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Abstract 

 

This thesis is concerned with the formation of boundary layer near a flat plate/wedge 

placed in water-based nanofluids. In model development, partial slip assumption is 

employed which results in the Robin–type condition in longitudinal velocity component. 

The resulting heat transfer process with a prescribed surface temperature is also 

formulated and analysed using thermal slip condition. In this thesis, two well-known 

theoretical models namely (i) Tiwari and Das model and (ii) Buongiorno model are 

applied. Firstly, buoyancy assisted or opposed Falkner-Skan flow over a heated static 

wedge using Tiwari and Das model is formulated. Here, nanoparticle working fluid is 

assumed to be water based and it contains different nanoparticle materials. The governing 

problem is transformed in to a coupled self-similar boundary value problem whose 

numerical solution is developed by MATLAB package       based on the collocation 

approach. Numerical simulations for velocity and temperature fields are scrutinized for 

full ranges of solid volume fraction     and pressure gradient parameter     under both 

assisting and opposing scenarios. A comparative analysis of wall shear and heat transfer 

rate is conducted for different nanoparticle materials. The computational results clearly 

demonstrate that nanofluid assumption is indeed vital for thermal conductivity 

enhancement of convectional heat transfer fluids. Secondly, Buongiorno’s formulation is 

invoked to model nanofluid transport phenomenon over a flat plate at zero incidence, 

when a prescribed free stream velocity is considered. Here the unconventional condition 

of nanoparticle mass flux is treated. Also, variation of diffusion coefficients with 

temperature is retained and it is concluded that Brownian and thermophoresis diffusions 

have no effects on the thermal heat transfer. 
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Chapter 1 

Introduction 

This chapter includes fundamental concepts concerning boundary layer flows and heat transfer. 

Conservation equations representing boundary layer flows over flat plate and wedge with 

variable free stream velocity are explained. Dimensionless parameters appearing in this thesis are 

briefly explained. Two well-known nanofluid models and their attributes are described briefly. 

This chapter also presents a comprehensive review related to Falkner-Skan flows and nanofluid 

models. Numerical procedure adopted in the problems is also explained.  

1.1  Boundary Layer Flow 

When a fluid flows over a solid surface, a boundary layer is formed where the relative motion 

between the fluid particles exists due to significant effects of frictional forces. Fluid in contact 

with the solid surface at rest has velocity equal to the wall velocity i.e.; zero velocity, due to no-

slip condition. The layer of fluid near the surface where frictional effects cannot be neglected is 

called boundary layer. The flow outside this layer is unaffected by the wall friction and hence it 

has zero shear stress and moves with the so-called free stream velocity. 

In 1904, Ludwig Prandtl introduced boundary layer theory. His work has directed to an entire 

research community field of study that permits a combination of viscous flow and inviscid flows 

inside and outside the boundary layers respectively. 

Likewise momentum―boundary layer, a thermal boundary layer also develops when the 

ambient or bulk temperature and the solid surface temperature‖differ due to conduction or 

diffusion. The fluid particle in contact with the surface have the wall temperature and they 

transfer energy between the fluids layers due to which a temperature gradient develops in the 

fluid. Thermal boundary layer refers to the zone where temperature gradient is present. (see Fig. 

1.1) 
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Fig. 1.1: Boundary Layer Flow (source: Internet) 

1.2  Falkner-Skan Flow 

In 1931, Falkner and Skan [1] discovered an interesting family of boundary layer flows. 

Numerical solution for Falkner-Skan flow was found by Hartree in 1937 [2]. Suppose that fluid 

motion occurs over a static or moving wedge making an angle    with the horizontal;   being 

the Hartree parameter that measures the favourable (   ) and unfavorable (   ) pressure 

gradient (see Fig. 1.2). Assume that the external flow is characterized by           where   

and   are constants. Moreover, Hartree parameter   is connected with   according to the 

following: 

   
  

   
    (1.1) 

Blasius boundary layer can be generalized by assuming that wedge makes an angle      with 

non-uniform stream velocity     , In this case, similarity transformations are selected as 

follows: 

  (
         

    
)

 
 

    (
        

     
)

 
 

      

   
  

  
    

  

  
  

(1.2) 

In light of Eq. (1.2), the Navier-stokes equations are transformed as follows: 

           (     )    (1.3) 
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Special Case: 

For flat plate:           , Eq. (1.3) reduces to: 

             (1.4) 

which we recognize as Blasius equation, in which free stream velocity           are kept 

constant. 

