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ABSTRACT

Interest in quantum plasma has been developed due to its applications in ultra-small electronic devices,

laser-plasma, and dense astrophysical plasmas. Vast research has been done in Quantum plasmas

with high densities and low temperature but quantum effects can’t be neglected in modest density,

high-temperature plasmas which we normally consider as classical plasmas. Due to a high number

density in quantum plasma electron plasma frequency become extremely high and it exceeds electron

collision frequency. Because of these properties, new effects are generated in a plasma. Shear Alfven

Waves (low frequency, long wavelength) in quantum dusty magnetoplasma have been studied using

the quantum magnetohydrodynamic model (QMHD), which considers numbers of forces like Lorentz

force, Bohm potential, Quantum force etc. A modified dispersion relation for Shear Alfven waves is

formed while considering electrons and ions, magnetized and electrons are also considered quantized.

Dust is considered to be magnetized in the first case and unmagnetized in the second case.
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1. INTRODUCTION

1.1 INTRODUCTION TO PLASMA

The word plasma is derived from a Greek word ‘plassein’ which means ‘to shape’ or ‘to mould’. It

describes a system which macroscopically appears to be neutral but at microscopic level contains a

large number of interacting electrons, ionized atoms and molecules. This term was firstly used by

Tonks and Langmuir in 1929 to describe inner regions of glowing ionized gas produced by electric

discharge. These particles interact with each other through long range Coulomb forces and show

collective behaviour. Not all type of collection of neutral and charged particles qualify as plasma.

There are certain conditions which must be satisfied in order to exhibit plasma behavior. We classify

matter into four states i.e. solid, liquid, gas and plasma. This classification is based upon the

strength of bonds which hold the particles together. These binding forces are stronger in solid as

compared to liquids and in case of gases, they are almost negligible. For a substance to exist in

any one of these states depends upon the thermal energy of its atoms and molecules. Equilibrium

between thermal energy and the binding forces determines the state. When we supply a specific

amount of heat phase transition occurs, as a result, thermal kinetic energy overcomes the binding

potential energy. This specific amount of heat is known as latent heat. If we supply enough heat to a

molecular gas it will be converted into an atomic gas due to the collision of particles that have thermal

kinetic energy greater than the binding potential energy. Now at sufficiently elevated temperature,

the kinetic energy of atoms will overcome the binding energy of outermost orbital electrons and as a

result, an ionized gas (plasma) is produced. From the thermodynamic point of view, there is no phase

transition involved as the process occur slowly with increasing temperature. The degree of ionization

and electron temperature under the thermodynamic equilibrium condition are related by the Saha

equation.
ni
nn

= 2.4 ∗ 1021T
3
2

ni
e
−Ui
kBT (1.1)

Here ni and nn are densities of ionized and neutral atoms(number per m3), T is the temperature of



gas in kelvin and kB is the Boltzmann’s constant and Ui is the ionization energy. From this equation

we can see ionization occurs at high temperature. So plasma usually exists at high temperature.

Plasma can be generated in a laboratory by using different methods and depending upon these

methods plasma can have high or low densities and temperature, it can be steady or transient, stable

or unstable etc.[1].

1.1.1 CRITERIA FOR PLASMA

We define plasma as a quasi-neutral gas exhibiting collective behavior. For an ionized gas to be called

plasma there are certain conditions which must be satisfied.

1. COLLECTIVE BEHAVIOR:

Neutral molecules exert force on one another through collisions e.g. force generated by loudspeaker

but in plasma the situation is entirely different, electrons and ions influence each other through

long range Coulomb forces. Because of the presence of charged particles there might arise a local

concentration of charges which generate electric field. Due to the motion of these charges electric

currents are generated and hence magnetic fields are produced. These fields effect the motion of

charges which are far away. If the system is disturbed from its equilibrium state, a local concentration

of charges occurs and oppositely charged particles will rush towards the point of concentration in

order to shield the charge. This shielding of charge reduces the Coulomb potential, which is called

‘Debye potential’, given by:

φ = φce
−x
λD , (1.2)

here φc is the Coulomb potential and λD is the Debye length i.e. the size of shield,

⇒ λD = (
εokBT

ne2
). (1.3)

In order to achieve shielding, there must be a large number of particles in the Debye sphere i.e.

ND >>> 1. as number density is defined as:

n =
ND

4
3πλ

3
D

, (1.4)

therefore

ND =
4

3
πλ3

Dn. (1.5)
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2. QUSAI-NEUTRALITY:

If the system has dimension ‘L’ and if it is much larger than λD then whenever a local concentration

of charges will arise or external potentials are introduced into the system, these are shielded out in a

distance short compared with ‘L’ and the rest of plasma will remain unaffected by external potentials

or fields. Plasma is quasi-neutral. It means that ni ≈ ne ≈ n where n is the plasma density. It must

not be so neutral that all interesting electromagnetic forces disappear.

So for an ionized gas to qualify as a plasma, it has to be dense enough so that the condition

λD << L (1.6)

is satisfied.

3. ωτ > 1:

Here ω is the plasma frequency and τ = 1
v is the mean time between collisions with neutral atoms.

For a gas to behave as a plasma the following condition must be satisfied

ωτ > 1 (1.7)

1.1.2 OCCURANCE OF PLASMA IN NATURE

About 99% of matter in the universe is in a plasma state. It is found naturally in the ionosphere (

layer of earth’s atmosphere which lies about 75−1000 km above the surface of the earth and is ionized

due to solar and cosmic radiations), solar wind (it is a stream of highly energized charged particles

which flow outward from the sun its speed is approximately 900km/s and the temperature is about1

million degree Celsius)[2], Van Allen radiation belts (it is a zone of charged particles most of which

is originated by the solar wind. These particles are captured by the magnetic field of planets. It was

first discovered by James Van Allen so are named as Van Allen radiation belts), interstellar hydrogen

and Steller interiors etc.
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1.1.3 APPLICATION OF PLASMA

Plasma was firstly created in a laboratory in the 1920s when the research was being conducted on

vacuum tubes that could carry large currents so there was a need to fill an ionized gas in the vacuum

tube to carry large currents. Gas discharges are extensively used for lightening purposes, e.g. sodium

lamps emit yellow light due to the arc burning in sodium vapours. Mercury vapour lamps emit

radiations which are in the ultraviolet region. Neon lamps are used for decoration purposes. Xenon

lamps are sources of good colour composition for stage shows. Nuclear fusion is one of the most

important plasma application, in this process light nuclei fuse to form heavier one with the production

of a large amount of energy. Plasma also plays a vital role in gas lasers and solid state lasers [3].

1.2 REGIMES OF PLASMA

Plasma is classified as classical plasma and quantum plasma. Plasma span a wide region of phase

space in terms of temperature and density. Classical and quantum plasma can be classified based

on parameters such as density, degeneracy parameter and length scale by using dimensional analysis

and by defining dimensionless parameters, dimensionless parameters allow us to differentiate between

different physical regimes characterized by a situation where one effect dominates over other.
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Plasma-diagram-in-the-log-T-log-n-plane

1.2.1 CLASSICAL PLASMA

Considering a plasma with a number density ‘n’ and is mainly composed of particles with mass ‘m’,

charge ‘e’ and interactions are governed by the Coulomb forces (with electric permittivity εo). With

these parameters, we can define a quantity which is known as plasma frequency, mathematically we

can express it as,

ωp = (
e2n

mεo
)

1
2 . (1.8)

It represents the oscillation frequency of electrons immersed in the background of positive ions.

We usually consider ions to be motionless due to their large masses as compared to electrons. These

oscillations are generated because when we deplete a region of plasma from electrons a net positive
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charge is created, Coulomb forces comes into action and pull back the electrons. These electrons due

to their inertia not only replenish the positive region but also travel further away, hence again creating

a positively charged region. This will cause undamped oscillations in the absence of collisions with

the frequency known as plasma frequency. It is independent of temperature.

Now if the plasma has finite temperature ‘T’, a random thermal motion will be generated, typical

speed due to this motion is known as thermal velocity and is expressed as

vT = [
kBT

m
]
1
2 . (1.9)

By combining the above two relations we can define a typical length scale, the Debye length.

λD = (
vT
ωp

) =
(kBTm )

1
2

( e
2n
mεo

)
1
2

= (
εokBT

ne2
)

1
2 (1.10)

It represents the phenomena of electrostatic screening when external potential is introduced [4].

We can explain the shielding effect in a non-degenerate plasma by introducing a test charge qt,

which is positive. When it is injected in an electron gas with number density n(r) and having fixed

ionic background with number density n0, electrons will rush towards the test charge due to Columbic

forces. The electrons will be accumulated around the test charge and at equilibrium when the thermal

energy will be equal to the potential energy, an external observer will observe an effective shielded

charge instead of test charge qt. This is what we call static screening or screening in plasma. It itself

manifest the quasi-neutrality property. An excess charge is compensated due to an electric force. The

Poisson’s equation is given as:

∇2φ =
e

εo
(n(r)− n0)− qt

εo
δ(r), (1.11)

where e is the charge of electron, εo is vacuum permittivity and we have assumed that the charge

is placed at the origin. Also, we have considered that the charge has enough mass that it can be

considered to be at rest. The particles are in thermal equilibrium at temperature T and will follow

Maxwell’s -Boltzmann statistics, so we can write:

n(r) = noexp(
eφ

kBT
). (1.12)

Maxwell’s- Boltzmann statistics is appropriate when we are dealing with non-degenerate plasmas.

Degeneracy parameter is given by: χ = TF
T � 1, here TF = EF

kB
which is known as Fermi temperature

and EF is the fermi energy given by
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EF =
h̄2

2m
(3π2no)

2
3 , (1.13)

Were m is the mass of electrons. As electrons are fermions and have spin 1
2 , so all of them can’t

be accommodated in the ground state because of the Pauli Exclusion Principle which states that two

or more identical fermions can’t occupy the same quantum state simultaneously. So electrons will

occupy the higher states until they occupy the highest energy state with energy EF . We can linearize

equation (1.11) by assuming that the scalar potential is zero before we inserted the test charge. So

we can write equation (1.11) as

∇2φ =
e2noφ

εokBT
− qt
εo
δ(r), (1.14)

here we have used the value of n(r) from equation (1.12) and expanded the exponential term. By

applying proper boundary conditions, we get radially symmetric solution

φ =
qt

4πεor
e

( −rλD
)
. (1.15)

This potential does not fall as (1/r) but it obeys potential which are Yukawa like i.e. e( −rλD
) which

decays quickly on a distance compareable to Debye length[5].

We can say that a classical plasma is collision-less when long range interactions dominate the

short range interactions. This is due to the reason that potential energy of the particles which are

separated by average interparticle distance becomes smaller than the average kinetic energy [4]. Now

we will define a dimensionless parameter known as graininess parameter or coupling parameter

(Classical). It is defined as ratio of interaction energy and average kinetic energy of the particles

situated at an interparticle distance of d = n
−1
3 . the expression for coupling parameter is given by

gC =
Uint
Kavg

= (
e2

εod

kBT
). (1.16)

Thermal effects dominate when the coupling parameter is small. This is known as the collision

less regime. When the coupling parameter is approximately equal to unity or greater, we cannot

neglect the binary collisions and plasma is said to be strongly coupled or collisional plasma.

we can also express coupling parameter as inverse of number of particles contained in a volume of

linear dimension λD

gC = (
1

nλ3
D

)
2
3 (1.17)
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When we are dealing with equilibrium classical plasma, we use Boltzmann distribution function,

which is given by:

f(α) =
1

eβ(ε−µα)
(1.18)

here β= 1
kBT

, kB is the Boltzmann constant and T is the equilibrium temperature. µ is the chemical

potential and ε = p2

2mα
(α is used for different species which compose plasma for example electrons,

ions etc) [6].

1.2.2 QUANTUM PLASMA

Plasma is a many body system containing a large number of particles and their motion are influenced

by electromagnetic forces. The two basic parameters are temperature and density. According to the

big bang theory, the temperature in the beginning was so high that atoms and molecules could not

have existed. Corresponding the only thing existed was fully ionized gas which was in 100% plasma

state, which was known as quark-gluon plasma.

With the passage of time when the temperature dropped the matter was able to exist in other states

of matter. It is difficult to compute and verify the exact percentage of plasma existing in the universe

but some people claims that 99% of the universe is in a plasma state [7]. Plasma is characterized

by regimes of low temperature, high densities and high temperature, low densities which naturally

present in interstellar and interplanetary media. In a laboratory, plasma has vide applications in

discharge tubes, fusion reactions etc. Dynamics of plasma are governed by internal fields which are

produced by particles and externally applied fields. Particles with low temperature and high densities

also exhibit plasma behavior, particle densities may be up to 1024cm−3 which naturally occur in the

interiors of Jovian planets (Jupiter and Saturn), brown and white dwarfs. The outer crust of neutron

stars is considered to be ultra-dense. With the particle densities of about 1036cm−3.

In a laboratory, these conditions appear in a gas of free electrons in metals and semimetals.

In compression techniques e.g. diamond anvils, launching shock waves into matter and laser and ion

beams etc, the study of collective effects at such high densities become very complex. In such conditions

we cannot ignore quantum effects. Also in astrophysical environments where the temperature is

very high, we cannot neglect the quantum effects because of the restriction of the Pauli principle.

Many quantum mechanical phenomena’s such as pressure ionization, condensation, crystallization
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and tunneling of electrons becomes important. Different types of non- idealities and correlation arise

which makes dense plasma more complex [9].

The particles composing plasma have an associated thermal de Broglie wavelength which measures

quantum effects.

