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Abstract

For the rare B meson decays, Bd → K∗l+l− and Bs → φl+l− , the long distance effects are

studied. The form factors which give a description of meson transition amplitudes in the effective

Hamiltonian approach, are investigated by means of Wards Identities. These form factors are then

compared with the other approaches in the literature , like Light Cone Sum Rules (LCSR) approach

and Lattice QCD (LQCD) approach. Moreover, the Bd → K∗l+l− and Bs → φl+l− branching

ratios are computed in the framework of Standard Model and are compared with the experimental

results and the other approaches, LCSR and LQCD. The differential branching fractions are given

as a function of the squared-momentum transferred.
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Chapter1
Introduction

The semi-leptonic decays are of great interest since last two decades. These decays provide rigor-

ous tests for Standard Model and also provide physics beyond the Standard Model. At tree level

these decays are forbidden in Standard Model and occur only at loop level via GIM-mechanism.

This mechanism was first presented by Glashow, Iliopulos, and Maiani [1]. It is easier to observe

the exclusive rare B decays experimentally than inclusive rare B decays [2, 3] and converse is true

for theoretical point of view i.e. theoretically the exclusive decays are more difficult to observe due

to uncertainties in calculations of transition form-factors [4]. These form-factors are calculated in

literature by using different approaches like Wards Identities (WI) [5], Light Cone Sum Rules

(LCSR) [6], Lattice QCD (LQCD) [7], Dyson-Schwinger Equation (DSE) approaches amongst

many others. These hadronic transition form-factors are the constituents of physical observables,

such as branching ratios, forward-backward asymmetry, helicity fraction etc.

Rare decays, especially the Bd → K∗l+l− and Bs → φl+l− are interesting as they are the subject

of intense experimental inspection by the LHCb Collaboration [8]. The experimental figures of

branching ratios for these B decays are [9]:

Br(Bd → K∗l+l−) = (1.06± 0.09)× 10−6, (1.1)

Br(Bs → φl+l−) = (7.6± 1.5)× 10−7.
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In our work we investigated the transition form-factors using Wards Identities (WI). We computed

their values t q2 = 0 and then extrapolated in Vector meson Dominance Model for all q2 values for

the said decays. Then we compared these form-factors with the other form-factors, already existing

in the literature, such as Lattice QCD (LQCD) and Light Cone Sum Rules (LCSR) approaches. We

give a comparison of these form-factors for the processes Bd → K∗l+l− and Bs → φl+l−. By

using these transition form-factors we calculate the branching ratio for the said processes in the

framework of Standard Model and compare them with experimental results and other approaches.

1.1 Standard Model Highlights

The Standard Model (SM) of fundamental particles has been successful since its beginning in

1960 [10–12] and early 1970 [13, 14]. One of the beautiful features of SM is that it predicted the

weak neutral current which was experimentally observed in the "Gargamelle Neutrino Experiment"

in 1973 [15]] and was the first success of the SM. The experiment was run to look the processes of

the form νµ/νµ + N → νµ/νµ + hadrons(neutral current) and νµ/νµ + N → µ−µ+ + hadrons

i.e. charged current. Together with the data taken from processes and other similar experiments

in the 1970 [16, 17], the Standard Model predicted the masses of the mediating Z and W± vector

bosons. The W− and Z-bosons were first directly produced at CERN (an European Organization

for Nuclear Research) in 1983 [18,19]. The calculated mass well matched with the Standard Model

predictions. The LEP (Large Electro-Positron collider) measured more precise Z-mass, a couple

of years later. These experiments also probed the theory at the level of one-loop and found good

agreements in many observables. Another success of SM is the prediction of top quark, which was

experimentally tested at Fermilab at CDF (Collider Detector at Fermilab) in 1995 [20].

The Standard Model has some limitations which hinder its status as fundamental theory. Some

of these limitations are as follows:

• Why the electroweak unification scale is so small (hierarchy problem )

• Gravity is not included in Standard Model
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• What is the origin of mass-patterns among the fermions

• Why are there only three generations of quarks and leptons

• Neutrinos are massless in SM while experiments have shown that the neutrinos have mass

Despite all these deficiencies, the Standard Model is still a very successful model. Theoretical cal-

culations within the SM and precised measurements of observables have been continued to show

good agreements with each other [21–23].

In the following section we give an overview of the Standard Model. We put our focus on the

particles, their parameters and interactions such as masses and coupling constants.

1.1.1 Overview of SM

The Standard Model (SM) is a gauge field theory established on the gauge group GSM :

GSM = SU(3)C ⊗ SU(2)L ⊗ U(1)Y .

The groups SU(3)C and GEW = SU(2)L ⊗ U(1)Y corresponds the strong interaction and elec-

troweak interaction, respectively. The strong interaction acts only on color − charged particles

(qurks and gluons) while leaves the other particles of SM untouched. The subscript C in SU(3)C

refers to color − charge. The group SU(2)L acts only on the left-handed fields. The left-handed

particles (when the directions of spin and motion of the particle are opposite) participate in weak

interactions where as the right-handed ones (when the direction of spin is the same as the direction

of motion of the particle) do not (that is why we put the subscript L). The group U(1)Y acts on

the particles with weakhypercharge and Y refers to the weak hypercharge. The generator for elec-

tric charge is the combination of I3 (third isospin component) from SU(2) and the hypercharge Y

(corresponding to the gauge symmetry U(1)). They are combined with each other in well known
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Gell-Mann-Nishijima formula:

Q = I3 +
Y

2
.

The quark fields have a color-index. Each quark flavor q (where q = u, d, s, c, t, b) have three

different types or colors. In order to make a tight notation, we collect these three types in a vector

as follows;

q = (q1 q2 q3)T (1.2)

(1.3)

where 1, 2, 3 is the color index. and q = u, d, s, c, t, b is the flavor of quark.

The Weyl fermions are the fundamental constituents of Dirac-spinor ψ. The Dirac-spinor in chiral

basis can be written as;

ψ =

φ
0

+

0

χ



where the φ and χ are the Weyl spinors. These are two component spinors.

By introducing the two chiral projectors L and R as;

L =
1

2
(1− γ5)

R =
1

2
(1 + γ5)

. (1.4)
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Symbol Generations SU(3)C Rep SU(2)LRep Y

Quarks qi,αL

(
uα

dα

)
L

(
tα

bα

)
L

(
cα

sα

)
L

3 2 1/6

qi,αR uαR tαR cαR 3 1 2/3
di,αR dαR bαR sαR 3 1 -1/3

Leptons liL

(
νe
e

)
L

(
νµ
µ

)
L

(
ντ
τ

)
L

1 2 -1/2

liR eR µR τR 1 1 -1

Table 1.1: Fermion sector (quarks and leptons) of the SM and its transformation properties. The
subscript L(R) represents the left/right handed fields. The superscript α represents the color index.

We define left handed and right handed fields as;

ψL = Lψ ↔ φ

ψR = Rψ ↔ χ

(1.5)

There are 12 gauge bosons, 45 Weyl fermions and 1 Higgs doublet in the Standard Model. There

are 18 independent parameters in SM, given as;

• Three lepton masses: ml ; l= e, µ, τ ;

• Six fermion masses: mi ; i= u, d, c, s, t, b;

• One gauge boson mass: mZ (where m±W is connected with mZ via coupling);

• Three couplings: g, g′, gs;

• One Higgs boson mass: mH ;

• Four CKM matrix parameters.
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Gauge boson Symbol SU(3)C Rep SU(2)LRep Y

Electromagnetic interactions photon γ 1 1
Weak interactions W -boson , Z-boson W± , Z 1 3
Strong interactions gluon g 8 1 0

Higgs φ 1 2 1/2

Table 1.2: Boson sector (Higgs boson, guage fields) of the SM and its transformation properties.

