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Abstract

This thesis discusses the topic of laminar flow in the boundary layer and heat transfer

for MHD fluid flow owing to a stretched sheet and changing heat flux. Thermal conduc-

tivity and viscosity varies with temperature. The equations stated in PDEs govern the

problem. Similarity variables are used to convert PDEs into the system of ODEs. The

ODEs are then solved utilizing bvp4c in the MATLAB. The effects of several factors,

including magnetic parameter M, Eckert number Ec, S is the unsteadiness parameter,

Darcy number γ, with some other parameters that affect the temperature and velocity

profiles, and the heat transfer coefficients (local Nusselt number and skin friction co-

efficient), are investigated. Using bvp4c technique, the numerical results are achieved

in tabular form. Then later compared with existing research in the literature. It can

be found that depending on the parameter, the local Nusselt number, momentum and

thermal boundary layer thickness and skin friction coefficient all have varying effects.
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Chapter 1

Introduction

1.1 Historical Background

CFD (computational fluid dynamics) has a long history that goes back to the early

1900s [1]. Richardson [2], von Neumann [3], Godunov [4] were among the first to

deal with the basic problems of CFD. For an academic discussion of CFD historical

perspective, see Roache [5] and Tannehill, Anderson, and Pletcher [6]. Millions of

modern technological systems, such as airplanes in flight, ships at sea, cars on the

road, mechanical biomedical equipment, and so on, are partly or completely based on

fluid dynamics knowledge. It is important to remember that each of these machines is a

miracle of engineering fluid dynamics, in which many different fundamental principles

of nature are combined in a practical way to build a system that is safe, efficient, and

effective.

We will mention few themes and case studies that highlight the historical evolution

of fluid dynamics and provide an understanding of fluid dynamics’ intellectual ideas.

The laws of buoyancy have been formulated by Archmedes (285− 212 B.C.) and have

been utilized for submerged and floating bodies, resulting in the differential calculus.

The equation of mass conservation in one-dimensional steady flow was developed by

Leonardo da Vinci (1452− 1519). The principles of motion and the viscosity of linear,
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now known as Newtonian laws had been proposed by Isaac Newton (1642− 1727), in

1687. The differential equations of motion and its integrated form, which is now known

as the Bernoulli equation, had been established by Euler. The dimensional analysis

was proposed by Lord Rayleigh (1842 − 1919). While the famous pipe experiment

was reported in 1883 by Osborne Reynolds (1842− 1912). It proved the significane of

dimensionless Reynolds number.

1.1.1 Fluid

There are three fundamental phases in which a substance can exist that are gas, liquid,

and solid. A fluid is anything that is in liquid or gas state. To distinguish between a

fluid or solid, the potentiality to oppose an applied shear stress of a substance which

changes its shape is utilized. A solid can deform in response to applied shear stress,

however a fluid deforms continually, regardless of how small the shear force is. Stress is

proportional to strain in solids, while it is proportional to strain rate in fluids. When

a constant shear force is applied at a certain strain angle, a solid eventually stops

deforming, but a fluid never and it reaches a certain strain rate.

1.1.2 Classification of Fluid Flows

Fluid flow problems come in a wide variety of shapes and sizes, and it iss usually easier

to group them together based on some common qualities. We have listed some of the

most common ones here.

1.1.3 Newtonian Fluid

Regardless of the shear forces applied to the fluid layers, the viscosity of these fluids

remains constant. At constant temperature, the viscosity doesnot change. Examples

are water, milk, alcohol and so on. Newtonian fluids have a shear stress plot vs.
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shear rate plot at a certain temperature which is a constant slope with a straight line,

independent of the shear rate. Newton’s law is represented by the equation,

τ = µ
du

dy
,

and Newtonian fluids are those that foll ow it[7].

1.1.4 Non-Newtonian Fluid

Newton’s law of viscosity is not followed here. Some examples of Non-Newtonian Fluid

are ketchup, salt solutions, and molten polymers[7].

1.1.5 Compressible Flow

A flow is said to be compressible when density changes become significant.

Compressible flow is concerned with fluids whose density changes significantlyÂăin

response to a change in pressure. Gases like air, oxygen, and nitrogen are commonly

thought of as compressible fluids since their density changes significantly with changes

in pressure and temperature [8].

1.1.6 Incompressible Flow

A flow is said to be incompressible if the density remains nearly constant throughout.

Incompressed flow is defined as a flow in which every small volume of fluid that moves

within it remains constant in density. In general, an incompressible fluid is one that

has a constant density [8].

1.1.7 Steady Flow

The term steady denotes that there is no change in variable over time [9].

∂

∂t
= 0 .
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1.1.8 Unsteady Flow

Unsteady is the exact opposite of steady. In fluid mechanics, the term "unsteady"

refers to any flow that is not steady [9].

∂

∂t
6= 0 .

1.1.9 One-, Two-, and Three-Dimensional Flows

One, two or three dimensional flow is considered to be based on the fact that flow

varies in one, two or three fundamental dimensions [9].

1.1.10 MHD Flow

Electric fields are induced in a conducting fluid when it moves in a magnetic field,

and electric currents flow. These currents are subjected to magnetic field forces, which

can significantly modify the flow. In turn, the magnetic field is modified by these

currents. We interact with the magnetic and fluid-dynamic phenomena in a complex

way, and flow should be examined by comparing field and fluid dynamic equations.

And a wide range of physical objects, from fluid metals to cosmic plasmas, cover

magnetohydrodynamic applications [10].

Combining Maxwell’s equation and motion equations yields a set of equations that

defines MHD flow.

ρ
D~V

Dt
= ~∇.τ +

(
~J × ~B

)
, (1)

where ~J is representing current density.

Total magnetic field is

B = B +Bi ,

4



where Bi represents induced magnetic field.

From Ohm’s Law

~J = σ
(
~E + ~V × ~B

)
,

where E is electrical field and σ is electrical conductivity.

Taking

~J × ~B = −σB2
0uî . (2)

Putting (2) into (1)

ρ
D~V

Dt
= ~∇.τ − σB2

0uî .

1.2 Boundary Layer

In 1904, Prandtl showed that it is possible to study viscous flows by dividing them into

two regions: a region that has a thin layer of flow near a solid wall, which is called a

boundary layer that does not neglect viscous forces and an outer region that can ignore

friction [11].

1.2.1 Momentum Boundary Layer

To adhere to the no slip condition, fluid particles exbihit a zero velocity when they come

into contact with a solid surface. These fluid particles affect the adjacent fluid layer

particles and thus affect the next layer of fluid particles. This velocity slowing takes

place at a significant distance from the flat surface where the retardation is negligible.