 

Fig. 1.2: Falkner-Skan flow 

1.3  Nanofluids 

These are novel heat transfer fluids that have much higher thermal conductivity than the 

conventional coolants. Nanofluid consists of nanoscale particles made up of metals, oxides, 

ceramics, nitride ceramics and carbide ceramics while water, oil, and ethylene glycol are chosen 

as common base fluids. 
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1.4  Mathematical Models for Thermal Transport Using Nanofluids 

 1.4.1 Tiwari and Das Model 

In this model,―nanofluid properties are treated as linear functions of the properties of base fluids 

and‖nanoparticles. Equations of continuity, linear momentum and energy are expressed in the 

following forms: 

       (1.5) 

   (
  

  
       )          

    (1.6) 

  

  
            

    (1.7) 

where   designates the velocity vector and   stands for local fluid temperature. A model for 

effective viscosity     was suggested by Brinkmann [3]: 

    
  

        
     (1.8) 

The well accepted expressions for effective density    , thermal diffusivity    , effective heat 

capacity (   )  
 and effective thermal expansion co-efficient         are given by Oztop and 

Abu-Nada [4]: 

                       
   

(   )  

   

(   )  
       (   )     (   )   

                             

(1.9) 

Furthermore, a widely employed expression for thermal conductivity of nanofluids was proposed 

by Maxwell [5]: 
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(       )            
   (1.10) 

in Eqs. (1.8)-(1.10),   shows nanoparticle volume fraction while subscripts   and   are used to 

signify properties of base fluid and nanoparticle materials respectively. 

1.4.2 Buongiorno Model 

In 2006, Buongiorno [6] came up with a two component nanofluid transport model comprising 

four equations. He identified seven mechanisms that can induce relative velocity between 

nanoparticles and base fluids and argued that only two parameters namely Brownian diffusion 

and thermophoresis are prominent parameters. Based on this conclusion, he presented the 

following set of conservation equations:  

       (1.11) 

   (
  

  
       )           (1.12) 

(   )  
(
  

  
       )                (1.13) 

(
  

  
       )   

 

  
      (1.14) 

where   and    show heat and mass fluxes respectively. These are expressed as: 

                            (     
    

 
)  (1.15) 

in which    and    represents diffusion coefficients due to thermophoresis and Brownian 

motion respectively. These are further expressed as         and         . Furthermore,  

  stands for nanoparticle concentration. Invoking Eq. (1.15), Eq. (1.13) and Eq. (1.14) becomes: 

(   )  
(
  

  
       )    (     )      (         

  

 
)      

(1.16) 

(
  

  
       )    (         

  

 
)  
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1.5  Slip and No-slip Boundary Conditions 

When the velocity of the fluid is not equal to the velocity of the boundary at the interface or there 

is some relative motion between the fluid and the wall then the conditions are termed as velocity 

slip condition. Whereas, the no-slip condition for viscous fluids assumes that the fluid will have 

zero velocity relative to the boundary at the interface. 

1.6  Some Dimensionless Numbers 

1.6.1 Reynolds Number  

The―ratio between inertial and viscous force‖is known as Reynolds number. Mathematically, we 

have 

   
  

 
   (1.17) 

where   denotes the characteristic length,   shows the free stream velocity and   designates the 

kinematic viscosity. Laminar and turbulent flow regimes can be distinguished by using the 

Reynolds number. Laminar flow occurs at low Reynolds numbers where viscous forces are 

prominent. The flow is turbulent at high Reynolds numbers where inertial forces are dominant. 

1.6.2 Schmidt Number  

The Schmidt number      defines the ratio of momentum diffusivity (kinematic viscosity) to the 

mass diffusivity. It characterizes flow situations where momentum and mass diffusions are 

simultaneously occurring. Mathematically, it is given as: 

   
  

 
   (1.18) 

1.6.2 Prandtl Number  

The ratio of momentum diffusion to the thermal diffusion defines the Prandtl number     . It is 

written mathematically as: 
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  ⁄

    ⁄
 

   

 
   (1.19) 

where   shows the fluid’s thermal diffusivity. 

1.6.3 Grashof Number  

The Grashof number, named after Franz Grashof, is a dimensionless number that gives the ratio 

of buoyant force to the viscous force.  

Mathematically, 

   
             

             
 

      
 

  
   (1.20) 

where    represents the thermal expansion coefficient. 

1.6.5 Nusselt number 

The Nusselt number      characterizes the relative importance of convective to that of 

conductive heat transfer. Mathematically, it is expressed as: 

   
  

 
   (1.21) 

where   shows the characteristic length,   stands for convective heat transfer coefficient and   

shows fluid thermal conductivity. Nusselt number reflects the dimensionless temperature 

gradient at the surface of solid. 

1.7  Oberbeck-Boussinesq Approximation 

Oberbeck-Boussinesq approximation is used to deal with flow problems like natural convection. 

According to this approximation, it is assumed that density variations have a little effect on the 

flow field other than to cause buoyancy forces. The density of fluid must be a function of the 

temperature for thermal convection to occur and hence density takes the form: 

     [          ]   (1.22) 

 

where   is―the fluid density at temperature    and    is the coefficient of thermal expansion. 
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In general, for compressible flow, the momentum equation can be expressed as: 

 (
  

  
       )        (    

 

 
       )      (1.23) 

where               is the strain rate tensor,   is the fluid velocity,    is the density,   is 

the pressure,     is the dynamic viscosity of the fluid,    is the identity matrix, and   is the 

acceleration due to gravity. 

The continuity equation for compressible fluid is 
 

 

  

  
        

According to the Oberbeck-Boussinesq approximation, density variation is only significant in the 

buoyancy factor   , and it can be ignored in the rest of the equation. This result (1.23) in: 

  (
  

  
       )        (    

 

 
       )      (1.24) 

Except in the body force term expressing the buoyancy force, the temperature and pressure-

dependent density  , has been replaced with a constant density   . 