1.2 The Gauge Group of Electroweak Interactions

In the following section we discuss the gauge groups SU(2)L, U(1)Y and SU(2)L ⊗ U(1)Y . We

study the local invariance of these groups and see how gauging the group SU(2)L ⊗ U(1)Y gives

massless W , Z bosons and the photon Aµ.

1.2.1 Gauge group SU(2)L

To begin with, we consider electron and its neutrino at first and then we will generalize. The Dirac

field operator can be written in left/right handed and components. For electron as a Dirac field

operator we write;

e(x) = eL(x) + eR(x), (1.6)

where

eL(x) =
1

2
(1− γ5)e(x), (1.7)

eR(x) =
1

2
(1 + γ5)e(x),

where eL is left-handed while eR is right-handed chiral state. These are two orthogonal subspaces

and are projection operators PL and PR.

The matrix γ5 is defined as γ5 = iγ0γ1γ2γ3. In the chiral basis γ5 is written as,

γ5 =

−I2 0

0 I2

 .
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As the Dirac field representation is not an irreducible representation. It actually splits into two

irreducible representations. Their behaviour is similar under rotation while behave differently

under boost. We can split the representation into two irreducible representations out of which one

is called left-handed (eL) while the other one is known as right-handed (eR). The eL and eR are

doublet and singlet respectively under SU(2)L.

The Dirac mass term for fermions is of the type −mf ψ̄ψ, but such terms are not allowed in the

Lagrangian as are not invariant under SU(2)L.

−mf ψ̄ψ = −mf (ēL + ēR)(eL + eR),

= −mf (ēLeR + ēReL) . (since ēLeL = ēReR = 0) (1.8)

Since eL is left-handed doublet (vector) and eR right-handed singlet (scalar) so both behave differ-

ently under transformation which results the mass term transformation not to be a scalar. This type

of term is not invariant in the Lagrangian. So we can not add this type of term in the Lagrangian

by hand

We have so far seen the left-handed neutrino in the experiments. The Lagrange density for the

three fields νeL, eL) and eR is,

L0(x) = ¯̀
L(x)iγµ∂µ`L(x) + ēR(x)iγµ∂µeR(x),

=

(
ν̄eL(x) ēL(x)

)
(iγµ∂µ)

νeL(x)

eL(x)

+ ēR(x)iγµ∂µeR(x). (1.9)

The Lagrange density (1.9) is invariant under arbitrary or global SU(2) rotation or transformations

but is not invariant under local SU(2) transformations,

νeL(x)

eL(x)

→ U(x)

νeL(x)

eL(x)

 ,

where U(x) ∈ SU(2). This Lagrangian is made invariant by replacing ∂µ with covariant derivative
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Dµ. This introduces three vector fields, one for each generator of SU(2). The covariant derivative

for SU(2) is,

Dµ = ∂µ + ig
W µ
a (x)τa

2
, (1.10)

where W µ
a (a = 1, 2, 3) are the three vector fields introduced for the sake of invariance and τa are

Pauli spin matrices and g is the gauge coupling constant.

We define,

Wµ(x) =
W a
µ (x)τa

2
.

which is a 2× 2 hermitian matrix with zero trace.

We define the matrix of field strengths as,

Wµν(x) = ∂µWν(x)− ∂νWµ(x) + ig[Wµ(x),Wν(x)],

=
W a
µν(x)τa

2
. (1.11)

Using [τa, τb] =
i

2
εabcτ

c, where εabc are the structure constants for SU(2), we get,

W a
µν(x) = ∂µW

a
ν (x)− ∂νW a

µ (x)− gεabcW b
µ(x)W c

ν (x).

Hence the Lagrangian density for the neutrino, W-fields and the electron is,

L =
1

2
Tr(Wµν)(W

µν) +

(
ν̄eL ēL

)
iγµ(Dµ)

νeL
eL

+ ēRiγ
µ∂µeR.

L =
1

2
Tr(Wµν)(W

µν) +

(
ν̄eL ēL

)
iγµ

(
∂µ + ig

W a
µ τa

2

)νeL
eL

+ ēRiγ
µ∂µeR. (1.12)

This Lagrange density (1.12) is invariant under local SU(2) transformations. Or in other wordsL →

L for νeL
eL

→ U(x)

νeL
eL

 ,

eR → eR,
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Wµ → U(x)WµU
†(x)− i

g
U(x)∂µU

†(x), (1.13)

where U(x) ∈ SU(2)L is a local gauge transformation. The gauge group Wµ (that we have

introduced) is the weak isospin group and the fields νeL and eL form a weak doublet; whereas eR

is singlet under SU(2)L.

The process to gauge the global SU(2)L symmetry introduces not only vector fields, but also an

interaction. The structure of the interaction can be read from Eq. (1.12) as,

LeνW = −g
(
ν̄eL ēL

)
γµ
W a
µ τa

2

νeL
eL

 ,

= −g
(
ν̄eL ēL

)
γµ

1

2


 0 W 1

µ

W 1
µ 0

+

 0 −iW 2
µ

iW 2
µ 0



+

W 3
µ 0

0 −W 3
µ



νeL
eL

 . (1.14)

We define electric charge basis as,

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
, (1.15)

W+
µ = (W−

µ )†,

The field W−
µ W

+
µ has the effect of annihilating W−(W+) particles and creating W+(W−) parti-

cles. So LeνW in new basis is ,

LeνW = −g
(
ν̄eL ēL

)
γµ

1

2

 W 3
µ

√
2W+

µ
√

2W−
µ −W 3

µ


νeL
eL

 ,

= −g
2

(
W 3
µ(ν̄eLγ

µνeL − ēLγµeL)

+
√

2W+
µ ν̄eLγ

µeL +
√

2W−
µ ēLγ

µνeL

)
. (1.16)
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The coupling (given in Eq.(1.16))describes the neutrino transformation into an electron with ab-

sorption of W− particle. It also decribes that W 3
µ -boson couples with left-handed electron (eL) and

to the left-handed neutrino (νeL), but not with eR, showing that W 3
µ can not be identified as photon

field. The photon couples to the left/right handed electron and not to the neutrino.

1.2.2 Gauge group U(1)Y

Now, let see the Lagrange density L0 (1.9) under U(1) transformations. Again, L0 is invariant

under global U(1) transformation (where θ, θ′ are the constant phases for right-handed and left-

handed parts respectively), νeL
eL

→ eiθ
′

νeL
eL

 ,

eR → eiθeR. (1.17)

Gauging these two U(1) groups yield to massless gauge bosons. Which would lead to two photon

like bosons in theory (that is a contradiction to the experiment). Gauging special combination of

the U(1) transformations of the form,

νeL
eL

→ e+iyLχ

νeL
eL

 ,

eR → e+iyRχeR. (1.18)

The operators generating the above mentioned group (yL and yR) would be referred to as weak

hypercharge Y . Where hypercharge yL is given to the fields νeL and eL while yR to eR, then the

transformation of U(1) hypercharge group is,


νeL

eL

eR

→ eiχY


νeL

eL

eR

 , (1.19)
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with

Y =


yL 0 0

0 yL 0

0 0 yR

 . (1.20)

Again introducing the real vector field Bµ and gauge coupling constant g′ (for gauge group U(1)),

the field strength tensor is,

Bµν = ∂µBν − ∂νBµ.

