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Abstract

The quantum Vlasov equation has been derived with the use of quasi probability
distribution named as the Wigner function and the electromagnetic Schrodinger
equation. By using this quantum kinetic model the parallel propagating electro-
magnetic waves have been studied and the susceptibility tensor for R (right handed
circularly polarized) and L (right handed circularly polarized wave) wave has been
derived. The dispersion relation of R and L waves is obtained by using Fermi Dirac
distribution at zero temperature. By comparing the curves obtained by plotting
quantum dispersion relation of R and L wave with that of the classical R and L
wave, it has been observed that the upper branch of the R wave in quantum plasma
has slightly higher group velocity than that of the R wave in a classical plasma.
While for the lower R wave branch the quantum mechanical group velocity is slower
than the classical group velocity and the anomalous dispersion is observed. More-
over, the quantum mechanical L wave is almost the same as the classical L wave
but minor corrections are observed at higher values of k which indicates the faster

group velocity of quantum mechanical waves as compared to the classical L. wave.
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Chapter 1

An Introduction to Quantum

Plasma

1.1 What is a Plasma ?

A plasma is a multi-body system made up of numerous charged particles
whose behavior is governed by quasi-neutrality and collective effects as mediated by

electromagnetic forces.

1.1.1 Collective Behaviour in Plasmas

Collective behaviour refers to such motion of charge particles that are in-
fluenced not just by local conditions but also by the state of the plasma in distant
regions. Since a plasma is composed of charged particles that can form local con-
centrations of positive or negative charge as they travel around, resulting in electric
fields. Currents and, as a result, magnetic fields are generated by the movement of
charges. The other charged particles in the plasma can no longer remain unaffected
by these fields due to long range Coulomb’s force. Thus the term "collective" refers

to occurrences that are determined by the system’s entire ensemble of particles. The



behavior of neutral gases, on the other hand, is significantly affected by short-range
interactions. It should be noted that plasmas are usually partially ionized, resulting
in the presence of certain neutral atoms. In order to achieve plasma collective be-
haviour, electron and ion collision rates with the neutrals must be quite low. We can
say that plasma exhibiting collective behaviour have minimum binary collisions in
which each particle’s velocity vector significantly change direction in a small spatial
space and a short period. Instead, the more substantial trajectory changes in plasma

are caused by the cumulative effect of several tiny scattering angle encounters [1].

1.1.2  Quasi neutrality and Debye Screening

The term "quasi neutrality" refers to the fact that charge separation may
only occur across a limited distance, which in classical plasma is defined as the
Debye length. The charged particles in plasma are highly conductive such that they
can neutralize any potential induced in the plasma. For example, when a positive
charge is introduced in the plasma it gets surrounded by a cloud of negative charges
which insulate the positive charge and the potential caused by the positive charge
is shielded out. This process of shielding external potential applied to plasma or
external charges inserted into plasma is called Debye shielding and the blanket which

shields the charges is called the Debye sphere [2].
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Figure 1.1: Debye sphere and Debye shielding [3]

The Debye length is represented by Ap and it is given by the following

1

kT, 2

)\D:<€° 32 ) :
ne

where kg is the Boltzmann’s Constant, T, is the temperature of electron, n is the

expression.

number density and e being the charge on electron. The charge separation occurring
at short distances (Ap is small) compared to the dimensions of the system leads to

quasi neutrality where n; = n..

1.1.3 Temperature and Density basic Plasma parameters
Temperature

The temperature at the beginning of universe was so high that no atoms
or molecules could have existed. As a result, the corresponding completely ionized
gas was in the plasma state. So the Universe as a whole was a plasma, known

as quark gluon plasma. As the temperature decreases, the capacity of the parti-



cles in a system to associate with one another increases in the same proportion.
When a completely ionized gas is cooled down, a percentage of the positive and
negative charges can unite to create atoms. We'd have a partly ionized plasma in
this instance. As the temperature drops further the degree of ionization becomes
insignificant and the system is said to be neutral. In the low-temperature plasma,
the electron temperatures are in the range of electron volts, which is sufficient for
ionization, and the heavy species temperature is often close to room temperature.
The degree of plasma ionization is determined by the Saha equation that relates the
electron temperature to the ionization energy.
M oax 100 T ot (1.1)
Ny n;
Here n; and n,, are the number densities per m? of atom and neutral atoms and U,

is the potential energy respectively.

PLASMAS - THE 4th STATE OF MATTER

Imertial

Ma it confinement

Uson f .
reactor ol

Solar core

Nebula
Solar
corona

Lightning

Solar wind Meon sign

4 Interstellar space Flygrescent light

10

Aurora Flames

L
=
e
-]
b=
=
-
2
D
o
5
=

S5
p!u_:_l_ni‘ Sbulist
102
10° 10° 10" 102" 10¥
Number Density (Charged Particles / m*)
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As mentioned above, the drop in temperature increases the binding energy
and ionization decreases. It is important to compare the thermal and interaction
energy of the system in order to assign a meaning to the phrase "small temperature."
A coupling parameter can be defined as the ratio of thermal and binding energy in
this way. So for a gas to exist in plasma state, we may add the criteria of a sufficiently
high thermal energy in contrast to the binding energy.

Plasmas are categorised as thermal or non-thermal based on the relative
temperatures of electrons, ions, and neutrals. Electrons and heavy particles in
thermal plasmas are at the same temperature, i.e. they are in thermal equilibrium.
Ions and neutrals are at a considerably lower temperature in non-thermal plasmas,
but electrons are much hotter.

Along with the temperature the density also plays an important role for
justification of the existence of a plasma. The term "plasma density" often refers to

the quantity of free electrons per unit volume [5, 6].

1.1.4 Creation of Plasma

For the generation of plasma in space objects such as in the Sun and stars,
photo ionization is the most common process in which photons from sunlight are
absorbed by an existing gas and electrons are released. Because the Sun and stars
radiate continually, nearly all matter becomes ionised, and the plasma is considered
to be completely ionised in such environments. For the production of plasma in the
laboratory a gas is heated to a very high temperature which causes violent collisions

between its atoms and molecules and the gas gets ionized [7].

1.2 Classical plasma

Classical plasma are characterized by high temperature and low densities.

In classical plasma the De Broglie wave length is smaller than interatomic distance

10



of the particles

Plasma Frequency

It is the oscillation frequency of the electrons in a neutralizing backdrop of
positive ions, which are supposed to be immobile due to the enormous mass. These
oscillations are caused by the Coulomb force, which pulls electrons back towards the
excess positive charge when a section of the plasma is depleted of some electrons.
The electrons will not just replace the positive region due to their inertia, but will
instead go further away, re-creating an excess positive charge. This process produces
undamped electron oscillations at the plasma frequency in the absence of collisions,
given as [§]

n062

)z

Wp = (Eom

In the above equation, ng represents the density of electrons in the plasma, e being
the charge on the electron and m is the mass of electron.

Thermal Velocity

The typical speed owing to random thermal motion is represented by ther-

[kgT
Ur = E—
m

mal velocity, given as

Debye length

The Debye length is defined as ratio of thermal velocity and the plasma

frequency i.e.

(%
)‘D =
Wp
or we can write
EgkaT
Ap = 3
nope
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The Debye length represents the significant phenomena of electrostatic screening,
in which an excess positive charge is immediately encircled by a cloud of electrons
when introduced into the plasma. As a result of this phenomena the positive charges
will be screened out for the particles locating at larger distances. So with the help
of Debye screening we can define Quasi neutrality which says that charge separation
only occur at the distance smaller than Debye length and it is filtered at larger

distances.

Coupling parameter

The coupling parameter is defined as the ratio of interaction energy (;—Zd)

and the thermal energy (kgT).

o Eint
Ve = B, )
6271%
c = . 1.2
Y= T (1.2)

When electrons have a sufficient amount of thermal energy, the interaction energy
decreases due to a decrease in Coulombic interaction, resulting in a small coupling
parameter which is known as a collision-less regime. In this regime binary collision
are negligible and the plasma exhibit collective behaviour. The above expression
indicates that at high temperature and low density plasma is said to be a collision-

less classical plasma. The coupling parameter can be related to Debye length as

1 \3
Te (A)

When the Debye sphere contains huge number of electrons Debye screening is sup-

follow:

posed to be at a greater rate which makes the coupling parameter small hence the
collisions decrease and it refers to a collision less classical plasma. On the other hand
when the coupling parameters is high enough the plasma is considered as collisional

plasma.

12
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Figure 1.3: Density and temperature profile for classical and quantum plasma [9]

1.3 Quantum Plasma

Quantum mechanics is generally required to describe a system that is so
dense that the wave functions of distinct particles start to overlap. The thermal
De Broglie wavelength of the particles forming the plasma, which represents the
spatial extension of a particle’s wave function owing to quantum uncertainty, may
be used to quantify quantum effects. The thermal De Broglie wavelength is given

by following expression:
h

mur

When the De Broglie wavelength is similar to or larger than the average inter particle
distance, the quantum effects start playing significant role and the wave function
associated with particles overlap. On the other hand for the classical regime the De
Broglie wavelength is so short that the particles may be regarded as point like hence

there is no overlapping of wave functions and no quantum interference.

13



1.3.1 Quantum Plasma Parameters

There are certain dimensionless parameters on the basis of which Quantum

plasma is differentiated from classical plasma.

De Broglie wavelength and inter atomic particle distance

The primary criteria for a plasma to be treated quantum mechanically is

that De Broglie wavelength must be comparable to inter atomic distance i.e,
3
n\pg > 1,
1 . . .
where ns represents the inter atomic distance.

Thermal Velocity and Temperature

In a quantum plasma, the thermal velocity is described in terms of De
Broglie wavelength. From the expression of De Broglie wavelength and the thermal
velocity , expression for temperature is derived as given below:

h?

Tiherm = EoN2
MKBADB

Fermi Energy and Fermi Temperature

In quantum systems as the energy levels are filled by following Pauli ex-
clusion principle and the electrons fill the level up to Fermi level (above which all
levels are empty and below Fermi level all states are filled). Hence the energy of
highest occupied level at absolute zero temperature is termed as the Fermi energy
given as: Er = kgTp. The Fermi temperature is defined as

(3m2n)3 h2

Tm =
E 2ka

14



Degeneracy parameter

By using the above mentioned terms for temperature and the Fermi tem-

perature a dimensionless parameter called degeneracy is defined as [9]

Te  (37%nX3)3

T 2

From the above equation we can write

Tr
_ b%:
T < nApp
For quantum systems
Ir o
702
and for classical systems
Ir
7 =

Debye Screening in Quantum plasma

For a quantum plasma, quasi neutrality and collective behaviour carries
the same weight as in the classical plasma. The Debye length in a quantum plasma

is defined as ratio of the Fermi velocity and the plasma frequency.

(2
AFDp = —,
Wp

where App is the Fermi Debye length, vp is the Fermi velocity and w,, is the plasma

frequency. By substituting the value for vy and w, in the above expression, we get

)\FD _ <€0k‘BTF> 5‘

noe?

15



This is the same expression as that for the classical plasma but here T is replaced
by T, the Fermi temperature.
Coupling parameter

For the coupling parameter in quantum plasma the thermal energy is re-

placed by the Fermi energy and we can write it as

o Eint
= EF

TQ

where

and ,
(37n)3sh?
om

Er =
So the quantum coupling parameter becomes

o Eint o Eint . qu2
7 Er  kpTr (37r2n)§(—:0h2n% .

As we have mentioned above that for a quantum plasma the Fermi temperature
dominates over the thermal temperature. Therefore, in the above expression when
the Fermi temperature increases it must decrease the coupling parameter or we can
say that the coupling parameter should be less than one for a quantum plasma.
Secondly, with an increase in the density, the coupling parameter should decrease
which indicates that the quantum plasma is a weakly coupled plasma. For a system
possessing high enough density one can assume that the system is highly collisional
and the coupling parameter must be high but this does not seems to happen here
because of Pauli Exclusion principle which forbids the occupation of same quantum

state by two electrons. The electrons tend to fill all the levels below the Fermi level

16



by following Pauli exclusion principle and this process leads to degeneracy. In this

way, the electron-electron collision is reduced and the coupling parameter decreases.

1.4 Applications of Quantum Plasmas

1.4.1 Nanostructured Quantum Plasma

Metallic nanostructures offer a suitable setting for exploring quantum plasma
dynamical characteristics. It is possible to obtain quantum characteristics in metal-
lic structures by considering non interacting behaviour of electron. Treating the
electron population as a plasma, globally neutralised by the lattice ions, provides a
more realistic description for a quantum plasma. At room temperature and some
suitable range of densities, quantum effects appear in nano-structures which can not
be ignored. In conventional metals, lattice ions govern the properties of electrons
in metals such as response to thermodynamic effects and band structure. However,
in recent times nanostructures have been developed in such a way that there are no
ionic lattice and the electron population is controlled by plasma processes. [10, 11]

Metal nanoparticle plasmonics is now a popular topic of research due to
fundamental scientific interest and possible applications in spectroscopy and sensing

optical nano-antennas, photochemistry, nonlinear optics etc.

17



1.4.2 Semiconductor Quantum plasma

Semiconductors have electrical properties between insulator and conduc-
tors. According to the band theory, semiconductors have comparatively small for-
bidden energy gap. When energy is provided to a semiconductor the electron goes
from valence band to conduction band leaving behind a hole. This process of for-

mation of electron-hole pair leads to the formation of semiconductor plasma.

Overlap

Conduction
band

Metal Semiconductor Insulator

Electron Energy

Figure 1.4: bands in semiconductors [13]

In semiconductors, quantum effects become prominent when the De Broglie
wavelength associated with an electron is equivalent to the size of a semiconductor.
Quantum plasma has wide applications in the semiconductor devices. Despite the
fact that semiconductors have a lower electron density than metals, the high de-
gree of miniaturisation of today’s electronic components allows the charge carrier
(electrons and holes) De Broglie wavelength to be similar to the spatial variation
of the doping profile. Semiconductors are utilised to investigate solid-state plasma

in the quantum domain. Spintronics, nanotubes, Gunn oscillators, quantum wells,

18



and quantum dots are a few examples of semiconductor system. In semiconductors,
quantum effects arise when the dimensions of semiconductor plasma are compara-
ble to the De Broglie wavelength. This occurs at high density and low temperature

[12, 14, 15].

1.4.3 Quantum plasma in natural environments

Quantum plasmas may be found in some astronomical objects that are
subjected to extreme temperature and density circumstances, such as white dwarf
stars, where the density is 10 orders of magnitude more than that of a conventional
solid. A white dwarf is a low or medium mass star with a mass less than roughly
8 times that of our Sun. White dwarfs are one of the densest forms of mass, only
neutron stars and black holes being denser. A white dwarf may be as hot as a fusion

plasma (108K) and yet act quantum-mechanically due to its enormous density.[16]

1.4.4 Degeneracy in White Dwarf

A white Dwarf is considered to be one of the final states of a Star. A
star continuously fuse hydrogen into helium and when it run short of hydrogen it
collapses and it transforms into a red giant. After this red giant forms, the core
temperature of the star rises until it reaches a temperature high enough to fuse the
helium produced by hydrogen fusion. It will eventually convert helium to carbon
and other heavier elements. This process continues till the core is entirely made of
iron, the most stable element. Now the fusion process ceases and the temperature
of the core rises abruptly. Now the repulsive forces come into play and stops the
gravitational collapse. This causes an explosion called supernova because of which
the star’s outer layers are blown away. The star’s core, on the other hand, remains
undamaged and evolves into a white dwarf or neutron star depends upon the mass

of the star.[17, 19, 18] In a white dwarf, the fusion process ceases and there is no

19



internal pressure, the gravity compacts the matter inward until the electrons in the
atoms of the element that make up a white dwarf are squashed together. In ordinary
matters the identical particles can occupy any energy level without any restriction
but in white Dwarf particles are restricted by Pauli Exclusion principle which state
that it is forbidden for identical electrons (those with the same "spin") to occupy
the same energy level. The particles first fill the energy levels following the Pauli
Exclusion Principle till the Fermi level, the highest occupied energy level. This is
how degeneracy in a white dwarf appears. Now the gravity can no longer squeeze a
degenerate star because quantum physics says that there is no more accessible space
to be taken up. So, instead of internal fusion, quantum mechanical laws keep our

white dwarf from collapsing completely.[20]

® o Massive Star
Sun-like Star -
-
_ Star-Ferming § Supargiant
B Red Giant > " Nebula

L

\' g==. F
._-:l'i‘.-;

Planetary 5S¢ ' 2 . r
g A Neutron Star # SUPErmova

3

Mebula
- -

White Dwarf Black Hole

Figure 1.5: Life cycle of Star [21]
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1.5 Waves in Plasma

As plasma is a dispersive medium it allows various waves to propagate
through depending upon various conditions like frequency of the wave, density of
plasma, ambient magnetic field etc. These various waves are discussed in brief in

the following.

