

Real-Time Unremitting Spoofing of Location

Coordinates for Users’ Privacy

By

Anum Arshad

A thesis submitted to the faculty of Information Security Department,
Military College of Signals, National University of Sciences and Technology,

Islamabad, Pakistan, in partial fulfillment of the requirements for the degree of MS in Information Security

September 2021

DECEIVING EAVESDROPPERS BY REAL TIME

PERSISTENT SPOOFING OF ANDROID USERS’

LOCATION COORDINATES FOR PRIVACY

ENHANCEMENT

By

Anum Arshad

A thesis submitted to the faculty of Information Security Department,
Military College of Signals, National University of Sciences and Technology,

Islamabad, Pakistan, in partial fulfillment of the requirements for the degree of MS in Information Security

J U L Y 2021

THESIS ACCEPTANCE CERTIFICATE

It is certified that final copy of MS Thesis written by Anum Arshad Registration No.

00000204852, of Military College of Signals has been vetted by undersigned, found com-

plete in all respect as per NUST Statutes/Regulations, is free of plagiarism, errors and

mistakes and is accepted as partial, fulfillment for award of MS degree. It is further certified

that necessary amendments as pointed out by GEC members of the scholar have been also

incorporated in the said thesis.

Signature:

Supervisor: Assoc. Prof. Dr. Haider Abbas

Date:

Signature (HoD):

Date:

Signature (Dean):

Date:

iii

ABSTRACT

Location-based services have exponentially escalated in the past few decades. They ap-

pear to be very practical, however, the location of user is constantly being tracked, hoarded,

and monitored by tech giants without user knowledge and consent. Google keeps an eye

on every motion of its users, irrespective of their security settings. For this study, various

Android smartphones were carried through different places for one week without the avail-

ability of internet and location services. Later, thorough network traffic analysis revealed

that the archived data collected by Google apps and services, contained location data as

well. This data is transferred to Google as soon as the internet connection becomes avail-

able. Moreover, a detailed performance analysis of existing fake GPS location applications

was conducted that revealed a plethora of weaknesses in their performance and none of them

aimed to secure users’ real location coordinates. In this paper, we present an interesting so-

lution to obfuscate Android users’ real location coordinates, even in off-line mode, thereby,

guaranteeing location privacy.

iv

DEDICATION

This thesis is dedicated to

MY FAMILY AND TEACHERS

for their love, endless support and encouragement

v

ACKNOWLEDGEMENTS

I am grateful to God Almighty who has bestowed me with the strength and the passion to

accomplish this thesis and I am thankful to Him for His mercy and benevolence. Without

his consent I could not have indulged myself in this task.

I am also thankful to my supervisor especially and committee members who have always

guided me with their keen and useful counselling in achieving my research objectives.

