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Abstract

This dissertation aims to find a geometric invariant as well as the algebraic invariant
of the graphs. The desire is to obtain required invariants such as depth and Stanley
depth by using edge ideals as module over a polynomial ring as well as the quotient of
polynomial ring by monomial ideals. For this purpose, square free monomial ideals are
sought and critically reviewed.
In this thesis, we find the exact values of depth and Stanley depth of quotient of the
polynomial ring by the edge ideal associated with a Tadpole graph. It is shown that
the values of these two invariants coincide. We also find the tight bounds for Sdepth
and Depth of quotient of the polynomial ring by the edge ideal corresponding to square
of a Tadpole graph.
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Introduction

In 1982, Richard P. Stanley gave a conjecture [21] in which he proposed a relationship
between geometric invariant Stanley depth(Sdepth) and homological invariant depth.
The idea of using techniques and methods of Commutative Algebra for sorting out the
problems of Combinatorics has became a running trend and current focus of research
after the contribution of Stanley. He proposed the concept of linking these two fields
(Commutative Algebra and Combinatorics) by using monomial ideals. The problems
in Combinatorics is ciphered typically in a form of square free monomial ideals since
then, the theory of square free monomials boosted up as a very interesting research area
in Commutative Algebra. For any two monomial ideals I ⊂ J , Stanley’s conjecture
was proven for some multi-graded modules of the type Υ = J /I see [1] [13] [2] [16].
But Dual et. al repudiated by giving a counter example; see [6]. In this thesis, the
exact values of depth and Stanley depth for the factor of edge ideal associated with a
Tadpole graph and its square graph are computed.
This thesis contain four chapters.

Chapter 1 incorporates the preliminaries in which elementary concepts, definitions
and core results from Commutative Algebra are being stated. Moreover, It includes
the definitions, notations and primary concepts of Ring Theory and Module Theory.
A precise recap of Graph Theory is given at the end of the chapter.

In chapter 2, a brief introduction of monomial ideals and related concepts are given
including colon ideals, graded rings, regular sequences and Krull dimension etc.

Chapter 3 starts with introduction of Stanley depth along with the definition of
exact sequences succeeding the method of computing Stanley depth in detail with
example. Summing up the chapter with previous published results and well known
theorems.

In the last, the edge ideals associated with Tadpole graph and square of Tadpole
graph are presented in chapter 4. By using mathematical induction and depth Lemma
on short exact sequences, exact values for depth and Stanley depth of above stated two
graphs are computed.

2



Chapter 1

Preliminaries

The following chapter comprise of fundamental definitions and worthy results of Ab-
stract Algebra in order to build a strong background of a reader for advance concepts
that will later stated in forthcoming chapters.

1.1 Ring and Module Theory

Definition 1.1.1. A nonempty set defined over two operations addition(+) and multiplication(·)
is called a ring R which satisfy three axioms as given below:

1. R is an abelian group with respect to +,

2. Multiplication in R is a associative,

3. Distributive over multiplication with respect to addition. That is for all t, i, s ∈ R

• t · (i + s) = (t · i) + (t · s) (Left distributive),
• (i + s) · t = (i · t) + (s · t) (Right distributive).

All over this thesis, a ring is possessing a multiplicative identity 1 which is also
called unity of R.

Definition 1.1.2. A ring R is said to be commutative ring. If all elements i, s ∈ R
commute with respect to multiplication. That is

i · s = s · i.

It must be remembered that throughout this thesis, we are dealing with commuta-
tive rings with unity.

Corollary 1.1.3 ([7]). Let R be a ring. For elements s, q ∈ R, we have
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1. s · 0 = 0 · s = 0,

2. s(−q) = (−s)q = −(sq),

3. (−s)(−q) = +(sq).

Example 1. 1. All of Z (Integers), C (Complex Numbers) and R (Real Numbers)
are commutative rings with number 1 as unity.

2. The set of metrics Mn(R) and Mn(C) with the standard matrix addition and
multiplication are non commutative rings with 1 unless n = 1.

Definition 1.1.4. Let I be a subset of R then I is called an ideal if it is a subgroup
of R with respect to addition and it satisfies the following condition:

• For each s ∈ R and q ∈ I, the product sq ∈ I.

Definition 1.1.5. An ideal that is generated by only one element is said to be principal.

Definition 1.1.6. An improper ideal K of R is called maximal if no such proper ideal
exist that lies in between K and R. Alternatively, for an ideal J ⊂ R, whenever
K ⊂ J ⊂ R infer that either K = J or J = R.

Proposition 1.1.1. Let R be the ring and I is an ideal of R, then the set Q = {y+I :
y ∈ R} form a ring structure under two operations + and · defined by

1. (y + I) + (s + I) = (y + s) + I,

2. (y + I)(s + I) = (ys) + I.

This ring is called factor ring also known as quotient ring and it is denoted by R/I.

Definition 1.1.7. Let R1 and R2 be rings. A mapping

β : R1 → R2

satisfying the following conditions is said to be an isomorphism

• For all t, s ∈ R1, β is homomorphism if

1. β(t + s) = β(t) + β(s),

2. β(ts) = β(t)β(s).

• The mapping is surjective.

• The mapping is injective.
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Definition 1.1.8. An ideal J is called prime if for any q1, q2 ∈ R whenever q1q2 ∈ J
implies that either q1 ∈ J or q2 ∈ J.

Example 2. n∗Z is a prime in the ring of integers when n∗ is a prime number.

Theorem 1.1.1 ([7]). LetK be an ideal in a ringR with 1 6= 0, then the two statements
written below are equivalent

• R/K is a field,

• K is maximal ideal.

Theorem 1.1.2 ([7]). Let J be an ideal in a ringR with 1 6= 0, then the two statements
written below are equivalent

• R/J is an integral domain,

• J is prime ideal.

Definition 1.1.9. A ring R is said to be local if it contains a single maximal ideal.

Example 3. 1. Z9 is a local ring as the ideal generated by (3) = {0, 3, 6} is unique
maximal ideal in Z9.

2. Any field K is a local ring.

Definition 1.1.10. For a commutative additive semi group L. A ring R is L-graded
along with a decomposition(as additive groups)

R =
⊕
q∈L

Rq,

such that RqRs ⊂ Rq+s for all q, s ∈ L. Then for t́ ∈ R can be written uniquely as

t́ =
∑
q∈L

tq,

where tq ∈ Rq and almost all tq = 0 and tq is known to be the qth homogeneous
component. If t́ ∈ Rq, then t́ is called homogeneous of degree q.

Definition 1.1.11. The polynomial ring denoted by R = R[ς] is a ring that consist
of elements of the type

qnς
n + qn−1ς

n−1 + · · ·+ q1ς + q0,

where n ≥ 0 and qi ∈ R with operations defined as component to component addition
and multiplication by
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1.
∑k

i=0 qiς
i +

∑k
i=0 siς

i =
∑k

i=0(qi + si)ς
i,

2.
∑j

i=0 qiς
i ×

∑k
i=0 siς

i =
∑j+k

n=0

∑n
i=0(qisn−i)ς

n.

The ring of polynomial in two variables ς1, ς2 is represented as R[ς1, ς2] = R[ς1][ς2].
Where coefficients are in R. Similarly, inductively we can define

R[ς1, · · · , ςn] = R[ς1, ς2 · · · , ςn−1][ςn]

which is a polynomial ring in n variables where coefficients are coming from R.

Definition 1.1.12. LetR be a ring and Υ be an abelian group with respect to addition.
Then Υ is said to be an R-module, if we can define a mapping

· : R×Υ→ Υ

by
·(r, q) = rq

for every q, q1, q2 ∈ Υ and for each r, r1, r2 ∈ R satisfying the following axioms:

1. (r1 + r2)q = r1q + r2q,

2. r(q1 + q2) = rq1 + rq2,

3. r(q1q2) = (rq1)q2,

4. 1 · q = q.

Definition 1.1.13. Let Υ be an R-module. An element s 6= 0 in R is called regular
on a module Υ also called Υ-regular, if it is a nonzero divisor. That is, whenever q ∈ Υ
and sq = 0, implies q = 0.

Example 4. Let I = (ς2
2 , ς2ς3) be an ideal in a polynomial ring S = K[ς1, ς2, ς3]. Then

ς1 is a regular element on a module Υ = S/I.

Definition 1.1.14. Let Υ be an R-module. Then the annihilator of module Υ is an
ideal of R denoted by AnnR(Υ) and defined as

AnnR(Υ) = {s ∈ R : sq = 0Υ for all q ∈ Υ}.

Definition 1.1.15. The Krull dimension of a ring R is the maximum length of all the
chains of prime ideals defined by inclusion relation.
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Definition 1.1.16. Let R be a ring and Υ be an R-module. The Krull dimension of
a module Υ is same as the Krull dimension of the residue class ring of R.
i.e.

dimRΥ := dim{R/(AnnR(Υ))}.

Example 5. Let S = K[ς1, ς2, ς3, ς4] and ideal K = (ς2
1 , ς2ς3, ς3ς4), then the collection

of all associated primes of S/K is

Ass(K) = {(ς1, ς2, ς3), (ς1, ς2, ς4), (ς1, ς3), (ς1, ς3, ς4)}

So
dim(S/K) = Sup{dim(K[ς4]), dim(K[ς2, ς4]), dim(K[ς3]), dim(K[ς2])}.

Hence
dim(S/K) = Sup{1, 2, 1, 1}.

Thus
dim(S/K) = 2.

Definition 1.1.17. Let R be a ring and Υ be an R-module. Then Υ is called Noethe-
rian if every ascending chain of R-submodules of Υ become static. A ring R is called
Noetherian if considered as being an R-module.

Proposition 1.1.2. A ring R is Noetherian over itself then these three statements are
equivalent.

1. Every nonempty collection of ideals of a ring possess a maximal element.

2. Each increasing chain of ideals is stationary.

3. All the ideals of R are finitely generated.

Example 6. 1. Set of Real Numbers R and Rational Numbers Q are Noetherian
modules over themselves.

2. Every PID is a Noetherian ring.

Definition 1.1.18. Let J be an ideal of a noetherian ring R and Υ be a finitely
generated module over R. Then J is said to be associated prime ideal of a module Υ
if there exist an element q ∈ Υ such that

J = Ann(q) = {s ∈ R : sq = 0}.

Ass(Υ) denotes the collection of all associated prime ideal of Υ.
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Example 7. Let S = K[ς1, ς2, ς3, ς4] and J = (ς1ς
3
2 ς4, ς

2
2 ς3ς

2
4 ), then

J = (ς2
2 ) ∩ (ς4) ∩ (ς1, ς3) ∩ (ς4, ς3),

is unique irredundant primary decomposition of I and set of minimal prime ideals are

Ass(J ) = {(ς4), (ς2), (ς1, ς3)}.