1.5.1 Longitudinal and Transverse Waves

The wave vector’s orientation in relation to the oscillating electric field de-
termines whether the wave is longitudinal or transverse. When kis parallel to E;
the corresponding waves are said to be longitudinal or electrostatic and when k is
perpendicular to E, the corresponding waves are said to be transverse or electro-

magnetic.

1.5.2 Parallel and Perpendicular Propagating Waves

The parallel or perpendicular propagation of a wave in plasma is decided
according to the direction of the wave vector with respect to the unperturbed mag-
netic field. When & is parallel to the magnetic field éo, the wave is said to be a
parallel propagating wave and when k is perpendicular to the magnetic field 50, the

wave is said to be perpendicularly propagating wave.

1.5.3 Electrostatic and Electromagnetic Waves

The term electrostatic and electromagnetic for the waves in plasma is used

by keeping in view the Maxwell’s equation, given as

OB,

VXE_’;:—W,

21



o= 0B

ik x By = —a—tl.
A wave is said to be electrostatic if the perturbed magnetic field is zero which
indicates that that there is no orientation of k perpendicular to E, rather it is parallel
to El and the electrostatic wave is longitudinal. Furthermore an electrostatic wave
in plasma can be parallel or perpendicularly propagating depending on the direction
of k with respect to 50. If the perturbed magnetic field is not zero then the wave is
said to be electromagnetic and the wave vector k will be perpendicular to E, which

indicates the transverse nature of an electromagnetic wave in plasma.

1.6 Parallel Propagating Electromagnetic Waves

1.6.1 R wave

R-wave is a parallel propagating electromagnetic wave which is also right
handed circularly polarized wave. The dispersion relation is given as
212 Jz

w? 1 — we’

These waves encounter resonance at w, which means that these waves transfer their
energy to the electrons as their plane of polarization is same as the direction of
gyration of electrons. The cutoff for these waves occur at a higher frequency and
there is a no propagation region between the cutoff and the resonance frequency. A
whistler mode generates when the frequency of the R wave is less than the cyclotron
frequency of electrons. As the frequency of the wave increases the phase velocity
increases. So when a lightning flashing occurs in southern hemisphere, waves of
higher frequency with higher phase velocity reached earlier than the low frequency
waves with lower phase velocity at the northern hemisphere by travelling along the

magnetic field lines. In this way a descending tone can be heard if these waves are

22



converted into audio signals and this is why these are called whistler waves.

L waves

L waves are parallel propagating electromagnetic waves which are left

handed circularly polarized. The dispersion relation for the L. waves is given as

2
w
02k2 wg

w? 1 We
w

This wave has no resonance frequency as its plane of polarization is in opposite
direction with respect to the gyration of electrons. However, if we include ion
dynamics then this wave will resonate with the ions at ion cyclotron frequency.
This wave behaves like an ordinary wave but the cutoff frequency is different

4 warnings from that of O-wave i.e., w,. For the lower branch of R wave the
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Figure 1.6: Graphical representation of R and L waves

wave vector becomes infinite at w = w, and the resonance occurs. The waves transfer
their energy to the electrons as their plane of polarization is same as the direction
of gyration of electrons. For the lower branch of L waves, there’s no resonance
encountered as L. waves gyration is in opposite manner For the upper branches of R

and L waves the cut off occurs at wgr and wy,.
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Chapter 2

Background

2.1 Plasma Modelling

There are different ways to analyze a plasma system. The most important
are:
1. Fluid Model
2. Kinetic Model

In the following, these models are described in detail.

2.1.1 Fluid Model

The macroscopic behaviour of plasma is described by Fluid model in which
average velocities of the particles are considered. The individual identity of a par-
ticle is ignored in the fluid model, and plasma is defined by flow velocity, particle
density, and temperature. All of these quantities are described as a functions of time
t and position r. The fluid model successfully describes majority of the plasma phe-
nomena, but in some circumstances where the velocity of a particular plasma specie
is required, this model fails. The equations that characterize the plasma behaviour

in the fluid model are described below.
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Equation of Continuity

The conservation of the particles in the plasma is described by the equation
of continuity given as
(’9n5

W + V.(ngvg) = 0,

where [ refers to species i.e., electrons and ions.

The Force Equation

The force equation in the fluid model is given as

ou ~ =
mgng (8156 + (UBV)Uﬂ> = ggng <E + ug X B) - Vp/g

On the left hand side the term in the parenthesis is called the convective derivative
and the term on the right hand side in the parenthesis is the Lorentz force where
E and B are the electric and magnetic field respectively and Vpg represents the
change in pressure which arises due to random motion of particles in the fluid.
These equations along with the Maxwell’s equations describe the dynamics of a

plasma system.

2.2 Classical Kinetic Theory

Plasma physics is usually concerned with the phenomena that is connected
to statistical mechanics dynamical processes. The features and structure of the basic
kinetic equations regulating the dynamical behaviour of plasma are thus extremely
important to investigate. The Boltzmann’s equation is commonly used to examine
the dynamical behaviour of a system of N-interacting particles. This equation is
derived by using a distribution function which describes the behaviour of plasma on

microscopic level. It gives the probability of number of particles in a given volume
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element d%v
n:/f(F,fU,t)d%

Consider an ensemble of N charged particles in a plasma. The density of the charged
particles in an ensemble is given by the distribution function while the dynamics of
the motion of charged particle is found out by taking time derivative of the distri-
bution function. The resulting equation is termed as Boltzmann’s equation. The
time derivative of the distribution function which depends upon position, velocity

and time is given as

A _0f of d o dv

dt ot ' oF dt = 9v dt
With the use of Lorentz force expression the above equation gets modified as follow.

af _of L0 ¢ iE L sy B
it~ o T Vop T BB

of

o (2.1)

By setting the L.H.S of the above equation equals to zero it reduces to the Vlasov
equation which says when the interaction between the particles are absent (collision-
less plasma) the density of the particles remains constant. The Vlasov equation gives
information about trajectories of charged particles by averaging over all the micro
states. This equation is valid till the plasma has collective effects and the binary
collisions are absent. Whenever the collisions arise the Vlasov equation cannot
be use and then the Boltzmann’s equation turns to Fokker Planks equation. The
Vlasov equation is used to describe the dynamics of a plasma in phase space when
the collective interactions dominate over binary interactions. In plasma physics, the
Vlasov equation has a wide range of applications. It may be used to investigate linear
waves, resonance effects that can not be represented by fluid theory for example,
cyclotron and Landau damping in plasma [25, 26]. The term in the parenthesis in

equation (2.1) can be solved with the aid of Maxwell’s equations.
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2.2.1 Limitation of the Vlasov Equation

The Vlasov equation describes the dynamics of a plasma in phase space
when the collective interaction dominates over binary interactions. If the binary
collisions are large enough the Vlasov equation can not be used because due to

these collisions the mean free path becomes small as compared to Debye length.

2.3 Classical Kinetic theory formalism

2.3.1 The Vlasov equation

We'll start with the Vlasov equation i.e.,

af e, = . =
a%—v-Vf%—E(EijxB)-

of

L —0.
o7

In order to simplify the Vlasov equation we linearize it. The product of two per-
turbed quantities can be neglected as the amplitude of the oscillations is very small.

Separating the variables into two parts equilibrium part and perturbed part.

E = Ey + Ej,

f=Jo+ 1,
and

B = By + By,

where 0 subscript is for the equilibrium values and 1 subscript is for the perturbed
values.

For a homogeneous magnetized plasma
EO = 07
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_ %o

=

Vfo

Substituting these in the Vlasov equation, we get

ofp . 0fi e, = 1. = 0fg e . =, 0fg e . = 0fi
ot T ar T B JUX B e 4 DX B) - 5 4 DR (X Bo) - 52 = 0.

(2.2)

2.3.2 Solution of zeroth order terms of the Vlasov equation

The first zeroth order term of the Vlasov equation is given as

(T x By) - ‘?;? =0. (2.3)
Let
B = By2,
SO we can write
Bo(sz)-%J;(,)zo.

This is the scalar triple product which can be termed as the volume of a parallelop-

iped and can be solved in the following way.

Vpy Uy U,

0 0 1

9fo 9fo dfo
Ove  Ovy  Ov;

o _, 0 _,

J— v f—
Y ou, * v,

For an anisotropic plasma (direction dependent) in a uniform magnetic field acting
along the z axis, the velocity component along the z axis is given by v and across
the z axis is v, . Therefore, the velocity components in the cylindrical coordinates

are given as
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U = (Vg, Uy, v.) = (V1 cos @, vy sing,vy).

Since

fo= fo(UL,UH,@,

we can write

dfo - dfo Qv Dfo 00

v,  Ov, Ov,  Op Ov,

Since

2 _ 2 2
v = vy vy,

so by differentiating w.r.t x, we get

21&(81&) = 20,

v,
or
o, v,
ov, v,

Using the value for v, in the above expression we get

ov 1
o0v,

= CoS ¢.
Now by differentiating the following equation w.r.t x

v
tang = 2,
xX

0¢p v
sec? ¢ (8%) = —U—Z.

xT

we get
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By using the value for v, and v, in the above equation, we get

dp  sing

=— . 2.8
v, v (2:8)
Utilizing Eq. (2.10) and Eq. (2.13) in Eq. (2.8), we get
0 0 ing 0
fo = cos 9o _siné j. (2.9)
v, v, v, 0¢
Now by differentiating Eq. (2.9) w.r.t y, we get
8vl
QUL (%) = 2Uy,
or
Qv _ vy
v, )
Putting the value for v, in the above expression, we get
0
61;: — sin ¢. (2.10)
Now differentiate equation Eq. (2.11) w.r.t y to get
0¢ 1
I e
sec” ¢ ( ayy) o
Putting the value for v, in the above equation, we finally get
0 1
¢ _ (2.11)

v,  vicos¢sec?d’

or
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Using these values in the following Eq. (2.16), we get

0fo _ 0fo 91 | 0fo 09 (2.12)
dv, vy dv,  O¢ dv,’ '

Ofo _ ginOfo | 0050 0fo (2.13)

au, 00 T ol 90

Now by putting Eq. (2.17) and Eq. (2.13) in equation given below

9fo 9 fo

=0

V,—— =
You, T ov,

—vlcosqﬁ(sin qb% + COS¢%

) +vLsinq§(cosngafO — sinqﬁ(()f()) =0

ov| v, 09 ovy v, 0¢
or
dfo
2 .2
_ 210 _
(cos™ ¢ + sin” ¢) 96
As we know cos? ¢+sin? = 1 so %2 = 0 which indicates that there is no dependence

¢
of the equilibrium distribution function on ¢ angle. Now the linearized part of Eq.

(2.6) can be written as

Oh 5Ol C g i Lo 5y 2004 © 5y, 20t

ot or m c o mec v 0 (2.14)

where 2 = % is the cyclotron frequency and ¢ is the azimuthal angle. Now Eq.

(2.18), can be written as

Oh | o Oh e s 1o g Of (O
ST S (Bt~ x By - oo Qa(b_o, (2.15)



or

oft  1(ofr . O0fiy e = 1
20 alae TV c

E (% ﬁ —m(El"‘ UXBl)‘iZO. (216)

Since f; is a slowly varying quantity so we will try to deal with each term of the
Vlasov equation separately. Applying Fourier and Laplace transform to the terms

in parenthesis in Eq. (2.20) we get

£ = F(s).

afl o Ooafl —st
LGh = [ e

+ S/ €7Stf1dt.
0
0

As we know that [ e ! fidt = L(f1), therefore

afl -0
£<&>=eﬁ@+%m%

ofi\ _
E(at) = S,

or
where

Similarly, the 2nd term in parenthesis in Eq. (2.20), can be solved by Fourier

Transform and it gives
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Now we can write Eq.(2.20) as

ofi L . N e (= 1 Afo _

This is an inhomogeneous differential equation. We can solve this equation by

s ]l

considering f; to be a single valued function which is periodic in ¢ . We first solve

the homogeneous part of the equation which is written as

G (—iw+ik -
— — | ——] =0. 2.18
() 23
The solution of the above equation can be written as
/ —1 ¢ 7 "
G(¢') = exp [Q/ (w—Fk-v")do ] (2.19)
¢
In cylindrical coordinates, we can write
k= (kL,0,k)),
and
U= (v, cos¢,vy sing,vy).
Hence
k-0 = kv, cosd+ k.
Substituting for k- ¥ in Eq. (2.23), and integrating over ¢”, we get
i —k W) —k : i (A
G(le) = exp ﬁz (w H’U”)(Qb ¢) QLUL(SIH(¢) Sln<¢ )) . (220)
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The solution of the inhomogeneous equation is written as

G(¢)®(¢
fi= [y (2.21)
where
P(¢) = %(Fjl + iﬁ x By) - %’;0

Substituting for G(¢') and ®(¢’) in Eq. (2.25), we get

fi=exp ;;((w — k) (¢ — ¢') — tkivy (sin(¢) — Sin(¢))]

Xél)%
" OU

X [nil(ﬁl+- ]d¢. (2.22)

As we know from the Maxwell’s equation

. 0B,
Ei=—— 2.23
so by applying Fourier and Laplace transform, we get
B—»l _ C(E X El>
w
By putting the value of B, in Eq. (2.26), we get
1 —1 : .
=g o | o = o = ) o) - sinfe)
. gx(kxE
x [6 (El + v><(><1)> . aff] do. (2.24)
m w ou
From the Maxwell’s equation
L Ax - 10K
B, = — -—— 2.2
V X By C2J1+C2 BT (2.25)
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where J; is the current density. Take curl on both sides of Eq. (2.27) to get

VX(VXEl):—W,

or we can write

8(V X él)

V(V-E)—E(V-V)=— o

(2.26)

Substituting the value of V = ik and V x B; from Eq. (2.29), the above Eq. will

become ) )
oo = o o 4 0J 1 0%E
N -2 o 1 1
ik Ba) = Bk = =\ 550+
Since
0 .
— = —jw
ot

we can write the above equation as
—62E<E.E1) 1+ AR2E, = WAE, + 47m'cufl,
or
(W? — AR E, + Pk(k - Ey) + 4miwJ, = 0. (2.27)

The current density J can be written as

1

J = nev.

or

-

J=0-E

where o is the conductivity, n is the number density, e is the charge on an electron
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and v is the velocity. After linearization, we get
Jy = nedi,

where
- - 13-
vl—/flvdv.

If there are many species in plasma such as ion, electron, positron, negative ion then

current density relation modifies as given below

'fla = Z daNoa / flavad?’v- (228)
For electron plasma, the above equation becomes

fl =e no/f1 7 d3v, (2.29)
where dv is the volume element in cylindrical coordinates given as

. 0o +o0 2

[dv=[Tvave [ vy [ do.
0 —00 0

Using Eq.(2.27) in Eq.(2.33), we get

—1

T, = eng / 7 d <Q> / exp [é(w — k) (6 — &) — kv, (sin(¢) — sin(gf)’))l

x V( E - W) . af“] de. (2.30)

m ov
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Use Eq. (2.34) in Eq. (2.31), to get

4dmiwe?

(w2—02k2)51+02E(E-E1)+T% /Ud?’v/exp [Q((w—k”v||)(¢—¢’)—l@m(sin(¢) — sin(¢))
X

1>> : af“] dp=0. (2.31)

The last term in Eq. (2.35) can be solved as follow

s UxB\ 0fe [z 1(. . = dfo
<E1+ - )'%—-E1+W<UX(]€XE1)>‘| 817
= Ofo 1l =~ 1 9fo
__El‘ag‘i‘w[(v Ey) — Ei(k )}%1
g 0f (ET\g 0f, (K g 0
__El'aﬁ_<w Ex 817+<w>( T
[(1-E0)a 2 ()52 2:)
w v w ov
— <1_M>]~+ kv) _)1 %1
w w 0v

Putting the final expression of Eq. (2.36) in Eq. (2.35),

(@ = KBy + PR - By + T /ad%
m

X /eXp l;((w — k) (¢ — ¢') — kv (sin(@) — sin(¢))) | do’

xa—fﬁ’- [(1-“)1#(’“7)] "B =0 (2.33)
ov w w
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or we can write
(W? — Pk E) + Pk(k - By) + Amiw'’s - E =0, (2.34)

where

¢ ) /v &3 /exp [ (w = Ekyvy) (¢ — @) — kv (sin(g) — sin(¢’))] d¢’

L Ofo k-o\- (ko
X 5= [(1 — W>I+ <w>] (2.35)

is called the conductivity tensor.