λB = (
h

mvT
) (1.19)

It represents the spatial extension of particle wave function due to quantum uncertainty. When we

are dealing with classical plasma this de Broglie wavelength is so small that we can treat particles

point-like. There is no quantum interference as there is no overlapping of wave functions involved, so

we can say that quantum effects are prominent when de Broglie wavelength is approximately equal to

or larger than interparticle distance n
−1
3 :

nλ3
B ≥ 1. (1.20)

Now to understand the concept of shielding in degenerate plasma we again consider the same

scenario of test charge being injected in an electron gas as we consider in case of a classical plasma.

We consider the Maxwell-Boltzmann distribution function from where we derive equation (1.12) by

considering the zeroth-order moment of Maxwell-Boltzmann distribution, given as:

fcl(r, v) = n0(
m

2πkBT
)

3
2 exp[

−1

kBT
(
mv2

2
− eφ)] (1.21)

also we know that

n(r) =

∫
fcl(r, v)dv. (1.22)

Now we consider a uniform distribution of charges (electrons) with energy less than Fermi energy

and no electron lies in energy level above Fermi level. Considering (mv
2

2 − eφ) < EF . Eq. (1.21)

reduces to

fcl(r, v) = (
3n0

4πv3
F

), (1.23)

otherwise fcl(r, v) = 0, Here we have used vF = ( 2EF
m )

1
2 which is the Fermi velocity. This distribu-

tion represents zero temperature Thomas-Fermi equilibrium. It also represents the equal occupation

probability for energies which are less than Fermi energy and that no particle will lie in energy level
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greater than Fermi level. Till now we have not considered the temperature effects. Using equation

(1.22) we can calculate n(r). n(r) =
∫
fcl(r, v)dv

n(r) =

∫
(

3n0

4πv3
F

)dv, (1.24)

n(r) = n0(1 +
eφ

EF
)

3
2 . (1.25)

After using this result in Poisson’s eq. (1.11), we get

∇2φ =
3noe

2φ

2εoEF
− qt
εo
δ(r), (1.26)

here we have replaced kBT by EF . Now we can define a shielding distance for degenerate plasma also

known as Fermi length, defined as

λF = (
2εoEF
3noe2

)
1
2 . (1.27)

Unlike Debye length, Fermi length is non zero at zero temperature. This is because of the Pauli

exclusion principle which does not allow particles to accumulate at the point where test charge is placed

in this sense we can treat each particle in plasma (nondegenerate or degenerate) as a test charge with

screening cloud around it. We have now the Yukawa interaction field instead of a Coulomb field.We

can now define the degeneracy parameter

χ =
TF
T

=
1

2
(3π2noλ

3
B)

2
3 . (1.28)

When interparticle distance will be comparable to the Debye length, we can no longer use the

Maxwell-Boltzmann distribution function, instead, we will use Fermi-Dirac distribution function. Such

case arises when we are dealing with high densities of the order of 1024cm−3 or higher.

We can summarize the fundamental scale for both the regimes as:

1. For both regimes, we define a time scale given by ω−1
p where ωp = ( e

2n
mεo

)
1
2 .If there occurs a

charge depletion electric forces will appear which restores the charge neutrality.

2. For both quantum and classical plasma we can define interaction energy as:

Uint =
e2

εod
(1.29)

where d = no
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3. Kinetic energy for the non-degenerate case is kBT while for the degenerate case, it is kBTF .

4. Coupling parameter for the nondegenerate case is given by:

gC =
Uint
Kavg

= (
e2

εod

kBT
) = 2.1× 10−4 ×

no
1
3

T
, (1.30)

while in case of a degenerate plasma it is given by:

gQ =
Uint
Kavg

=
2me2

(3π2)
2
3 εoh2n

1
3
o

= 5× 1010 × n
−1
3
o .(1.31)

[5].

1.2.3 WHITE DWARF

Quantum plasmas are commonly found in the astrophysical environment such as stars, radio pulsars,

magnetars etc. Usually, stars end up in three ways as:

1. White dwarfs,

2. Neutron stars (their mass is equivalent to the mass of the sun but the radius is approximately

10 km, extremely dense),

3. Black holes (the end product of binary star system which is mostly present at the center of

galaxies).

These compact objects have very high densities. White dwarfs have masses approximately equal

to that of neutron stars but their sizes are approximately equal to the earth [10]. A white dwarf is a

degenerate star, they are usually composed of carbon and oxygen. With time they cool down and are

no longer visible and are then known as a cold black dwarf their number density is approximately equal

to 1030/cm3 and temperature range is usually 150K- 4K. The magnetic field can range from103to109

Gauss. So under these conditions plasma behavior can be studied by considering quantum effects and

including terms like fermi pressure and Bohm potential in the Vlasov equation

In such environments, plasma can not only consist of electrons, ions and neutrals but there might

exist another species called dust as explained in the next section.
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White dwarf

1.3 DUSTY PLASMA

Most of the plasma in our universe coexists with dust particulates. So we can say that dust is an

omnipresent ingredient of plasma. They can have the size of a micron. Dust particles gain their

charge from the surrounding environment. So depending upon their surrounding they can either be

positively charged or negatively charged

[11].

The presence of such particles makes the dynamics of plasma more complex so we call such plasma

as a “complex plasma” or “dusty plasma” or "dust in plasma" depending upon their sizes. Such

plasmas have been observed in Orion nebula (Orion nebula a diffused nebulae and is one of the

brightest nebulae present in our Milky Way. One can observe it with the naked eye it appears as a

star in the sword of a hunter in Orion constellation), Noctilucent clouds (Noctilucent means visible

at night, these are the night-shining clouds or we can say that it is cloud-like phenomena which occur

at the upper atmosphere of earth. They are visible during astronomical twilight and are composed

of ice crystals. The existence of such plasmas has been observed in the images of Eagle nebula and
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planetary rings which have been taken with the help of Hubble telescope [12].

Eagle nebula

1.3.1 CHARACTERISTICS OF DUSTY PLASMA

Dust can be of micron or sub-micron size, dusty plasma is a low temperature partially or fully ionized

charged gas composed of electrons, ions, dust particles and neutrals. They can differ in size and shape

unless they are man-made. Their sizes can range from Nano to millimeters and they can be metallic,

14



conducting or can be simply ice particulates. They can be considered as point particles when observed

from long distances. Now we can classify such plasmas as “Dusty plasma” or “Dust in plasma”. This

classification depends upon their characteristic lengths. We can simply explain both the terms by

considering that the radius of the dust particle is rd and let the average intergrain distance be ”a”

also taking into account the plasma debye length λD.

When rd � λD < a, the dust particles are isolated entities that are screened out and is called

“dust in plasma” where local plasma inhomogeneity is taken into account. While in the other situation

rd � a < λD, dust grain will take part in collective behavior. This situation corresponds to “Dusty

plasma”, where we will treat dust particles as massive charged particles similar to ions with a charge

either positive or negative. The interaction between dust grains is screened out by electrons and ions

which are present in the background.

When we are considering dust particles they not only modify the low- frequency waves (e.g. ion-

acoustic waves, lower hybrid waves etc.) which are already present in the environment but also

generates new low-frequency dust waves (e.g. dust acoustic and dust ion-acoustic waves etc.). Now

for understanding the concept of dusty plasma properly we have to re-examine its characteristics, for

example: neutrality, characteristic frequency, Debye shielding, coupling parameter etc.

1.NEUTRALITY: Dusty plasma is said to be neutral when there is no external disturbance as in

electron-ion plasma. The net electric charge in the absence of external influences is therefore zero. So

neutrality condition can be stated as:

qinio = eneo − qdndo, (1.32)

here njo is the unperturbed density with j=e,i,d. Also qi = Zie is ion charge, we have taken Zi = 1 here

and qd = Zde or = −Zde where e is the charge on electron and Zd is the number of charges residing

on dust grain. Dust grain can acquire one thousand to several thousand of charge particles and Zdndo

is comparable to nio even when we have ndo � nio. In most of the situations in ambient dusty

plasma (laboratory or space plasma), during the charging process, the electrons in the background

stick themselves on the surface of dust grain, and as a result, their might arise the depletion of

electrons number density. However complete depletion of electrons is not possible. This is because

when Ti ≈ Te, minimum ratio of electron number density and ion number density turns out to be the

square root of mass ratio of electrons and ions. Potential at grain surface approaches to zero, So for
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negatively charged dust grains we can write equation (1.32) as,

nio ≈ Zdndo (1.33)

2.DEBYE SHIELDING: One of the most important characteristics of plasma physics is its ability

to shield an individual charged particle or the surface at non-zero potential. It provides the distance

(debye radius) over which other particles in a plasma feels the effects of an electric field of single

particle or surface with non-zero potential. Now our main purpose is to explain this phenomenon

when the dust is also present in plasma. Just as in electron-ion plasma, we consider that by inserting

a charged ball in a dusty plasma, which is composed of electrons, ions and dust particles which are

either negative or positively charged. Ball would attract particles of opposite charge i.e., it will attract

electrons and dust (if negatively charged) if it is positively charged. Otherwise, it will attract ions and

dust (if positively charged). Also, we are assuming that particles will not recombine at the surface of

the ball [13].

In cold plasma shielding would be perfect and number of charges in the cloud will be equal to

the number of charges in the ball. As a result of perfect shielding, no electric field will escape the

cloud. Now if we have a finite temperature then the particles at the edge of the cloud might have

enough thermal energy to escape the cloud. Cloud edge will then occur where the potential energy and

thermal energy are equal. A finite electric potential will exist there and shielding would be incomplete.

To calculate the approximate thickness of the cloud we assume that the potential φj(r) at the center

r = 0 is φjo. We are also assuming that the dust-ion mass ratio md
mi

is very large and the inertia

of dust particles prevents them from moving significantly. So dust (negative) particles will form a

uniform background. Here we are assuming that electrons and ions are in thermodynamic equilibrium

and will follow Maxwell Boltzmann distribution. i.e.

ne = neoexp(
eφ

kBTe
), (1.34)

and

ni = nioexp(
eφ

kBTi
), (1.35)

Now for our present case when the dust is also present we can modify Poisson’s equation as;
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∇2φj = 4π(ene − eni − qdnd), (1.36)

here nd is the number density of dust particles. As we have assumed that number density of dust

particles in the cloud is the same as outside the cloud so we can write: qdnd = qdndo = eneo − enio.

After putting eq. (1.34) and (1.35) in eq. (1.36) and also assuming that eφ
kBTe

� 1 and eφ
kBTi

� 1, the

Poisson’s equation become:

∇2φj =
1

λ2
De

+
1

λ2
Di

. (1.37)

We can obtain dusty plasma Debye radius by assuming the solution of eq. (1.37) to be φj =

φjoexp(
−r
λD

) so the Debye radius comes out to be:

λD =
λDeλDi√
λ2
De + λ2

Di

. (1.38)

When we have negatively charged dust particles neo � nio and Te ≥ Ti that means λDe � λDi. So

eq. (1.38) implies that λD ' λDi, it means that thickness of sheath is determined by the temperature

and the number density of ions. If dust is positively charged then in that case it is determined by the

density and the temperature of electrons.

3.CHARACTERISTIC FREQUENCY: When we disturb the plasma from its equlibrium, it results

in the internal space-charge field, due to which there is a collective motion of particles that tends

to restore neutrality. A natural frequency is associated with the particle motion known as plasma

frequency ωP . Now we assume cold unmagnetized dusty plasma, electrostatic oscillations are described

by continuity equation:
∂nj
∂t

+∇.(nj .vj) = 0, (1.39)

Momentum equation
∂vj
∂t

+ (vj .∇)(vj) =
−qj
mj

(∇φ), (1.40)

And the Poisson’s equation;

∇2φ = −4π
∑
j

qjnj . (1.41)

Just for simplicity, we have not considered pressure gradient forces and there exist no source or sink.

We also assume that linear theory is valid i.e., amplitude of oscillation is so small that we can neglect
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higher-order terms. At equilibrium, all species are at rest and there exists no equilibrium space-charge

field. Therefore, assuming that nj = njo + nj1 where nj1 � njo . Now linearizing eq. (1.39), (1.40)

and (1.41) and combining the results to get :

∂2∇2φ

∂2t
+ 4π

∑
j

nojq
2
j

mj
∇2φ = 0. (1.42)

Now integrating equation (1.42) with the boundary condition that φ = 0 at r = 0 and replacing partial

derivative by complete derivative, the above equation will become:

d2φ

d2t
+ ω2

Pφ = 0, (1.43)

where

ω2
P =

∑
j

4πnjoq
2
j

mj
=
∑
j

ω2
Pj (1.44)

This frequency will differ for each species, for example, an electron will oscillate around ions with

electron plasma frequency given by ωPe = ( 4πneoe
2

me
)

1
2 , similarly ions will oscillate around dust particles

with ion plasma frequency ωPi = ( 4πnioe
2

mi
)

1
2 and lastly dust will oscillate around their equilibrium

with dust plasma frequencyωPd = (
4πndoZ

2
de

2

md
)

1
2 .

There exist some other characteristic frequencies which are associated with the collisions of particles

with neutrals i.e., electron-neutral, ion-neutral and dust-neutral collision frequency. The collisional

frequency for the scattering of j species is given by

vjn = nnσ
n
j vTj , (1.45)

here nn is the number density of neutrals and scattering cross-section is represented by σnj and

vTj is the thermal speed given by vTj = (
kBTj
mj

)
1
2 . These collisions damp the collective oscillations

and gradually decrease their amplitude. The oscillations will slightly damp when vTj < ωP .

