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ABSTRACT 

Security of block ciphers has always remained the focus of crypto research in order 

to establish the degree of confidence we can have on one or an entire family of block 

ciphers. For long, linear and differential cryptanalytic attacks provided the basis for most 

of the attacks against block ciphers, however, no major cipher in its full form could be 

successfully broken. Evolving technological landscape calls for lightweight block ciphers 

with simpler algorithms, key schedules, and round constants to achieve security as well as 

economy of size, energy, and cost in modern communication systems. This security 

compromise creates vulnerability of these lightweight ciphers towards modern attacks 

e.g., invariant attacks, interpolation attacks, boomerang attacks and many more.   

Newly introduced Invariant Attacks try to map a single round of an SPN cipher in 

the form of a polynomial under a weak key setting using a step-by-step approach. Such 

polynomial must be invariant (unchanging) to the linear and non-linear components over 

multiple rounds of the underlying cipher. These attacks have successfully been applied to 

break lightweight SPNs like Midori64, Scream, iScream, Print and more. Until now, 

individual ciphers were attacked using various forms of invariant attacks e.g., nonlinear 

invariant attacks, invariant subspace attacks, generalized nonlinear invariant attacks and 

invariant hopping attacks exploiting numerous vulnerabilities.     

This thesis will focus on invariant attacks against various ciphers, exploited 

vulnerabilities and present a cryptanalytic toolset that can be utilized to safeguard a cipher 

against the invariant attacks family. The toolset will provide a set of properties that if 

satisfied by all linear and non-linear components of a cipher in general and S-Box 

component in particular, will provide safety against these attacks.   
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CHAPTER 1 

INTRODUCTION 

Ever increasing reliance on network-based systems for sensitive communication 

has revitalized the need for information security exponentially. It is inevitable for the 

organizations to ensure protection of confidentiality, integrity, and availability of their 

sensitive data round the clock. Loss of significant information may cause financial, security 

and reputation damage to the entire system. It thus becomes imperative for every 

organization to guarantee information assurance through tiers of physical as well as cyber 

security. Cryptology as a field has evolved over the decades to be the major stakeholder in 

provision of information security [1]. Cryptology in nutshell deals with the development as 

well as security evaluation of various encryption systems. Cryptology may be broadly 

classified into two major branches, i.e., Cryptography and Cryptanalysis. Cryptography 

deals with development of secure and efficient cryptosystems, whereas Cryptanalysis as a 

field remains focused on methods to break or find vulnerabilities of these cryptosystems. 

In simple words, cryptanalysis as a branch of cryptography deals with the process of looking 

for security vulnerabilities in the observed ciphers aiming to eradicate these loopholes and 

make the desired cryptosystem secure, else, declare the cryptosystem insecure or 

obsolescent and thus put it out of service [2]. Cryptography and cryptanalysis techniques 

complement each other in order to provide the requisite data security for our 

communication systems. Major classes of crypto systems fall in symmetric and asymmetric 

crypto systems categories [3]. Symmetric key block ciphers distribute the data among fixed 

length data blocks and encrypt the data while processing it through iterative rounds of 

fixed or variable nature [4]. Modern symmetric block ciphers comprise unique 

combinations of Substitution and Permutation components and can be categorized as SPNs 

[5]. Since their inception, the dimension of research in the field has focused on two key 



2 

 

areas, i.e., firstly, how to develop lightweight block ciphers with low processing and high-

speed requirements suiting modern devices and secondly, explore cryptanalytic tools to 

identify loopholes in these block ciphers so that these can be bridged and made secure. 

 Two most significant block cipher cryptanalysis methodologies have been linear 

cryptanalysis and differential cryptanalysis [5, 6]. These two techniques have provided us 

with the basic understanding and procedure of carrying out these attacks against block 

ciphers [6]. Although these techniques have significantly reduced the brute force effort 

required to break few of the low complexity toy ciphers, nothing substantial has been 

proven regarding breaking the security of standard DES and AES algorithms [7]. Basing on 

the findings of linear and differential cryptanalysis techniques, research community have 

agreed upon the Difference Distribution Table (D.D.T) and the Linear Approximation Table 

(L.A.T) from the prospect of S-Box design as a design criterion that can help design a secure 

S-Box and cipher. Modern day technological advancements warrant development of small 

size, low complexity and low processing requirement cryptosystems that can make the 

communications secure without burdening or slowing down the system. Such 

cryptosystems normally reduce the processing overhead by trading off in the key 

alternating domain. Key schedule is either kept very simple or it is omitted altogether by 

using identical master key in all the rounds, which makes the systems vulnerable to 

analytical and structural attacks [8]. This leaves the onus of security to the S-Box, which is 

the only non-linear component of a standard Substitution-Permutation Network (SPN) [9]. 

Numerous analysis techniques rooting from the mathematical basis of S-Box have emerged 

since then. One of these attacks is the Invariant Attack which attempts to approximate the 

cipher under observation in the form of a polynomial through a structured approach. Such 

polynomial must be invariant (unchanging) to the linear and non-linear components over 
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multiple rounds of the underlying cipher. This technique starts the analysis with a single 

round and accumulating to a wholesome round invariant polynomial representing the 

system. So far, four main types of invariant attacks have been proposed, i.e., the invariant 

sub-space attack, non-linear invariant attack,  invariant hopping attack and generalized 

nonlinear invariant attacks [8]. These attacks will be studied in depth in order to create in-

depth understanding and formalize a method to carryout invariant attack against 

generalized block ciphers.  

1.1 Problem Statement 

Block ciphers are a vital branch of secret-key crypto systems. They are employed 

either in isolation or in combination with other crypto variants to ensure information 

security among communicating parties in the presence of adversaries with malintent of 

eavesdropping on the contents communicated. Cryptanalysis of block ciphers has been a 

well-researched area among the academia, industry, and defense establishments for 

numerous reasons. Major reasons include measures to locate vulnerabilities of block 

ciphers in whole or in part including their mathematical structures and to assure the users 

on the level of security provided by these ciphers. Earlier proposed techniques including 

linear and differential cryptanalysis have provided little success into analysis of light weight 

versions of block ciphers with much reduced rounds, block size, key length and complexity, 

however, there is no substantial proof on the universal viability of these techniques to 

decode any block cipher of standard dimension. Among analysis of standard SPN ciphers, 

the major resistance is posed by the S-Box that provides the non-linearity property through 

a well-articulated combination of confusion and diffusion attributes proposed by Shannon. 

The invariant attack endeavours to map the various rounds of a cipher in the form of a 

function and then expand the function to represent the entire cipher, however, up till now, 
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there has been no standard approach to implement these attacks. Each cipher has its own 

independent structure and therefore the representation would also be unique. The core 

aim of current research is to create a deep insight into the invariant attacks with an aim to 

draw pertinent conclusions regarding analysis of modern block ciphers so that we can 

generalize our findings applicable to a broad set of block ciphers. This shall in turn lead us 

to find the strengths and vulnerabilities of employed S-boxes and help us in designing 

secure/ fail safe S-boxes custom tailored for specific applications. This research will also 

contribute to propose an organized set of tools required to analyze an SPN with regards to 

invariant attacks.  

1.2 Motivation 

  Pakistan Army is involved in military operations of varying natures during war as 

well as peace. The vast areas of deployment call for secure communication channels for 

speedy and safe transfer of sensitive information among various operational elements. 

Block ciphers have been in use among militaries around the world for secure 

communication. Due to same reason, immense research is being carried into this area of 

cryptology. For example, during 1980’s, a simple but robust block cipher T-310 (consisting 

of 150 rounds) remained employed by American forces as a military grade cipher to encrypt 

secret government communication among various sensitive elements deployed all over 

Europe [10]. Compared to other counterparts from symmetric and asymmetric domains, 

block ciphers offer numerous overriding advantages that include simplicity of design, high 

level security due to large key-space and time/ resource requirements required to brute-

force the key in real-time scenarios. By the time, the key would be retrieved, the 

intelligence might have lost its value for the adversary. Another inherent advantage while 

employing block ciphers in military systems is the availability of alternative secure channels 
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for sharing of secret key among various elements. Moreover, the similarity of encryption 

and decryption processes supports speedy point-to-point and point-to-multipoint 

communications. It is in this backdrop, that the focus of cryptographic research has focused 

on cryptanalysis of block ciphers specially the non-linear components, i.e., the S-Box. Since 

no major breakthrough has been achieved through major cryptanalysis techniques 

including differential cryptanalysis and linear cryptanalysis of full-scale block ciphers, it is 

hoped that these new generation of attacks, i.e., the invariant attacks might pave way to 

structuralize the cryptanalysis of these block ciphers rendering these ciphers obsolete OR 

raise our confidence and trust on block ciphers declaring them secure enough for our 

information security needs. Keeping this in mind, this research will benefit in improving our 

insight into invariant attacks and provide basis for further research by concerned 

stakeholders from industry, academia, and defense research organizations.     

1.3 Research Objectives 

 Following are the objectives of this research.  

• Detailed literature review and exploring the existing mathematical structures. 

• Mathematical design of S-Box and evaluation methods. 

• Define a method based upon invariant attacks for the S-Box evaluation. 

• Pseudocode and implementation for different structures. 

1.4 Contribution 

The research being undertaken in the field of S-Box evaluation and the applicability of 

invariant attacks for S-Box analysis offers multi-faceted advantages as under: -  
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• It is aimed to evaluate the existing work done on the subject thus providing a platform 

for further work. 

• Considering the scarcity of research and the complexity of the subject, it will be 

structured to take the form of a simple tutorial for beginners with a view to enhance 

understanding. 

• In addition to locating the vulnerabilities in the block ciphers, this research shall also 

examine ways to construct fail-safe and secure S-Boxes for the future which will 

contribute towards boosting our confidence in simple and lightweight SPN ciphers 

with secure S-Boxes.  

• The research work can help analyze, evaluate and design secure ciphers not vulnerable 

to invariant attacks, and be benefited by military, commercial and general public 

communications. 

1.5 Thesis Outline 

The research work has been organized and distributed in following chapters: 

• Chapter 1: A brief introduction is given, problem statement is highlighted, followed by 

motivation behind the research and research objectives are identified / explained. 

Furthermore, the contributions made through this research are highlighted. A short 

tutorial giving basic understanding of Invariant Attacks is also provided.  

• Chapter 2: A birds-eye view of existing / recent research in the field of S-Box analysis 

and invariant attacks is discussed. 

• Chapter 3: An insight into the S-Box properties, criteria for a strong Boolean function 

involved in a cryptographically strong S-Box.  