(wz—c2k2)f—i—02k2 47rzwe STmee Mo /U d®v /exp [ w—kyv) (p—¢")—k vy (sin(@) — sin(gf)/))] dg¢’
8f0 k-vUY = kv -
81} (1—W>I+<w> E, =0 (2.36)

In Eq. (2.40), I is an identity matrix given as

1 00
010
001

~n
Il

By changing variables as

v/ = (v cos(¢ — ), vy sin(p — a),v))
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The Eq. (2.40 ) becomes

~ 4
(W—EEH [+ k>~ e’ no /v d*v /exp [ (w—kv))a—k v, (sin(¢) — sin(¢ — ) | da

« 2o l<1— E- ”/>1+ (k 7)] By =0. (2.37)
o’ w w

The above equation can be written as

H —
R-E=0

where

T = (W =PRI +k— 47mwe mmee o /U d*v /exp [ (w—Fkjv))a—k v, (sin(¢) —sin(¢ — a)) | da

« o [(1 - kﬂ)[# <W>] (2.38)
oV’ w w

or we can write

<

YRR -
R = (W — ) + Pk* — 4miw’o’,

where R is a dyadic and can be written as a square 3 by 3 matrix.

Rmz R:py er Eac
Rya: Ryy Ryz Ey =0
Rz:c Rzy Rzz Ez
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2.4 Dispersion relation for parallel propagating
electromagnetic waves

In parallel propagating electromagnetic waves in plasma, the wave vector
k is kept in parallel direction to magnetic field which is along z axis and electric

field is in x and y direction i.e.,

and

Rmx Ra:y Racz Eoc
RZM Ryy Ryz Ey =0
Rza: Rzy Rzz 0

By multiplying above matrix we get
Ry By + RyyBy = 0,

and

RyoEy + Ry, E, = 0.

So, in order to find the dispersion relation for R and L waves we will need R,,, Ry,

=
Ry, and R,, components of R . For parallel propagation we put k; = 0 and k) =k
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in Eq. (2.41) to get

~ 4
B - (W — R + Ak — Tiwe? no /vd3 /exp [ (w — kv))a ]da

9o [(1 - kﬂ)fju (E 7)] (2.39)
81}’ w w

Simplifying the last term in parenthesis in Eq. (2.43) for parallel propagation, we

get

dfo AN AN ko \ 0fe  (kvi dfo R
oo (= 557) (5] = 1=+ (55 st o0

+l<1—kzn>aﬂ)+<lm—aﬁ]>] n(¢— Oé)y—&—gf(“
Y|

ovy w Oy

(2.40)

~ 4
? _ (w2 . C2I€2)]+C2]€2 WZWG TI,O /Ud3 /eXp [ w o I{IU”) ‘|d04

k’U” (3f0 k’UJ_ 8f0 . k'U“ af() kaJ_ afO . N
) 222

dfo,
o ] . (241)

Writing down the expression for o

Amiw’s” 4mw6 Smee To /U d*v /expl (w=Fkv))a ]da[(l—kvgaﬁ)ﬁ-(maﬁ))} cos(¢p—a)i

w v w Oy

+ [(1 — k:j”) 9fo + (M@fg)] sin(¢ — a)y + gfoél (2.42)

8UJ_ w 81}” UH
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The components of o are

2w
A0y = zw—/ UJ_dUJ-/ de/ cos ¢ cos(¢ d¢/ expl (w—Fkv))o ]da

]{?U” afo kZULafo
9 Kl_ . )au+( o a)] (243

+oo 27
ATiWO 4y = zw—/ devl/ de/ cos ¢ sin(¢ dq§/ exp[ (w—Fkv))a ]d&

]{TU” 8f0 kZUL (9f0
|- )a e (Ta)) e

2 00 —+o0 27
Amiwe,, :z‘wc;;’/o vidvy [m dv”/o sin ¢ sin(¢ dgb/ exp[ (w—Fkv))a ]da

kv \ 0fo kv, O0fo

+ 271' _Z
dmiwo,, = zw—/ v dUJ_/ dv / dqb exp [(w — kv )a] do .
+ —0o0 aUH I Q I
(2.46)

0., plays no role in the parallel propagation of electromagnetic waves but it is
significantly important for the parallel propagation of electrostatic waves (Langmuir

waves). The solution of ¢-integral in the above components is given as follow
2
/ cos ¢ cos(¢ — a)dp = 7 cos(),
0

/027r cos ¢sin(¢p — a)dep = —msin(«),

/027r sin ¢ cos(¢ — a)d¢p = msin(a),
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and

/O27r sin ¢ sin(¢p — a)d¢p = 7 cos(a).

After using these results for ¢ integration in the components of o, we have

) . Wg% 9 Hoo 0 —1
ATTHW0 5y = mwﬁ/o deUL/ dv /ioo COS (v exp ﬁ(w — k)| do

kUH 8f0 kv, afo
A0-2)a (5]

“+oo )
ATiWo 4y = mw—/ devl/ de/ sin v exp [Q (w— k) ]da

k‘U” 8f0 kv afO
4Gy el

“+oo )
47rz'wayx ZWW*/ ’UJ_d/UJ_/ dU”/ Slnaexp [ Qz(w — kU”) ]da

k:v” 8f0 kv, afO
|0-2)5 (53]

driwo,, = i “’g/oo%z /+Ood /O o — kvpald
Moy = imw- ; vidvy » )| j[Oocosaexp q W v|)o| da
s ’f“n Ofo , (kvidfo
C%L w oy )|
From the above equation it can be seen that
Oxx = Oyy,

and

Opy = —Oyg.
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Therefore,

+o0o
ATiWO 4y = AW, = mw—/ devl/ de/ COS (v eXp [QZ(

k’U” afo kZUL 8f0

w—kvy)a ]da

and

+o0 )
ATiWo yy = —AMiWo,y = mw—/ devL/ dv”/ sin v exp l QZ (w—Fkv))a 1da
]{31)” afo kUJ_ 8f0
1 — ) =2 ——|. (2.52
x[( W>3M+<w5v 252

Perform « integration to get

Qw — ko)
[ = (w = kv)?]

k’U” afo kZUL 8f0

+
ATIW0 4y = ATIWO yy = mj—/ vlde/ dv)|

and

Q2
€22 = (w = kv)?]

x [(1 k””)gﬁ n (Tgf’)] (2.54)

+oo
ATiWwo Yy = —4ATIW0 4y = —zmu—/ devL/ dv)|

Using the equation
s -
R = (W — k)1 + Ak? — dmiw's,
we can write

R,y = Ry, = w? — Ak — Amiwo (2.55)
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and
Ry, = —R;y = —4miwoy,,. (2.56)

Using Eq. (2.58) and Eq. (2.59) in Eq. (2.60) and Eq. (2.61) respectively, we have

+00 Q(w — kv)
Raw = Ry = = =y [~ o, [ iy e

kv \ 0fo kv, O0fo

and

+o0 02
Ry, = —R;y = mw—/ devl/ dv) 2 = (& — k)]

X l(l kUH)gﬁ - (%g?)] (2.58)

As R;, = Ry, and R, = —R,, the matrice for parallel propagating electromagnetic

wave can be written as

sz _R:cy
=0.
Rzy RxX
It gives
Ryy £ iRy =0 (2.59)
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By using the values for R,, and R,,, we get

+ood 1
o M (@ — ko) £ Q7]

kv \ 0fo kvi 0fo\|

This is the general dispersion relation for R-wave (right handed circularly polarized

o0
2 _ 272 2 2
w”—c'k —ﬂwwp/o devL/

wave ) and L-wave (left handed circularly polarized wave). The upper sign is for

R-wave and lower sign is for L-wave.
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Chapter 3

Quantum Kinetics

3.1 Quantum Kinetics

Following the success of the classical theory of non-equilibrium physics, it
was natural to give an identical theory for quantum systems within the late 1920s
and early 1930s. In classical kinetics, the Vlasov equation is used to analyze the
dynamics of a plasma system by using a phase space distribution f(z,p). In a
quantum plasma, the classical Vlasov equation cannot be adopted due to Heisen-
berg’s uncertainty principle which says that position and momentum cannot be find
simultaneously or in other words the observable do not commute. So in quantum
systems the particles trajectories are smeared out. It is necessary to formulate such
model that can connect classical kinetics to quantum kinetics. The use of quasi-
distributions is extremely useful for linking classical plasma physics to the evolution
of non-equilibrium quantum systems. There are mainly two ways of connecting clas-
sical kinetic theory and quantum kinetic theory. Firstly utilising ensemble averages
of observable to understand the quasi-distribution function is a straightforward ana-
logue to the classical situation. Secondly, the quantum Liouville equation for the
density operator gives rise to the quasi-distribution evolution, which is a quantum

version of the Vlasov or Boltzmann equation. A quantum kinetic theory for the
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quasi-distribution function may be beneficial for adapting classical numerical codes
to the quantum realm. Of course, there are an endless number of ways to design a
quasi-distribution function, as long as some basic requirements are met. However,
the literature emphasizes a few quasi-distribution functions like the most well-known

Wigner distribution, over others [27].

3.2 Wigner Function

In classical physics a state of a system is defined by a specific point in a
6N-dimensional phase space for momentum "p" and position "q". Because classical
physics has no uncertainty principle, it is acceptable to know a particle’s momentum
and position at the very same time but in quantum mechanics it is impossible to
do so due to the uncertainty principle. Therefore, in the formulation of quantum

mechanics, probability densities are used, one for the position-based wave function

and one for the momentum-based wave function.

The Fourier transform connects the two functions, and we used p = Rk to link them.

(k) == [ da (o) eap

We require a single valued function which could offer probability in both position and
momentum. The Wigner function was created specifically for this purpose. Eugene
Wigner proposed it in 1932 to investigate quantum corrections to classical statistical
mechanics. The objective was to connect Schrodinger’s equation’s wave function

to a probability distribution. It should also be able to provide operator’s correct
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expectation values. A probability distribution in phase space P(x,p) is desired that

is positive everywhere and such that

//da: dp P(z,y) A(z,y)

gives expectation value for operator A(x,y). Due to Heisenberg’s uncertainty prin-
ciple it is not possible to find such a probability distribution although the Wigner
function approaches these requirements, but it does not satisfy all the requirements
of probability distribution function. For example, the Wigner function carries neg-

ative in areas of phase space which have no physical value.

3.2.1 Weyl Transformation

The Wigner function is an attempt to construct a new quantum mechanics
formalism based on the idea of phase space. To develop such a formalism, a map-
ping between functions in the quantum phase space formulation and Hilbert space
operators in the Schrodinger picture is necessary. This mapping is given by Weyl

transformation A(z,p) of an operator fl(f, p) defined as

fl(x,p):/dy e~ <x—|—g

Y
r—=). 3.1
/) (3.1)
This transformation replaces an operator with a function. The product of two

operators A and B has trace given by

Tr[AB] = 1h / / dz dp A(z,y) B(z,y). (3.2)

~ 2rh

This is the key property of Weyl-transformation and can be proved with a simple

formalism.

49



3.2.2 Formalism for Wigner function

The Wigner function is obtained by Weyl transform of density operator.
The density operator in quantum mechanics gives the physical state of the system.

A pure quantum state defines density operator as

The density matrix has the property of being normalised, i.e., Tr[p] = 1.

Tripl=>_(nlpln) =>_(n | ){¥ln) =D (& |n){n|v) =1

n n n

The expectation value of an operator A is obtained from p as

(A) = TrpA) = Trile ) (9] A = - (nlw ) (@] A n) = Y- (0|4 |n) (n]y)

n n

(A) = Tr[pA] = > (4] A |v)

n

Using Eq. (3.2), we get
. . 1 =
(A) =Tr[pA] = %//dx dp pA

Now its time to define Wigner function, which is given as

f(x,p):%[:h:%lrh/dyefﬂw(x—i—g)@b*(x—g). (3.3)
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3.3 Hamiltonian of a Charged Particle Moving in
an Electric and Magnetic Field

The force experienced by a charged particle travelling in a region containing

an electric and magnetic field is described by the Lorentz force Law.
F=gqlE+7x B (3.4)

Electric and Magnetic fields are expressed in terms of scalar and vector potentials

as
B=V x A, (3.5)
. . 9A
E=-V¢——. .
Vo - = (3.6)

Now substituting Eq. (3.5) and Eq. (3.6) in Eq. (3.4), we get

— =d aA’ = —
F=gq —V(b—a—i—ﬁXVxA (3.7)
Eq. (3.7) gives the time dependent nature of the potential energy. Now simplifying

the calculation as

)k

- o 0 0

A, Ay A,
- ~ [OA 0A ~ [ 0A 0A ~ (0A 0A
A:. z_iy = Z_ i k 7y_ T
VX Z(@y 82) J(@x 8z>+ <8$ 8y>
- ~ [0A 0A ~ [0A 0A ~ [0A 0A
A = z Uiy \ z z Yoy T
VX <8y 8z>+]<8z 8:1:'>+k<83; 8y)
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Vz

A = Vg

0A, 04, 0A, 0A, 0A, 04,
ox oy

<y
X
<
X

oy 0z 0z ox

In order to make the calculations simple we consider the z-component i.e.,

o o (04, 0A, 0A, 04,
(UXVXA)z—UI<aZ—8:L‘>—'Uy<ay—az>. (38)

By using z-component of Eq. (3.7) in Eq. (3.8), we get

F.=q l—gf—aé%Jr(ﬁxﬁxg)Z],

_0¢_04, 04, 04, 04, 04,
? 0z Y 0z Ox Yoy |’

0z 0Ot 0

r_y l 9o A,

0A,
Adding and subtracting vza— on the R.H.S, we get
z

A OA, OA, A, GAZ]
— U, )

F, = —%—aAquv an—I—v Y+ - -0
T T8 T e T e T T e T Y ar T oy

or we can write

op 0A, 0 ,, - 0A, 0A, 0A,
+ = (UA) —Vp—=— — /Uyaiy — /UZaZ‘| .
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Now consider

Since we know ¢ = ¢(7, 1)

So, Lagrangian for our system can be written as

L(F,7) = ;mv2+q(ﬁ-ﬁ—¢).

Finally, constructing Hamiltonian for our system.

H(F,.t) =7 p— L(F,7,1).
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(3.12)
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The canonical momentum of system is given as

. 0oL
P="55"

By using Eq. (3.12), we get

or

Putting Eq. (3.14) and Eq. (3.12) in Eq. (3.13), we get
H=17- (m17+q/_f) — {1mvg+q(ﬁ-g—¢)}
2 9

H:(m6-17+q17-/f>—;mvz—q(ﬁ-g—qﬁ),

— 1 —
H:mvz+q27-A—§mvz—q17-A+q¢,
L
H:§mv +q .

From Eq. (3.24), we can write ¥ as

a7l
|

<
N}

<l
Il

By using this value in Eq. (3.15), we get

1 (F-qd)

H=gm—m  *a¢

H:Q}n(ﬁ—qﬁ)2+q¢.

o4

(3.14)

(3.15)

(3.16)



The above equation is all about the Hamiltonian of a charged particle moving in an

electric and magnetic field.