vi

TABLE OF CONTENTS

THESIS ACCEPTANCE CERTIFICATE iii

ABSTRACT iv

DEDICATION v

ACKNOWLEDGEMENTS vi

LIST OF FIGURES ix

LIST OF TABLES xi

ACRONYMS xii

1 INTRODUCTION 1

1.1 Problem Statement and Objectives . 2

1.2 Thesis Outline . 2

2 PRELIMINARIES 4

2.1 Literature Review - Major Location Privacy Techniques 4

2.2 Comparison between Location Privacy Techniques 9

2.3 Conclusion . 9

3 LOCATION RETENTION AND ANALYSIS OF GPS SPOOFING APPLICA-

TIONS 10

3.1 Analysis of Location Data Retention and its Tracking by Google 10

3.1.1 Experimental Settings (with TCPDUMP) 10

3.1.2 Experimental Results . 11

3.1.3 Experimental Settings (with FIDDLER) 12

3.1.4 Experimental Results . 13

3.2 Performance Analysis of GPS Spoofing Applications on Google Play Store 14

4 PROPOSED DATA LEAKAGE PREVENTION MECHANISM AND SOFT-

WARE ARCHITECTURE - MOBISHARK 20

4.1 Charachteristics of Android Application-MobiShark Spoofer 20

vii

4.2 Software Architecture of Android Application-MobiShark Spoofer 21

4.3 Proposed Algorithm for the Android Application-MobiShark Spoofer . . . 22

5 PRACTICAL IMPLEMENTATION 26

5.1 AndroidManifest.xml File . 27

5.2 AndroidManifest.xml(debug) File . 28

5.3 MainActivity File . 28

5.4 Mock Service File . 29

5.5 StartUpBroadCastReceiver File . 30

5.6 Layout File . 32

5.7 Values . 32

5.7.1 Colors.xml File . 32

5.7.2 Strings.xml File . 32

5.7.3 Styles.xml File . 32

5.8 Build.gradle(Module: app) File . 32

6 EVALUATION OF PROPOSED MECHANISM 45

7 CONCLUSION AND FUTURE WORK DIRECTIONS 47

BIBLIOGRAPHY 47

viii

LIST OF FIGURES

2.1 Different location preservation mechanisms 4

2.2 Obfuscation techniques . 5

2.3 Reducing location information sharing techniques 6

2.4 Anonymization techniques . 6

2.5 Four location preservation techniques not mutually exclusive 9

3.1 CF-Auto-Root Repository for the experimental device 10

3.2 Odin3 for rooting . 11

3.3 Terminal emulator on the experimental device 12

3.4 Copy file from Root to SDCard with Root Power Explorer 13

3.5 WireShark view of the captured .pcap file 14

3.6 Map view of the captured coordinates . 15

3.7 Android traffic analysis through Fiddler 15

3.8 Log/batch files . 16

3.9 USER_LOCATION_REPORTING_DISABLED option ENABLED 16

3.10 Traffic analysis of log/batch files (a) . 17

3.11 Traffic analysis of log/batch files (b) . 18

3.12 Device related captured information . 18

4.1 Architecture of MobiShark . 20

4.2 Software architecture Of MobiShark . 22

4.3 Upper and lower bounds of span-radius 23

4.4 Inability to mock to unrealistic location 23

5.1 Creation of new project in Android Studio 26

5.2 Creating an empty activity in Android Studio 26

5.3 Configuration settings for the project . 27

5.4 Complete hierarchy of the project . 28

5.5 Android manifest file . 29

5.6 Uses permissions in android manifest file 29

5.7 Android manifest complete code (a) . 30

5.8 Android manifest complete code (b) . 31

5.9 Android manifest debug file . 32

ix

5.10 Permissions in android manifest debug file 32

5.11 Main activity file . 33

5.12 Complete code of main activity (a) . 33

5.13 Complete code of main activity (b) . 34

5.14 Complete code of main activity (c) . 34

5.15 Complete code of main activity (d) . 35

5.16 Creation of mock service (a) . 35

5.17 Creation of mock service (b) . 36

5.18 Code of mock service (a) . 37

5.19 Code of mock service (b) . 37

5.20 Code of mock service (c) . 38

5.21 Code of mock service (d) . 38

5.22 Code of mock service (e) . 39

5.23 Creation of BroadCastReceiver (a) . 39

5.24 Creation of BroadCastReceiver (b) . 39

5.25 StartUpBroadCastReceiver . 40

5.26 StartUpBroadCastReceiver code . 40

5.27 Activity_main.xml file . 41

5.28 Activity_main.xml text code . 41

5.29 Activity_main.xml design code . 42

5.30 Colors.xml file . 42

5.31 Colors.xml code file . 42

5.32 Strings.xml file . 43

5.33 Strings.xml code file . 43

5.34 Styles.xml file . 43

5.35 Styles.xml code file . 43

5.36 Build.gradle(Module: app) file . 44

5.37 Build.gradle(Module: app) code file . 44

x

LIST OF TABLES

2.1 Comparison Between Different Location Privacy Techniques 8

3.1 Analysis of Different Fake GPS Applications 19

6.1 Smartphone Hardware Configurations . 46

xi

ACRONYMS

Location Based Services LBSs

Location Based Applications LBAs

Global Positioning System GPS

Point-Of-Interest POI

Augmented Reality AR

End User License Agreement EULA

Personal Identifiable Information PII

Mobile Crowd Sensing MCS

Private Information Retrieval PIR

Root Certificate Authority CA

Encrypted Mobile User Identity EMUI

International Mobile Equipment Identity IMEI

Lower Bound LB

Upper Bound UB

xii

Chapter 1

INTRODUCTION

Usage of Location Based Services (LBSs) and Location Based Applications (LBAs) have

seen a significant surge due to the increasing popularity of smartphones over the decades. A

satellite navigation device, colloquially called a GPS (Global Positioning System) receiver

is now one of the most essential components in mobile devices. According to statistics [1],

in 2018, the LBS users in US reached a number of 242 million. Such massive boom in

their usage will rise further because of their application in a wide range of areas like navi-

gation and maps [2], finding point-of-interest (POI), health and sports assistants [3], mobile

social networks [4] [5], Augmented Reality (AR) games [6], tourist guide information [7],

proximity-based notification [8] and a lot more. This increased reliance on LBSs has ex-

posed users to vulnerabilities as their location data can also be accessed and eavesdropped

without their consent, thereby, accentuating the need for its protection.

Tech giants (Google, Facebook etc.) [9], [10], [11], [12] and a number of third party

applications are continuously monitoring and tracking user location based on the End User

License Agreement (EULA) and privacy policies under the banner of improving their ser-

vices. According to the current Google Privacy Policy [13]; Google apps, sites, devices,

platforms (Android Operating System (OS) and Chrome) and products that are embedded

in third-party apps like Google Maps etc. are tracking and monitoring user’s data for pro-

viding better services. They are collecting and storing Personal Identifiable Information

(PII), especially location coordinates even when users have turned off their location sharing

information. GPS, IP address, sensor data from the device, Wi-Fi access points, Bluetooth-

enabled device, and cell towers are all means of collecting location information. This entire

process is so covert that it never hampers normal user activity and the user never realizes

what the smartphone is doing in the background and what sort of information it is leaking

out to those who want it. Hence, Android users are not left with much of the alternatives.

1

1.1 Problem Statement and Objectives

The location of user is constantly being tracked and monitored by tech giants (like Google

etc.)without user knowledge and consent. Google keeps an eye on every motion of its users,

irrespective of their security settings. Android users real location coordinates, even in off-

line mode; are transferred to Google as soon as the internet connection becomes available.

Objectives of this thesis are:

• To prove that Google is continuously tracking and monitoring users real location even

when user has limited the location sharing access.

• Performance analysis of fake GPS location applications; available in Google Play

Store which fail to secure the real location coordinates.

• The proposed solution guards the real location coordinates by keeping the mock lo-

cation within span-radius which appears to be realistic, hence adjusting the location

coordinates automatically.

• The proposed algorithm is efficient in terms of performance and securing the user’s

real location coordinates on an Android smart phone, practically.

1.2 Thesis Outline

This thesis is divided into seven chapters:

• Chapter 1: This chapter contains introduction, problem statement and objectives. It

also contains the contributions we have made in this thesis report.

• Chapter 2: In this chapter, review of literature and background is given along with

brief description and comparison of existing techniques in this report.

• Chapter 3: This chapter contains location retention and analysis of GPS spoofing ap-

plications. This chapter is further divided into two sections. First section deals with

analysis of location data retention and its tracking by Google. Second section deals

with performance analysis of GPS spoofing applications on Google Play Store.

• Chapter 4: This chapter deals with the proposed data leakage prevention mechanism

along with software architecture of the proposed mechanism-MobiShark.

2

• Chapter 5: This chapter deals with the practical implementation of the proposed

mechanism-MobiShark application.

• Chapter 6: This chapter deals with the evaluation of the proposed mechanism.

• Chapter 7: This chapter concludes the report and future work is proposed.

3

Chapter 2

PRELIMINARIES

2.1 Literature Review - Major Location Privacy Techniques

There are four major techniques of location privacy preservation [14]; obfuscation,

anonymization, cryptography, and limiting location information sharing. Each group has

different techniques whose comparison has been carried out based on the type of mechanism

used, targets, and impact on location information along with their shortcomings as shown in

Table 2.1.

Figure 2.1: Different location preservation mechanisms

1. Obfuscation mechanism: This approach includes three major techniques: dummy

location, location mocking, and differential privacy-based method. Hara et al. [15]

devised a method to anonymize user location by creating dummy location coordinates.

Do et al. [16] devised a method of conditional probabilities in order to give rise to

rational false locations at which user is highly likely to be located. Location obfusca-

4

tion tries to preserve position information by deliberately reducing the precision sent

to LBS servers by the users. Xiao and Xiong [17] devised a mechanism to maintain

position privacy through temporal correlations in spatial data. A new δ-location set

is proposed to protect true user location at every timestamp under temporal correla-

tion. Several recent papers proposed differential privacy-based mechanisms. Andres

et al. [18] proposed a mechanism to protect user location within a certain radius r

with certain level of privacy that depends on r to achieve geo-indistinguishability

with the addition of measured random noise to user’s actual location. Olteanu et

al. [19] proposed some inference algorithms including a solution, that relies on the

belief propagation algorithm executed on a general Bayesian network model. In short,

dummy location adds false location to the original location. Location obfuscation

adds noise to the original location while differential privacy-based method makes the

original location indistinguishable as shown in Fig.2.2.