1.2.3 SU(2)L ⊗ U(1)Y

The Lagrange density for SU(2)L ⊗ U(1)Y is given by,

L = −1

2
Tr(Wµν)(W

µν)− 1

4
BµνB

µν + ψ̄iγµDµψ, (1.21)

where covariant derivative for the SU(2)L ⊗ U(1)Y gauge group is,

Dµ = ∂µ + igW a
µTa +

i

2
g′BµY,

with

Ta =

 1
2
τa 02×1

01×2 01×1

 .

where the matrix for hypercharge Y is the same as it is given in Eq. (1.20).

The Lie algebra of SU(2)L ⊗ U(1)Y is,

[Ta, Tb] = iεabcT
c,

[Ta, Y ] = 0.
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The interaction term Lint, in Eq. (1.21) are:

Lint = −ψ̄γµ(gW a
µTa + g′BµY )ψ,

= − g√
2

(W+
µ ν̄eLγ

µeL +W−
µ ēLγ

µνeL)

−1

2

(
gW 3

µ + 2yLg
′Bµ

)
ν̄eLγ

µνeL

+
1

2

(
gW 3

µ − 2yLg
′Bµ

)
ēLγ

µeL − yRg′BµēRγ
µeR, (1.22)

where

ψ =


νeL

eL

eR


As yL and yR are constants, these constants can be chosen freely because we already have another

free parameter g′. Let us conventionally choose YL = −1

2
.

The W 3
µ and Bµ both are electrically neutral and massless so far, which means both are on an equal

footing. Their linear combinations can form an equivalent basis. We choose these two orthogonal

linear combinations,

Zµ =
1√

g2 + g′2

(
gW 3

µ − g′Bµ

)
. (1.23)

The gauge field orthogonal to Zµ is,

Aµ =
1√

g2 + g′2

(
g′W 3

µ + gBµ

)
. (1.24)

Definig the weak mixing angle θw,

cos θw =
g′√

g2 + g′2
. (1.25)

and

sin θw =
g√

g2 + g′2
.
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Eqs. (1.23) and (1.24) can be re-expressed as,

Zµ = cos θwW
3
µ − sin θwBµ, (1.26)

Aµ = sin θwW
3
µ + cos θwBµ.

The interaction term in Eq.(1.22) becomes,

Lint = − g√
2

(
W+
µ ν̄eLγ

µeL +W−
µ ēLγ

µνeL

)
(1.27)

−
√
g2 + g′2Zµ

(
1

2
ν̄eLγ

µνeL −
1

2
ēLγ

µeL − sin2 θw (−ēLγµeL + yRēRγ
µeR)

)
− gg′√

g2 + g′2
Aµ (−ēLγµeL + yRēRγ

µeR) .

Now it has become obvious that one of the combination is coupling with the electrons and not with

the neutrinos so we can identify that as a photon (the last term in above expression). If we choose

yR = −1,
gg′√
g2 + g′2

= e

then

e =
√
g2 + g′2 sin θw cos θw

So the Lagrange density Lint is written in more compact form as follows:

Lint = −e[AµJµem +
1√

2 sin θw
(W+

µ ν̄eLγ
µeL +W−

µ ēLγ
µνeL) (1.28)

+
1

sin θw cos θw
ZµJ

µ
NC ]

where

Jµem = −ēLγµeL − ēRγµeR = −ēγµe (1.29)

JµNC =
1

2
ν̄eLγ

µνeL −
1

2
ēLγ

µeL − sin2 θwJ
µ
em (1.30)
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The Jµem and JµNC are electromagnetic and neutral currents which couples with photon and Z-boson

respectively.

Note that from the above discussion that gauging the group SU(2)L⊗U(1)Y gives massless photon

field AµW and Z bosons. The linear combinations of W 3
µ and Bµ give the neutral Z boson and the

photon field Aµ. The value of weak mixing angle θw (free parameter in the theory) is determined

from experiments.

To make the above theory realistic, we have to assign masses to the bosons W± and Z and to the

electrons. A possible solution was presented by Salam (1968) and Weinberg (1967) which is the

spontaneous symmetry breaking (SSB).

Let us see the effect of SSB in SU(2)L ⊗ U(1)Y .

1.3 Higgs field and spontaneous symmetry breaking

Symmetry is spontaneously broken when the Lagrangian is invariant but not at ground state.

The mechanism that Weinberg (1967) and Salam (1968) presented suggested that along with the

fermions and the vector fields, we require an additional scalar field (the Higgs field). The sim-

plest idea is to introduce a complex scalar fields φ such that φ1 and φ2 are complex scalar fields.

In order to get the similar type of Lagrangian (as in the previous section) in which we already

have an SU(2)L doublet. The simplest way is to add another doublet (Higgs doublet φ) . So that

doublet ⊗ doublet gives us 3 ⊕ 1 theory. The introduced complex scalar field φ such that φ1 and

φ2 being the complex scalar parts is,

φ(x) =

φ1(x)

φ2(x)

 .

This introduced field is a Lorentz scalar SU(2)L doublet. Looking for a Lagrange density Lφ
which is invariant under local SU(2)L transformations.
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Figure 1.1: V (φ) Effective potential for (µ)2 < 0, shows local minima.

We consider a scalar potential that is amenable to spontaneous symmetry breaking. The Lagrange

density would look like,

Lφ = (∂µφ
†)(∂µφ)− V (φ), V (φ) = κ(φ†φ) + λ(φ†φ)2. (1.31)

with the conditions,

κ = −µ2 < 0 , λ > 0.

The V (φ) is, illustrated in figure(1.1),

V (φ) =
1

2
µ2φ2 +

1

4
λφ4.

To find the extrema we derivate it twice and set equal to zero. Doing so we get,

−µ2φ+ λφ3 = 0 (1.32)

which means φ = 0 and φ = ±φ0 where φ0 =
√

µ2

λ
corresponds to minima of the potential. The

field configuration φ =

(
0,

1√
2
φ0

)T
is non-invariant under local SU(2)L transformation U(x)

(with U(x) ∈ SU(2)). The ground state of the gauge group SU(2)L has been broken sponta-

neously. Choosing ,

〈0|φ(x)|0〉 =

 0

1√
2
φ0

 . (1.33)
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As the symmetry of the system has been broken spontaneously, which means that the field has

been shifted. The new shifted field φ′ is

φ′(x) = φ(x)− 〈0|φ(x)|0〉. (1.34)

whose vacuum expectation value is zero i.e.

〈0|φ(x′)|0〉 = 0. (1.35)

Now minima is at x = 0.

We now will allow the Higgs field to interact with fermions and the gauge bosons. Thus adding

this term in the Lagrange density, the Yukawa interaction is given by,

LY uk = −ceēRφ†

νeL
eL

+ h.c. (1.36)

= −ce
(
φ†1ēRνeL + φ†2ēReL

)
+ h.c.

where ce is the Yukawa coupling constant here. We assign a suitable hypercharge YH to the Higgs

field

yH = yL − yR =
1

2
. (1.37)

Let us write the full SU(2)L⊗U(1) invariant Lagrangian. For the Higgs field the covariant deriva-

tive is,

∂µφ→ Dµφ = (∂µ + igW a
µ

τa
2

+ ig′BµyH)φ. (1.38)

The total Lagrange density is,

L = −1

2
Tr(Wµν)(W

µν)− 1

4
BµνB

µν +

(
ν̄eL ēL

)(
iγµDµ

)νeL
eL


+ēRiγ

µDµeR − ceēRφ†

νeL
eL

− h.c+ (Dµφ)†(Dµφ)− V (φ). (1.39)
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In above Lagrange density, 3rd and 4th terms are SU(2) doublet and U(1) singlet respectively,

while 5th and 6th terms are the yukawa terms (note that only yukawa term contains coupled right-

handed and left-handed fermi fields) and the last terms are for the Higgs field (with φ as Higgs

doublet).