Fluid velocity in the boundary layer vary from 0 to 0.99U∞, where U∞ is the free

stream velocity.
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1.2.2 Thermal Boundary Layer

A temperature field is created whenever a fluid flows past a heated surface, and the

thermal boundary layer is the zone where the thermal field exists. The temperature of

the layer adjacent to the surface will be the same as that of the surface, and as we travel

away from the surface, the temperature will drop until it approaches the temperature

of the free stream.

1.3 Conservation Laws

1.3.1 The Fluid as a Continuum

The deformable continuum includes fluids. When a material system comprises a con-

tinuous material and each particle is a continuum of matter, the system is said to

be a continuum. The continuum hypothesis states that because matter is made up of

molecules, a small volume can contain a vast number of molecules. Instead of the prop-

erties of each molecule at a given stage in the continuum study, we are interested in the

average of these properties in a large number of molecules near each point (molecule)

(fluids, in particular). The following postulate actually synthesises the concept of con-

tinuity, that is, the matter is continuously distributed in the whole imagined region,

even in smallest volumes, with a large number of molecules [12].

1.3.2 Mass Conservation Law

According to this law, mass cannot be created or destroyed.[13].

∂ρ

∂t
+ ~∇.

(
ρ~V
)

= 0 .

Above is the continuity equation. It expresses mass conservation in differential form.

For flows which are incompressible one can have:

∇.~V = 0 .

6



1.3.3 Momentum Conservation Law

The cornerstone for momentum conservation is Newton’s second law,
∑
F = ma,

which regulates fluid momentum. The rate of change in momentum of a body is equal

to the force applied to it, according to the rule, and it happens in the same direction

as the force.

ρ
d~V

dt
= ~∇.τ + ρg ,

where τ and g denotes the stress tensor and the body force respectively, d
dt

is the

material time derivative.

1.3.4 Energy Conservation Law

Energy can be changed from one form to another, but the total energy in a closed

system remains constant.

ρCp
DT

Dt
= ~∇.

(
k~∇T

)
+ φ ,

where

D

Dt
=

∂

∂t
+
(
~V .~∇

)
,

k is the thermal conductivity, T is temperature, φ is the viscous dissipation function.

1.4 Non Dimensional Parameters

1.4.1 Reynolds Number (Re)

The Reynolds number refers to the ratio between inertial and viscous forces.

Re =
uL

ν
=
ρuL

µ
,

where ρ, u and L represent the density, flow velocity and characteristic length respec-

tively. The dynamic and kinematic viscosity are given by µ and ν.

7



1.4.2 Prandtl Number (Pr)

The Prandtl number is the ratio of momentum diffusivity to thermal diffusivity,

Pr =
ν

α
=
cpµ

k
,

It is a dimensionless number where as k and Cp are the thermal conductivity and the

specific heat respectively.

1.4.3 Nusselt Number (Nu)

The Nusselt number is defined as the ratio of convective to conductive heat transfer

across a boundary.

Nu =
convective heat transfer
conductive heat transfer

=
hL

k
,

where h is the flow’s convective heat transfer coefficient, L is the characteristic length,

and k is the fluid’s thermal conductivity.

1.4.4 Eckert Number (Ec)

The Eckert number (Ec) is a dimensionless number. It expresses the link between a

flow’s kinetic energy and the boundary layer enthalpy difference to characterise heat

transfer dissipation.

Ec =
Advective Transport
Heat Dissipation

=
u2

Cp∆T
,

The difference in temperature between the wall and the local temperature is given by

∆T , where as u and k are flow velocity and specific heat respectively.

8



1.4.5 Magnetic Parameter (M)

The ratio of Lorentz force to inertial force is the magnetic interaction parameter ,

M =
σB2

0

ρa
,

where B0 is the magnetic field strength, σ is the electrical conductivity, ρ is the density.

1.4.6 Thermal Conductivity Parameter (ε)

The ability of a material to conduct heat is measured by its thermal conductivity. The

term k is widely used to describe it. Thermal conductivity is defined by the equation

q = −k~∇T ,

where q is heat flux, k is the thermal conductivity and ~∇T is the temperature gradient.

1.4.7 Darcy Number (γ)

The relative effect of the medium’s permeability versus its cross-sectional area is rep-

resented by the Darcy number (Da):

Da =
K

d2
,

where K is the permeability of the medium, d is the characteristic length.

1.4.8 Skin Friction Coefficient

It is the ratio of wall shear stress to the free stream momentum.

Cf =
τw

1
2
ρv2

,

where Cf is a skin friction coefficient, ρ is the density of the fluid, v is the free stream

speed. The skin shear stress on the surface is given by τw where as the free stream’s

dynamic pressure is represented by 1
2
ρv2.
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1.4.9 Darcy’s Law

Darcy’s law is a simple proportionality relationship between the instantaneous flux

through a porous medium, the medium’s permeability k, the fluid’s dynamic viscosity

µ, and the pressure drop ∇p over a given distance, in the absence of gravitational

forces and in a homogeneously permeable medium.

q = −k
µ
∇P .

1.4.10 Powell-Eyring Fluid Model

The Navier-Stokes equations, which are well-known governing equations, are unable to

sufficiently determine the behaviour of non-Newtonian fluids. To characterise the non-

Newtonian behaviour, the Powell-Eyring fluid model is used. The Powell-Eyring model

is a rheological fluid with a number of benefits, including simplicity and computational

ease. It is significant because it is derived from the kinetic theory of liquids.

The stress tensor for Powell-Eyring Fluid model is:

S = µA1 +
1

β
sinh−1

(
1

d
A1

)
,

where S is the Cauchy tensor, µ is the viscosity, β and d are the material constants.

1.4.11 bvp4c

The bvp4c solver in MATLAB allows you to solve fairly complex problems in a simple

and easy way. For solving nonlinear systems of equations, the algorithm uses an itera-

tion structure. It is a finite-difference code. The residual of the continuous solution is

used for mesh selection and error control. Because it is an iteration scheme, the algo-

rithm’s effectiveness will ultimately be determined by your ability to make an initial

guess for the solution to the algorithm.
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Chapter 2

Modeling of MHD Fluid Flow with
Thermal Radiation, Variable Fluid
Properties, and Heat Flux over an
Unsteady Stretching Sheet

This chapter reviews the problems of laminar flow and heat transfer of MHD fluid

boundary layer caused by an unstable stretching sheet with variable heat flux. Tem-

perature is assumed to affect both viscosity and thermal conductivity. The similarity

variables are used to convert the PDEs into a coupled nonlinear system of ODEs. bvp4c

is used to solve a system of ODEs. Different parameters’ effects on dimensionless ve-

locity and temperature profiles are visually displayed and investigated. Furthermore,

the results obtained using bvp4c are compared to previously published work from the

existing literature and are determined to be in good agreement.