Example 8. Let S = K[ς1, ς2, ς3, ς4] and J = (ς1ς2, ς3ς4, ς2ς3), then

J = (ς1, ς2, ς4) ∩ (ς1, ς2, ς3) ∩ (ς1, ς3) ∩ (ς2, ς3, ς4) ∩ (ς1, ς3, ς4) ∩ (ς2, ς4) ∩ (ς2, ς3).

is unique irredundant primary decomposition of I and set of minimal prime ideals are

Ass(J ) = {(ς1, ς3), (ς2, ς3), (ς2, ς4)}.

1.2 Graph Theory

In 18th century, Leonhard Euler has initiated a branch of Discrete Combinatorial
Mathematics though a famous problem [22] and commenced its formal development by
the middle of 19th century. Graph theory has committed a remarkable growth during
the last 70 years.
Graph theory is a rich field of abstract techniques that allow modeling of different
types of problems including the construction of topological models, data analysis of
operational research, network and circuit illustrations. Graphs represents many digital
programs which make advance communication possible.
Over the last decennium, algebraist got concerned to study the properties of finite sim-
ple graphs by using the concept of monomial ideals. To build connection between these
two areas of mathematics, algebraist borrowed the methods and strategies of Commu-
tative Algebra and applied on Combinatorics. For this purpose, they encoded the
problems into monomial ideals by using the edges of a finite simple graphs. Villarreal,
Froberg, Simis, Vasconcelos were among the starting explorer of this field. Later, in the
connection between Commutative Algebra and Combinatorics, Square free monomial
ideals were being used by Stanley.
The main focus of this chapter is to provide knowledge to the reader about graph the-
ory. This knowledge will help the reader to study further sections and to apply it to
have worthy results.

Definition 1.2.1. A graph G is a mathematical structure represented as an ordered
pair (V(G), E(G)), with V(G) and E(G) are vertex set and edge set of a graph respec-
tively.
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Definition 1.2.2. A graph is planer if there exists an embedding in the plane. More
clearly, when it is drawn on paper then the edges must not cross each other.

ς1

ς2

ς3

ς4

ς5

Figure 1.1: Planer graph

Definition 1.2.3. An undirected graph is called simple if there does not exist any loop
or more then one edge between every pair of vertices.

ς1 ς2 ς3

ς4

ς5

ς6

Figure 1.2: Simple graph

Definition 1.2.4. Let G be a graph with the vertex set V(G). The length of a shortest
or minimal path that connects any two vertices v1, v2 ∈ V(G) is called distance between
v1 and v2.

Definition 1.2.5. Let G be a graph. The maximum distance between the pair of
vertices from vertex set V(G) is called diameter of G denoted by diam(G).

9



D

C E

F
A

B

H

Figure 1.3: Graph G

Here diameter of graph G is 3.

Definition 1.2.6. The degree of any vertex in a graph G is the count of edges incident
to that vertex.

Definition 1.2.7. Let G be a graph with vertex set V(G) = {ς1, ς2, · · · , ςn} and edge
set E(G). A square free monomial ideal in a polynomial ring S = K[ς1, ς2. · · · , ςn] which
is generated by the elements related to the edges of the graph G is called an edge ideal.
That is

I(G) = (ςjςk|{ςj, ςk} ∈ E(G)) ⊂ S.

Definition 1.2.8. A path is a list of vertices with the property that each vertex is
connected to the vertex written next to it in the list. A path with r vertices is denoted
by Pr.

o1 o2 o3 o4 o5

Figure 1.4: P5

Definition 1.2.9. A nontrivial closed path is called a cycle. Cr is the symbolic repre-
sentation of cycle graph with r vertices.
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ρ1

ρ3ρ7

ρ5

ρ6

ρ2ρ8

ρ4

Figure 1.5: C8

Definition 1.2.10. A tree is a graph T in which every two vertices from the vertex
set V(T ) is joined by a unique path.

1

2

3

4

5

6

Figure 1.6: A labeled tree with 6 vertices and 5 edges.

Definition 1.2.11. A star graph is a tree with 1 internal vertex and r outer vertices
incident on it. It is denoted as Sr.

A

2

7

8

6 4

3

5

1

Figure 1.7: A labeled star graph S8 with 9 vertices and 8 edges.
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Definition 1.2.12. The square of a path graph with r vertices is obtained by connect-
ing every pair of vertices by an edge at the distance of two in the path and is denoted
by P 2

r .

%1 %2 %3 %4 %5 %6

Figure 1.8: P 2
6

Definition 1.2.13. The square of a cycle graph with r vertices is obtained by connect-
ing every pair of vertices by an edge at the distance of two in the cycle and is denoted
by C2

r .

i1

i3i7

i5

i6

i2i8

i4

Figure 1.9: C2
8

Definition 1.2.14. The lth power of a path graph with r vertices is the graph in which
two vertices are linked by an edge when their distance in path graph is at most l and
is denoted by P l

r .

Definition 1.2.15. The lth power of a cycle graph with r vertices is the graph in which
two vertices are tie up by an edge when their distance is at most l in the cycle and is
denoted by C l

r.
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Chapter 2

Monomial Ideals

This chapter is devoted to monomial ideals which includes basic concepts and related
properties. This section is extremely helpful to create a dictionary for further working
in coming chapters.

Definition 2.0.1. An ideal J ⊂ S which is generated by monomials of S is called
monomial ideal.

Example 9. The ideal J = (ς3
1 , ς

2
3 , ς4, ς5ς6) is the monomial ideal in S = K[ς1, ς2, ς3.ς4, ς5, ς6].

Definition 2.0.2. For a monomial ideal J ⊂ S, the K-basis of the factor ring of J is
the set of all those monomials that does not belong to J .

Definition 2.0.3. Let S = K[ς1, · · · , ςn] be the ring of polynomial with n variables
and Rn

+ contains n-tuple of the form b = (b1, · · · , bn) ∈ Rn
+ and here Zn+ = Rn ∩ Zn+.

A product of the form v = ςb11 · · · ςbnn with bj ∈ Z+ is called a monomial. We write
v = ςb, where b = (b1, · · · , bn) ∈ Zn+ and we have

ςbςχ = ςb+χ.

Mon(S) is the K-basis for S defined as the collection of all monomials of S. More pre-
cisely, any polynomial g ∈ S is uniquely written as a linear combination of monomials.
That is

g =
∑

v∈Mon(S)

bvv,

with bv ∈ K. Here support of g denoted by supp(g) is represented by the set {v ∈
Mon(S) : bv 6= 0}. Similarly, for a monomial v in MonS we can write support of v as

supp(v) = {ςi : ςi|v}.

Definition 2.0.4. A monomial of the form ςb = ςb11 ς
b2
2 · · · ςbnn is said to be square free

monomial if every bj as a component of b = (b1, b2, · · · , bn) is either 1 or 0.
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Definition 2.0.5. An ideal J in S that is generated by square free monomials is called
square free monomial ideal.

Example 10. Let S = K[ς1, ς2, ς3, ς4, ς5, ς6] be a polynomial ring then the ideal J =
(ς1ς2ς3, ς2ς3ς4, ς3ς4ς5) is a square free ideal in S.

Definition 2.0.6. Let J1,J2 ⊂ S be two ideals. The ideal quotient of J1 by J2 is
defined as

J1 : J2 = {µ ∈ S : µλ ∈ J1 for all λ ∈ J2}.

Proposition 2.0.1 ([10]). Let J1,J2 be two ideals of S. Then

J1 : J2 =
⋂

w∈G(J2)

J1 : (w).

Furthermore, the set {x/gcd(x,w) : x ∈ G(J1)} generates J1 : (w). The ideal quotient
is also known as colon ideal.

Example 11. Let I = (8) and K = (16) be two ideals of integers Z. Then

K : I = {ϑ ∈ Z : ϑ(8) ⊆ (16)}.

So
K : I = (2).

Example 12. Let R = R[ς] be a ring of polynomial in one variable. I = (ς3) and
K = (ς7) be two ideals in R. Then

I : K = {ϕ ∈ Z : ϕ(ς3) ⊆ (ς7)}.

So
I : K = (ς4).

Definition 2.0.7. Let S be the N -graded ring such that

S =
⊕
p∈N

Sp,

such that SpSr ⊆ Sp+r, for all non negative integers p and r. An element ϑ 6= 0 in Sp
is called homogeneous of degree p.

Definition 2.0.8. Let Υ be an S-module. Υ is said to be N -graded module if

Υ =
⊕
r∈N

Υr,

and SpΥr ⊂ Υp+r for each p, r ∈ N .
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Example 13. Every graded ring is graded module over itself.

Definition 2.0.9. Let the ring S = K[ς1, ς2, ..., ςn] and a = (a1, a2, ..., an) ∈ Zn with
ai ∈ Z, then s ∈ S is said to be homogeneous with degree a if s has a representation
of αY a, where α ∈ K, Y = ς1ς2...ςn and Y a = ςa11 ςa22 ...ςann .
An S-module is called Zn-graded if

Υ =
⊕
a∈Zn

Υa,

and SαΥβ ⊂ Υα+β for each α, β ∈ Zn.

Definition 2.0.10. Let Υ be an R-module. A sequence of elements a1, . . . , ar in R is
said to be an Υ-regular if the following two conditions are satisfied. That is

1. The module Υ/(a1, ..., ar)Υ 6= 0,

2. ai is a non-zero divisor on a factor Υ/(a1, · · · , ai−1)Υ, for each i = 1, · · · , r.

Example 14. ς1, ς2, · · · , ςn is a regular sequence in a ring of polynomialK[ς1, ς2, · · · , ςn],
where K is a field.

Definition 2.0.11. Let S is a local Noetherian ring with the maximal ideal m and
Υ is a finitely generated S-module. Then all maximal regular sequences of the form
ς1, ..., ςr for Υ, where all ςi belongs to m, have the common length r called depth of Υ.
It is represented by depth(Υ).