Figure 2.2: Obfuscation techniques

2. Reducing location information sharing: This approach has two techniques; caching

and game theory. Cache systems improve user privacy by pre-fetching and storing

large amount of data in a cache before arriving at an area. Niu et al. [20] put forward

two algorithms. In the first algorithm, k-anonymity is achieved by selecting optimal

set of dummies which contributes most to the cache hit ratio. Second algorithm deals

with cache performance. Game theory mechanism can be used to minimize the sharing

of location information. Liu et al. [21] presented a framework that increases location

5

protection by minimizing the assignment and bidding steps in the Mobile Crowd

Sensing (MCS) cycle in such applications.Two approaches are shown in Fig.2.3

Figure 2.3: Reducing location information sharing techniques

3. Anonymization methodology: This approach comprises of two major techniques

[14]; k-anonymity and mix-zone. The basic idea of the k-anonymous technique [22]

is to blur a user’s exact location into a cloaked area that satisfies user specified privacy

requirements. Li et al. [23] proposed a concept of multiple distributed location servers

along with pseudo-identity in the query to protect user identity. In contrast to this,

mix-zones is used without prior knowledge of PII. Gong et al. [24] proposed a greedy

algorithm that myopically determines users’ strategies, based on the social group util-

ity derived from only those users whose strategies have already been identified. Liu et

al. [25] proposed MobiMix, to safeguard location privacy by proposing a framework

based on mix-zones on road networks. In short k-anonymity hides the user among

similar users while mix-zone change the original user identity as shown in Fig.2.4

Figure 2.4: Anonymization techniques

6

4. Cryptography: Frameworks based on cryptography encrypt the user location in-

formation. Chen et al. [26] proposed a secure query protocol, where various data

providers can use multiple secret keys to encrypt private data so that the location

server fails to infer the content of the user’s queried data. Mascetti et al. [27] pre-

sented a technique to inform users when their friends are in close vicinity but does not

disclose the user’s current position to the service providers. Ghinita et al. [28] use the

technique of private information retrieval (PIR), in which LBS servers try to answer

the query without revealing or learning any information about the query. Marias et

al. [29] proposed an approach in which location information is divided into shares and

then distributed among LBS servers. To reassemble the location information, these

shares need to be retrieved and LBS servers will not be able to disclose the information

as they don’t possess the complete position information.

7

Ta
bl

e
2.

1:
C

om
pa

ri
so

n
B

et
w

ee
n

D
iff

er
en

tL
oc

at
io

n
Pr

iv
ac

y
Te

ch
ni

qu
es

L
oc

at
io

n
Pr

iv
ac

y
Te

ch
ni

qu
es

Ty
pe

s
of

L
oc

at
io

n
Pr

iv
ac

y
Te

ch
ni

qu
es

M
ec

ha
ni

sm
su

se
d

Im
pa

ct
on

lo
ca

tio
n

in
fo

r-
m

at
io

n

Ta
rg

et
s

(P
os

iti
on

/
Id

en
tit

y/
Ti

m
e)

Sh
or

tc
om

in
gs

O
bf

us
ca

tio
n

M
ec

ha
ni

sm
s

D
um

m
y

lo
ca

-
tio

n
[1

5]
[1

6]

A
dd

s
m

oc
k

lo
ca

tio
n

B
lu

rs
th

e
in

fo
rm

at
io

n
Po

si
tio

n/
Id

en
tit

y

L
oc

at
io

n
ob

fu
sc

a-
tio

n
[1

7]

A
dd

s
no

is
e

to
re

al
lo

ca
tio

n

D
iff

er
en

tia
l

pr
iv

ac
y-

ba
se

d
m

et
h-

od
s

[1
8]

[1
9]

M
ak

in
g

lo
ca

tio
n

in
di

st
in

ct
G

en
er

at
in

g
ru

nt
im

e
du

m
m

ie
s

is
on

e
of

th
e

bi
gg

es
t

ch
al

-
le

ng
es

.

A
no

ny
m

iz
at

io
n

K
-a

no
ny

m
ity

[2
2]

[2
3]

H
id

es
am

on
g

id
en

tic
al

an
on

y-
m

ou
s

us
er

s
D

es
tr

oy
s

th
e

co
nn

ec
tio

n
be

tw
ee

n
id

en
tit

ie
s

an
d

lo
ca

tio
ns

Po
si

tio
n/

Id
en

tit
y

C
om

pu
tin

g
k-

1
fa

ke
lo

ca
tio

ns
,

co
m

es
w

ith
co

m
pu

ta
tio

n
&

co
m

m
un

ic
at

io
n

ov
er

he
ad

M
ix

-z
on

e
[2

4]
[2

5]
C

ha
ng

es
id

en
tit

y

C
ry

pt
og

ra
ph

y

PI
R

[2
6]

[2
7]

[2
8]

[2
9]

Pr
ot

ec
ts

us
er

po
si

tio
ns

th
ro

ug
h

en
cr

yp
tio

n
R

ed
uc

es
th

e
ef

fe
ct

of
in

fe
rr

in
g

in
fo

rm
at

io
n

Po
si

tio
n/

Id
en

tit
y

H
ea

vy
co

m
pu

ta
tio

n
co

st
in

vo
lv

ed
in

en
cr

yp
tio

n

R
ed

uc
in

g
L

oc
at

io
n

In
fo

rm
at

io
n

Sh
ar

in
g

C
ac

hi
ng

[2
0]

Pr
ef

et
ch

es
an

d
st

or
es

da
ta

in
ca

ch
e

be
fo

re
ar

riv
in

g
at

an
ar

ea
.

R
ed

uc
es

tr
as

m
is

si
on

of
in

fo
rm

at
io

n
th

ro
ug

h
w

ho
le

sy
st

em

Po
si

tio
n/

Id
en

tit
y/

Ti
m

e

L
ar

ge
st

or
ag

e
sp

ac
e

is
re

qu
ir

ed

G
am

e
th

eo
ry

[2
1]

R
ed

uc
es

th
e

bi
dd

in
g

an
d

as
-

si
gn

m
en

t
st

ep
s

in
th

e
M

C
S

cy
cl

e.

8

2.2 Comparison between Location Privacy Techniques

Anonymization breaks the connection between user’s identity and location to make the lo-

cation information useless. Obfuscation tries to blur the information to reduce the leakage

or disclosure of the information. Reduce location information sharing tries to reduce the

amount of data to transmit through the whole process to reduce the risk associated with it.