4.COULOMB COUPLING PARAMETER: The probability of the formation of dusty plasma crys-

tal is determined by the Coulomb coupling parameter. To explain this effect we consider two dust

particles with the same charge and are separated by a distance ”a” after including the shielding ef-

fects. We can write dust Coulomb potential energy as εc =
q2
dexp(

−a
λD )

a and thermal energy is kBTd.
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So now we can define the Coulomb coupling parameter (ratio of potential and thermal energy) as:

TC =
Z2
de

2exp(−aλD )

akBTd
. When TC � 1, dusty plasma is weakly coupled and when TC � 1 dusty plasma is

strongly coupled [14].

As a dusty plasma is widely found in astrophysical environments and also in the laboratory, a

tremendous amount of research has been conducted in the past few years on low-frequency electrostatic

waves in the presence or absence of an external ambient field(static). Detailed work has already been

done that how the massive and highly charged dust grains affect these waves. We apply external fields

to control plasma properties. If we apply a static external field, the most significant low-frequency

wave that is generated is dust lower hybrid wave(this mode is generated by the magnetized ions and

unmagnetized dust). However, in the electromagnetic regime, a very small amount of research work

has been done in a magnetized dusty plasma [15].

1.3.2 CHARGING OF DUST

One of the main properties of dust is its charge. For a finite system, the normal mode of particles is

a pattern of motion where all particles oscillate with the same frequency and different normal modes

have different frequencies associated with them. By taking the superposition of all such modes the

dynamics of a system can be understood. For calculating the charge one has to solve eigenvalue

problem and the final result for dust charge comes out to be:

Zd =

√
2πεomdω2

or
3
o

e2
. (1.46)

[16].

In case when dust grains are simply embedded in electron-ion (positive) plasma they will acquire

a negative charge due to preferential attachment of electrons that are more mobile. Their negative

charge will continue to increase unless they gain enough negative charge that they start repelling

electrons and start attracting ions. We can also explain this process in terms of current. As ions are

much more massive than electrons, so initially ion current Ii is much less than Ie as the dust starts

accumulating negative charge this will cause a decrease in Ie until both Ii and Ie become equivalent.

When ions and electrons have enough energies they can even pass through the dust and over there they

might lose their energies partially or completely. Due to this energy, the electrons on dust particles

might get excited and will escape from the surface this is known as secondary emission. If plasma
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contains highly energetic electrons then the effects of secondary emission are also taken into account.

Dust can also acquire a positive charge due to the photoelectric effect that can occur in the presence

of UV light. There are several phenomena through which dust can get charged for example thermionic

emission, radiation emission, field emission, and impact ionization etc. [17][18].

1.4 EXISTANCE OF ELECTROMAGNETIC-HYDRODYNAMIC WAVES

Hannes Alfven discovered electromagnetic-hydrodynamic waves when he was working on sunspots

(dark regions on the surface of sun that occur because of the reduced temperature which is the result

of magnetic flux concentrations which inhibit convections).According to him, if we place a conducting

fluid in a constant magnetic field (conducting fluid can either be plasma, liquid metals, saltwater etc)

an emf is generated due to the motion of charges and as a result currents are produced. These currents

result in mechanical forces and change the motion of the fluid and an electromagnetic-hydrodynamic

wave is generated. This phenomenon is described by electrodynamic and hydrodynamic equations.

The velocity of such waves comes out to be

V = (
B2
O

µOρ
)

1
2 , (1.47)

These waves have great importance in solar physics. As the sun has a conducting fluid and magnetic

field so all the conditions for the existence of such waves are already present over there. For example,

the particular region of the sun has a density of 0.005g/cm3 and a magnetic field of 1015 Gauss, the

velocity of such waves comes out to be 60cm/s. This is the velocity with which sunspots move toward

the equator during the sunspot cycle [19].

1.4.1 MAGNETO HYDRODYNAMIC WAVES

Longitudinal sound waves are the most fundamental type of waves that exist in a nonconducting,

compressible fluid. As these waves travel in the form of compressions and rarefactions so their motion

is dependent upon pressure (P) and density ρ and obey adiabatic energy equation,

Pρ−γ = CONSTANT, (1.48)

here γ = CP
CV

i.e, ratio of specific heat at constant pressure and specific heat at constant volume. After

differentiating equation (1.46), we get:

∇P =
γP

ρ
(∇ρ) = V 2

s ∇ρ, (1.49)
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here,

V 2
s = (

γP

ρ
)

1
2 = (

γkbT

m
)

1
2 (1.50)

represents the adiabatic sound speed [20].

1.4.2 ALFVEN WAVES

One of the most fundamental principles of magnetohydrodynamics is that electromagnetic force is

generated due to the motion of conductive fluid in the presence of a magnetic field, which as a result

produces electric currents. There arises the interaction between the magnetic field and the fluid

because the currents generated will modify the initial magnetic field and will produce a mechanical

force, which will modify the motion of a fluid [21]. These mechanical effects are equal to hydrostatic

pressure given by B2
0

2µ0
here B0 is the magnetic field. Magnetic stresses are then equivalent to tension

B2
0

µ0
along field lines and hydrostatic pressure B2

0

2µ0
which is isotropic in nature. The field lines will act

as an elastic cords. Plasma particles will behave as they are tied to field lines and it seems that field

lines are mass-loaded strings. By making an analogy with transverse vibration of the string we can say

that the magnetic field will perform transverse vibrations when we disturb fluid from its equilibrium

position. The speed of these vibrations is given by:

VA = (
TENSION

DENSITY
)

1
2 , (1.51)

or we can write it as

VA = (
B2
O

µOρ
)

1
2 . (1.52)

which is called the Alfven speed.

1.4.3 EXISTANCE OF ALFVEN WAVES IN SOLAR CORONA

Alfven in 1942 proposed that there exist oscillations in a magnetized plasma. There are three modes of

magneto-hydrodynamic waves out of which two modes which are slow and fast magnetoacoustic modes

are compressible and are damped out. But the third one is transverse, incompressible oscillations that

move in the direction of the magnetic field and magnetic tension will act as a restoring force. Scientists

after proceeding the work of Alfven realized that these waves cause the transfer of energy from the

turbulent photosphere to the solar corona. Alfven waves remain undetected (14 decades) for two

reasons,
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1. As these waves are incompressible so they are not visible as intensity fluctuations.

2. Velocity fluctuations require spectrograph, spectrograph can’t measure the large field of view in

a short time compared to wave periods.

Experimental evidence : Scientists obtained their results from a coronal multi-channel polari

meter (CoMP) which consists of a filter that is tunable (in this case it is 0.13 nm filter band pass and

is tuned to 3 wavelengths of FeXlll, coronal emission line at 1074.7nm) and a Polari meter (device to

measure optical activity) measures properties of infrared coronal emission line over a large field over a

short time. Polarization is expressed by strokes vector [I, Q, U, V] strokes parameters (I=INTENSITY,

Q and U =NET LINEAR POLARIZATION STATES and V=NET CIRCULAR POLARIZATION)

are entities which describe the polarization state of electromagnetic waves, these parameters are

expressed in terms of a vector known as strokes vector. Strokes parameters at different wavelengths

were measured and motion of images was observed using cross-correlation techniques (it’s a measure

of similarity of two series as a function of displacement of one relative to the other), these images were

then translated to a common center. At last, these images were plotted in time with a grid spacing

of 29 s, after inserting all the data the velocity image showed the quasi-periodic fluctuations. Fourier

analysis showed a broad peak which was absent in the power spectrum of intensity fluctuation. From

the obtained results scientists concluded that they observed Alfven waves because of three reasons

which were,

1. The phase speed of observed waves is much larger than that of sound waves so they are not slow

magnetoacoustic mode waves.

2. The spatiotemporal measurements showed that these waves travel along field lines so they are

not fast magnetoacoustic mode waves either.

3. A source that causes the wave to occur on the solar surface would not produce coherent spatial

structures that are present in the velocity data [22].

1.4.4 SHEAR ALFVEN WAVES

Alfven waves are omnipresent in space, they are found in earth’s ionosphere, magnetosphere interstellar

clouds,rings of planets, solar corona and solar wind. They transport electromagnetic energy to the

magnetized plasma. In the laboratory, they are used for the heating of plasma in ’Tokamak’ and other

fusion devices. They are also used to communicate information regarding magnetic field structures
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and plasma currents. Alfven waves which (exist below cyclotron frequency) can be categorized as

compressional Alfven waves as described in subsection (1.4.3), moves along the direction of the external

magnetic field. The other one is shear Alfven wave that propagates at a certain angle with the

externally applied field. They further give rise to kinetic Alfven waves which can be described as

shear Alfven waves with finite Larmor radius effects. Due to the finite Larmor radius, these waves

generate the longitudinal parallel electrostatic field. They can transfer energy to electrons and can

even accelerate them in the direction of the field. But in the presence of dusty plasma, these waves

are damped out because of the charge fluctuation effect involving dust dynamics [15].
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2. MODELS IN QUANTUM PLASMA

2.1 INTRODUCTION

Systems we mostly deal with is many-body or particle system, if we have a system consisting of atoms

or molecules which consists of a few hundred particles inside them i.e. few hundred electrons or

nucleons. But when dealing with solids liquids or gases the number of particles reaches an enormous

value. Plasma shows different behavior as compared to the other forms of matter and consists of free

charges which give rise to current densities and electromagnetic fields through which particles interact.

Mostly we have to deal with Coulomb interactions, which leads to screening effects, collective behavior

and plasma oscillations. But when one deals with transport or thermodynamic properties then long-

range character leads to special difficulties. In such scenarios, it is not suitable to use few particle

approximations to explain screening effects. Complication arises when we are dealing with quantum

plasma which is highly dense and has a low temperature. New effects are generated at a very short

interval that are difficult to deal with. So to cope with such situations we require models based on

previous knowledge.

2.2 Schrodinger- Poisson model:

In classical mechanics, identical particles are distinguishable, while dealing with identical particles in

quantum mechanics there exists no mechanism to distinguish them. Also due to uncertainty principle,

we can’t exactly locate particle so determining the path of the particle becomes meaningless. If we

can locate a particle at a certain position at some specific point its coordinates can not be specified

at some other instant. We can say that in quantum mechanics, particles lose their individuality, so

we use the probabilistic approach. Now there arises a question: How we will be able to describe the

dynamics of a system which consists of N number of particles? To solve such a system, we generalize

the dynamics of a single particle [8]. As we are considering dense plasma i.e. the density of particles is

extremely high within a small region of volume, it means that if we need to describe quantum plasma



we need solution of Schrodinger equation for N particles. But the problem is still not solved because

the Schrodinger equation for N wave functions can’t be solved [23]. If one has to solve the problem

in Schrodinger picture, the only way is to neglect the two bodies and higher-order correlations (weak

correlations), this assumption is valid as the value of the coupling parameter is very small as discussed

in chapter 1. So now we can write the wave function of N particles as a product of wave functions of

individual particles (one-particle wave function). Product wave function for fermions is not identical

it means that the Schrodinger equation consists of a product of uncorrelated terms and each particle

is treated individually. Here we have not considered the entanglement of states. So we need to know

N independent Schrodinger equations for N wave functions [9].

ιh̄
∂ψi(x, t)

∂t
=
−h̄2

2m
∆ψi(x, t) + eϕ(x, t)ψi(x, t), i = 1, 2, 3....N. (2.1)

For the sake of simplicity, considering only one spatial dimension i.e. ∆ = ∂2

∂x2 , ϕ(x, t) is the electro-

static potential which is given by the Poisson’s equation:

∆ϕ(x, t) = 4πe(

N∑
i=1

pi | ψi(x, t) |2 −no), (2.2)

here no is the ion density which is considered to be fixed in the background. It is a continuous

function of position i.e ni(x). Each electron is in a well-defined pure N quantum state. The probability

of occurring in any quantum state is given by Fermi-Dirac distribution function, given by:

pi = [e
(ε−εF )

KBT
+1

]−1. (2.3)

The sum of probabilities is always equal to one. Hartree firstly developed this model to study how

the Coulomb potential of the nucleus is effected by the self-consistent effects of atomic electrons.

This model is numerically efficient and is simple as it contains two major terms i.e. quantum

mechanical equation of motion and self-consistent long-range interactions. But here spin effects,

dissipation, and relativistic corrections are neglected. But when we are considering more realistic

situations these effects can no longer be neglected. We can say that this model is the quantum analog

of the Vlasov- Poisson model. As in both the models most of the assumptions are same, for example,

collisions are neglected in both, single-particle wave functions are considered in both the models and

only electrostatic interactions are taken into account. It is useful to start with a simple model that
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covers the main aspects of quantum plasma and the study of macroscopic properties of a system under

consideration becomes much easier.

2.3 Wigner- Poisson model:

In position space probability, density is equal to the square of the magnitude of the wave function.

When the wave function is known it becomes easier to determine the distribution. Also in momentum

space, the distribution is straight forward. But there was a need to have a function that represents

probability distribution simultaneously in position and momenta space [24]. When we are dealing

with classical statistical mechanics, the probability for coordinates and momenta are given by Gibb’s

Boltzmann formula according to which probability distribution tells us that the system will occur in

a certain state as a function of the energy of the state and system’s temperature. [25].

Pi ∝ e
−εi
kBT , (2.4)

Pi ∝ e−εiβ . (2.5)

where,

εi =sum of kinetic energy and potential energy.

While dealing with quantum theory there exists no such relation for probability because we can’t

have a simultaneous probability for coordinate and momenta. Neumann formula in thermodynamics

of quantum mechanical system shows that the mean value of a physical quantity (with normalizing

constant only dependent upon temperature) is equal to the sum of diagonal elements of a matrix

Qe−βH .

where Q= matrix operator of any quantity and

H= Hamiltonian of the system

Under the transformation diagonal sum remain invariant so one can choose any operator repre-

sentation or matrix for Q and H. Non- commutability of different parts of H must be taken into

account. From above equation, it does not seem easy to make explicit calculations of the mean value.