Since the magnitude of  
 

 

  

  
  is small compared with the term    , the continuity equation  

 

 

  

  
        reduces to the incompressible form        under the Boussinesq 

approximation. As a result, the term 
 

 
        in the Navier-Stokes equations is zero‖as well. 

The viscosity     is also commonly believed to be constant. As a result, the diffusion term 

  (           ) can be recast as     . By using these above assumptions, equation (1.24) 

can be written as follows: 

  (
  

  
       )               (1.25) 

The buoyancy term    can also be stated as                 in view of equation (1.22). So 

the equation for conservation of momentum becomes: 

  (
  

  
       )                                (1.26) 



15 
 

1.8  Heat Transfer  

The thermal flow of energy between physical systems is known as heat transfer. Heat 

transmission is possible if there is a temperature difference between two physical systems. Heat 

can be transferred across systems in three ways: radiation, convection, and conduction. 

1.8.1 Conduction 

 The process of heat transfer caused by molecule collisions is known as conduction. Heat 

conduction, electrical conduction, and sound conduction are all terms that are frequently used to 

describe three different types of activity. Fourier proposed that the rate of heat transfer per unit 

area is proportional to the temperature gradient, i.e., 

 

 
   

  

  
  (1.27) 

 where    is the proportionality constant known as thermal conductivity   is the area,    is the 

heat transfer rate and 
  

  
   is the temperature gradient in the preceding equation.  

1.8.2 Convection  

Convection is the movementoof fluid particles from a location of high thermal energy to a region 

of low thermal energy. It is the energy transfer caused by bulk fluid motion in fluid dynamics. 

The nature of convective heat transmission is determined by the flow. As a result, there are three 

types of convection: Natural (free) convection, Forced convection and mixed convection. Heat 

transfer mechanismogiven by Newton’s law of cooling as 

 

 
  (     )  (1.28) 

 in which    shows wall temperature whereas    is surrounding temperature characterized by 

heat transfer coefficient  . 

1.8.3 Radiation 

 In the infrared and visible portions of the electromagnetic spectrum, radiation is the transfer of 

thermal energy carried by photons of light. Radiation is a mechanism by which all bodies 

constantly emit thermal energy. It can be sent without the use of any medium. 
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1.9  Mass Transfer  

Mass transfer refers to the movement of chemical species from one location to another as a result 

of a concentration gradient. Diffusion is the same as conduction when it comes to mass transfer. 

Heat and mass transport are both kinetic processes that can be investigated independently or 

together. It is more efficient to couple heat and mass transfer equations in the case of diffusion-

convection phenomena. 

1.10 Literature Review 

Falkner-Skan model, discovered decades ago by Falkner and Skan [1], has central importance is 

fluid dynamics of wall-bounded flows. It is characterized by a laminar boundary layer formed on 

a wedge in the existence of an external free stream velocity          The authors in [1] 

proposed a transformation technique that yields flow problem involving a parameter   

        , measuring the adverse or favorable pressure gradient. Some approximate 

procedures were adopted for analysing the self-similar system in [1]. Later, Hartree [2] came up 

with a numerical approximation of self-similar Falkner-Skan equation using shooting method. 

More detailed analysis of the Falkner-Skan equation was provided by Stewartson [7] who found 

a lower bound    of   , beyond which the solution does not exist. He also discovered that dual 

solutions exist in the range       . Yang and Chein [8] reported unique analytic solutions 

comprising of hyper geometric functions, for Falkner-Skan model when     . Brauner et al. 

[9] later showed that Falkner-Skan equation with      can be reduced to the Ricatti equation. 

Owing to its theoretical significance, a considerable research concerning Falkner-Skan flow 

under different situations is published to date. Local similarity solutions for visco-elastic 

Falkner-Skan flow were found by Rajagopal et al. [10] utilizing second-grade model. Their 

results predicted the contribution of elastic effects on the pressure gradient driven flow adjacent a 

wedge. Later, the contribution of surface porosity on the boundary layer was numerically studied 

by Watanabe [11]. Yih [12] investigated self-similar PDEs representing forced convection heat 

transfer over a porous wedge with suction or blowing using Keller-Box numerical scheme. 

Asaithambi [13] applied a finite difference technique to deal with the Falkner-Skan model, by 

transforming the semi-infinite physical domain to the unit interval [0,1]. The author indicated 

that the computational effort required by finite difference approach is considerably less in 
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comparison to the Newton method based shooting algorithm. Falkner-Skan model with 

viscoelastic fluid governed by FENE-P constitutive equation was treated numerically by 

Olagunju [14]. Author showed that self-similar solution is achievable only when        is 

chosen. Yacob et al. [15] formulated Falkner-Skan motion by considering nanoparticle working 

fluid and studied the consequences of solid volume fraction on resulting heat transfer for various 

nanoparticle materials. Quite recently, closed form analytical results for Falkner-Skan flow and 

accompanying heat transfer were developed by Fang et al. [16] in a special case where       

Further studies featuring Falkner-Skan flows under different scenarios include those published 

by Hayat et al. [17], Turkyilmazoglu [18], Merkin [19], Das et al. [20], Dinarvand [21], 

Awaludin et al. [22], and Wang [23]. 