Corollary 2.0.12 ([10]). Let Υ(6= 0) be any finitely generated graded module over a
local noetherian ring S. Then depth of a module is related with its Krull dimension.
That is,

depth(Υ) ≤ dim(Υ).
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Chapter 3

Depth and Stanley Depth of Modules

3.1 Introduction
Richard P. Stanley is famous for his contribution to Combinatorics as he established a
relationship to Algebra and Geometry. He proposed a conjecture which relates two im-
portant kinds of simplicial complexes, i.e paritionable and Cohen Mecaulay complexes.
In 1982, Stanley defined a geometric invariant of a graded module over a commutative
graded ring [21]. His conjecture exploit the connection between the geometric invariant
Stanley depth with the algebraic invariant which is called depth.
This particular work is about paritionable Cohen Macaulay simplicial complexes. This
amazing concept then garbed attention of algebraist in early twenties when Herzog
and popescu gave some remarkable results after studying this conjecture deeply. Af-
terwards, many articles have been published in which this conjecture was proved for
various cases. But later, Dual et. al has turned the tables by giving a counter example
of such type of module for which the conjecture was not satisfied [6]. This field gets
a whole new direction when Herzog, Vladoiu and Zheng developed a method in which
they gave a recipe to compute Stanley depth of the type of module Υ = J /I, where
I ⊂ J are monomial ideals in S [9]. Meanwhile, Rinaldo [19] encoded this method
into an algorithm which is then executed in computer software WinCoCoA [5].
This chapter contains some known results and conjecture about depth and Stanley
depth along with the definitions which will help in coming chapter.
Definition 3.1.1. Let S = K[ς1, ..., ςn], Υ be a finitely generated Zn-graded S-module.
For t ∈ Υ, tK[Y ] be the K-subspace of a module Υ generated by the elements of the
form tv for v ∈ K[Y ] where Y ⊂ {ς1, ..., ςn}. tK[Y ] is called Stanley space. The
dimension of this K-subspace is |Y | if it is a free K[Y ]-module.
A Stanley decomposition of Υ as a K-vector space is written as a finite direct sum of
Stanley spaces

χ : Υ =
s⊕
j=1

tjK[Yj].
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The Stanley depth of a decomposition χ is the minimum of all the cardinalities of Yj’s.
That is

sdepth(χ)= min{|Yj| : j = 1, ..., s}.

and the Stanley depth of module Υ is

sdepthS(Υ) = max { sdepth(χ) : χ is a Stanley decomposition of Υ}.

Conjecture 3.1.1 ([21]). Let S be the ring and Υ be any Zn-graded S-module, then
Stanley proposed a conjecture that

depth(Υ) ≤ sdepth(Υ).

Definition 3.1.2. An exact sequence is a sequence of homomorphism between objects
either groups, rings or modules such that the kernel of one homomorphism equals to
the image of the succeeding one. In particular, let R be the ring then the sequence of
R-homomorphism and R-module

· · · −→ ζj−1
ej−→ ζj

ej+1−−→ ζj+1
ej+2−−→ ζj+2 −→ · · ·

If Ker(ej+1) = Im(ej). The sequence is exact if it is exact at every jth level.

Definition 3.1.3. A sequence of the form

0 −→ ζ0
e1−→ ζ1

e2−→ ζ2 −→ 0.

is said to be short exact sequence if e1 is injective and e2 is surjective with Im(e1) =
Ker(e2).

3.2 Method of computing Stanley depth

A recipe of computing the Stanley depth was introduced by Herzog et al. by using
partially ordered sets [9]. Consider a square free monomial ideal I and let I is min-
imally generated by the set G(I) = {v1, · · · , vm}. Choose h = (1, · · · , 1), then the
characteristic poset corresponding to I is defined to be

L
(1,··· ,1)
I = {η ⊂ [n] : η contains supp(vj) for some j},

where
supp(vj) = {i : ςi|vj} ⊆ [n] := {1, · · · , n}.

For every β, I ∈ L
(1,...,1)
I with β ⊆ I, define the interval [β, I] to be {η ∈ L

(1,...,1)
I : β ⊆

η ⊆ I}.
Let L : L

(1,...,1)
I =

⋃k
j=1 [ξj, ηj] be a partition of L(1,...,1)

I , and for each j, define w(j) ∈

17



{0, 1}n, be a n-tuple in which each entry at nth place is either 0 or 1 such that
supp(vw(j)) = ηj, then there is a Stanley decomposition of an ideal which is defined as

χ(L) : I =
r⊕
i=1

vw(j)K[{ςk|k ∈ ξj}].

Clearly, sdepthχ(L) = min{|ξ1|, · · · , |ξr|}, and

sdepth(I) = max{sdepthχ(L) : L is a partition of L(1,...,1)
I }.

Example 15. For an ideal I = (ς1ς3, ς2ς4, ς1ς4ς5) ⊂ S = K[ς1, ς2, ς3, ς4, ς5]. Choose
h = (1, 1, 1, 1, 1)

L
(1,1,1,1,1)
I = {(1, 0, 1, 0, 0), (0, 1, 0, 1, 0), (1, 1, 1, 0, 0), (, 1, 0, 1, 0), (1, 0, 0, 1, 1),

(1, 0, 1, 0, 1), (1, 0, 1, 1, 0), (0, 1, 1, 1, 0), (0, 1, 0, 1, 1), (1, 1, 1, 1, 0),

(1, 1, 1, 0, 1), (1, 1, 0, 1, 1), (1, 0, 1, 1, 1), (0, 1, 1, 1, 1), (1, 1, 1, 1, 1)}.

Consider the following non overlapping intervals
Let β = (1, 1, 0, 1, 0) and γ = (1, 1, 1, 1, 1)
then the interval, [β, γ] = {(1, 1, 1, 1, 0), (1, 1, 0, 1, 1), (1, 1, 0, 1, 0), (1, 1, 1, 1, 1)}.
Let β = (1, 1, 1, 0, 0) and γ = (1, 1, 1, 0, 1)
then the interval, [β, γ] = {(1, 1, 1, 0, 0), (1, 1, 1, 0, 1)}.
Let β = (1, 0, 1, 0, 0) and γ = (1, 0, 1, 1, 1)
then the interval, [β, γ] = {(1, 0, 1, 0, 0), (1, 0, 1, 1, 1), (1, 0, 1, 0, 1), (1, 0, 1, 1, 0)}.
Let β = (0, 1, 0, 1, 0) and γ = (0, 1, 1, 1, 1)
then the interval, [β, γ] = {(0, 1, 0, 1, 0), (0, 1, 1, 1, 1), (0, 1, 1, 1, 0), (0, 1, 0, 1, 1)}.
Let β = (1, 0, 0, 1, 1) and γ = (1, 0, 0, 1, 1)
then the interval, [β, γ] = {(1, 0, 0, 1, 1)}.
L

(1,1,1,1,1)
I is covered with these partitions. Hence

χ1 : I = [(0, 1, 0, 1, 0), (0, 1, 1, 1, 1)]
⋃

[(1, 1, 0, 1, 0), (1, 1, 1, 1, 1)]
⋃

[(1, 0, 1, 0, 0), (1, 0, 1, 1, 1)]
⋃

[(1, 0, 0, 1, 1), (1, 0, 0, 1, 1)]
⋃

[(1, 1, 1, 0, 0), (1, 1, 1, 0, 1)].

So

I = ς2ς4K[ς2, ς3, ς4, ς5]
⊕

ς1ς2ς4K[ς1, ς2, ς3, ς4, ς5]
⊕

ς1ς3

K[ς1, ς3, ς4, ς5]
⊕

ς1ς4ς5K[ς1, ς4, ς5]
⊕

ς1ς2ς3K[ς1, ς2, ς3, ς5].

Hence
sdepth(χ1) = 3.
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In a similar manner, we can construct different decompositions of I. That is,

χ2 : I = [(1, 0, 1, 0, 0), (1, 1, 1, 1, 1)]
⋃

[(0, 1, 0, 1, 0), (0, 1, 1, 1, 1)]
⋃

[(0, 1, 1, 1, 0), (0, 1, 1, 1, 1)]
⋃

[(1, 1, 0, 1, 0), (1, 1, 0, 1, 1)]
⋃

[(1, 0, 0, 1, 1), (1, 0, 0, 1, 1)]
⋃

[(0, 1, 0, 1, 1), (0, 1, 0, 1, 1)].

So

I = ς1ς3K[ς1, ς2, ς3, ς4, ς5]
⊕

ς2ς4K[ς2, ς3, ς4, ς5]
⊕

ς2ς3ς4

K[ς2, ς3, ς4, ς5]
⊕

ς1ς2ς4K[ς1, ς2, ς4, ς5]
⊕

ς1ς4ς5K[ς1, ς4, ς5]⊕
ς2ς4ς5K[ς2, ς4, ς5].

Hence
sdepth(χ2) = 3.

And

χ3 : I = [(1, 0, 1, 1, 0), (1, 1, 1, 1, 1)]
⋃

[(1, 0, 0, 1, 1), (1, 0, 0, 1, 1)]
⋃

[(1, 1, 0, 1, 0), (1, 1, 0, 1, 1)]
⋃

[(1, 1, 1, 0, 0), (1, 1, 1, 0, 1)]
⋃

[(1, 0, 1, 0, 0), (1, 0, 1, 0, 0)]
⋃

[(0, 1, 0, 1, 0), (0, 1, 1, 1, 1)]
⋃

[(1, 0, 1, 0, 1), (1, 0, 1, 0, 1)].

So

I = ς1ς3ς4K[ς1, ς2, ς3, ς4, ς5]
⊕

ς1ς4ς5K[ς1, ς4, ς5]
⊕

ς1ς2ς3

K[ς1, ς2, ς3, ς5]
⊕

ς1ς2ς4K[ς1, ς2, ς4, ς5]
⊕

ς1ς3K[ς1, ς3]⊕
ς2ς4K[ς2, ς3, ς4, ς5]

⊕
ς1ς3ς5K[ς1, ς3, ς5]

Hence
sdepth(D3) = 2.

Therefore
sdepth(S/K) ≥ max{3, 3, 2}.

sdepth(S/K) ≥ 3.

Example 16. Let S = K[ς1, ς2, ς3, ς4, ς5] and an ideal

K = (ς1ς2, ς1ς3, ς2ς3, ς2ς4, ς3ς4, ς3ς5, ς4ς5, ς4ς1, ς4ς2, ς5ς1, ς5ς2).
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Choose h = (1, 1, 1, 1, 1). The characteristic poset corresponding to K is

L
(1,1,1,1,1)
K = {(1, 1, 0, 0, 0), (1, 0, 1, 0, 0), (0, 1, 1, 0, 0), (0, 1, 0, 0, 1), (0, 0, 1, 1, 0),

(0, 0, 1, 0, 1), (0, 0, 0, 1, 1), (1, 0, 0, 1, 0), (1, 0, 0, 0, 1), (0, 1, 0, 0, 1),

(1, 1, 1, 0, 0), (1, 1, 0, 1, 0), (1, 1, 0, 0, 1), (1, 0, 1, 0, 1), (1, 0, 0, 1, 1),

(0, 1, 0, 1, 1), (0, 0, 1, 1, 1), (0, 1, 1, 1, 0), (0, 1, 1, 0, 1), (1, 0, 1, 1, 0),

(1, 1, 1, 1, 0), (1, 1, 1, 0, 1), (1, 1, 0, 1, 1), (1, 0, 1, 1, 1), (0, 1, 1, 1, 1),

(1, 1, 1, 1, 1)}.