2.1 Mathematical Formulation

The usual Boussinesq approximation [14] is used to model the two dimensional laminar

incompressible unsteady motion of a Newtonian fluid.

The specific heat at constant pressure (cp), the electrical conductivity (σ), and the
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density of a fluid (ρ) are all considered constants. The viscosity of the fluid µ and the

thermal conductivity of the fluid κ are both investigated in relation to temperature.

A uniform transverse magnetic field [15]

B = B0 (1− at)
−1
2 ,

has an influence on the fluid flow field, where B0 is a constant.

The fluid motion is expected to be caused by a stretching sheet with velocity Ux(x, t)

that is highly dependent on x, t.

The continuity, momentum and energy equations are:

∂u

∂x
+
∂v

∂y
= 0, (2.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

1

ρ∞

∂

∂y

(
µ
∂u

∂y

)
− σB2

ρ∞
u, (2.2)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

1

ρ∞cp

∂

∂y

(
κ
∂T

∂y

)
+

µ

ρ∞cp

(
∂u

∂y

)2

− 1

ρ∞cp

∂qr
∂y

, (2.3)

where u is the velocity component in x direction and v is the velocity component in the

y direction, cp is the specific heat at constant pressure, σ is the electrical conductivity,

κ is the thermal conductivity, the radiative heat flux is qr and ρ∞ is the fluid density

going away from the sheet, t is time and T is the temperature of the fluid.

Defining

κeff = κ (T ) +
16σ∗T 3

∞
3k∗

.

Boundary conditions that have been transformed are:

u = Uw, v = 0, −κeff
∂T

∂y
= q (x, t) , at y = 0,

u→ 0, T → T∞, as y →∞, (2.4)

where T∞ is the ambient temperature of fluid.

Variable heat flux [16] is assumed to influence the temperature field.

q (x, t) = −κeff
∂T

∂y
= T0

dxr

(1− at)m+ 1
2

, (2.5)
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where, T0 is the reference temperature, d and a are the positive constants, and m and

r are the indices.

For radiation, the Rosseland approximation is used [17].

qr = −4σ∗

3k∗
∂T 4

∂y
, (2.6)

where k∗ is the absorption coefficient and σ∗ is the Stefan-Boltzmann constant.

Using Taylor series, T 4 is expanded about T∞ and ignoring the terms of higher order,

we get

T 4 ∼= 4T 3
∞T − 3T 4

∞ .

The surface velocity, Uw, is

Uw =
bx

1− at
, (2.7)

where b and a are the positive constants having dimension [T−1] .

The similarity variables are specifically defined by:

η = y

√
b

ν∞ (1− at)
,

ψ =

√
ν∞b

(1− at)
xf (η) , (2.8)

θ (η) =
T − T∞

q(x,t)
κ∞

√
ν∞
b

(1− at)
1
2

,

where ν∞ denotes the ambient kinematic viscosity.

The velocity components are:

u =
∂ψ

∂y
, v = −∂ψ

∂x
.

The surface temperature Tw is:

Tw = T∞ + T0

 dxr

κ∞

√
b
ν∞

 (1− at)−m θ (0) .
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It is assumed that variable thermal conductivity κ and the variable viscosity µ change

with temperature [18].

µ = µ∞e
−αθ,

κ = κ∞ (1 + εθ) ,

where the dimensionless viscosity parameter, thermal conductivity away from the sur-

face, thermal conductivity parameter, and ambient viscosity are represented by α, κ∞,

ε, and µ∞, respectively.

Putting Eq. (2.8) in Eqs. (2.1)-(2.4),

e−αθ
(
−αθ′f ′′ + f

′′′
)
−Mf

′ − Sf
′ − S

1

2
ηf
′′ − f ′2 + ff

′′
= 0, (2.9)

1

Pr

(
εθ
′2

+ (1 + εθ + R) θ
′′
)
− rf ′θ + fθ

′ − θ
′

2
Sη −mSθ + Ecf

′′2
e−αθ = 0. (2.10)

The following boundary conditions are modified and given as:

f (0) = 0, f
′
(0) = 1 ,

θ
′
(0) =

−1

((1 + εθ (0)) + R)
,

f
′ → 0, θ → 0, as η →∞ .

(2.11)

The resulting parameters are:

M =
σB2

0

bρ∞
, S =

a

b
, R =

16σ∗T 3
∞

3κ∞k∗
,

Ec =
κ∞b

5
2

d
√
ν∞cpT0

, Pr =
µ∞cp
κ∞

,

2.1.1 Skin Friction Coefficient

Defining skin friction coefficient as [21]:

Cfx =
2τw
ρU2

w

, (2.12)
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where

τw =

(
−µ
(
∂u

∂y

))∣∣∣∣
y=0

. (2.13)

Inserting Eq. (2.7) and Eq. (2.13) in Eq. (2.12)

CfxRe
1
2
x /2 = −e−αθ(0)f ′′ (0) . (2.14)

2.1.2 Local Nusselt Number

Defining local Nusselt number as:

Nux =
xq (x, t)

κ∞ (Tw − T∞)
. (2.15)

where q (x, t) = T0
dxr

(1− at)m+ 1
2

,

Tw − T∞ = T0

 dxr

κ∞

√
b
ν∞

 (1− at)−m θ (0) ,

Inserting Eq. (2.5) in Eq. (2.15)

Nux (Rex)
−1
2 =

1

θ (0)
. (2.16)

where, Rex = Uwx
ν∞

represents the local Reynolds number.