Nanotechnology has been largely adopted in industries since materials with nanoscale sizes 

exhibit distinct chemical and physical properties. A relatively new class of fluids containing 

emulsions or suspensions of nanostructures (such as fibers, tubes, particles, droplets) in fluid 

media (water, ethylene glycol etc.), are termed nanofluids. Eastman et al. [24] discovered that 

thermal conductivity of ethylene glycol fluid rises up to 40% when only 0.3% volume fraction of 

copper particles with diameter <10 nm are dispersed in it. Several unique applications of such 

fluids, requiring rapid and efficient heat transfer have been identified. Also, various interesting 

review articles outlining remarkable applications of such fluids in solar power technology, in 

microelectronics, in large scale cooling, in biomedicine, in machining and in transportation are 

published (see, for instance [25]-[27] and articles there in). A frequently adopted mathematical 

model was introduced by Buongiorno [6] in 2006 that considers the contributions of Brownian 

diffusion and thermophoresis in transport equations. Buongiorno’s approach was initially 

followed in a series of papers by Nield and Kuznetov [28]-[32] dealing with natural convection 

along a flat plate embedded in nanofluid. In these papers, the diffusions were assumed to be 

constant and temperature differences were assumed sufficiently small. It was later reported by 

Myers et al. [33], the Buongiorno’s framework was not accurately reported by many studies 

including the ones cited above. They noticed that both Brownian diffusion and thermophoresis 

effects do not alter the heat transfer performance of a nanoparticle working fluid, which is quite 

opposite to what has been claimed in several past papers. Formulation proposed in [6] has been 

adopted in many other papers to examine a wide variety of flow models (see refs. [34]-[37] and 

articles there in). Tiwari and Das [38] put forward a single-phase model for nanofluid thermal 
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transport, in which thermo physical properties of resulting nanofluid were expressed as linear 

combinations of properties of base fluid and its constituents. This model was utilized in 

numerous articles to explore nanofluid insights in well-known boundary layer flows (see refs. 

[39]-[42] and articles there in). 

1.11 Objectives of the Thesis 

Motivation of current thesis is twofold. Firstly to consider buoyancy effects in Falkner-Skan flow 

of water based nanofluids under partial slip boundary conditions. Here, for the first time, 

buoyancy force term for Falkner-Skan flow of nanofluid is formulated using Tiwari and Das 

model [39]. To preserve self-similarity in the arising system, it is further assumed that wedge 

surface temperature is proportional to      . Contribution of nanoparticle volume fraction 

towards heat transfer enhancement in Falkner-Skan flow is scrutinized via detailed numerical 

results. Notably, the aforementioned problems reduce to the classical Blasius flow model of flat 

plate at zero incidence when      

Secondly, the two phase Buongiorno model is implemented to analyse slip flow past a flat plate 

with variable free stream velocity. Numerical simulations are executed via MATLAB routine 

bvp4c, which has been widely employed these days for the similar boundary layer flows.  

1.12 bvp4c 

Flows occurring in physical world are governed by complex non-linear partial differential 

equations. These equations may have no solution, have a finite number, or may have infinitely 

many solutions. In order to get MATLAB programs require the user to provide with the initial 

guesses for the solution required and also for the parameters involved in the governing 

equations. A nonlinear multipoint boundary value problem can be solved using a built-in 

function in MATLAB that is based on collocation approach. Third order differential equations 

are reduced to first order ordinary differential equations in order to use this approach. For more 

accurate results, the guesses are offered. Changes in step size can be adjusted to improve 

accuracy. 
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Chapter 2 

Buoyancy influenced Falkner-Skan slip flow of nanofluids utilizing Tiwari 

and Das model 

2.1 Introduction 

The study of heat transport and boundary layer flow of water based nanofluids over a heated 

static wedge under partial slip boundary conditions is covered in this chapter. To preserve self-

similarity in the arising system, it is further supposed that temperature of wedge surface is 

proportional to      . The controlling―system of partial differential equations (PDEs) is 

transformed into a system of nonlinear ordinary differential equations (ODEs) using similarity 

transformation, and then numerically solved using the MATLAB bvp4c function. The numerical 

values for the wall shear stress and Nusselt number, as well as velocity and temperature, are 

presented in graphs and tables. Graphs and tables in Section (2.4) illustrate the effects of various 

parameters on flow and heat transfer‖characteristics. 