Under SU(2)L ⊗ U(1)Y group of gauge transformations the Lagrange density (1.39) is invariant.

SU(2) gauge transformations are,

Wµ → U(x)WµU
†(x)− i

g
U(x)∂µU

†(x),

Bµ → Bµ,

eR → eR,νeL
eL

→ U(x)

νeL
eL

 , (1.40)

φ1

φ2

→ U(x)

φ1

φ2

 ,

where U(x) ∈ SU(2)L, given by,

U(x) = ei(
τa
2
ϕa(x)), (1.41)

where τa being 2× 2 pauli spin matricles with (a = 1, 2, 3) and ϕa(x) is an arbitrary function of x.

U(1) gauge transformations are given as,

Wµ → Wµ,

Bµ → Bµ −
1

g′
∂µχ(x),νeL

eL

→ eiyLχ(x)

νeL
eL

 , (1.42)

eR → eiyRχ(x)eR,
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φ(x)→ eiyHχ(x)φ(x),

with χ(x) being an arbitrary real function of x for U(1) transformation group.

We can have rotation of the Higgs field (φ) in any direction in isospin space by means of gauge

transformation.

U(x)φ(x) =

 0

1√
2
ρ(x)

 , (1.43)

Now the vacuum expectation value (vev) of the Higgs field is given by minimizing the potential,

which is,

〈0|ρ(x)|0〉 = ρ0,

〈0|φ(x)|0〉 =

 0

1√
2
ρ0

 . (1.44)

This vacuum expectation value in non-invariant under the full SU(2)L⊗U(1)Y group. Only U(1)

subgroup which is generated by T3 + Y leaves it invariant:

eiχ(x)(
τ3
2

+yH)

 0

1√
2
ρ0

 =

 0

1√
2
ρ0

 . (1.45)

1.3.1 Boson Masses

The next step of spontaneous symmetry breaking is to shift the field ρ(x) by vev. Chosing the

shifted field (ρ′(x)) such that,

ρ′(x) = ρ(x)− ρ0(x). (1.46)
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Before using this shifted field to get the Higgs mass from Eq. (1.39), let’s apply vev to the term

(Dµφ)†(Dµφ) (without considering ∂µ part of the covariant derivative) given in Eq. (1.39),

(Dµφ
†)(Dµφ) = 〈φ†〉0(−igW

µaτa
2
− ig′BµYH)(ig

W a
µ τa

2
+ ig′BµYH)〈φ〉0,

=

(
0

1√
2
ρ0

)
2gg′Aµ + (g2 − g′2)Zµ

2
√
g2 + g′2

g√
2
W+
µ

g√
2
W−
µ −

√
g2 + g′2

2
Zµ




2gg′Aµ + (g2 − g′2)Zµ

2
√
g2 + g′2

g√
2
W+µ

g√
2
W−µ −

√
g2 + g′2

2
Zµ


 0

1√
2
ρ0

 ,

=
g2ρ2

0

4
W−
µ W

µ+ +
(g2 + g′2)ρ2

0

8
ZµZ

µ. (1.47)

It is clear from the above expression thatW± and Z boson have become massive, while the Photon

Aµ is massless. From Eq. (1.47) boson masses are,

mW =
1

2
gρ0, (1.48)

mZ =
1

2
ρ0

√
g2 + g′2,

which shows that vev of the Higgs field is directly propotional to the masses of W and Z boson

.Here ρ0 is the vev of Higgs Field.

1.3.2 Fermion masses

Now let us go for the fermion masses. The Yukawa coupling in the Lagrange density (1.39) is,

−ce

ēR〈φ†〉0
νeL
eL

+

(
ν̄eL ēL

)
〈φ〉0eR

 = −ce
1√
2
ρ0 (ēReL + ēLeR) ,

= −ce
ρ0√

2
ēe. (1.49)
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The fermion (electron here) has acquired standard mass terms with,

me =
1√
2
ceρ0. (1.50)

Now the total Lagrange density in terms of new shifted field (1.34) is,

L = −1

2
Tr(Wµν)(W

µν)− 1

4
BµνB

µν + ν̄eLiγ
µ∂µνeL + ēiγµ∂µe

+m2
WW

−
µ W

µ+

(
1 +

ρ′

ρ0

)2

+
1

2
m2
ZZµZ

µ

(
1 +

ρ′

ρ0

)2

−meēe

(
1 +

ρ′

ρ0

)
+

1

2
∂µρ

′∂µρ′ − 1

2
m2
ρ′ρ
′2

(
1 +

ρ′

ρ0

+
1

4

(
ρ′

ρ0

)2
)

+ L′, (1.51)

where L′ represents the coupling between the fermions and bosons. The term mρ′ (Higgs mass, as

the field ρ′ belongs to Higgs particle) is,

mρ′ =
√

2λ〈φ〉0. (1.52)

According to Eq.(1.51), we can say that the Higgs mechanism has generated the masses for all

the fermions and weak bosons (W±, Z). The gauge symmetries (SU(2)L ⊗ U(1)Y ) are broken

spontaneously, while the electromegnatic symmetry U(1)EM are unbroken. We can say that the

symmetry group of the SM has broken down to a lower symmetry group of SU(3)C ⊗ U(1)EM .

The theory has given us the masses of the particles in the SM which include three massive vector

bosons (W±, Z)), a massive fermion (electron) and a massive, spin zero, neutral boson with mass

mρ′ (the Higgs particle). While vector boson (photon with field Aµ) remains massless. We have

also got a left-handed fermion with zero mass (neutrino). This can be extended for other fermion

families.

24



1.3.3 GIM Mechanism and CKM matrix

Glashow, Iliopoulos and Maiani proposed a mechanism (called GIM mechanism) in 1970 [1]. This

mechanism tells us that there are no transitions that would change flavour but not charge. At

tree level flavour changing neutral currents (FCNC) do not occur. In weak interactions the flavor

quantum nunmbers are not conserved and also weak interaction eigenstatesd′, s′, b′ are different

from mass eigen states. They are connected with each other via linear combinitions as,

d′ = Vud d+ Vus s+ Vub b (1.53)

s′ = Vcd d+ Vcs s+ Vcb b

b′ = Vtd d+ Vts s+ Vtb b

We have

d̄′γµ(1− γ5)d′ = [V ∗ud d̄+ V ∗us s̄+ V ∗ub b̄]γµ(1− γ5)[Vud d+ Vus s+ Vub b] (1.54)

The CKM matrix operate on downtype quarks by definition.
d′

s′

b′

 = VCKM


d

s

b

 , (1.55)

where VCKM is CKM matric (or Cabibbo-Kobayashi-Maskawa Matrix) and

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 , (1.56)
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The CKM matrix has nine real parameters. Howerver only four (a phase and three angles) of them

are physical and other five parameters are eliminated of by suitable transformation which leave the

remaining terms in the lagrangian invariant.

The standard parametrization was proposed [24] in which θ12, θ13, θ23 are Euler angles and δ is

the phase.

