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Abstract 

 
A large number of comprehensive variety documents are consist of scanned images, in 

which tables stored summarized facts and valuable information structurally. Detection of tables 

is the initial step in extracting valuable information from document images. Recently, many 

researchers used vision-based deep learning techniques for table localization, which requires 

many labelled training examples. Due to its expensive labelling cost and time consumption, it is 

necessitating to develop some level of Semi-Supervised learning (SSL) approach. Semi-

supervised learning (SSL) trains a model on many unlabeled data to improve predictive 

performance.  

In this thesis, I have used the SSL method "Consistency-based Self Training" to generate 

the artificial labels for the semanticity preserved augmented unlabeled data and train the model 

to predict these artificial labels. Generic SSL models are more prone to generate biased 

predictions because of foreground-background imbalance in the table detection task. Background 

overfitting is being handled by parent-child shared learning framework, in which different styles 

augmented images forward to both parent and child. The parent model predicts pseudo labels, 

and the child updates the parent model weight via Exponential Moving Average. Faster R-CNN 

ResNet-50 FPN model first trained on comparatively small labelled tables dataset till model 

convergence. Trained model separately saved as parent and child duplicates to perform high 

confidence pseudo labels prediction (ground truth) and loss calculation (backward propagation) 

on different models. Only those parent predictions considered accurate whose confidence is more 

than 0.7 after the Non-max suppression stage in Faster R-CNN. Performance analysis carried out 

on the public benchmark data set TableBank: We received a 0.897 F1-score on the TableBank 

test-set; it shows that our approach generates comparable results to state-of-the-art techniques 

even with using only a 10% labeled dataset. 

  

Key Words: Table Detection, Document Digitalization, Semi-Supervised Learning
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CHAPTER 1: INTRODUCTION 

1.1 Background, Scope and Motivation 

According to the World Bank, estimated 3.4 billion internet users worldwide in 2016 [1]. 

The extensive Internet adoption created new opportunities; cloud computing evolved, Internet of 

Things (IoT) systems gained acceptability and began to be employed, and new industrial 

revolutions began to occur. Industry 3.0 began with the widespread adoption of computers, 

automation, and information technology (I.T.). It was designed to automate manufacturing 

processes using rudimentary computers such as Programmable Logic Controllers (PLCs) and 

human intervention. Industry 4.0 is introduced shortly after that. The new industrial revolution 

comprises smart gadgets that interact with one another and exchange data, with the ultimate goal 

of automating all processes entirely without human intervention. The new revolution in IoT 

devices is becoming more pervasive and ubiquitous, enabling large-scale sensing to improve 

numerous processes and operations. Because no human intervention is desired, the information 

generated by these inventions is primarily structured digitally. While specific procedures have 

been digitized, the complete digitization of all processes is still a long way off. Until the world is 

entirely digitized, the sector will benefit from traditional forms such as printed papers or visual 

documents intended to be read, scrutinized, and reviewed by humans. 

These data formats, primarily PDF, DOC(x), or scanned documents, can be built for 

human consumption, as machines cannot easily interpret them. Thus, even when data in an 

industrial process is automated and benefits from the Internet's ubiquity, A.I., cloud computing, 

and the IoT, inter-organizational processes continue to rely on old methods and must be changed. 

For example, corporate and government offices (e.g., hospitals) continue to employ traditional 

paper documents printed, filled in by hand, and then typically registered by a human operator 

Figure 1.1. We concentrate on table detection from digital-born documents but scanned 

documents work just as well because our system accepts image formats as input. This thesis and 

our earlier works [2, 3, 4] focus on and tackle Table Detection from documents. Our findings 

demonstrate that the most critical and pertinent information is included in tables inside a 

document. Commercial technologies that function exclusively on predefined templates and 

cannot accurately detect tables with unique styles. To address it, we are motivated to tackle the 
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challenge of table discovery in virtually all documents without prior knowledge of the document 

while remaining fast and accurate. While operating on non-image files (i.e., PDFs) would enable 

us to employ metadata, it would be limited to a single document type.  

 

 

Figure 1.1: Large number of scanned documents digitalization  

 

In earlier works [3, 4], deep learning-based Table detection or instance segmentation 

model is adequate to provide good performance with little to no pre-or post-processing [5]. 

Supervised learning is commonly applied to train an object detector, meaning that labelled 

samples of both the fore and background classes are used to learn a Table detection model. The 

resulting amount of data required can be substantial to account for the wide variety of possible 

table types. Typically, labelling is a manual operation that is both time-consuming and costly. 

Methods that combine labelled and unlabeled data are semi-supervised learning, as they fall 

midway between supervised and unsupervised learning. This thesis investigates and evaluates 

semi-supervised learning (SSL) algorithms used to train a Table detection model. The SSL 

algorithms aim to improve detection accuracy while alleviating the demand for labelled data, 



3 
 

which requires tedious and time-consuming work. The results are compared between the 

implemented SSL algorithms and current state-of-the-art supervised models taught in identical 

conditions. The benefits and performance improvements of semi-supervised learning methods 

are easily demonstrated due to the scarcity of table-labelled datasets. 

The table extraction task can potentially save thousands of precious human hours that 

would otherwise be spent extracting data from tables. Despite the absence of pre-or post-

processing, our models outperformed state-of-the-art algorithms on TableBank datasets. We 

conclude, our higher precision and recall are justified by the increasing diversity and volume of 

data. While SSL has made tremendous progress in categorization, label-efficient training for 

tasks requiring a high labelling cost is challenging. By utilizing lessons learned from SSL 

approaches for classification, we offer a simple (just two easily tuneable hyperparameters) and 

practical (2 label efficiency in low-label regime) SSL framework for object detection. The 

simplicity of our solution allows for further research aimed at resolving SSL for object detection. 

The suggested framework is adaptable to various configurations, including soft labels for 

classification loss, other detector frameworks to Faster RCNN, and alternative data augmentation 

methodologies. Successful table detection is useable in Information digitalization, turning old 

records to digital accessible and Mobile Application usage for real-time document tables data 

extraction using the camera. 
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CHAPTER 2: LITERATURE REVIEW AND RELATED WORK 

Many quantifiable documents never see the light of the analogue world nowadays. 

Computers produce, populate, store, and process them. Naturally, we cannot ignore physical 

data; they must be translated to digital formats, and a study has been conducted specifically on 

this subject [2, 3, 4, 6, 7]. However, even when historical documents are scanned and 

transformed into digital ones, the same issue exists. These documents contain crucial information 

such as product specifications, availability, and hazardous warnings from a supply chain 

standpoint and safety-critical information on individuals or other organizations from a 

government standpoint. The most critical data is typically provided in the form of tables, figures, 

and calculations. Tables contain key-value pairs with typically one key and many values, and the 

information contained in the rows and columns is critical for comprehending the total content. 

As a result, locating tables is critical for extracting information from the document. 

Table detection approaches range from hand-crafted rule-based, supervised deep 

learning-based object detection and semi-supervised learning-based object detection. The two 

most common solutions to this problem are treating the tables as objects within the document 

image or using alignments, tabs, and white spaces or lines. This section is consists of two parts; 

in 1, we did brief literature on classical computer vision techniques based on hand-crafted 

features. In 2, we have explained supervised and semi-supervised deep learning-based 

techniques. 

2.1 Hand-crafted Heuristics 

Electronic documents can be classified into two types: those that are image-based and 

those that are PDF-based. Electronic documents are not always PDF files. Scanned documents 

(images), online documents (HTML), and documents in other formats, such as .docx or .odt, are 

all instances. Since these other formats are not as widely used as PDFs for document exchange, 

the research concentrates on these two formats. These document types can be converted to 

document images, focusing on tabular data extraction, including all sub-problems. Extracting 

unstructured information from printed papers is a long-standing need that has been studied 

extensively [2]. Earlier work has relied heavily on hand-crafted rules retrieved visually by human 

operators [8, 10]. Before AlexNet [11], object detection was often performed using more 
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traditional approaches in which features were retrieved, and the k-Means algorithm was applied 

to structures such as bag-of-features. However, because these methods were not convincing, 

developing heuristics for structured information detection improved performance. 

As in [12, 13, 14, 15], the most often used criteria are identifying lines and white spaces 

to identify tabular sections. These structures aided in achieving better results, as many tables 

contain enclosing lines and spaces to denote rows and columns, simplifying table detection. 

Another often-used technique is splitting words into blocks and utilizing alignment and 

neighbouring relations to connect them to other words or space [16, 12]. While locating 

bounding boxes for PDF documents is trivial, another processing layer must extract words from 

the pixels when the content is in picture format. Mathematical morphology [17] provides two 

approaches for extracting text chunks as related components. Morphological dilation followed by 

morphological erosion fills up the small gaps between characters in a picture, and ideally, all the 

characters in a word are now connected. Following the morphological closure, a linked 

component discovery approach (Union-Find) is used to locate connected components. The 

connected components that result are then categorized as words or lines based on their size. The 

result is employed as word bounding boxes, which serve as the foundation for numerous studies 

on detecting tabular structures [14, 3].  