2.2 Basic Equations and Similarity Solutions using MATLAB Package bvp4c 

Consider the Falkner-Skan flow situation (illustrated in Fig. 1), that involves water based 

nanofluids along a heated wedge making an angle      with the horizontal. We treat the case of 

static wedge where pressure gradient is applied to achieve a prescribed free stream velocity 

        , where     is a constant. Let   and   designate velocities along the    and    

directions where coordinate   extends along the wedge surface and   is normal to it. Unlike most 

of the past studies, present work retains the contribution of buoyancy force term on the on 

resulting flow phenomena. In addition, partial slip assumption is invoked that leads to Robin-

type condition for both tangential velocity and temperature. Tiwari and Das formulation will be 

implemented to seek how solid volume fraction of four different kinds of nanoparticle materials 

(namely copper (  ), alumina (      , copper-oxide (     and titania (     ), affects the flow 

field. In this case, a prescribed surface temperature distribution is assumed which ensures that 

developed problem admits a self-similar solution. Invoking the Oberbeck-Boussinesq 

approximation and Tiwari and Das nanofluid model [38] as well as the Bernoulli’s equation in 
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free stream, the governing non-linear PDEs of mass, momentum and energy can be written as 

follows: 

  

  
 

  

  
    (2.1) 

 
  

  
  

  

  
   

  

  
    (

   

   
)   

       

   

          
  

 
   (2.2) 

( 
  

  
  

  

  
)  

   

       

   

   
  (2.3) 

where                            and     represents the effective kinematic viscosity, effective 

density, effective thermal conductivity, effective heat capacity, and co-efficient of thermal 

expansion respectively. Table 2.1 shows theoretical models for these quantities, whereas thermo-

physical properties of water and nanoparticles are listed in table 2.2. 

 

Fig. 2.1: Physical representation and coordinate system 
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Table 2.1:―Effective thermo physical properties of nanofluids where subscripts      and   relate to fluid, 

nanofluid and nanoparticles respectively‖(Oztop and Abu-Nada [4]). 

Properties
 

Models
 

Dynamic viscosity      
 

    
  

        
 

Kinematic viscosity (    )     
  

         (           )

 

Density      
                

 

Heat capacity (   )  

 (   )  
                       

 

Thermal conductivity     
 

      

                      

                    
 

Thermal diffusivity (   )
 

    
   

(   )  

 

Buoyancy co-efficient                                    
 

 

Table 2.2: Thermo physical properties of base fluids and nanoparticles [4]. 

Property Base fluid       Cu                

   [ 
       ] 4179 385 765 4179 531.8 

  [        ] 0.613 400 40 8.954 76.50 

  [    ] 997.1 8933 3970 4250 6320 

        [   ] 21 1.67 0.85 0.9 0.85 

The flow problem is subjected to the following slip boundary conditions: 

         

  

  
                     

  

  
             

(2.4) 

                         

where,   and   represents the velocity components along the    and   directions respectively. 

             ⁄    ⁄  and                ⁄    ⁄  are variable velocity and thermal slip 

factors respectively. 
 

In order to reduce the Eqs. (2.1) - (2.3) into ODEs, following similarity transformation variables 

are used [43]: 

  (
         

    
)

   

       (
        

     
)

 
 

             
    
     

  (2.5) 
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where   is―the dimensional stream function and is expressed in the usual form as       ⁄   

and         ⁄ ,   is the dimensionless temperature distribution of the nanofluid,   is the 

dimensionless stream function and   is independent similarity‖variable.   

By substituting Eq. (2.5) into governing non-linear PDEs (2.2) and (2.3), give us a following set 

of dimensionless non-linear ODEs: 

 

  
          

  

   
(     )  

 

   

  
  

     (
  

 
)     (2.6) 

 

  

   

     
         

   

   
          (2.7) 

where, 

In Eqs. (2.6) and (2.7),      (   ) 
   ⁄  represents base fluid Prandlt number,   

      ⁄ represents Hartree pressure gradient parameter and              ⁄  

         
 ⁄   represents the mixed convection parameter in which                    ⁄  

and         ⁄  denote the Grashof and Reynolds number respectively. Furthermore, we notice 

that   is a constant, with     corresponds to opposing flow and     corresponds to assisting 

flow , while     represents the case when buoyancy force is absent (forced convection). 

The boundary conditions (2.4) transform to: 

                           
 
                   

        
 

                      , 
(2.8) 

                        
 

where    and   are termed velocity and thermal slip parameters. These are defined below:   

           {       
  

  
}              

      
      

              
  

  
  

          
      

      
. 



23 
 

     (
 

   
)

   

           (
 

   
)

 
 

   (2.9) 

In Eq. (2.9),     and   is the velocity slip parameter and thermal slip parameter respectively.  

Shear stress encountered at the wall is evaluated as follow:
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  (2.10) 

Eq. (2.10) can be used to evaluate the skin friction coefficient          
    :
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)
         

         
  (2.11) 

where            defines the local Reynolds number. 

Defining the local Nusselt number                    with             ⁄      

representing heat flux at the surface, we reach the following result: 

     
         (

   

 
)
   

       (2.12) 

To discover physical insights in the present model, Eqs. (2.11) and (2.12) clearly show that one 

must focus on the values of        and      . 

For the solution of boundary-value problem comprising Eqs. (2.6) and (2.7) together with 

conditions (2.8), an easy to apply yet reliable package bvp4c of MATLAB is used. By using the 

following substitution: 

                                               (2.13) 

 

the equivalent first-order system is found given below: 
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      (2.17) 

  
      

  

   
{
    

   
           }  

(2.18) 

Eqs. (2.14)-(2.18) are solved by bvp4c routine that applies collocation approach which yields 

C1-continuous polynomial valid in the domain of interest. In table 2.3, present code is validated 

by comparing the data of        with the existing studies and such comparison appears excellent. 