2.2 Numerical Solution

In Table 2.1, the consequences of different parameters on Cfx and Nux are investi-

gated. It can be seen that Cfx grows as the M is increased. For increasing values of R,

we see that Nux increases. One can observe that Nux decreases with rising Ec values

and Cfx declines as α increases. It can be noted that as the value of S varies, Nux

rises. There is a slight increase in Nux as ε varies.
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M R Ec α S ε

Variable Case

−e−αθ(0)f ′′ (0)
1
θ(0)

0.4 0.2 0.2 0.2 0.2 0.2 1.1799 1.4485

0.8 0.2 0.2 0.2 0.2 0.2 1.3197 1.3941

1.2 0.2 0.2 0.2 0.2 0.2 1.4446 1.3479

0.3 0.4 0.2 0.2 0.2 0.2 1.1439 1.5463

0.3 0.8 0.2 0.2 0.2 0.2 1.1471 1.6915

0.3 1.2 0.2 0.2 0.2 0.2 1.1496 1.8171

0.3 0.2 0.4 0.2 0.2 0.2 1.1367 1.3633

0.3 0.2 0.8 0.2 0.2 0.2 1.1263 1.2000

0.3 0.2 1.2 0.2 0.2 0.2 1.1160 1.0728

0.3 0.2 0.2 0.4 0.2 0.2 1.0824 1.4488

0.3 0.2 0.2 0.8 0.2 0.2 1.9635 1.4162

0.3 0.2 0.2 1.2 0.2 0.2 0.8458 1.3796

0.3 0.2 0.2 0.2 0.4 0.2 1.2053 1.6005

0.3 0.2 0.2 0.2 0.8 0.2 1.3234 1.8281

0.3 0.2 0.2 0.2 1.2 0.2 1.4327 2.0208

0.3 0.2 0.2 0.2 0.2 0.4 1.1427 1.5032

0.3 0.2 0.2 0.2 0.2 0.8 1.1440 1.5724

0.3 0.2 0.2 0.2 0.2 1.2 1.1451 1.6323

Table 2.1: Variable Case
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Table 2.2 shows that as M rises, Cfx rises and Nux slightly decreases. When R is

changed, Nux rises. When Ec varies, Nux falls. When S changes, Nux and Cfx in-

crease slightly.

M R Ec S

Constant Case (α=ε = 0)

−f ′′ (0) 1
θ(0)

0.4 0.2 0.2 0.2 1.1523 1.4523

0.8 0.2 0.2 0.2 1.2310 1.4246

1.2 0.2 0.2 0.2 1.3051 1.3991

0.3 0.4 0.2 0.2 1.1109 1.4166

0.3 0.8 0.2 0.2 1.1109 1.5151

0.3 1.2 0.2 0.2 1.1109 1.6037

0.3 0.2 0.4 0.2 1.1109 1.5191

0.3 0.2 0.8 0.2 1.1109 1.4188

0.3 0.2 1.2 0.2 1.1109 1.3309

0.3 0.2 0.2 0.4 1.0803 1.3961

0.3 0.2 0.2 0.8 1.1411 1.5331

0.3 0.2 0.2 1.2 1.2003 1.6532

Table 2.2: Constant Case (α = 0, ε = 0)
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2.3 Graphical Analysis
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Figure 2.1: (a) Analysis of velocity for M and its distribution. (b) Analysis of temper-
ature for M and its distribution.

From Figure 2.1(a) it can be seen that f ′ (η) and momentum boundary layer thickness

both reduces with M. It can be observed from Figure 2.1(b) that θ (η) rises with a

slight increase in boundary layer thickness, as the parameter M is raised.
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Figure 2.2: (a) Analysis of velocity for R and its distribution. (b) Analysis of temper-
ature for R and its distribution.

The f ′ (η) increases as R is increased, as seen in Figure 2.2(a). As R is increased,

θ (η) decreases, as seen in Figure 2.2(b).
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Figure 2.3: (a) Analysis of velocity for Ec and its distribution. (b) Analysis of temper-
ature for Ec and its distribution.

Figure 2.3(a) shows how Ec affects the dimensionless velocity and dimensionless

temperature. With rising values of Ec it can be shown that f ′ (η) decreases. The effect

of Ec on θ (η) can be seen in Figure 2.3(b). As Ec is increased, θ (η) and the thickness

of the thermal boundary layer both increase.
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Figure 2.4: (a) Analysis of velocity for α and its distribution. (b) Analysis of temper-
ature for α and its distribution.
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Figures 2.4(a) and (b) illustrate the effects of the parameter α on f ′ (η) and θ (η).

The dimensionless velocity and momentum boundary layer thicknesse decrease as α

increases, while the dimensionless temperature increases.
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Figure 2.5: (a) Analysis of velocity for S and its distribution. (b) Analysis of temper-
ature for S and its distribution.
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Figure 2.5(a) depicts the effects of S on the velocity field. As S increases, the f ′ (η)

decreases. In Figure 2.5(b), the increasing values of S can be observed to reduce

thermal boundary layer thickness and decrease dimensionless temperature.
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Figure 2.6: (a) Analysis of velocity for ε and its distribution. (b) Analysis of tempera-
ture for ε and its distribution.

f
′
(η) increases with increasing ε, as seen in Figure 2.6(a). Figure 2.6(b) shows

that as ε increases, θ (η) falls.
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Chapter 3

Powell-Eyring MHD Fluid Flow with
Variable Fluid Properties and Heat
Flux over an unsteady Stretching
Sheet

Now we will provide an extension to Chapter 2. And the analysis used in the Chapter

2 will be presented for the Powell-Eyring Fluid here.

3.1 Mathematical Formulation

In this case, a non Newtonian MHD flow in two dimensions is being considered. The

Powell-Eyring fluid is carried on a stretched sheet with a changing heat flux.

Applying a uniform transverse magnetic field B = B0 (1− at)
−1
2 to the fluid.

The tensor components for Powell-Eyring fluid are:

Sxx = 2µ
∂u

∂x
+

2

βd

∂u

∂x
− 1

6βd3

(
2
∂u

∂x

)3

,

Syx = µ

(
∂v

∂x
+
∂u

∂y

)
+

1

βd

(
∂v

∂x
+
∂u

∂y

)
− 1

6βd3

(
∂v

∂x
+
∂u

∂y

)3

.
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The equations of continuity, momentum and energy are:

∂u

∂x
+
∂v

∂y
= 0, (3.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

1

ρ∞

∂

∂y

(
µ
∂u

∂y

)
+

1

ρ∞βd

∂2u

∂y2

− 1

2ρ∞βd3

(
∂u

∂y

)2(
∂2u

∂y2

)
− µu

ρ∞K
− σB2

ρ∞
u, (3.2)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

1

ρ∞Cp

∂

∂y

(
κ
∂T

∂y

)
+

µ

ρ∞Cp

(
∂u

∂y

)2

− 1

ρ∞Cp

∂qr
∂y

. (3.3)

Defining

κeff = κ (T ) +
16σ∗T 3

∞
3k∗

.

The boundary conditions corresponding to considered model are,

u = Uw, v = 0, −κeff
∂T

∂y
= q (x, t) , at y = 0,

u→ 0, T → T∞, as y →∞. (3.4)

where T∞ represents ambient fluid temperature.