3.4 Derivation for Quantum Vlasov equation

3.4.1 Schrodinger Equation

In classical mechanics, the Schrodinger equation serves as a counterpart to
Newton’s laws of energy conservation, predicting the behaviour of a dynamic system
in the future. It is a wave equation in terms of the wave function that predicts the
probability of occurrences or outcomes analytically and accurately. The Schrodinger
equation for a particle of mass m and charge ¢ moving in an electromagnetic field

can be given as

o [(Za?’ - CAZ) + qqﬁ]w(ﬁt) =ih d (3.17)

Replacing the wave function ¢ (7, t) with (F—I— g), we get

2
hQ 32 q2 g
- A2 [P+ 2
[ 2m Or? + 2mc? rt
4
c

hQ 82 q2 g‘
— _- A2 [P+ 2
[ 2mihor? | 2ihme? (T T3

1 (ho\(q=-(. ¥ qo Ly _8¢<F+g)
‘m(z’aJ(a“(%))*mV(%)—dt’
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o+ D) [ (F+E) i,
dt ~lom or? " 2hme? (r+2)w(r+§)
a (01 (- G\ (.. 9\ @(+3) (. ¢
Taking complex conjugate of Eq. (3.18), we get
=9 [ n®(T-5) i . G 0
dt | om or? + 2hmc2A (= i)w (= 5)
@0 (i(e T\ y(r 7)), 00 (T=8) (7
<A<r 2)1/)(7“ 2))—1— - |7 5] | (3.19)

_}_77

mec Or

3.4.2 Wigner function and its Evolution
Taking time derivative of Wigner function from Eq. (3.3), we get [31]
]

of 1 A S TR N
ot (27rh38t[/d3 ' ‘”(7‘*2)@” (”z
or
7\ ov (7= %) 7\ v (F+9)
3 z S Y 2 Sy
ore3) = e (-3) e
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Using Eq. (3.18) and Eq. (3.19), this becomes

(i B 5) o3|
i e BASED S
+ ni;(@(?+ g)w(ﬂ 3“27)) - W;g)w(ﬂ g)H

By rearranging this equation and combining similar terms, we get

N ) [ e Sl Ty S
* oy /d3y e " (2;72;) [A%F— g) — A7+ g)]¢(?+ g)¢*(F— g)
# ()P o -9
e B () [olr= ) o+ D) w4 3w (=)
o v () [ Do ) XU i By oy 22 8]

So, there are five integrals in the above expression and we will solve each of them

separately.
g‘; =L+L+L+1+1s

Solving Integral - I,
0Py (7 — g)]
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Using the identity . .
0, (x = %) = 20,1 (v + %)

This implies

8,@(7?% 327) = 20, (7 + @ (3.20)
Py (7 + g) = 20070 (7 £ %) (3.21)

Multiplying Eq. (3.22) with ¢* (F — g) and @Z)(F + g) separately will give us

NG g)a%(ﬂ g) = +20:070 (7 + g)¢*(F— @27) (3.22)
(7 + %)83¢(F— %) = 20,050 (7 — %W(ﬂ %) (3.23)
Subtract Eq. (3.23) and Eq. (3.24) to get
o= Dol ) ol Dot ) =i (o(e+ Do D)
(3.24)

Now we can write [ as

2 ih N . T
(%h)?)/df*y (%)afag@(wg)w (7"—2>>e =

[1:

and
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Integrating by parts

=g () [ v n{oter Do)
_/@%<;;efﬂ ./&y@GMﬂ+@¢%f_gD

-y 0 1 —ip.g o U\ wfe U
h= <mp> " OF (2mh)? d’ye™r <¢(r+g>¢ (“@)

Making use of Eq. (3.3), we can write

__p of
L (3.26)

Solving integral - [,

_ 1 3y o= (0 N\ g2 Ty _ p2pre Dyl (e D (7- 7
IQ_(zwh)?'/dye ' (2hmc2>[A (F=5) = 20+ |+ v (75

Let’s have a look at some mathematical analysis before we tackle the second integral.

Consider the Taylor’s series for an arbitrary function qb(f’ + g)

o+ ) =350 D (3)

—n! 2
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—ip.q

Multiplying both sides by e ™

—ip.g
(3

¢<F+ —)ef =

[\ IR}

= 19" ¢(7) (y)e

—nl  or 2

Multiplying and diving by _# on the R.H.s of the above equation, we get

A NG AN G AN EA
o+ 5)e T2 o \n )\ 2) ¢

A e G e AN AN
¢(r+2)6” T2 o\ 2 n) "

n=

where

@)e L 0" 0() (=" 0" s
2 Zenl o\ 20 ) opr

n!
—n!

%
LY\ i > 1 —hnﬁngn —ipg
¢<T+§)e = g(r) {Z (22> Wapn}e

It can be seen that the series in square brackets is actually the Taylor series of an

exponential function.

A
- ?j *irﬁ'y_ —h O™ 0" %ﬁ»y
o7+ ) _‘bmeXp(Qz' o7 @p")e

on Jn
op™

-
where exp <2f pr ) is considered as an operator, with a% acting to the left on

¢(7) and % acting to the right on e # . It may be written in a more general form
as
o=
N B9 I\ gy
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Solving I, and consider

== ==
200 Uy g2grs UV oZEL _ g2 RO 9N (ZhO I\| —ps
(A (r=3) A(”2)>6 ' —A(T)leXp<2zafaﬁ> eXp(% orop) |

—— = —
e T s IVt il (BT BN (-in T TN e
(A (7 2) A(r+2)>6 hoo= A<T)leXp<28F8ﬁ> exp( > orap e

By using Euler’s formula, we can write e —e~* = 2isin(z). So the above expression
y )

in parenthesis can be written as

%
- Ty e I _ iarysin (100 )20
(A (7 2) A(T—l—Q))e = —2iA (7_")8111(287?8]7)6 (3.28)
So,
L, B} B} i} ﬁ
Y (L 2~ Iy a2y D)) 2B g (1 Dy (7 — D)o
12_<2hm02>(27rh)3/[<14(r > A(r+2)>€ ]¢<T+2)¢ (7= )4
L oo ) )
_ (- L iemysin (P2 2 e (g Dy (7 D\ a?
b= <2hm02>(27rh)3/ 2id (T)SHl(Q@Tap (i )u (7 - 5) 4y

hmc?

b= = 20 42 sin LANE /ef‘g¢(F+g)¢*(F—g)d3y
2 20705 ) (2rh)? 2 2

2
Y TP L)
I, = (hm02>A (7) sin (2 8f'aﬁ>f (3.29)
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Solving integral - I3

oot ()[2A D) 2D, vy
mc

or or

Using Coulomb Gauge which says that the divergence of the magnetic vector po-

tential must be zero i.e.,
where

SO

Solving integral - I,

1 s (i L g LY (= Y
1= i [ 0 () ol 3) ol D] el + v -

Using Eq. (3.28) and Eq. (3.29),

S N ho d\ -ipg
<¢(f_ g) — o(F+ g)>e = —2i ¢(7) sin (28Fé?ﬁ>eﬁ

= 1= (3t f 0 e 3 555) ]w@@*ﬂ*@-@

. 2i2q N . h 8 (9 3 *;p w [ = ?j
1= (- 2oy (2.0 e | P (s Do)
P—
2 Lo o
L= (;—f) (7) sin (26?82;) f (3.30)
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Solving integral -5

Likewise
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Using the above expressions, I5 simplifies to:

= (277171)3 (&)

Y — = R
B} ET N (RTINY s g 0u (P
X /d3y [A(r){cos (28?’8}7) + i sin <2(‘9F8ﬁ) }e ¢<T+ %) ((% 2)

Use the product rule of derivative to simplify the first integral, whereas Eq. (3.21)

in the second integral becomes

I = 1 q d3 A h%? 8 . y_’ ol 37
=G () /940 | (555) 2+ 3o - D)}

v2isin (g S o+ D)og (- ) + o (- Do (e P}
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2 2
—> T —
+ 24 sin (Z@F;)ag’{w(F—i_ %) w*<~_ g)He—zm

L (RO F\ o 1 oy Dy (7 D)2
() [aereos (5 5a) ot s [ el o= )

1 2iA(7) sin (2570(917){(27371)3 [ty (s T o (- 127)6}]

The 1st integral can be solved simply by using Eq. (3.20) and 2nd integral can be
solved by using integration by parts.

L=(L)|A@ EEE of
57 \me ) [V %\ 20705 o7

ho J\ (i) 1 . 7
+ 21 A(7) sin (2877@}5) (;Z;)W,/dgye?yl/J(F—f- %)¢*(F_ ?;)]

o~ 9 A7) cos (hW)af 2)

2070p) oF

h 2 97 O (3:31)
Combining Iy, I, I3, I and I5 we finally get
= ==
of _ 7 0 (& o (P00 20\ 0 (P09
ot~ m 8F+<hmc2 Ao 5 5rap ) O )0 5 5ra5)
+-L A EEE of _(2)4a A(7) sin EEE ¥
me P\ 2arap) oF — \ ) me 207 dp

65



) SN LY ICAN |
ot " 20705 OF
2
)

m  OF mc
[l G a0+ (2o 5

Now introduce two new terms which will not actually effect the expression

and

Both of these term can be proved just by expanding the Taylor’s series of operators.

Now we can write the above expression as

of 7 (n%?) af ¢
—_— = COS
ot m

5877787? : ? + %AO‘) COS (

[ O R O R

% (5 04) AN
Pr2) 8\ 2orap) - oF

2 1 q \? h % 3

This is the Quantum Vlasov equation.
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3.5 Transformation of the Quantum Vlasov Equa-
tion from (7, p,t) space to (7, 9,t) space

The quantum Vlasov equation in (7, P, t) space with canonical momentum
P can be represented in (7, U, t) space with ordinary velocity ' with help of following

transformation for canonical momentum
L g
p=muv+ =A(T) (3.33)

o 0 ¢ 0A 0

) o g 0A 0

or; or;  m.cor; O0v (3.35)
0 1 0

o, — T (3.36)

Now we can transform all the terms in Eq. (3.33) with the help of these transfor-
mation equations.

Transforming the term on the L.H.S

of,  0fs g 0A Of,

ot Ot mec ot 0v (3:37)
Transforming 1st term on the R.H.S
_1<~_%g( )) EEE L Ofs
ms P N )\ 9 8ra5 ) o
N LA N S P (A
T, P\ 2orap] ar T\ )\ 20705 | o7
Tk () ho J\ of,
T s oF | \mee V) %\ 20rap) o



Transformation of above equation gives

qS e afs qs az‘f afs
A . _ .
(T)> ( ar;  mgcOr; OU )

ES P 9T\ (o5 a 94 oy,
mae V) P\ om, o7 07 ’

or; mscOr; OU
or we can write

Mg

or; mscOor; 817)
+< b A( )) BT\ (0f _ a 04 of.
mec' )\ o, o7 07 '

IR ) 04 0J, —1(%ﬁ(r)>. of, 4 94 f,
s e or;  mgcOr; OU c

or; mscOr; OU

Using tensor notation for dot product, we get

o5,
L of

or m

s ,aff‘afs_1<qsg(>>_ ofe g 0A Of.
sC vi or; 0U mg \c " or;

mgcOr; OU

N R AN I )
mee 1% am. or o | \ ors ’

mgcOr; OU

g Of a4 04 0% 4

oo Ui Ry
or mgc  Or; OU mge

4

mecOr; OU

n 0 d\ ] (o8 a4 04 of,
O\ o, oror ors '

(3.38)
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Transforming 2nd term on the R.H.S

(5 (7= 220) 4 000 ) s (Z?fp) :

i

F
we know that when sin (ggfﬁ) applied to p, it will give zero. So

(‘:\Q

[\]

(271'15 <(Zﬂ(r))2 — 25 <Z/f(r)>) + q5¢(7")) sin (Zii) fs

(m? (“4r)) 25 (fom)) " qs¢><r>) sin (’ﬁg

2 0F OF

N———
Py

_ 2 1 (q/f( ))2 EEE f _2~<q/f(7«)>sm hé? f
= 2m, ") S 9 erep ] T 2 0F Op
e 24 o Koo
5 4s @(r)sin | 5o o7
Transformation of this expression gives
2 1 /q-, \? h o0 0
- h 2m <CA(T)> sin (Qms or 81})
S (e ) (G0 (515
h 2mg c c ")e 2mg Or
<_
. h 0
+ﬁ qs ¢(r) sin (Qmsaf’
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Rearranging first and third term, we get

_ o« ( + 24 ))-/Y(r)sm( h o a)fs

mech 2my OF OV
%
2 q2 2 . h O 3
+ ﬁ <2m802A + s ¢(T)> Sl <2ms %% fs>

Using tensor notation for dot product gives us

=
= — 24 (msvi+%Ai> A; sin iii fs
c or' ov

mgch 2m
%
2 7 2 . h 0 3
+ ﬁ <2m502A +qs ¢<T)> S1n (277158776’(7 fs

Add and subtract the following terms in the above expression.

2qS qs h 8 a
msch <mSUZ+cAZ) A (2m58 rOU )fs

and

After simplification, we get

VRN
_ 2qs qs h 0 0 24, < qs ) h 0 0
= nuch <m5”1 + cA’> A; (Qms ama) s pen \msvi #7240 ) A | 5 5o

sch

_>

2q, h 0 0

_ A A; v Y

mach (m it ) s (2m5 Waﬁ) Js
= =
2( ¢ h 0 0 2 ¢ h 0 0
MO (zmscr“ o M) (2maa) I (zmsczA T4 00\ o 00 )

2( ¢ [ h 90
* h <2msc2A s ¢(T)> St (Qms or 6?'0) Js
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After combining first term with the third and the fifth term with the sixth, we get

_ % (msvi+qc$Ai) A; ( ho o 3) fs

mech 2m OF OV

_ % ( .+qu.> A | h EE (N EE f
moch Y i) S\ 9. ar o om, 0707 ) | 7*
°0f ¢ ho o
+ﬁ <2m5 ATt gs ol >> (stﬁra )fs

_{_g ¢’ A%+ o(r) - h EE — LEE f
n\2m.e @ O )\ S o or o om, 0F o7 ) | ¢

Expanding the resulting terms the expression becomes

¢ 04 Ofs @&, 0A 3fs n ? 04, 3fs +£3¢(7”) Afs
msc  OF OV  m2c® " OF m2c
0

or ms Or  OU

24, s B h'od
B mgch (msvi + cAl) A (sm ( (‘38) (Qms or 8@)) fs
— =
> ([ ¢, h9 o 9 d
* h <2ms A+ 9 (sm (Qms 8) (Qms (97‘"(917)) Js

and finally we get

qs ] 8141 . afs + &aqﬁ(r) X 8fs

msc ' OF OV  m, OF OV

<< S =
Cc

msch 2mg O OU

— — =
2 2 (n9d E9 9
5 (zms AT+ g, o(r >> (“(zmaa) - (zmaa))f (3:39)
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Using Eq. (3.43), Eq. (3.39) and Eq. (3.40) in Eq. (3.33), we achieve

ofs g 0A 0,

ot mcdt OU
2 Of 4 OA Of  a OA Of. | 4. 00(r) O,

: — v; : = v; = — — —
OoF  mgc ' Or; OU msc = OF  OU ms OF  OU

( B ‘53) ] (Gfs g, OA 8fs)
coS —1 —

om, OF OF or; mscOr; 07
AN R T AR R A
moch \" T\ 2m. or 0F om. 0F 07 ) | 7*
22T g o) [sm [ 97\ _(no37 f
n\ 2m.c? @ O\ S o, or oo om. 0r o7 ) | ¢

After using tensor notation, we can write

Ly
m

ot "o T\ Tcar  or ) o7 Tme on,  or| v
(h%? _1](&;"5 ¢ 04 0J,

fs | . 0fs +%<_1M_8¢(r) Ofs g [aAj B GAZ-] Of,s

dr;  mgcOr; 817)

%, @U+%QAAmh53_h33 ;
et ! 2mg OF OU 2mg O OU 3

_|_2 C]2 A2+ ¢() 3 hgz _ hgz f
n\2m.c Qs X))\ S 9, or o om. 0F 07 ) | 1%
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where [% — ‘g—iﬂ is the kth components of (V X /T), therefore

Of | . Ofc _a [ 10A 0¢(r)\ Of _ ¢ ~ 1 0fs
ot U or +ms< cor~or ) a0 Tme v [(VxA)] dv,
0 , nod\ ] (of g 04 o,

= g |\ 2m, or o5 or;  mecor, OU

A (i a) s AN RAN
mech VT ) A\ S 5 o om. 070z | | 7°
PN U Y A B LR ICAN

Qs )|\ 9. Br o5 om, 0oz | | 7*

h \ 2mgc?

We can write the scalar triple product in tensor notation as

of. N\ of,
avj_< XB) v

ol

v; By,

Now the final expression will become [33],

afs — afs ds - 17 o afs

( hi %3) ](8fs gs 0A Of,
coS —1 — .

om, OF 0T or;  macor 817)

M (i ) 4, (s AN EIRTAN
Mt A ) S S S R o om, 0r oz | |7
= ==
2> ( 2 (n 97 9D
+ = < - A% + g, ¢(r)> (sm (2%8?86 ~\ 2. 7w fs. (3.40)
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3.6 Linearization of Quantum Vlasov Equation

In order to study the linear response of a physical quantity say ¢ it is

expressed as

= ¢o+ P1

where ¢q refers to the unperturbed quantity and ¢;(<< ¢o) measures perturbation.
Study of linear response leads us to small perturbation which is sinusoidal and can

be written as

—

(. 1) = p(k,w) e (3.41)

where gb(l;, w) is the Fourier-Laplace transform of ¢(7,t).