Table 2.3: Effect of pressure gradient parameter   on wall shear stress        when    . A 

comparison of results with the existing papers.  

 

  

       
Rosenhead 

[44] 

Watanabe 

[11] 

Yih et al. 

[12] 
Yacob et 

al. [15] 

Dinarvand 

[21] 

Present 

results 

0  0.46960 0.469600 0.4696 0.469600 0.469600 

1/11  0.65498 0.654979 0.6550 0.654993 0.654994 

0.2  0.80213 0.802125 0.8021 0.802125 0.802126 

1/3  0.92765 0.927653 0.9277 0.927680 0.927680 

0.5  1.03890  1.0389 1.038903 1.038900 

1 1.232588  1.232588 1.2326 1.232587 1.232590 

 

2.3 Analysis of Computational Results 

In this section boundary value problem comprising equations (2.6) and (2.7) along with the 

condition (2.8) have been dealt with the above mentioned procedure. The computational results 

are utilized to explore the velocity and temperature curves under different controlling 

parameters. Numerical data of        is generated at different m-values in the special case where 

     . These results appear in perfect match with the corresponding data found by previous 

authors. Having ascertained the validity of MATLAB code, we now divert our attention to the 

discussion concerning physical intuition of the model. Figs. (2.2)-(2.12) correspond to the 

numerical solutions of Eqs. (2.6) and (2.7) formulated under Tiwari and Das model.  

Fig. 2.2 include profile of       representing  -component velocity profile for different values 

of  , measuring the favorable pressure gradient. By increasing parameter  , the pressure 

gradient enlarges due to which flow parallel to the wedge accelerates. It is also evident that it 

requires a lower value of   for the velocity profile to achieve its free stream condition, when 

https://www.sciencedirect.com/science/article/pii/S1290072910002863#!
file:///C:/Users/kami/Desktop/final%20paper-Falkner-Skan-01-08-2021.docx%23fig1
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larger value of   is selected. This illustrates that boundary layer thickness is suppressed by 

increasing the pressure gradient. It is notice that deviation in the profiles corresponding to 

opposing flow is more pronounced when compared with assisting flow situation    . 

Fig. 2.3 include  -curves for different choices of    under both assisting and opposing flow 

scenarios. Clearly thermal boundary becomes thinner for increasing   values. This predicts that 

the heat transfer rate from the boundary is an increasing function of parameter  .  

Fig. 2.4 scrutinizes the role of buoyancy force on the Falkner-Skan flow with nanoparticles, we 

compute   velocity and temperature profiles by changing the values of   , the mixed 

convection parameter. For positive values of  , buoyancy force serves as favorable pressure 

gradient its effect is therefore similar to that of   in qualitative sense. It is revealed that 

transverse velocity component   has an increasing relationship with parameter  .  

Fig. 2.5 is generated for see the consequences of buoyancy force term on the temperature profile 

with and without nanofluid assumption. For increasing  -values transverse velocity component   

enlarges due to which higher amount of cold fluid is being drawn towards the hot wedge surface. 

This leads to the thinning of thermal boundary layer as apparent from Fig 2.4. The effect of   on 

temperature profiles is relatively less compared to the velocity profiles because this parameter 

does not appear directly in the similarity energy equation. Moreover, a clear rise in thermal 

boundary layer thickness becomes evident due to the consideration of nanoparticles. 

The curves of velocity field       obtained by varying velocity slip parameter    are portrait in 

Fig. 2.6. At the wedge surface, the tangential velocity component   relates to the shear stress 

encountered due to the consideration of slip boundary condition. Resultantly by increasing slip 

coefficient, shear stress at the wall is lowered which leads to a decrease in       . This in turn 

enhances the graph of    as noted from Fig. 2.6. Such behavior is qualitatively similar for both 

positive and negative values of parameter  . 

Fig. 2.7 convey that for both assisting and opposing flow the temperature profile decreases with 

the increase of thermal slip parameter  . It is due to the fact that when the   increases, it reduces 

frictional heat between nanofluid and the wedge surface. Consequently, the temperature reduces 

in the boundary layer region and the thermal boundary layer thickness decreases.  

file:///C:/Users/kami/Desktop/final%20paper-Falkner-Skan-01-08-2021.docx%23fig2
file:///C:/Users/kami/Desktop/final%20paper-Falkner-Skan-01-08-2021.docx%23fig4
file:///C:/Users/kami/Desktop/final%20paper-Falkner-Skan-01-08-2021.docx%23fig5
file:///C:/Users/kami/Desktop/final%20paper-Falkner-Skan-01-08-2021.docx%23fig6
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In Fig. 2.8, we investigate how temperature curve   is affected by the presence of 

nanoparticles     . The graph of effective thermal conductivity     versus volume fraction   

shows the linear growth in     with  . For such reason thermal boundary layer thickness 

elevates whenever nanoparticle working fluid is considered. 

Fig. 2.9 displays the curves of skin friction coefficient (represented by       
   

  against   for 

wide variety of mixed convection parameter. Interestingly, for sufficiently higher values of  , 

almost a linear growth in skin friction coefficient with   is evident. Fig. 2.10 presents the 

profiles of local Nusselt number as functions of   for various values of Prandtl number   . For 

increasing   -values, heat convection becomes stronger compared to pure conduction which 

results in higher value of wall temperature gradient. Also, heat transfer rate vanishes when    

 .  