For variable heat flux, Liu and Megahed [16] suggested the following formula:

q (x, t) = −κeff
∂T

∂y
= T0

dxr

(1− at)m+ 1
2

. (3.5)

The surface velocity is Uw and can be defined as:

Uw =
bx

1− at
, (3.6)

where to maintain the dimensionality of the Uw velocity provided above, both the

positive constants a and b have dimension [T−1].

The velocity components are, u = ∂ψ
∂y

and v = −∂ψ
∂x

.
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The similarity variables are defined as:

η = y

√
b

ν∞ (1− at)
,

ψ =

√
ν∞b

(1− at)
xf (η) , (3.7)

θ (η) =
T − T∞

q(x,t)
K∞

√
ν∞
b

(1− at)
1
2

,

where ν∞ is the ambient kinematic viscosity .

3.1.1 Case A: Variable Fluid Properties

Assume that the variable µ and variable thermal conductivity κ change with temper-

ature as well,

µ = µ∞e
−αθ ,

κ = κ∞(1+εθ) .

Inserting Eq. (3.7) into Eqs. (3.1)-(3.4), we get

e−αθ
(
−αθf ′′ + f

′′′
)

+ Nf
′′′ − Nλf

′′2
f
′′′ − γe−αθf ′

−Mf
′ − Sf

′ − 1

2
Sηf

′′ − f ′2 + ff
′′

= 0, (3.8)

1

Pr

(
εθ
′2

+ (1 + εθ + R) θ
′′
)
− rf ′θ + fθ

′ − θ
′

2
Sη − Smθ + Ece−αθf

′′2
= 0. (3.9)

Boundary conditions that have been transformed are:

f (0) = 0 , f
′
(0) = 1 , θ

′
(0) =

−1

1 + εθ (0) + R
,

f
′ → 0 , θ → 0 , η −→∞. (3.10)
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The parameters we get are:

N =
1

µ∞βd
, λ =

b3x2

2d2ν∞ (1− at)3
,

S =
a

b
, γ =

µ∞
ρ∞Kb

(1− at) ,

M =
σB2

0

bρ∞
, P r =

µ∞Cp
K∞

,

Ec =
K∞b

5
2

d
√
ν∞CpT0

, R =
16σ∗T 3

∞
3K∞k∗

.

The physical quantities of the interest are:

Skin Friction Coefficient

Defining skin friction coefficient Cfx [21] as:

Cfx =
2τw
ρU2

w

, (3.11)

where

τw =

(
µ
∂u

∂y
+

1

βd

∂u

∂y
− 1

6βd3

(
∂u

∂y

)3
)
. (3.12)

Inserting Eq.(3.6) and Eq.(3.12) into Eq.(3.11) yields the following expression

CfxRe
1
2
x

2
= f

′′
(0)

{
e−αθ(0) +N − Nλ

3
f
′′2

(0)

}
. (3.13)

Local Nusselt Number

Defining local Nusselt number Nux as:

Nux =
xq (x, t)

κ∞ (Tw − T∞)
, (3.14)

where q (x, t) = T0
dxr

(1− at)m+ 1
2

,

Tw − T∞ = T0

 dxr

κ∞

√
b
ν∞

 (1− at)−m θ (0) ,
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Inserting Eq.(3.5) into Eq.(3.14) gives:

Nux (Rex)
−1
2 =

1

θ (0)
. (3.15)

where the local Reynolds number is defined as Rex = Uwx
ν

.

3.1.2 Case B: Constant Fluid Properties

For the constant case, take α = 0 and ε = 0 ,

and set

B = B0, µ = µ∞, K = K∞ .

Inserting Eq.(3.7) into Eqs.(3.1)-(3.4), we get

f
′′′ −Mf

′ − Sf
′ − S

1

2
ηf
′′ − f ′2 + ff

′′
= 0, (3.16)

1

Pr

(
(1 + R) θ

′′
)

+ Ecf
′′2 − θ

′

2
Sη − Sθm− rf ′θ + fθ

′
= 0. (3.17)

Boundary condition that have been transformed are:

f (0) = 0 , f
′
(0) = 1 , θ

′
(0) = − 1

1 +R
,

f
′ → 0 , θ → 0 , as η →∞ . (3.18)

The parameters we get are:

S =
a

b
, M =

σB2
0

bρ∞
(1− at) , P r =

µ∞Cp
K∞

,

Ec =
K∞b

5
2

d
√
ν∞CpT0

, R =
16σ∗T 3

∞
3K∞k∗

.

The physical quantities of the interest are:
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Skin Friction Coefficient

Defining skin friction coefficient Cfx [21] as:

Cfx =
2τw
ρU2

w

, (3.19)

where

τw =

(
µ
∂u

∂y
+

1

βd

∂u

∂y
− 1

6βd3

(
∂u

∂y

)3
)
, (3.20)

Inserting Eq.(3.6) and Eq.(3.20) into Eq.(3.19) yields the following expression

CfxRe
1
2
x = f

′′
(0)

{
1 +N − Nλ

3
f
′′2

(0)

}
. (3.21)

The local Nusselt number

Defining local Nusselt number Nux as:

Nux =
xq

κ∞ (Tw − T∞)
, (3.22)

where

q (x, t) = T0
dxr

(1− at)m+ 1
2

,

Tw − T∞ = T0

 dxr

κ∞

√
b
ν∞

 (1− at)−m θ (0) ,

Inserting Eq. (3.5) into Eq.(3.22) yields the following expressions

Nux (Rex)
−1
2 =

1

θ (0)
. (3.23)

where the local Reynolds number is defined as Rex = Uwx
ν

.

3.2 Numerical Process

3.2.1 Comparison of Skin Friction
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M Prasad et al.[19] Megahed et al.[20] Present Work
0.0 1.0000 1.0000 1.0000

0.5 1.22490 1.2289 1.2247

1.0 1.41440 1.4143 1.4142

1.5 1.58100 1.5810 1.5811

2.0 1.73200 1.7319 1.7321

Table 3.1: For α = S = 0, Comparing the skin friction coefficient f ′′ (0)

A comparison of skin friction coefficient between earlier results presented by Prasad et

al [19], Megahed et al [20] and present work is done in which for the variation of M

at 1.5 and 2 the highest value is obtained for our work. Moreover, at 1 the maximum

value is found in Prasad results whereas Megahed results show maximum value of skin

friction coefficient at 0.5. The bar graph for the result is displayed in Figure 3.1.
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Figure 3.1: Bar graph when α = S = 0, for the comparison of skin friction coefficient

30



3.2.2 Cases for Fluid Properties

Now the transformed ODEs will be converted into a system of first-order. Then, using

bvp4c, a numerical analysis of the aur system will be obtained.