• Chapter 4: In-depth analysis of Invariant Attack, its overview, basic types, ciphers 

which are vulnerable to invariant attack and reasons for that. SageMath analysis of 
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ciphers attacked by invariant attack. Design criteria to safeguard ciphers from 

invariant attacks.  

• Chapter 5: Future work basing on proposed design criteria, need for formalization of 

the methodology and publication of tool kit to check and ensure resistance against 

invariant attacks. 

• Chapter 6: Concluding remarks.  

1.6 Brief Tutorial on Invariant Attacks 

1.6.1 Defining and Understanding Non-Linear Invariant Attacks 

Step-I :   Cipher Selection and Assumption Phase   

Suppose there is a block cipher defined by: 𝑬𝒌: 𝑭𝟐
𝑵 → 𝑭𝟐

𝑵 

• Implementing an Invariant Attack on this block cipher is to calculate an effectively 

calculable Boolean function i.e., 𝒈: 𝑭𝟐
𝑵 → 𝑭𝟐  such that 𝒈(𝑷) + 𝒈(𝑬𝒌(𝑷)) 

remains constant for any Plaint Text P and a large number of Keys from the key 

space. Such keys are known as weak keys. The function g is known as Non-Linear 

Invariant for the cipher EK.   

• For h number of plaint text, ciphertext pairs {𝐏, 𝐄𝐤(𝐏)}, the probability that these 

pairs will possess the invariant property is computed to be approximately 𝟐−𝐡+𝟏 

where g remains balanced.     

  Now, on the first look, this idea seems complex. This tutorial will attempt to simplify 

the concept for a common reader. For ease of assimilation, suppose there is 8 rounds 

simple SPN cipher with 12 bits both input as well as output. Suppose there are 4 S-Boxes 

S11, S12, S13 and S14 with 3 bits input / output.   
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For simplicity, we consider single S-Box  S11 and also assume that all 8 rounds of the 

cipher use same S-Box S11. Look up table of the S-Box we have used is as under:- 

x 0 1 2 3 4 5 6 7 

S(x) 0 1 3 6 7 4 5 2 

  

Step-II :   Invariant Computation Phase   

Figure 1.1  S-Box Layer of Single Round of simple SPN 

Table 1.2  S-Box Lookup Table 
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  For this phase, we calculate an invariant for the S-box. There can be various 

combinations of invariants. We will use SageMath tool to compute the invariant of the 

cipher. The Sage function as well as list of output invariants is as under:- 

Let the Invariant polynomial representing the S11 be as under: - 

Y11 = x2.x1 ⊕  x1 ⊕ x2 

Step-III :   Attack Implementation Phase   

Now, we will try to implement invariant attack on part of this cipher using same and 

different key combinations.   

1.6.1.1  Using a Single 4-Bit Master Key in Each Round.  

• Input:   We initialize our input to S11 as 110.  

• Key:    Let the single key common for each round be 101.   

• Output:          CT = PT ⊕ Key. 

• Constant C:    g (PT) ⊕ g (CT) = C. 

The results of 8 rounds iteration are summarized in the table below:  

Round Input Bits  

(x) 

 

G(x) 

Key Bits (k)  

Fixed Key 

Output Bits (y) 

y = x + k 

 

G(y) 

Constt     

C=G(x) + G(y) 

 x2 x1 x0 k2 k1 k0 y2 y1 y0  

Figure 1.2 Nonlinear Invariant of  S-Box S11 Calculated by SageMath 
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1 1 1 0 1 1 0 1 0 1 1 1 0 

2 0 1 1 1 1 0 1 1 1 0 1 0 

3 1 1 0 1 1 0 1 0 1 1 1 0 

4 0 1 1 1 1 0 1 1 1 0 1 0 

5 1 1 0 1 1 0 1 0 1 1 1 0 

6 0 1 1 1 1 0 1 1 1 0 1 0 

7 1 1 0 1 1 0 1 0 1 1 1 0 

8 0 1 1 1 1 0 1 1 1 0 1 0 

 

Observation 

• Now basic equation of the Invariant Attack i.e 𝒈(𝑷)⊕𝒈(𝑬𝒌(𝑷)) is constant has 

been satisfied since in each round, the output of the polynomial.  

Y11 = x3.x1 ⊕ x2.x0 ⊕ x2 ⊕ x1 ⊕ x0  

 Value of constant comes equal to “0” each time. 

• Therefore, the polynomial is true round invariant for the S-box and key is a weak key.  

• Cipher in question is vulnerable to invariant attack. 

 Inference.     From above observation, it can be inferred that, “all lightweight ciphers that 

do not employ a key-alternating schedule or use single key in each round are vulnerable 

to invariant attacks”.   

Table 1.2  Results of 8-Round Iteration with Fixed Key 
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1.6.1.2  STEP-2: Using Randomly Generated / Different Key in Each Round. Now we 

provide randomly generated keys to each round and observe the results. The results are 

summarized in the table: - 

Round Input Bits  

(x) 

 

G(x) 

Key Bits (k)  

Random 

Key 

Output Bits (y) 

y = x + k 

 

G(y) 

Constt     

C=G(x) + G(y) 

 x2 x1 x0 k2 k1 k0 y2 y1 y0  

1 1 1 0 1 1 1 1 0 0 1 0 1 

2 0 0 1 0 1 1 0 1 1 1 1 1 

3 1 1 1 1 0 1 0 1 0 1 1 0 

4 1   0 1 1 0 0 1 1 0 0 1 0 

5 1 0 0 1 1 0 0 0 0 0 0 1 

6 0 0 0 0 0 1 1 0 1 1 1 1 

7 0 1 1 1 0 0 0 0 1 1 1 0 

8 0 1 1 1 1 0 1 1 1 0 1 0 

 

Observation 

The output of the polynomial  

Y11 = x3.x1 ⊕ x2.x0 ⊕ x2 ⊕ x1 ⊕ x0  

Is random i.e it comes as “0” four times and “1” for four times out of eight rounds.  

Inference.     From above observation, it can be inferred that, “all ciphers that do employ a 

key-alternating schedule or use random keys in each round are safe from invariant attacks”.   

Table 1.3 Results of 8-Round Iteration with Different Keys 
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1.6.2 How to Create a Cumulative Round Invariant Polynomial for Complete Cipher 

  Previously, we illustrated the basic concept of Invariant Attacks with the help of two 

examples in which each round used an identical S-Box. So, we used a single polynomial for 

entire cipher to prove the core idea. This was just for ease of assimilation. In actual 

scenarios, this may not be the case. S-Boxes used in various rounds may be different, 

therefore, for each round, a different polynomial will be formulated. Once we have done 

that, the resulting polynomials will be combined to give a single polynomial representing 

the entire cipher. Now we will try to elaborate this concept using same 8-rounds SPN.  

  Let 𝑹: 𝑭𝟐
𝑵 → 𝑭𝟐

𝑵  represents the round function of a cipher. After including the 

key-XOR operation, the equation of the round function is represented as                                    

(x) = R (x ⊕ k). Therefore, if the cipher is composed of r number of rounds, the 

Ciphertext C will be computed as under:-  

             x0  = P, 

              xi+1 = Rki (xi) = R(xi ⊕ ki); 0 ≤ i ≤ r - 1, 

         C = xr 

  With this structure of a round function in a cipher, an invariant attack tries to find 

out an invariant function g for each round such that, for any number of existing weak keys, 

the function g(R(x ⊕ k)) = g(x ⊕ k) ⊕ c = g(x) ⊕ g(k) ⊕ c ⊕ x  , this simply 

implies that once a function g is applied onto a round function R, it amounts to XOR of 

function g calculated on the Plaintext and function g calculated on the key bits. In addition, 

it creates constant bit for each round which is also XORed with the output. This inference, 
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once applied to a simple 8-round SPN, provides an interesting analogy as under: -                      

                                                𝒈(𝑪) = 𝒈(𝑹(𝒙𝒓−𝟏 ⨁ 𝒌𝒓−𝟏))                    

                                                           = 𝒈(𝒙𝒓−𝟏) ⨁ 𝒈(𝒌𝒓−𝟏) ⊕ 𝒄             

                                                            = 𝒈(𝑹(𝒙𝒓−𝟐) ⨁ 𝒈(𝒌𝒓−𝟐) ⨁ 𝒈(𝒌𝒓−𝟏) ⊕ 𝒄            

                                                           = 𝒈(𝒙𝒓−𝟐) ⨁ 𝒈(𝒌𝒓−𝟐) ⨁ 𝒈(𝒌𝒓−𝟏)   

                                                                            .. 

                                                           = 𝒈(𝑷) ⊕ ⊕ 𝒈(𝒌𝒊)   ⊕ ⊕ 𝒄      

  

1.6.3 Proof. 

• Round-1:  g(x1) = g(PT) ⊕ g(k0) ⊕ C0 

• Round-2:  g(x2) = g(x1) ⊕ g(k1) ⊕ C1 

• Round-3:  g(x3) = g(x2) ⊕ g(k2) ⊕ C2 

• Round-4:  g(x4) = g(x3) ⊕ g(k3) ⊕ C3 

• Round-5:  g(x5) = g(x4) ⊕ g(k4) ⊕ C4 

• Round-6:  g(x6) = g(x5) ⊕ g(k5) ⊕ C5 

• Round-7:  g(x7) = g(x6) ⊕ g(k6) ⊕ C6 

• Round-8:  g(x8) = g(CT) = g(x7) ⊕ g(k7) ⊕ C7 

Now, we know that g(x8) = g(CT), so incorporating values of previous rounds in Round-

8 equation, we can conclude that: 

7 7 

i = 0 i = 0 

r-1 r-1 
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G(C) = g (PT) ⊕ ⊕  g (ki) ⊕ ⊕ C 

Conclusion.     We can conclude that, “the final invariant polynomial for a simple SPN 

cipher can be computed by separately computing the function g over the PT XORed with 

the cumulated g(Ki) and XORed with cumulated constant C of all rounds”.  

 

i = 0 i = 0 
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CHAPTER 2 

EXISTING RESEARCH ON S-BOX ANALYSIS AND INVARIANT ATTACKS 

2.1 Introduction 

In this chapter, we will carry out review of work done in the domain of block cipher 

cryptanalysis with specific focus on the research carried out on invariant attacks. Up till 

now, different researchers have launched invariant attacks on few lightweight ciphers like 

SCREAM, iSCREAM, Midori64, T-310 and others basing on certain assumptions. The results 

are encouraging, however, are localized to specific ciphers and no universal methodology 

could be proposed.   