Researchers created technology mainly geared for word and other structures 

identification in 1968 [6]. Their hardware can be operated by a human operator who provides 

input. For more sophisticated texts, such as academic articles, the runtime is longer. 

Additionally, it can work in an unsupervised mode. With its proprietary hardware design, this 

effort alone demonstrates why information extraction from documents is critical for many 

enterprises. Due to the binding nature of the table detection task for information extraction 

facilities has also been studied extensively. Typically, early works benefit from heuristics 

discovered through an eye examination and rudimentary feature extraction. Wahl et al. (1982) 

[8] concentrate on digitized documents and work in the realm of document images. They create a 

binary operation applied to the image to fill in small gaps with black pixels. This operation is 

performed horizontally and vertically, followed by a smoothing operation. As a result, the writers 

categorize the image as meaningful chunks. They use a rule that begins at the left-hand edge of 

the image and iterates on the right to separate the discovered blocks. Each black pixel close to 

the previous one is assigned the same label. Then, based on the block segment's height and the 
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ratio of the block's pixels to the boundary line, these blocks are categorized as various page 

objects. 

Pyreddy and Croft (1997) [19] presented the TINTIN system, a table detection method 

based on heuristics that work on electronic texts. The phase of table extraction is produced by 

examining the white spaces in the text. Whitespaces are compared to the text's alignment and the 

number of whitespaces between the words. The system begins by detecting columns that have 

whitespace. For instance, there should be at least three whitespaces between the columns. A few 

factors are set via visual inspection. After extracting table blocks, the second process labels the 

various components. TINTIN demonstrated that such simple heuristics are capable of spotting 

tables and are extensible. Jain and Yu (1998) [7] is an early work that addresses transforming 

paper documents to their electronic counterparts. As with many previous initiatives, this one 

concentrates on a single category of document: technical journal articles. The extraction 

procedure is based on documents' geometric layout and the extraction of their related 

components from their binary pictures. Due to the comparable design of all the papers, the 

authors incorporated domain knowledge into the solution. The block adjacency method is used to 

discover connected components while ruling lines detect table, text, and image sections. Apart 

from that, they also estimate and fix the document's orientation. 

Kieninger and Dengel (1999) [20] pioneered the T-Recs table identification approach, 

which has gained widespread acceptance and success [12, 13]. The study is concerned with 

document segmentation on arbitrary documents and is organized hierarchically into four 

components: words, lines, blocks, and the document itself. T-Recs is not a top-down algorithm 

but rather a bottom-up approach in which words are parsed for blocks. Recognized tables begin 

with a 'word,' which is a bounding box. This box is then connected to the following boxes if they 

are near enough to form 'blocks.' If the resulting blocks are adjacent horizontally, they are 

assumed to be members of the same table. The authors developed rules for detecting internal 

table structures (rows and columns) within these supposed table regions. Kieninger and Strieder 

(1999) [16] refined the T-Recs detection model shortly after its initial publication. Tables are 

recognized in the original T-Recs approach by connecting the blocks. Columns are recognized in 

[16] by the vertical alignment of the blocks and then aggregated to make tables. T-Recs is a 

critical step in developing a robust table identification algorithm that is not dependent on non-

tabular structures such as lines. That is, lines are not required for the creation of a tabular region. 
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Cesarini et al. (2003) [21] presented an approach called Tabfinder for utilizing the lines 

surrounding the tables. Tabfinder distinguishes itself from previous work by utilizing a modified 

version of XY-trees on the page pictures. Every node in the tree signifies a part of the image 

containing a table, and it is formed whenever a new line in the sub-image is identified. This tree 

is constructed iteratively to determine possible table places. As with the previous examples, 

tables are checked using either lines or suitable spacing between words that create rows or 

columns. Tabfinder demonstrates that by incorporating additional data structures, it is feasible to 

improve hand-crafted heuristic-based solutions further. Gatos et al. (2005) [22] suggested a table 

detector that is not heuristic-dependent and can be used on any document picture. The procedure 

begins by estimating the character size and line length using black run processing. Connected 

blobs generated by continuous black pixels are connected (black runs) and labelled. The authors 

first determine the intersection of all detected lines and then delete them to complete the 

detection. Following that, the intersection locations are compared to the alignment to complete 

the table detection. This method is highly dependent on table lines (both horizontal and vertical) 

and scan quality. 

Shafait and Smith (2010) perform the detection in [10] by first determining the 

document's column layout. The table detection algorithm is based on identifying column 

divisions identified using connected components and tab-stops between them. The system relies 

on hand-crafted algorithms to identify these locations and would have difficulty identifying them 

automatically. Fang et al. (2011) [15] described a technique for detecting tables in PDF 

documents. Again, detection is contingent upon the presence of white spaces and ruling lines in 

the manuscript. Preliminary white space processing distinguishes between page columns and 

table rows. The approach completes the process by performing table detection, mainly relying on 

hand-crafted rules developed through visual inspection and insights. 

Dey et al. (2016) [23] employ a consensus-based approach to extract tables from 

document images in another work. As with [10, 22, 7], the primary construction block is the 

connected components, dependent on hand-crafted heuristics. Then, from these components, 

colour and stroke features are derived. Consensus-based clustering is then performed on each 

pair of features to produce statistical similarity and anticipate links between related components. 

Finally, extracted graphs are renamed as tables. Another approach derived from linked 

component extraction is Tran et al. (2016) [14]. The authors suggest an approach based on 
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morphology [17] for extracting related components combined to produce Regions of Interest 

(ROIs) using hand-crafted rules and thresholds. Following the creation of the RoI, the white 

space between connected components is analyzed to determine if they are distinct or not. The 

retrieved text chunks are then aligned vertically to create columns. These columns are what make 

up the tables. Each step of the process is highly engineered and strongly reliant on heuristics, 

implying that the model may generate incorrect tables when the document changes. 

2.2 Supervised and Semi-Supervised 

Although hand-crafted heuristics are commonly used, more recent research has examined 

techniques based on machine learning [2, 4]. Support Vector Machines (SVMs) is a supervised 

learning technique for classifying data by determining a linear (or non-linear) separator [26]. 

Machine learning algorithms require identifying line or word bounding boxes, and following the 

extraction phase, the recovered features are fed into an SVM classifier to detect tables. [27, 28] 

illustrate that this technique produces high-quality results. Along with SVMs, additional machine 

learning algorithms have been evaluated, including Decision Trees [30], Hidden Markov Models 

(HMMs) [31], and Conditional Random Fields (CRFs) [32]. Decision Trees are a machine 

learning technique that uses the training set to generate a tree-like structure that classifies the 

input. Because decision trees require organized input, they are typically employed to detect 

tables within HTML texts. Hidden Markov Models are probabilistic Markov models that contain 

unknown states. HMMs can locate the tables using information collected from the document 

metadata, such as the appearance of images and certain words or hyperlinks. CRFs are typically 

employed for pattern discovery, and in the context of tabular structure detection, they are utilized 

to model the data's dependencies. 

The term "deep learning" belongs to a subgroup of machine learning algorithms. 

Wherever multilayer perceptrons or more specialized architectures like as LSTMs or CNNs are 

used in the learning process. This thesis is entirely devoted to CNNs, a commonly used deep 

learning framework for computer vision applications. Because we focus on detecting tabular 

structures in document images, CNNs are optimal for this task. CNN's are specialized deep 

neural networks based on multilayer perceptrons that have been built to mimic how animals 

perceive visual information. To begin, Kunihiko Fukushima (1980) postulated the recognition 

[33]. It was inspired by a prior study on monkeys, which shown that specific neurons in these 
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animals' visual cortexes respond solely to specific portions of the visual field [33]. Back-

propagation (the de facto optimization approach used in neural networks) was not as developed 

during these times today. As a result, these early networks were trained using various 

optimization techniques and were ultimately unsuccessful. LeCun, Yann (1989) [34] developed a 

completely autonomous neural network trained using back-propagation and gradient descent. 

[34] can be considered the forerunner of today's CNNs, and while CNNs have been utilized and 

refined for various situations since then, the long-awaited breakthrough did not occur until 

AlexNet [11]. 

Although SVM performance improved as kernel functions were added [35], AlexNet [11] 

won the 2012 ImageNet competition [36] and significantly outperformed the previous winner in 

terms of accuracy. Krizhevsky et al. (2012) [11] demonstrated that CNNs outperform all other 

image classification algorithms AlexNet's success is attributed to the recent rise in processing 

capacity, which enables multiple layers and parameters. Although AlexNet appears to have set a 

new high, approaches based on CNNs consistently outperformed AlexNet on similar tasks [37, 

39]. The VGG approach was proposed by Simonyan and Zisserman (2014) [40]. The authors 

considered the changes that have occurred since the AlexNet was created and adjusted the depth 

parameter. They investigated various depths and concluded that the best performing model was a 

16 layer deep CNN. Szegedy et al. [37] introduced the Inception Module in 2014, consisting of 

many convolutional neural networks assembled on top of one another and their outputs 

concatenated. They then built GoogLeNet by stacking numerous inception modules, one of the 

deepest convolutional neural networks, having 22 layers. 