In 1932, Wigner proposed the concept of phase space representation of quantum mechanics by using

the concept of quasi probabilities. He was trying to figure out the quantum correction in classical

26



statistical mechanics. Now if the wave function is given, one may build up the relation, which is

called probability- function for simultaneous values of coordinate and momenta. The expression for

probability function is real but not positive everywhere. Correct values of probabilities for different

values of coordinates are obtained when integrated with respect to “p” and also when integrated with

respect to “x” for different values of “p”.

Wigner formalism has great importance since Schrodinger- Poisson system can be developed com-

pletely by making use of this formalism. For quantum mixture of states, each of which is characterized

by occupation probability pi, the Wigner distribution is given by:

W (x, v, t) =
m

2πh̄

N∑
i=1

pi

∞∫
−∞

dλψ∗i (x+
λ

2
, t)× ψi(x−

λ

2
, t)e

ιmvλ
h̄ . (2.6)

We can describe the evolution of the Wigner function under the action of electrostatic potential.

Wigner function does not necessarily remain nonnegative in its evolution process. It can’t be inter-

preted as true probability density as we can do in a classical case instead it is real and normalizable

to unity and it gives averages just as in classical statistical mechanics.

The assumptions and limitations which we considered in Schrodinger- Poisson model are also valid

here but this model can work with both pure and mixed states.

2.4 QUANTUM HYDRODYNAMIC MODEL

The transport equations in a classical fluid model for plasma can be expressed in the form of conser-

vation laws of energy and momentum. The Quantum hydrodynamic (fluid) model is a generalization

of the classical model. Instead of dealing with the complexities of 2N Schrodinger- Poisson’s equation

or phase space dynamics (Wigner- Poisson’s model) quantum hydrodynamic model provides a sim-

pler way to investigate collective dynamics. Using standard definitions of the average of macroscopic

quantities like pressure, density velocity, etc. We can drive standard QHD equations by making use

of Schrodinger-Poisson’s equation and Wigner-Poisson’s equation.

2.4.1 SCHRODINGER-POISSON APPROACH

We can drive QHD model by making use of the Schrodinger-Poisson’s system in which macroscopic

quantities such as average velocity and density are used. Continuity and momentum conservation

27



of electron in the framework of the Vlasov model is explained by the Dawson multistream model

of classical plasma. We can consider the Schrodinger-Poisson’s equation to be the quantum analog

of the Dawson multistream model. In Dawson model, N streams are considered which represents

thin filaments (infinitely small) of plasma each of which has some velocity, number density, and

probability [26] [27]. The same reasoning is considered in Schrodinger-Poisson’s model by using

Madelung representation to each stream. For pure state, wave function is represented by:

ψi = Ai(x, t)exp(
ιSi(x, t)

h̄
), (2.7)

here we have considered Si(x, t) to be the real phase and Ai(x, t) is the real amplitude. We can now

write density and velocity as:

ni =| ψi |2= A2
i ; vi =

∂xSi
m

. (2.8)

After separating real and imaginary parts, we get reduced Schrodinger-Poisson’s equation as:

∂ni
∂t

+
∂(nivi)

∂x
= 0, (2.9)

(
∂

∂t
+ vi

∂

∂x
)vi =

e

m

∂ϕ

∂x
+
h̄2

2m

∂

∂x
(
∂x2
√
ni√

ni
). (2.10)

Poisson’s equation can now be written as:

∂ϕ

∂x
= 4πe(

N∑
i=1

ni − no). (2.11)

Equation (2.9)-(2.11) constitute the quantum multistream model which can be reduced to the

classical model when we consider the limit h̄ → 0. Quantum mechanical effect is which is represents

in the last term of eq. (2.8) interpreted as gradient of quantum Bohm potential. Global average

density n(x,t)and global average velocity u(x,t)are defined as:

n(x, t) =

N∑
i=1

pini, (2.12)

and

u(x, t) =

N∑
i=1

pi
ni
n
vi ≡< vi > . (2.13)
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The probability of occupying state ψi can be obtained by multiplying eq. (2.9) and (2.10) and

then summing over i=1. . . .N. Continuity and momentum equation for global average quantities n and

u using Fermi-Dirac statistics are given by:

∂n

∂t
+
∂(nu)

∂x
= 0. (2.14)

(
∂

∂t
+ u

∂

∂x
)u =

e

m

∂ϕ

∂x
+
h̄2

2m

∂

∂x
(
∂x2
√
n√

n
)− 1

mn

∂P

∂x
. (2.15)

where,

P (x, t) = mn[

N∑
i=1

piniv
2
i

n
− (

N∑
i=1

pinivi
n

)2]. (2.16)

The last term on R.H.S of eq. (2.15) represents quantum statistical pressure which is due to the

electrons which show fermionic nature when the temperature is low. Equation (2.14) and (2.15) are

known as quantum hydrodynamic equations, which include quantum statistical and diffraction effects.

We can represent this model in another way by making use of effective wave function ψ(x, t), which

is based on global density n(x,t) and global velocity u(x,t) as,

ψi =
√
n(x, t)exp(

ιSi(x, t)

h̄
). (2.17)

here,

n =| ψ |2= A2
i ;u =

∂xS

m
. (2.18)

This results in non-linear Schrodinger equation of form;

ιh̄
∂ψ(x, t)

∂t
=
−h̄2

2m

∂2

∂x2
ψ(x, t)− eϕ(x, t)ψ(x, t) + Veff (n)ψ(x, t). (2.19)

Here Veff =
∫ n dn′

n′
dP (n′)
dn′ is effective potential. For one dimensional case γ = 3 and PF = (

mv2
F

3n2
o

)n3,

where vF is the fermi velocity. The relation for effective potential comes out to be Veff = (
mv2

F

2n2
o

) | ψ |4.

29



2.4.2 WIGNER-POISSON APPROACH

The distribution of particles in phase space at equilibrium is explained by the classical distribution

function. We can derive the classical fluid model by taking moments of the Vlasov equation(or any

suitable kinetic equation). Similarly, by taking moments of the Wigner equation we can derive the

quantum hydrodynamic equations. Quantities such as particle density, pressure and average velocity

are expressed by lower-order moments. We can define average density, velocity and pressure as:

n =

∫
Wdv =

N∑
i=1

pi | ψi |2, (2.20)

du =
1

n

∫
Wdv =

ιh̄

2mn

N∑
i=1

pi(ψi
∂ψ∗(x, t)

∂x
− ψ∗(x, t)∂ψ

∗(x, t)

∂x
), (2.21)

and

P = m(

∫
Wv2dv − nv2). (2.22)

By using Taylor expansion:

f(x± a) = f(x)± af(x)

2x
+
a2

2!

∂2f(x)

∂x2
+ ...... (2.23)

Eq. (2.6) leads us to continuity equation and momentum equation:

∂n

∂t
+
∂(nu)

∂x
= 0, (2.24)

and

(
∂

∂t
+ u

∂

∂x
)u =

e

m

∂ϕ

∂x
+

1

mn

∂P

∂x
. (2.25)

Taking the derivative of ψi and ψ∗i , we get

∂ψi
∂x

=
∂Ai
∂x

exp(
ιSi(x, t)

h̄
) +

ι

h̄
Ai
∂Si
∂x

exp(
ιSi(x, t)

h̄
), (2.26)

∂ψ∗i
∂x

=
∂Ai
∂x

exp(− ιSi(x, t)
h̄

)− ι

h̄
Ai
∂Si
∂x

exp(− ιSi(x, t)
h̄

), (2.27)
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∂2ψi
∂x2

=
∂2Ai
∂x2

exp(
ιSi(x, t)

h̄
)+2

ι

h̄

∂Ai
∂x

∂Si
∂x

exp(
ιSi(x, t)

h̄
)+

ι

h̄
Ai
∂2Si
∂x2

exp(
ιSi(x, t)

h̄
)−Ai

h̄2 (
∂Si
∂x

)2exp(
ιSi(x, t)

h̄
),

(2.28)

∂2ψ∗i
∂x2

=
∂2Ai
∂x2

exp(− ιSi(x, t)
h̄

)−2
ι

h̄

∂Ai
∂x

∂Si
∂x

exp(− ιSi(x, t)
h̄

)− ι
h̄
Ai
∂2Si
∂x2

exp(− ιSi(x, t)
h̄

)−Ai
h̄2 (

∂Si
∂x

)2exp(− ιSi(x, t)
h̄

).

(2.29)

Using equation (2.26-2.29) in equation (2.22) we get pressure terms.The classical pressure which

do not include h̄ is given as:

PC =
1

2mn

∑
i,j

pipjA
2
iA

2
j [(
∂Si
∂x

)2 − 2
∂Si
∂x

∂Sj
∂x

+ (
∂Sj
∂x

)2], (2.30)

PC = mn[

N∑
i=1

piniv
2
i

n
− (

N∑
i=1

pinivi
n

)2], (2.31)

PC = mn(< v2
i > − < vi >

2), (2.32)

Similarly, quantum pressure (terms which included h̄2) is given as:

PQ =
h̄2

2m

∑
i

[(
∂Ai
∂x

)2 −Ai
∂2Ai
∂x2

], (2.33)

PQ =
h̄2

2m

∑
i

Pi[(
∂
√
ni

∂x
)2 −

√
ni
∂2
√
ni

∂x2
]. (2.34)

So pressure term in equation (2.25) can be written as : P = PC + PQ. For a statistical system of

pure states, amplitude of all states might be equal so we can write that Ai(x) = A(x) which leads us

to n = A2. So equation (2.25) leads us to:

(
∂

∂t
+ u

∂

∂x
)u =

e

m

∂ϕ

∂x
− 1

mn

∂PC
∂x

+
h̄2

2m

∂

∂x
(
∂x2
√
n√

n
). (2.35)

Equation (2.24) and (2.35) gives us reduced quantum hydrodynamic approximation by using

Wigner formalism. In the presence of magnetic field, fluid equations can be written as:
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∂n

∂t
+∇.(nu) = 0, (2.36)

(
∂

∂t
+ u.∇)u =

q

m
(E + u×B)− 1

mn
∇P +

h̄2

2m
∇(
∇
√
n√
n

), (2.37)

here P = Pt + PF where Pt =thermal pressure and PF =Fermionic pressure. When we are

considering plasma which is dense and has low temperature then PF is sufficiently large as compared

to Pt.

The quantum hydrodynamic approach gives better results for distances which are larger than

Fermi screening length. With QHD some limitations are also associated e.g. it is not straight forward

when we are treating system computationally because there arise some difficulties due to third-order

derivatives of densities involved in Bohm potential term. Also, we are unable to study wave-particle

interaction through this model. Furthermore, wavelength shorter then Fermi length can’t be treated

properly despite the fact that this model has many advantages due to its simplicity. As the kinetic

model is too complicated to understand fundamental dynamics of quantum plasma so it is suitable

for us to use QHD model.
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3. QUANTUM MODIFICATION OF DUST SHEAR ALFVEN WAVE IN
PLASMAS

In recent years, quantum plasma has become a topic of interest for many plasma researchers. It has

wide applications in ultra-small electronic devices, e.g. metallic and semiconductor nanostructures,

astrophysical systems which are highly dense and in laser-produced plasmas. The hot topic of research

for scientists is the expansion of quantum electron gas in a vacuum and the dispersion properties of

Landau damping [28]. Quantum effects significantly alter the dispersion properties and instabilities

of the excited modes. Mostly we consider the case of unbound quantum plasma but in the laboratory

when we are dealing with such plasmas we consider them to be spatially bound or spatially limited.

We also consider the boundary conditions. Potential of plasma at the edge is zero. Because of finite

cylindrical boundary effects dispersion properties (which can be affected by the boundary of the device

and excited radial wave number) are discrete. So it is important to study boundary effects on quantum

plasma [29].

Many scientists studied the quantum effects in low temperature and high-density range but even

in a classical range where we are considering high temperature and modest-density we can’t neglect

the quantum effects [30].

In many schemes, we use magnetic fields for confining plasma in thermonuclear fusion reactions.

These fields are sustained when the steady-state electric current is derived through the radio frequency

fields. Generation of electric currents in low density has gained importance but very little importance

has been given to the idea of steady-state currents in high densities. When we are considering mod-

erately dense or dense medium, the plasma is Fermi degenerate plasma. It arises when a pallet of

hydrogen is compressed to many times the solid densities for achieving inertial confinement fusion.

These conditions are achieved by intense lasers or ion beams which will cause the intentional or inci-

dental generation of steady currents [31]. While dealing with a quantum plasma, the electron plasma

frequency is extremely high as the number density is extremely large so the electron plasma frequency

exceeds the electron collision frequency. This will give rise to new effects in quantum plasmas. Col-



lective interactions in quantum dense plasma are treated using different approaches. Here, we will be

considering quantum magnetohydrodynamic model and several forces that will act on plasma species

like Bohm potential and Lorentz force etc [30]. Also, dusty plasmas are rich in waves and instabil-

ities. Dust particles are quite common in different environments such as interstellar media, comets

etc as they are either positive or negatively charged depending upon the process like the bombard-

ment of electrons and ions on the surface of dust particles from the background or by the process of

photoemission, thermionic emission, secondary electron emission [32].

The wave function describes the individual system in the most complete possible form but it

only provides us the probable results. This assumption can’t be tested experimentally, the only way

of testing this assumption is to find other interpretations of quantum theory in terms of present

“HIDDEN” variables which can explain the precise behavior of an individual system. This assumption

has been subjected to criticism, especially by Einstein who was of the view that there must exist a

dynamical variable (as in classical physics) which can explain the actual behavior of an individual

system and not just the probable behavior, but such variables are not present in the quantum theory.