2.2 Existing Research 

Block ciphers were introduced as a cryptographic technique for data security in 

early 1970’s. Since then, block ciphers have remained an active area of application and 

research for industry and academia alike. Their design protocols have been actively 

scrutinized and evaluated using standard cryptanalysis tools and techniques including 

differential attacks [11], linear attacks [12], and different other variants of these 

approaches [13]. Thereafter, the focus of cryptanalysis research evolved towards 

Generalized Linear Cryptanalysis (GLC) which proposed existence of non-linear 

polynomials. This was introduced at Eurocrypt’95 [14]. It was argued that the iterated 

structure of block ciphers was vulnerable to round invariant attacks similar to Linear 

Cryptanalysis [15]. Harpes et al. [16] and Knudsen et al. [17] were the first to carry out 

detailed research on non-linear cryptanalysis. The major focus of researchers was to find a 

polynomial which is round invariant attacks, i.e. the value of which remains constant after 

one round, however, the same polynomial even if it exists is very complex to find from such 



16 

 

a large space [18]. Moreover, it would be computationally not feasible to calculate this 

polynomial with conventional cryptanalytic methods [19]. Recently, researchers have been 

able to locate very limited number of attacks and that too with impossibility results [20]. 

Initially, once invariant attacks were proposed for analysis of block ciphers, these attacks 

were able to trivially locate polynomials of degree 2 only [21]. This led to the initial 

application of non-linear cryptanalysis of full-scale block ciphers which uses nonlinear 

round invariants [22]. An important observation was highlighted in this context with 

regards to wise choice of round constants that could weaken the attacks against light 

weight block ciphers. Authors also presented certain countermeasures to ensure 

robustness of these ciphers against invariant attacks, however, same have not been 

properly proven afterwards [23]. In recent years, the crypto community has focused on 

cryptanalyzing specific families of block ciphers. It was proven that well established block 

cipher families are quite robust against invariant attacks. Further research highlighted that 

rather than full-fledged block ciphers, their light-weight variants were more vulnerable to 

invariant and similar kind of attacks mainly due to their weak or no key alternating 

schedules [24].   

 In the same context of attempting to attack specific block cipher families, during 

ASIACRYPT 2016, Todo et al. [25] presented their findings on results of non-linear invariant 

attacks against full round ciphers, e.g., SCREAM [26], iSCREAM [27] and Midori64 [28]. 

These invariant attacks against full round ciphers could be launched with an assumption 

that the key for the attack be chosen out of weak key class. This could substantially reduce 

the brute-force effort by restricting to a limited key space [29]. This attack, however, 

weakens due to smart choice of round constants which can affect the non-linear invariants 

of ciphers. With an aim to overcome the impact of round constants from invariant attack 

proposed by Todo et al, authors presented another attack as Generalized Non-linear 
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Invariant Attack (GNIA) which applies a pair of constants to the input of a full round 

invariant attack against iSCREAM cipher employing weak keys. In general, authors 

proposed a new concept of closed loop S-box invariants and proved that the choice of 

strong round constants is linked to the existence of linear structure of the closed-loop 

invariants of the substitution layer. GNIA proved to be conditionally successful against SPN 

block ciphers, specifically it was able to launch distinguishing attack against a modified 

version of iSCREAM employing weak key class. In comparison, the nonlinear attack 

proposed by Todo et al. was not successful against iSCREAM.  

In the same context, Beierle et al. took the study of impact of round constants on 

the resistance of block ciphers to the next stage. The major outcome in [17] is that the we 

can independently chose round constants regardless of the substitution layer. Same 

assumption could not be found optimal in case of many block ciphers. Further research 

showed that few famous block ciphers like PRESENT, PRINCE, and L-block do not include 

above mentioned closed-loop invariants and are thus resilient against GNIA. 

As per research, invariant attacks have been characterized into two major 

categories. Firstly, the non-linear invariant attacks and secondly the invariant subspace 

attacks. The nonlinear type of invariant attacks was proposed in [30] and are considered as 

a further extension of sub-space invariant attacks. Sub-space invariant attacks also take the 

assumption that if the selected round-key is part of the weak-key class, then both input 

and output will belong to common affine sub-space through multiple encryption rounds. 

Second main type of invariant attacks, i.e., the non-linear invariant attacks were proposed/ 

demonstrated by Todo et al. These attacks try to locate non-linear invariants of each round 

separately and then combined to form a single invariant polynomial representing the entire 

cipher. There are two main difficulties in this scenario, one that such a comprehensive 
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polynomial is very hard to find and second, that all round keys must belong to same weak 

key class. It can be stated with confidence that certain lightweight forms of block ciphers 

are vulnerable to the invariant attacks. For ease of assimilation, the crux of research work 

on the subject is summarized in Table-3 below:- 

   

Table 2.1  Summary of Literature Review Findings  

Subject Cryptanalysis Technique Employed / Major Focus Ref 

Differential CA Concepts of Differential CA on DES and DES-like Cryptosystems 

proposed 

[11] 

Linear CA Concepts of Linear CA on DES and DES-like Cryptosystems 

proposed 

[12] 

Generalized Linear 

CA 

Argued that the iterated structure of block ciphers was vulnerable 

to round invariant attacks similar to Linear Cryptanalysis 

[15] 

Non-Linear 

Approximations in 

Linear CA 

First to carry out detailed research on non-linear cryptanalysis. 

The major focus of researchers was to find a polynomial which is 

round invariant representing the cipher 

[16], 

[17] 

Non-Linear 

Characteristics in 

Linear CA 

Concluded that if an invariant polynomial does exist, it is very 

complex to find from such a large space. Moreover, it would be 

computationally infeasible to calculate this polynomial.  

[18], 

[19] 

GNIA and a New 

Design Criterion for 

Rd Constants 

Invariant attacks were proposed for analysis of block ciphers, 

these attacks were able to trivially locate polynomials of degree 2 

only 

[20] 

Non-linear Invariant 

Attack against 

SCREAM, iSCREAM 

& Midori64 

Initial successful implementation of non-linear cryptanalysis of 

full-round block ciphers which uses nonlinear round invariants 

[22] 

Resistance Against 

Invariant Attacks: 

How to Choose RCs 

Authors proposed that wise choice of round constants that could 

weaken the attacks against light weight block ciphers. Presented 

certain countermeasures to ensure robustness of these ciphers 

against invariant attacks. 

[23] 

Nonlinear Invariant 

Attack: Practical 

Attack on Full 

SCREAM, iSCREAM, 

and Midori64 

Full versions of block ciphers are secure against invariant attacks; 

however, their lightweight variants are more vulnerable due to 

weak or no key alternating schedules. 

Todo et al. presented their findings on results of successful non-

linear invariant attacks against full round ciphers, e.g., SCREAM, 

iSCREAM and Midori 64 using weak-key class 

[24], 

[25] 

 Nonlinear Invariant 

Attack: Practical 

Attack on Full 

SCREAM, iSCREAM, 

and Midori64 

Invariant attacks have been characterized into two major 

categories. Firstly, the Non-linear invariant attacks and secondly 

the invariant subspace attacks.  

Non-linear invariant attacks try to locate non-linear invariants of 

each round separately and then combined to form a single 

invariant polynomial representing the entire cipher. There are 

two main difficulties in this scenario, one that such a 

comprehensive polynomial is very hard to find and second, that 

all round keys must belong to same weak key class. 

[30] 
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2.3 Conclusion 

The scarcity of research on the subject and absence of a common agreed upon 

framework to launch invariant attacks against different variations of block ciphers including 

lightweight versions still needs a lot of work. Our research will explore the mathematical 

structures, design, and properties of S-Box with a view to develop deep understanding of 

invariant attacks to propose a standardized methodology for further work.  
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CHAPTER 3 

MATHEMATICAL DESIGN OF S-BOX AND EVALUATION METHODS 

3.1 Introduction.   Block ciphers, among all cotemporaries, have proven to the most 

popular category of crypto algorithms [31]. In block cipher operation, entire plaintext 

stream is distributed into fixed equal length data blocks, which are then treated separately 

for entire encryption-decryption cycle. A plaintext block when encrypted with same cipher 

and same key, will always produce the same ciphertext. The data blocks are processed 

through repeated encryptions known as round function. Each block cipher comprises 

different number of rounds depending upon the design structure. Many such encryption 

schemes employ quite simpler operations repeated through multiple number of rounds. 

Block ciphers are mostly better suited for software implementations [32].   

3.2 Basic Block Cipher Mechanism and Components 

• Block Cipher Components.  There are five main components of a block 

cipher namely [33]:-  

Plaintext message-space - M 

Ciphertext message-space  - C  

Key Space    - K  

Encryption Algorithm  - E  = {Ek: k ɛ k} 

Ek = M            C 

Decryption Algorithm  - D  = {Dk: k ɛ k} 

Dk = C             M 

Basic symmetric encryption equation: Dk (Ek ( m ) ) = m 

3.3 Mathematical Structures.    The design structure of the block cipher is of paramount 

importance in its operation. It describes the length of data block, length of key, number of 
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encryption rounds, components of the cipher including the key alternating algorithm, 

round function, and the structure of substitution / permutation components etcetera. 

Broad types of block cipher structures are described as under [34]:-  

(1) Feistel structure. 

(2) Substitution - Permutation structure (focus of this thesis). 

(3) MISTY structure. 

(4) L-M structure.  

(5) Generalized Feistel structure. 

• Basic Concept of Feistel Structures.   The Feistel structure was introduced 

in 1970’s and forms the basis of many modern ciphers [35]. The working of 

Feistel ciphers is explained in under mentioned steps:- 

(1) The plaintext block is initially distributed into two halves i.e., left and 

right. 

(2) Then application of round function to one half. 

(3) Finally, outcome from the round function is Xor-ed with other half.  

(4) The Feistel structure is explained in Figure 3.1 below:-  

Figure 3.1 Feistel Structure 
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• Substitution – Permutation Network Structures (SPNs).      

(1) The Substitution-Permutation networks form the core of most 

modern block ciphers due to their inherent security introduced by 

the confusion-diffusion criteria proposed by Claude Shannon in 1949 

[36]. In SPN ciphers, the permutation and substitution operations 

are applied to the entire data block at one time. Then the output of  

current round is fed to the next round as input. 