VGG and GoogLeNet attempted to train CNNs with additional layers, but the accuracy 

degraded. The primary reason for this phenomenon is referred to as the vanishing gradient 

problem. Because layers contain convolution and max-pooling layers and activation functions 

such as sigmoid, which reduce the values to the 0 to 1 range, the gradient is lost or not the same 

as in the final layer where it was calculated. To address this issue, He et al. (2015) [39] presented 

a unique technique called Residual Learning and Skip Connections (ResNet). They used forward 

connections between convolutional layers to backpropagate the gradient while preserving as 

much information as possible. It allows them to train deeper CNNs and attain 1202 layers [39]. 

These recent enhancements enabled CNNs to perform exceedingly well in various computer 

vision applications requiring visually prominent objects/environments, such as pedestrian 
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detection [41] and event detection [42]. They have also been used to time-series tasks with 

positive results and are sometimes used in place of LSTMs (LSTMs are a form of the neural 

network developed explicitly for time-series problems) [43]. 

Apart from their general success, machine learning approaches, specifically CNNs, 

perform exceptionally well on table detection tasks. Wang et al. (2001) [44] present a portion 

classification approach, rather than a detection method, utilizing customized decision trees to 

categorize zones into graphical regions such as text, picture, and table. Classification makes use 

of vertical and horizontal white spaces, as well as input rows and columns. Although this study is 

not as significant as others, it is one of the earliest examples of machine learning methods 

applied to the document analysis problem. Wang and Hu (2004) [28] later concentrated on 

classifying web tables in a subsequent paper. Decision trees and SVMs are used to classify tables 

as genuine or non-genuine. Statistical information about rows, columns, and cells is used to train 

these techniques. Another element that we found intriguing is the average constancy of content 

type across rows and columns. [28] demonstrates encouraging results demonstrating that 

machine learning approaches may accurately understand how a table is produced. 

Simultaneously, Ng et al. (2007) [45] attempted to classify using the decision tree 

technique and a simple feed-forward neural network with back-propagation. As with earlier 

machine learning-based research, Ng et al. utilize these methods as a final step, and domain 

expertise is still required. Horizontal lines extract features since they may define the borders of 

tables, rows, and columns. The models are taught to recognize table, row, and column 

boundaries. As a result, it is a three-step process in which the borders are identified first, and 

then the vertical and horizontal lines included within the boundary are classified as rows and 

columns. Fan and Kim (2015) [46] construct their dataset using a technique called Distant 

Supervision. Distant Supervision is a technique in which unlabelled line data is labelled using a 

simpler unsupervised classifier based on heuristics. Because the classifier used to label the data 

is imperfect, there will be errors, but machine learning methods are resistant to these faults. With 

noisy data [47], the authors' ensemble learning algorithm would learn to detect tables. SVM, 

Logistic Regression, and Naive Bayes algorithms are included in the ensemble technique. 

Textual features with unlabelled characteristics are extracted to aid with prediction. The authors 

also make use of existing knowledge during the feature extraction step. For instance, they extract 

a feature because the table will contain more nouns than adjectives and adverbs. 
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Following the success of deep learning in computer vision [11], researchers working on 

document analysis from document images began incorporating deep learning into their methods. 

Hao et al. (2016) [48] offer a method for detecting tables based on heuristics and CNNs. Specific 

regions are identified and labelled as potential tablespaces. The horizontal and vertical lines 

observed in the document image are used to locate these locations via heuristics-based search. 

[48] employs CNN and heuristics to validate the located table. As a result, deep learning is used 

as a judge after a more conventional table detection approach. A fascinating feature of this 

method is that some information retrieved from the original PDF is included in either the CNN's 

input or output. Coordinates of lines or words are among the extracted information crops. The 

authors demonstrate that when the information is introduced to the CNN input, the precision on 

the ICDAR 2013 [49] dataset may be significantly increased. 

Schreiber et al. (2017) [50] offer a method for detecting end-to-end tables and their 

structures. Previously, these systems featured at least one part of the process that required hand-

crafted rules. However, in DeepDeSRT [50], the detection method is end to end, meaning no 

human participation is required given the document picture. Deep learning model training 

requires massive volumes of training data are required, which are scarce in the domain of tabular 

structure identification. As a result, the authors opt for transfer learning, which is the process of 

taking a previously trained deep neural network on an extensive dataset and fine-tuning it on a 

smaller dataset to transfer the learned information to the new domain. The suggested table 

identification approach, which makes use of Faster-RCNN [51], outperforms a large number of 

others. The ICDAR 2013 test results [49] indicate that 

Following the tremendous success of deep learning technologies, many people 

experimented with novel ways to use them. Gilani et al. (2017) [52] proposed another end-to-end 

table detection approach using the Faster-RCNN [51] architecture and document pictures. In 

contrast to DeepDeSRT[50], they alter the input image to appear more natural (i.e., real-life, 

RGB images). Rather than using RGB, they used three different distance measures for each 

dimension of the image. The distance metrics indicate the separation of text sections from white 

spaces. This modification results in the image containing only the architectural remnants and not 

the figures, lines, or text. [52] demonstrates how picture transformation can increase recall and 

precision. Li et al. (2018) [53] describe a system for identifying multiple page items, such as 

tables and formulas. The system is fed an image of a binarized document as input. After the 
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contour tracing approach identifies related components, the page image is split into columns and 

lines. At this stage, the machine learning algorithm Conditional Random Field(CRF) is used to 

classify each line region into four categories. Apart from classifying the lines, the same model is 

utilized to determine the connection between them. Heuristics are applied as a post-processing 

step to correct for possible misclassifications. Finally, a verification model is used. The authors 

assert that certain line regions may be misclassified due to information loss during resizing 

because the CRF accepts a fixed-size input. As a result, the preliminary classification is verified 

using a final deep learning approach, CNN. The ICDAR 2017 POD Dataset, [76] achieves an 

excellent F1 value of 96 percent [54]. 

Kerwat et al. (2018) [27] opted to examine different recent deep learning-based CNN 

architectures utilizing the public ICDAR 2013 [49] test set. Faster-RCNN, Single Shot Detector 

(SSD), and You Only Look Once (YOLO) are the approaches that are compared [51, 55, 56]. 

SSD is a single-stage object detector based on the anchor concept. Anchors are rectangles with 

predefined ratios set at each grid location to guide predicting bounding boxes. While performing 

bottom-up processing, SSD [55] predicts bounding boxes. Results in predictions being made at 

different scales; thus, several predictions are generated on a single image in a single run. YOLO 

[56], on the other hand, is primarily concerned with speed and conducts only one detection in a 

single pass. Comparing these two approaches makes it clear that Faster-RCNN has a significant 

advantage in terms of the accuracy of table and figure predictions [27]. Siddiqui et al. (2018) 

[57] propose a model based on Faster-RCNN [51] with a deformable ResNet-101 [39] backbone 

feature extractor. 

In typical CNNs, features are retrieved from a rectangular area that grows larger as the 

layers progress. While feature extraction is more challenging in deformable CNNs, the receptive 

fields of the neurons in the network may be modified because they are dynamic and learnable. 

The suggested technique [57] achieves near-perfect performance on the ICDAR 2013 dataset and 

excels on the ICDAR 2017 dataset [49, 54]. Although the model performs admirably on ICDAR 

datasets, it suffers on the UNLV dataset, which contains scanned papers and provides a more 

significant challenge. The results demonstrate that by adding deformable layers to ResNet-101, 

the F1 score increases by 4% in ICDAR 2017 but has no effect in ICDAR 2013. It could mean 

that deformable layers are overfitted to the table layouts, so performance worsens when the 

style/purpose of the documents changes. Kavasidis et al. (2018) [58] propose using a deep 
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convolutional neural network to recognize tables and charts inside digital document pictures. 

Although the detection network is based on VGG-16 [40], filter sizes have been increased to 

address small/thin objects (lines, white spaces, rows, and columns). 

Arif and Shafait (2018) [59] review prior deep learning-based table detection systems and 

offer enhancements. The enhancements are motivated by the idea that tables include more 

numerical data than other document sections. Faster-RCNN [51] is the deep learning approach 

under investigation, and it is evaluated using the publicly available UNLV dataset. The steps 

involved in pre-processing (improvements) can be classified into two categories: I colourization, 

in which text is changed to green and numbers to red; (ii) picture transformation depending on 

the distance between blue pixels, as described in [52, 59]. Faster-RCNN [51] with ResNet-101 

[39] backbone feature extractor is used to train the network. They, like us, labelled their own 

training set and performed tests against the UNLV dataset. The statistics indicate an around 90% 

F1 score.  

As seen in [2, 58], the general focus of research in recent years, with the advancement 

and popularity of deep learning, has applied state-of-the-art object detectors to the table detection 

domain. Semi-Supervised learning (SSL) made remarkable progress; SSL methods have been 

primarily applied to image classification, whose labelling cost is relatively cheaper than other 

significant computer vision problems, such as object detection. Object detection requires greater 

label efficiency due to the high cost of labelling, necessitating the development of dependable 

SSL technologies. 