After linearizing L.H.S of Eq. (3.40), we get

o afsl — afsl ds v 5 afsl ds = ol 5 afSO
= U r T\ B T\ Bt e x By

(3.42)
Now the first term on R.H.S of Eq. (3.40) will become

AN
S\ 9. o 0

or;  mgcOr; OU )

ds A,

msC

<0ﬂ g 04 9f,
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In tensor notation we have

h Ez _1 afs_ qs aAJafs
S\ 2m, or o Or;  mac Or; Ov;

R AN
o8 2mg O OU

S

— s (Aio + Air)

mec
y fso+ fa) g5 9(Ajo+ Ajn) O(fso + fs1)
or; meC or; ov;
==
o ds ) ] h 22 st +fsl
= e i+ Ai) |cos <2ms ama) ] or,
%
G ) ) h gz a(AJ0+AJI) (f80+fsl)
(msc> (Aio + Ain) |cos 2mg Or OU ) < or; ov;
As fyo is homogeneous, so
==
AN EEANEE
= e (Aio + Aj1) |cos ( o7 817) ] or.
%
C (2 (A + An) h ﬁz | 2o +Aj) O(fo + fa)
msc 0 i) 2mg Or OU ar; 0v;

.
By using Taylor’s series, we can expand cos (hé;?{?)? which gives us second or-
dered derivatives. as we know A;q is linear term in 7 i.e. Ay = By X 7/2.

As we are taking linear term so the first term will vanish. Here we have to go just

AN
S\ om. oror

5

with 2nd term.

O(Ajo + Aj1) O(fso + fo1)

= (L2444,
= () (Aohda) or, d,

mecC




Here again A;q is zero for the same reason and linearizing rest expression gives

b TN ] 24 9
S\ om. oror

87“1' (%j

:_( qs )2Ai1

msc

mec’  Or; 2m. OF O ov;

(—
- —(i)2 040 A [cos( h 0 3) — 1] Ofso

Writing (Ay = By x 7/2) in tensor notation of cross product , we have

- 1
Ao = B €ijic Boi 15 €k

Where ék = él, GAQ, ég

Since
B=B)é
- 1 R ~
0= 5(—Borg €1+ Bori €3)
814_)0 BO R (91401 BO
—-— = —— €1 = = T 5
87"2 2 87“2 2
0Ay  Bo . N dApx By
— = — ¢ = 5
(97'1 2 2 (97"1 2
8140]' B() ~ BO ~
= Trz = —7 61+? €2
A By . By . 1 4 2
= 81”23 Ay = <_20 €1+ 70 62) Ay = 5(—30 Avi 614 By Ay &)
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8 Ay
= arij 15 = 5 (B(]XAl)]
==
= — ds 21 3 { h gﬁ . ast
= (o) g Box A, COS(Qmsafan Y o,
We will now linearize second term on R.H.S in the same way
n\2m.2’ TEC) P 9 or o om, 0707 ) | 7°
(e N (T (5T
n\2m,2 1T B o or o 9m, OF OF
S 2 (B (4 s An) (A + An) + gy + 6)
— FL 2m502 70 71 30 21 gs 0 1
w( 2 00) (RO
S 9. oF 0 om, 0707 ) | V0T e
- = = ==
2( ¢ ([ h 9 h9 o
S S (A 4+ At Air + 240 A, i I 27
h<2m302< 10 ’LO_I_ i1 ’Ll+ 10 Zl)> Sm (2m887—1»8@-\) (27713377817
i [ (053 (053
p I\ QOO S o or o5 9m, OF OF

7

N——

N———

(3.43)
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Expanding the Taylor’s series of sin { 5. 7555

57 57\ . . L .
then |sin | 5 —7575 | — 2ms 5797 )| give the third ordered derivative which can be

neglected as A;p and ¢q are linear terms in 7. So, A;9 A;p in first expression and ¢q
in that of second will be zero for this reason.

Also the term A;; A;; in first expression will be zero for being non-linear term.

NEREAN R K]
W o, oror om. OF 07

2 [ T8 (207
! om, OF Ov om, OF v

2 ¢
= eh (Ao Ain)

(st + fsl)

(fso + fa1)

2 2
= 2 (A An)

msc2h

(n9d\ (n9d ;
S\ 9. oF 0 om, 0707 ) | 1

or
20y [ (2 0TY (T TNy
no PP o, oF oo om, oro5 )| 10\

The third term on R.H.S, liearized as
. ﬁEf (3TN,
i 2m, 0707 ) | **

2q;
mgch

(msfui + q;Al) A;

QJ

2mg O

NEREANERTA R
S o or o o, 0F 97 | | 0T

— =
. ) . : h 9 d
Expanding the Taylor’s series of sin S B aﬁ),

- h9d h9 - : .
then {sm <2m GF%) — (2m 5755 )} gives the third ordered derivatives so we neglect
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them because A;q is linear in 7. So, Ao will be zero.

S — =
__ % 2 NEREANE K
Rl (msm + ?(Azo + Ail)) A; [sin (Qms EEPE . 07 07 (fsot+fo1)
= msch mgv; i1 | S11 2ms 877817 2ms ar 8 s0 sl
2. (4 (n9d\ (n9d
_msch ( c (AZO + Azl)) Azl S (Qms %% 2ms 87“ 8 (f80‘|—f31)
N P EE (h 9T ;

2 ¢
T mucth Aio Air

*L

(rn9F\ (n9d fe 33
W o, oror om.oror || 10\

After Putting Eq. (3.43), Eq. (3.6) and Eq. (3.45) in Eq. (3.41) and simplify-

ing the expression, we can write linearized quantum Vlasov equation as

+v

afsl —».8f81 qs (UXB_‘()) .8f51

ot or mg \ C ov mg
<_
(2T 2\ e 1 hod Ofs0
- (Elc . Bl) 57 Umye) gBox A jeos (2ms afaﬁ) B 1] ou;
_ 2 s (UZ — ¢ ) ; h EE _ igz f (3 46)
n \c V1P o, o7 o6 om, 0oz | | 7*° ‘
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3.7 Derivation of Susceptibility Tenor

Suppose the Taylor’s expansion of the function of kind given below

. h 9 1 h 9
t(k.7) — L E.7) —
¢ o (Qms or (%) (o) Z 2n! (2mS or (%) (@)

n=0

B o9 (_1)n A 2n aQn L(EF’) aQn ~
N 7;) 2n!  \ 2m, or2n © ov?n (@)

RN e L A S i
N Z 2n! <2ms> (Lk) UCH)(@UQ" h(v))

n=0

Since (—1)".(—¢)** =1, So

S\ 2n
7 =1 (hk 0%
— k1) 2 : —
‘ = 2n! (st) <8v2” h(v))

Finally we get

: hod e k) hk hk
v(k.7) — — =
oo (Qms or 61}) h©) 2 (h (U 2m5> h (U * QmS)) (347)

In the similar way, we can get
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Using Eq.(3.48) and Eq. (3.49) given above we can simplify the linearized quantum

Vlasov equation [34]

8f:sl — 8fsl QS U = afsl
ot T o T\ e X B )55
— _ﬁ <E1_|_,U Bl) afio
s c ov
—<q8>2(§ x Ay); |co h?g ~1 Ofs0
mec) 0TV o oF o v,
_2qs(va _¢> sin hEE — hgz f
A i ! om, OF OF om, OF 0T 50
(3.49)

To study linear response, as we have discussed in details at start of section 3.6 using

(3.50)

Eq. (3.42)
le(ljv:, w) eL(E.F—wt)

b1 (F7 t) =

In the similar way we can write
(3.51)

So, simplifying 2nd term on R.H.S of Eq. (3.50) gives

(£32)-)4

2my OF 0T

_< s )2 0 ((BoxAl)i

mgc/) Ov;

Using Eq.(3.48), it gives

\2 0 [(Byx A . hk .
msc/) Ov; 2m 2m




—

hk

—

h k

v (fs[) (’U_ st) +f30 (17 + ) -2 st(’U)>

2mg

Putting (fuo ( )+ Fao (0 + £E) =2 fuo(0)) = FH (5. F)
— =
g \*> 0 > o h 0 0
- By x A — ] -1
(msc> ov; (( 0 X Au)i |cos (2m5877017 foo
qs 2 (go X A’l) aF;—(ﬁ, E)
- : 52
(msc> 2 ov (3.52)
Similarly the third term of Eq. (3.50), gives
_2(]3 (UiA _¢> sin hEE — hEE f
ho\ce T 2m,, OF 0T 2m, OF 07 ) | **°
Using Eq. (3.51) and Eq. (3.52),
_2qs<1 _¢) (n 07 hod .
N h c U A 2m OF O 2mg Or OU 0
+2 qs _¢ %5) f ]
h Ain ! 2m3 orov | %0

Simplifying by using Eq. (3.49), (3.51) and Eq. (3.52), we have

2 qs
h

i N hk . hk
{;L (UCAM—QH) (st (U— 2ms) — [0 <U+2ms)>]
2 h

4 {LE (”"Au —¢1) (
c 2mg
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Putting (st (17— %) — [0 (17 + fm’i) - E(nf) %%m) = Ff (7, E)

2 (g | AR R IAN
no\e T ) P 9. or o om, 0707 ) | 7

Lqs (U - e
S A o) POk
A <C 1 ¢1> 5(7’0)

Now using Maxwell’s equations

(3.53)

(3.54)

(3.55)

(3.56)

Ey ==V ¢
and -
- 10B;
Vx By =——
S c Ot
to express A and ¢1 in terms of E, in (l;, w) space with the help of Coulomb gauge
kA
Firstly,
Ey ==V ¢
Since
¢1(F7 t) - ¢1(k7 W) GL(E rwt)
Therefore
E1 = —LE ¢1
1
br=— = F
1 it
Multiply by k up and down
E1 =
¢1 - E [,]Z 1
vk
¢1 = 7z Ey



In order to find the expression for perturbed quantity A} we make use of Eq. (3.56),

- 108,
Vx B =—-1
xR c Ot

We know that

and
By(F.t) = Bi(k,w) e®r)
So,
LEX Elz—_bw _’1
— C = —
B1 =—kx 1 (357)
W

Now using Eq. (3.58),
gl = E E X El
w
Taking cross product with V on both sides

Vx§1: VXEEX El
w

nglz EVX EX El
W

Put
51 = V x _)1
Vxfofl: EVX k x El
w
LEXLEXAAHIZ ELEX EX El
w

84



Using cross triple product formula for expansion of above expression

LQ[E(EA;) — k2g1]: EL[E(E.E:) — k251]
w

Using Coulomb gauge i.e. kA =0

o (3.58)

Using values from Eq. (3.53) to Eq. (3.59), the linearized quantum Vlasov equation

becomes

afsl Hafsl QS 77 > afsl QS = U 5 ast ( QS
: 4 (Y B). - _ S (F LY H). _
ot U or T\ P ) or T T\t e P s 5 o7
L Qs 17 — /7
— — A — F(k
h (C 1 ¢1> s( 7/0)
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_ s Ofw
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Since, fsl = fsl (Fa Ua t)
It can be seen that L.H.S of Eq. (3.60) is total time derivative of fg (7, ¥, )

So,

dfs1 qs Ofs0 k. ko .o
= I . — T+, t
dt ms OU L + w (7, ¢)
2 +(= 1 .
(o) (anw,k) y BO) |

2 \msc

In order to calculate the perturbation, integrate the above expression over time,

take upper limit to be t and lower limit of integration to be —oo which indicates

that we are to start from the time when there was no perturbation.

—

AV AN
s Ofso v k>[+ U).El(r’,t’) dt’

/dfs1 - _/tooms o ((1 W

(e (2EER
00 2 \Umyge ov 0]

¢ . —v ko S .
—/_OO (v’ + w];k) F-(k, ) . Ey( b)) dt

Ey (" ') can be written as

qs
w h

El(ﬁ ) = 51(F,t) eL(E‘(’;_F) - w(t’ = 1))
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(3.60)

Where we define
B=(k(-7) — wt' — 1)) (3.61)

Making change of variables we have
T=t—1t (3.62)

= dr = —dt

Limits of integration change accordingly as
t/=—-00 — T7=00 and t'=t — 7=0

Also

U = (VUg,Vy,v:) = (v cosB, vy sinf, v) (3.63)

nn

If we have particle of species "s" gyrating with cyclotron frequency w.s, then after

time interval 7 the phase changes and velocity becomes

v = (vl 08 (WesT + 0), v sin (wesT + 6), v”) (3.64)
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The above equation can be written in terms of net displacement as

dr
@ _ (UL o8 (WesT + 0), vy sin (wesT + 6), v||)

dr

Integrating both sides

v, 0
/ dr" = / (’UL COS (wCST/ + H)a vy sin (WCST’ + 6)’ UH) dr’

0

- v N
r— 7 = ‘( - COS (WCST/+0)7 - sin (WCST/_I_Q)’ Y 7—,>

wCS wCS T

(cos (0) — cos (wesT + 6)) , — UL (sin (0) — sin (wesT 4+ 6)) , = 7')

WCS WCS

(sin (wesT + 0) —sin (0)) , —v T)
(3.65)

V1
o (cos (wesT + 0) — cos (0)) , o

After applying change of variables the Eq. (3.61) can be written as

00 O N M . 2
faliit) = =2 ‘9in-(<1 ! k)uk )eLﬂ arFi—g o (1)
msJo O w w 21w \mgc
o (9 FF k) -\ s . kk\ =
X /0 (86 X Bo) e dr - I — ﬁ 'E1
s Sl w—z?’.klg
whé <”+ 2

In cylindrical coordinates we have

F- (k) e dr- E, (3.66)

U= (v cosf,v; sinb,v) (3.67)

V' = (v) cos(wer + ), v sin(wer + 0),v)) (3.68)

Now we derive the expression for susceptibility for deriving it we use Maxwell’s
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equation

Current density J can be expressed in terms of polarazibility as
joor

Using the above equation we get

The term in the parenthesis is described as Electric displacement D,

The Eq. (3.71) now modifies as

- 41 851
VX Bi=Gar

Comparing Eq. (3.70) and Eq. (3.72), and using D; = ¢ - E}

where € is dielectric constant.
47Tj1 = —iw47r151 + iwﬁl
or

A = —iw <47T€(w) — 1) E,

(3.69)

(3.70)

(3.71)

(3.72)

(3.73)

In order to simplify the term in parenthesis we make use of the following equations

51 = eoﬁl + eoxﬁl
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Zj’1 :€0<1+X> 'El

(3.74)
X = 4mé(w) — 1
Putting the above expression é(w) in Eq. (3.74),
A = —iw <47T€(w) - 1) By = —iwy - B,
- (3.75)
- —wx - By
J=—F—
! A
Also current density can be expressed in terms of number density
j1 = nqu
where n; being the perturbed number density can be expressed as
ny = nO/fl(Fa v, t)d*v
Finally we write current density J; as
Ji=a [ Th(7.T, O (3.76)

Comparing Eq. (3.76) and Eq. (3.77) we have

ypm q/vfl(ﬁ U, t)d3v
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Now putting fi(7, v, ) from Eq. (3.67) in the above equation

— —

— 4 E' _; ~ k / - =g
a-B e L2 (D) s
mw w w
0 +( . . . .
_ 2mnoge( a4 /dgv/ LT (1_). L)) x By I — ﬁ e'“dr - Fy
w? me 0 o' k?

R S 10 T
o /d / [v’%—(kQ kledrT~ (V' k) - Ey

(3.77)

By comparing the both sides we get the expression for susceptibility ? as follow

— —

9 = 47Tq/ / 8f0'[<1_k-v>[:+<m>]emd7
imw w w
(o k . - kk] .
B P N AL AN P
w me ! (3.78)

R N
T /d / lvl+<k2 kle“drT~ (V' k)

7:?1+72+73

o el () ) om

2 T, k)~ - kK],
N = —C / FdPv / 0 3 x By | - |I—— |edr  (3.80)
mc v’ k2

4 oo | _]2 Y% N - -
o= T [ | [U/+<°"k21’)k]e“dﬁ<vxk> (3.81)
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3.8 Parallel propagating electromagnetic waves

In Section. (2.4), Using kinetic theory the dispersion relation for parallel
propagating electromagnetic waves in classical regime has been derived. In this
section we will derive the dispersion relation for parallel propagating electromagnetic
waves following the quantum approach. For parallel propagating electromagnetic
wave choosing magnetic field along z axis and the wave vector is also in the same

direction.