3.2.3 Case A: Variable Fluid Properties

From Eq.(3.8) & (3.9) the system of first order is:

y1 = f ⇒ y
′

1 = f
′
= y2 ,

y2 = f
′ ⇒ y

′

2 = f
′′

= y3 ,

y3 = f
′′ ⇒ y

′

3 = f
′′′

=
1

1 + eαy4N− Nλy23eαy4
(3.24)

{αy5y3 + γy2 + eαy4(
My2 + y22 + Sy2 +

1

2
Sηy3 − y1y3

)}
,

y4 = θ ⇒ y
′

4 = θ
′
= y5 ,

y5 = θ
′ ⇒ y

′

5 = θ
′′

=
1

(1 + εy4 + R)

(
−εy25 + rPry2y4

−Pry1y5 + Pry5
S
2
η +mPrSy4 − PrEce−αy4y23

)
.

Table 3.2 shows that, both Nux and Cfx show a slight decrease in the behaviour with

the increasing λ. When N increases, Cfx slightly increases. As γ varies, their is a

slight growth in Cfx but a slight reduction of the Nux. It can be observed that Cfx

increases for M and Nux increases with R. For Ec and α the Nux shows a decline in

behaviour. In the case of S, Nux rises, whereas Cfx rises slightly. And, Nux increases

as ε is increased.
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λ N γ M R Ec α S ε r m Pr

Variable Case (bvp4c)

Cfx
√
Rex

Nux√
Rex

0.4 0.1 0.2 0.3 0.2 0.2 0.2 0.2 0.2 2 2 1 1.2693 1.4553
0.8 0.1 0.2 0.3 0.2 0.2 0.2 0.2 0.2 2 2 1 1.2603 1.4512
1.2 0.1 0.2 0.3 0.2 0.2 0.2 0.2 0.2 2 2 1 1.2509 1.4468

0.2 0.4 0.2 0.3 0.2 0.2 0.2 0.2 0.2 2 2 1 1.4500 1.5090
0.2 0.8 0.2 0.3 0.2 0.2 0.2 0.2 0.2 2 2 1 1.6587 1.5586
0.2 1.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 2 2 1 1.8450 1.5947

0.2 0.1 0.4 0.3 0.2 0.2 0.2 0.2 0.2 2 2 1 1.3401 1.4324
0.2 0.1 0.8 0.3 0.2 0.2 0.2 0.2 0.2 2 2 1 1.4620 1.3884
0.2 0.1 1.2 0.3 0.2 0.2 0.2 0.2 0.2 2 2 1 1.5718 1.3503

0.2 0.1 0.2 0.4 0.2 0.2 0.2 0.2 0.2 2 2 1 1.3107 1.4437
0.2 0.1 0.2 0.8 0.2 0.2 0.2 0.2 0.2 2 2 1 1.4491 1.3945
0.2 0.1 0.2 1.2 0.2 0.2 0.2 0.2 0.2 2 2 1 1.5738 1.3520

0.2 0.1 0.2 0.3 0.4 0.2 0.2 0.2 0.2 2 2 1 1.2756 1.5389
0.2 0.1 0.2 0.3 0.8 0.2 0.2 0.2 0.2 2 2 1 1.2792 1.6826
0.2 0.1 0.2 0.3 1.2 0.2 0.2 0.2 0.2 2 2 1 1.2819 1.8068

0.2 0.1 0.2 0.3 0.2 0.4 0.2 0.2 0.2 2 2 1 1.2674 1.3560
0.2 0.1 0.2 0.3 0.2 0.8 0.2 0.2 0.2 2 2 1 1.2555 1.1923
0.2 0.1 0.2 0.3 0.2 1.2 0.2 0.2 0.2 2 2 1 1.2439 1.0657

0.2 0.1 0.2 0.3 0.2 0.2 0.4 0.2 0.2 2 2 1 1.2070 1.4460
0.2 0.1 0.2 0.3 0.2 0.2 0.8 0.2 0.2 2 2 1 1.0797 1.4223
0.2 0.1 0.2 0.3 0.2 0.2 1.2 0.2 0.2 2 2 1 0.9599 1.3966

0.2 0.1 0.2 0.3 0.2 0.2 0.2 0.4 0.2 2 2 1 1.3370 1.5958
0.2 0.1 0.2 0.3 0.2 0.2 0.2 0.8 0.2 2 2 1 1.4551 1.8261
0.2 0.1 0.2 0.3 0.2 0.2 0.2 1.2 0.2 2 2 1 1.5644 2.0206

0.2 0.1 0.2 0.3 0.2 0.2 0.2 0.2 0.4 2 2 1 1.2743 1.4965
0.2 0.1 0.2 0.3 0.2 0.2 0.2 0.2 0.8 2 2 1 1.2757 1.5653
0.2 0.1 0.2 0.3 0.2 0.2 0.2 0.2 1.2 2 2 1 1.2770 1.6249

Table 3.2: Variable Case
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λ N γ M R Ec α S ε r m Pr

Variable Case (bvp4c)

Cfx
√
Rex

Nux√
Rex

0.4 0.1 0.2 0.3 0.2 0.2 0.2 0.2 0.2 2 2 7 1.3165 3.3786
0.8 0.1 0.2 0.3 0.2 0.2 0.2 0.2 0.2 2 2 7 1.3087 3.3601
1.2 0.1 0.2 0.3 0.2 0.2 0.2 0.2 0.2 2 2 7 1.3004 3.3399

0.2 0.4 0.2 0.3 0.2 0.2 0.2 0.2 0.2 2 2 7 1.4906 3.5813
0.2 0.8 0.2 0.3 0.2 0.2 0.2 0.2 0.2 2 2 7 1.6937 3.7733
0.2 1.2 0.2 0.3 0.2 0.2 0.2 0.2 0.2 2 2 7 1.8761 3.9156

0.2 0.1 0.4 0.3 0.2 0.2 0.2 0.2 0.2 2 2 7 1.3948 3.2867
0.2 0.1 0.8 0.3 0.2 0.2 0.2 0.2 0.2 2 2 7 1.5312 3.1097
0.2 0.1 1.2 0.3 0.2 0.2 0.2 0.2 0.2 2 2 7 1.6544 2.9579

0.2 0.1 0.2 0.4 0.2 0.2 0.2 0.2 0.2 2 2 7 1.3592 3.3349
0.2 0.1 0.2 0.8 0.2 0.2 0.2 0.2 0.2 2 2 7 1.5040 3.1466
0.2 0.1 0.2 1.2 0.2 0.2 0.2 0.2 0.2 2 2 7 1.6348 2.9855