Then the characteristic poset associated to S/K becomes

L
(1,1,1,1,1)
S/K = {(0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 1), (0, 0, 0, 1, 0),

(0, 0, 0, 0, 1)}.
Consider the following non overlapping intervals
Let β = (1, 0, 0, 0, 0) and γ = (1, 0, 0, 0, 0)
then the interval, [β, γ] = {(1, 0, 0, 0, 0)}.
Let β = (0, 1, 0, 0, 0) and γ = (0, 1, 0, 0, 1)
then the interval, [β, γ] = {(0, 1, 0, 0, 0)}.
Let β = (0, 0, 1, 0, 0) and γ = (0, 0, 1, 0, 0)
then the interval, [β, γ] = {(0, 0, 1, 0, 0)}.
Let β = (0, 0, 0, 1, 0) and γ = (0, 0, 0, 1, 0)
then the interval, [β, γ] = {(0, 0, 0, 1, 0)}.
Let β = (0, 0, 0, 0, 0) and γ = (0, 0, 0, 0, 1)
then the interval, [β, γ] = {(0, 0, 0, 0, 0), (0, 0, 0, 0, 1)}.
L

(1,1,1,1,1)
S/K is covered with these partitions. Hence

χ∗ : S/K = [(1, 0, 0, 0, 0), (1, 0, 0, 0, 0)]
⋃

[(0, 1, 0, 0, 0), (0, 1, 0, 0, 0)]
⋃

[(0, 0, 1, 0, 0), (0, 0, 1, 0, 0)]
⋃

[(0, 0, 0, 1, 0), (0, 0, 0, 1, 0)]
⋃

[(0, 0, 0, 0, 0), (0, 0, 0, 0, 1)].

So

S/K = ς1K[ς1]
⊕

ς2K[ς2]
⊕

ς3K[ς4]
⊕

K[ς5].

Hence
sdepth(χ∗) = 1.

Similarly, we have another decompositions

χ∗∗ : S/K = [(0, 0, 0, 0, 1), (0, 0, 0, 0, 1)]
⋃

[(0, 1, 0, 0, 0), (0, 1, 0, 0, 0)]
⋃

[(0, 0, 1, 0, 0), (0, 0, 1, 0, 0)]
⋃

[(0, 0, 0, 1, 0), (0, 0, 0, 1, 0)]
⋃

[(0, 0, 0, 0, 0), (1, 0, 0, 0, 0)].
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So

S/K = K[ς1]
⊕

ς2K[ς2]
⊕

ς3K[ς4]
⊕

ς5K[ς5].

Hence
sdepth(χ∗∗) = 1.

χ∗∗∗ : S/K = [(0, 0, 0, 0, 1), (0, 0, 0, 0, 1)]
⋃

[(0, 1, 0, 0, 0), (0, 1, 0, 0, 0)]
⋃

[(0, 0, 1, 0, 0), (0, 0, 1, 0, 0)]
⋃

[(0, 0, 0, 1, 0), (0, 0, 0, 1, 0)]
⋃

[(1, 0, 0, 0, 0), (1, 0, 0, 0, 0)]
⋃

[(0, 0, 0, 0, 0), (0, 0, 0, 0, 0)].

So

S/K = ς1K[ς1]
⊕

ς2K[ς2]
⊕

ς3K[ς4]
⊕

ς5K[ς5]
⊕

K.

Hence
sdepth(χ∗∗∗) = 0.

Therefore
sdepth(S/K) ≥ max{1, 1, 0}.

sdepth(S/K) ≥ 1.

Example 17. Let S = K[ς1, ς2, ς3, ς4] and an ideal K = (ς1ς2, ς1ς3, ς2ς3, ς2ς4, ς3ς4).
Choose h = (1, 1, 1, 1, 1). The characteristic poset corresponding to K is

L
(1,1,1,1,1)
K = {(1, 1, 0, 0), (1, 0, 1, 0), (0, 1, 1, 0), (0, 1, 0, 1), (1, 1, 1, 0),

(1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1), (1, 1, 1, 1), (0, 0, 1, 1)}.

Then the characteristic poset associated to S/K becomes

L
(1,1,1,1,1)
S/K = {(0, 0, 0, 0, 0), (0, 0, 0, 1), (0, 1, 0, 0), (0, 0, 1, 0), (1, 0, 0, 0),

(1, 0, 0, 1)}.

Consider the following non overlapping intervals
Let β = (0, 0, 0, 0) and γ = (1, 0, 0, 1)
then the interval, [β, γ] = {(0, 0, 0, 0), (1, 0, 0, 0), (0, 0, 0, 1), (1, 0, 0, 1)}.
Let β = (0, 0, 1, 0) and γ = (0, 0, 1, 0)
then the interval, [β, γ] = {(0, 0, 1, 0)}.
Let β = (0, 1, 0, 0) and γ = (0, 1, 0, 0)
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then the interval, [β, γ] = {(0, 1, 0, 0)}.
Hence, L(1,1,1,1,1)

S/K is covered with these partitions.

χ′ : S/K = [(0, 0, 0, 0), (1, 0, 0, 1)]
⋃

[(0, 1, 0, 0), (0, 1, 0, 0)]
⋃

[(0, 0, 1, 0), (0, 0, 1, 0)].

So

S/K = K[ς1, ς4]
⊕

ς2K[ς2]
⊕

ς3K[ς3].

Hence
sdepth(χ′) = 1.

Similarly, another decomposition is

χ′′ : S/K = [(0, 0, 0, 0), (0, 0, 0, 1)]
⋃

[(1, 0, 0, 0), (1, 0, 0, 1)]
⋃

[(0, 0, 1, 0), (0, 0, 1, 0)]
⋃

[(0, 1, 0, 0), (0, 1, 0, 0)].

So

S/K = K[ς4]
⊕

ς1K[ς1, ς4]
⊕

ς3K[ς3]
⊕

ς2K[ς2].

Hence
sdepth(χ′′) = 1.

Therefore
sdepth(S/K) ≥ max{1, 1}.

sdepth(S/K) ≥ 1.
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3.3 Some known results and bounds for Stanley depth

This chapter provides a brief literature review. In the first part, we collected some
bounds and values for depth and Sdepth of different classes of modules. In the second
part, we identify some graphs for which these two invariants(depth and Stanley depth)
have been calculated. The basic objective of this chapter is to motivate the reader to
build a ground in order to understand further concepts in a smooth way.

Lemma 3.3.1. (Depth Lemma)
Let ζ0, ζ1 and ζ2 be finitely generated modules over a Noetherian local ring.

0 −→ ζ0 −→ ζ1 −→ ζ2 −→ 0.

Then the above short exact sequence of modules satisfies the following three conditions

1. depth(ζ1) ≥ min{depth(ζ0), depth(ζ2)},

2. depth(ζ2) ≥ min{depth(ζ0)− 1, depth(ζ1)},

3. depth(ζ0) ≥ min{depth(ζ1), depth(ζ2) + 1}.

Lemma 3.3.2 ([20]). Let ζ0, ζ1 and ζ2 be Zn-graded S-modules and the short exact
sequence of the type

0 −→ ζo −→ ζ1 −→ ζ2 −→ 0.

Then we have the following inequality

sdepth(ζ1) ≥ min{sdepth(ζ0), sdepth(ζ2)}.

Theorem 3.3.3 ([1, Theorem 2.2]). Let S be a ring and an ideal z = (ς1, ς2, · · · , ςn) ⊂
S. Then

sdepth(z) = dn
2
e.

Theorem 3.3.4 ([9]). Let S = K[ς1, ς2, · · · , ςn] and J be the monomial ideal which
is generated by minimal s elements then the lower bound for Stanley depth of module
S/J is

sdepth(S/J ) ≥ n− s.

Theorem 3.3.5 ([23, Theorem 2.3]). Let J be a monomial ideal in S which is gen-
erated by minimal s number of elements then lower bound for Stanley depth of J
is

sdepth(J ) ≥ n− bs
2
c.

Theorem 3.3.6 ([20, Proposition 1.3]). Let J ⊂ S be a monomial ideal in the ring of
polynomials then

sdepthS(J : u) ≥ sdepthS(J ),

where monomial u /∈ J .

23



Corollary 3.3.1 ([3, proposition 2.7]). For a monomial ideal J in S, we have

sdepthS(S/(J : u)) ≥ sdepthS(S/J ),

for monomial u /∈ J .

Lemma 3.3.7 ([20]). Let S = R[ςn+1] be the ring of polynomial over R in the variable
ςn+1 and K ⊂ J be two monomial ideals of R. Then

sdepth(JS/KS) = sdepth(J /K) + 1,

depth(JS/KS) = depth(J /K) + 1.

Theorem 3.3.8 ([12]). Let K ⊂ J ⊂ S be two monomial ideals in a polynomial ring
S, then

sdepth(
√
K/
√
J ) ≥ sdepth(K/J ).

Theorem 3.3.9 ([8, Theorems 3.1 and 4.18]). Let Γ = I(G) be an edge ideal associated
to a connected graph G and if ∆ = diam(G), then we have

depth(S/Γ), sdepth(S/Γ) ≥ d∆ + 1

3
e.

Theorem 3.3.10 ([20, Theorem 3.1]). Let J ′ ⊂ R′ = K[ς1, · · · , ςr], J ′′ ⊂ R′′ =
K[z1, · · · , zs] be two monomial ideals and S = K[ς1, · · · , ςr, z1, · · · , zs]. Then

sdepthSS/(J ′S + J ′′S) ≥ sdepthS′R′/J ′ + sdepthS′′R′′/J ′′.

Theorem 3.3.11 ([3, Proposition 1.1]). If J ′ ⊂ R′ = K[ς1, ς2, · · · , ςr] and J ′′ ⊂ R′′ =
K[ςr+1, · · · , ςn] are the monomial ideals, for 1 ≤ r < n, then

depthS(S/(J ′S + J ′′S)) = depthS′(R′/J ′) + depthS′′(R′′/J ′′).

Proving Stanley’s conjecture for a variety of classes of modules is an important task
for the researchers so far and they have proved the truthfulness of this inequality for
different cases. In the following two results we get the positive answer.

Theorem 3.3.12 ([17]). The Stanley’s inequality is satisfied for intersections of three
prime ideals.

Theorem 3.3.13 ([18]). The inequality given by Stanley is satisfied for intersections
of four prime ideals.