Cryptography decreases the risk of an adversary to conclude useful information from the

encrypted data.

Among the reviewed techniques, anonymization and obfuscation are the most predominant.

Cryptography is also one of the classical techniques but it needs enhancements in terms of

computation, implementation and secrecy.

2.3 Conclusion

However, these proposed mechanisms [30] have more theoretical approach than practical,

and cannot be applied directly to real world scenarios. Fig.2.5 shows that these four tech-

niques are not mutually exclusive but can be used in different combinations.

Figure 2.5: Four location preservation techniques not mutually exclusive

Apurva K. Kini [31] proposed real-time k-fake generation algorithm to preserve user’s

location while using location-based services. Nonetheless, computing k-1 fake locations

cause computational and communication overhead to the existing system. ReCon [32] is a

cross-platform system that reveals PII leaks by inspecting network traffic. It allows the user

to have control over PII either by blocking or substituting them and needs a certificate for

installation. However, ReCon only handles HTTP traffic and not HTTPS.

9

Chapter 3

LOCATION RETENTION AND ANALYSIS OF GPS SPOOFING

APPLICATIONS

3.1 Analysis of Location Data Retention and its Tracking by Google

The following questions arise regarding storing and transferring of data by Google:

1. Is the location data being tracked and stored even when the user has disabled all loca-

tion services and internet?

2. Is stored data transfer dependent on network availability?

3. If yes, then how stored data is transferred via network connectivity?

To answer these questions, research experiment shown in Fig. 3.7 was conducted on

different Samsung smartphones operating on various Android versions from Lollipop up-to

Oreo, which targets 78.9% [33] of the overall Android devices.

3.1.1 Experimental Settings (with TCPDUMP)

To take tcpdump its necessary to root the mobile first. To carry out experiments, Samsung

S4 Model:GT-I9500 is used. To root the mobile CF-Auto-Root file for the particular model

is downloaded from CF-Auto-Root Repository as shown in Fig.3.1.

Figure 3.1: CF-Auto-Root Repository for the experimental device

10

Odin 3 v3.13 is used to carry out rooting shown in Fig.3.2. Loading AP file in Odin after

starting the debugging mode in mobile .After loading press the start button to start rooting

. After completely all the threads; mobile restarts and SuperSU is created which indicates

that mobile has successfully rooted .To make confirmation , install Root Checker which will

show the current status of mobile.

Figure 3.2: Odin3 for rooting

Install Terminal Emulator shown in Fig.3.3 and type following commands and open

Google Maps .It will dump the network traffic generated.

Install Root Power Explorer to view the Root directory shown in Fig.3.4. Change the

permissions of the file and copy the file from Root to SDCard as direct copy from Root

folder is not allowed.

3.1.2 Experimental Results

Transfer the file from mobile to laptop and view in Wireshark shown in Fig.3.5. Its clear that

Coordinates are travelling in GET request. It means that coordinates are travelling in plain

text as well.

Checking the coordinates on MAPS.ie shows the exact location shown in Fig.3.6.

11

Figure 3.3: Terminal emulator on the experimental device

3.1.3 Experimental Settings (with FIDDLER)

The smart phones were rooted and factory settings were reset. All of the location services,

location history, web & application activity along with browser activity were disabled. Root

Certificate Authority (CA) of Fiddler which is a free web debugging proxy tool; was pre-

installed on each experimental device to view the generated traffic. Fiddler was configured

to view both HTTP and HTTPS traffic. As a next step, these experimental phones were taken

to different locations for a week with no internet connectivity and all the location services

were turned off. Steps are shown below:

1. The smartphones were rooted and factory settings were reset.

2. All of the location services, location history, web & application activity along with

browser activity were disabled.

12

Figure 3.4: Copy file from Root to SDCard with Root Power Explorer

3. Root Certificate Authority (CA) of Fiddler was pre-installed on each experimental

device to view the generated traffic.

4. Fiddler was configured to view both HTTP and HTTPS traffic.

5. Experimental phones were taken to different locations for a week with no internet

connectivity and all the location services were turned off.

3.1.4 Experimental Results

It was found out that there were log/batch files which can be seen in Fig. 3.8 containing

the archived location data. This data was transferred to play.googleapis.com over different

intervals of time. The requested URL of play.googleapis.com was unreachable and threw

an error exception. Some log/batch files were transferred immediately after the availability

of internet while some were transferred after an hour or two. These log/batch files contained

extensive location data which clearly indicated that location was being tracked even in the

offline mode where user had restricted to access the location services. Even if the user had

opted for USER_LOCATION_REPORTING_DISABLED option as shown in Fig.3.9 still

most of the Google applications such as google maps, google earth, google location, and

google backup transport were still able to gather most of the location related information

from devices as seen in Fig. 3.10 and Fig.3.11. This result has further strengthened our

13

Figure 3.5: WireShark view of the captured .pcap file

confidence that Google was tracking users’ movements irrespective of the fact whether the

user has toggled on/off all the location related services and applications.

Apart from the location specific data, decrypted data also contained information about the

device like name, model, build number, EMUI version, Android version, Kernel version,

IMEI, CPU, RAM, internal storage, and baseband version as shown in Fig. 3.12 . Traffic

analysis clearly indicated that the ongoing API calls to Google applications and services

forewarn that sheer volume of personal information including location was collected and

transferred regardless of the settings, users believe they control.

3.2 Performance Analysis of GPS Spoofing Applications on Google Play Store

There are number of GPS spoofing applications freely available on Google Play Store

whose implementations are very different from theoretical proposals. Some of the most fa-

mous applications are, Fake GPS Location-Lexa, Fake GPS GO Location-IncorporateApps,

Fake GPS-ByteRev, Fake GPS Location-Hola, Fake GPS location-Digital Center, Location

Changer (Fake GPS Location)-Netlinkd, GeoTag-Fake & Spoof GPS Location-Codeberry

Finland, Fake GPS Location PRO-Just4Fun etc. Their performance efficiency is measured

on the basis of following parameters:

1. Movement Simulation: Mocks the location in real motion environment

2. Mocking Accuracy: Mocks the location to some realistic location (location that is

14

Figure 3.6: Map view of the captured coordinates

Figure 3.7: Android traffic analysis through Fiddler

sensibly expected to be real and practical including near the seashores, ocean-front,

coastal-areas etc. rather than somewhere in the middle of the oceans etc.)

3. Mocking Persistency: Scale (high, medium, low) is defined to analyze the mocking

capability of the tested application on a number of experimental applications (Google

Maps, maps.me, Careem, Bykea, Facebook, Foursquare, Sygic etc.). Each level of

the scale is gauged on the basis of mocking, not mocking or re-shifts to the original

location after mocking.