Figs. 2.11 and 2.12 portray the contribution of solid volume fraction   on skin friction factor and 

local Nusselt number respectively. Here computations are worked out for four different 

nanoparticle materials. The Brinkman model [3] of viscosity signifies a direct relationship 

between the dynamic viscosity     and  . Consequently, with an enlargement of    the skin 

friction coefficient grows (in non-linear fashion). Furthermore, highest and least values of skin 

friction factor/local Nusselt number occur, respectively, for copper-Cu and alumina-      

nanoparticles. 

In table 2.4, the numerical data for        and       is assessed by changing the mixed 

convection parameter  , the velocity slip parameter    and nanoparticle volume fraction  . Heat 

transfer rate grows upon increasing the strength of buoyancy force. Furthermore, a considerable 

reduction in heat transfer rate is found whenever nanofluid assumption is incorporated. It is 

natural to notice an augmentation in skin friction coefficient due to the inclusion of 

nanoparticles. 
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Fig. 2.2: Variation in velocity profile        with   

for different choices of  . 

 

 

Fig. 2.3: Variation in temperature profile      with 

  for different choices of  . 

  

Fig. 2.4:―Variation in velocity profile        with   

for different choices‖of   . 

Fig. 2.5: Variation in temperature profile      with 

  for different choices of   . 
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Fig. 2.6: Variation in velocity profile        with   

for different choices of   . 

 

 

Fig. 2.7: Variation in temperature profile     with 

  for different choices of   . 

  

Fig. 2.8: Variation in temperature profile      with 

  for different choices of  . 

Fig. 2.9: Variation in skin friction coefficient  with 

  for different values of   . 
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Fig. 2.10: Variation in―local Nusselt number  with 

  for different values of   . 

Fig. 2.11: Variation in skin friction coefficient  

with   for different types of nanoparticles. 

 

 

 

Fig. 2.12: Variation in local Nusselt number with   for different types‖of nanoparticles. 
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Table 2.4: Numerical data of skin friction coefficient               ⁄  and local Nusselt number 

       for different sets of mixed convection parameter  , velocity slip parameter    and volume 

fraction   with       .  

       
(
   

 
)
         

        
  (

   

 
)
   

      

-1.5  

 

 

0.2 

 

 

 

 

 

0.1 

0.63293   2.03664 

-1 0.66654   2.06641 

0 0.73026   2.12071 

0.5 0.76061   2.14567 

1 0.79009   2.16938 

 

 

 

1.5 

 

 

 

 

0.81878   2.19199 

0.25 0.76647  2.26216 

0.75 0.45621   2.59342 

 

 

1 

0.37729   2.66118 

0.2 0.40615   2.44402 

0.25 0.41788  2.33497 

0.3 0.42834   2.22629 
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Chapter 3 

Buongiorno model for slip flow past a flat plate with variable free stream 

velocity 

3.1 Introduction 

In this chapter, boundary layer formation over a flat horizontal plate with stream wise pressure 

gradient is studied. Two-phase Buongiorno model is accounted to forecast the roles of Brownian 

diffusion and thermophoresis effects attributed to the presence of nanoparticles. Slip conditions 

and zero nanoparticle mass flux assumption are invoked and self-similarity solution is derived 

using MATLAB’s bvp4c.  

3.2 Basic Equations and Similarity Transformations 

Assume that nanofluid motion occurs over a flat horizontal plate at rest with a variable free 

stream velocity of power-law         , where   is constant and   is pressure gradient 

power law parameter (see Fig. 3.1). If       denote velocities along horizontal and vertical 

directions,   designates local temperature and   stands for nanoparticle concentration, then 

conservation equations can be written in the following manner: 
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where                     are Brownian diffusion and thermophoresis diffusion 

coefficients respectively.                      denotes the effective density, kinematic 
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viscosity, thermal conductivity and volumetric heat capacity respectively. Since here we have 

ignored the variations in volume fraction   and hence set these nanofluids physical properties 

that are functions of   as kept constant or as same as of the base fluid. 

Relevant boundary conditions are expressed below: 

           

  

  
                     

  

  
        

  

  
   

 

 

  

  
            

(3.5) 

                             . 

 

Fig. 3.1: Physical representation and coordinate system 

Choosing the following similarity transformations [43]: 
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The governing equations (3.1) - (3.4) transform to the following ODEs: 

          
  

   
(     )     (3.7) 

 

    
                               (3.8) 

    
  

  
     

  

  
{                        

  

  
}           (3.9) 

where           ,      defines the nanofluid Prandtl number,    and    are termed as 

Brownian motion and thermophoresis parameters and    defines the Schmidt number. The 

assumption used by Buongiorno that       allowing us to replace           with    

while deriving Eqs. (3.7)-(3.9). The dimensionless parameters appearing in (3.7)-(3.9) are: 

     
(   )  

   

   
  

(3.10) 
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   (   )  

       
   

    
  

Furthermore, the boundary conditions (3.5) assume the following forms: 

             
 
                

     
 
           

  

  
                    

(3.11) 

                             

The expressions of    and    are similar to those of    and   where     is replaced with      

The shear force at the plate is calculated as follows: 

       (
  

  
)
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  (3.12) 

Eq. (3.12) can be utilized to determine normalized skin friction    defined below: 

   
  

    
 
  (3.13) 
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which can be transformed to the following: 

       
   

   (
   

 
)
   

        (3.14) 

where                expresses the local Reynolds number. 