3.9 Calculations for y;

4 0 AV AN
Z;(-L/ o[ f°-K1— uj))]—l—(:j)]emch (3.82)

In cylindrical coordinates we have

00 2m
[av=[" v / dvy [~ do (3.83)
0 —

The term in parenthesis and exp in Eq. (3.83) is solved for parallel propagating

Em waves using cylindrical coordinates and we get

eioz _ ei(w—ka)T (384)
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— -

oo . [(1 - k- />f—|— (Wﬂ = l(l - lm)”)@fo + <%afo>] cos(wesT + 0)2
o’ w w w Jov, w Oy “

k?}” 6f0 EUL 6f0 . A f() A

Making use of Eq.(3.64), Eq.(3.84), Eq. (3.85) and Eq. (3.85) in Eq. (3.83) we get
the following components for {7

2

oo | [e%e) o) 21
N aw = “p /0 el(w_kv\I)TdT/O deUL/_ dv”/o cos 6 cos(wesT + 0)db

1MW
k’?]” 8f0 k’UL 6f0
K - w> oo, * (mﬂ (3.86)

2

0o | o] 21
%xy = ‘Wp / el(w_ka)TdT/ v 2dv, / do / cos 0 sin(w.sm + 6)dbf
0

ingw Jo
/{Z’U” 8f0 k’UJ_ 8]”0
l(l - )31& ! ( w (%”ﬂ 357

2
Wp

. = - / > gilwkupr g / Told, [ o g, / cosfdf  (3.88)
0 0 81}”

1MW

2

oo | o] 00 21
\q e = Lp / e’(w_kvll)TdT/ v 2dv, / dv / sin 0 cos(wesT + 6)do
0 0 —c0 0

Mow
/{ZU” 8f0 ]{?’UJ_ 6f0
(- 2)a (o)) o

2

oo | 21
vy = wi/ e’(“*k“ﬂ)TdT/ vy de/ dv| / sin @ sin (w7 + 0)d6
0 0

inow
k‘?)” 6’f0 ]CUJ_ 8f0
l(l— w )31& +< w avnﬂ (3.90)
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2

co | oo 0o 2
/5_<1yz = .WP / ez(w_k”“)TdT/ szde/ afodv”/ sinfdf (3.91)
0 0 —o0 OV 0

now

oo | [e) e 21
%m — .wp / el(w_kv\l)TdT/O devl/_ v”de/ cos(wesT + 0)db

MNow JOo
k?)” 6f0 k’UL 6f0
(=25 (5] o

2

oo | 00 2
ﬁzy — wi/ e’(“_k””)TdT/ devL/ devH/ sin(wesT + 0)do
0

1now Jo
k?’U” 8f0 kUJ_ 8f0
[(1 - w> do. * <wa”ﬂ (393)

w?

(%)zz = —P /00 ew=ko)T 1 /00 UJ_dUJ_/ V|5 0o d?}” d9 (3.94)
0 0 aU”

1MW

In all the above components it has been seen that there is no quantum term or

quantum correction it is purely classical.

3.9.1 Calculations for XX component of y

2

Nz = “p /Ooo w7 g /OOO N de/ dv / cos 6 cos(wesT + 0)df

1now
k) 0fo | (kvLdfo
(-2 (550)]

Theta Integration

eiwcsT +e —iWesT

2

2T
/ 08 0 cos(wesT + 0)dO = 7 cos(wesT) = T
0
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Tau Integration

Combining the results for theta integration with tau it gives

al oo oo T 1 1
o z(w—kvu—i-wcs)d / i(w—ky)| —wcs)d [
2[/0 € T 0 € T 2 w—kU”"—wcs—{—w—kUH_wcs

Perpendicular Integration
The perpendicular integration is being solved by integration by parts and using the

fact that distribution gets vanish at the end points we have

Lo ey k) 9fe  (kvidfo _ (R e of  (kEOfo
ng Jo L [(1 w)@vL—i_ w Oy doy = |1 w /o no (9vl+ now v dv.

[Fuldh L l” <0 gy, [ [ g, ] = [T 20 fudo, = 2
0 0 ng Jo

Un 81& No 8UJ_ 8UJ_ d/UJ_
/ kUL 3fg dvy = ii /oo v, ® fodvy = EiGs?,
0 now v now Ov|| Jo w

L Oovf 1—M %—i- kvLafO dv, = -2 1—m Gs1+EiG53
ng Jo w ) Oov, w 81;” w w dv

In the above functions we have defined the function G, (v)) as

1 o]
Gsn(UH) = 7/ U?_f(](”i?”\\)dvj_

Mo JO

Now going back to the equation of {{.. and putting the results for the above

integration in the respective places.

2 2

%zm = et / [ u il ]Gsldv|| o 7::05 / lw‘| GSldUH—i_

w? —co | W — kUH + Wes —oo | W — k’U” — Weg

2 ] 2 o0
kﬂ-wp a/ [ GS?’ 1(11) + kﬂ.wp 8/ [ng 16&) (395)

2w? OV J—oo W — kv 4 Wes 2w? OV J—oo | W — kU — Wes

In Eq. (3.95), there appears four integral which cen be solved by making use of
integration by parts , as first and seocnd term in Eq. (3.95) seems to be quite

similar just with a difference of signs so they are simplified on the same pattern,
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likewise third and fourth terms carry the same terms but with different signs so they
will be solved on the same pattern. Let denote the first term as integral I and 3rd
term as integral II.

Integral 1

2
—TTWp /00 w — kv G don —
w?  Joso [w — kv + wcsl st

W wcs o0 G,
sidvy + —= / | dy
—oo | W — kV| + Wes

(3.96)

Integral I1

— 2 9] — k — 9]
Wwp/ [ w — ky ]Gsldv” Wy / Gord, — TWy wcs/ l Gsi ]dv

UJ2 —o0

W — kv — wes w? W — kvj| — wes
(3.97)
Integral III
2 00 25002 oo
k’m,u;) a/ Gs3 d?]“ _ _k 7-(_("‘;27 / Gs3 - (398)
2w% OV J-oo | W — kv + wes 2w —oo (W — kv + wes)
Integral IV
k;mupz g [ Gy k2mw,? oo Gy
o gy = T / 3.99
2w? Oy /—oo Lu — kv — wcs] Y 202 Jeoo (W — kv — wes)? ( )

After combining the results for the all the integrations performed above we have

2

2 2
? _ —Wp TWp“Wes [ G o wp
laxx — + H - T 5
w2
-0

w? w — kv + wes

_ﬂ-wp2wcs /OO Gsl dvi— kQWWp2 /OO ng _ k27rwp2 /OO ng
w? —o0 | W — kv — wes ™ o2 ) (W—=ky +wes)? 20?2 Jooo (W — kv — wes)?

(3.100)
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3.9.2 Calculations for XY Component

2

oo | o] 00 21
oy = wi/ el(w—k”II)Tdr/ ULZde/ dv”/ cos 0 sin(w.sT + 0)df
Nnow J0o 0 —0o0 0
1— kUH 8f0 i kUL%
w ) Ov, w Oy

Theta Integration

1WesT —lWesT

€ — €

2

2m
/ 08 0 sin(wesT + 0)df = wsin(wesT) = 7
0

Tau Integration

Combining the results for theta integration with that of tau integral it gives

e . A 1
- ’L(N*ICUHJFUJCS)d _ / ’L((,U7]€’U” 7Wcs)d = — -
5 [/0 e T 0 € T 21w — k'U” + Wes w— kUH — Wes

Now inserting the results of perpendicular integration.

Perpendicular Integration

The perpendicular integration is same as we have done in calculations for XX com-

ponent. So making use of Eq. (3.95) we can write XY component as follow

i OOULQ 1_% %+ k&% dv, = —2 1_@ G51+EiGs3
no Jo w ) Oov, w Oy w w v

: 0 —k —k
T = [ [ T ]Gsldvu

W2 Jeoso |W = kU Fwes W — Ry — wes

ikﬂ'wp2 0 [ 1 1
o o — Gssd 3.101
22 8UH [oo |}U — kv +wes  w—ky — MCS] 34 ( )
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In Eq. (3.102) the terms in the parenthesis are exactly same as in Eq. (3.96)
so they can be simplified on the same pattern as we have done before in solving

integrals[I-IV], now making use of those integral here we get the XY component as

imwy®  iTwy wes [ Ga
%)acy: - —d?}”

w? w?

+1 [_ﬂ—wpz _ W /OO Ga dvl

w? w? oo w — kv + wes
| ik, [ — ik T, [ —
v — v
20?2 oo (W — kv + Wes)? H 2w Jeoo (W — k| — wes)? |
2 2 2 2
I B T /°° Gy _k; TWp /00 Ggs p
%ch N Z[ w? + w2 —oo w — kv + wcsdv” 20?2 Joo (W — kv + wes)? Y
2 2 2 2
| MWy MWy Wes /00 G dor — k*mw, /00 Gss3 p
+ Z[ w? w? —o0 W — k|| — Wes Y 2w Joo (W — kv — Wes)? Yl
(3.102)
3.9.3 Calculations for XZ component
2 0o | 0o oo 9 2
%)xz = ,wp / GZ(W_kv”)TdT/ 'UL2dUL deUH/ cos 0db
mnow Jo 0 —o0 OV 0
Theta integration
o 2w
/ cosfdf = sin(f)] =0 (3.103)
0 0

%rzzo
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3.9.4 Calculations for YX component

2 o . 0o o) 2
%ym — / ez(“*k”\l)TdT/ v 2dv, / dv / sin 0 cos(wesT + 6)df
0 0 —c0 0

N inow
kU” (9f0 ]{Z’UJ_ 8f0
l(l - w%m * (mvﬂ

Theta Integration

2 WesT __ p,—WesT
/ sin @ cos(wesT + 0)df = —m sin(wesT) = —7r<e 5 ‘ )
0 i

The theta integration gives the same results as for XY component but with a minus
sign here, Remaining calculations are exactly same as done before.

Tau Integration

T oo oo . —T 7 7
n z(w—ka-‘rwcs)d . / Z(UJ_kUH_wcs)d - _
e €
2 [/0 ’ 0 g 20 |w—ky+wes  w—ky — wes

Perpendicular Integration

i WULQ[<1—M>%+<M%>]dUL_—2<1—km”>Gsl+k a GSS
0 w

no w ) Oov, w Oy w

—imw,? [o° 1 1
ﬁym = p / [ — ‘| (w — kv)GsldU

w? —oo |W— kv Fwes W — kv — we

kmw,? o0 1 1
4 ey 0 / [ ]ngdw

22 871)H —00 w—k;v”—}—wcs_w—kv”—wcs

(3.104)
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In order to simplify the terms given in Eq. (3.105) we again make use of Integrals

solved in Sec. (3.9.1), we can write the YX component as

2 2 2 2
I i /00 God TWp“Wes /°° G J _k Wy /OO Gy J
%‘W Z[ W2 ) ot vt w? —oo W — kv + wes Yl 202 Jeoo (W — kv + wes)? Y
2 2 2 2
I /00 God | MWy Wes /00 Gg d _k‘ Wy /00 Gga d
l[ w2 Joo Yl w? —o0 W — KV — Wes U2 —oo (W — kv — wes)? il
(3.105)

It can be seen that

%:cy = - %my

3.9.5 Calculations for YY component
The expression for YY component is given as

2

oo | 0o 00 2
(%}yy — wi/ el(“’*k”ﬂ)TdT/ Ulzde/ de/ sin 0 sin(w.s7 + 0)do
inow Jo 0 —o0 0

1 k”UH 8f0 kv 1L 8f0

- — _ _l’_ -

w ] ov| w Oy
On inspecting the expression for YY component it can be seen that it has only theta
terms different from that of XX component, remaining all terms are same as in XX.
So we will solve for theta integration and other terms will be simplified in the same

manner as done in XX.

Theta Integration

WesT —iWesT
e cs +6 cs

2

2
/ sin @ sin(wes7 + 0)df = mcos(wesT) = T
0

102



Tau Integration

Combining the results for theta integration with that of tau integral it gives

v [/00 6i(w—k"l}u+wcs)d7_ + /OO ei(w—k}v|—wcs)d7_‘| _ Wl 1 VA ]
21Jo 0

2 w — kv + wes +w—ka — Wesg

Perpendicular Integration

Ul O (s 0h ] ofy R kO,
ng Jo w ) Oov, w Oy w w dv

In the above functions we have defined the function G4, as given below

1 00

Gsn = U?_f()(UJ_UH)dUJ_
T JO

Now going back to the equation of %)yy and putting the results for the above

integration in the respective places.

%)yy _ —7T(,up2 /oo l w — /ﬂ)” 1(} 1dUH _ 7T<,up2 /oo [ w — /ﬂ)”
2 S

Ggidu+
w —o0 | W — k'U” + Wes w? w — k'U” - wcs] =4

kmw,” O [ G kmw,” O [ G
O G gy kme 0 e s
2w /—oo lw—kv”ntwcj F 502 By up (3.106)

— 00

—oo |W — kU — Wes

Eq. (3.106) is exactly same as Eq. (3.95) In Eq. (3.95) we have done simplifica-

tions so picking the result from four integral given in that section we can write YY

component as

w?

_WprWCS /oo Gsl duon— /{27rwp2 /oo ng _ k27TCUPQ /OO ng
w2 Jeoo (W — kU — Wes I w2 oo (W —Fkyp+we)?  2w? oo (W — Ky — wes)?

(3.107)

—wy? Twylwes [0 G wWy?
%yy: T+ — / : dl .

w? w? w — kv 4 Wes
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The above expression indicates that
%yy = %):m;

3.9.6 Calculations for YZ component

2

co | 00 00 21
IS( lyz — “p / €l(w7k1}”)7—d7' / UJ_2dUJ_ / %dvn / sin 6d6
0 —o0 OV 0

1mow Jo

Theta integration

2
=0 (3.108)

27
/ sin 6df = — cos(0)
0 0

%yzzo

3.9.7 Calculations for ZX component

2

oo | [ee) [ee) 21
%m _ Y /0 el(w—kv\I)TdT/ vldvl/ v”de/o cos(wesT + 0)db

1Now 0 _

]{UH 6f0 kUL 8f0
Kl - )a N (mﬂ

Theta Integration

2

2m
/ coS(WesT + 0)dO = sin(wesT + 0) (3.109)
0

0

%zmzo

104



%wzzo

3.9.8 Calculations for ZX component

2

co . [e) e 2
%)m — .Wp / el(wfkv\l)TdT/O devl/ v”de/O cos(wesT + 0)db

MowW J0O
l{’UH 8f0 kUL 8f0
(-2 (250)

Theta Integration

2

2m
/ coS(WesT + 0)dO = sin(wesT + 0) (3.110)
0

0

%)zxzo

Calculation for ZZ component

2

(%)zz = .wp / ei(w’kvll)TdT/ v de/ UH de/ df
now Jo 0 o

Theta Integration

27
df = 2=
0

Tau Integration

/OO ei(w—kUH)TdT _
0

o 1
z(w—k’vH)Td - -
/0 ¢ g —i(w — k?}”)
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Parallel integration

o v Ofo, afo afo d vy
/—oo (UJ - k‘l}”) GT;”dv” N (w — k‘U”) 8UH U” // (%” (dv| (w — kv))

> v 9f
/ m(%”dv‘ / o o 2 kvu Z ) (3.111)

Putting the results for the integrations performed above in the expression for %zz

%zz — —27Twp2 /OO (G(Sl

—o0o (W — k?U”)Q

Although we don’t need ZZ component for parallel propagating Em waves, yet
it can be useful while solving for the dispersion relation for parallel propagating
electrostatic. We will not make use of it here. Now combining the Results of all the

components of Y7 we get

1 2 0
2 2 2 2
W W Wes /00 Gy g _k Wy /00 Ggs g iy
%) [2@)2 * w? —o0 W — k)| + wes Yl 202 Jeoo (W — k)| + Wes)? Yl b0
0 00
, ) ) ) 1 2 0
—Wp~ MWy Wes /00 G p _k TWp /00 Gs3 J iy
+[ 2w? w? —o0 W — k|| — Weg U o2 —oo (W — kv — wes)? Y R
0 00
0 00
0 G 1
_9 2/ L 3.112
+< e oo(w—kv|)2> 000 B
0 01

In Eq. (3.112) we have inserted the results for the components derived above.These
results are classical there is no quantum correction involved. Now we proceed for

deriving the components % and %
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3.10 Calculations for y»

2 T+ (v . - kR
S, = — 2mdc /d3 / Lﬁ’) x By |- | —“2leidr  (3.113)
now? \ mc o' k2

Firs of all solving the term in parenthesis in Eq. (3.113) for parallel propagating

electromagnetic waves configuration we get

<aT+(z7/,l%') y go> , lj_ ’5’51 golafo<g+§’]:‘> o <U_> B

ov,|

8f0<17+ ;;’;) +f0< g) — 2, (7)

oV

sin(wesT + 0)2

cos(wesT + 9)@}]

(3.114)

Putting Eq. (3.114) in Eq. (3.113) we get

Sin(wes7+0)

2 N afo<ﬁ+’;i)+fo( ) 2,(7)
?2:_47”10(]0( q ) Bo/ﬁdgv/o em[ g

2now? \ me ovl

_3f0<77+5>+f0< >—2f0( )

oV

cos(WesT + 6’)3}] dr (3.115)

Now writing down the components for % as

2 oo 2
s = — “p 5 (q )BO/ el(“_’“’\\)TdT/ on de/ de/ cos 0 sin(wes7+6)d0
2now? \ mc 0 0

laf()(m 2’2‘;) +fo<v -~ ) ~ 2fo(0)

v

] (3.116)
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2

oo | 00 e ) 2
%}xy _ % <q0> Bo/ el(“’k”“)TdT/ vfde/ de/ cos 0 cos(wesT+6)db
0 0 —0 0