Many physicists felt that these objections raised by Einstein are not relevant, as the quantum theory

with probability interpretation is in agreement with a wide range of experiments especially in the

domain of distances which are larger than 10−13cm and also because no other alternative interpretation

was present at that time. In 1951 David Bohm in his paper “A SUGGESTED INTERPRETATION OF

QUANTUM THEORY IN TERMS OF “HIDDEN” VARIABLES” gave an alternative interpretation.

In this alternative interpretation each system is considered in a precise state, and changes with time

are determined by equations which are analogous to the classical equation of motion, as long as

general form of Schrodinger equation is obtained and physical results using alternative interpretation

are same as those obtained by usual interpretation [33]. These effects are not prominent in the atomic

domain. Present quantum theory is of crucial importance for dimensions of the order of 10−13cm

for which the usual interpretation is inadequate, an alternative interpretation of quantum theory

was also given by de-Broglie in 1926 but it was given up by him because of the criticism made by

Pauli and partly by himself [34]. The usual physical interpretation of the quantum theory is centered

around uncertainty principle. Uncertainty principle is based upon two assumptions first that a wave

function gives the most complete possible specification of the quantum state of the individual system

and by using de Broglie relation p = h̄k (k being wave number) the uncertainty principle is readily
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deduced. This principle has limitation on the precision of momentum and position. For new physical

interpretation of Schrodinger equation, we begin with the one particle Schrodinger equation and then

later be generalized to the various number of particle[35]. The wave equation is:

ιh̄
∂ψ

∂t
=
−h̄2

2m
(∇2ψ) + V (x)ψ. (3.1)

here ψ is complex wave function given by:

ψ = Re( ιSh̄ ). (3.2)

Now,

∇ψ = ∇Re ιSh̄ + ι
∇S
h̄
Re

ιS
h̄ , (3.3)

and
∂ψ

∂t
=
∂R

∂t
e
ιS
h̄ +

ιR

h̄

∂S

∂t
e
ιS
h̄ . (3.4)

as,

∇2ψ = ∇.(∇ψ), (3.5)

Using value of (∇ψ) in the above equation, we get

∇2ψ = ∇.(∇Re ιSh̄ + ι
∇S
h̄
Re

ιS
h̄ ). (3.6)

After simplification, we can write

∇2ψ = ∇2Re
ιS
h̄ +∇Re ιSh̄ .ι∇S

h̄
+ ι
∇R∇S
h̄

e
ιS
h̄ +

ιR

h̄
∇2Se

ιS
h̄ +

ιR

h̄
∇Se ιSh̄ . ι

h̄
∇S, (3.7)

∇2ψ = ∇2Re
ιS
h̄ + ι.

∇R∇S
h̄

e
ιS
h̄ + ι

∇R∇S
h̄

e
ιS
h̄ +

ιR

h̄
∇2Se

ιS
h̄ − R

h̄2 (∇S)2e
ιS
h̄ , (3.8)

∇2ψ = ∇2Re
ιS
h̄ + 2ι.

∇R∇S
h̄

e
ιS
h̄ +

ιR

h̄
∇2Se

ιS
h̄ − R

h̄2 (∇S)2e
ιS
h̄ . (3.9)

using eq. (3.4) and (3.9) in eq. (3.1), we get

ιh̄[
∂R

∂t
e
ιS
h̄ +

ιR

h̄

∂S

∂t
e
ιS
h̄ ] =

−h̄2

2m
(∇2Re

ιS
h̄ + 2ι.

∇R∇S
h̄

e
ιS
h̄ +

ιR

h̄
∇2Se

ιS
h̄ − R

h̄2 (∇S)2e
ιS
h̄ ) + V (x)(Re

ιS
h̄ ),

(3.10)
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ιh̄
∂R

∂t
−R∂S

∂t
=
−h̄2

2m
∇2R− ιh̄

m
(∇R∇S)− ιh̄

2m
R∇2S +

1

2m
R(∇S)2 + V (x)R. (3.11)

or

∂R

∂t
+
ιR

h̄

∂S

∂t
=

ιh̄

2m
∇2R− 1

m
(∇R∇S)− 1

2m
R∇2S − ι

2mh̄
R(∇S)2 +

ι

h̄
V (x)R. (3.12)

The real part of Eq.(3.4) can be written as:

∂R

∂t
=
−1

2m
R∇2S + 2(∇R∇S). (3.13)

and the imaginary part is

ιR

h̄

∂S

∂t
=

ιh̄

2m
∇2R− ι

2mh̄
R(∇S)2 − ι

h̄
V (x)R. (3.14)

∂S

∂t
=

h̄2

2m

∇2R

R
− 1

2m
(∇S)2 − V (x), (3.15)

or

∂S

∂t
= −[

1

2m
(∇S)2 + V (x)− h̄2

2m

∇2R

R
]. (3.16)

We can write equation (3.13) as:

∂R

∂t
=
−1

2m
R∇2S + 2(∇R∇S). (3.17)

The above equation can also be written as;

2R(
∂R

∂t
) =
−R2

m
∇2S − 2R

m
(∇R.∇S). (3.18)

It is convenient to write P (x) = R2(x) orR = P
1
2 , here P (x) is the probability density.

∂P

∂t
=
−P
m
∇2S −∇P.∇S

m
. (3.19)

∂P

∂t
= −[∇P.∇S

m
+
P

m
∇2S]. (3.20)
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∂P

∂t
+ [∇P.∇S

m
+
P

m
∇2S] = 0. (3.21)

∂P

∂t
+∇.(P ∇S

m
) = 0. (3.22)

And similarly, we can write the imaginary part in terms of P as;

∂S

∂t
+

1

2m
(∇S)2 + V (x)− h̄2

4m
[
∇2P

P
− 1

2

(∇P )2

P 2
] = 0. (3.23)

Now in the classical limit h̄→ 0, so the function S(x) is a solution of Hamiltonian-Jacobi equation.

If we are dealing with an ensemble in which particle trajectories are solutions of the equation of

motion, then from an important theorem of mechanics we know that if all trajectories are normal to

the given surface of constant “S”, then they are normal to all surfaces of constant “S”, and ∇ S
m will be

equivalent to V(x). For any particle passing the point “x” the equation can now be written as:

∂P

∂t
+∇.(PV ) = 0, (3.24)

here P(x) is regarded as a probability density for particles in ensemble and PV can be regarded

as a mean current of particles in an ensemble and the above equation gives us the conservation of

probability. We assume that each particle is acted on not only by the classical potential V(x) but also

a quantum mechanical potential. By comparison of Eq.(3.16) an Eq.(3.23) we get:

U(x) = − h̄2

4m
[
∇2P

P
− 1

2

(∇P )2

P 2
] = − h̄2

2m

∇2R

R
. (3.25)

Equation (2.23) is still regarded as the Hamilton-Jacobi equation, and (∇S(x))
m is the velocity of particle

and equation (3.22) describes the conservation of probability. It seems that we have an alternative

interpretation of Schrodinger’s equation. To develop this interpretation we associate with each elec-

tron precisely definable and continuously varying values of position and momentum. Solutions of

modified Hamilton-Jacobi equation (3.16) provides us with an ensemble of all possible trajectories

of these particles which can simply be obtained from S(x) (Hamilton-Jacobi function) by integrating

velocity V(x). The equation for “S” tells us that particle motion is influenced by a force which is not

entirely drivable from classical potential “V(x)” but it also has contributed from “quantum mechanical

potential”

U(x) = − h̄2

2m

∇2R

R
. (3.26)
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here R(x) can be obtained in terms of S(x), R and S co-determine each other. It goes quite far when we

make an analogy with electromagnetic fields obeys Maxwell’s equation for both the cases, a complete

specification of the field at a given instant for each point in space determines the value of the field

for all times. If we know the field function we can calculate the force on a particle. So if we know

the initial position and momentum of the particle, we can calculate the entire trajectory, equation of

motion of particle acted by classical potential V(x) and quantum potential is given by,

m
d2x

dt2
= −∇[V (x)− h̄2

2m

∇2R

R
]. (3.27)

Later in this thesis, we will replace R by n
1
2 . In the last few years, the effect of dust parti-

cles on low-frequency electromagnetic waves has been observed. In this thesis, I will consider long-

wavelength shear Alfven wave with arbitrary wave number using QMDH also we have here considered

low-temperature quantum dusty magnetoplasma and a magnetic field is considered in the z-direction.

∂Vj
∂t

=
qj
mj

~E + Vij × ωcj~z −
∇PFj
mjnoj

+
h̄2

4m2
jnoj
∇(∇2nj), (3.28)

where

PFj =
mjV

2
Fjn

3
j

3n2
0j

. (3.29)

After simlification, we can write

(−ιω)V1j =
qj
mj

~E + Vij × ωcj~z −
ι~kV 2

Fj

3
(
n1j

noj
)3 +

h̄2

4m2
jnoj

ι~k(−k2n1j). (3.30)

From the equation of continuity,
∂nj
∂t

= ∇.(njVj). (3.31)

∂n0j

∂t
+
∂n1j

∂t
= ∇.((n0j + n1j) + (V0j + V1j)), (3.32)

After linearization, we get

∂n1j

∂t
= ∇.(n0jV1j), (3.33)
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By considering sinusoidal perturbation, the above eq. becomes

−ιωn1j + n0j∇.V1j = 0, (3.34)

or

n1j =
n0j

ω
(k).V1j . (3.35)

Now using the value of n1j in eq. (1.7), we get

(−ιω)V1j =
qj
mj

~E + Vij × ωcj~z −
ι~kV 2

Fj

3
(
n0j

ω (k).V1j

noj
)3 +

h̄2

4m2
jnoj

ι~k(−k2n0j

ω
(~k).V1j), (3.36)

or we can write

V1j =
ιqj
mjω

~E +
ι

ω
(Vij × ωcj~z) +

V 2
Fj
~k

ω2
(~k.V1j)(1 +

h̄2k2

4m2
jV

2
Fj

). (3.37)

Defining

γj =
h̄2k2

4m2
jV

2
Fj

, (3.38)

Above equation can be written as:

V1j =
ιqj
mjω

~E +
ι

ω
(Vij × ωcj~z) +

V 2
Fj
~k

ω2
(~k.V1j)(1 + γj). (3.39)

Now solving the cross products and re-writing the above equation yields:

V1j =
ιqj
mjω

~E +
ι

ω
(Vyjωcj~i− Vxjωcj~j) +

V 2
Fj
~k

ω2
(~k.V1j)(1 + γj). (3.40)

By taking V ′Fj = VFj(1 + γj)
1
2 ,

we can write

V1j =
ιqj
mjω

~E +
ι

ω
(Vyjωcj~i− Vxjωcj~j) +

~k

ω2
(~k.V1j)V

′2
Fj . (3.41)

Dropping the subscript 1 and the above equation in component form, we get

Vxj~i+Vyj~j+Vzj~k =
ιqj
mjω

(
~
Ex~i+

~
Ey~j+

~
Ez~k)+

ι

ω
(Vyjωcj~i)−

ι

ω
(Vxjωcj~j)+

(~kx~i+ ~kz~k)

ω2
(kx.Vxj+kz.Vzj)V

′2
Fj .

(3.42)
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x-component:

Vxj =
ιqj
mjω

( ~Ex) +
ι

ω
(Vyjωcj) +

V ′2Fj
ω2

(k2
xVxj) +

V ′2Fj
ω2

(kxkz.Vzj). (3.43)

y-component:

Vyj =
ιqj
mjω

( ~Ey)− ι

ω
(Vxjωcj). (3.44)

z-component:

Vzj =
ιqj
mjω

( ~Ez) +
V ′2Fj
ω2

(kxkzVxj) +
V ′2Fj
ω2

(k2
z .Vzj). (3.45)

Now solving eq. (3.45), we can write

Vzj(1−
V ′2Fj
ω2

(k2
z)) =

ιqj
mjω

( ~Ez) +
V ′2Fj
ω2

(kxkzVxj). (3.46)

Now by defining F = (1− V ′2Fj
ω2 (k2

z)), we get

Vzj =
1

F
[
ιqj
mjω

( ~Ez) +
V ′2Fj
ω2

(kxkzVxj)]. (3.47)

Now to find Vxj we will use the value of Vzj from eq. (3.47) and value of Vyj from eq. (3.44) in

eq. (3.43)

Vxj =
ιqj
mjω

( ~Ex) +
ιωcj
ω

(
ιqj
mjω

( ~Ey)− ι

ω
(Vxjωcj)) +

V ′2Fj
ω2

(k2
xVxj)+

V ′2Fj
ω2

(kxkz.
1

(1− V ′2Fj
ω2 (k2

z))
[
ιqj
mjω

( ~Ez) +
V ′2Fj
ω2

(kxkzVxj)]), (3.48)

Vxj =
ιqj
mjω

( ~Ex) +
ι2ωcjqj
mjω2

( ~Ey) +
ω2
cj

ω2
(Vxj) +

V ′2Fj
ω2

(k2
xVxj) +

ιqjV
′2
Fjkxkz

mjω3F
( ~Ez)+

V ′4Fjk
2
xk

2
z

ω4(1− V ′2Fj
ω2 (k2

z))
Vxj , (3.49)

Vxj −
ω2
cj

ω2
(Vxj)−

V ′4Fjk
2
xk

2
z

ω2(ω2 − V ′2Fj(k2
z))

Vxj −
V ′2Fj
ω2

(k2
xVxj) =

ιqj
mjω

( ~Ex) +
ι2ωcjqj
mjω2

( ~Ey) +
ιqjV

′2
Fjkxkz

mjω3F
( ~Ez),

(3.50)
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Vxj [1−
ω2
cj

ω2
−

V ′4Fjk
2
xk

2
z

ω2(ω2 − V ′2Fj(k2
z))
−
V ′2Fj
ω2

(k2
x)] =

ιqj
mjω

[( ~Ex) +
ιωcj
ω

( ~Ey) +
V ′2Fjkxkz

ω2F
( ~Ez)], (3.51)