4. Security of Real Location Co-ordinates: To determine if the real location coordi-

nates are being secured from external parties.

5. Permission Requirements at Installation Time: Requirements of the application at

the installation time (either access to location, photos, media, files etc.).

15

Figure 3.8: Log/batch files

Figure 3.9: USER_LOCATION_REPORTING_DISABLED option ENABLED

6. Show Mock Location after Uninstalling: To determine if the fake location applica-

tion keeps showing mocked location even after its has been uninstalled.

Table 3.1 shows the performance analysis of different Fake GPS location applications avail-

able on the Google Play store. We collected and analyzed the applications that had higher

number of downloads and best user reviews on Google play store. Later, we thoroughly

evaluated their performance in different testing scenarios.

• Operating system under memory pressure (low memory state)

• Unstable GPS connection state (when living in high elevated buildings)

16

Figure 3.10: Traffic analysis of log/batch files (a)

It depicts that none of these fake GPS location applications aim to secure the real location

co-ordinates. Applications having high mocking persistence require more permissions at

installation time. Moreover, most of the applications mock to unrealistic locations. Our

proposed solution not only persistently secures real location coordinates but also prevents

mocking to unrealistic locations with very minimal permission requirements at installation

time.

17

Figure 3.11: Traffic analysis of log/batch files (b)

Figure 3.12: Device related captured information

18

Table 3.1: Analysis of Different Fake GPS Applications

Applications Movement
simulation

Mocking
accu-
racy

Mocking
persis-
tency

Security
of real lo-
cation co-
ordinates

Permission
re-
quirments
at instal-
lation
time

Show
mock loca-
tion after
uninstalla-
tion

Fake GPS
Location-Lexa

No No High No Photos/media/filesYes

Fake GPS
GO Location-
IncorporateApps

No No Medium No Location No

Fake GPS-
ByteRev

No No Medium No Location No

Fake GPS
Location-Hola

No No Low No Location No

Fake gps
location-Digital
Center

No No Medium No Location No

Location
Changer (Fake
GPS Location)-
Netlinkd

No No Medium No Location Yes

GeoTag-Fake
& Spoof
GPS Location-
Codeberry
Finland

No No Medium No Location No

Fake GPS
Location PRO-
Just4Fun

Yes No Low No Location No

MobiShark Yes Yes High Yes Location No

19

Chapter 4

PROPOSED DATA LEAKAGE PREVENTION MECHANISM AND

SOFTWARE ARCHITECTURE - MOBISHARK

In order to protect user’s location, the general working of the Android application-

MobiShark is shown in Fig. 4.1. Location interfaces are been spoofed by the MobiShark

Spoofer. This spoofed location is provided to all the android applications through Location

Providers.

4.1 Charachteristics of Android Application-MobiShark Spoofer

Following are the characteristics of the Android application-MobiShark.

Figure 4.1: Architecture of MobiShark

• It secures the real location coordinates.

20

• It continuously updates the location providers with mock location so that they do not

fetch original location.

• It mocks the location within span-radius having upper and lower bounds so that mock

location appears to be rational and practical.

• It prevents mocking to some unrealistic location like somewhere in the middle of

oceans etc.

4.2 Software Architecture of Android Application-MobiShark Spoofer

Software architecture of the MobiShark application is shown in Fig. 4.2. Following are the

short description of the components used in software architecture.

• Phone Manager is an Android application that helps one to see and manage all the

running processes, running services and installed applications of one device.

• Alarm Manager helps to schedule the specific application to run at the scheduled time

in the future. It basically holds the CPU wake lock which ensures that the phone will

not sleep until broadcast is handled.

• GPS Manager and Network Manager are the Android services that allow applications

to get periodic updates related to device’s geographical location.

The proposed application launches the Smart Mocking Service that runs continuously in

the background and is managed/controlled by the Alarm Manager to keep it at the highest

priority. Broadcast message is sent through the phone manager to all the Geolocation Client

Applications which get location coordinates from the GPS Manager and Network Manager,

and would ultimately get mocked coordinates instead of the original ones. This efficient and

smart mocking service would continuously feed the GPS Manager and Network Manager

with the mock coordinates within span-radius (3km ≤ mock location ≤ 15km) so that the

mock location appears to be realistic and practical. These Client Applications would then

pass mock location to their respective servers.

21

Figure 4.2: Software architecture Of MobiShark

4.3 Proposed Algorithm for the Android Application-MobiShark Spoofer

Location providers need to be updated frequently, approximately 10Hz (10 times per second)

with mock coordinates so that, whichever application or service is requesting for a location

update, gets the mock coordinates. Automatic generation of span-radius around user’s actual

location as shown in Fig. 4.3 whose lower and upper bounds are set in a way that mock

location falls within this range so that LBSs and LBAs are unable to detect this location

anomaly. For experimental purposes, lower bound has been set to n km and upper bound

to m km. Value of n should be in range of 3km ≤ n ≤ 5km, while m should be in range

of n < m ≤ 15km. These ranges will allow the mock location to fall in radius of 3km ≤

mock location ≤ 15km, so that mock location appears to be practical and real. General

formulas used to calculate new longitude, new latitude, random angle and random radius are

as follows:

• New Latitude = Math.asin (Math.sin (original_latitude) * Math.cos (distance/Radius)

+ Math.cos (original_laltitude) * Math.sin (random_radius /Radius) * Math.cos (ran-

dom_angle))

• New Longitude = original_longitude + Math.atan2 (Math.sin (random_angle) *

Math.sin (random_radius /Radius) * Math.cos (original_latitude) , Math.cos (ran-

22

Figure 4.3: Upper and lower bounds of span-radius

Figure 4.4: Inability to mock to unrealistic location

dom_radius /Radius)- Math.sin (original_latitude) * Math.sin (new_latitude))

• Random Radius = Random Radius is calculated by subtracting Lower Bound from

Upper Bound and adding the Lower Bound to the result to keep it within range of 3km

≤ 15km.

random radius(d) = ran.nextDouble(UB-LB)+LB

• Random Angle = Random angle is calculated by multiplying 2 with value of PI and

then multiplying the result with the random number generated.

random_angle(φ) = 2* Math.PI * ran.nextDouble()

Algorithm 1 shows the methodology being followed to generate mock location within

span-radius.

Instead of caching the whole earth repository for all location coordinates and applying

validation to confirm that the mocked coordinates do not fall in the category of unrealistic

locations, the strategy of mocking location in accordance with span-radius has been used

23

which will automatically eliminate the probability of unrealistic mocking. If the location is

mocked to somewhere near water as shown in Fig. 4.4 then, it appears to be realistic like

near the seashore, ocean-front, coastal areas etc. Not in the centre of seas, oceans , rivers

which might give a clue that the user might be using mocking service.