 

• Permutation Box.   The permutation or the diffusion layer is the linear layer 

of SPN ciphers. It is simply linear displacement of data bits to predefined 

positions. This operation can be realized either by a simple look-up 

permutation table as in case of DES, or by mix column operation by 

multiplying with a linear matrix. Either way, this layer does not offer much 

security to the block cipher, however, once applied with the correctly 

balanced components, it becomes crucial to the cipher’s security.  

Figure 3.2 SPN structure 
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• Substitution Box.   The substitution or confusion layer of the SPN is the most 

important as well as critical layer of the entire cipher with regards to 

security. It is also realized as a lookup table; however, all substitutions are 

carried out with appropriate Boolean functions satisfying security criteria. 

The substitution box or S-Box structure is kept secret for security reasons. 

The diagrammatic layout of S-Box, P-Box combination is represented in 

Figure 3.3 below:- 

 

 

• Round Function.   A round function is the processing of data through single 

round of encryption. It takes as input the plaintext bits and processes this 

plaintext including round key XOR, substitution and permutation. It 

produces as output the ciphertext for that specific round. Block diagram of 

Figure 3.3 Combination of S-Box and P-Box in SPN Cipher 
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round function of Data Encryption Standard (DES) is explained in Figure 3.4 

below:- 

 

• Key Schedule.   In secret-key cryptosystems, a common secret key is 

employed at both encryption and decryption ends. This secret key or master 

key is passed through a key-generation algorithm for creation of round sub-

keys to provide a secure key for each round of encryption. The methodology 

adopted to generate these round keys differs with each cipher depending 

upon the security requirements and design.  

3.4 Understanding of Boolean Functions – A Prelude to Understanding S-Box.   

Boolean functions were pioneered in 19th Century by G. Boole, who established the 

application of mathematics in logic. In cryptography, Boolean functions form the basis of 

large number of systems including block ciphers and stream ciphers. Knowledge of Boolean 

functions is critical to the understanding of S-Box design. An S-box is constituted of 

Figure 3.4 Round Function of DES 
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numerous output Boolean functions; in other words, each output bit from one S-Box is 

outcome of a separate Boolean function. Moreover, Boolean functions exhibit few 

important cryptographic properties, which ensure the resilience of an S-Box against many 

families of attacks. In the subsequent paragraphs, few important terms related to Boolean 

functions will be defined in order to set the stage for S-Box analysis. 

3.5 Few Related Definitions  

• Boolean Function  Suppose an n-dimensional vector space GF(2)n, then, a  Boolean 

function f(x) can be defined as a mapping f: GF(2)n → GF(2); Where, x = (xn,xn−1,...,xn.1) and 

GF(2)n represents a Galois field of order 2n. In this case, the total number of distinct n-

variable Boolean functions will be 22^n. In case we enhance number of inputs ‘n’, the 

number of possible output Boolean functions will increase exponentially.  

 

• The Truth Table.  For a Boolean function f(x) comprising n-variables, a truth table 

is the binary output vector representing f(x) and contains 2n elements. There exists a 

unique truth table for every Boolean function. Suppose a Boolean function f : {0,1}2 → 

{0,1}. A truth table represents all possible combinations of inputs x1 and x2 with linear 

function F. The truth table is represented in Table 3.1 below:- 

x1 x2 F 

0 0 1 

0 1 1 

1 0 0 

1 1 0 

 

 

Table  3.1  Truth Table Representation 
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• Algebraic Normal Form.   In ANF, we represent a Boolean function as a polynomial 

in F2(x1,··· ,xn) with its bitwise sum of its input bits. For example, the ANF representation of 

Table 2.1 will be 

f(x1,x2) = x1 ⊕ 1. 

• Hamming Weight (HW). For an n-variable Boolean function f(x), hamming weight 

HW(f) is the total number of ones in the truth table of f(x). 

• Hamming Distance (HD).  Hamming distance HD(f , g) between two n-variable 

Boolean functions, f(x) and g(x)  represents the total count of differing elements in 

corresponding positions between the two truth tables of f(x) and g(x). 

• Algebraic Degree (AD). For a Boolean function f(x), algebraic degree is the total 

number of variables in the largest product term (having a nonzero coefficient) of the 

function’s ANF. 

• Equivalent Boolean Functions.  Two distinct n-variable Boolean functions, f and g, 

are equivalent functions iff there exist some a,b,c, and M, such that following equivalence 

relation holds true: 

g(x) = f(Mx ⊕ a)b.x ⊕ c;  

where a and b are binary n-variable vectors, c is a binary scalar, and M is an n × n invertible 

binary matrix. 

3.6 S-box theory 

With brief introduction to the Boolean functions, we shift our focus to the main subject of 

this thesis i.e., S-Box, which is a unique combination of one or more Boolean functions. 

Before getting to the crux, it is important to create basic understanding of S-Box concepts. 

This Section will cover basic definitions of S-Box and related terminologies. 

Definition of S-Box.  S-box with n x m configuration is a mapping from n input bits to m 

output bits, S : {0,1}n → {0,1}m. An S-box is a combination of m single bit output Boolean 
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functions combined in a predefined order. There can be 2n inputs and 2m possible outputs 

for an n × m S-box. S-Box is often realized in the form of a look-up table without disclosing 

the Boolean functions. 

Cryptographic properties of S-boxes 

Since an S-Box is composed of numerous Boolean functions (one for each bit output), in 

order to study the security properties of an S-Box, the effect of all linear combinations of 

component Boolean functions needs to be studied.  

Few important properties of S-Box are elaborated below:-  

• Balance (B).  An S-Box S:{0,1}n→{0,1}m is balanced, if Hamming Weight                   

HW(f) = 2n-1 , which means that number of 1’s and 0’s in the truth table is equal. An S-box, 

which is balanced is one whose component Boolean functions and their linear 

combinations, are all balanced. The significance of the balance property is that the higher 

the magnitude of function imbalance, a high probability of linear approximation of the S-

Box exists.  

• Non-Linearity (NL). Confusion property implies a complex and unpredictable 

relation between secret key and the ciphertext. Confusion property is embedded in a 

cipher design through use of nonlinear components specifically, the S-box. In order to 

check the resilience of an S-Box against cryptanalysis attacks, it is important to quantify the 

nonlinearity of the S-box. Nonlinearity requires that the S-box be not a linear mapping from 

input to output. This would make the cryptosystem susceptible to attacks [37]. 

• Algebraic Degree or Complexity (AD). The AD is a quantitative analysis of the 

strength of an S-Box against higher order differential and algebraic cryptanalyses. An S-box 

with a higher algebraic degree will be resilient against cryptanalytic attacks.  

 

 



28 

 

• Strict Avalanche Criteria (SAC).    

Strict Avalanche Criteria implies that if we change single bit of S-box input, it must change 

in at least half of output bits. An S-Box that satisfies SAC will be secure against many 

families of attacks [38].  

• Correlation Immunity (CI).   A Boolean function f on 𝑭𝟐
𝒏 is said to be correlation 

immune of order m, with 1 ≤ m ≤ n, if the output of f and any m input variables are 

statistically independent [39]. Higher the value of correlation immunity, the more resistant 

will be the S-Box. 

• Differential Uniformity (DU).   Differential cryptanalysis was proposed by Biham 

and Shamir. It exploits the imbalance in XOR distribution among inputs and outputs of an 

S-Box. Differential uniformity means that inputs and outputs of an S-Box map uniquely with 

uniform probabilities. S-Boxes with smaller Differential Uniformity possess better 

resistance against differential cryptanalysis [40]. 

• Linear Approximation (LA).   Attacks based on Linear cryptanalysis compute a 

linear approximation between bits of plaintext, ciphertext and the key. These estimates 

are approximated from linear approximation tables of the nonlinear non-linear elements 

in a block cipher, i.e., the S-box. In principle, lower the Linear Approximation value, the 

higher the resistance of S-box's against linear cryptanalysis [41].  

• Fixed (Fp) and Opposite Fixed Points (OFp).   Fixed point in an S-box means the 

points for which input directly maps to output, while opposite fixed points means that 

output is the complement of input. The number of fixed and opposite fixed points should 

be minimum possible in order to enhance resistance against statistical analysis [42]. 

• Bit Independence Criterion (BIC).   Bit independence implies the independence of 

output bits on previous bits. The higher the bit independence, the more unpredictable 

and secure will be the S-box. 
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• Confusion Coefficient Variance (CCV).   

CCV is also a measure of resistance of an S-box against side channel analysis. This is a 

probabilistic model that allows the attacker to explore cipher design. Heuser et al. [43] in 

their research have concluded that higher the value of CCV, suggested that higher CCV 

value, the higher will be resistance level against side-channel analysis. 

• Signal-to-Noise Ratio (SNR) OR Differential Power Analysis (DPA).  DPA is a 

category of side channel attacks that involves statistical analysis of power measurements 

obtained from a crypto system. These attacks exploit power consumption of different 

hardware components of a system using different keys. DPA uses signal processing and 

error correction attributes of a system to extract valuable intel about a system. An S-box 

with lower SNR (DPA) will be considered better resistant against side-channel analysis [44]. 

3.7 Conclusion.     In this chapter, we have tried to build the foundation of in-depth 

study of block ciphers and specially the nonlinear component i.e., the S-box and its main 

properties. The list is inexhaustive since the mathematical properties of S-box cannot be 

covered in a short thesis. However, an effort has been made to take a note of important 

properties of S-box which have a serious impact on the security of S-box and the whole 

cipher. After this, a detailed account of invariant attacks and their countermeasures will be 

covered in the subsequent parts of this thesis.    
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 CHAPTER 4 

INVARIANT ATTACK AND DESIGN CRITERIA TO SAFEGUARD BLOCK CIPHERS AGAINST 

INVARIANT ATTACKS 

4.1 Introduction 

Major focus of the designers of symmetric-key for instance Substitution-

Permutation-Networks (SPN) remains on design criteria for the substitution boxes (S-Box) 

of the cryptosystem. Main reason behind this fact is that S-Box is the only non-linear 

component of an SPN [45]. In case of a weak S-Box, the entire cipher will act linearly, and 

its security will be easily compromised through cryptanalysis [46]. The design and 

evaluation criteria of S-Box are interlinked processes since both the steps complement 

each other towards security of a block cipher [45]. Study of cryptanalytic attacks against 

full and lightweight versions of block ciphers is an ongoing process. The basic endeavour 

of this research is to consider the vulnerabilities in block ciphers exploited by Invariant 

Attacks with an aim to stipulate a design criterion to safeguard against this attack. The flow 

of work has been outlined in Fig 4.1 below.  