Vxj [
ω2(ω2 − V ′2Fj(k2

z))− V ′4Fjk2
xk

2
z − V ′2Fjk2

x(ω2 − V ′2Fjk2
z)

ω2(ω2 − V ′2Fj(k2
z))

−
ω2
cj

ω2
] =

ιqj
mjω

[( ~Ex) +
ιωcj
ω

( ~Ey) +
V ′2Fjkxkz

ω2F
( ~Ez)], (3.52)

Vxj [
ω4 − ω2V ′2Fjk

2
z − V ′4Fjk2

xk
2
z − ω2V ′2Fjk

2
x + V ′4Fjk

2
xk

2
z

ω2(ω2 − V ′2Fj(k2
z))

−
ω2
cj

ω2
] =

ιqj
mjω

[( ~Ex) +
ιωcj
ω

( ~Ey) +
V ′2Fjkxkz

ω2F
( ~Ez)], (3.53)

Vxj [
ω4 − ω2V ′2Fj(k

2
x + k2

z)

ω2(ω2 − V ′2Fj(k2
z))

−
ω2
cj

ω2
] =

ιqj
mjω

[( ~Ex) +
ιωcj
ω

( ~Ey) +
V ′2Fjkxkz

ω2F
( ~Ez)], (3.54)

as we are taking

kx = k sin θ. (3.55)

and

kz = k cos θ. (3.56)

k2
x + k2

z = k2. (3.57)

Vxj [
ω4 − ω2V ′2Fj(k

2)

ω2(ω2 − V ′2Fj(k2
z))
−
ω2
cj

ω2
] =

ιqj
mjω

[( ~Ex) +
ιωcj
ω

( ~Ey) +
V ′2Fjkxkz

ω2F
( ~Ez)] (3.58)

Vxj [
ω2[ω2 − V ′2Fj(k2)]

ω2(ω2 − V ′2Fj(k2
z))
−
ω2
cj

ω2
] =

ιqj
mjω

[( ~Ex) +
ιωcj
ω

( ~Ey) +
V ′2Fjkxkz

ω2F
( ~Ez)] (3.59)
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Let

G = [
ω2 − V ′2Fj(k2)

(ω2 − V ′2Fj(k2
z))

], (3.60)

then we can write

Vxj [G−
ω2
cj

ω2
] =

ιqj
mjω

[( ~Ex) +
ιωcj
ω

( ~Ey) +
V ′2Fjkxkz

ω2F
( ~Ez)] (3.61)

Vxj [
ω2G− ω2

cj

ω2
] =

ιqj
mjω

[( ~Ex) +
ιωcj
ω

( ~Ey) +
V ′2Fjkxkz

ω2F
( ~Ez)] (3.62)

Vxj =
ιqj
mjω

[
ω2

ω2G− ω2
cj

( ~Ex) +
ιωωcj

ω2G− ω2
cj

( ~Ey) +
V ′2Fjkxkz

(ω2G− ω2
cj)F

( ~Ez)] (3.63)

Now calculating the value of Vyj . Eq.(3.44) is:

Vyj =
ιqj
mjω

( ~Ey)− ι
ω (Vxjωcj)

Vyj =
ιqj
mjω

( ~Ey)− ιωcj
ω

(
ιqj
mjω

[
ω2

ω2G− ω2
cj

( ~Ex) +
ιωωcj

ω2G− ω2
cj

( ~Ey) +
V ′2Fjkxkz

(ω2G− ω2
cj)F

( ~Ez)]) (3.64)

Vyj =
ιqj
mjω

[
−ιωcjω

ω2G− ω2
cj

( ~Ex) + ~Ey +
ω2
cj

ω2G− ω2
cj

( ~Ey)−
ιωcjV

′2
Fjkxkz

ωF (ω2G− ω2
cj)

( ~Ez)] (3.65)

Vyj =
ιqj
mjω

[
−ιωcjω

ω2G− ω2
cj

( ~Ex) +
ω2G

ω2G− ω2
cj

( ~Ey)−
ιωcjV

′2
Fjkxkz

ωF (ω2G− ω2
cj)

( ~Ez)] (3.66)

Now to find the value of Vzj , substituting the value of Vxj from eq.(3.63) in eq.(3.47)

Vzj = 1
F [

ιqj
mjω

( ~Ez) +
V ′2Fj
ω2 (kxkzVxj)]

Vzj =
1

F

ιqj
mjω

( ~Ez) +
V ′2Fj
Fω2

kxkz
ιqj
mjω

[
ω2

ω2G− ω2
cj

( ~Ex) +
ιωωcj

ω2G− ω2
cj

( ~Ey) +
V ′2Fjkxkz

(ω2G− ω2
cj)F

( ~Ez)] (3.67)

Vzj =
ιqj

Fmjω
[
V ′2Fjkxkz

(ω2G− ω2
cj)

( ~Ex) +
ιωcjV

′2
Fjkxkz

ω(ω2G− ω2
cj)

( ~Ey) + ~Ez +
V ′4Fjk

2
xk

2
z

ω2F (ω2G− ω2
cj)

( ~Ez)] (3.68)

42



Vzj =
ιqj

Fmjω
[
V ′2Fjkxkz

(ω2G− ω2
cj)

( ~Ex) +
ιωcjV

′2
Fjkxkz

ω(ω2G− ω2
cj)

( ~Ey) + ~Ez(1 +
V ′4Fjk

2
xk

2
z

ω2F (ω2G− ω2
cj)

)] (3.69)

Due to the electromagnetic shear Alfven waves, current density of plasma particles is given by:

~J =
∑
j

qjnoj ~Vj (3.70)

By substituting values of Vxj , VyjandVzj , in above equation, we get

~J =
∑
j

qjnoj [
ιqj
mjω

[
ω2

ω2G− ω2
cj

( ~Ex) +
ιωωcj

ω2G− ω2
cj

( ~Ey) +
V ′2Fjkxkz

(ω2G− ω2
cj)F

( ~Ez)]+

ιqj
mjω

[
−ιωcjω

ω2G− ω2
cj

( ~Ex) +
ω2G

ω2G− ω2
cj

( ~Ey)−
ιωcjV

′2
Fjkxkz

ωF (ω2G− ω2
cj)

( ~Ez)]+

ιqj
Fmjω

[
V ′2Fjkxkz

(ω2G− ω2
cj)

( ~Ex) +
ιωcjV

′2
Fjkxkz

ω(ω2G− ω2
cj)

( ~Ey) + ~Ez(1 +
V ′4Fjk

2
xk

2
z

ω2F (ω2G− ω2
cj)

)]] (3.71)

~J =
∑
j

ιq2
jnoj

mjω


ω2

ω2G−ω2
cj

ιωωcj
ω2G−ω2

cj

V ′2Fjkxkz

(ω2G−ω2
cj)F

−ιωcjω
ω2G−ω2

cj

ω2G
ω2G−ω2

cj
− ιωcjV

′2
Fjkxkz

ωF (ω2G−ω2
cj)

V ′2Fjkxkz

F (ω2G−ω2
cj)

ιωcjV
′2
Fjkxkz

Fω(ω2G−ω2
cj)

1
F (1 +

V ′4Fjk
2
xk

2
z

ω2F (ω2G−ω2
cj)

)


ExEy
Ez

 (3.72)

~J =
∑
j

ιq2
jnoj

mjω
Kj. ~E, (3.73)

here;

Kj =


ω2

ω2G−ω2
cj

ιωωcj
ω2G−ω2

cj

V ′2Fjkxkz

(ω2G−ω2
cj)F

−ιωcjω
ω2G−ω2

cj

ω2G
ω2G−ω2

cj
− ιωcjV

′2
Fjkxkz

ωF (ω2G−ω2
cj)

V ′2Fjkxkz

F (ω2G−ω2
cj)

ιωcjV
′2
Fjkxkz

Fω(ω2G−ω2
cj)

1
F (1 +

V ′4Fjk
2
xk

2
z

ω2F (ω2G−ω2
cj)

)

 (3.74)

~J = σ. ~E (3.75)

here σ is linear conductivity tensor and is given by:

σ =
∑
j

ιq2
jnoj

mjω
Kj. (3.76)
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Now relation between ~E and ~B is given by the Maxwell’s equations:

~∇. ~E = 4π ρ (3.77)

~∇. ~B = 0 (3.78)

~∇× ~E =
−1

c

∂ ~B

∂t
, (3.79)

~∇× ~B =
4π ~J

c
+

1

c

∂ ~E

∂t
. (3.80)

Now taking curl of equation (3.79)

~∇× (~∇× ~E) =
−1

c

∂(~∇× ~B)

∂t
, (3.81)

~∇(~∇. ~E)−∇2 ~E =
−1

c

∂(~∇× ~B)

∂t
. (3.82)

Now using value of (~∇× ~B), we get

~∇(~∇. ~E)−∇2 ~E =
−1

c

∂( 4π ~J
c + 1

c
∂ ~E
∂t )

∂t
. (3.83)

Applying sinusoidal perturbation, we get

ι~k(ι~k. ~E)− (ι~k)2 ~E =
−1

c
(−ιω)(

4π ~J

c
+

1

c
(−ιω) ~E), (3.84)

−~k(~k. ~E) + k2 ~E =
(ιω)4π ~J

c2
+

(ω2)

c2
~E. (3.85)

Now using value of ~J = σ. ~E

−~k(~k. ~E) + k2 ~E =
(ιω)4π(œ. ~E)

c2
+

(ω2)

c2
~E, (3.86)

or we can write it as,
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−~k(~k. ~E) + k2 ~E =
(ιω)4π(

∑
j

ιq2
jnoj
mjω

Kj. ~E)

c2
+

(ω2)

c2
~E, (3.87)

−~k(~k. ~E) + k2 ~E =
ι4π(

∑
j

ιq2
jnoj
mj

Kj. ~E)

c2
+

(ω2)

c2
~E. (3.88)

As plasma frequency is defined as: ωPj =

√
4πnojq2

j

mj

Therefore,

−~k(~k. ~E) + k2 ~E = −
∑
j

ω2
Pj

c2
Kj. ~E +

ω2

c2
~E, (3.89)

or

−~k(~k. ~E) + k2 ~E = (−
∑
j

ω2
Pj

ω2
Kj + I).

ω2

c2
~E, (3.90)

here I is a unit dyadic.

Now defining the quantitiy ε = I−
∑
j

ω2
Pj

ω2 Kj, we can write equation (3.90) as:

−~k(~k. ~E) + k2 ~E = ε.
ω2

c2
~E (3.91)

(−~k(~k) + k2I− ε.ω
2

c2
). ~E = 0 (3.92)

Det | D | . ~E = 0

Det | D |= (k2I− ~k(~k)− ω2

c2
ε) (3.93)

k2I− (~kx + ~kz)(~kx + ~kz)−
ω2

c2

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

 = 0 (3.94)

k2 0 0
0 k2 0
0 0 k2

−
kxkx 0 kxkz

0 0 0
kzkx 0 kzkz

−
ω2

c2 εxx
ω2

c2 εxy
ω2

c2 εxz
ω2

c2 εyx
ω2

c2 εyy
ω2

c2 εyz
ω2

c2 εzx
ω2

c2 εzy
ω2

c2 εzz

 = 0 (3.95)
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k2 − k2
x − ω2

c2 εxx −ω
2

c2 εxy −kxkz − ω2

c2 εxz
−ω

2

c2 εyx k2 − ω2

c2 εyy −ω
2

c2 εyz−
−kzkx − ω2

c2 εzx −ω
2

c2 εzy k2 − k2
z − ω2

c2 εzz

 (3.96)

k2 = k2
x + k2

z (3.97)

and;

k2
z = k2 − k2

x (3.98)

k2
x = k2 − k2

z (3.99)

By substituting the above equations in matrix (3.96) we get:

 k2
z − ω2

c2 εxx −ω
2

c2 εxy −kxkz − ω2

c2 εxz
−ω

2

c2 εyx k2 − ω2

c2 εyy −ω
2

c2 εyz−
−kzkx − ω2

c2 εzx −ω
2

c2 εzy k2
x − ω2

c2 εzz

 . (3.100)

As; ε = I−
∑
j

ω2
Pj

ω2 Kj

ffl = I−
∑
j

ω2
Pj

ω2


ω2

ω2G−ω2
cj

ιωωcj
ω2G−ω2

cj

V ′2Fj kxkz
(ω2G−ω2

cj)F

−ιωcjω
ω2G−ω2

cj

ω2G
ω2G−ω2

cj
− ιωcjV

′2Fj kxkz
ωF (ω2G−ω2

cj)

V ′2Fj kxkz
F (ω2G−ω2

cj)

ιωcjV
′2Fj kxkz

Fω(ω2G−ω2
cj)

1
F (1 +

V ′4Fj k2
xk

2
z

ω2F (ω2G−ω2
cj)

)

 (3.101)

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

 =

1 0 0
0 1 0
0 0 1

−


∑
j

ω2
pj

ω2G−ω2
cj

∑
j

ιω2
pjωcj

ω(ω2G−ω2
cj)

∑
j

V ′2Fjω2
pjkxkz

(ω2G−ω2
cj)Fω

2∑
j
−ιωpjωcj

ω(ω2G−ω2
cj)

∑
j

ω2
pjG

ω2G−ω2
cj

−
∑
j

ιω2
pjωcjV

′2Fj kxkz

ω3F (ω2G−ω2
cj)∑

j

V ′2Fjω2
pjkxkz

Fω2(ω2G−ω2
cj)

∑
j

ιω2
pjωcjV

′2Fj kxkz

Fω3(ω2G−ω2
cj)

∑
j

ω2
pj

ω2F (1 +
V ′4Fj k2

xk
2
z

ω2F (ω2G−ω2
cj)

)


(3.102)

.