Mmow? \ m
'[8f0<17+ 2’1’;) +f< Jk) (@ )] -

ov]

W2 oo o] o] 2
/5_<2yy =—2 <q )BO/ €Z(w_kv“)7d7'/ szde/ dv”/ sin 0 cos(wes7+6)db
0 0 —c0 0

2now? \ me
.[8f0<17+ ;j;) +fo<v - ) NG )] -

v

2

— o . ) e 27
20 = an£2 (ﬂi) By [~ e [Tu2do, [ dy [ sin0sin(uer+0)do
0 0 0 —o0 0
[3fo<v+ ﬁk) +f0<v - hk) —2fo(v )]

v

3.10.1 Calculations for XX component

w2 oo | 00 27
s = ——2 (q )Bo/ el(“’*’“’\\)TdT/ on dvl/ de/ cos 0 sin(wes7+6)dl
0 0

2now? \ me

l8f0<17+§7’i>+f0( ) 2fo(v )]

v

(3.119)
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Theta Integration

1WesT

€ — €

—lWesT

2m
/ 08 0 sin(wesT + 0)df = wsin(wesT) = 7 5
0 i

Tau Integration

E /OO ei(w—k‘vu-i-wcs)dT . /OO ei(w—lm)” —wcs)dT _ z 1 .
21 Jo 0 2 w—kyytwes w—ky — wes

Perpendicular Integration

dUJ_

dfo (17+ ;ﬁ) + fo <17— ;ﬁ) — 2f0(17)]

/o ULQ[ ov]

= —2/000 vy [fo (77+ ;i) + fo (77— ;i) - 2fo(77)1 dvy
hk hk

= -9 [Gsl <U|| + 2771) + Gg (U” — 2771) — QGsl(v)]

where we have used

Bk 1 o Bk
Gsn(vH + %) = n()/O 'ULfU <Ui,1} + 2771) de

(3.120)

(3.121)

The Eq. (3.120) indicates some quantum corrections in the parallel direction given

by a factor of % These corrections give an indication of shift of velocities. These

correction will alter the alter the results from that of classical ones. Using the results
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for the integrations performed above in expression for xs,,

WWQWCS 0o Gsl (U + ;:1) + Gsl (U” — 5:;) — 2G51(UH)
s = g / dvy

2cnow? J oo w — kv + wes

L Ga (U + ZZ) +Gq (Un - 53’2) —2G(v))

W) Wes /
2cnow? J-oo W — kv — wWes

dU” (3.122)

3.10.2 Calculations for XY component

2 oo o] 00 2T
%my = b ( q )Bo/ el(“_’“’u)TdT/ vlzde/ de/ cos 0 cos(wesT+0)do
0 o) 0

2now? \ mc 0 -

8f0<17+ ;j;) +f0<17— ;ﬁ) — 2(¥)
[ ovl ]

(3.123)

Theta Integration

WesT —iWesT
e cs +€ cs

2

2w
/ 08 0 cos(wesT + 0)dO = T cos(wesT) = T
0

Tau Integration

Combining the results for theta integration with that of tau integral it gives

n z(w—kvu—l-wcs)d / i(w—ky —wcs)d -
2[/0 € T 0 € T 2 w—kv||—|—wcs+w—kvu—wcs

Perpendicular Integration The perpendicular integration is same as we have

done in Sec. (3.10.1). Using the results from there we have After putting the results
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the above integrations in Eq. (3.123) we get

o Gsl (U + ;:Z) + Gsl (’U” — ;ﬁ) — 2G51(UH)

dU”

[ Twlwes
%a}y = —1

2cnow? J -0 w — kv + Wes
0 ” (3.124)
Y - Gq (U + ;Z) + G4 (U” — ;ﬁ) — QGsl(UH)
. o P CS d
—H[ 2cnyw? /—oo w — kv — wes U”_

3.10.3 Calculations for YY component

2

0o . e ) o) 2
%yy: Wy <q>BO/0 el(wikU\I)TdT/ vﬁdm/ dv”/o sin 0 cos(w.s7+6)db

2now? \ mc 0 -
dfo <?7+ ;ﬁ) + fo (17— ;i) — 2fo(0)
[ ov] ]

(3.125)

27 WesT __ ,—WesT
/ sin 0 cos(wesT 4 0)df = —7m sin(wesT) = —7 <e 5 ¢ )
0 i

Tau Integration

Combining the results for theta integration with that of tau integral it gives

T co | oo —Tr ]. 1
n z(wfkaercs)d . / z(wfkvufwcs)d - _ _
2[/0 € T 0 ¢ g 2 |w—kytwes w— Ky — we

We are not going to write the expression for perpendicular integration here,because

it has been mentioned before in Sec. (3.10.1) so we use it simply and the expression
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becomes

L Ga (U + Z‘i) + G (Un - Qﬁi) —2Gq(v))

Y) B muzwcs / ]
2yy — 2002 e . k"U” T o v

B d 3.126

2w? /—oo w — kv — wes v ( )

3.10.4 Calculations for x2,,

— w2 oo . 00 o) 2
?gyx % ( q >BO/ el(“’*’“’\\)TdT/ vfdvl/ de/ sin 0 sin(w.s7+6)dl
0 0 —00 0

2now? \ mc

o0v

laf0<z7+ 2";’;) + f0<17— 2";’;) - 2f0(ﬁ)]
(3.127)

Theta Integration

TWesT —iWesT
(& (&

2

27
/ sin 0 sin(wesT + 0)df = 7 cos(wesT) = T
0

al oo oo T 1 1
o z(wfkaercs)d / i(w—ky) *Wcs)d [
2[/0 € T 0 ¢ T 2 w—kU||+wcs+w—kUH_wcs

,_mugwcs w Gt (v - 222) +Ga (UII - ;ﬁ) — 2G4 (v))
=i dv

| 2w? S w — kvj + wes

ST - Gaq <U|| + ;ﬁ) + Ggq <U — ;Z) — QGSI(U”)
—i| - =22 d 12
! I 2w? /—oo w — kv — wes U”] (3.128)
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o Gsl (U” + ;j;) + Gsl (’U” - ) - 2G31(UH) L= O

= TWWes / ; _
27 2w? ) w — kvj 4 Wes v e 10
0O 0 O
2, oo Ol (U + 521) +Ga (vn - 272) —2Ga(v)) Lo
+ | - Ty Hes / dop| |—i 1 0
20?2 Jo W — kv|| — wWes
0 0 0
(3.129)

3.11 Calculations for y;

4 ° _; = - =
ot fap [ [o s (S aer )
ingw2hms k2

The components for {3 are given as

2 . 27
Gz = Wp MM e’(w"“’H)TdT/ vy de/ dv| / cos 8 cos(wesT + 0)db
0

mow?h Jo
[fo (U” + hk) fo <U| hk ) — ﬁk‘af()] (3.131)

2m m v

2 oo 00 27
%xy - ;:Lp :;L;L ez(“_’“’\\)Tdr/ on de/ dv| / cos 0 sin(wesT + 0)do
0 0 0
hE hk hk O f,
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%)xz =

%yy =

%yz -

%yz =

2 o . 00 2m
Wp s ez(“_k””)TdT/ v dvl/ v”de/ cos 6d6
0

inowh Jo
hk Rk\  hkO
[+ g) =0 -52) -

2

s [ 9 00 —k - 27
+ Ct}p m / el(wf’wu)TdT/ vfd'zu/ YA kdv”/ cos 6df
ingw? Jo 0 —c0 k2 0

[fo <v| + hlg) fo (v” hk) — hkafo] (3.133)

2m m O

2
Wp Mg

0 00 o) 27
el(“’*kv\\)TdT/ UJ_BdUJ_ / d’l}” / sin 0 Sil’l(wcsT + e)de
0 —o0 0

—

[fo (v” + hk) fo( v — hk ) - ﬁkafo] (3.134)

2m m Oy

now?h Jo

2
Wp Mg

o 0 00 2w
€Z(w—kvu)7d7-/ v 3dv, / dyj / sin 0 cos(wesT + 60)db
0 —0o0 0

[fo (v” + hE) fo< v — Ik ) - hkaf‘)] (3.135)

2m m Oy

mnow?h Jo

2

W s ei(“_k”“)TdT/ vl dUJ_/ U”dUH/ sin 6d0
0

ingwh Jo
hk hk hk O
[ ) = -5)

9 o 00 00 —k 5 2m
i SR ez(w—’wu)TdT/ vfdm/ " kd“ll/ sin 6do
inow?h Jo 0 — k2 0

[fo <v| + hE) fo (v” hk) — hkafo] (3.136)

2m m 8UH
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2 [ I o) 2T
%zx = & s ez(‘”"‘“’u)TdT/O devL/ v”dv”/ cos(wesT + 0)db

inowh Jo
hk hk\  hko
lfo <v| + ) fo( 2m> — maf) (3.137)

| ES—

2

oo | 00 2
%zy _ “p s el(“’*’“’\\)TdT/O vlde/ dev”/ sin(wes + 6)df

inow?h Jo
[fo <v| + hk> fo( v — hk) — hk‘@fg] (3.138)

2m m OUH

2 Sl 0 o0 k —k 27
o = 2 e [ ey / vidvy / Yy [U”ﬂgvl dvy | db
0 —00 0

mnow?h Jo
hk Rk\  RkO
Pl gae) - 2) ]

(3.139)

3.11.1 Calculations for XX component

2 o0 . o0 oo 2
Cow = Wp s el(wikvl\)TdT/o devL/ de/o cos 8 cos(wesT + 0)db

now3h Jo

hk hk hk O f,
[ne5) ~0(n-5m) - o

(3.140)

Theta Integration

eiwcs'r + e*’iwCST
2

27
/ 08 0 cos(wesT + 0)dO = mcos(wesT) = T
0
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Tau Integration

Combining the results for theta integration with that of tau integral it gives

T 0 S T 1 1
o z(w—kvu—i-wcs)d / i(w—ky)| —wcs)d -
2[/0 € T 0 € T 2 w—kU”"—wcs—{—w—kUH_wcs

“mgm [ 00 hk hk kO
%)xx - M UJ_3dUJ_ L d’UH [fo <U| + m) — fO (U” — ) _ f0‘|

- 2now?h Jo 2 2mg m O

1 n 1
w— kvt wes  w— kv — wes

Now simplifying the terms in parenthesis and performing parallel and perpendicular

integrations we get

4y o7 BEN L BEY BkOf]
2now?h J- U”/ L’ - /WH + wcs] [fo <U” " 2m> o (U” m m O do =

w ms7r o0 ng 0 ng hk? oo ng
P [/ dv” —/ —dU” -+ / ( dv”]

2ngw?h | J—co w — kv + wes —o0 W — KV 4 Wes m J-oo (W — kv + wes)?
(3.141)
Likewise,
2
i < h ey mEOR],
2now?h J- ) Lu — ka — cucs] lfo (Ul + > fo (U m Ov UL
2 2

Wp " MsT /oo Gs?) dvn — /oo Gs3 d % /OO Gs3 d
2now?h [ —oo W — kU — Wes Yl —oo W — kU — Wes v+ m J—oo (W — kv — wes)? Yl
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Finally xs,, becomes

2 2
_ Wp MsT /Oo Ld _/Oo G d hk /°° Gs d
%m 2now?h [ —oo W — kv + wes Yl —oo W — kv + wes It m J—oo (W — kv + wes)? Yl

2 2
Wy M T /00 G g / G d hk / o Gss d
* 2now?h [ 0o w — ko — Wes Ut 0o W — kU|| — Wes vt —oo (W — kv — wes)? g

(3.143)
3.11.2 Calculations for XY component
2 00 00 2
— Wp~1Ms i(w—kv)T
(%?xy ineo?h Jo e dT/O vy de/ de/ cos 0 sin(w.s7 + 0)do
hk hk hk Of,
[ d8) oo~ 25) -2
(3.144)

Theta Integration

1WesT —1WesT
cs —_ 6 cs

21

e

2m
/ 08 0 sin(wesT + 0)df = wsin(wesT) = 7
0

Tau Integration

Combining the results for theta integration with that of tau integral it gives

m /oo pilw—kvHwes) g _ /00 pilw—kvj—wes) 3| — T 1 B 1
21 Jo 0 2 w—kyytwes w—ky— wes
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Parallel and Perpendicular Integration

—iw,ma [0 o hk hk\ Rk Of,
%wy = m 0 ULgdUL /_OO d?]” [fo (U + ) - f() <U” — ) — O‘|

2m 2m m Qv

1 1
w— kvt wes  w— kv — wes

Simplifying the above equation by following the same procedure as we have done

while solving XX component we get

2 2
_ wp mgm /OO Ad _/OO GS3 d hk /oo ng d
%xy Z[2now2h ( —o00 W — kV|| + Wes Yl —o00 W — kV|| + Wes vt m Joco (W — kv + wes)? Yl

2 2
| WpTMT /OO ng d _/OO ng d hk /oo ng d
—HlQnocu?h ( —oo W — kv + wes Yl —oo W — kv + wes urt m J-oo (W — kv + wes)? Yl

Calculations for XZ component

2

oo | 00 o) 2
%m = L’ s el(“”k””)TdT/ vfdvl/ v”de/ cos 6do
nowh Jo 0 —o0 0

hk Rk hkO
Lo g (= 3) = |

2 oo | e’} 0 — k‘ - 2m
+ u?p m; / el(wf’wu)TdT/ szde/ (w 5 U)kdv” / cos 0df
inow? Jo 0 —00 k 0

—

hk Rk hkO
Lo g (= 5) - o

(3.146)

Theta integration

2

—0 (3.147)

2m
/ cos 0df = sin(0)
0 0
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As the theta integration is zero so xs,, component gets vanish
%wz =0

3.11.3 Calculations for YY component

2
Wp Mg

0o . 00 o) 27
%yy — el(“’*k”\\)TdT/ v 3dv, / dv / sin 0 sin(w.s7 + 6)df
[e's] 0

inow?h Jo 0 _

hk hk hk O
Ll a) (- 2) S

(3.148)

Theta Integration

WesT —iWesT
e cs _|_e cSs

2

2
/ sin 0 sin(wesT 4 0)d0 = 7 cos(wesT) = T
0

Tau Integration

Combining the results for theta integration with that of tau integral it gives

3 Uooo cHomtteedr [ ook _ww)dT] =3 Lu - k:viu 7l sy s

From the above integration it has been observed that the expressions which differ-
entiate the above component from the XX component is theta and tau integration.
The theta and tau integrations are solved above it has been seen that the results
are same as we obtained in solving the theta and tau integration of XX component

so here we can write
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wylmgr [ o G, 00 G, hk? [oo G,
%yy:p[/ —den—/ St / ; ] dvu]

2ngw?h | J—co w — k|| + wes —oo W — k) + wes —oo (W — kv + wes)?
2

< 19 G o] Gs th S Gs
+wp T [/ —dUH—/ 3 dUH—i- /_ ( 3 ) dv”]

2now?h 0o W — kV|| — Wes 0o W — kV|| — Wes oo (W — kv + wes)?
(3.150)
Calculations for YX component
wp2m5 > i(w—kv))T < 3 > o
%ym = e I dT/ vy de/ de/ sin 0 cos(wesT + 0)df
ow 0 0 —0o0 0
hk hk hk Of;
[fo (U” i ) o (U 2ms> oom 3@]
(3.151)

Theta Integration

2 WesT __ WesT
/ sin @ cos(wesT + 0)df = —msin(wesT) = —7 (e 5 ‘ )
0 i

Tau Integration

Combining the results for theta integration with that of tau integral it gives

T oo | S SR —Tr 1 1
o z(w—ka-l-wcs)d . / z(w—ka—wcs)d _ _
2[/0 € T 0 € g 2 |w—kytwes w— Ky — wes

Parallel and Perpendicular Integration

. 2
%yr — Whp MmsT ; UL de/ dU” lfo(vu + hk) fo(v hk ) _ hkj@fol

2now?h 2mg m Qv

1 1
w— kvt wes  w— kv — wes
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As the terms in the parenthesis are same as terms in XX component of y3. So we

use Eq. (3.141) and Eq. (3.141) here and finally get

2 o0 Gs > Gs hk2 o GS
%yz — [wp msT (/ —3dv||—/ —3dv||—i——/ ( 3 dm}

2ngw?h \ J-oo w — kv + wes —oo W — kv + wes m J-oo (W — kv + wes)?