0.2 0.1 0.2 0.3 0.4 0.2 0.2 0.2 0.2 2 2 7 1.3206 3.5845
0.2 0.1 0.2 0.3 0.8 0.2 0.2 0.2 0.2 2 2 7 1.3213 3.9309
0.2 0.1 0.2 0.3 1.2 0.2 0.2 0.2 0.2 2 2 7 1.3219 4.2303

0.2 0.1 0.2 0.3 0.2 0.4 0.2 0.2 0.2 2 2 7 1.3119 2.6691
0.2 0.1 0.2 0.3 0.2 0.8 0.2 0.2 0.2 2 2 7 1.2956 1.8791
0.2 0.1 0.2 0.3 0.2 1.2 0.2 0.2 0.2 2 2 7 1.2796 1.4537

0.2 0.1 0.2 0.3 0.2 0.2 0.4 0.2 0.2 2 2 7 1.2989 3.3806
0.2 0.1 0.2 0.3 0.2 0.2 0.8 0.2 0.2 2 2 7 1.2565 3.3678
0.2 0.1 0.2 0.3 0.2 0.2 1.2 0.2 0.2 2 2 7 1.2144 3.3557

0.2 0.1 0.2 0.3 0.2 0.2 0.2 0.4 0.2 2 2 7 1.3797 3.6156
0.2 0.1 0.2 0.3 0.2 0.2 0.2 0.8 0.2 2 2 7 1.4933 4.0142
0.2 0.1 0.2 0.3 0.2 0.2 0.2 1.2 0.2 2 2 7 1.6000 4.3557

0.2 0.1 0.2 0.3 0.2 0.2 0.2 0.2 0.4 2 2 7 1.6000 4.4003
0.2 0.1 0.2 0.3 0.2 0.2 0.2 0.2 0.8 2 2 7 1.6001 4.4853
0.2 0.1 0.2 0.3 0.2 0.2 0.2 0.2 1.2 2 2 7 1.6002 4.5651

Table 3.3: Variable Case
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Table 3.3 shows that, Cfx increases for N, γ, M, S and decreases for Ec, α. Whereas

it slightly increases for R, ε and slightly decreases for λ. Nux increases for N, R, S, ε

and decreases for Ec, α, λ, γ, M.

3.2.4 Case B: Constant Fluid Proprties

From equations (3.16) and (3.17) the system of first order is:

y1 = f ⇒ y
′

1 = f
′
= y2 ,

y2 = f
′ ⇒ y

′

2 = f
′′

= y3 ,

y3 = f
′′ ⇒ y

′

3 = f
′′′

= My2 + Sy2 +
1

2
Sηy3 + y22 − y1y3 , (3.25)

y4 = θ ⇒ y
′

4 = θ
′
= y5 ,

y5 = θ
′ ⇒ y

′

5 = θ
′′

= θ
′′

=
Pr

1 + R

(
−Ecy23 +

1

2
y5Sη

+Sy4m + ry2y4 − y1y5) .

Table 3.4 demonstrates how Cfx and Nux respond to various parameters like λ, N, γ,

M, R, Ec, and S. It is found that Cfx increases slightly for N, γ, and M. Nux increases

slightly for N. With increasing γ and M, Nux reduces slightly. Nux increases slightly

for R and decreases slightly for Ec. Nux and Cfx both slightly increase with S.
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λ N γ M R Ec S r m Pr
Constant Case (α = 0, ε = 0)

Cfx
√
Rex

Nux√
Rex

0.4 0.1 0.2 0.3 0.2 0.2 0.2 2 2 1 1.3383 1.4231

0.8 0.1 0.2 0.3 0.2 0.2 0.2 2 2 1 1.3312 1.4200

1.2 0.1 0.2 0.3 0.2 0.2 0.2 2 2 1 1.3238 1.4167

0.2 0.4 0.2 0.3 0.2 0.2 0.2 2 2 1 1.5079 1.4707

0.2 0.8 0.2 0.3 0.2 0.2 0.2 2 2 1 1.7075 1.5160

0.2 1.2 0.2 0.3 0.2 0.2 0.2 2 2 1 1.8876 1.5497

0.2 0.1 0.4 0.3 0.2 0.2 0.2 2 2 1 1.4208 1.3991

0.2 0.1 0.8 0.3 0.2 0.2 0.2 2 2 1 1.5667 1.3537

0.2 0.1 1.2 0.3 0.2 0.2 0.2 2 2 1 1.6997 1.3140

0.2 0.1 0.2 0.4 0.2 0.2 0.2 2 2 1 1.3818 1.4116

0.2 0.1 0.2 0.8 0.2 0.2 0.2 2 2 1 1.5316 1.3644

0.2 0.1 0.2 1.2 0.2 0.2 0.2 2 2 1 1.6675 1.3234

0.2 0.1 0.2 0.3 0.4 0.2 0.2 2 2 1 1.3417 1.5129

0.2 0.1 0.2 0.3 0.8 0.2 0.2 2 2 1 1.3417 1.6656

0.2 0.1 0.2 0.3 1.2 0.2 0.2 2 2 1 1.3417 1.7957

0.2 0.1 0.2 0.3 0.2 0.4 0.2 2 2 1 1.3417 1.3214

0.2 0.1 0.2 0.3 0.2 0.8 0.2 2 2 1 1.3417 1.1542

0.2 0.1 0.2 0.3 0.2 1.2 0.2 2 2 1 1.3416 1.0246

0.2 0.1 0.2 0.3 0.2 0.2 0.4 2 2 1 1.4003 1.5581

0.2 0.1 0.2 0.3 0.2 0.2 0.8 2 2 1 1.5127 1.7833

0.2 0.1 0.2 0.3 0.2 0.2 1.2 2 2 1 1.6187 1.9751

Table 3.4: Constant Case (α = 0, ε = 0)
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λ N γ M R Ec S r m Pr
Constant Case (α = 0, ε = 0)
Cfx
√
Rex