We now need to transition to the second part of this section. The following results
exploits active research related to edge ideals associated with different graphs. We
introduce these bounds and values for constructing a ground that will facilitate the
reader to make connection with the approach in the next section.
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Lemma 3.3.14 ([15, Lemma 2.8]). Let Q1 = I(Pr) denotes the edge ideal correspond-
ing to path graph then for r ≥ 2, we have

depth(S/Q1) = d r
3
e.

Lemma 3.3.15 ([24, Lemma 4]). Let Q1 = I(Pr) denotes the edge ideal corresponding
to path graph then for r ≥ 2, we have

sdepth(S/Q1) = d r
3
e.

Proposition 3.3.1 ([4, Proposition 1.3]). Let Q2 = I(Cr) denotes the edge ideal
corresponding to cycle graph then for r ≥ 3, we have

depth(S/Q2) = dr− 1

3
e.

Theorem 3.3.16 ([4, Theorem 1.9]). Let Q2 = I(Cr) denotes the edge ideal corre-
sponding to cycle graph then for r ≥ 3, we have

1. sdepth(S/Q2) = d r−1
3
e, if r ≡ 0, 2(mod 3).

2. sdepth(S/Q2) ≤ d r−1
3
e, if r ≡ 1(mod 3).

Now we give some results for depth and Sdepth of edge ideal associated with two
interesting graphs that will frequently appear within next section.

Theorem 3.3.17 ([11, Theorem 3.8]). Let Q∗ = I(P l
r ) denotes the edge ideal cor-

responding to lth power of path graph then for r ≥ 2 and l ∈ Z+ ∪ {0}, we have
depth(S/Q∗) = d r

2l+1
e.

Theorem 3.3.18 ([11, Theorem 3.14]). Let Q∗ = I(P l
r ) denotes the edge ideal cor-

responding to lth power of path graph then for r ≥ 2 and l ∈ Z+ ∪ {0}, we have
sdepth(S/Q∗) = d r

2l+1
e.

Theorem 3.3.19 ([11, Theorem 4.5]). Let Q∗∗ = I(C l
r) denotes the edge ideal corre-

sponding to lth power of cycle graph then for r ≥ 3. Then
for r ≤ 2l + 1, depth(S/Q∗∗) = 1,
for r ≥ 2l + 2, depth(S/Q∗∗) ≥ d r−l

2l+1
e. .

Theorem 3.3.20 ([11, Theorem 4.7]). Let Q∗∗ = I(C l
r) denotes the edge ideal corre-

sponding to lth power of cycle graph then for r ≥ 3. Then
for r ≤ 2l + 1, sdepth(S/Q∗∗) = 1,
for r ≥ 2l + 2, sdepth(S/Q∗∗) ≥ d r−l

2l+1
e.
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Chapter 4

Depth and Stanley Depth of Tadpole
Graph

4.1 Depth and Stanley Depth of quotient of a Tadpole
Graph

In this section, we find the accurate values for depth and Sdepth of the factor of
edge ideal corresponding to a Tadpole graph. For this graph, the values of these two
invariants coincide.
Let n ≥ 3 and m ≥ 1. Throughout this section, we set

Ω = Ωn,m := K[ς1, · · · , ςn−1, ςn, ςn+1, · · · , ςn+m−1, ςn+m].

Definition 4.1.1. A Tadpole graph is a planner graph which consist of path graph on
m and cycle graph on n vertices vertices connected with the an edge. Total number of
vertices and edges of a graph is n+m and it is symbolically represented by Tn,m. The
ideal k = k(Tn,m) denotes the edge ideal associated with Tadpole graph.

k(Tn,m) = (ς1ς2, ς2ς3, · · · , ςnς1, ςnςn+1, · · · , ςn+m−1ςn+m).
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ς1ς2

ς3

ςn−1

ςn−3

ςn−2

ςn ςn+1 ςn+m−3 ςn+m−2 ςn+m−1 ςn+m

Figure 4.1: Tn,m Tadpole graph.

Example 18. Consider a Tadpole graph with cycle on 5 vertices and path on 2 vertices.
Then the associated edge ideal is

k(T5,2) = (ς1ς2, ς2ς3, ς3ς4, ς4ς5, ς5ς1, ς5ς6, ς6ς7).

ς1ς2

ς3

ς4

ς5 ς6 ς7

Figure 4.2: T5,2 Tadpole graph.

Before general proof, we prove the results for initial cases.

Lemma 4.1.1. depth(Ω/k(Tn,1)) = sdepth(Ω/k(Tn,1)) = dn
3
e.

Proof. Consider a short exact sequence

0 −→ Ω/(k : ςn)
ςn−→ Ω/k −→ Ω/(k, ςn) −→ 0.

Then by depth lemma, we have

depth(Ω/k) ≥ min{depth(Ω/(k : ςn)), depth(S/(k, ςn))}.

(k, ςn) = (ς1ς2, ς2ς3, · · · , ςn−2ςn−1, ςn).
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Here, we have
(k, ςn) = (k(Pn−1), ςn).

Similarly
(k : ςn) = (ς3ς4, · · · , ςn−3ςn−4, ςn−2, ςn−1, ς1, ς2, ςn+1).

Here Ω = Ωn,1 = K[ς1, ς2, · · · , ςn, ςn+1]. So

Ω/(k, ςn) =
K[ς1, ς2, · · · , ςn, ςn+1]

(k, ςn)

=
K[ς1, ς2, · · · , ςn, ςn+1]

(ς1ς2, ς2ς3, · · · , ςn−2ςn−1, ςn)

∼=
K[ς1, ς2, · · · , ςn−1]

(ς1ς2, ς2ς3, · · · , ςn−2ςn−1)
[ςn+1] ∼=

Sn−1

k(Pn−1)
[ςn+1].

By [9, Lemma 3.6], we get

depth(Ω/(k, ςn)) = depth(
Ωn−1

k(Pn−1)
) + 1.

Now by using [15, Lemma 2.8], we have

depth(Ω/(k, ςn)) = dn− 1

3
e+ 1 = dn+ 2

3
e.

Similarly,

Ω/(k : ςn) =
K[ς1, ς2, · · · , ςn−3]

k(Pn−3)
[ςn].

Again using [15, Lemma 4], we have

depth(Ω/(k : ςn)) = depth(
Ωn−3

k(Pn−3)
) + 1.

So
depth(Ω/(k : ςn)) = dn− 3

3
e+ 1 = dn

3
e.

Hence
depth(Ω/k) = dn

3
e.

Now we can find Stanley depth by the analogous work as above. We replace Lemma
3.3.2 from depth lemma for applying on exact sequences. So, we have

sdepth(Ω/k(Tn,1)) ≥ min{sdepth(Ω/(k(Tn,1), ςn), sdepth(Ω/(k(Tn,1) : ςn))}.

sdepth(Ω/k(Tn,1) ≥ dn
3
e.
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As by Corollary 3.3.1, we know that

sdepth(Ω/k) ≤ sdepth(Ω/(k : y)).

So
sdepth(Ω/k(Tn,1) ≤ dn

3
e.

Hence
sdepth(Ω/k(Tn,1) = dn

3
e.

Lemma 4.1.2. depth(Ω/k(Tn,2)) = sdepth(Ω/(k(Tn,2)) = dn+2
3
e.

Proof. Consider a short exact sequence

0 −→ S/(k : ςn+1)
ςn+1−−→ Ω/k −→ Ω/(k, ςn+1) −→ 0.

Then by depth lemma, we have

depth(Ω/I) ≥ min{depth(Ω/(k : ςn+1), depth(Ω/(k, ςn+1)}.

So, we have
(k, ςn+1) = (ς1ς2, ς2ς3, · · · , ςn−1ςn, ς1ςn, ςn+1).

(k, ςn+1) = (k(Cn), ςn+1).

Similarly
(k : ςn) = (ς1ς2, · · · , ςn−2ςn−1, ςn, ςn+2).

Here Ω = Ωn,2 = K[ς1, ς2, · · · , ςn, ςn+1, ςn+2]. So

Ω/(k, ςn+1) =
K[ς1, ς2, · · · , ςn, ςn+1, ςn+2]

(k, ςn+1)

=
K[ς1, ς2, · · · , ςn, ςn+1, ςn+2]

(ς1ς2, ς2ς3, · · · , ςnςn−1, ς1ςn)

∼=
K[ς1, ς2, · · · , ςn]

k(Cn)
[ςn+2].

Hence by [9, lemma 3.6], we get

depth(Ω/(k, ςn+1)) = depth(
Ωn

k(Cn)
) + 1.

So by using [4, proposition 1.3], we have

depth(Ω/(k, ςn+1)) = dn− 1

3
e+ 1 = dn+ 2

3
e.
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Similarly

Ω/(k : ςn+1) ∼=
K[ς1, ς2, · · · , ςn−1]

(ς1ς2, ς2ς3, · · · , ςn−2ςn−1)
[ςn+1].

Using [15, Lemma 2.8], we get

depth(Ω/(k : ςn+1)) = depth(
Ωn−1

k(Pn−1)
) + 1.

So
depth(Ω/(k : ςn+1)) = dn− 1

3
e+ 1 = dn+ 2

3
e.

Hence
depth(Ω/k) = dn+ 2

3
e.

Similarly

sdepth(Ω/k) = dn+ 2

3
e.

Lemma 4.1.3. depth(Ω/k(Tn,3)) = sdepth(Ω/k(Tn,3)) = dn+2
3
e.

Proof. Consider a short exact sequence

0 −→ Ω/(k : ςn+2)
ςn+2−−→ Ω/k −→ Ω/(k, ςn+2) −→ 0.

Then by depth lemma, we have

depth(Ω/k) ≥ min{depth(Ω/(k : ςn+2)), depth(Ω/(k, ςn+2))}.

So we have
(k, ςn+2) = (ς1ς2, ς2ς3, · · · , ςn−1ςn, ςn+1ςn).

Similarly
(k : ςn+2) = (ς1ς2, · · · , ςn−2ςn−1, ςn, ςn+1, ςn+3).

Here Ω = Ωn,3 = K[ς1, ς2, · · · , ςn, ςn+1, ςn+2, ςn+3]. So

Ω/(k, ςn+2) =
K[ς1, ς2, · · · , ςn, ςn+1, ςn+2, ςn+3]

(k, ςn+2)

=
K[ς1, ς2, · · · , ςn, ςn+1, ςn+2, ςn+3]

(ς1ς2, ς2ς3, · · · , ςnςn−1, ςn+1ςn)

∼=
K[ς1, ς2, · · · , ςn+1]

(ς1ς2, ς2ς3, · · · , ςnςn+1)
[ςn+3].
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Hence by [9, lemma 3.6] and [Lemma 4.1.3], we get

depth(Ω/(k, ςn+2)) = depth(
Ωn,2

k(Tn,2)
) + 1.