VCKM =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12s23s13e
iδ −c12s23 − c12s23s13e

iδ c23c13

 , (1.57)

with cij = cos θij and sij = sin θij . This parametrization has an benefit that the rotation angles

are defined and labled in a way which related the mixing of two generations and one of the angles

vanishes, the mixing between these two generations vanishes as well.
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Chapter2
The Theoretical Framework for Exclusive

B-Meson Decays

In this Chapter we present the theoretical framework for exclusive B-meson decays, especially

Bd → K∗l+l− andBs → φl+l−. In the first section we give an overview of effective Hamiltonian

which is the main ingredient of this thesis. This effective Hamiltonian is going to be used to

compute the amplitude. Finally we write the decay distribution of these decays in terms of helicity

basis.

2.1 Effective Hamiltonian

The b-quark decay normally has two parts. They are treated at different energy scales. We elaborate

this with the example of transition b→ c d u. In figure (2.1), on left, we see that the dominant SM

Feynman diagram corresponds to this decay process. The amplitude of the process is

A = (
−ig√

2
)2 Vcb V

∗
ud (dγµL u)

gµν − kµkν

m2
W

i(k2 −m2
W )

(cγνL b), (2.1)
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where k is the 4−momentum. The involved two scales are mW (≈ 80 Gev) and k, which is of the

order of the mass of decaying b quark, mb (≈ 4.8 Gev). The ratio of the two scales is small so we

can write amplitude in k as:

A =
g2

2i
Vcb V

∗
ud[

1

m2
W

(dγµL u)(cγµL b)︸ ︷︷ ︸+
1

m4
W

(dim 8 operators) + ...], (2.2)

where (dγµL u)(cγµL b) is dimension 6 operator.

Figure 2.1: The decay process b → c d u from a high-energy, on left, and low-energy, on right,
point of view.

The effective Hamiltonian of this process is:

Heff = −4GF√
2
Vcb V

∗
ud C (dγµL u)(cγµL b) (2.3)

GF =
g2

4
√

2m2
W

,

where GF is Fermi constantVcb V ∗ud are Cabibo-Kobayashia and Maskawa matrix elements, and C

represents the Wilson coefficients at energy scale µ [4, 25, 26].
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When considering QCD corrections the Heff takes the form:

Heff = −4GF√
2
Vcb V

∗
ud [C1(µ) O1 + C2(µ) O2], (2.4)

O1 = (dαγµL uβ)(cβγ
µL bα),

O2 = (dαγµL uα)(cβγ
µL bβ),

with α and β being the color indices. The Wilson coefficients give short distance effects (above µ)

while the matrix elements of the operators deals with the long distance effects (below µ).

The method described above is called operator product expansion (OPE) which was first put for-

ward by Wilson in 1969. OPE is important for weak decays. The important feature of this method

is the factorization of short- and long distance contributions, as discussed above.

As we have already mentioned, this thesis focusses on the two exclusive decay processesBd → K∗l+l−

and Bs → φl+l−. We now discuss the relevant part of the effective Hamiltonian for these pro-

cesses. At quark level these processes are described by the transition b→ sl+l−, which is described

in SM as:

Heff = −GF√
2
λt

10∑
i=1

Ci(µ)Oi(µ) (2.5)

Whit GF as Fermi constant, λt ≡ VtbV
∗
ts, Ci(µ) are the Wilson coefficients(short-distance contri-

butions) and the Oi(µ) are the operators(long distance contribution) and µ is the effective limit.

These above operators can explicitly written as [27];

Current-Current Operators

O1 = (siuj)V−A(udi)V−A (2.6)

O2 = (su)V−A(ud)V−A
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QCD-Penguins Operators

O3 = (sd)V−A
∑
q

(qq)V−A (2.7)

O4 = (sidj)V−A

∑
q

(qjqi)V−A

O5 = (sd)V−A
∑
q

(qq)V+A

O6 = (sidj)V−A

∑
q

(qjqi)V+A

Electroweak-Penguins Operators

O7 =
3

2
(sd)V−A

∑
q

eq(qq)V+A (2.8)

O8 =
3

2
(sidj)V−A

∑
q

eq(qjqi)V+A

O9 =
3

2
(sd)V−A

∑
q

eq(qq)V+A

O10 =
3

2
(sidj)V−A

∑
q

eq(qjqi)V−A

Magnetic-Penguins Operators

O7γ =
e

8π2
mb si σ

µν (1 + γ5) bi F
µν (2.9)

O8G =
g

8π2
mb si σ

µν (1 + γ5) T aij bj G
a
µν

Here F µν and Gµν are photon and gluon field strength tensors, Tij are the generators of the SU(3)

group; i,j denotes the color indices.
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Semi-Leptonic Operators

Q7V = (sd)(V−A) (ee)V (2.10)

Q7A = (sd)(V−A) (ee)A

Q9V = (bs)(V−A) (ee)V

Q10A = (bs)(V−A) (ee)A

Q(νν) = (sd)(V−A) (νν)(V−A)

Q(µµ) = (sd)(V−A) (µµ)(V−A)

where V ≡ γµ and A ≡ γµγ5.

In terms of the above Hamiltonian in equation (2.5) , for B → V l+ l−( ; V = K∗ or φ) the

amplitude is :

MSM(B → V l+ l−) = − GFα

2
√

2π
VtbV

∗
ts[ C

eff
9 〈V |sγµ(1− γ5)b|B〉 lγµl

+C10〈V |sγµ(1− γ5)b|B)〉 lγµγ5l

−2mB

q2
Ceff

7 〈V |sισµνqν(1 + γ5)b|B〉 lγµl ]. (2.11)

The Wilson coefficient C10 is not normalized under QCD corrections and is independent of energy

scale i.e. not function of µ. The effective Wilson coefficient Ceff
9 (µ) is:

Ceff
9 (µ) = C9(µ) + YSD(z, s′) + YLD(z, s′), (2.12)
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with z = mc/mb and s′ = q2/m2
b . The YSD(z, s′) and YLD(z, s′) describe the short distance

and long distance contribution respectively. The mathematical expressions for YSD(z, s′) and

YLD(z, s′) are:

YSD(z, s′) = h(z, s′)(3C1(µ) + C2(µ) + 3C3(µ) + C4(µ) + 3C5(µ) + C6(µ)) (2.13)

−1

2
h(1, s′)(4C3(µ) + 4C4(µ) + 3C5(µ) + C6(µ))

−1

2
h(0, s′)(C3(µ) + 3C4(µ)) +

2

9
(3C3(µ) + C4(µ) + 3C5(µ) + C6(µ)),

and

YLD(z, s′) =
3π

α2
C(0)

∑
Vi=ψi

ki
Γ(Vi → l+l−)

m2
Vi
− s′m2

b − imViΓVi
, (2.14)

with C(0) = 3C1 + C2 + 3C3 + C4 + 3C5 + C6.

The Wilson coefficient Ceff
7 is:

Ceff
7 (µ) = C7(µ) + Cb→sγ(µ), (2.15)

Cb→γ(µ) = iαs[
2

9
η14/23(G1(xt)− 0.1687)− 0.03C2(µ)],

G1(xt) =
x(x2 − 5x− 2)

8(x− 1)3
+

3x2 ln2(x)

4(x− 1)4
,

with η = αs(mW )/αs(µ), x = m2
t/m

2
W .

The matrix elements, 〈V |Oi|B〉, in amplitude can be calculated by many ways. For Wards Identi-

32



ties the martix elements and form factors are related as, [5];

〈V (k, ε)|V µ|B(p)〉 =
2iεµναβ

mB +mV

ε∗νkαpβV (q2) (2.16)

〈V (k, ε)|Aµ|B(p)〉 = (mB +mV )ε∗µA1(q2)− ε∗.q

mB +mV

(k + p)µA2(q2)−

−2mV
ε∗.q

mB +mV

ε∗.q

q2
[A3(q2)− A0(q2)]

(2.17)

Where V µ = uγµb, Aµ = uγµγ5b, and

A3(q2) =
mB +mV

2mV

A1(q2)− mB −mV

2mV

A2(q2) (2.18)

where A3(0) = A0(0)

〈V (k, ε)|uiσµνqνb|B(p)〉 = −iεµναβε∗νkαpβF1(q2) (2.19)

〈V (k, ε)|uiσµνγ5qνb|B(p)〉 = [(m2
B −m2

V )ε∗µ − (ε∗.q)(k + p)µ]F2(q2) + (2.20)

+(ε∗.q)[qµ − q2

m2
B −m2

V

(k + p)µ]F3(q2)

with F1(0) = 2F2(0).

