enabling secure and efficient

ranked keyword search over outsourced cloud data. IEEE Transactions on parallel and

distributed systems, 23(8):1467–1479

56. Yanzhi Ren, Yingying Chen, Jie Yang, Bin Xie “Privacy-preserving Ranked Multi-

Keyword Search Leveraging Polynomial Function in Cloud Computing” Globecom

Communication and Information System Security Symposium 2014.

57. H. Huang, J. Du, H. Wang and R. Wang, "A Multi-keyword Multi-user Searchable

Encryption Scheme Based on Cloud Storage," 2016 IEEE

Trustcom/BigDataSE/ISPA, Tianjin, 2016, pp. 1937-1943.

58. D. D. Rane and V. R. Ghorpade, "Multi-user multi-keyword privacy preserving

ranked based search over encrypted cloud data," 2015 International Conference on

Pervasive Computing (ICPC), Pune, 2015, pp. 1-4.

68

59. Muhammad Naveed, Seny Kamara, and Charles V. Wright. Inference attacks on

property-preserving encrypted databases. In SIGSAC 2015, pages 644–655. ACM,

2015.

60. Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All your queries are

belong to us: The power of file-injection attacks on searchable encryption. In

USENIX Security 2016, pages 707–720. USENIX Association, 2016.

61. David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. Leakage-abuse attacks

against searchable encryption. In SIGSAC 2015, pages 668–679. ACM, 2015

62. Samanthula, Bharath Kumar & Jiang, Wei & Bertino, Elisa. (2014). Privacy-

Preserving Complex Query Evaluation over Semantically Secure Encrypted Data.

400-418.

63. Curino, C., Evan, J. P. C., Popa, R. A., Malviya, N., Wu, E., Madden, S.,

Balakrishnan, H., and Zeldovich, N. (2011). Relational cloud: A database-as-a service

for the cloud. In 5th Biennial Conference on Innovative Data Systems Research,

pages 235–240.

64. Wang, J., Wang, J., Yu, N., and Li, S. (2013b). Order preserving hashing for

approximate nearest neighbor search. In Proceedings of the 21st ACM international

conference on Multimedia, pages 133–142. ACM.

65. Boldyreva, A., Chenette, N., Lee, Y., and O‟neill, A. (2009). Order-preserving

symmetric encryption. In Annual International Conference on the Theory and

Applications of Cryptographic Techniques, pages 224–241. Springer.

66. S. Tahir, M. Rajarajan and A. Sajjad, "A ranked searchable encryption system for

encrypted data hosted on the Public Cloud," 2017 International Conference on

Information Networking (ICOIN), 2017, pp. 242-247.

67. Wang J., Yu, N., and Li, S. (2013b). Order-preservation hashing for approximate

nearest neighbor search. In Proceedings if the 21
st
 ACM international on Multimedia,

pages 133-142. ACM.