Semi-supervised learning (SSL) has gained increasing attention in recent years because it 

enables the use of unlabeled data to enhance model performance in the absence of large-scale 

annotated data. The term "Consistency-based Self Training" refers to a common class of SSL 

approaches [61,62,63,64, 68,69,70,71]. The central idea is to construct false labels for unlabeled 

data and train the model to predict them when unlabeled data is fed with semantically preserved 

stochastic augmentations. The artificial label might be either a single-prediction (hard) or the 

predictive distribution of the model (soft). The third foundation of SSL's success is progress in 

data augmentation. Data augmentations enhance the robustness of deep neural networks [72] and 

are particularly useful for self-training based on consistency [61, 70, 71, 68]. The augmentation 

approach can range from a manual mix of fundamental picture changes such as colour jittering, 

rotation, translation, flipping, or neural image-synthesis [76] and reinforcement learning policies 
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[77, 78]. Recent work has demonstrated that complicated data augmentation algorithms, such as 

RandAugment [79] or CTAugment [61], are effective for SSL image classification [61, 68, 70, 

71]. 

"Consistency regularisation" has become a prominent methodology for object detection 

[63, 70] and inspires [83]. The goal is to impose consistency on the model to create consistent 

predictions across label-preserving data augmentations. Mean-Teacher [69], UDA [70], and 

MixMatch [62] are a few examples. Another widely used type of SSL is pseudo labelling [64, 

79], which can be considered a more difficult version of consistency regularisation: the model 

self-trains to generate pseudo labels for unlabeled data trains randomly augmented unlabeled 

data to match the generated pseudo labels. Understanding how to use pseudo labels is important 

to SSL's success. For example, Noisy-Student [71] presents an iterative teacher-student 

architecture to identify assignments using a teacher model and subsequently train a bigger 

student model. By exploiting additional unlabeled photos in the wild, this technique achieves 

state-of-the-art performance on ImageNet classification. FixMatch [68] illustrates a 

straightforward method that beats prior approaches and achieves state-of-the-art performance, 

particularly on various small labelled data regimes. FixMatch's central concept matches the 

forecast of strongly augmented unlabeled data to the pseudo label of its weakly augmented 

counterpart when the model confidence in the weakly augmented counterpart is high. In light of 

these methods' effectiveness, this thesis effectively uses pseudo labelling, pseudo boxes, and data 

augmentations to improve table detectors.  
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CHAPTER 3: METHODOLOGY 

Tables appear in various document categories, including technical reports, electronic 

component datasheets, and medical records. Given that many of these firms are data-driven, 

extracting structured data from the papers became critical. As seen in Chapter 2, beginning in the 

1980s and notably as the years passed, numerous researchers presented solutions to this problem. 

The most current methods are based on deep learning, and this chapter defines and details the 

methodologies we studied to offer our table detection system. We present an end-to-end table 

detection method based on object detection networks trained using deep learning. It involves 

detecting tables using deep learning networks Faster-RCNN [51].  

 

3.1 Deep Learning-Based Methods 

This part begins by describing the backbone feature extractors utilized in the deep 

learning object detectors. It then thoroughly examines the deep learning methods under 

consideration, highlighting their differences, benefits, and drawbacks. 

3.1.1 Base Networks 

In recent years, computer vision has benefited from the benign success of CNNs and deep 

learning. Initially, conventional CNNs with Dropout [84] and BatchNorm [85] were sufficient to 

achieve a breakthrough on computer vision competition datasets such as the ImageNet Large 

Scale Visual Recognition Competition (ILSVRC) [36] and others. As a result, several types of 

research have been conducted in these areas, with positive outcomes. AlexNet [11], 

GoogLeNet/Inception Module [37], VGG [40], and ResNet [39] are the first effective deep 

learning-based based on CNN approaches that had an influence. All of these diverse networks 

demonstrated the value of exploring alternative topologies. For instance, GoogLeNet 

demonstrated the benefits of stacking convolutions on top of the other and then concatenating 

their outputs back together and continuing this process for layers upon layers. VGG 

demonstrated that even networks with fewer layers and parameters might get outstanding results 

despite having only 16 or 19 layers, and it is still widely used due to its size and speed. On the 

other side, ResNet added Skip Connections and went deeper, reaching almost 1200 layers. Their 

findings demonstrate that delving deeper is not always beneficial and that we must further 
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explore more efficient designs to improve computer vision systems. The hidden layers of these 

networks are typically activated by Rectified Linear Units (ReLu) [86]. The ReLu function is a 

nonlinear function frequently employed in deep learning models [11, 39, 40]. The function is 

easy; it returns 0 if the input is negative, and the value is unchanged if the input is positive. As a 

result, the formula is as follows: 

 𝑅𝑒𝐿𝑢(𝑥)  =  𝑚𝑎𝑥(0, 𝑥) 3.1 
 

Deep learning approaches incorporate activation functions since the processes are linear, 

and the resulting model is similar to a linear regression model. Thus, non-linearity functions are 

added to networks to represent complicated nonlinear array mappings between input and output. 

Additionally, the activation functions must be differentiable in order to optimize the model via 

backpropagation. When we examine Eq. 3.1, we can see that when x = 0, the ReLu function is 

not differentiable. It is still utilized, though, because gradient descent cannot easily reach a local 

minimum. Implementations of the functions choose a derivative from one of its sides if it occurs. 

Another aspect to clarify is that activation functions should be nonlinear, but ReLu comprises 

two connected linear units. Because models consist of numerous connected layers, each layer 

alters the slope of the linear function at different points, resulting in a function with numerous 

variable slopes. These back-to-back connections with ReLu allow for the approximation 

computation of smooth (nonlinear) functions [87]. 

The S-shaped curves of historical activation functions such as tanh and sigmoid enable 

them to retain tiny changes in the input and affect the function's output. However, these 

activation functions are stacked, the derivative is near zero except for the smallest area (the 

central half of the S-shape). These flat derivatives make it more challenging to update the layer 

weights, resulting in the vanishing gradient problem. When ReLu is applied to a sufficiently 

large batch, some nodes will have non-zero activations, increasing the average derivative. 

Although the usage of ReLu is widespread, activations may appear to be zero layers following 

layers, resulting in the problem of dead neurons. A dead neuron is never stimulated (activation 

output > 0), and a modification to the ReLu is proposed to address this issue; the Leaky-ReLu 

[88]. Leaky-ReLu can be defined as follows: 

 𝐿𝑅𝑒𝐿𝑢(𝑥)  =  𝑚𝑎𝑥(𝛼𝑥, 𝑥) 3.2 
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When the "α" value is less than 1.0 or equal to 1.0, a small amount of activity is retained 

to maintain weight updates and neurons alive when the input is negative. 

While pure CNN networks such as Resnet and VGG beat all previous image 

recognition/classification methods, they are reached on maximum accuracy, and newer research 

not showing any progress. Researchers have proposed sophisticated architectures as a means of 

evacuating this plateau. Each layer in a convolutional network encodes different characteristics 

that describe the input at some abstraction level, and stacked convolutional layers, as 

demonstrated by [89], can encode hierarchical structures representing the input. For instance, the 

first layer can encode edges, lines, and corners, and as we progress through the layers, the 

encoded information transforms into higher-level abstractions such as a car's doors or wheels. 

Ignoring the results of prior approaches is a bad idea, so they are still utilized as feature 

extractors and sometimes referred to as backbone networks. Although these CNN models were 

initially intended to categorize images, they are now exclusively used to extract information from 

the internal layers by object detectors. 

 

Object detectors of the next generation are classified into two types: (i) single-stage 

detectors and (ii) two-stage detectors. Single-stage detectors use the backbone network's 

retrieved features and put anchors to designate possible item positions. Anchors are predefined 

shapes (often using k-means) that reflect the collection's most frequently occurring shapes of 

instances. The image is then divided into grids, and anchors are set in the centres of the grids. 

Following that, these anchors are categorized in order to detect things. On the other side, two-

stage detectors include an extra neural network (or, in older approaches, a search algorithm) that 

proposes possible item positions. Due to the added overhead associated with two-stage detectors, 

they are often slower but more accurate. This subsection discusses the ResNet-50 model as 

feature extractors that we utilize in further detail. ResNet-50 used as backbone networks for 

feature extraction is employed in our table detection technique. 

3.1.1.1 ResNet 

With the proliferation of models and varied designs presented by academics, numerous 

previously undiscovered issues appeared. One of these was the vanishing gradient problem, or 

the loss of accuracy as the network's depth increased. He et al. (2015) [39] discuss the 
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deterioration problem and offer a method called residual learning. They accomplish this through 

the use of shortcut connections. Shortcut connections enable the feed-forward and backward 

paths to bypass a couple of layers, where the outputs of former layers are added to the outputs of 

subsequent layers. 

Consider the following example to gain a better understanding of the problem ResNet is 

attempting to tackle. Assume we have an external network that produces f (x) when given x as an 

input. We want to improve the accuracy of this neural network by adding additional layers (x). 