So
depth(Ω/(k, ςn+2)) = dn+ 2

3
e+ 1 = dn+ 5

3
e.

Similarly

Ω/(k : ςn+2) =
K[ς1, ς2, · · · , ςn−1, ςn]

(ς1ς2, ς2ς3, · · · , ςnς1)
[ςn+2].

By using [4, proposition 1.3] and [9, lemma 3.6], we get

depth(Ω/(k : ςn+2)) = depth(
Ωn

k(Cn)
) + 1.

So
depth(Ω/(k : ςn+2)) = dn− 1

3
e+ 1 = dn+ 2

3
e.

Thus
depth(Ω/k) = dn+ 2

3
e.

In a similar way, we get

sdepth(Ω/k) = dn+ 2

3
e.

Theorem 4.1.4. Let m ≥ 4 and n ≥ 5. If n ≡ 2(mod 3), then

depth(Ω/k(Tn,m)) = dn+m

3
e.

Otherwise
depth(Ω/(k(Tn,m)) = dn+m− 1

3
e.

Proof. We will prove this by induction on m. Consider a short exact sequence

0 −→ Ω/(k : ςn+m−1)
ςn+m−1−−−−→ Ω/k −→ Ω/(k, ςn+m−1) −→ 0.

By depth lemma, we know that

depth(Ω/k) ≥ min{depth(Ω/(k : ςn+m−1)), depth(Ω/(k, ςn+m−1))}.

For this, we have

k(Tn,m) = (ς1ς2, ς2ς3, · · · , ςnς1, ςnςn+1, · · · , ςn+m−1ςn+m).
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(k, ςn+m−1) = (ς1ς2, ς2ς3, · · · , ςnς1, ςnςn+1, · · · , ςn+m−3ςn+m−2, ςn+m−1).

(k : ςn+m−1) = (ς1ς2, ς2ς3, · · · , ςnς1, ςnςn+1, · · · , ςn+m−4ςn+m−3, ςn+m−2, ςn+m).

Here
Ω = Ωn,m = K[ς1, ς2, · · · , ςn, ςn+1, · · · , ςn+m−1, ςn+m].

Ω/(k, ςn+m−1) ∼=
K[ς1, ς2, · · · , ςn+m−2]

(ς1ς2, ς2ς3, · · · , ςn+m−3ςn+m−2)
[ςn+m].

depth(Ω/(k, ςn+m−1)) = depth(
Ωn,m−2

k(Tn,m−2)
) + 1.

Apply induction on m. Here we have two cases.
If n ≡ 2(mod 3)

depth(Ω/(k, ςn+m−1)) = dn+ (m− 2)

3
e+ 1,

depth(Ω/(k, ςn+m−1)) = dn+m+ 1

3
e.

Otherwise
depth(Ω/(k, ςn+m−1)) = dn+ (m− 2)− 1

3
e+ 1,

depth(Ω/(k, ςn+m−1)) = dn+m

3
e.

Now
Ω/(k : ςn+m−1) =

K[ς1, ς2, · · · , ςn+m−3]

(ς1ς2, ς2ς3, · · · , ςn+m−4ςn+m−3)
[ςn+m−1].

So
depth(Ω/(k : ςn+m−1)) = depth(Ωn,m−3/(k(Tn,m−3)) + 1.

Again apply induction on m.
if n ≡ 2(mod 3)

depth(Ω/(k : ςn+m−1)) = dn+ (m− 3)

3
e+ 1.

depth(Ω/(k : ςn+m−1)) = dn+m

3
e.

Otherwise
depth(Ω/(k : ςn+m−1)) = dn+ (m− 3)− 1

3
e+ 1.

depth(Ω/(k : ςn+m−1)) = dn+m− 1

3
e.

Now for
Case 1: When n ≡ 2(mod 3)

depth(Ω/(k(Tn,m)) ≥ min{dn+m+ 1

3
e, dn+m

3
e}.
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So by Corollary 3.3.1, we get

depth(Ω/(k(Tn,m)) = dn+m

3
e.

Case 2: Otherwise

depth(Ω/(k(Tn,m)) ≥ min{dn+m− 1

3
e, dn+m

3
e}.

So by Corollary 3.3.1, we get

depth(Ω/(k(Tn,m)) = dn+m− 1

3
e.

Theorem 4.1.5. Let m ≥ 4 and n ≥ 5. If n ≡ 2(mod 3), then

sdepth(Ω/(k(Tn,m)) = dn+m

3
e,

otherwise
sdepth(Ω/(k(Tn,m)) = dn+m− 1

3
e.

Proof. We will proof this by analogous work as Theorem 4.1.4 for finding Stanley depth
of a graph. We replace Lemma 3.3.2 from Depth Lemma for applying on the exact
sequences and the we get the required result by applying induction on m.
By Lemma 3.3.2, we have

sdepth(Ω/k(Tn,m)) ≥ min{sdepth(Ω/(k, ςn+m−1)), sdepth(Ω/(k : ςn+m−1))}.

So, when n ≡ 2(mod 3)

sdepth(Ω/k(Tn,m)) = dn+m

3
e.

Otherwise,

sdepth(Ω/(k(Tn,m)) = dn+m− 1

3
e.
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4.2 Depth and Stanley Depth of Quotient of a Square
of a Tadpole Graph

In the following section, we find the lower bound for depth and Sdepth of quotient of
ideal associated with a square of a Tadpole graph.

Definition 4.2.1. Let G be a simple graph then the square of a graph is represented
as G2 on the same set of vertices of G, in which each pair of vertices having distance
of 2 or less in G is linked by an edge. For m ≥ 1 and n ≥ 3, the edge ideal associated
with square of a Tadpole graph is denoted by (k(T 2

n,m).

ς1

ς2ς3

ςn−2

ςn−3

ς4

ςn−1

ςn ςn+1 ςn+2 ςn+m−3 ςn+m−2 ςn+m−1 ςn+m

Figure 4.3: T 2
n,m Square Tadpole graph.

Example 19. A square of a Tadpole graph with path of 4 vertices and cycle of 6
vertices, denoted by T 2

6,4. The associated edge ideal is

k(T 2
6,4) = (ς1ς2, ς2ς3, · · · , ς6ς1, ς6ς7, · · · , ς1ς3, ς1ς5, · · · , ς8ς10).

ς1

ς2

ς3

ς4

ς5

ς6 ς7 ς8 ς9 ς10

Figure 4.4: T 2
6,4 Square Tadpole graph.
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Before general proof, we prove the results for initial cases.

Lemma 4.2.1. depth(Ω/k(T 2
n,1)), sdepth(Ω/k(T 2

n,1)) ≥ dn
5
e.

Proof. Consider the short exact sequence

0 −→ Ω/(k : ςn−1)
ςn−1−−→ Ω/k −→ Ω/(k, ςn−1) −→ 0.

By depth lemma, we have

depth(Ω/(k) ≥ min{depth(Ω/(k : ςn−1)), depth(Ω/(k, ςn−1))}.

Here we have Ω = Ωn,1 = [ς1, ς2, . . . , ςn, ςn+1] and

k = (ς1ς2, ς1ς3, ς2ς3, · · · , ςnς1, ςn−1ς1, ςnςn+1, ςn−1ςn+1, y1ςn+1).

For this, we have

(k : ςn−1) = (k(P 2
n−5), ς1, ςn−2, ςn−3, ςn, ςn+1).

Ω/(k : ςn−1) ∼=
K[ς2, ς3, · · · , ςn−4]

(k(P 2
n−5), ς2, ςn−2, ςn−3, ςn+1)

∼=
K[ς2, ς3, · · · , ςn−4]

k(P 2
n−5)

[ςn−1].

Here by [9, lemma 3.6] and [14, Theorem 3.1], we get

depth(Ω/(k : ςn−1)) = depth(Ωn−5/k(P 2
n−5)) + 1.

depth(Ω/(k : ςn−1)) = dn− 5

5
e+ 1 = dn

5
e.

Again construct a short exact sequence and let k∗ := (k(T 2
n,1), ςn−1). Here we have,

(k, ςn−1) = (ς1ς2, ς1ς3, ς2ς3, · · · , ςnς1, ςn+1ς1, ςn−2ςn, ςnς2, ςn−1).

Consider the following short exact sequence

0 −→ Ω/(k∗ : ςn)
ςn−→ Ω/k∗ −→ Ω/(k∗, ςn) −→ 0.

By using depth lemma, we have

depth(Ω/k∗) ≥ min{depth(Ω/(k∗ : ςn)), depth(Ω/(k∗, ςn))}.

(k∗ : ςn) = (k(P 2
n−5), ς1, ς2, ςn−2, ςn+1, ςn−1).

And
S/(k∗ : ςn) ∼=

Ωn−5

k(P 2
n−5)

[ςn].
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Again using [14, Theorem 3.1], we get

depth(Ω/(k∗ : ςn)) = depth(
Ωn−5

k(P 2
n−5)

) + 1.

depth(Ω/(k∗ : ςn)) = dn− 5

5
e+ 1 = dn

5
e.

Now take
(k∗, ςn) = (ς1ς2, ς2ς3, · · · , ς1ςn+1, ςn−3ςn−2, ςn−1, ςn).

Again construct a short exact sequence and let k∗∗ := (k∗, ςn). Consider the following
short exact sequence

0 −→ Ω/(k∗∗ : ς1)
ς1−→ Ω/k∗∗ −→ Ω/(k∗∗, ς1) −→ 0.

By using depth lemma, we have

depth(Ω/k∗∗) ≥ min{depth(Ω/(k∗∗ : ς1)), depth(Ω/(k∗∗, ς1))}.

(k∗∗ : ς1) = (k(P 2
n−5), ς2, ς3, ςn, ςn−1, ςn+1).

And
Ω/(k∗∗ : ς1) ∼=

Ωn−5

k(P 2
n−5)

[ς1].

depth(Ω/(k∗∗ : ς1)) = depth(
Ωn−5

k(P 2
n−5)

) + 1.

depth(Ω/(k∗∗ : ς1)) = dn− 5

5
e+ 1 = dn

5
e.

(Ω/(k∗∗, ς1)) ∼=
Ωn−3

k(P 2
n−3)

[ςn+1].

By using [14] and [9, lemma 3.6], we get

depth(Ω/(k∗∗, ς1)) = depth(
Ωn−3

k(P 2
n−3)

) + 1.

depth(Ω/(k∗∗, ς1)) = dn− 3

5
e+ 1 = dn+ 2

5
e.

So
depth(Ω/k∗∗) = dn

5
e.