24

Algorithm 1: Proposed algorithm of generating fake coordinates with-in span-radius
Lower Bound Range = 3km ≤ n ≤ 5km
Upper Bound Range = n < m ≤ 15km
LB = n km
UB = m km
Generating fake location coordinates in span-radius(original longitude X1, original
latitude Y1, lowerbound LB, upperbound UB)

{
Random ran = new Random ();
random radius(d) = ran.nextDouble(UB-LB)+LB;
random_angle(φ) = 2* Math.PI * ran.nextDouble();
Earth Radius = R;

//Formula used to calculate new longitude and new latitude are as follows:

//New Latitude:

New_latitude = Math.asin (Math.sin (original_latitude) * Math.cos
(distance/Radius) + Math.cos (original_laltitude) * Math.sin (random_radius
/Radius) * Math.cos (random_angle));

Y2 = Math.asin(Math.sin(Y1) * Math.cos(d/R) + Math.cos(Y1) * Math.sin(d/R) *
Math.cos(φ));

//New Longitude:

New_longitude = original_longitude + Math.atan2 (Math.sin (random_angle) *
Math.sin (random_radius /Radius) * Math.cos (original_latitude) , Math.cos
(random_radius /Radius)- Math.sin (original_latitude) * Math.sin (new_latitude));

X2 = X1 + Math.atan2(Math.sin(φ) * Math.sin(d/R) * Math.cos(Y1),
Math.cos(d/R) - Math.sin(Y1) * Math.sin(Y2));

return (X2, Y2);
}

25

Chapter 5

PRACTICAL IMPLEMENTATION

Complete implementation of the Android Mockin Service-Mobishark is shown below: A

new project is created in android studio in Fig. 5.1 File->New->New Project.

Figure 5.1: Creation of new project in Android Studio

Empty Activity is selected shown in Fig. 5.2

Figure 5.2: Creating an empty activity in Android Studio

In Fig. 5.3 Mock_Service_Project is the name selected for the project. Select the save

location. For the following project C:\Anum\WorkSpace\Mock\Final_Version_Service is

selected in C directory API 19: Android 4.4 (KitKat) Minimum API level selected. Press

Finish to complete with the configuration of the project.

Complete hierarchy of the project is shown in Fig. 5.4

26

Figure 5.3: Configuration settings for the project

5.1 AndroidManifest.xml File

Double click the AndroidManifest.xml file shown in Fig. 5.5 and add the following <uses-

permissions>in that file shown in Fig. 5.6

• android.permission.ACTION_BOOT_COMPLETED is the broadcast intent re-

ceived by applications after the system done with the booting.

• android.permission.ACCESS_FINE_LOCATION allows the application to access

precise location.

• android.permission.ACCESS_COARSE_LOCATION allows the application to ac-

cess approximate location.

Complete Code of AndroidManifest.xml file shown in Fig.5.7 and Fig.5.8

Receiver is created in AndroidManifest.xml to receive boot up events to restart service

again in case if the system boots. Receiver is named as android:name=".StartUpBroadCastReceiver"

with the action named android:name="android.intent.action.BOOT_COMPLETED . This

will keep the BroadCastReceiver to be alive all the time even when activity is not running.

27

Figure 5.4: Complete hierarchy of the project

5.2 AndroidManifest.xml(debug) File

Complete code of AndroidManifest.xml(debug) Fig. 5.9 is shown below in Fig. 5.10. an-

droid.permission.ACCESS_MOCK_LOCATION allows the application to override the lo-

cation or status returned by other real location sources such as GPS or location providers.

Malicious location applications can use this to override the original location or status re-

turned by real-location sources such as Network or GPS providers.

5.3 MainActivity File

Complete code of MainActivity Fig.5.11 is shown in Fig.5.12,Fig.5.13, Fig.5.14 and

Fig.5.15. FusedLocationProviderClient is one of the location APIs in Google Play services.

It manages the underlying location technology and provides a simple API so that you can

specify requirements at a high level, like low power or high accuracy. It also optimizes the

28

Figure 5.5: Android manifest file

Figure 5.6: Uses permissions in android manifest file

device’s battery power.

In order to launch and run MockService in background Intent is created which will

help service to run outside the application in a background process. When the ap-

plication is started; user is been asked to grant the permission to access the loca-

tion(ACCESS_FINE_LOCATION). If user has granted the right to access the location; then

the mock service will be launched to run in background which will mock the original loca-

tion coordinates.

5.4 Mock Service File

Create a new service by selecting com.example.mock_service_project->New->Java Class

and name new class as MockService and press OK to configure the class. Steps are shown

in Fig.5.16 and Fig.5.17

Complete implementation of the MockService class is shown in Fig.5.18, Fig.5.19,

Fig.5.20, Fig.5.21 and Fig.5.22

FusedLocationClient.setMockMode(true) sets the location provider to be in mock mode.

FusedLocationClient.setMockLocation(mockLocation) sets the mock location to be used for

the location providers (network or GPS). This location will be used in place of any real

locations from the underlying providers. New logitude and new latitude are calculated with

the help of the following formulas.

• New Latitude = Math.asin (Math.sin (original_latitude) * Math.cos (distance/Radius)

+ Math.cos (original_laltitude) * Math.sin (random_radius /Radius) * Math.cos (ran-

29

Figure 5.7: Android manifest complete code (a)

dom_angle))

• New Longitude = original_longitude + Math.atan2 (Math.sin (random_angle) *

Math.sin (random_radius /Radius) * Math.cos (original_latitude) , Math.cos (ran-

dom_radius /Radius)- Math.sin (original_latitude) * Math.sin (new_latitude))

These values of New Latitude and New Longitude are pass to the methods of .setLatitude()

and .setLongitude(). All the attributes of the mockLocation are shown below:

mockLocation.setLatitude(new_latitude);

mockLocation.setLongitude(new_longitude);

mockLocation.setAltitude(0);

mockLocation.setAccuracy(5);

mockLocation.setTime(System.currentTimeMillis());

mockLocation.setElapsedRealtimeNanos(42);

After setting all the attributes of mockLocation ; this mockLocation is pass to the method of

.setMockLocation() as shown below:

FusedLocationClient.setMockLocation(mockLocation);

new MockService() is called on onDestroy() so that service will be restarted the moment

it destroys.