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

 =


1−

∑
j

ω2
pj

ω2G−ω2
cj

−
∑
j

ιω2
pjωcj

ω(ω2G−ω2
cj)

−
∑
j

V ′2Fjω2
pjkxkz

(ω2G−ω2
cj)Fω

2∑
j

ιωpjωcj
ω(ω2G−ω2

cj)
1−

∑
j

ω2
pjG

ω2G−ω2
cj

∑
j

ιω2
pjωcjV

′2Fj kxkz

ω3F (ω2G−ω2
cj)

−
∑
j

V ′2Fjω2
pjkxkz

Fω2(ω2G−ω2
cj)

−
∑
j

ιω2
pjωcjV

′2Fj kxkz

Fω3(ω2G−ω2
cj)

1−
∑
j

ω2
pj

ω2F (1 +
V ′4Fj k2

xk
2
z

ω2F (ω2G−ω2
cj)

)

 .

(3.103)

As three species are involved that are electrons, ions and dust so
∑
j =

∑
e +
∑
i +
∑
d.
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The term G will only exist for "e" as they are the only fermi particles involved, so we can write

εxx = 1−
ω2
pe

ω2G− ω2
ce

−
ω2
pi

ω2 − ω2
ci

−
ω2
pd

ω2 − ω2
cd

, (3.104)

εxy = −
ιω2
peωce

ω(ω2G− ω2
ce)
−

ιω2
piωci

ω(ω2 − ω2
ci)
−

ιω2
pdωcd

ω(ω2 − ω2
cd)

, (3.105)

εxz = −
V ′2Fjω2

pekxkz

(ω2G− ω2
ce)Fω

2
, (3.106)

εyx =
ιω2
peωce

ω(ω2G− ω2
ce)

+
ιω2
piωci

ω(ω2 − ω2
ci)

+
ιω2
pdωcd

ω(ω2 − ω2
cd)

, (3.107)

εyx = −εxy

εyy = 1−
ω2
peG

ω2G− ω2
ce

−
ω2
pi

ω2 − ω2
ci

−
ω2
pd

ω2 − ω2
cd

, (3.108)

εyz =
ιω2
peωceV

′2Fekxkz

ω3F (ω2G− ω2
ce)

, (3.109)

εzx = −
V ′2Fjω

2
pekxkz

Fω2(ω2G− ω2
ce)
, (3.110)

εzx = −εxz

εzy =
ιω2
peωceV

′2Fjkxkz

Fω3(ω2G− ω2
ce)

, (3.111)

εzy = −εyz

and

εzz = 1−
ω2
pe

ω2F
(1 +

V ′4Fek
2
xk

2
z

ω2F (ω2G− ω2
ce)

)−
ω2
pi

ω2
−
ω2
pd

ω2
. (3.112)

In oblique shear Alfven waves both k and "E" are in same plane and therefore Ey = 0. Therefore

low frequency long wavelength mode in β plasma, the non-diagonal components of dielectric tensor

becomes negligibly small and therefore we can write,
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Det | D |= Det

(
k2
z − ω2

c2 εxx −kxkz − ω2

c2 εxz
−kzkx − ω2

c2 εzx k2
x − ω2

c2 εzz

)
= 0 (3.113)

or we can write it as;

|

(
k2
z − ω2

c2 εxx −kxkz − ω2

c2 εxz
−kzkx − ω2

c2 εzx k2
x − ω2

c2 εzz

)
|= 0 (3.114)

(k2
z −

ω2

c2
εxx)(k2

x −
ω2

c2
εzz)− (−kxkz −

ω2

c2
εxz)(−kzkx −

ω2

c2
εzx) = 0 (3.115)

k2
zk

2
x −

ω2

c2
k2
zεzz −

ω2

c2
k2
xεxx +

ω4

c4
εxxεzz − k2

zk
2
x − kzkx

ω2

c2
εxz − kxkz

ω2

c2
εzx −

ω4

c4
εxzεzx = 0 (3.116)

ω2

c2
[−k2

zεzz − k2
xεxx +

ω2

c2
εxxεzz −

ω2

c2
εxzεzx − kxkzεxz − kxkzεzx] = 0 (3.117)

−k2
zεzz − k2

xεxx +
ω2

c2
εxxεzz −

ω2

c2
εxzεzx − kxkzεxz − kxkzεzx = 0 (3.118)

as εzx = εxz

−k2
zεzz − k2

xεxx +
ω2

c2
(εxxεzz − ε2xz)− 2kxkzεxz = 0 (3.119)

ω2(εxxεzz − ε2xz)− c2k2
zεzz − c2k2

xεxx − 2c2kxkzεxz = 0 (3.120)

3.0.1 MAGNETIZED DUST

Firstly we will consider the case in which the inertia of electron is ignored as compared to ions and

dust particles. Dust particles are considered magnetized as they are highly charged then the frequency

ranges are considered as:

ω2 � ω2
cd, (3.121)

ω2
cd � ω2

ci, (3.122)
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ω2 � V ′2Fjk2
z , (3.123)

and

ω2 � ω2
ci. (3.124)

After using these conditions the simplified form of components of medium response function be-

come:

εxx = 1− ω2
pe

ω2G−ω2
ce
− ω2

pi

ω2−ω2
ci
− ω2

pd

ω2−ω2
cd

using condition ω2 � ω2
ci and ω2 � ω2

cd

εxx = 1−
ω2
pe

ω2[ ω
2−V ′2Fe (k2)

(ω2−V ′2Fe (k2
z))

]− ω2
ce

+
ω2
pi

ω2
ci

+
ω2
pd

ω2
cd

(3.125)

as k2 = k2
x + k2

z and ω2 � V ′2Fek2
z using these conditions in above the above relation yields:

εxx = 1−
ω2
pe

ω2[
−V ′2Fe (k2

x)−V ′2Fe (k2
z)

(−V ′2Fe (k2
z))

]− ω2
ce

+
ω2
pi

ω2
ci

+
ω2
pd

ω2
cd

(3.126)

εxx = 1−
ω2
pe

[
−ω2V ′2Fe(k2

x)−ω2V ′2Fe(k2
z)

(−V ′2Fe (k2
z))

]− ω2
ce

+
ω2
pi

ω2
ci

+
ω2
pd

ω2
cd

. (3.127)

As kz � kx, so we can neglect the term ω2V ′2Fe(k2
x).Also from ω2 � ω2

ci, we can infer that

ω2 � ω2
ce. So above relation becomes:

εxx = 1 +
ω2
pe

ω2
ce

+
ω2
pi

ω2
ci

+
ω2
pd

ω2
cd

. (3.128)

Also;

εxz = − V ′2Feω2
pekxkz

Fω2(ω2G−ω2
ce)

By using values of F and G in the above relation, we get

εxz = −
V ′2Feω2

pekxkz

(1− V ′2Fj

ω2 (k2
z))ω2(ω2[ ω2−V ′2Fe (k2)

(ω2−V ′2Fe(k2
z)) ]− ω2

ce)
(3.129)

or
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εxz = −
V ′2Feω2

pekxkz

ω2 − V ′2Fjk2
z)(ω2[ ω

2−V ′2Fe (k2)
(ω2−V ′2Fe (k2

z))
]− ω2

ce)
(3.130)

Using the privously mentioned conditions, we get

εxz = −
V ′2Feω2

pekxkz

−V ′2Fjk2
z([
−ω2V ′2Fe (k2

z)−ω2V ′2Fe (k2
x)

(−V ′2Fe (k2
z))

]− ω2
ce)
. (3.131)

By using the same reasoning as above, we get

εxz = −
ω2
pekx

ω2
cekz

. (3.132)

Now zz-component of the tensoris given as εzz = 1− ω2
pe

ω2F (1 +
V ′4Fek2

xk
2
z

ω2F (ω2G−ω2
ce)

)− ω2
pi

ω2 −
ω2
pd

ω2 .

substituting the value of "F" and "G" in the above relation we get

εzz = 1−
ω2
pe

ω2(1− V ′2Fj

ω2 (k2
z))

(1 +
V ′4Fek2

xk
2
z

ω2(1− V ′2Fe
ω2 (k2

z))(ω2[ ω
2−V ′2Fe (k2)

(ω2−V ′2Fe (k2
z))

]− ω2
ce)

)−
ω2
pi

ω2
−
ω2
pd

ω2
(3.133)

After using the conditions, we finally get:

εzz = 1 +
ω2
pe

V ′2Fe(k2
z)

+
ω2
pek

2
x

ω2
cek

2
z

−
ω2
pi

ω2
−
ω2
pd

ω2
. (3.134)

Now by using values from equation (3.112), (3.116) and (3.118) in equation (3.103)

(3.103) is given by ω2(εxxεzz − ε2xz) − c2k2
zεzz − c2k2

xεxx − 2c2kxkzεxz = 0 now using values will

give us:

ω2((1 +
ω2
pe

ω2
ce

+
ω2
pi

ω2
ci

+
ω2
pd

ω2
cd

)(1 +
ω2
pe

V ′2Fe(k2
z)

+
ω2
pek

2
x

ω2
cek

2
z

−
ω2
pi

ω2
−
ω2
pd

ω2
)− (−

ω2
pekx

ω2
cekz

)2)−

c2k2
z(1 +

ω2
pe

V ′2Fe(k2
z)

+
ω2
pek

2
x

ω2
cek

2
z

−
ω2
pi

ω2
−
ω2
pd

ω2
)−

c2k2
x(1 +

ω2
pe

ω2
ce

+
ω2
pi

ω2
ci

+
ω2
pd

ω2
cd

)− 2c2kxkz(−
ω2
pekx

ω2
cekz

) = 0 (3.135)

Now by taking ω2
pe

ω2
ce

=
ρ2
Fe

λ2
DFe

and ω2
pi

ω2
ci

+
ω2
pd

ω2
cd

= c2

V 2
Ad
,

The above equation is modified as:
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ω2((1 +
ρ2
Fe

λ2
DFe

+
c2

V 2
Ad

)(1 +
1

λ2
DFek

2
z

+
ρ2
Fek

2
x

λ2
DFek

2
z

−
(ω2
pi + ω2

pd)

ω2
)− (

ρ4
Fek

2
x

λ4
DFek

2
z

))−

c2k2
z(1 +

1

λ2
DFek

2
z

+
ρ2
Fek

2
x

λ2
DFek

2
z

−
(ω2
pi + ω2

pd)

ω2
)−

c2k2
x(1 +

ρ2
Fe

λ2
DFe

+
c2

V 2
Ad

) + 2c2kxkz
ρ2
Fek

2
x

λ2
DFek

2
z

= 0. (3.136)

After simplification we get:

ω2 +
ω2

λ2
DFek

2
z

+
ω2ρ2

Fek
2
x

λ2
DFek

2
z

− (ω2
pi + ω2

pd) +
ω2ρ2

Fe

λ2
DFe

+
ω2ρ2

Fe

λ4
DFek

2
z

+
ω2ρ4

Fek
2
x

λ4
DFek

2
z

− ρ2
Fe

λ2
DFe

(ω2
pi + ω2

pd) +
ω2c2

V 2
Ad

+
ω2c2

V 2
Adλ

2
DFek

2
z

+
ω2c2ρ2

Fek
2
x

V 2
Adλ

2
DFek

2
z

− c2

V 2
Ad

(ω2
pi + ω2

pd)−
ω2ρ4

Fek
2
x

λ4
DFek

2
z

− c2k2
z −

c2

λ2
DFe

− c2ρ2
Fek

2
x

λ2
DFe

+
c2k2

z

ω2
(ω2
pi + ω2

pd)

− c2k2
x −

c2ρ2
Fek

2
x

λ2
DFe

− c4k2
x

V 2
Ad

+
2c2ρ2

Fek
2
x

λ2
DFe

= 0. (3.137)

After multiplying the above equation with ω2λ2
DFeV

2
Adk

2
z

c2 and neglecting some terms as kx � kz

The above equation reduces to:

ω4(1 + λ2
DFek

2
z + ρ2

Fek
2
x −

V 2
Ad

c2
(ρ2
Fek

2
x)

ρ2
Fe

λ2
DFe

)+

ω2(−(V 2
Adk

2
z)(1 + λ2

DFek
2
z − ρ2

Fek
2
x) + λ2

DFek
2
z(ω2

pi + ω2
pd + c2k2

x))

+ λ2
DFeV

2
Adk

4
z(ω2

pi + ω2
pd) = 0. (3.138)

For λ2
DFek

2
z � 1, ρ2

Fek
2
x � 1, V 2

Ad � c2, ω2
pd � ω2

pi the simplified form of coefficients "a", "b" and

"c" can be written as :

a ≈ 1

b ≈ −V 2
Adk

2
z + λ2

DFek
2
z(ω2

pi + c2k2
x)

c ≈ V 2
Adλ

2
DFek

4
zω

2
pi

Equation (1.138) can be solved by using the quadratic formula and also implanting the above

conditions, results will give quantum modified relation of dust shear Alfven waves. From quadratic

formula,
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ω2 =
−b±

√
b2 − 4ac

2a
(3.139)

ω2 =
(V 2
Adk

2
z + λ2

DFek
2
z(ω2

pi + c2k2
x))±

√
(V 2
Adk

2
z + λ2

DFek
2
z(ω2

pi + c2k2
x))2 − 4(1)(V 2

Adλ
2
DFek

4
zω

2
pi)

2(1)

(3.140)