Similarly
depth(Ω/k∗) ≥ {dn

5
e, dn

5
e}.
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Hence
depth(Ω/k) = dn

5
e.

Now for finding Stanley depth of a graph, we proceed with the same arguments as
above. We replace Lemma 3.3.2 from depth lemma and Theorem 3.3.10 from Theorem
3.3.11. We get our required result.
i.e.

sdepth(Ω/k) ≥ dn
5
e.

Lemma 4.2.2. depth(Ω/k(T 2
n,2)), sdepth(Ω/k(T 2

n,2)) ≥ dn
5
e.

Proof. Consider the short exact sequence

0 −→ Ω/(k : ςn)
ςn−→ Ω/k −→ Ω/(k, ςn) −→ 0.

By depth lemma, we have

depth(Ω/k) ≥ min{depth(Ω/(k : ςn)), depth(Ω/(k, ςn))}.

Here we have Ω = Ωn,2 = [ς1, ς2, . . . , ςn, ςn+1, ςn+2] and

k = (ς1ς2, ς1ς3, ς2ς3, · · · , ςnς1, ςn−1ς1, ςnςn+1, ςn−1ςn+1, x1ςn+1, ςn+1ςn+2, ςnςn+2).

For this, we have

(k : ςn) = (k(P 2
n−5), ς1, ς2, ςn−1, ςn−2, ςn+1, ςn+2).

Ω/(k : ςn) ∼=
K[ς3, ς4, · · · , ςn−3]

(k(P 2
n−5), ς1, ς2, ςn−1, ςn−2, ςn+1, ςn+2)

∼=
K[ς3, ς4, · · · , ςn−3]

k(P 2
n−5)

[ςn].

Here by using [9, Lemma 3.6] and [14], we have

depth(Ω/(k : ςn)) = depth(Ωn−5/k(P 2
n−5)) + 1.

depth(Ω/(k : ςn)) = dn− 5

5
e+ 1 = dn

5
e.

Again construct a short exact sequence and let I ′ := (k(T 2
n,2), ςn). Here, we have

((k, ςn) = (ς1ς2, ς1ς3, ς2ς3, · · · , ςn−2ςn−1, ςn−1ς1, ςn+1ς1, ςn−2ςn−1, ςn+1ςn+2, ςn).

Consider the following short exact sequence

0 −→ Ω/((k∗ : ςn+1)
ςn+1−−→ Ω/(k∗ −→ Ω/(k∗, ςn+1) −→ 0.
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By using depth lemma, we have

depth(Ω/k∗) ≥ min{depth(Ω/(k∗ : ςn+1)), depth(Ω/(k∗, ςn+1))}.

(k∗ : ςn+1) = (k(P 2
n−3), ς1, ςn, ςn−1, ςn+2).

And
Ω/(k∗ : ςn+1) ∼=

Ωn−3

k(P 2
n−3)

[ςn+1].

depth(Ω/(k∗ : ςn+1)) = depth(
Ωn−3

k(P 2
n−3)

) + 1.

depth(Ω/(k∗ : ςn+1)) = dn− 3

5
e+ 1 = dn+ 2

5
e.

Now take
(k∗, ςn+1) = (ς1ς2, ς2ς3, · · · , ςn−2ςn−1, ςn−1ς1, ςn, ςn+1).

Again construct a short exact sequence and let k∗∗ := (k∗, ςn+1). Consider the following
short exact sequence

0 −→ Ω/(k∗∗ : ς1)
ς1−→ Ω/k∗∗ −→ Ω/(k∗∗, ς1) −→ 0.

By using depth lemma, we have

depth(Ω/k∗∗) ≥ min{depth(Ω/(k∗∗ : ς1)), depth(Ω/(k∗∗, ς1))}.

(k∗∗ : ς1) = (k(P 2
n−5), ς2, ς3, ςn, ςn−1, ςn+1).

And
Ω/(k∗∗ : ς1) ∼=

Ωn−5

k(P 2
n−5)

[ς1, ςn+2].

Now by [3], [9, Lemma 3.6] and [14], we get

depth(Ω/(k∗∗ : ς1)) = depth(
Ωn−5

k(P 2
n−5)

) + 2.

depth(Ω/(k∗∗ : ς1)) = dn− 5

5
e+ 2 = dn+ 5

5
e.

(Ω/(k∗∗, ς1)) ∼=
Ωn−2

k(P 2
n−2)

[ςn+2].

depth(Ω/(k∗∗, ς1)) = depth(
Ωn−2

k(P 2
n−2)

) + 1.

depth(Ω/(k∗∗, ς1)) = dn− 2

5
e+ 1 = dn+ 3

5
e.
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So
depth(Ω/k∗∗) ≥ dn+ 3

5
e.

Similarly

depth(Ω/k∗) ≥ {dn+ 3

5
e, dn+ 2

5
e}.

And
depth(Ω/k) ≥ {dn+ 2

5
e, dn

5
e}.

Hence
depth(Ω/k) = dn

5
e.

In a similar manner, we get
sdepth(Ω/k) = dn

5
e.

Lemma 4.2.3. depth(Ω/k(T 2
n,3)), sdepth(Ω/k(T 2

n,3)) ≥ dn+2
5
e.

Proof. Consider the short exact sequence

0 −→ Ω/(k : ςn+1)
ςn+1−−→ Ω/k −→ Ω/(k, ςn+1) −→ 0.

By depth lemma, we have

depth(Ω/k) ≥ min{depth(Ω/(k : ςn+1)), depth(Ω/(k, ςn+1))}.

Here we have Ω = Ωn,3 = [ς1, ς2, . . . , ςn, ςn+1, ςn+2, ςn+3] and

k = (ς1ς2, ς1ς3, ς2ς3, · · · , ςnς1, ςn−1ς1, ςnςn+1, ςn−1ςn+1, x1ςn+1, ςn+1ςn+2,

ςnςn+2, ςn+1ςn+3, ςn+2ςn+3).

For this, we have

k : ςn+1) = (k(P 2
n−3)), ς1, ςn, ςn−1, ςn+2, ςn+3).

Ω/(k : ςn+1) ∼=
K[ς2, ς3, · · · , ςn−3]

k(P 2
n−3), ς1, ςn, ςn−1, ςn+2, ςn+3)

∼=
K[ς2, ς3, · · · , ςn−3]

k(P 2
n−3)

[ςn+1].

Here we have
depth(Ω/k : ςn+1)) = depth(Ωn−3/k((P 2

n−3)) + 1.

depth(Ω/(k : ςn+1)) = dn− 3

5
e+ 1 = dn+ 2

5
e.
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Again construct a short exact sequence and let k∗ := (k(T 2
n,3), ςn+1). Here we have

(k, ςn+1) = (ς1ς2, ς2ς3, x1ς3 · · · , ςn−1ς1, ςnς1, ςnςn+2, ςnς2, ςn+1, ςn+2, ςn+3).

Consider the following short exact sequence

0 −→ Ω/(k∗ : ςn)
ςn−→ Ω/k∗ −→ Ω/(k∗, ςn) −→ 0.

By using depth lemma, we have

depth(Ω/k∗) ≥ min{depth(Ω/(k∗ : ςn)), depth(Ω/(k∗, ςn))}.

(k∗ : ςn) = (k(P 2
n−5), ς1, ς2, ςn−1, ςn−2, ςn+1, ςn+2).

and
Ω/(k∗ : ςn) ∼=

Ωn−5

k(P 2
n−5)

[ςn+3, ςn].

So by [3], [9, lemma 3.6] and [14], we have

depth(Ω/(k∗ : ςn)) = depth(
Ωn−5

k(P 2
n−5)

) + 2.

depth(Ω/(k∗ : ςn)) = dn− 5

5
e+ 2 = dn+ 5

5
e.

Now take

(k∗, ςn) = (ς1ς2, ς2ς3, · · · , ςn−2ςn−1, ςn−1ς1, ςn+2ςn+3, ςn, ςn+1).

Again construct a short exact sequence and let k∗∗ := (k∗, ςn). Consider the following
short exact sequence

0 −→ Ω/(k∗∗ : ς1)
ς1−→ Ω/k∗∗ −→ Ω/(k∗∗, ς1) −→ 0.

By using depth lemma, we have

depth(Ω/k∗∗) ≥ min{depth(Ω/(k∗∗ : ς1)), depth(Ω/(k∗∗, ς1))}.

(k∗∗ : ς1) = (k(P 2
n−4), ςn+2ςn+3, ς2, ς3, ςn, ςn+1).

And
depth(Ω/(I ′′ : ς1)) = depth(

Ωn−4

k(P 2
n−4)

) + 2.

depth(Ω/(k∗∗ : ς1)) = dn− 4

5
e+ 2 = dn+ 6

5
e.
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Similarly
(k∗∗, ς1) = (ς2ς3, · · · , ςn−2ςn−1, ςn+2ςn+3, ς1, ςn, ςn+1).

depth(Ω/(k∗∗, ς1)) = depth(
Ωn−2

k(P 2
n−2)

) + 1.

depth(Ω/(k∗∗, ς1)) = dn− 2

5
e+ 1 = dn+ 3

5
e.

So
depth(Ω/k∗∗) ≥ dn+ 3

5
e.

Similarly

depth(Ω/k∗) ≥ {dn+ 3

5
e, dn+ 5

5
e}.

And
depth(Ω/k) ≥ {dn+ 2

5
e, dn+ 3

5
e}.

Hence
depth(Ω/k) = dn+ 2

5
e.

Similarly, we have

sdepth(Ω/k) = dn+ 2

5
e.

Lemma 4.2.4. depth(Ω/k(T 2
n,4)), sdepth(Ω/k(T 2

n,4)) ≥ dn+2
5
e.

Proof. Consider the short exact sequence

0 −→ Ω/(k : ςn+4)
ςn+4−−→ Ω/k −→ Ω/(k, ςn+4) −→ 0.

By depth lemma, we have

depth(Ω/k) ≥ min{depth(Ω/(k : ςn+4)), depth(Ω/(k, ςn+4))}.

Here we have Ω = Ωn,4 = K[ς1, ς2, . . . , ςn, ςn+1, ςn+2, ςn+3, ςn+4] and

k = (ς1ς2, ς1ς3, ς2ς3, · · · , ςnς1, ςn−1ς1, ςnςn+1, · · · , ςn+2ςn+3, ςn+2ςn+4.ςn+3ςn+4).

For this, we have
(k : ςn+4) = ((k(T 2

n,1)), ςn+2, ςn+3).