5.5 StartUpBroadCastReceiver File

Create a BroadcastReceiver Fig.5.23 by creating com.example.mock_service_project-

>New->Other->BroadcastReceiver. Name the BroadcastReceiver as StartUpBroadCastRe-

ceiver as shown in Fig.5.24

Complete implementation of the StartUpBroadCastReceiver Fig.5.25 is shown in

Fig.5.26.

30

Figure 5.8: Android manifest complete code (b)

Broadcast receiver is an android component which allows you to send or receive android

application or system events. All the registered receivers are notified by the android runtime

once event happens through broadcast receivers. In this Mobishark application has registered

for the ACTION_BOOT_COMPLETED; which will be fired the moment Android system

has done or completed with the boot process. onReceive() method is called as soon as the

broadcast receiver receives the notification for the event for which it has been registered.

Two arguments of the onReceive() method are context and intent. Context is used to access

additional information, or to start activities or services. Intent object is used to register the

receiver.

31

Figure 5.9: Android manifest debug file

Figure 5.10: Permissions in android manifest debug file

5.6 Layout File

Complete implementation of the text and design code of activity_main.xml Fig.5.27 is shown

in Fig.5.28 and Fig.5.29 respectively. Layout of the Mobishark application is kept very sim-

ple to make it more efficient in terms of performance; instead of loading heavy geographic

maps which will consume a lot of Android resources.

5.7 Values

5.7.1 Colors.xml File

Code for the colors.xml Fig.5.30 is shown in Fig.5.31

5.7.2 Strings.xml File

Code for the strings.xml Fig.5.32 is shown in Fig.5.33

5.7.3 Styles.xml File

Code for the styles.xml Fig.5.34 is shown in Fig.5.35

5.8 Build.gradle(Module: app) File

Code for the build.gradle(Module: app) Fig.5.36 is shown in Fig.5.37. compileSdkVersion

is 29 and targetSdkVersion is 29 while buildToolsVersion is "29.0.2".

32

Figure 5.11: Main activity file

Figure 5.12: Complete code of main activity (a)

33

Figure 5.13: Complete code of main activity (b)

Figure 5.14: Complete code of main activity (c)

34

Figure 5.15: Complete code of main activity (d)

Figure 5.16: Creation of mock service (a)

35

Figure 5.17: Creation of mock service (b)

36

Figure 5.18: Code of mock service (a)

Figure 5.19: Code of mock service (b)

37

Figure 5.20: Code of mock service (c)

Figure 5.21: Code of mock service (d)

38

Figure 5.22: Code of mock service (e)

Figure 5.23: Creation of BroadCastReceiver (a)

Figure 5.24: Creation of BroadCastReceiver (b)

39

Figure 5.25: StartUpBroadCastReceiver

Figure 5.26: StartUpBroadCastReceiver code

40

Figure 5.27: Activity_main.xml file

Figure 5.28: Activity_main.xml text code

41

Figure 5.29: Activity_main.xml design code

Figure 5.30: Colors.xml file

Figure 5.31: Colors.xml code file

42

Figure 5.32: Strings.xml file

Figure 5.33: Strings.xml code file

Figure 5.34: Styles.xml file

Figure 5.35: Styles.xml code file

43

Figure 5.36: Build.gradle(Module: app) file

Figure 5.37: Build.gradle(Module: app) code file

44

Chapter 6

EVALUATION OF PROPOSED MECHANISM

Efficiency of the proposed mechanism has been verified on different Android applications

like Google maps, maps.me, Careem, Bykea, Facebook, Foursquare etc. for a considerable

amount of time. These applications persistently showed mock location throughout the test-

ing duration. Detailed traffic analysis also revealed that the mock coordinates were being

sent to different servers including Google. Taken together, these results suggest that the pro-

posed methodology can trick Service Providers to get inaccurate or mock locations instead

of tracking original coordinates.

The proposed framework was also compared with others applications under the testing

scenarios discussed in Section IV. The single most striking observation emerging out of this

comparison was that under severe stress and load, our application showed promising results

with high spoofing accuracy and better reliability when it comes to testing in movement

simulation. We also found that our proposed application offers more persistence with lim-

ited permissions to install. We tested all applications on a variety of Android smartphones

bearing different hardware configurations listed in Table 6.1. We also tested our applica-

tion under stringent memory pressure and found out that it outperforms other GPS spoofing

applications with better performance, accuracy, and reliability. We also traversed outside

buildings (multiple floors) to break connection between GPS satellites and smartphones for

testing purposes and found our application to be a better solution as compared to others.

The proposed framework for tracking pilferage of location data along with its safeguard by

spoofing will be enhanced further along with more in-depth and rigorous evaluation after

further enhancing the current approach with more modules and functionality.

45

Table 6.1: Smartphone Hardware Configurations

Manufacturer Specs
Samsung
I9500 Galaxy
S4

Octa-core (4x1.6 GHz
Cortex-A15 4x1.2 GHz
Cortex-A7), 2 GB Ram

Samsung
G900f Galaxy
S5

Quad-core 2.5 GHz Krait
400, 2 Gb Ram

Huawei P8lite Octa-core 1.2 GHz
Cortex-A53, 2 Gb Ram

Samsung
Galaxy J3
(2016)

Quad-core 1.5 GHz
Cortex-A7, 1.5 Gb Ram

46

Chapter 7

CONCLUSION AND FUTURE WORK DIRECTIONS

This paper gives the detailed analysis of analysed Google apps which keep their users under

surveillance and send stored location data at different intervals of time, irrespective of the

user’s location sharing settings. This paper further presents an insight on the performance

analysis of fake GPS location applications which fail to secure the real location coordinates.

The proposed solution guards the real location coordinates by keeping the mock location

within span-radius which appears to be realistic, hence adjusting the location coordinates

automatically. The proposed algorithm is efficient in terms of performance and results. This

may be considered as a promising aspect to preserve user’s real location coordinates on an

Android smartphone, practically. Future work will concentrate on the kernel level solution

to completely ensure that the location coordinates are not being compromised at all.

47

BIBLIOGRAPHY

[1] U.S. location-based service users 2013-2018 Published by Statista Research Depart-
ment, Jun 17, 2015.

[2] "Google Maps", Play.google.com. [Accessed: 15- Feb- 2020].

[3] "Fitbit", Play.google.com. [Accessed: 15- Feb- 2020].

[4] "Facebook", Play.google.com. [Accessed: 15- Feb- 2020].

[5] "WeChat", Play.google.com. [Accessed: 15- Feb- 2020].

[6] "Pokémon GO", Play.google.com. [Accessed: 15- Feb- 2020].

[7] "Tripadvisor Hotel, Flight & Restaurant Bookings", Play.google.com. [Accessed: 15-
Feb- 2020].