Figure 4.1  Research Flow of Work 
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4.2 Overview of Invariant Attack.   The word ‘Invariant’ literally means unchanging. In 

cryptography, invariant attack is a newly proposed attack system in which the properties 

of a block cipher round function are preserved (or remain unchanging) in arbitrary number 

of rounds. Suppose there is a block cipher defined by: 𝑬𝒌: 𝑭𝟐
𝑵 → 𝑭𝟐

𝑵 

Implementing an Invariant Attack on this block cipher is to find an efficiently 

computable Boolean function: 𝒈: 𝑭𝟐
𝑵 → 𝑭𝑵  

such that 𝒈(𝑷) ⊕ 𝒈(𝑬𝒌(𝑷))   is constant for any Plaint Text P and for a number of 

Keys. Such keys are known as weak keys. The function g is known as Non-Linear Invariant 

for the cipher EK.   

 4.3 Major Types of Invariant Attacks.   Till date, four main types of invariant attacks 

have come to light. Brief overview and attack methodology are elaborated in ensuing 

paragraphs.  

4.3.1 Nonlinear Invariant Attack 

 4.3.1.1 Background.   The nonlinear invariant attacks were first introduced in ASIACRYPT-

2016 [8] as a new type of cryptanalytic technique carried out under weak key setting. It 

was developed from two main lines of research dating back to 1993. The schematic layout 

of the development ladder of the attack is explained in Figure 4.2 below.   

Figure 4.2  Research Chronology of Invariant Attacks 
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 4.3.1.2 Overview of Nonlinear Invariant Attack.    The nonlinear invariant attack is a 

practical type of attack against vulnerable block ciphers and can be considered as an 

advanced form of linear cryptanalysis. Initially it acts as a distinguishing attack, however, 

with suitable assumptions, the attack can be extended to a Ciphertext Only attack. This 

attack can be modeled against most of the existing block ciphers under specific 

assumptions, however, these have proved more effective against key-alternating ciphers 

and substitution permutation networks (SPN) ciphers. Suppose a typical block cipher 

consisting of round function F for i number of rounds. We have determined a Boolean 

Function g which is a nonlinear invariant for a single round. Now if, the keys used in each 

round are weak keys, the invariant function g will be invariant over arbitrary number of 

rounds. In such case, the nonlinear approximation is possible with probability 1.  

4.3.1.3 Basic Working of SPN Block Cipher.  Consider a key alternating block cipher 

represented by Round Function R : FN2 → FN2. 

Then, round function with key XOR can be expressed as under: 

Rk(x) = R ( x ⊕ k) 

For this cipher comprising r number of rounds, the ciphertext C will be computed as 

under:- 

                                                        x0 = P, 

                                                      xi+1 = Rki (xi) = R(xi ⊕ ki);            0 ≤ i ≤ r - 1, 

                                                         C = xr 

4.3.1.4 How Nonlinear Invariant Attack Works.    The basic premise of the invariant 

attack is to determine a nonlinear Boolean function g such that 

                        g(R(x ⊕ k)) = g(x ⊕ k) ⊕ c = g(x) ⊕ g(k) ⊕c ⊕x 
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where c is a constant in F2. All such Keys for which this equation satisfies are known to be 

weak keys, which the determined function g is called the nonlinear invariant. 

4.3.1.5 Analysis of Application of Nonlinear Invariant Attack Against Practical Ciphers.  

• What Sort of Ciphers are Vulnerable to Nonlinear Invariant Attack? As observed, 

most lightweight block ciphers are designed for lightweight applications, therefore, they 

have a minimal or sometimes even non-existent key alternating schedule for example for 

the ciphers using same round key in each round. Since full scale ciphers like AES employ a 

complex key alternating function, nonlinear invariant attack has not been successful 

against such ciphers. 

• Weak Key Space.   Nonlinear Invariant Attacks work under the assumption of weak 

keys such that, for a Boolean function to be invariant over arbitrary number of rounds, all 

round keys must be weak.  

• Weak Round Constants.   In case the weak key condition is fulfilled (all round keys 

used are weak keys), then, suppose Boolean function g is invariant with respect to the 

round function R. Now, if all round constant RCi are involved only in linear terms of the 

function g, then, the function g becomes nonlinearly invariant to the round constant 

addition step. Such constants are called weak constants.  

• Non-Trivial Invariant Computation.    The attack unfolds sequentially, such that, 

initially, invariant function for each single round is computed individually and then 

combined mathematically. In case, the degree of the polynomial increases, the 

computation will become more and more complex thus increasing computation cost.  

• Analysis of Attack Against Ciphers SCREAM and iSCREAM.   Both these ciphers [8] 

are tweakable block ciphers and possess weak keys to the tune of 296 and 297 respectively. 

In case of a successful attack against SCREAM, the attacker can recover 32 bits from the 
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last data block in case the final block length is between 12 and 15 bytes. The vulnerability 

of this cipher stems from the L-function which is based on orthogonal matrix which can be 

manipulated. In case of iSCREAM, the weak key space is doubled to 297 because there are 

two independent invariant functions for the cipher.  

• Attack Against Midori64.   Midori is a low energy block cipher [8] and has 264 

number of weak keys. If used in well-known operating modes like Cipher Block Chaining 

(CBC), Cipher Feedback (CFB), Output Feedback (OFB) and Counter Mode, the attacker can 

successfully recover 32 bits in each data block of plaintext.  

4.3.2 Invariant Subspace Attack.      

4.3.2.1 Overview of the Attack.   Invariant Subspace Attack was proposed by Leander et al. 

at CRYPTO 2011. It is similar in form to the nonlinear invariant attack and was proposed for 

cryptanalysis of a specific cipher known as PRINT cipher [47]. The core concept of the attack 

is the identify invariant subspaces in the key space which satisfy self-similarity property. 

These attacks are successful against lightweight ciphers employing weak or non-existent 

key alternating schedule.  

4.3.2.2  How Invariant Subspace Attack Works.    We assume that the round function of a 

cipher maps a Coset A of some vector subspace U of the inner state to a Coset B of the 

same space, and a fixed key belonging to A - B is added in every round. Then the set A is 

preserved by the round function, and hence remains stable through the whole encryption 

process. The process of preservation of subspace properties is explained in Figure 4.3 

below:-  
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4.3.2.3 Steps of the Attack 

• First, the input plaintext xi is chosen from the subspace U+a. 

• After key-XOR stage, this element maps to subspace U+b. 

• Once the round function F is applied, the element again maps to subspace U+a. 

• The resulting ciphertext will also belong in the subspace U+a.  

• This way, the subspace U+a is preserved. 

4.3.2.4 Analysis of Application of Invariant Subspace Attack Against Practical Ciphers. 

• Vulnerability.   Substitution Permutation Network based ciphers employing simple 

key schedule are vulnerable to subspace attacks. This type of attack seems particularly 

well-suited to substitution-permutation networks (SPN) with a minimal key schedule or 

cryptographic permutations with highly structured round constants. 

• Weak Key Space. Like other variants of the invariant attack, this attack works on 

the basic assumption of working in the weak key space using weak round key in each round. 

strongest attack shows the existence of a weak key set of density 2-32. This weak key space 

apparently seems low compared to the nonlinear invariant attack, however, once found, 

Figure 4.3  Layout of Invariant Subspace Attack 
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the weak keys will lead to the plaintext going through all rounds of encryption with 

probability of 1.  

• Round Constants.  Block ciphers employing permutation functions with well-

structured round constants are especially vulnerable to subspace invariant attacks.  

• Invariant Subspace Size. The attack is more successful against ciphers with large 

invariant subspaces. 

• Outcome of Invariant Subspace Attack against ROBIN, ZORRO and iSCREAM. 

Invariant subspace attack successfully identifies weak keys in Robin, Zorro and iScream in 

a chosen tweak scenario. In related key setting, these ciphers are easily broken without 

weak-key requirement even.  

• Outcome of Invariant Subspace Attack against LED, Noekon and Fantomas 

Ciphers. Once these ciphers were attacked, no invariant subspaces could be identified in 

their structure, thus these ciphers were found safe against this attack. 

• Outcome of Invariant Subspace Attack against LS-Design Ciphers.   LS design-based 

ciphers were found resistant against this category of attack.  

• Outcome of Invariant Subspace Attack against Midori64 Cipher.   Midori64 cipher 

was found especially vulnerable to subspace attack because of weak combinations of three 

factors including round constants, S-box, and existence of orthogonal matrix in the linear 

layer. Once the conditions are present, the cipher can be distinguished with single query 

and key can be recovered in 216 time complexity using two queries. In Midori64, use of 

round constants is tricky, if not chosen wisely, weak round constants will add to the 

vulnerability of the cipher. In order to eliminate the vulnerability of weak round constants, 

the S-Boxes may be tailored in line with the key schedule. 
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• Conditions for the Use of S-Boxes.   The ciphers with identical S-Boxes in each round 

are broken easily. This fact has been proven by the fact that the attack could not be 

launched against Midori128 because of the use of four different S-Boxes in the round. 

• The Case of Involution and Non-Involution S-Boxes.   With simple key schedule, 

involution type S-Boxes can be considered less secure compared to non-involution type S-

Boxes. 

4.3.3 Generalized Nonlinear Invariant Attack 

4.3.3.1 Basic Idea of the Attack.   The concept of Generalized Nonlinear Invariant attack 

originates from basic Nonlinear Invariant Attack [48]. Although the nonlinear invariant 

attack was successful against full block ciphers like Midori, Scream and iScream, its major 

drawback was with the choice of round constants [49]. If round constants were chosen 

wisely to nonlinearly affect the invariants, the attack would be impossible to mount. The 

generalized nonlinear invariant attack overcomes the issue of round constants by utilizing 

a pair of constants in the input of the invariants.  

4.3.3.2 Attack Methodology of Generalized Nonlinear Invariant Attacks. 

Suppose a standard block cipher which inputs Plaintext P and round subkey Ki to output 

Ciphertext C. The input output relation can be expressed as under:- 

                                                              x0 = P,  

                                                             xi+1 = FKi(xi) = F (xi) ⊕ Ki,  

                                                             xr = C 

The generalized nonlinear invariant attacks evaluate a  nonlinear Boolean function            

g : GF (2)n → GF (2) along with two n-bit constants (a1, a2) ∈ GF (2)n ×GF (2)n such 

that:- 
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g(x ⊕a1) ⊕ g(FKi(x) ⊕ a2) = c 

 (where c is a binary constant) holds for any x. 

In order to compute generalized nonlinear invariant of a cipher, attacker needs set of weak 

keys for each round along with pair of constants (a1, a2) contained in nonlinear terms of 

the nonlinear invariant g(x). 