Ω/(k : ςn+4) ∼=
K[ς1, ς2, · · · , ςn, ςn+1, ςn+2]

I(T 2
n,1), ςn+2, ςn+3

)

∼=
K[ς1, ς2, · · · , ςn, ςn+1, ςn+2]

I(T 2
n,1)

[ςn+4].
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Here we have
depth(Ω/(k : ςn+4)) = depth(Ωn,1/k((T 2

n,1)) + 1.

depth(Ω/(k : ςn+4)) = dn
5
e+ 1 ≥ dn+ 5

5
e.

And
(k, ςn+4) = ((k(T 2

n,3)), ςn+4).

depth(Ω/(k, ςn+4)) = depth(
Ωn,3

k(T 2
n,3)

).

By using Lemma 4.2.3, we have

depth(Ω/(k, ςn+4)) = dn+ 2

5
.

So
depth(Ω/k) ≥ {dn+ 2

5
e, dn+ 5

5
e}.

Hence
depth(Ω/k) ≥ dn+ 2

5
e.

Now we proceed with the same arguments, we get

sdepth(Ω/k) ≥ dn+ 2

5
e.

Lemma 4.2.5. depth(Ω/k(T 2
n,5)), sdepth(Ω/k(T 2

n,5)) ≥ dn+3
5
e.

Proof. Consider the short exact sequence

0 −→ Ω/(k : ςn+3)
ςn+3−−→ Ω/k −→ Ω/(k, ςn+3) −→ 0.

By depth lemma, we have

depth(Ω/k) ≥ min{depth(Ω/(k : ςn+3)), depth(Ω/(k, ςn+3))}.

Here we have Ω = Ωn,5 = [ς1, ς2, . . . , ςn, ςn+1, ςn+2, ςn+3, ςn+4, ςn+5] and

k = (ς1ς2, ς1ς3, ς2ς3, · · · , ςnς1, ςn−1ς1, ςnςn+1, · · · , ςn+2ςn+3,

ςn+2ςn+4.ςn+3ςn+4, ςn+4ςn+5, ςn+3ςn+5.

For this, we have

(k : ςn+3) = ((k(C2
n)), ςn+1, ςn+2, ςn+4, ςn+5).

42



Ω/(k : ςn+3) ∼=
K[ς1, ς2, · · · , ςn, ςn+1, ςn+2, ςn+3, ςn+4, ςn+5]

(I(C2
n), ςn+1, ςn+2, ςn+4, ςn+5)

∼=
K[ς1, ς2, · · · , ςn]

k(C2
n)

[ςn+3].

Here by using [4, Proposition 1.3] and [9, Lemma 3.6], we have

depth(Ω/(k : ςn+3)) = depth(Ωn/k((C2
n)) + 1.

depth(Ω/(k : ςn+3)) ≥ dn− 2

5
e+ 1 ≥ dn+ 3

5
e.

And
(k, ςn+3) = ((k(T 2

n,1)), ςn+2ςn+4, ςn+4ςn+5, ςn+3).

Again construct a short exact sequence and let k∗ := (k, ςn+3). Consider the following
short exact sequence

0 −→ Ω/(k∗ : ςn+4)
ςn+4−−→ Ω/k∗ −→ Ω/(k∗, ςn+4) −→ 0.

By using depth lemma, we have

depth(Ω/k∗) ≥ min{depth(Ω/(k∗ : ςn+4)), depth(Ω/(k∗, ςn+4))}.

(k∗ : ςn+4) = (k(T 2
n,1), ςn+2, ςn+3, ςn+5).

And
Ω/(k∗ : ςn+4) ∼=

Ωn,1

k(T 2
n,1)

[ςn+4].

depth(Ω/(k∗ : ςn+4)) = depth(
Ωn,1

k(T 2
n,1)

) + 1.

depth(Ω/(k∗ : ςn+4)) = dn
5
e+ 1 = dn+ 5

5
e.

Now
(k∗, ςn+4) = (k(T 2

n,1), ςn+3, ςn+4).

By using Lemma 4.2.1, we get

depth(Ω/(k, ςn+4)) = depth(
Ωn,1

k(T 2
n,1)

[ςn+5]).

depth(Ω/(k∗, ςn+4)) = dn
5
e+ 1.

So
depth(Ω/k∗) ≥ {dn+ 5

5
e, dn+ 5

5
e}.
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Hence
depth(Ω/k∗) ≥ dn+ 5

5
e.

Thus
depth(Ω/k) ≥ {dn+ 3

5
e, dn+ 5

5
e}.

Hence
depth(Ω/k) ≥ dn+ 3

5
e.

Similarly, we have

sdepth(Ω/k) ≥ dn+ 3

5
e.

Theorem 4.2.6. For m ≥ 6 and n ≥ 9, we have

depth(Ω/k(T 2
n,m)) ≥ dn+m− 2

5
e.

Proof. For 1 ≤ m ≤ 5 and 3 ≤ n ≤ 8, we can easily find exact values for depth and
Stanley depth of the quotient of edge ideal associated of a square Tadpole graph from
the CoCoA software [5]. We will prove by induction on m. Consider the short exact
sequence,

0 −→ Ω/(k : ςn+m−2)
ςn+m−2−−−−→ Ω/k −→ Ω/(k, ςn+m−2) −→ 0.

By depth lemma, we have

depth(Ω/k) ≥ min{depth(Ω/(k : ςn+m−2)), depth(Ω/(k, ςn+m−2))}.

For this, we have

k(T 2
n,m) = (ς1ς2, ς2ς3, · · · , ςnς1, ςnςn+1, · · · ,

ςm+n−1ςn+m, ς1ς3, ς2ς4, · · · , ςn−1ςn+3, ς1ςn+3, · · · , yn+m−2ςn+m).

(k, ςn+m−2) = (ς1ς2, ς1ς3, ς2ς3, · · · , ςn+m−3ςn+m−1, ςn+m−1ςn+m, ςn+m−2).

(k : ςn+m−2) = (ς1ς2, ς2ς3, · · · , ςn+m−6ςn+m−5, ςn+m−4, ςn+m−3, ςn+m−1, ςn+m).

Take

Ω/(k : ςn+m−2) ∼=
K[ς1, ς2, · · · , ςn+m]

(k(T 2
n,m−5), ςn+m−4, ςn+m−3, ςn+m−1, ςn+m)

∼=
K[ς1, ς2, · · · , ςn+m−5]

k(T 2
n,m−5)

[ςn+m−2].
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Here we have
depth(Ω/(k : ςn+m−2)) = depth(

Ωn−5,m

k(T 2
n−5,m)

) + 1.

By applying induction, we get

depth(Ω/(k : ςn+m−2)) ≥ dn− 5 +m− 2

5
e+ 1 = dn+m− 2

5
e.

Again construct a short exact sequence and let I ′ := (k(T 2
n,m), ςn+m−2).

Here we have

k(T 2
n,m), ςn+m−2) = (ς1ς2, ς1ς3, ς2ς4, · · · , ςn+m−3ςn+m−5, ςn+m−3

, ςn+m−1, ςn+m−1ςn+m, ςn+m−2).

k(T 2
n,m), ςn+m−2) = (I(T 2

n−3,m), ςn+m−1ςn+m−3, ςn+m−1ςn+m, ςn+m−2). Consider the fol-
lowing short exact sequence

0 −→ Ω/(k∗ : ςn+m−1)
ςn+m−1−−−−→ Ω/k∗ −→ Ω/(k∗, ςn+m−1) −→ 0.

By using depth lemma, we have

depth(Ω/k∗) ≥ min{depth(Ω/(k∗ : ςn+m−1)), depth(Ω/(k∗, ςn+m−1))}.

(k∗ : ςn+m−1) = (k(T 2
n−4,m), ςn+m−3, ςn+m−2, ςn+m).

And
Ω/(k∗ : ςn+m−1) ∼=

Ωn,m−4

k(T 2
n,m−4)

[ςn+m−1].

depth(Ω/(k∗ : ςn+m−1)) = depth(
Ωn,m−4

k(T 2
n,m−4)

) + 1.

depth(Ω/(k∗ : ςn+m−1)) ≥ dn− 4 +m− 2

5
e+ 1 = dn+m− 1

5
e.

Now take
(k∗, ςn+m−1) = (k(T 2

n,m−3), ςn+m−2, ςn+m−1).

And then
(Ω/(k∗, ςn+m−1)) ∼=

Sn,m−3

k(T 2
n,m−3)

[ςn+m].

depth(Ω/(k∗, ςn+m−1)) = depth(
Ωn,m−3

k(T 2
n,m−3)

) + 1.

depth(Ω/(k∗, ςn+m−1)) ≥ dn− 3 +m− 2

5
e+ 1 = dn+m

5
e.
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So
depth(Ω/k∗) = dn+m− 1

5
e.

Similarly

depth(Ω/k) ≥ {dn+m− 2

5
e, dn+m− 1

5
e}.

Hence
depth(Ω/k) ≥ dn+m− 2

5
e.

Theorem 4.2.7. For m ≥ 6 and n ≥ 9, we have

sdepth(Ω/k(T 2
n,m)) ≥ dn+m− 2

5
e.

Proof. Now for m ≥ 6 and n ≥ 9. We can do analogous work as Theorem 4.2.6 for
finding Stanley depth of a graph. We replace Lemma 3.3.2 from Depth Lemma for
applying on the exact sequences. We also use Corollary 3.3.1. So the required result
can be deducted by applying induction on m.
Now by Lemma 3.3.2, we have

sdepth(Ω/k) ≥ min{sdepth(Ω/(k, ςn+m−2)), sdepth(Ω/(k : ςn+m−2))}.

Hence
sdepth(Ω/k) ≥ dn+m− 2

5
e.
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4.3 Conclusion

We have calculated the exact values for depth and Sdepth of the factor of the edge ideals
associated with Tadpole graph. We obtained quality results as we have computed exact
values in contrast to the already existing bounds.

• For a Tadpole graph Tn,m, we have diam(Tn,m) = ∆

∆ = bn
2
c+m.

• By Fouli and Morey’s formula [8], we have

depth(Ω/(k(Tn,m)), sdepth(Ω/(k(Tn,m)) ≥ d
bn

2
c+m+ 1

3
e.

Example 20. For n = 122 and m = 400. We have ∆(T144,400) = 461, therefore
depth(Ω/(k(Tn,m)) ≥ 154 by [8], whereas by our given result depth(Ω/(k(Tn,m)) = 174.
Moreover, we can observe that the existing bounds deviate even more from the exact
values for the larger values of n and m.

Similarly, we have calculated the lower bound for depth and Sdepth of the factor
of the edge ideal associated with the square of a Tadpole graph. We have obtained the
following sharp bound. That is for n ≥ 3 and m ≥ 1, we have

depth(Ω/k(T 2
n,m)), sdepth(Ω/k(T 2

n,m)) ≥ dn+m− 2

5
e.
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