Putting these matrix elements in equation (2.11) and separating the lγµl and lγµγ5l terms we get,

M(b→ s l+ l−) =
Gf .α

2
√

2π
VtbV

∗
ts[(T

µ
1 )lγµl + (T µ2 )lγµγ5l] (2.21)

(2.22)

T µi = ε∗νT
µν
i ; i = 1, 2

T µν1 = 2iX1ε
µναβkαpβ +X2q

µqν −X3g
µν +X4(p+ k)µqν (2.23)

T µν2 = 2iX5ε
µναβkαpβ +X6q

µqν −X7g
µν +X8(p+ k)µqν (2.24)
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Where

X1 = Ceff
9

V (q2)

mB +mV

+ Ceff
7

mB

q2
F1(q2) (2.25)

X2 =
Ceff

9

q2
[(−2mV )A0(q2) + (mB +mV )A1(q2)− (mB −mV )A2(q2)]

−Ceff
7

2mB

q2
F3(q2)

X3 = Ceff
9 (mB +mV )A1(q2) +

2mB

q2
Ceff

7 (m2
B −m2

V )F2(q2)

X4 = Ceff
9

A2(q2)

mB +mV

+
2mB

q2
Ceff

7 [F2(q2) +
q2

m2
B +m2

V

F3(q2)]

X5 = C10
V (q2)

mB +mV

X6 =
C10

q2
[−2mVA0(q2) + (mV +mB)A1(q2)− (mB −mV )A2(q2)]

X7 = C10(mV +mB)A1(q2)

X8 =
C10

mV +mB

A1(q2)

Now as |M |2 = M †M so,

|M |2 = (
Gf .α.λt

2
√

2π
)2[T µ1 T

†ν
1 (lγµl)(lγνl)

† + T µ1 T
†ν
2 (lγµl)(lγνγ5l)

† (2.26)

+T µ2 T
†ν
1 (lγµγ5l)(lγνl)

† + T µ2 T
†ν
2 (lγµγ5l)(lγνγ5l)

†]

(2.27)

|M |2 = (
Gf .α.λt

2
√

2π
)2[Hµν

11 (lγµl)(lγνl)
† +Hµν

12 (lγµl)(lγνγ5l)
†

+Hµν
21 (lγµγ5l)(lγνl)

† +Hµν
22 (lγµγ5l)(lγνγ5l)

†],

where λt = VtbV
∗
ts and Hµν

ij = T µi T
ν†
j [28].
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Now as,

(lγµl)(lγνl)
† = tr[γµ(��p1

µ −ml)γν(��p2
µ +ml)] (2.28)

(lγµγ5l)(lγνγ5l)
† = tr[γµγ5(��p1

µ −ml)γνγ5(��p2
µ +ml)]

(lγµl)(lγνγ5l)
† = −tr[γµ(��p1

µ −ml)γνγ5(��p2
µ +ml)]

(lγµγ5l)(lγνl)
† = −tr[γµγ5(��p1

µ −ml)γν(��p2
µ +ml)]

so therefore,

∑
pol

|M |2 = [Hµν
11 .tr[γ

µ(��p1
µ −ml)γν(��p2

µ +ml) (2.29)

+Hµν
22 .tr[γ

µγ5(��p1
µ −ml)γνγ5(��p1

µ +ml)

−Hµν
12 .tr[γ

µ(��p1
µ −ml)γνγ5(��p2

µ +ml)

−Hµν
21 .tr[γ

µγ5(��p1
µ −ml)γν(��p2

µ +ml)]

(2.30)

= [Hµν
11 .4(−gµν(m2

l + p1.p1) + pµ1p
ν
2 + pµ2p

ν
1)

+Hµν
22 4(gµν(m

2
l − p1.p1) + pµ1p

ν
2 + pµ2p

ν
1)

+Hµν
12 .4(iεµναβp

α
1p

β
2 ) +Hµν

21 .4(iεµναβp
α
1p

β
2 )]

(2.31)∑
pol

|M |2 = 4[Hµν
11 (−L(2)

µν (m2
l +

q2 − 2m2
l

2
) + L(1)

µν )

+Hµν
22 (L(2)

µν (m2
l −

q2 − 2m2
l

2
) + L(1)

µν )

+(Hµν
12 +Hµν

21 )L(3)
µν ]

= 4[L(1)
µν (Hµν

11 +Hµν
22 )− 1

2
L(2)
µν (q2Hµν

11 + (q2 − 4m2
l )H

µν
22 ) (2.32)

+L(3)
µν (Hµν

12 +Hµν
21 )].
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We have defined hadron and lepton tensors as [28];

L(1)
µν = p1µp2ν + p2µp1ν , (2.33)

L(2)
µν = gµν

L(3)
µν = iεµναβp

α
1p

β
2 ,

Hµν
ij = T µi T

ν†
j

These tensors can be solved, as given in the following sections.

2.1.1 Hadronic part

The hadronic tensor in terms of helicity basis ε†µ(m) as,

H(i)
m = ε†µ(m)T (i)

µ (2.34)

H(i)
m = ε†µ(m)ε†ν(n)T (i)

µν

Where T (i)
µ = ε†ν(n)T

(i)
µν ; εν is the polarization vector of the V meson (V = K∗, φ) ;m,n = 0, ±, t,

are the longitudinal, transverse and time components ; and i = 1, 2.

The helicity components of polarization vector reads as;

εµ(±) =
1√
2

(0,±1,−i, 0) (2.35)

εµ(0) =
1

mV

(|k|, 0, 0,−EV )

(2.36)
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and in the B meson rest frame i.e

pµ = (mB, 0, 0, 0) (2.37)

kµ = (Ek, 0, 0, |k|)

qµ = (q0, 0, 0,−|k|)

the polarization vectors reads as

εµ(t) =
1√
q2

(q0, 0, 0, |k|) (2.38)

εµ(±) =
1√
2

(0,∓1,−i, 0)

εµ(0) =
1√
q2

(|k|, 0, 0, q0)

where |K| = λ
1
2

2mB
; λ =

√
m4
B +m4

V + q4 − 2(m2
Bm

2
V +m2

V q
2 +m2

Bq
2) and EV =

m2
B+m2

V −q
2

2mB

so using equation (2.34) we have,

H
(1)
0 =

1

mV

√
q2

[2q0|k|2(q0 − EV )X2 + (|k|2 + q0EV )X3 (2.39)

+|k|2(q0(mB + 2EV )− q2
0 − EV (mB + EV ))X4]

H
(2)
0 =

1

mV

√
q2

[2q0|k|2(q0 − EV )X6 + (|k|2 + q0EV )X7 (2.40)

+|k|2(q0(mB + 2EV )− q2
0 − EV (mB + EV ))X8]

H
(1)
+ = −i|k|mBX1 +X3 (2.41)

H
(2)
+ = −i|k|mBX5 +X7 (2.42)

H
(1)
− = i|k|mBX1 +X3 (2.43)

H
(2)
− = i|k|mBX5 +X7 (2.44)
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These are the components of hadronic tensor, The subscripts ±, 0 denotes the transverse and lon-

gitudinal helicity components, respectively.