4.3.3.3 Analysis of Generalized Nonlinear Invariant Attacks against iSCREAM Cipher.    The 

efficiency of newly proposed Generalized Nonlinear Invariant Attack can be carried out 

with respect to iSCREAM cipher which was also attacked by basic nonlinear invariant 

attack. The criteria of round constants proposed by Beierle et al. [23] makes the cipher 

resistant against nonlinear invariant attack proposed by Todo et al. [8] In contrast, same 

criteria do not suffice against generalized nonlinear invariant attacks. In these attacks, 

concept of closed loop invariants of the substitution layer creates a linear structure in the 

S-Box invariant which can be exploited. Instead of creating nonlinear resistance, round 

constants can even create a vulnerability for generalized nonlinear invariant attack to be 

successful.  

4.3.4 Invariant Hopping Attack. 

4.3.4.1 Basic Idea of the Attack.  Available invariant attacks exploit vulnerability in the 

iterated round structure of the block ciphers, however, until recently, only few of such 

attacks were launched with impossibility results [50]. Available invariant attacks have been 

able to construct polynomial invariants of degree 2 only [51]. Invariant hopping attacks 

were proposed in order to construct stronger invariants. These attacks work for entire key 

space by exploiting roots of the fundamental equation and have success probability of 1 

[52]. Hopping attacks make use of the existing invariant methodology by upgrading a 
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simple attack against a weak cipher to a higher degree invariant attack using a step-by-step 

approach. This step-by-step approach is known as Invariant Hopping. 

4.3.4.2 Attack Methodology of Invariant Hopping Attacks against T-310 Block Cipher.   

Invariant Hopping attack was launched on a classical block cipher T-310 which was actually 

employed by US Government during Cold War era. It had a block size of 36 bits and key 

length of 240 bits. In first step single round of encryption was represented in the form of 

36 Boolean Polynomials of degree 6. The technique adopted to solve the Fundamental 

Equation for the cipher uses simple relation: P(Inputs) = P(Outputs) 

The same is mathematically equivalent to 

P(a; b; c; d; e; f; g; h; ……) = P(b; c; d; F + i; f; g; h; F + Z1 + e; …..).  

In the next step, the equations are translated into their ANF by using a new set of variables. 

Technique of attack hopping is employed by transforming attack on one cipher into 

another cipher [36].  

 4.3.4.3   Analysis of Invariant Hopping Attacks against T-310 Block Cipher.   The purpose 

of choice of this cipher was that its internal wiring was flexible. The invariant hopping 

attacks attack a weak cipher to break stronger ciphers. Here it was demonstrated by 

manipulating the internal wiring of the cipher to own advantage. In this way, the 

complexity and degree of Boolean function is being enhanced progressively. Using this 

technique, complex invariants of degree 8 can be constructed methodically [53]. 

4.4 Analysis of Vulnerable Lightweight Ciphers Using SAGEMATH Tool.  There has 

been extensive research in the field of cryptography. New ciphers are exposed to 

cryptanalysis techniques in order to test their security credibility. Various cryptanalytic 
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tools are employed to determine properties of various components of ciphers contributing 

towards their security. SageMath is a state-of-the-art open-source math-based utility 

which has well developed cryptographic tools in addition to numerous other applications 

[54]. SageMath provides functionality of multiple cryptographic functions using few lines 

of code. SageMath was utilized to determine important properties of S-Boxes of vulnerable 

ciphers, list of reviewed properties is as under:- 

• Differential Uniformity (DU). 

• Fixed Points and opposite fixed points (F.P). 

• Linear Structure or not (L.S). 

• Balanced function or not (Bal). 

• Bent function (Bent). 

• Involution function or not (Inv). 

• Linearity (Lin). 

• Non-Linearity (NL). 

• Maximum Degree (Max.D). 

• Minimum Degree (Min.D). 

• Maximum Differential Probability (M.D.P). 

• Maximum Linear Bias (M.L.B). 

• S-Box Invariants (newly introduced functions which takes input of S-Box and 

provides in output all possible invariants of the S-Box. 

4.4.1 SageMath Analysis.     Basic aim of this study is to analyse various properties of S-

Boxes that impact their resilience against invariant attacks. For this purpose, ten 

lightweight ciphers that had been cryptanalysed by various variants of invariant attack 

were shortlisted. These ciphers had S-Boxes of configuration 3x3, 4x4 and 8x8 
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respectively. At the end of Sage analysis, we shall be able to draw certain conclusions 

which will lead us to formulation of a security toolkit to assure resilience of an S-Box 

against invariant attacks.  

The output of various functions applied to target ciphers is as under:-      

 

 

Ser CIPHER DU F.P L.S BAL BENT INV LIN NL MAX.

D 

MIN. 

D 

M.D.P M.L.B 

3x3 S-Box 

1. PRINT 2 [0,1] T T F F 4 2 2 2 0.25 2 

2. SEA 2 [0,4] T T F F 4 2 2 2 0.25 2 

4x4 S-Box 

3. PRESENT 4 No T T F F 8 4 3 2 0.25 4 

4. PRINCE 4 No F T F F 8 4 3 3 0.25 4 

5. ELEPHANT 4 No T T F F 8 4 3 2 0.25 4 

6. MIDORI 4 [3,7,

8,9] 

T T F T 8 4 3 2 0.25 4 

8x8 S-Box 

7. iSCREAM 8 [*] T T F T 64 96 6 4 0.0625 32 

8. SCREAM 8 [ ] T T F F 64 96 6 3 0.0312 32 

9. ZORRO 10 [ ] F T F F 64 96 7 5 0.0390 32 

10. SKINNY_8 64 [255] T T F F 128 64 6 2 0.25 64 

Note: Properties names have been coded as defined in Section 4.4 above; in addition, True=T and 

False=F.  

[*] = [0, 24, 38, 61, 69, 95, 103, 124, 132, 158, 162, 179, 201, 209, 235, 250] 

 

Table: 4.1 Important SageMath Properties of Vulnerable Ciphers Vulnerable to Invariant Attacks 
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4.4.2    Computation of Nonlinear Invariants for S Box in SageMath.   In line with Nonlinear 

Invariant Attack proposed by Todo et al. in [22], a patch was introduced in SageMath [54] 

to compute nonlinear invariants for an S-Box. For an mxm S-Box S, the attack attempts to 

compute m-variables Boolean functions g such that g(x) + g(S(x)) is a constant function. 

The implementation of this patch is based on the method proposed by authors in Section 

3.1 of [22]. It was a very useful tool, however, it had certain compatibility / operation issues 

in the latest version of SageMath i.e., 9.3. After necessary modification with help of our 

Thesis Advisor, the patch was made functional in the current SageMath version. The 

function code to compute nonlinear invariants is opensource and has been copied at 

Appendix-A.    

4.5 Conclusions from Sage Analysis.    At this stage, no wholesome tool set is available 

to analyse entire cipher with regards to invariant attacks, SageMath tool can help us in 

analyzing individual components with respect to certain important properties so that we 

can comment on the behaviour of the ciphers. Salient outcomes of the above tabulated 

Sage analysis are as under:- 

• Impact of Balancedness on Invariant Attack.  All vulnerable S-Boxes display the 

property of balance. Therefore, where trait of being balanced reveals vulnerability towards 

linear and differential cryptanalysis, it casts no major influence against invariant attacks.  

• Impact of Number and Location of Fixed Points in an S-Box.  Fixed point means 

that input bit on that specific position of S-Box gives out the same bit in output. Whereas, 

if output is the compliment of input, it is opposite fixed point. This is an important property 

which impacts the security of S-Box. We shall study the impact of number and location of 

fixed points on the security of a S-Box in relation to the invariant attack. As per 

understanding, the less the number of fixed points, the better the security and vice versa. 
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We are going to use the nonlinear invariant function built in the SageMath tool to confirm 

our point. Let us take the example of a hypothetical 3-bit S-Box. We shall start taking 

number of fixed points from 0 uptill 7. Input S-Box with varying fixed points are depicted 

in Table 4.2 through Table 4.9 below. Output of the non-linear invariant function with 

different number of fixed points is depicted in Fig 4.4 through Fig 4.11 below:- 

• No Fixed Point 

 

 

 

 

Output of Invariant Function 

 

 

x 0 1 2 3 4 5 6 7 

S(x) 1 0 3 6 7 4 5 2 

Table: 4.2  S-box with No Fixed Points 

Figure: 4.4  S-box with No Fixed Points 
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• 1 Fixed Point 

  

 

 

 

 

• 2 Fixed Point 

  

 

 

 

• 3 Fixed Point 

  

x 0 1 2 3 4 5 6 7 

S(x) 0 3 1 6 7 4 5 2 

x 0 1 2 3 4 5 6 7 

S(x) 0 1 3 6 7 4 5 2 

x 0 1 2 3 4 5 6 7 

S(x) 0 1 2 6 7 4 5 3 

Table: 4.3  S-box with 1 Fixed Points 

Figure: 4.5 S-box with 1 Fixed Points 

Table: 4.4 S-box with 2 Fixed Points 

Figure: 4.6 S-box with 2 Fixed Points 

Table: 4.5  S-box with 3 Fixed Points 
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• 4 Fixed Point 

 

 

 

 

 

  

x 0 1 2 3 4 5 6 7 

S(x) 0 1 2 3 7 4 5 6 

Figure: 4.7 S-box with 3 Fixed Points 

Table: 4.6  S-box with 4 Fixed Points 

Figure: 4.8 S-box with 4 Fixed Points 
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• 5 Fixed Point 

 

 

 

x 0 1 2 3 4 5 6 7 

S(x) 0 1 2 3 4 7 5 6 

Figure: 4.7  S-box with 5 Fixed Points 

Figure: 4.9  S-box with 5 Fixed Points 
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• 6 Fixed Point 

 

 

 

 

 

• 8 Fixed Point 

 

 

  

 

 

 

 

x 0 1 2 3 4 5 6 7 

S(x) 0 1 2 3 4 5 7 6 

x 0 1 2 3 4 5 6 7 

S(x) 0 1 2 3 4 5 6 7 

Table: 4.8  S-box with 6 Fixed Points 

Figure: 4.10  S-box with 6 Fixed Points 

Table: 4.9  S-box with 8 Fixed Points 

Figure: 4.11  S-box with 8 Fixed Points 
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• Summary of Results 

Ser No. of Fixed Points No. of Invariants 

1. 0 6 

2. 1 4 

3. 2 8 

4. 3 16 

5. 4 32 

6. 5 64 

7. 6 128 

8. 8 256 

 