However, as noted in [39], this is not always the case, as it turns out that deeper networks may 

have lesser accuracy. As a result, ResNet chose to force the network to explicitly learn an 

identity mapping by learning the residual of input and output. Assume the network's (or a 

subnetwork's) input is "x" and the "true" output is "H(x)". This subnetwork's residual is then 

defined as; 

 𝑓 (𝑥)  =  𝐻(𝑥) –  𝑥 3.3 
 

Given our objective of determining the actual output, the equation is reformed as follows: 

 
 𝐻(𝑥)  =  𝑓 (𝑥)  +  𝑥 3.4 

 

This divergence is what distinguishes residual learning from typical neural networks. 

Earlier networks attempted to learn H(x) directly, whereas residual learning is about learning the 

residual. As an outcome, the network can learn to make f(x) equal 0 in Eq. 3.4 and skip some 

subnetworks. This trait is also visible during the backpropagation phase when the network 

disregards gradients in some subnetworks and sends them back unchanged. The nature of CNNs 

with hierarchical feature encoding implied that deeper networks would perform better. 

Previously, this was not feasible. He et al. [39] demonstrated that deeper networks are achievable 

using residual learning and shortcut links and established that deeper networks could improve 

performance. Additionally, when their ResNet-101 feature extractor was utilized in the Faster-

RCNN [51] object detector, they saw a relative improvement of 28% over the VGG16 network. 
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Figure 3.1: ResNet-50 architecture 

  

We conduct our studies using the ResNet-50 architecture, which is a 50-layer variant of 

the ResNet design. The general architecture is illustrated in Figure 3.1. The variable f(x) in Eq. 

3.4 denotes the subnetworks outputs or building pieces. Strides connect each convolutional block. 

Results in the following strides are added to each convolution block's input picture: 4,8,16,32 for 

conv2, conv3, conv4, and conv5. As with the VGG-16 network, we solely employ the 

convolutional network for feature extraction, as shown in Figure 3.2. We employ a pre-trained 
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ResNet-50 on ImageNet [90]. Then we either delete the final connected layers (this model is 

referred to as ResNet-50) or remove both fully connected layers and the conv5 block, in which 

case we refer to the model as ResNet-50-C4. By removing the conv5 block, the network's size, 

making it easier to train on sparse input. Additionally, when the stride of 32 is considered with 

the input image, conv5 loses the low-level semantics of the input picture. To address these 

concerns, we suggest designs such as FPN, which we will outline in greater detail in the 

following subsections. 

3.1.2 R-CNN Family 

Object identification is a significantly more difficult problem to solve than image 

classification. This complication stems from two issues: the object's location must be 

determined, and (ii) the discovered region must be categorized. The most straightforward 

approach to developing the methods was image classification. Each image is assigned to one of 

the specified classes. However, as we observe our environment, we also notice objects and infer 

context from them. Computer vision algorithms such as the Histogram of Oriented Gradients 

(HOG) [91] and the Scale-Invariant Feature Transform (SIFT) [92] were used to perform visual 

detection tasks. SIFT and HOG are feature histogram-based algorithms similar to the V1 layer 

(where the input from the human retina is connected in the brain) of the human visual 

recognition system, the primates' first sensory areas in the optical path [93, 94]. When we 

observe the human visual recognition system, we see that the visual system is separated into 

distinct visual areas, each of which is coupled in a feed-forward fashion and depicts a structure 

hierarchically [94]. PASCAL VOC [95] is a well-known and challenging object detection 

dataset, and it is frequently used to compare algorithms. 

Although SIFT and HOG dominated the PASCAL VOC competition, a plateau was noted 

in recent years when the precision was measured over time (about 2012). Approaches based on 

hierarchical and deep learning were also developed. As discussed in Subsection 2.1.2, 

Fukushima introduced 'neocognitron,' inspired by human biology. Although inspired by 

hierarchical and shift-invariant processing, this model lacks an appropriate training mechanism. 

After some time, LeCun et al. [34] use stochastic gradient descent with backpropagation to train 

CNNs on a comparable network, extending the neocognitron's capabilities. In the years that 

followed, beginning with AlexNet [11], other highly successful entries to the ILSVRC [36] were 
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made. However, these approaches (and the ILSVRC) are geared toward image identification, and 

this knowledge needs to be translated to the object detection task. 

We begin this subsection by discussing the R-CNN network [93] in Subsection 3.1.2, 

which serves as the foundation for a large number of object identification networks currently. 

Next, the introduction of the R-CNN, the following subsubsections discuss revisions and 

upgrades and how they addressed significant challenges in object detection. 

3.1.2.1 R-CNN 

Girshichk et al. (2014) [93] created a CNN-based object detection approach by 

combining the results of image recognition systems. Girshick et al. demonstrate that CNN-based 

object detection approaches beat rival systems that use HOG by over 30% compared to VOC 

2007. The approach used by CNN to detect objects was the sliding window method. This method 

convolutionally transforms a specific region of an image and then slides the image until all 

image regions are searched and categorized. However, big CNNs make it more challenging to 

determine a specific position given the long strides and filter sizes involved in this operation. 

Additionally, because the regions are thoroughly examined for items, this method was somewhat 

slow. RCNN takes a different approach to the sliding-window method in that, rather than 

endlessly searching, it creates class-agnostic object suggestions from the input image and 

classifies those proposal areas using SVMs. 

A fixed-size input is prepared from the suggested areas, hence Regions with CNN 

features. Additionally, [93] shown that transfer learning is a viable method for training big CNNs 

by pre-training them on ImageNet [90] and then fine-tuning them on the smaller PASCAL 

dataset. The algorithm is structured as follows. At the start, a selective search [96] is utilized to 

identify potential locations. Then, using the AlexNet network, fixed-size features (4096 features) 

are extracted from each of those regions. Regions that do not fit the CNN network's input 

parameters are twisted to the correct size (4096 in this case). Finally, the SVMs are fed fixed-size 

features to complete the object detection. According to the studies on the selective search 

algorithm, approximately 2000 regions are selected for an image, and the selected regions have a 

recall of 91 percent on ILSVRC and 98 percent on PASCAL, indicating that there is considerable 

room for improvement, as the maximum recall achievable by the entire network cannot exceed 

that of the region proposal stage. After class-specific SVMs assign scores to areas, bounding-box 
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regression is used to forecast a new bounding box. Let x, y, w, and h denote a proposal's 

bounding box's coordinates and width and height. Then, define "x∗", "y∗", "w∗", "h∗" as the 

ground-truth bounding box's coordinates, width, and height, respectively. When necessary, the 

superscript "i" is used to express the ith suggestion. 

  

 

Figure 3.2: R-CNN method architecture, operations are shown for a single bounding box 

proposal. 
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The learning process can be summed to learning wθ in: 

 𝑤𝜃 = argmax
𝑤̂𝜃

∑  

𝑁

𝑖

(𝑡𝜃
𝑖 − 𝑤̂𝜃

𝑇𝜙5(𝑃𝑖))
2

+ 𝜆∥∥𝑤̂𝜃∥∥
2
 3.5 

 

θ is one of x,y,w,h, and φ5(P) is defined as the features recovered from the proposal P 

fifth (and final) convolution layer. To determine wθ, we require the regression (tθ) ground truth 

targets, which are defined as follows (for a single proposal and associated ground truth): 

 

 𝑡𝑥 =  (𝑥 ∗  − 𝑥)/𝑤 3.6 
 𝑡𝑦 =  (𝑦 ∗  − 𝑦)/ℎ 3.7 

 𝑡𝑤 =  𝑙𝑜𝑔(𝑤 ∗/𝑤) 3.8 
 𝑡ℎ =  𝑙𝑜𝑔(ℎ ∗/ℎ) 3.9 

 

Finally, the network is trained as an optimization problem effectively addressed in closed 

form using the least square loss function. On the PASCAL VOC 2007 test set [97], the R-CNN 

[93] approach gets 66 percent mAP and 62.4 percent mAP on the PASCAL VOC 2012 test set 

[98]. 

3.1.2.2 Fast-RCNN 

Ross Girshick (2015) [80] advanced their earlier work, R-CNN, by proposing a set of 

enhancements. These advancements increased detection accuracy while also increasing detection 

speed. The author proposed a deep learning method using a single-stage training process, i.e., 

training the entire system end-to-end in this study. The speed increases indicated above are 

noteworthy because the R-CNN model with VGG16 takes around 47 seconds to process an 

image, but Fast-RCNN takes approximately 0.3 seconds without region proposal time [80]. As 

previously stated, R-CNN has some disadvantages. The training technique is not trivial; after 

training and fine-tuning a CNN, separate SVMs for each class are trained. Finally, we train 

bounding box regressors. Additionally, R-CNN is slow because the underlying CNN model is 

performed for each proposal, approximately 2000 per image.  
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Figure 3.3: Fast-RCNN method architecture 

 

Figure 3.3 illustrates the overall architecture of a Fast-RCNN system. Fast-RCNN 

requires two inputs: a picture and a set of proposals. As a result, the improvements occur not at 

the bounding box proposal step but also during the subsequent stages using convolution and 

SVMs. The image is first processed using the CNN feature extractor, which generates a feature 

map. Following that, a fixed-length feature vector is derived from the feature map for each 

proposal using the RoI pooling layer. Instead of running the image through CNN for each 

proposition, it is processed only once. The fixed-size feature vector is then fed into a fully 
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connected network divided into two parts: a softmax layer for classification and another layer for 

proposal box refinement. The RoI-pooling layer stated previously employs maximum pooling to 

convert features within any regions of interest into fixed-size feature vectors.  