2.1.2 Leptonic part

For the leptonic tensors L
(k)
µν (in ll-CM frame we can write,

qµ = (
√
q2,
−→
0 ) (2.45)

pµ1 = (El, |p1| sin θ, 0, |p1| cos θ)

pµ2 = (El, − |p1| sin θ, 0, − |p1| cos θ)

with El =
√
q2/2 and |p1| =

√
q2 − 4m2

l /2 and the polarization vectors in ll−CM frame are;

εµ(±) =
1√
2

(0,∓1,−i, 0) (2.46)

εµ(0) = (0, 0, 0, 1)

εµ(t) = (1, 0, 0, 0)
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Hence by using the this information of polarization of vectors and lepton kinematics we have

calculated the following lepton tensor components;

L
(1)
00 = − 2|p1|2 cos2 θ (2.47)

L
(2)
00 = − 1 (2.48)

L
(3)
00 = 0 (2.49)

L
(1)
++ = E2

l − |p1|2 sin2 θ (2.50)

L
(2)
++ = − 1 (2.51)

L
(3)
++ = − 2El|p1| cos θ (2.52)

L
(1)
−− = E2

l (2.53)

L
(2)
−− = − 1 (2.54)

L
(3)
−− = 2El|p1| cos θ (2.55)

We have ignored the time component for both leptonic and hadronic tensors. Now by using these

leptonic tensor components the hadronic tensor components and the matrix elements, we can write

our amplitude M of equation (2.11). Now we are in a position to write our decay distribution.

2.2 Differential decay rate

We can write differential decay rate in terms of helicity amplitude, which is:

d2Γ

dq2d cos θ
=

G2
F

(2π)3
(
α|λt|
2π

)2 |k|βl
8m2

l

× 1

2
[L(1)

µν .(H
µν
11 +Hµν

22 ) (2.56)

−1

2
L(2)
µν .(q

2Hµν
11 + (q2 − 4m2

l )H
µν
22 ) + L(3)

µν .(H
µν
12 +Hµν

21 )],

|k| is the momentum of vector meson, given in the rest frame of B meson and βl =
√

1− 4m2
l /q

2.

After integration over cos θ and putting the values of the leptonic and hadronic tensor components
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(calculated in above section) L(k)(m,n) and H ij(m,n), respectively, we get;

dΓ(B → V l+l−)

dq2
=

G2
F

(2π)3
(
α|λt|
2π

)2λ
1/2q2

48M3
B

βl[H
1H1†(1 + 4m2

l /q
2) (2.57)

+H2H2†(1− 4m2
l /q

2)],

where ml is the lepton mass and

H iH i† ≡ H i
+H

i†
+ +H i

−H
i†
− +H i

0H
i†
0 . (2.58)

We will use decay rate dΓ
dq2

to calculate the branching fractions for the decays Bd → K∗l+l− and

Bs → φl+l− in next chapter.
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Chapter3
B → V Exclusive transition form-factors

and applications

This chapter deals with the transition form factors and its applications for B → V µ+µ− (V =

K∗, φ) decays and its applications. More precisely we discuss the calculations of form factors of

the said decays using experimental constraints, relate them through Wards Identities and extrap-

olate these form factors over whole physical region within the general vector meson dominance

model. These form factors are then compared with other approaches existing in literature such as

LCSR and LQCD.

3.1 Form factors and Wards Identities

The transition form-factors are the major hadronic uncertainties in the decays. There are many

approaches to calculate these form-factors. We have used form-factors from Wards Identities (W.I.)

[5], Lattice QCD (LQCD) [7] and Light Cone Sum Rules (LCSR) [6] approaches.

In the case of B → V µ+µ− (V = K∗, φ) decays, there are seven form-factors [4, 5], which are

given in equation (2.16)-(2.20). These form-factors can be related with each other using Wards
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Identities [5, 29] as given below,

〈V (k, ε)|sσµνqνb|B(p)〉 = −(mb +ms)〈V (k, ε)|sγµb|B(p)〉 (3.1)

〈V (k, ε)|sσµνγ5qνb|B(p)〉 = (mb −ms)〈V (k, ε)|sγµγ5b|B(p)〉

Using matrix elements in Wards Identity equations we can relate the transition form-factors as :

F1(q2) =
mb +ms

MB +MV

V (q2) (3.2)

F2(q2) =
mb −ms

MB −MV

A1(q2) (3.3)

F3(q2) = −2MV

q2
V (q2)(mb −ms)[A3(q2)− A0(q2)] (3.4)

These form-factors F1(q2), F2(q2), F3(q2) are model independent.The form-factors V (q2),

A1(q2) , A2(q2), F1(q2), F2(q2), F3(q2) can be written as;

F1(q2) = g+(q2)− q2h(q2) (3.5)

F2(q2) = g+(q2) +
q2

M2
B −M2

V

g−(q2)

F3(q2) = −g−(q2)− (M2
B −M2

V )h(q2),

(3.6)

and

V (q2) =
MB +MV

mb +ms

[g+(q2)− q2h1(q2)] (3.7)

A1(q2) =
MB −MV

mb −ms

[g+(q2) +
q2

M2
B −M2

V

g−(q2)]

A2(q2) =
MB −MV

mb −ms

[g+(q2)− q2h(q2)]− 2MV

MB −MV

A0(q2)

The V (q2), A1(q2), F1(q2), F2(q2) can be parameterized at q2 = 0 by g+(0) whereas A0(q2) and

A2(q2) is expressed in terms of g+(0) and A0(0).
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The decay rate in terms of g+(0) is written as [30]:

Γ(B → V γ) =
G2
Fαem
32π4

|VtbV ∗ts|2m2
bM

3
B(1− M2

V

M2
B

)3|Ceff
7 |2|g+(0)|2 (3.8)

The branching ratios of Bd → K∗γ and Bs → φγ have following experimental values [30].

Br(Bd → K∗γ) = (4.33± 0.15)× 10−5 (3.9)

Br(Bs → φγ) = (3.6± 0.4)× 10−5

.

Using these branching ratios the extracted values of g+(0) are [4]:

g+(0)(Bd → K∗) = 0.365+0.025
−0.025, (3.10)

g+(0)(Bs → φ) = 0.335+0.020
−0.020.

By using these g+(0) we can find the value of A0(0) [5] as;

A0(0) = (
1−M2

V /M
2
B

1 +M2
V /M

2
B

+
MB

MV

)g+(0). (3.11)

The form-factors from Wards Identities do not work for the whole region of q2. So in that case we

have to apply some parameterizations between q2 = 0 and near the pole. Such a parameterization

is given below [5]:

F (q2) =
F (0)

(1− q2/M ′2)(1− q2/M2)
(3.12)

where M is MB∗(1
−) or MB∗A

(1+) and M ′ is the radial excitation of M . This parameterization

incorporates the correction to the single-pole-dominance and also helps to determine the coupling

constant of B∗ or B∗A [31].
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By using the above parameterization we can write the transition form-factors as [5]:

V (q2) =
V (0)

(1− q2/M2
B)(1− q2/M ′2

B )
, (3.13)

A1(q2) =
A1(0)

(1− q2/M2
B∗A

)(1− q2/M ′2
B∗A

)
(1− q2

M2
B −M2

V

),

A2(q2) =
Ã2(0)

(1− q2/M2
B∗A

)(1− q2/M ′2
B∗A

)
− 2MV

MB −MV

A0(0)

(1− q2/M2
B)(1− q2/M ′2

B )
,

where Ã2(0) is defined as

Ã2(0) =
MB −MV

mb −ms

g+(0). (3.14)

(3.15)

3.1.1 Analysis for B → V µ+µ−

A comparison of form-factors for Bd → K∗µ+µ− is presented in figure 3.1. The numerical

results are given in table 3.1.