 

• Graph 

 

• Inference.      The Table 4.10 and graph in Fig 4.12 clearly indicate that as we 

increase the number of fixed points in an S-Box, the possible number of invariants 

for that S-Box also increase exponentially. Therefore, in order to reduce the 

vulnerability, the number of fixed points must be kept to the minimum.  
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Table: 4.10  Summary of Results No of Fixed Pts Vs No. of Invariants 

Figure: 4.12  Summary of Results No of Fixed Pts Vs No. of Invariants 
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• Impact of Location of Fixed Point on Security of S-Box.   Input S-Box with varying 

location of fixed points are depicted in Table 4.11 to Table 4.18 below. Output of 

the non-linear invariant function with different number of fixed points is depicted 

in Fig 4.13 through Fig 4.20 below:- 

• Fixed Point at 0 

 

 

 

 

 

• Fixed Point at 1 

 

 

 

 

 

• Fixed Point at 2 

 

x 0 1 2 3 4 5 6 7 

S(x) 0 3 1 6 7 4 5 2 

x 0 1 2 3 4 5 6 7 

S(x) 3 1 0 6 7 4 5 2 

x 0 1 2 3 4 5 6 7 

S(x) 3 6 2 16 7 4 5 0 

Table: 4.11  S-box with Fixed Point at ‘0’ Location 

Figure: 4.13  S-box with Fixed Point at ‘0’ Location 

Table: 4.12  S-box with Fixed Point at ‘1’ Location 

Figure: 4.14  S-box with Fixed Point at ‘1’ Location 

Table: 4.13  S-box with Fixed Point at ‘2’ Location 
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• Fixed Point at 3 

 

 

 

 

 

• Fixed Point at 4 

 

 

 

 

 

x 0 1 2 3 4 5 6 7 

S(x) 6 2 1 3 7 4 5 0 

x 0 1 2 3 4 5 6 7 

S(x) 6 2 1 7 4 3 5 0 

Figure: 4.15  S-box with Fixed Point at ‘2’ Location 

Table: 4.14  S-box with Fixed Point at ‘3’ Location 

Figure: 4.16  S-box with Fixed Point at ‘3’ Location 

Table: 4.15  S-box with Fixed Point at ‘4’ Location 

Figure: 4.17  S-box with Fixed Point at ‘4’ Location 
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• Fixed Point at 5 

 

 

 

 

 

• Fixed Point at 6 

 

 

 

 

 

• Fixed Point at 7 

 

x 0 1 2 3 4 5 6 7 

S(x) 6 2 1 4 7 5 3 0 

x 0 1 2 3 4 5 6 7 

S(x) 3 2 1 4 5 7 6 0 

x 0 1 2 3 4 5 6 7 

S(x) 3 2 1 6 5 0 4 7 

Table: 4.16  S-box with Fixed Point at ‘5’ Location 

Figure: 4.18  S-box with Fixed Point at ‘5’ Location 

Table: 4.17  S-box with Fixed Point at ‘6’ Location 

Figure: 4.19  S-box with Fixed Point at ‘6’ Location 

Table: 4.18  S-box with Fixed Point at ‘7’ Location 
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• Summary of Results 

Ser Location of Fixed 

Points 

No. of Invariants 

1. 0 4 

2. 1 4 

3. 2 8 

4. 3 8 

5. 4 8 

6. 5 8 

7. 6 8 

8. 8 8 

 

  

Figure: 4.20  S-box with Fixed Point at ‘7’ Location 

Table: 4.19  Summary of Results Location of Fixed Pts Vs No. of Invariants 
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• Graph 

 

• Inference.      Table 4.19 and graph in Fig 4.21 clearly indicate that as we advance 

the location of fixed points in an S-Box, the possible number of invariants is not affected. 

• Impact of Use of Involution Type S-Boxes.   Most S-Boxes attacked by various types 

of Invariant attacks possess the property of being non-involution except Midori and 

iScream. Therefore, using majority vote system, it may be beneficial to use involution S-

Boxes to guard against Invariant attacks.  

• Impact of Nonlinearity.   Most S-Boxes that were found vulnerable against invariant 

attacks possessed a linear structure less Prince and Zorro. It may be concluded that to 

safeguard against invariant attacks, non-linear S-Boxes will stand stronger chances of 

security.  

• Impact of Bent Functions.  None of the S-Boxes attacked were based on bent 

functions. 
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4.6       Safeguarding Against Invariant Attacks 

4.6.1 Methods to Enhance Resistance Against Non-Linear Invariant Attacks. The 

question of whether or not a cipher is secure against invariant attacks, is of immense 

importance. The number of possible invariants for a given round function might be large. 

Instead of checking security of a cipher against each variant of the attack in question, it 

may be beneficial to outline important postulates to safeguard against invariant attacks.  

• Use of Complex Round Constants.   To ensure strong resistance against nonlinear 

invariant attacks, the use of complex round constant is strongly recommended. Criteria 

for strong round constants as proposed by Beierle et al. in [23] can be utilized as a basic 

step towards achievement of provable security.  

• Avoiding Use of Binary Orthogonal Matrix in Linear Layer of Block Ciphers.   Recent 

research on cryptanalysis of lightweight block ciphers suggests that uptill now, vulnerable 

nonlinear invariants are restricted to quadratic degree only. Similarly, use of binary 

orthogonal matrix is considered mandatory in order to overcome the linear layer. It is also 

noteworthy that while using 4x4 bit S-Boxes, quadratic nonlinear invariants cannot be 

avoided. Therefore, while using 4x4 S-Boxes, one must try to avoid use of binary orthogonal 

matrix in the linear layer of cipher. This fact must also be borne in mind that orthogonality 

property is a strong safeguard against linear and differential cryptanalysis, while same is a 

potential loophole with regards to invariant attacks. In case application of orthogonal 

matrix is inevitable in the cipher design, it must be non-binary one.  

• S-Box Configuration.     

• As explored by the existing research, all ciphers composed of 3x3 S-Boxes 

like Print Cipher, SEA Cipher are vulnerable to invariant attacks. Therefore, it may 

be implied that 3x3 bit S-Boxes may not be utilized by designers.  
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• As of ciphers with 4x4 S-Boxes, few ciphers like Prince, Midori, Elephant and 

Present Ciphers are vulnerable basing on the combination of design components 

including key schedule (especially choice of round constants) and the linear layer, 

while few others may be secure.  

• As we enhance the configuration of S-Box in the overall structure, i.e., 

instead of 3x3 S-Box, we use 4x4 or 8x8 S-Box, the complexity of the invariant 

functions is going to enhance, which is likely to reduce the vulnerability of that 

cipher against invariant attacks. Let us take the example of 3x3, 4x4 and 8x8 S-Box 

to compare the complexity and nature of invariants. SageMath results are 

appended below in Fig 4.22 through Fig 4.24 below for reference:- 

• Invariant for Print Cipher S-Box (3x3) Computed by SageMath 

 

• Invariant for PRESENT Cipher S-Box (4x4) Computed by SageMath 

 

Figure: 4.22  Invariants of Print Cipher S-box Computed by SageMath 

Figure: 4.23  Invariants of PRESENT Cipher S-box Computed by SageMath 
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• Invariant for AES S-Box (8x8) Computed by SageMath  

 

• Summary 

Ser. Cipher S-Box 
Size 

No. of Terms 
in S-Box 

No. of 
Invariants 

Max No. of 
Terms in 
Invariant 

Complexity  
(Max Product 
Terms) in Invariant 

1. Print  3x3 8 8 8 3 

3. Present 4x4 16 16 11 4 

4. AES 8x8 256 32 134 8 

 

• Graphs 
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Figure: 4.24  Invariants of AES S-box Computed by SageMath 

Table: 4.20  Comparison of S-box Size Vs Complexity of Invariant 

Figure: 4.25  Comparison of S-box Size Vs Complexity of Invariants 
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Results.    Results summarized in Table 4.20 and graphs in Fig 4.25 and 4.26 reveal 

following:- 

• As we enhance the configuration of the S-Box, the complexity of the invariant and 

max number of terms in single invariant increase exponentially. 

• We can clearly observe that complexity of invariant of a single 8x8 S-Box is very 

difficult to solve. Same is going to get more complex with addition of invariants coming 

from several rounds. Thus, with S-Box of greater configuration, the possibility of invariant 

attack becomes questionable.   

 

 

 

4.6.2 Methods to Enhance Resistance Against Invariant Subspace Attacks  

• A baseline formula to enhance resistance invariant subspace attacks is to employ 

complex key alternating schedules or random / complex round constants. In contrast 

however, there are certain ciphers without employing any key schedule, yet they are 

resistant to the invariant subspace attack, i.e., Fantomas, Led and Noekon.  

• Possibility of existence of invariant subspaces is dependent upon linear relations in 

the S-Boxes. Furthermore, the dimension of possible invariant can be bounded to control 

the existence of subspaces. 
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Figure: 4.26  Comparison of S-box Size Vs Max No of Terms in An Invariants 
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• As similar to nonlinear invariant attack, all 3x3 bit S-Boxes are vulnerable to 

invariant subspace attacks. As of 4x4 bit S-Boxes, certain variants like Serpent and present 

are vulnerable owing to the construction and properties, while others like Rinjdael may be 

considered safe since they possess no such weak equation that may be exploited.  

4.7 Proposed Design Criteria. Having gone through the basic construct of all major 

variants of the invariant attack and delved into the analyses of various ciphers attacked by 

these variants, it is deemed appropriate that a common criterion may be defined which 

can assure provable security against invariant attacks against SPN ciphers. These defined 

properties are inclusive of and in addition to the agreed upon set of properties of a good 

S-Box as defined by NIST [43]. 

4.7.1 Criteria of Cryptographically Strong S-Box  

As defined by NIST, following five design criteria must be satisfied by Boolean 

functions used in deigning cryptographically strong S-Boxes [55].   

• Bijection.     In case of n x n bit S-box, if the input satisfies one-to-one and onto 

mapping to the output.  

• Strict Avalanche Criterion.   It implies that change in a single bit in the input vector 

gives rise to a significant change in the output bits of the vector with probability of one 

half.    

• Bit Independence Criterion.    It implies that there should not be any statistical 

relationship among the output bits from the output vectors. 

• Non-Linearity.   Non-linearity implies that S-Box is not a linear mapping from input 

to output, because in case of such mapping, the S-Box would be vulnerable to attacks [44].  