This fixed size is given to the network as hyper-parameters, assuming Y and Y'. Then the 

fixed-size small feature map would have the size YxYt. Each RoI is defined with four coordinates 

(r, c, w, h) that denote the top-left corner (r, c) and its width and height (w, h). RoI max-pooling 

layer divides this RoI into equal length spatial sub-windows of the approximate size of h/Y and 

w/Y'. Following that, the standard max-pooling process is performed. Fast-RCNN also takes 

advantage of pre-trained ImageNet [90] convolutional networks in order to leverage successful 

CNNs. The aforementioned RoI-pooling layer takes the role of the feature extractor CNN's final 

pooling layer. 

Fast-RCNN capitalizes on architectural advantages. They share the features retrieved for 

each RoI during training to avoid recalculating the fixed-size feature maps, which resulted in a 

training speedup of approximately 64 times [80]. Additionally, while R-CNN trained SVMs 

independently, Fast-RCNN trains the system as a whole by combining the box regression and 

classification branches with the CNN and RoI-pooling. As a result, the Fast-RCNN network 

outputs two layers. One softmax layer outputs a probability distribution per RoI, p = (p0, ..., pK) 

over K + 1 classes where K is the count of categories in the dataset and 1 comes from the 

background represents the negative class. The 

second layer outputs offset for bounding boxes, tu = (tu
x , tu

y , tu
w, tu

h ) for u ∈ K. A 

ground Struth class k and a ground truth bounding box coordinate target v is associated with each 

training RoI. A multi-task loss L is then jointly trained for bounding box regression and RoI 

classification:   

 𝐿(𝑝, 𝑘, 𝑡𝑘, 𝑣) = 𝐿𝑐𝑙𝑠(𝑝, 𝑘) + 𝜆[𝑘 ≥ 1]𝐿𝑟𝑒𝑔(𝑡𝑘, 𝑣) 3.10 
 

in which Lcls and Lreg are defined as the following: 

 𝐿𝑐𝑙𝑠(𝑝, 𝑘) = −log (𝑝𝑘) 3.11 

 𝐿𝑟𝑒𝑔(𝑡𝑘, 𝑣) = ∑  

𝑖∈{𝑥,𝑦,𝑤,ℎ}

 smooth 𝐿1
(𝑡𝑖

𝑘 − 𝑣𝑖) 3.12 

  smooth 𝐿1
(𝑥) = {

0.5𝑥2,  if |𝑥| < 1
|𝑥| − 0.5,  otherwise 

 3.13 
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Girshick [80] chose smooth L1 loss over the L2 loss used in R-CNN because it is less 

susceptible to changes and outliers. Additionally to this advantage, the classical L1 loss is not 

differentiable at the zero points. Circumvent this difficulty, and a smooth L1 loss is converted to 

L2 loss around zero. Because the regression targets are unbounded, hyperparameters such as the 

learning rate must be carefully controlled to avoid the exploding gradients problem. The Fast-

RCNN [80] approach gets an mAP of 70% on the PASCAL VOC 2007 test set [97] and 68.4% 

on the PASCAL VOC 2012 test set [98]. 

3.1.2.3 Faster-RCNN 

Ren et al. (2015) [51] significantly improved Fast-RCNN by creating Faster-RCNN. This 

novel solution tackles some significant concerns associated with deep learning-based object 

detection techniques. The research community employed selection search [96] as one of several 

strategies for area proposal. However, it was slow, at two photos per second, and because it is 

not learnable, we were unable to learn domain-specific features. Using the CPU-intensive 

selective search algorithm, Faster-RCNN proposes a deep convolutional neural network with 

shared convolutional layers. The new network, dubbed Region Proposal Network, was 

established (RPN). Since RPNs are composed of a few convolutional layers, they can be learned 

in their entirety. [51] also coined the term 'anchor' in the context of object detection, which 

enables it to recognize objects of varying scales and ratios. 

The RPN accepts a feature map as input and produces area proposals with given 

objectness ratings. The RPN can simultaneously regress the coordinates of all potential regions 

and assign the regions an objectness score. The objectness score indicates whether the region is 

considered part of the background class or user classes. To accelerate the process, RPN shares 

layers with the convolutional network of Fast-RCNN (backbone network). For instance, if the 

VGG-16 [40] backbone is employed, a feature map from the 13th shared convolutional layer is 

taken, and a tiny network is slid over it. The input to this little network is n * n. The RPN output 

is subsequently transformed into a 512-dimensional vector. Ren et al. propose that we use n = 3, 

which we do. The recovered feature vector (512-d) is processed by two fully connected layers: 

the objectness and regression layers. Figure 3.4 depicts the whole RPN architecture. As 

discussed previously, the anchors enable the RPN to generate proposals at various scales and 

ratios. The system requires an input of k, the maximum number of recommendations for each 
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site. As a result, the regression layer produces 4k outputs with the coordinates, whereas the 

classification layer produces 2k outputs with the objectness score. These k proposals are 

constructed using anchors. Anchors are scaled differently (3 by default) and have varied ratios 

(2:1, 1:2, and 1:1 by default), resulting in k = 9 anchors placed at each position. 

All of these anchors are set in each sliding window slice, and objectness scores are 

assigned. Thus, if the feature map is W * H in size, the total number of anchors is W * H * k. 

Scaling is included to take advantage of the feature pyramid structure, comparable to FPNs [81]. 

When scaling the image and repeating the detection procedure, resizing the anchors adds less 

computational effort. However, considerable increases can be found when utilizing anchors with 

varied scales, which results in an mAP gain of roughly 2% on the PASCAL VOC 2007. Anchors 

are given a score of 1 during network training if they have an IoU of 0.7 or greater with any 

ground truth box. Otherwise, o The loss function is then simply a modification of the Fast-

RCNN loss function. Assume that i is an index for an anchor in a mini-batch with a probability 

of being an object equal to pi.  

Also, the ground truth label for the anchors is denoted as p∗i.  Lastly, ti represents the four 

coordinates that define a predicted bounding box, and t∗
i is the coordinates for the corresponding 

ground truth bounding box. Then the multi-task loss L is defined as: 

 

𝐿({𝑝𝑖}, {𝑡𝑖}) =
1

𝑁𝑐𝑙𝑠
∑  

𝑖

𝐿𝑐𝑙𝑠(𝑝𝑖 , 𝑝𝑖
∗)

+𝜆
1

𝑁𝑟𝑒𝑔
∑  

𝑖

𝑝𝑖
∗𝐿𝑟𝑒𝑔(𝑡𝑖 , 𝑡𝑖

∗)

 3.14 

 

The loss Lcls is the same as Eq. 3.11 as defined in the Fast-RCNN chapter. The regression 

loss is smooth L1 loss (Eq. 3.13), adapted from the Fast-RCNN [80] and defined as: 

 𝐿reg (𝑡𝑖 , 𝑡𝑖
∗) = smooth𝐿1

 (𝑡𝑖 − 𝑡𝑖
∗) 3.15 
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Figure 3.4: Region Proposal Network 

 

 In Faster-RCNN's multi-task loss function, classification loss is normalized by the batch 

size (Ncls), and regression loss is stabilized by the number of anchor locations (Nreg). 

The  regression  loss   (Lreg(ti, t∗i )) is  borrowed  from  the  parameterizations  in  the  R-

CNN paper [20] and given as follows:  

 

𝑡𝑥 =
(𝑥 − 𝑥𝑎)

𝑤𝑎
; 𝑡𝑦 =

(𝑦 − 𝑦𝑎)

ℎ𝑎

𝑡𝑤 = log (
𝑤

𝑤𝑎
) , 𝑡ℎ = log (

ℎ

ℎ𝑎
)

𝑡𝑥
∗ =

(𝑥∗ − 𝑥𝑎)

𝑤𝑎
, 𝑡𝑦

∗ =
(𝑦∗ − 𝑦𝑎)

ℎ𝑎

𝑡𝑤
∗ = log (

𝑤∗

𝑤𝑎
) , 𝑡ℎ

∗ = log (
ℎ∗

ℎ𝑎
)

 
 

3.16 

 

As usual, x,y,w,h represents the bounding box's mid coordinates and the width and height 

of the box. Three different notations, x, x∗ , and xa are for the predicted bounding box, ground-

truth box, and anchor box.  
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The Faster-RCNN method's overall architecture is depicted in Figure 3.5. We used the 