Nux√
Rex

0.4 0.1 0.2 0.3 0.2 0.2 0.2 2 2 7 1.3382 3.3419

0.8 0.1 0.2 0.3 0.2 0.2 0.2 2 2 7 1.3312 3.3255

1.2 0.1 0.2 0.3 0.2 0.2 0.2 2 2 7 1.3238 3.3079

0.2 0.4 0.2 0.3 0.2 0.2 0.2 2 2 7 1.5079 3.5358

0.2 0.8 0.2 0.3 0.2 0.2 0.2 2 2 7 1.7075 3.7223

0.2 1.2 0.2 0.3 0.2 0.2 0.2 2 2 7 1.8876 3.8617

0.2 0.1 0.4 0.3 0.2 0.2 0.2 2 2 7 1.4208 3.2480

0.2 0.1 0.8 0.3 0.2 0.2 0.2 2 2 7 1.5667 3.0684

0.2 0.1 1.2 0.3 0.2 0.2 0.2 2 2 7 1.6997 2.9137

0.2 0.1 0.2 0.4 0.2 0.2 0.2 2 2 7 1.3818 3.2978

0.2 0.1 0.2 0.8 0.2 0.2 0.2 2 2 7 1.5316 3.1107

0.2 0.1 0.2 1.2 0.2 0.2 0.2 2 2 7 1.6675 2.9504

0.2 0.1 0.2 0.3 0.4 0.2 0.2 2 2 7 1.3416 3.5528

0.2 0.1 0.2 0.3 0.8 0.2 0.2 2 2 7 1.3416 3.9068

0.2 0.1 0.2 0.3 1.2 0.2 0.2 2 2 7 1.3416 4.2107

0.2 0.1 0.2 0.3 0.2 0.4 0.2 2 2 7 1.3416 2.6342

0.2 0.1 0.2 0.3 0.2 0.8 0.2 2 2 7 1.3416 1.18457

0.2 0.1 0.2 0.3 0.2 1.2 0.2 2 2 7 1.3416 1.4205

0.2 0.1 0.2 0.3 0.2 0.2 0.4 2 2 7 1.4003 3.5772

0.2 0.1 0.2 0.3 0.2 0.2 0.8 2 2 7 1.5127 3.9750

0.2 0.1 0.2 0.3 0.2 0.2 1.2 2 2 7 1.6187 4.3163

Table 3.5: Constant Case (α = 0, ε = 0)
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Table 3.5 shows that, Cfx increases for N, γ, M, S. Nux decreses for λ, γ, M, Ec and

increases for N, R, S.

3.3 Graphical Analysis

We will analyze the variable case graphically in this section. We will look at the

behaviour of dimensionless velocity f ′ (η) and dimensionless temperature θ (η) along

different parameters such as λ, N, γ, R, Ec, α, S, ε.

Figure 3.2 shows that θ (η) first increases and then decreases with the rising vales of

thermal radiation parameter R.
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Figure 3.2: Analysis of temperature for R and its distribution.

From the Figure 3.3(a) it can be seen that f ′ (η) decreases along the increasing values

of M and thickness of momentum boundary layer reduces with it as well. While θ (η)

is increased for the increased values of M and thermal boundary layer thickens with it.

Figure 3.3(b).
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Figure 3.3: (a) Analysis of velocity for M and its distribution. (b) Analysis of temper-
ature for M and its distribution.
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Figure 3.4 demonstrates that when Eckert number Ec grows, θ (η) increases and

thermal boundary layer thickness increases as well.
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Figure 3.4: Analysis of temperature for Ec and its distribution.

When the value of the thermal conductivity parameter ε increases, the temperature

distribution increases along the parameter ε, as seen in Figure 3.5.
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Figure 3.5: Analysis of temperature for ε and its distribution.

In Figure 3.6(a) and 3.6(b), we have plotted the dimensionless velocity and dimen-

sionless temperature with increasing viscosity parameter α. As illustrated in Figure

3.6(a), f ′ (η) decreases with a slight decrease in momentum boundary layer thickness,

as α increases, while θ (η) increases as α increases Figure 3.6(b).
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Figure 3.6: (a) Analysis of velocity for α and its distribution. (b) Analysis of temper-
ature for α and its distribution.
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Figure 3.7(a) shows the effect of increasing the value of unsteadiness parameter S on

the velocity profiles, as S increases, f ′ (η) decreases. Similarly, Figure 3.7(b) shows

that an increase in the value of S will reduce the θ (η) and thermal boundary layer

thickness reduces .
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Figure 3.7: (a) Analysis of velocity for S and its distribution. (b) Analysis of temper-
ature for S and its distribution.
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The dimensionless velocity diminishes as the value of darcy number γ increases, as

shown in Figure 3.8 and momentum boundary layer thickness reduces.
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Figure 3.8: Analysis of velocity for γ and its distribution.

The influence of the fluid parameter N on the dimensionless velocity curves is shown

in Figure 3.9.
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Figure 3.9: Analysis of velocity for N and its distribution.

In Figure 3.10, we prefer to explore the effects of free stream parameter λ on the

velocity profiles.
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Figure 3.10: Analysis of velocity for λ and its distribution.
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Chapter 4

Conclusions

A brief historical background is given in chapter one, along with some basic definitions

and fundamental laws, such as, such as Newtonian and non-Newtonian fluids, com-

pressible and incompressible flow, steady and unsteady flow, MHD flow, and mass, mo-

mentum, and energy conservation. Non dimensional parameters such as the Reynolds

number, Prandtl number, Nusselt number, and Eckert number have also been defined.

At last, a brief description of bvp4c has been given.

In chapter two, we look at an unstable stretching sheet with an extended heat flow

problem, which is causing the MHD fluid boundary layer laminar flow and heat trans-

fer. Using similarity variables, the ODEs are converted into PDEs. The ODEs are

then solved with bvp4c, and the results are plotted and presented in tabular form. The

behaviour of dimensionless temperature and velocity, skin friction coefficient and local

Nusselt number, is investigated in relation to the various parameters.

In chapter Three, the flow and heat transfer of a non-Newtonian fluid across an unsta-

ble stretching sheet is investigated. The movement of which is caused by a stretching

sheet. Numerical solutions for momentum and heat transfer are obtained by employing

bvp4c in matlab. In the presence of the magnetic parameter M, tables and graphs were

utilised to examine dimensionless velocity, dimensionless temperature, local Nusselt

number and skin friction coefficient, thermal radiation parameter R, Eckert number
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Ec, and viscosity parameter α, S is the stability parameter, and free stream parameter

λ, Darcy number γ, fluid parameter N and variable thermal conductivity ε.

1. The comparison of skin friction coefficient in our study with Prasad et al. [11]

and Megahed et al. [12] is listed in Table 3.

2. From section 4, we observe that the momentum boundary layer thickness reduces

slightly for M, α, S, γ, and increases for N.

3. We also notice that the thermal boundary layer thickness increases with Eckert

number Ec, and it also increases slightly with M and α. In the case of S, however,

it decreases.

4. It can be observed that the skin friction coefficient Cfx is more in constant case

as compared to in variable case.
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