2 2
L Jwptmer /00 Gss J _/°° G J hk /°° Gss d
Z[Znocﬁh ( 0o W — kv — wes Y 0o W — kv — wes Ut m J-oo (W — kv — wes)? Yl

3.11.4 Calculations for YZ component

2

%yz = M ei(‘”*k”“)de/ vl de/ v”de/ sin 6d0
0

ingwh Jo

hk Rk\  hkOf,
[fO(““ *) f°(”“ zm) - mav]
w 2m8 & i(w—kv)T e 2 o W_kv\l 7 2m :
+ z'n]z)uﬂh ; el ) dT/O o de/_oo< 12 /{;dv”/o sin 0d6

hk hk hk O f,
[o(oegn) - 0(n-5) -]

(3.153)

In the above expression theta integration gives the zero result which due to which
the the whole expression gets vanish

Theta integration

2

2m
/ sinfdf = —cos(f)] =0 (3.154)
0

0
%yzzo
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3.11.5 Calculations for ZX component

2 oo 00 00 2T
%zx = M ez(w_kUH)TdT/O Uf_dUL/ U”dU”/O COS(WCST + 9)d9

ingwh Jo

hk Bk\  hkdf,
-%Gwmﬁ—ﬁ@—%)—m%]

(3.155)
Theta Integration
o 21
/ co8(wesT + 6)dO = sin(wesT + 60)
0 0 (3.156)
%Zl’ =0
3.11.6 Calculations for ZY
w 2m S S e o] [e%e] 2
%zm =2 2 €Z(w_kv”)TdT/ U?_de/ U”dU”/ Sin(wcsT + H)dﬁ
nowh Jo 0 - 0
hk hk\  hkdf,
[ g) -l -g) -]
(3.157)
Theta Integration
o 27
/ sin(wesT 4+ 0)df = — cos(wesT +6)] =0

%zyzo
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3.11.7 Calculations for ZZ component

2 oo . 0o
o = e [Tetemtrar [T, d, / vjdoy |
nokwh Jo 0

dé’

hk hk hk O f,
[ofore 25 o 5) -

Theta Integration

2
df = 2=
0

Tau Integration

1

o i(w—ka)’rd - -
/0 c T —z'(w - k}?}”)

Simplification for Parallel Integration

o0 Y| h/g h/f
/_oo (w—kyy) [fo (U” N 2) *fo (U” 2m

) _mog,

m aUH

hk hEN] [ w
= [fo <U| + 2771) + fo (U” — 2771)] /_oo ((,u—”kz)”)dv

v ky —hky

w—ky —w

(w — ]{JUH) k(w — ]CUH) —k(w - k?U”) N

The parallel integration gives here

o U” h/;: h/g - w
lww—mﬂﬁ@ﬁ%ﬂ+ﬁ@“mﬁkw—k
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Similarly the parallel integration for the term given below give

ﬁ/{? U|| 8f0 . v” 8f0 _ 8f0 i UH
m <w — kyj avn>dv” (W= k) Joo Dy i / / é’vn (dvn (w— kv))

v o (= koG — v (W — k)
_ I _ [ I
- (w— k) ’(fO)‘_oo /—oo fo( (w — koy)? )
hk Y| 8f0 . hk? foo w
m (w — ]{JU”) a’U” Ul - _% /—oo 0 (w — k‘UH)QdU” (3160)

Now combining Eq.(3.159) and Eq. (3.160)

oy hk Rk RkOfy],
Lamlelnam) o= am) - wan)-

[/_o:o [fo (UJFZ{Z) —fo (v _Zi)]dvn—i—/_o:o [fo <U ’ ﬁ”) _fo (U” - ﬁ‘)] o,

ad
k W — k}U”
hk? o Jo
d 3.161
* m [oo (w —kv))? U”] ( )

now combining the parallel integration results the perpendicular integration we get

d
k

- Gy <U + hE) —Gq (U” — hE)
00 hk, 00 hk, 0o 2m 2m
[/_Oo Gy (U—l—) dU”—/OO Gy <U_277’L> dU”—f—/_oo dU”

2 w — k"U”
hk? o G,
N / 1(vy) dv“]

m —00 (w — kUH)2
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Ga <UI| + 2m> Ga (UH - 2hrlfz> B2 oo (O 1(7J||) 0 00
i d
i —o0 w — kv doy + m /ﬂ)o (w — kv))? U”] 000
0 01
(3.162)

By adding all the components, we get x3

2 T e O3 <U| + 572) —Ga <U - i’%)
= L e [/ dv

2wk | ) w — kv + wes
T s . D s d
+ m J- (w— kv + wcs)2dU] i 10t 2now?h [/—oo W — kv 4 Wes Yl
0 0 1
1 2 0 G ( hE) _ ( _ Ik
st|v) + 5 Galv) — 5,
_|_h7k2 * G$3(U||) dv i 10 +27Twp2ms /OO | 2 2 dv
m J—oo (W — kv + wes)? | k2h —o0 w — ky |
0 0 1
0 0O

hk2 o G
N / 1(v))

m J—oo (w— kyj)?

dU||] 0 00 (3.163)
0 01
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Now Combining the results for y by adding x; , x2 and xs. it gives

= l—wf N Ty Wes /00 Gal(v)) J

2w? w? 0o W — kv + wes

) ) 1 2 0 )
k*mw,” [ Gas(v)) w
_ T dorl 1 W~
2002 /_OO (w — kv + Wes)? | v 1 0|+ 92
0 00
, ) ) 1 7 0
B TWp " Wes /OO Gsl(U”) don — k TWp /OO ng(v”) d )
w? —o0 W — k|| — Wes Y 2w? Jeoo (W — kv — Wes)? v = 10
0O 0 0
0 00
Gy )
+ | — 27w 2/ 00 0
( P —0o0 (w — /{JU”)Z
0 0 1
9 Gg (U” + 4 > + Gg <U — h) 2G51(v||) I = 0
Wwpwcs 0o 2m 2m J .
* l 2002 /—oo w — kv + wes U”] o 10
0 0 0
) Ga (U + QZ) +Ga (Un - 522) — 2G4y (v)) L a0
Lo W, Wes /oo w1 1o
2w?  Joo W — kv — Wes I !
0 00
+wp2ms7]' /oo Gs3 <U|| + ;ﬁ) - Gs3 <U - 2}17]761> " +h7k2 /oo ng . _ 1 —]_”L
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0 0
G, 2.2 G, _ hk 1 72 0
wp2ms7T /OO 3<U| + 2m> 3 <U 2m dv +h7k2 /OO ng(UH) d/[) . 1 0
2now?h | J-s w— kv — wes o ) (W — kv + wes)? =
0 01
G, hk | _ G, _ hk 000
+27rwp2ms [/oo 1(1) + 2m> 1<UII 2m>d +hk2 /oo Gsl(UH) d ] 00 0
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The above equation gets modified as follow

hk hk
e .l G
— . P CS/

X 2w? 2w2 ) w — kv — wes

2 . G <U| + Qi) — G (Un —

Wy M / >d ?
+ 2w3h [ o0 W — kv|| — wes v”]

k. _ Ik
ot enge o) o)

202 2w?  Jo w — kv + wes

dUH

G3 (U + hk) — G (U” — hk)
2 00 2m 2m
+ Lp M (/ dU”)] Uﬁ

2wZh oo w — kv + wes

G (U + hE) —Gq ("U” — hE)
9 2 00 2m 2m
L 2mwy’my [ / dvn]?

k2h —00 w — k?)”

(3.165)

The Eq. (3.165) is a major equation to proceed further for the dispersion relation

of parallel propagating waves it contains some terms in which there is no quantum

contribution while some terms contain a factor of 7 [35, 36, 37]. The first term in the

parenthesis corresponds to R wave while second term refers to L waves. while third

term is a zz component which is used to see the dispersion in parallel propagating

electrostatic waves.

Y = XLRW + XJ.Lm + X||?
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Where x| g is susceptibility for R wave and x, is susceptibility for L wave while

?, ﬁ and ? are the matrices

Cw? mulun e O <vu + 5@) +Ga (vn - QZ)
— _ P CcSs d
XLR [ 22 22 [oo W — kv — wes Yl
w2y [ oo O <U|| + 5@) — G (Un - Z’Z)
> d 3.166
+ 2w?h l/—oo W — kv — Wes U”] ! )

hk hk
—w? R, oo G (Un + 2m> +Ga <U| - zm>
b + d / dU”

XLL = [ 2w? 2w? ) w — kv + wes

w2 [ oo 053 (Un + 5711) — G (Un - Qﬂi)
+ ”(/ dv)], (3.167)

2w2h w — kv + wes
and
oo,y [ o O <U| + 5?'2) —Ga (U - 5?'2)
_ s dvy| (3.168
X k2h V_m w— kv, ””] (3.168)
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Also We define U and T as follow

L
I
~.
—
o

(e
(@]
—_

3.12 Calculations for general dispersion relation

of R and L in quantum kinetic theory

2].2 2 Tl oo Ga (U + 222) +Ga (UII - 2%)
¢ = 1— C 4 Wp . pXes / dU”
w2 w? w? o0 w — kv + wes
) Gal v+ o | = G| v — 3
4 T / - doy|  (3.169)
w?h —oo W — kv + Wes Y '
L 2mm] G (U + ffé) —Ga <U|| - 5@) ) -
o =1+ w— kv I (8.170)
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3.13 Application of distribution

3.13.1 Zero temperature Fermi distribution

Because we're talking about quantum electron plasma, ion dynamics aren’t
taken into account. We know that electrons obey Pauli’s exclusion principle since
they are Fermions. The Fermi Distribution is used to determine the probability of
an electron occupying a specific energy level. At zero temperature, where thermal

velocities are substantially smaller than Fermi velocities, we utilise this distribution

2m?

3.13.2 Dispersion Relation for R wave using Fermi distri-

bution at zero temperature

Making use of the distribution given by Eq. (3.171) in Eq. (3.169) we get

the dispersion relation for R wave as

21.2 V4
_ A2k _
v 8 2 k%l 8 k%2 32

9 3w? 3w§ Wes (W — Wes) 9(,05 (W — Wes)? 3w§ hk
mvug

2 hk? hk? hk?
3wy Wes <w2 +(50)7 — K — Wi) lln< R T >—|—ln< WQ— om — FUF — Wes )1

hk?
w 2m

2
8 kv k23 w? + kvp + 2 —

+ kUF — Wes

2 _ hk?
w 2m

16\ Bk k203 w? + kup + B —

(3.172)
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For L waves

The use of Fermi Dirac distribution given by Eq. (3.171) in Eq. (3.170) gives

> 22 3wl Wl Wes (Wt wes) 92 (Wt wes)? 3wl [ Rk

voe s 2 kWl 8 k% 32

+3w; Wes (wa (B2 g22 +w§5> ll”<w I v 4 s >+ln<w — B v+ s )1
w2

8 kup k2 w? + kvp + 2 4w, — B 4 kup + we

3w <mvp> <w2 + (Z—'Zj)z — k%%%—wzs)z[ln(w—l— ’Z—ZQL — kvp + Wes >+ln<w - % — kvp + Wes )]

16 \ hk k2v, w2+ kvp + % + Wes w? — Z—iﬁ + kvp + wes

muvg

(3.173)
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Chapter 4

Results and discussion

By using classical kinetic theory the generalized dispersion relation for
parallel propagating electromagnetic waves in an anisotropic environment has been
studied in chap 2. The classical kinetic theory wasn’t sufficient to deal with the
quantum effects that appear at high density and low temperature. So a kinetic
model is built to deal with these effects in a plasma. In chap 3, we have studied the
Quantum kinetic model for electromagnetic waves in plasma. This model was built
by using Wigner function in conjunction with Schrodinger equation which gave
us three equations for susceptibility which contains classical as well as quantum
effects. The quantum effects are accounted for the corrections given by % These
corrections actually refer to the shift of velocities in quantum level. Further, we
derived the dispersion relation for R and L wave using Fermi Dirac distribution at
zero temperature. At this temperature the thermal effects play no role. Our main
purpose is to compare the classical results for R and L wave with those obtained

using quantum kinetic model.
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4.1 Numerical analysis

In numerical analysis we present the values used for various parameters
in the dispersion relation. The quantum effects become prominent at densities
n > 103, so we choose density n = 2 x 10% and the corresponding magnetic field
at such a high density (White Dwarf) is about 10'? Tesla. The Fermi velocity vp
is taken to be 0.7c and :%% = 0.067 and the ratio of electron’s cyclotron frequency
to plasma frequency S—: is taken to be 0.75. These values are chosen in such a way
that they preserve the quantum effects as well they must satisfy the the conditions
for quasi neutrality and collective behaviour in a quantum plasma.

For the collective behaviour to exist the wavelength should be greater than
inter particle distance i.e A >> ng 5 where A is the wavelength and ng represents
the density. In present case, this condition can be satisfied by taking Zj—g << 43.6.
For the quasi neutrality to exist, it is necessary that the wavelength in collective
motion should be larger than the Debye length given by % So in our case this is
justified by taking o% << i, where i = 1.4. So we will have to take this range for
k in order to preserve quasi neutrality. Now we will discuss the results for R and
L wave, first for classical regime and then for quantum regime for the same values
of the parameters as mentioned above and will compare both of the results. Since
we have derived the dispersion relation for R and L wave using quantum kinetic
model, we cannot conclude anything about quantum correction without comparing

it with the classical results. So we take classical results as reference and then make

a comparison with the quantum results.
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4.2 Classical R wave

The standard dispersion relation for classical R wave is given as

w.

SIS

k2 L

w2 1] — e’
w

€

We plot this dispersion relation for Zj—p = 0.75 by choosing the coordinates in such a

ck

way that we take = on y axis and % on x axis
P P

1-5 _______ “"“"
1.0
w
Wp
0.5 T - Classical R Wave
0.0l
0.00.20406081.01.214
ck
“p

Figure 4.1: Classical R wave plot
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4.3 Quantum R wave

The dispersion relation for quantum R wave is given by Eq. (3.180). We
normalize this dispersion relation and plot wip versus Z—'; The density is chosen to
be ng = 2 x 103 m=3, the ratio of cyclotron frequency and plasma frequency is

2 = 0.75 and % = 0.067.

15—

— Quantum R Wave

0.0 /

0.00.20.406081.01.214

<k

Wp

Figure 4.2: Quantum R wave plot
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4.4 Comparison between classical R wave and quan-

tum R wave

15
1.0
.
wp — Quantum R Wave
0.5 """’m ----- - Classical R Wave
0.0 =" -
0.0020406081.01.214
ck
Wp

Figure 4.3: Comparison between Classical R wave and Quantum R wave

In this plot classical R waves are represented by purple color and the green
color represents the quantum R wave. It has been observed that for the upper
branch, group velocity of quantum R wave is larger than the classical R wave. For
the lower branch, the quantum R wave has smaller group velocity as compared to
classical R wave. We conclude that for larger wavelength (smaller k) the classical
and quantum R wave have same curves whereas for shorter wavelength (larger k)

quantum effects are observed.
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4.5 Classical L wave

The dispersion relation for classical L wave is given as

This dispersion relation is plotted for :j—p =0.75

€

1.5

----- - Classical L Wave

0.0

0.0020406081.01.214

Figure 4.4: Classical L wave
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4.6 Quantum L wave

The dispersion relation for L wave given by Eq. (3.181) is plotted in Fig.

4.5 for the same values as we have used for R wave.

1.5
1.0
W
Wp
0.5 — Quantum L Wave
0.0
0.00.20406081.01214
ck
Wp

Figure 4.5: Quantum L wave
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4.7 Comparison between Classical L wave and Quan-
tum L wave

A comparison between classical L wave and quantum L wave is presented in
Fig. 4.6 where classical L wave is represented by dotted line (Black) and Quantum L

wave is represented by solid line (orange). It can be seen that for longer wavelengths

1.5
\""
1.0 ~
W S
“p —— Quantum L Wave
o5 . = Classical L Wave
0.0
0.00.20406081.01.21.4
ck
Wp

Figure 4.6: Comparison between classical L wave and quantum L wave

classical and quantum L waves are same but at shorter wavelength there are minor
corrections which indicate the higher group velocity of quantum L wave as compared

to classical L wave
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Figure 4.7: Comparison for Classical and Quantum R and L waves
4.8 Conclusion

We observe minor corrections for the upper branch of R wave which is
interpreted in terms of slightly higher group than classical R wave. For upper
branch the quantum mechanical group velocity is faster than classical group velocity
whereas for lower branch of R wave a region of anomalous dispersion is observed at
shorter wavelength. On the other hand for L. wave we observe that there are very
small corrections as compared to R wave. So we conclude that quantum mechanical
effects are not prominent for L-wave. However, for R wave we observe significantaly
important quantum mechanical effects which restrict the propagation of R-wave in

shorter wave length region and an anomalous dispersion is observed.
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