The local Nusselt number is defined as:  

    
   

          
   (3.15) 

where                   represents heat flux at the surface. Heat transfer rate can be 

estimate by using local Nusselt number. By transformation (3.6), Eqs. (3.15) converts to the 

following: 

     
         (

   

 
)
   

       (3.16) 

3.3 Numerical Results and Discussion 

The set of coupled PDEs (3.1) - (3.4) along with boundary conditions (3.5) are transformed in to 

similar forms via generalized Blasius transformations (3.6). Similar to the Chapter 2, the self-

similar system is evaluated numerically by MATLAB routine bvp4c. In this section, our entire 

focus will be to understand any contribution of diffusion coefficients on nanofluid heat transport 

phenomena. 

Consequences of the change in Brownian diffusion effect on the concentration profile are 

illustrated graphically in Fig. 3.1. In light of Eq. (3.10), one can express    
  

  
(
      

(   )
  

). It 

implies that change in    can be linked with the corresponding change in   . Due to this reason, 

the values of Schmidt number    are adjusted for all selected values of    in Fig. 3.1. Brownian 

motion refers to the random motion of nanoparticles in that base fluid. As Brownian diffusion 

strengthens, the concentration boundary layer expands indicating that the presence of 

nanoparticles in larger extent of the fluid.  
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In order to figure out how the thermophoretic diffusion influences the nanofluid medium, we 

computed concentration profiles for various choices of    in Fig. 3.2. In thermophoretic 

diffusion, nanoparticles surrounding the hot surface are driven away from it (i.e. towards the 

region of lower temperature gradient). The expression of    clearly suggests that variation in    

can be caused by the corresponding change in temperature difference   . As expected, the  -

profile becomes broader/thicker for higher values of   . 

It is worth-pointing here that contribution of    and    on temperature/heat transfer rate is not 

observed, which is also explained in detail by Myers et al. [33]. 

To visualize the contribution of pressure gradient parameter   on  , Fig. 3.3 is presented. A 

marked reduction in concentration penetration depth is witnessed for increasing  -values. 

 

 

  

Fig. 3.1: Variation in concentration profile      
with   for different values of   . 

Fig. 3.2: Effects of different values of    on 

concentration profile      with  . 
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Fig. 3.3: Variation in concentration profile       with   for different values of  . 
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Chapter 4 

Conclusion and Future Works 

In this thesis, first we have studied the buoyancy effects in Falkner-Skan flow of water based 

nanofluids under partial slip boundary conditions using Tiwari and Das model. The 

accompanying heat transfer process inspired by the buoyancy effect is also addressed under 

assisting and opposing flow scenarios. Here correct version of buoyancy force term arising for 

the Falkner-Skan problem is just derived. Secondly, we have studied two phase Buongiorno 

model to analyse slip flow past a flat plate with variable free stream velocity. Here the volume 

fraction of nanoparticle is kept constant while taken in to account the concentration of 

nanoparticles. 

  Observations drawn on the basis of numerical simulations are outlined as follows: 

 A considerable growth in the thermal boundary layer thickness is found when 

nanoparticle volume fraction is considered; consequently, the wall slope of temperature 

profile       measuring the wall heat transfer rate decreases for increasing value of  . 

 Naturally, buoyancy force term assists or opposes the fluid motion along the wedge 

surfaces for positive and negative values of   respectively. 

 Variations in computational results by changing parameter   appear similar with and 

without addition of nanoparticles. 

 In the existence of wall slip parameter, the momentum boundary layer is considerably 

suppressed compared with the corresponding no- slip case. 

 The presence of thermal slip leads to the thinning of temperature profile which results in 

enhanced heat transfer from the surface. 

 When there is an increase in mixed convection parameter    a noticeable increase in the 

values of wall shear is observed.  

 Increasing the value of      results in the increase of the heat transfer rate. 

 For          and            , the skin friction coefficient and the Nusselt number 

have highest and lowest values respectively. 
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 The Brownian parameter    and thermophoresis parameter    have no effect on 

temperature profiles while they do have effects on the concentration profiles. Higher and 

lower concentration is associated with an increase in Brownian motion and 

thermophoresis motion respectively. 

 The concentration profile    has a direct relation with the pressure gradient power 

parameter  , measuring favourable pressure gradient. 

The Tiwari and Das model has revealed theosignificant results to focus on the pressure 

gradient effects, slip effects and  volume fraction of nanoparticles on the flow of nanofluids 

over static wedge whereas the Buongiorno model indicated the Brownian and thermophoresis 

effects on the concentrations profile. Future research could look in to the use of temperature 

dependent thermal conductivity, viscous dissipation, convective boundary conditions and 

MHD fluid flow and heat transfer of nanofluids for falkner-Skan flow over static/moving 

wedge. 
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