V A1 A2
V (q2max)
V (0)

A1(q2max)
A1(0)

A2(q2max)
A2(0)

Ward Identities 0.457(2.692) 0.343(0.585) 0.343(0.977) 5.890 1.705 2.848
Light Cone Sum Rules 0.377(1.84) 0.295(0.593) 0.283(0.425) 4.880 2.010 1.502

Lattice QCD 0.330(1.910) 0.310(0.630) 0.240(0.420) 5.788 2.032 1.750

Table 3.1: Different form-factors for Bd → K∗µ+µ− at q2 = 0 and q2 = q2
max in different

approaches. The first valve is for q2 = 0 and the value in parenthesis is for q2 = q2
max. Also ratio

of form-factors at q2 = 0 and q2 = q2
max is presented in last columns.

In Bd → K∗µ+µ− the form factor V (q2) curves are parallel to each other at low and high q2 for

LCSR and LQCD approaches . For Wards Identities, below 10Gev2 the trend is same as LCSR

and LQCD but above 10Gev2 the curve increases sharply. In case of A1 trends are same for all
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Figure 3.1: Comparison of form-factors for Bd → K∗µ+µ−. Red line-for Wards Identities (W.I.),
blue line- for LCSR and green line-for LQCD results.

three aproaches. For A2 LCSR parallels the LQCD while below 10Gev2 curve of WI, LCSR and

LQCD behave alike and above 10Gev2 WI curve increases with larger slope. These differences for

different approaches are more clearly given numerically in Table3.1.

V A1 A2
V (q2max)
V (0)

A1(q2max)
A1(0)

A2(q2max)
A2(0)

Ward Identities 0.428(2.155) 0.306(0.498) 0.295(0.504) 5.035 1.627 4.624
Light Cone Sum Rules 0.412(1.770) 0.320(0.622) 0.271(0.364) 4.296 1.944 1.343

Lattice QCD 0.280(1.714) 0.301(0.602) 0.250(0.371) 6.121 2.011 1.480

Table 3.2: Different form-factors for B → φµ+µ− at q2 = 0 and q2 = q2
max. The first valve is for

q2 = 0 and the value in parenthesis is for q2 = q2
max.

For B → φµ+µ− form-factors are compared in figure3.2 and the numerical data is presented in
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Figure 3.2: A comparison of form-factors for B → φµ+µ−. Where the Red line-for Wards
Identities (W.I.), blue line- for LCSR and green line for LQCD results.

table3.2.In case of V (q2) the trend of curves for WI, LCSR and LQCD approaches is same below

10Gev2 while above 10Gev2 this trend differed slightly. For A1(q2), below 15Gev2, the curve of

WI form-factors have same trend as of LCSR and LQCD form-factors and above 15Gev2 trend of

WI have a slight decrease in slope. In case ofA2(q2) below15Gev2 all three approaches have same

increasing trend while above 15Gev2 WI differes slightly with more positive slope. The numerical

values of form-factors are given in detail in table3.2

3.2 Application of transition form-factors

In the following section we present and discuss the branching ratio. We will use form-factors from

different approaches (WI, LCSR, LQCD) to calculate this observable.
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3.2.1 Analysis for Branching Fractions (Br)

Branching ratio is the ratio of decay width of a particular mode of decay to the full decay. For B

meson decaying into a vector meson V and a lepton pair, we can write;

Br =
Γ(B → V µ+µ−)

Γtot
.

The differential branching fraction is,

dBr

dq2
=

1

Γtot

dΓ(B → V l+l−)

dq2
,

where V = K∗or φ meson and value of dΓ
dq2

is given in equation 2.57. We have used Wards Iden-

tities (W.I.), Light Cone Sum Rules (LCSR) and Lattice QCD (LQCD) form-factors to calculate

branching fractions. A comparison is given in 3.3. The numerical results for B → V µ+µ− is

given in Table3.3.

In case of Bd → K∗µ+µ− the branching ratios obtained with WI, LCSR and LQCD form-

factors are close to the experimental value. The calculated numerical results for the said decays

agree with PDG averages. As we have no error estimates in case of LCSR and LQCD so we can

not comment in that cases. In case of Lattice QCD branching ratios are comparatively larger. This

is due to reason that LQCD does not produce more rising form-factors and hence may not explain

VMD behavior.

Similarly in case of Bs → φµ+µ− decay, values of LCSR and LQCD are larger. In case of Wards

Identities as we have separate values of g+(0) for both decays but with a small difference. So the

functional form of the V (q2), A1(q2), A2(q2) form-factors for both the decays is nearly same. As
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Br(Bd → K∗µ+µ−) Br(Bs → φµ+µ−)

Ward Identities (1.38± 0.20)× 10−6 (1.24± 0.14)× 10−6

Light Cone Sum Rules 1.22× 10−6 1.62× 10−6

Lattice QCD 1.89× 10−6 1.71× 10−6

PDG [9] (1.06± 0.09)× 10−6 (7.6± 1.5)× 10−6

Table 3.3: Numarical values of branching ratios for semileptonic decaysB → V µ+µ− in different
form factor approaches and PDG

the difference is minor so we do not expect too much different branching ratios.

Figure 3.3: Differential branching fraction for B → K∗µ+µ− (on left panel) and B → φµ+µ−

(on right panel). The branching fractions for WI, LCSR and LQCD form-factors are plotted as
gray, blue, and red curves, respectively.
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Chapter4
Conclusion

In this dissertation we analyze the transition form factors for Bd → K∗l+l− and Bs → φl+l−

by analyzing Ward Identities to determine their value at q2 = 0 and then extrapolated them in a

general VDM to large q2 values. Furthermore, these form factors are used to calculate the physical

observable such as branching fraction for the decays Bd → K∗l+l− and Bs → φl+l− and com-

pared them to those obtained with form factors of corresponding LQCD, LCSR and experimental

values of the branching ratios for the said decay.

We started our thesis with the introduction of Standard Model from group theoretical point of view

and discussed its limitations. We gave highlights of this model and gave some calculations of the

gauge group of electroweak interactions. Then we described briefly the Spontaneous Symmetry

Breaking (SSB) and the GIM-mechanism and CKM-matrics.

In chapter two we gave theoretical framework of exclusive B-meson decays. We gave some details

of effective Hamiltonian, its operators and Wilson coefficients. We wrote amplitude of these de-

cays in the helicity basis and then used it in the differential decay distribution of these processes.

In third chapter we discussed form factors and Wards Identities briefly, and compared its results

with the other approaches, like Light Cone Sum Rules and Lattice QCD. The form factors for

Bd → K∗l+l− are discussed below and above the 10Gev2. Similarly for Bs → φl+l− compari-

son is made for below the 15Gev2 and above the 15Gev2. Finally the branching fraction of both

Bd → K∗l+l− and Bs → φl+l− is calculated from these form factors and comparison for both de-
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cays is given for Light Cone Sum Rules, Lattice QCD and Wards Identities. For Bd → K∗l+l− the

trend of curves is more closer to each other for all approaches as compared with the Bs → φl+l−.
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