[8] "NearBee - Discover what’s buzzing around you", Play.google.com. [Accessed: 15-
Feb- 2020].

[9] "Google and Facebook Data Retention and Location Tracking through Forensic Cloud
Analysis," 3-22-2019.

[10] M. Bridge, Google at risk of £3bn fine over location tracking", Thetimes.co.uk.

[11] K. Collins, Google collects Android users’ locations even when location services are
disabled, Quartz., 2017.

[12] A. Esteve, The business of personal data: Google, Facebook, and privacy issues in the
EU and the USA, Vols. 7, Issue 1, International Data Privacy Law, March 2017, 2017.

[13] Policies.google.com. [Online]. Available: https://policies.google.com/. [Accessed:
26- Feb- 2020].

[14] B. Liu, W. Zhou, T. Zhu, L. Gao and Y. Xiang, "Location privacy and its applications:
A systematic study," IEEE access, vol. 6, pp. 17606-17624, 2018.

[15] T. Hara, A. Suzuki, M. Iwata, Y. Arase and X. Xie, "Dummy-based user location
anonymization under real-world constraints," IEEE Access, vol. 4, pp. 673-687, 2016.

[16] H. J. Do, Y.-S. Jeong, H.-J. Choi and K. Kim, "Another dummy generation technique
in location-based services," in 2016 International Conference on Big Data and Smart
Computing (BigComp), 2016.

[17] Y. Xiao and L. Xiong, "Protecting locations with differential privacy under temporal
correlations," in Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, 2015.

[18] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis and C. Palamidessi, "Geo-
indistinguishability: Differential privacy for location-based systems," in Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications security,
2013.

48

[19] A.-M. Olteanu, K. Huguenin, R. Shokri, M. Humbert and J.-P. Hubaux, "Quantify-
ing interdependent privacy risks with location data," IEEE Transactions on Mobile
Computing, vol. 16, pp. 829-842, 2016.

[20] B. Niu, Q. Li, X. Zhu, G. Cao and H. Li, "Enhancing privacy through caching in
location-based services," in 2015 IEEE conference on computer communications (IN-
FOCOM), 2015.

[21] B. Liu, W. Zhou, T. Zhu, H. Zhou and X. Lin, "Invisible hand: A privacy preserving
mobile crowd sensing framework based on economic models," IEEE Transactions on
Vehicular Technology, vol. 66, pp. 4410-4423, 2016.

[22] C.-Y. Chow, M. F. Mokbel and X. Liu, "Spatial cloaking for anonymous location-
based services in mobile peer-to-peer environments," GeoInformatica, vol. 15, pp.
351-380, 2011.

[23] J. Li, H. Yan, Z. Liu, X. Chen, X. Huang and D. S. Wong, "Location-sharing systems
with enhanced privacy in mobile online social networks," IEEE Systems Journal, vol.
11, pp. 439-448, 2015.

[24] X. Gong, X. Chen, K. Xing, D.-H. Shin, M. Zhang and J. Zhang, "From social
group utility maximization to personalized location privacy in mobile networks,"
IEEE/ACM Transactions on Networking, vol. 25, pp. 1703-1716, 2017.

[25] B. Palanisamy and L. Liu, "Mobimix: Protecting location privacy with mix-zones
over road networks," in 2011 IEEE 27th International Conference on Data Engineer-
ing, 2011.

[26] P. Chen, Y. Lin, W. Zhang, X. Li and S. Zhang, "Preserving location and content
privacy for secure ranked queries in location based services," in 2016 IEEE Trust-
com/BigDataSE/ISPA, 2016.

[27] S. Mascetti, D. Freni, C. Bettini, X. S. Wang and S. Jajodia, "Privacy in geo-social net-
works: proximity notification with untrusted service providers and curious buddies,"
The VLDB journal, vol. 20, pp. 541-566, 2011.

[28] G. Ghinita, P. Kalnis, A. Khoshgozaran, C. Shahabi, and K.-L. Tan, “Private queries
in location based services: Anonymizers are not necessary,” in Proc. ACM SIGMOD,
2008, pp. 121–132.

[29] G. F. Marias, C. Delakouridis, L. Kazatzopoulos and P. Georgiadis, "Location pri-
vacy through secret sharing techniques," in Sixth IEEE International Symposium on
a World of Wireless Mobile and Multimedia Networks, 2005.

[30] Location Privacy-Preserving Mechanisms. In: Location Privacy in Mobile Applica-
tions., Springer, Singapore.

[31] A. K. Kini and S. A. Kulkarni, "Real time implementation of k fake location gen-
eration algorithm to protect location privacy in location based services," in 2017 in-
ternational conference on advances in computing, communications and informatics
(ICACCI), 2017.

49

[32] J. Ren, A. Rao, M. Lindorfer, A. Legout and D. Choffnes, "Recon: Revealing and
controlling pii leaks in mobile network traffic," in Proceedings of the 14th Annual
International Conference on Mobile Systems, Applications, and Services, 2016.

[33] "Distribution dashboard|Android Developers". [Online].Available:
https://developer.android.com/about/dashboards. [Accessed:15- Feb- 2020].

50

	Real
	AnumArshad Thesis Report
	THESIS ACCEPTANCE CERTIFICATE
	ABSTRACT
	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ACRONYMS
	INTRODUCTION
	Problem Statement and Objectives
	Thesis Outline

	PRELIMINARIES
	Literature Review - Major Location Privacy Techniques
	Comparison between Location Privacy Techniques
	Conclusion

	LOCATION RETENTION AND ANALYSIS OF GPS SPOOFING APPLICATIONS
	Analysis of Location Data Retention and its Tracking by Google
	Experimental Settings (with TCPDUMP)
	Experimental Results
	Experimental Settings (with FIDDLER)
	Experimental Results

	Performance Analysis of GPS Spoofing Applications on Google Play Store

	PROPOSED DATA LEAKAGE PREVENTION MECHANISM AND SOFTWARE ARCHITECTURE - MOBISHARK
	Charachteristics of Android Application-MobiShark Spoofer
	Software Architecture of Android Application-MobiShark Spoofer
	Proposed Algorithm for the Android Application-MobiShark Spoofer

	PRACTICAL IMPLEMENTATION
	AndroidManifest.xml File
	AndroidManifest.xml(debug) File
	MainActivity File
	Mock Service File
	StartUpBroadCastReceiver File
	Layout File
	Values
	Colors.xml File
	Strings.xml File
	Styles.xml File

	Build.gradle(Module: app) File

	EVALUATION OF PROPOSED MECHANISM
	CONCLUSION AND FUTURE WORK DIRECTIONS
	BIBLIOGRAPHY