• Balance.   Balance means that the Boolean Vectors combined in the S-Box have 

equal number of 0’s and 1’s in the truth table.  
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4.7.2 Characteristics of S-Box Required to Resist Invariant Attacks 

Keeping in view the diversity of block ciphers and the large number of attacks being 

attempted to break their security,  it is imperative that a common toolset be proposed in 

addition to the previously proposed criteria. Main characteristics are as under:- 

• S-Box Configuration.    Each S-Box employed in the cipher must be at-least 4x4 

configuration, however, used in the right combination with linear layer and key alternating 

algorithm. 

• Use of Non-Binary Orthogonal Matrix in Linear Layer.   In case of 4x4 S-Boxes used 

in the substitution layer, use of binary orthogonal matrix in linear layer must be avoided.  

• Fixed and Opposite Fixed Points in S-Box.   Fixed and opposite fixed points provide 

vulnerability in the cipher by giving output same (or compliment in case of opposite fixed 

points) as of input on specific fixed points. Therefore, S-Boxes with fixed and opposite fixed 

points must be avoided in the system.  

• Key Alternating Algorithm.   In lightweight ciphers, key alternating algorithms are 

kept either very simple or sometimes even non-existent in order to improve energy 

consumption, however, same is a serious security hazard especially with regards to weak 

keys contributing to invariant attacks. It is recommended that strong key alternating 

schedule must be employed in a cipher so that the quantum of weak keys is kept to the 

minimum. A balance may be struck among security and energy consumption.  

• Use of Complex Round Constants.    Round constants are an important factor in the 

security of a cipher. The intelligent choice of round constants is a must, since even few 

complex round constants result in vulnerability. Round constants must be chosen wisely in 

relation to the linear and substitution layers of the cipher.  
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• Use of Involution S-Boxes.   S-Box designed with involution functions are more 

security robust compared to involution ones. This must be factored while checking 

resistance against invariant attacks. 

4.7.3 Schematic Representation of Proposed Design Criteria 

For ease of assimilation, the proposed design criteria to safeguard a block cipher 

from invariant attacks family has been schematically represented in Fig 4.27 below. At the 

top, we consider a standard SPN block cipher in question which we intend to make secure 

against invariant attack. Then we analyse the cipher with regards to its vulnerabilities and 

work out set of assumptions that must hold for the attack to succeed. Then we analyse 

which sub-class of invariant attacks Then we apply our worked-out criteria for S-Box design 

as well as for other components of the cipher. These set of properties will in turn make the 

cipher secure against invariant attacks. This can further be re-confirmed by again checking 

for vulnerabilities and repeating the loop. Diagrammatic layout is as under:- 
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4.7 Conclusion. Above mentioned are few of the considerations that can assure 

provable security against invariant attacks. Invariant attacks are still in the nascent phase 

and are evolving at a fast pace, however, there has not been a major breakthrough with 

regards to any full-scale cipher like AES. In addition, invariant attacks work under lot of 

assumptions like weak key schedule, weak round constants, requirement of large number 

of plaintext-ciphertext pairs and so on. If these vulnerabilities are addressed in the S-Box 

design phase, lot of such attacks can be avoided.  

  

Figure: 4.27  Schematic Layout of Proposed Design Criteria 
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CHAPTER 5 

CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

Invariant attack family has recently been researched and proposed. Recent 

research has revealed four main types of invariant attacks. Till now, all four sub types have 

their peculiar characteristics, assumptions, and results. Similarly, all these types attack 

different types of block ciphers using different methods. The purpose of this thesis was to 

develop an in-depth insight into invariant attacks, so that, a common toolset can be 

defined to safeguard against these attacks. An effort has been made to study the previously 

defined toolsets and find additional set of properties to add security and resilience to the 

S-boxes in general and entire block ciphers in particular. Keeping these properties in sight, 

we can easily safeguard against invariant attacks through preventive security. In 

retrospect, a lot remains to be researched on to the various categories of invariant attacks 

already discovered and those yet to be found. The base line rests on the basic structure of 

an SPN cipher which includes a round function, key-alternating schedule (including the 

round constant), the confusion component (S-box layer) and the diffusion component 

(permutation layer). In case, these components are used in a balanced composition with 

compromising the security features and at the same time, keeping the cipher lightweight 

to economize energy and storage consumption, a secure working trade-off can be worked 

out providing all required functionalities. In nutshell, for a cipher to be secure with regards 

to invariant attacks, we propose that in addition to satisfying already published NIST 

criteria of bijection, non-linearity, balance, strict avalanche criteria and bit independence, 

a good cipher must also have S-Boxes which are involution type, be of high configuration, 

and have minimum number of fixed points. Other than S-Box, the cipher must have 

minimum number of weak keys and use complex round constants to be totally secure.  
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5.2 Future Work  

Block ciphers are one of the most important primitives of symmetric key algorithms 

which have widespread application in modern communications. Lightweight block ciphers 

are often employed in energy efficient applications like internet of things and artificial 

intelligence etcetera. In such systems, a trade-off among security and energy efficiency is 

worked out to meet the optimum requirements of the system. Lightweight versions of 

block ciphers are created by reducing the number of rounds, key lengths, simplifying key-

alternating algorithms, reducing block lengths, using S-boxes with simple Boolean 

functions and many more. These energy conserving measures at one hand enhance the 

workability, while on other hand these security compromises give way to vulnerabilities 

for different types of attacks. Till now, many families of attacks have surfaced that include 

linear cryptanalysis, differential cryptanalysis, statistical attacks, structural attacks and 

many more. However, basing on these attacks, no full version of cipher like AES could be 

broken. Recently, various forms of invariant attacks came to surface with success against 

full versions of few lightweight ciphers depending upon the weaknesses in the S-box or 

combinational vulnerabilities stemming from other weak components. As researched, the 

invariant attacks work with assumptions of weak keys and weaknesses in the cipher 

structure. As elaborated in Chapter-4, four main variants of invariant attacks have surfaced 

namely nonlinear invariant attacks, invariant subspace attacks, invariant hopping attacks 

and generalized nonlinear attacks. In-depth study revealed that all variants of the attacks 

require different types of assumptions and conditions to materialize.  

  As crystallized in the start of the thesis, the main aim is to understand the anatomy 

of attack, so that a toolkit can be devised in order to safeguard against the invariant 

attacks. This is more economical with regards to the research. It is identified that invariant 

attacks differ from other families of attacks like linear and differential cryptanalysis. For a 
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start, NIST defined five set of properties required for strong Boolean functions (which 

constitute an S-box). Later, researchers defined different toolsets to guard against 

different families of attacks, however, most research was focused against the most 

promising attacks i.e., linear, and differential cryptanalysis. During course of this research, 

it has been determined that although NIST criteria for strong Boolean functions (for S-box 

design) does ensure resilience against most attacks, it is not sufficient to guard against 

newer families of attacks like invariant attacks. Nevertheless, basic criteria are essential 

step for S-box design and further properties as defined in this Chapter-4 are mandatory to 

ensure resilience.  

  Foregoing in view, there is an essential requirement of a well-tested toolset to 

further proceed with our inquiry on Invariant Attacks. Here mention of the cryptographic 

tool embedded in SageMath application is noteworthy. Initial versions of SageMath were 

able to provide various properties of imported S-boxes, such as Difference Distribution 

Table, Auto-Correlation Table, Boomerang Connectivity Table, Non-linearity, Differential 

Uniformity, Maximum Differential Probability, Maximum Linear Bias and many more. All 

these inquiries of S-Box properties were carried out in our thesis and tabulated to accrue 

certain conclusions. In the latest version of SageMath, a newer function to calculate 

Nonlinear Invariants has been proposed, although not yet finally embedded. This function 

can take S-Box values as input and provide all possible invariants of the S-Box for further 

analysis. However, the feature is not yet final, and it lacks the capability of analysis of 

multiple S-Boxes in the cipher. Similarly, there is no feature to calculate invariants of 

permutation stage or full round functions. SageMath has turned out to be a perfect toolkit, 

however with the combination of all previous properties discussed above with the 

invariant function, a full-fledge toolset can be worked out to facilitate work.  
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  During the course of research, four different sub-categories (mostly interlinked 

with each other) came to fore. They are conceptually same, however, differ in the pre-

requisites and manifestation of attacks. Similarly, there are ciphers which are vulnerable 

to one category of invariant attacks while same cipher is secure against the other category 

(or categories). This would be a great field of further research to crystallize all these types 

of invariant attacks, carry out their mathematical and conceptual comparisons to clarify 

similarities and differences of all these types. This would further pave way to tell us why 

certain ciphers are vulnerable to invariant subspace attacks while secure against nonlinear 

invariant attacks, and vice-versa. This comparative study will also help us consolidate a 

common cryptographic toolset against all variants of the invariant attack. So far, maximum 

degree of the Boolean polynomials for which final fundamental equation can be computed 

is limited to 6. In contrast the space of possible polynomials Z and P is extremely large. In 

future research, endeavours can be made to enhance this maximum degree of Boolean 

polynomial and to be able to exactly locate the weak key space, like in the case of finding 

the invariants [59]. 

  As of now, only linear, and differential cryptanalysis techniques were considered to 

be a substantial threat to light weight block ciphers, while full scale ciphers like AES are still 

considered safe against these techniques. A major line of work could be to pitch the 

toolsets of linear and differential properties against those of invariant attacks and find out 

whether if ciphers safe against linear and differential cryptanalysis were also secure against 

invariant attacks. Similarly, with the inception of new attack categories and sub-categories, 

it would be prudent to classify the newer attack types into various categories for future 

research.  
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Appendix-I 

SAGEMATH CODE FOR COMPUTING NONLINEAR INVARIANTS IN MQ.SBOX 

def nonlinear_invariants(self): 

   m = self.m 

    F2 = GF(2) 

    one = F2.one() 

    zero = F2.zero() 

    R = BooleanPolynomialRing(m, 'x') 

    def to_bits(i): 

        return tuple(ZZ(i).digits(base=2, padto=m)) 

    def poly_from_coeffs(c): 

        return R({to_bits(j): one for j,ci in enumerate(c) if ci}) 

    L = [[zero if ((v & w) == w) == ((sv & w) == w) else one 

          for w in range(1<<m)] 

         for v,sv in enumerate(self._S)] 

    M = Matrix(F2, L) 

    T0 = {poly_from_coeffs(Ai) for Ai in M.right_kernel()} 

    M[:,0] = one 

    T1 = {poly_from_coeffs(Ai) for Ai in M.right_kernel()} 

    return tuple(T0 | T1) 

 

 