Faster-RCNN approach with a pre-trained VGG-16 and ResNet-50 backbone on the MS COCO 

dataset [82]. This option is because the Faster-RCNN approach is widely used and has state-of-

the-art performance and speed. Additionally, it is applied to a variety of domains and has aided 

in the recognition of tables and table structures [2, 3], pedestrian detection [75], and instance 

retrieval [74]. The model achieves 78.8 percent mAP on the PASCAL VOC 2007 test set [97], 

and 75.9 percent mAP on the PASCAL VOC 2012 test set [98], outperforming previous methods 

and claiming the throne in object detection research while improving speed by 0.2 seconds per 

image, including proposals using the VGG-16 backbone network. Previous researchers have 

applied the Faster-RCNN architecture to the domain of document analysis [27, 50, 52, 57]. The 

data indicate that this network architecture is well-suited for this area, and hence we include it in 

our comparisons of various backbone networks. 
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Figure 3.5: Faster-RCNN architecture 

3.1.3 Feature Pyramid Networks 

Detecting objects at various scales has always been a challenge in computer vision, and 

numerous techniques have been presented. One of them is manually scaling images and 

conducting detection at various scales, which is based on [72](Figure 3.6a) and is a typical 

technique in hand-crafted rule-based image processing methods [67]. This method makes the 

procedures scale-invariant at the performance cost, as the detection is conducted multiple times. 
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While convolutional networks have been proven to be more resistant to object scale changes [80, 

51] (Figure 3.6b), a closer examination reveals that pyramid-like architectures can achieve more 

significant performance benefits [81]. Detection at various scales is advantageous for detecting 

objects at various scales. Tables, for example, can be spotted at various scales, whereas smaller 

items such as rows can only be detected at a larger scale, as [3] demonstrates. While image 

pyramids are the most natural technique to establish scale invariance for models, they are not the 

only way. Because CNN's already calculate feature pyramids in their forward pass, which is 

essentially a pyramid-like shape with hierarchical features at each level. SSD [55] is a method 

that utilized CNN's hierarchical characteristics and detected at various levels (Figure 3.6c), but 

they added more layers to complete the pyramid and avoided using lower layers. Lin et al. (2017) 

[81] proposed a new method called FPN that takes advantage of the CNNs' inherent feature 

pyramids by combining semantically low-level and semantically high-level features to mimic the 

image pyramids scheme and form a top-down architecture capable of performing detections at all 

levels, as illustrated in Figure 3.6d. 

Lin et al. [81] demonstrate that FPNs significantly improve recall on an object detection 

task. In terms of numerical performance, FPN design increased Average Recall (AR) by eight 

and Average Precision (AP) by 2.3 or 3.8 for COCO-style [82] or PASCAL-style [95] precision 

calculation, respectively. The FPN is separated into two sections: bottom-up and top-down. The 

bottom-up pathway is represented by the convolutional networks' frequent feed-forward 

operations. Because many convolutional layers do not alter the input size (e.g., the convolution 

layers in the conv4 block of the ResNet [39] model), they are regarded to be at the same level in 

the bottom-up route. Then, a bottom-up feature pyramid is formed using the final convolutional 

layers of each of these tiers. For example, feature maps are extracted from the last layers of the 

conv2, conv3, conv4, and conv5 blocks in the ResNet models. The top-down route is formed by 

extracting feature maps at specified layers starting from the last layers of the convolutional 

network and progressing downward in the network. Laterally coupled to the top-down path, 

these feature maps are then blended with the other feature maps. Each layer along the path is 

upscaled using the closest neighbour technique before being transferred to the bottom layer. The 

lower layer is then blended with the upper layer simply by adding the features. The FPN 

architectural method is depicted in Figure 3.6d. The bottom-up path is depicted on the left, while 

the top-down path is depicted on the right. 
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Since our challenge contains both wide and short items (rows and columns), detecting 

various scales might aid us. According to the studies in [81], the Faster-RCNN model with FPN 

outperforms the COCO test set somewhat better [82]. We also tested with FPN, and our prior 

research in [3] indicated that the model with FPN (and FCN) increased the AP and AR by 4-6 

per cent in the publicly available dataset. 

Figure 3.6: Feature pyramid networks, Colored boxes represent input images and white boxes 

for feature maps. 



33 
 

3.2 Semi-Supervised Learning for Object Detection 

We present a basic SSL framework based on Self-Training (through pseudo label) and 

Augmentation-driven Consistency regularisation. First, we use a stage-based training approach 

with Noisy Child [71] due to its scalability and flexibility. Following that, at least two training 

phases are required: first, we tr ain a parent model using all available labelled data; second, 

we train both the child and parent models using labelled and unlabeled data. Second, we employ 

a high confidence threshold for FixMatch-inspired confidence-based thresholding to manage the 

quality of pseudo labels composed of bounding boxes and their class labels in object detection. 

The summarization of the steps involved in training is explained in further sub-topics. 

3.2.1 Parent Model Training 

Parent model trained on all available labelled datasets. We base our formulation on the 

Faster RCNN [66], which has been demonstrated to be a highly representative detection 

framework. On top of the shared backbone network, the faster RCNN has a classifier (CLS) and 

a region proposal network (RPN) heads. Each head contains two modules: area classifiers (for 

the CLS head, this is a (K+1)-way classifier; for the RPN head, this is a binary classifier) and 

bounding box regressors (REG). To keep things simple, we present the supervised and 

unsupervised losses of the Faster RCNN for the RPN head. The following is a description of the 

supervised loss: 

 

ℓ𝑠(𝑥, 𝐩∗, 𝐭∗) = ∑  

𝑖

ℓ𝑠(𝑥, 𝑝𝑖
∗, 𝑡𝑖

∗)

= ∑  

𝑖

[
1

𝑁cls
ℒcls(𝑝𝑖, 𝑝𝑖

∗) +
𝜆

𝑁reg 

ℒreg(𝑡𝑖, 𝑡𝑖
∗)]

 3.17 

 

Where i is the index of a mini-batch anchor. " pi" is the predictive likelihood of an anchor 

being positive, and ti denotes the anchor's four-dimensional coordinates. " p*
i" denotes the binary 

label of an anchor to ground-truth boxes, while t*
i denotes the box "i" ground-truth coordinates 

for all "p*
i = 1". 
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3.2.2 Generating Pseudo Labels 

Utilize the trained parent model to generate pseudo labels for unlabeled images (i.e., 

bounding boxes and associated class labels). To produce pseudo labels, we make a test-time 

inference of the object detector from the parent model. The production of pseudo labels entails 

the forward pass of the backbone, RPN, and CLS networks and post-processing such as non-

maximum suppression (NMS). This contrasts with standard classification methods, which 

generate the confidence score from the raw prediction probability. We use the score of each 

returning bounding box following NMS, which averages the anchor box prediction 

probabilities—using box predictions following NMS benefits over using raw predictions (before 

to NMS), as it eliminates redundant detection. However, as illustrated in Figure 3.7, this does not 

filter out boxes in incorrect locations. To further exclude potentially incorrect pseudo boxes, we 

employ confidence-based thresholding [68,71]. 

3.2.3 Unsupervised Loss 

Calculate both unsupervised and supervised loss in order to train a detector. We 

determine "q∗i" a binary label for an anchor I about pseudo boxes, for all anchors, given an 

unlabeled image "x" a collection of anticipated bounding boxes, and respective area proposal 

confidence ratings. Notably, the primary threshold mechanism "w" is applied to "q∗i" via the 

CLS head, resulting in a value of "1" if the anchor is connected with any pseudo boxes whose 

CLS prediction confidence scores of the parent model are above the threshold "τ" and 0 

otherwise (i.e., treated as background). Assume that "s∗" is the box coordinates of pseudo boxes. 

Then, STAC's unsupervised RPN loss is expressed as ℓ𝑢(𝒜(𝑥𝑢 , 𝐬∗), 𝐪∗) = ℓ𝑠(𝑥𝒜 , 𝐪∗, 𝐬𝒜
∗ ). Significant 

data augmentation is applied to an unlabeled image x, resulting in the string "XA". Since some 

transformation operations (e.g., global geometric transformation [78]) are not invariant to the 

box coordinates, the operations "A" are also applied to the pseudo box coordinates, generating 

"s∗
A". Finally, the RPN is trained by simultaneously minimizing two losses: 

 ℓ = ℓ𝑠(𝑥𝑠, 𝐩∗, 𝐭∗) + 𝜆𝑢ℓ𝑢(𝒜(𝑥𝑢, 𝐬∗), 𝐪∗) 3.18 
 

The overall model adds two new hyperparameters τ and λu. We found that "τ = 0.9" and " 

λu ∈ [1, 2]" work well in experiments. Notably, the consistency-based SSL object recognition 

approach described in [83] necessitates a complex weighting schedule for "λu" including 

temporal ramp-up and ramp-down. Rather than that, our system displays effectiveness with a 

simple constant schedule by utilizing a strong data augmentation technique and confidence-based 

thresholding. 
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Figure 3.7:  SSL framework for object detection  

 

We produce pseudo labels (i.e., bounding boxes and associated class labels) for unlabeled 

data using test-time inference techniques, including NMS, with the instructor model trained on 

labelled data. We compute unsupervised loss in the presence of pseudo labels with confidence 

scores greater than a predefined threshold. The strong augmentations are used to ensure that the 

augmentations are consistent throughout the model training process. When global geometric 

transformations are performed, target boxes are augmented. 

3.2.4 Data Augmentation Strategy 

When global geometric alterations are implemented, apply strong data augmentations to 

unlabeled images and proportionally augment pseudo labels (i.e., bounding boxes). Robust data 

augmentation is critical for the success of consistency-based SSL approaches such as UDA [70] 

and FixMatch [68]. While the augmentation technique has been extensively investigated for 

supervised and semi-supervised image classification [61, 68, 70, 77, 79], little effort has been 

made to date for object identification. We extend [77]'s RandAugment for object detection by 
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using the recently proposed augmentation search space (e.g., box-level alteration) and the Cutout 

[65]. We investigate several transformation options and identify a set of effective combinations. 

Each operation has a magnitude that determines the degree of strength augmentation. 

• Global colour transformation (C): The methods described in [79] are employed, as 

are the specified magnitude ranges for each operation. 

•  Global geometric transformation (G): [79] uses geometric transformation 

operations such as x-y translation, rotation, and x-y shear. 

•  Box-level transformation [78] (B): Three transformation procedures similar to 

those employed in global geometric transformations but with lower magnitude 

ranges. 

We execute the following transformation procedures sequentially to each image. First, we 

apply one of the procedures from C. Second, we perform one of the operations on the data 

sampled from G or B. Finally, we apply Cutout to numerous random spots across a picture to 

avoid a trivial solution when used exclusively within the bounding box. 
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CHAPTER 4: RESULTS AND DISCUSSION 

We propose semi-supervised based solutions to find tables in arbitrarily styled 

documents, be it research papers, magazines, journals, newspapers, web pages, and more. The 

document format is in digital image format because every other document format can be 

converted into an image, allowing our system to take any document as input. The proposed table 

detection model also works on scanned and possible tilted images that result from scanning 

progress, and we achieve almost state-of-the-art results on a publicly available dataset 

TableBank. The detections by this model are accurate, and speed-wise it competes with other 

methods we present. Since the annotated dataset for the table detection task is lacking, the 

research community use existing public datasets and benefit from transfer learning capabilities of 

the deep learning methods to adapt the models to table detection domain. We propose that unlike 

how public datasets and their training sets are annotated, annotating all table-like areas, which 

we call tabular areas, increases the overall recall and precision with a trade-off of an increased 

number of false positives. Tabular regions include the table of content pages, some form of lists 

that has several columns and rows, actual tables or sometimes figures as well, or in other words, 

everything that looks like tables. In training the models, even though we use transfer learning to 

adapt pre-trained backbone networks in our models to the document domain, we still require 

more data. 

4.1 Dataset and Experimentation 

Minghao et al. [60] recognised the table community's demand for huge datasets in early 

2019 and produced TableBank, a dataset including 278,582 tagged photos with tabular 

information. This dataset was produced by crawling through online documents in the.docx 

format. Another source of data for this dataset is LaTeX documents obtained from arXiv's 

database. The 78,399 photos were taken from Microsoft Word documents, while the 200,183 

images were extracted from latex documents. According to the dataset's publishers, this addition 

will enable academics to harness the potential of deep learning and finetuning approaches. The 

size of training, testing, and validation are 260582, 10000, and 8000, respectively. TableBank 

consists of multiple types of tables, without border, with border and landscape type. Figure 4.1. 
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Figure 4.1: TableBank tables types 

 

We experiment with two different SSL configurations. First, we randomly choose 1, 2, 5, 

and 10% of labelled training data and utilise the remainder as an unlabeled set. We generate five 

data folds for these tests. The 1% protocol contains roughly 2.6k labelled images chosen at 

random from TableBank's labelled set. 2% protocol contains additional ∼2.6k images, and 5, 

10% protocol datasets are constructed similarly. Second, following [38], We define a labelled set 

as an entire set of labelled training data and an unlabeled set as extra unlabeled data. Notably, the 

first experiment assesses the model's efficacy when just a few labelled examples are provided. 
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However, the second protocol assesses the possibility of improving the state-of-the-art object 

detector using unlabeled data in addition to the large-scale labelled data currently available. We 

report on the mAP distribution over table classes. On a test set of 10,000 images, the detection 

performance is evaluated in precision, recall, and F1 score at an IoU of 0.5. 

4.2 Implementation and Results 

Our version is based on Tensorpack's Faster RCNN and FPN libraries [29]. Our object 

detection models are built on the ResNet-50 [24] backbone. Unless otherwise specified, the 

ImageNet pre-trained model initializes the network weights at all phases of training. Due to the 

complexity of training the object detector, we use the default learning settings for all our trials 

except the learning schedule. The majority of our experiments employ a rapid learning schedule. 

We find that when more labelled training data and more elaborate data augmentation procedures 

are applied, longer training considerably improves the model's performance. Two new 

hyperparameters have been introduced: τ for the confidence threshold and λu for the 

unsupervised loss. For all tests, we use τ = 0.9 and λu = 2. Due to the lack of research on deep 

semi-supervised learning of visual object detectors for table recognition, we compare our 

technique to supervised models (i.e., models trained on labelled data from TableBank) for 

various experimental procedures utilizing various data augmentation strategies. The results are 

summarised in Table 1. For protocols of 1, 2, 5, and 10%, we train models using a fast learning 

schedule and report the F1-score over five data folds, as well as the standard deviation. 

The complete training and testing data set have been made public. We calculate 

precision, recall, and F1 for table detection in the same method as in [52], where the metrics for 

all documents are derived by adding the area of overlap, prediction, and ground truth. The 

definition is defined as follows:  

 Precision =  
Area of Ground truth regions in Detected regions

Area of all Detected table regions
  

 

 Recall  =  
Area of Ground truth regions in Detected regions

Area of all Ground truth table regions
  

 

 F1 Score  =  
2 ×  Precision ×  Recall

Precision +  Recall
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To begin, we confirm [79]'s findings that the RandAugment significantly improves the 

supervised learning performance of a detector on a 10000 image test dataset, 0.21 f1-score at 5% 

protocol and 0.30 f1-score at 10% protocol, when compared to the supervised baselines with 

default data augmentation of resizing and horizontal flipping. 

 

Table 4-1: Comparison in scores for different methods on TableBank.  

Models 
Training Dataset 

Count 
Method Precision Recall F1 

Faster R-CNN 

ResNet-50 

FPN 

2605 (1 %) Supervised 0.186 0.283 0.224 

5210 (2 %) Supervised 0.268 0.382 0.315 

13025 (5 %) Supervised 0.439 0.479 0.458 

26050(10 %) Supervised 0.550 0.640 0.591 

260582(100 %) Supervised 0.964 0.904 0.933 

Faster R-CNN 

ResNet-50 

FPN 

2605 (1 %) Semi-Supervised 0.353 0.342 0.348 

5210 (2 %) Semi-Supervised 0.483 0.469 0.476 

13025 (5 %) Semi-Supervised 0.686 0.667 0.677 

26050(10 %) Semi-Supervised 0.908 0.886 0.897 

 

 The results in Table 4-1 indicate that ResNet-50 is an appropriate backbone for this task 

in terms of speed and f-score. Because the primary objective is supply chain optimization, this 

procedure requires millions of documents, making speed a critical aspect of the decision-making 

process. The term 'Scratch' refers to when the network is trained from scratch (with randomly 

initialised weights), and the results indicate that employing pre-trained feature extractors 

improves detection performance. However, the results are close, and with additional 

enhancements to the training dataset (such as increasing the number of data points), pre-trained 

weights may be unnecessary. The trials are carried out using the ResNet50 backbone feature 

extractor in conjunction with the Faster-RCNN model. Figure 4.2 illustrates table detections 

from a TableBank dataset. Our results demonstrate that even with only 10% data, it outperforms 

supervised models trained on 10% data and is comparable to supervised models trained on 100% 

data. It is useful for industrial applications since it eliminates the need for labelled data, an 

expensive, time-consuming operation. 
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Figure 4.2: Examples of TableBank detection results 
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CHAPTER 5: CONCLUSION 

The table extraction task can potentially save thousands of precious human hours that 

would otherwise be spent extracting data from tables. Despite the absence of pre-or post-

processing, our models outperformed state-of-the-art models on TableBank datasets. We 

conclude that our higher precision and recall are justified by the increasing diversity and volume 

of data. While SSL has made tremendous progress in categorization, label-efficient training for 

tasks requiring a high labelling cost is challenging. By utilizing lessons learned from SSL 

approaches for classification, we offer a simple (just two easily tuneable hyperparameters) and 

practical (2 label efficiency in low-label regime) SSL framework for object detection. The 

simplicity of our solution allows for further research aimed at resolving SSL for object detection. 

The suggested framework is adaptable to various configurations, including soft labels for 

classification loss, other detector frameworks to Faster RCNN, and alternative data augmentation 

methodologies. While our approach achieves an impressive performance improvement without 

considering confirmation bias [18], it may become troublesome when used with a detection 

system that employs a more robust kind of hard negative mining [9] as noisy pseudo labels can 

be overused. Further research into learning with noisy labels, confidence calibration, and 

uncertainty estimation in the context of object detection are just a few critical areas to investigate 

in order to improve SSL's performance for table detection further. 
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