ω2 =
k2
z(V 2

Ad + λ2
DFe(ω

2
pi + c2k2

x))± [V 4
Adk

4
z + λ4

DFek
4
z(ω2

pi + c2k2
x)2 + 2V 2

Adλ
2
DFek

4
z(ω2

pi + c2k2
x)− 4V 2

Adλ
2
DFek

4
zω

2
pi]

1
2

2

(3.141)

ω2 =
k2
z(V 2

Ad + λ2
DFe(ω

2
pi + c2k2

x))± [V 4
Adk

4
z + λ4

DFek
4
z(ω4

pi + c4k4
x + 2ω2

pic
2k2
x) + 2V 2

Adλ
2
DFek

4
zω

2
pi + 2V 2

Adλ
2
DFek

4
zc

2k2
x − 2V 2

Adλ
2
DFek

4
zω

2
pi − 2V 2

Adλ
2
DFek

4
zω

2
pi]

1
2

2
(3.142)

ω2 =
k2
z(V 2

Ad + λ2
DFe(ω

2
pi + c2k2

x))± [V 4
Adk

4
z + λ4

DFek
4
zω

4
pi + λ4

DFek
4
zc

4k4
x + 2λ4

DFek
4
zω

2
pic

2k2
x + 2V 2

Adλ
2
DFek

4
zω

2
pi + 2V 2

Adλ
2
DFek

4
zc

2k2
x − 2V 2

Adλ
2
DFek

4
zω

2
pi − 2V 2

Adλ
2
DFek

4
zω

2
pi]

1
2

2
(3.143)

After completing the square and cancelling the terms we get;

ω2 =
k2
z(V 2

Ad + λ2
DFe(ω

2
pi + c2k2

x))± [V 4
Adk

4
z + λ4

DFek
4
z(c2k2

x − ω2
pi)

2 + 2V 2
Adλ

2
DFek

4
z(c2k2

x − ω2
pi) + 4ω2

pic
2k2
xλ

2
DFek

4
z ]

1
2

2
(3.144)

ω2 =
k2
z(V 2

Ad + λ2
DFe(ω

2
pi + c2k2

x))± [k4
z(V 2

Ad + λ2
DFe(c

2k2
x − ω2

pi))
2 + 4ω2

pic
2k2
xλ

2
DFek

4
z ]

1
2

2
. (3.145)

Now for the real frequency;

ω2 =
k2
z(V 2

Ad + λ2
DFe(ω

2
pi + c2k2

x)) + [k4
z(V 2

Ad + λ2
DFe(c

2k2
x − ω2

pi))
2 + 4ω2

pic
2k2
xλ

2
DFek

4
z ]

1
2

2
(3.146)

as we are considering that λ2
DFe � 1 so the term in discriminant can be neglected and simplified

dispersion relation can be obtained as:

52



ω2 =
k2
z(V 2

Ad + λ2
DFe(ω

2
pi + c2k2

x)) + [k4
z(V 2

Ad + λ2
DFe(c

2k2
x − ω2

pi))
2]

1
2

2
(3.147)

ω2 =
k2
z(V 2

Ad + λ2
DFe(ω

2
pi + c2k2

x)) + [k2
z(V 2

Ad + λ2
DFe(c

2k2
x − ω2

pi))]

2
(3.148)

ω2 =
k2
zV

2
Ad + k2

zλ
2
DFeω

2
pi + k2

zλ
2
DFec

2k2
x + k2

zV
2
Ad + k2

zλ
2
DFec

2k2
x − k2

zλ
2
DFeω

2
pi

2
(3.149)

After canceling the terms we get:

ω2 =
2k2
zV

2
Ad + 2k2

zλ
2
DFec

2k2
x

2
(3.150)

ω2 = k2
zV

2
Ad + k2

zλ
2
DFec

2k2
x (3.151)

For electromagnetic waves, quantum effects depend upon the geometry and do not play any role

for parallel propagation. So the standard dispersion relation can be written as:

ω2 = k2
zV

2
Ad (3.152)

or

ω = kVAd (3.153)

For general K if we choose h̄ = 0 or TFe = 0 we get;

γj =
h̄2k2

4m2
jV

2
Fj

= 0 (3.154)

Also as; V ′Fj = VFj(1 + γj)
1
2

V ′Fj = VFj(1 + 0)
1
2 (3.155)
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V ′Fj = VFj (3.156)

or

V ′Fe = VFe (3.157)

Also replacing λDFe by λDe and ρFe by ρe

now equation (3.135) can be written as:

ω2 = k2
zV

2
Ad[1 +

c2k2
xλ

2
DFe

V 2
Ad

]. (3.158)

By taking ρ2
sd = ( c2

V 2
Ad

)λ2
DFe, our final result become,

ω2 = k2
zV

2
Ad[1 + ρ2

sdk
2
x]. (3.159)

3.0.2 UNMAGNETIZED DUST

Now we will choose the frequency range ω2
cd � ω2 � ω2

ci and ω2 � V ′2Fek
2
z . Using these conditions

components of response function comes out to be, as,

εxz = − V ′2Feω
2
pekxkz

Fω2(ω2G−ω2
ce)
.

Using the values of "F" and "G", we get

εxz = −
V ′2Feω

2
pekxkz

(1− V ′2Fj
ω2 (k2

z))ω2(ω2[ ω
2−V ′2Fe(k2)

(ω2−V ′2Fe(k2
z)) ]− ω2

ce)
(3.160)

or

εxz = −
V ′2Feω

2
pekxkz

ω2 − V ′2Fjk2
z)(ω2[ ω

2−V ′2Fe(k2)
(ω2−V ′2Fe(k2

z)) ]− ω2
ce)

(3.161)

After using conditions: ω2 � V ′2Fek
2
z and k2

x � k2
z we are left with,

εxz = −
V ′2Feω

2
pekxkz

−V ′2Fjk2
z(ω2 − ω2

ce)
, (3.162)

or
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εxz = −
ω2
pekx

(ω2 − ω2
ce)kz

(3.163)

Using condition ω2 � ω2
ce in the above expression, we get

εxz = −
ω2
pekx

(ω2
ce)kz

. (3.164)

Also, εxx = 1− ω2
pe

ω2G−ω2
ce
− ω2

pi

ω2−ω2
ci
− ω2

pd

ω2−ω2
cd

using condition ω2 � ω2
ci and ω2

cd � ω2

εxx = 1−
ω2
pe

ω2[ ω
2−V ′2Fe(k2)

(ω2−V ′2Fe(k2
z)) ]− ω2

ce

+
ω2
pi

ω2
ci

+
ω2
pd

ω2
. (3.165)

as k2 = k2
x + k2

z and ω2 � V ′2Fek2
z the above relation becomes

εxx = 1−
ω2
pe

ω2[
ω2−V ′2Fe (k2

x)−V ′2Fe (k2
z)

(−V ′2Fe (k2
z))

]− ω2
ce

+
ω2
pi

ω2
ci

+
ω2
pd

ω2
(3.166)

εxx = 1−
ω2
pe

ω2[
−V ′2Fe (k2

x)−V ′2Fe (k2
z)

(−V ′2Fe (k2
z))

]− ω2
ce

+
ω2
pi

ω2
ci

+
ω2
pd

ω2
(3.167)

εxx = 1−
ω2
pe

[
−ω2V ′2Fe (k2

x)−ω2V ′2Fe (k2
z)

(−V ′2Fe (k2
z))

]− ω2
ce

+
ω2
pi

ω2
ci

+
ω2
pd

ω2
(3.168)

as kz � kx so we can neglect the term ω2V ′2Fe(k
2
x). Also from ω2 � ω2

ci, we can infer that

ω2 � ω2
ce so the above relation now becomes:

εxx = 1 +
ω2
pe

ω2
ce

+
ω2
pi

ω2
ci

+
ω2
pd

ω2
. (3.169)

Now zz-component of the dielectric tensor is given as:

εzz = 1− ω2
pe

ω2F (1 +
V ′4Fek2

xk
2
z

ω2F (ω2G−ω2
ce)

)− ω2
pi

ω2 −
ω2
pd

ω2 ,

εzz = 1−
ω2
pe

ω2(1− V ′2Fe
ω2 (k2

z))
(1 +

V ′4Fek2
xk

2
z

ω2(1− V ′2Fe
ω2 (k2

z))(ω2[ ω
2−V ′2Fe (k2)

(ω2−V ′2Fe (k2
z))

]− ω2
ce)

)−
ω2
pi

ω2
−
ω2
pd

ω2
(3.170)

After using conditions, we are left with :

εzz = 1 +
ω2
pe

V ′2Fe(k
2
z)

+
ω2
pek

2
x

ω2
cek

2
z

−
ω2
pi

ω2
−
ω2
pd

ω2
. (3.171)
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Now by using values from eq. (3.164), (3.169) and (3.171) in eq. (3.120), we get

ω2((1 +
ω2
pe

ω2
ce

+
ω2
pi

ω2
ci

−
ω2
pd

ω2
)(1 +

ω2
pe

V ′2Fe(k2
z)

+
ω2
pek

2
x

ω2
cek

2
z

−
ω2
pi

ω2
−
ω2
pd

ω2
)− (−

ω2
pekx

ω2
cekz

)2)−

c2k2
z(1 +

ω2
pe

V ′2Fe(k2
z)

+
ω2
pek

2
x

ω2
cek

2
z

−
ω2
pi

ω2
−
ω2
pd

ω2
)−

c2k2
x(1 +

ω2
pe

ω2
ce

+
ω2
pi

ω2
ci

−
ω2
pd

ω2
)− 2c2kxkz(−

ω2
pekx

ω2
cekz

) = 0. (3.172)

Now taking ω2
pe

ω2
ce

=
ρ2
Fe

λ2
DFe

and ω2
pi

ω2
ci

+
ω2
pd

ω2
cd

= c2

V 2
Ad
,

the above equation is modified as:

ω2((1 +
ρ2
Fe

λ2
DFe

+
c2

V 2
Ad

−
ω2
pd

ω2
)(1 +

1

λ2
DFek

2
z

+
ρ2
Fek

2
x

λ2
DFek

2
z

−
(ω2
pi + ω2

pd)

ω2
)− (

ρ4
Fek

2
x

λ4
DFek

2
z

))−

c2k2
z(1 +

1

λ2
DFek

2
z

+
ρ2
Fek

2
x

λ2
DFek

2
z

−
(ω2
pi + ω2

pd)

ω2
)−

c2k2
x(1 +

ρ2
Fe

λ2
DFe

+
c2

V 2
Ad

−
ω2
pd

ω2
) + 2c2kxkz

ρ2
Fek

2
x

λ2
DFek

2
z

= 0 (3.173)

After simplification we get:

ω2 +
ω2

λ2
DFek

2
z

+
ω2ρ2

Fek
2
x

λ2
DFek

2
z

− (ω2
pi + ω2

pd) +
ω2ρ2

Fe

λ2
DFe

+
ω2ρ2

Fe

λ4
DFek

2
z

+
ω2ρ4

Fek
2
x

λ4
DFek

2
z

− ρ2
Fe

λ2
DFe

(ω2
pi + ω2

pd) +
ω2c2

V 2
A

+
ω2c2

V 2
Aλ

2
DFek

2
z

+
ω2c2ρ2

Fek
2
x

V 2
Aλ

2
DFek

2
z

− c2

V 2
A

(ω2
pi + ω2

pd)− ω2
pd −

ω2
pd

λ2
DFek

2
z

−
ω2
pdρ

2
Fek

2
x

λ2
DFek

2
z

+
ω2
pd

ω2
(ω2
pi + ω2

pd)−

ω2ρ4
Fek

2
x

λ4
DFek

2
z

− c2k2
z −

c2

λ2
DFe

− c2ρ2
Fek

2
x

λ2
DFe

+
c2k2

z

ω2
(ω2
pi + ω2

pd)

− c2k2
x −

c2ρ2
Fek

2
x

λ2
DFe

− c4k2
x

V 2
Ad

+
c2k2

xω
2
pd

ω2
+

2c2ρ2
Fek

2
x

λ2
DFe

= 0. (3.174)

After multiplying the above equation with ω2λ2
DFeV

2
Adk

2
z

c2 and neglecting some terms as kx � kz

the above equation reduces to:
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ω4((1 +
V 2
A

c2
)1 + λ2

DFek
2
z + ρ2

Fek
2
x −

ω2
peV

2
A

ω2
cec

2
(ρ2
Fek

2
x))+

ω2(−(V 2
Ak

2
z)(1 + λ2

DFek
2
z) + ω2

dlh(1 + λ2
DFek

2
z + ρ2

Fek
2
x))

+ c2k2
xλ

2
DFek

2
z(1 +

V 2
A

c2
− V 2

Aρ
2
Fe

c2λ2
DFe

) + λ2
DFek

2
zω

2
pi(1 +

V 2
A

c2
+
ω2
pd

ω2
pi

) + λ2
DFek

2
zω

2
ciω

2
pd + V 2

Ak
2
zω

2
pi(1 +

ω2
pd

ω2
pi

+

ω2
pdk

2
x

ω2
pik

2
z

+
ω4
pd

c2k2
z

ω2
pi) = 0. (3.175)

here,

a = (1 +
V 2
A

c2 )1 + λ2
DFek

2
z + ρ2

Fek
2
x −

ω2
peV

2
A

ω2
cec

2 (ρ2
Fek

2
x),

b = (−(V 2
Ak

2
z)(1 + λ2

DFek
2
z) + ω2

dlh(1 + λ2
DFek

2
z + ρ2

Fek
2
x))

+ c2k2
xλ

2
DFek

2
z(1 +

V 2
A

c2 −
V 2
Aρ

2
Fe

c2λ2
DFe

) + λ2
DFek

2
zω

2
pi(1 +

V 2
A

c2 +
ω2
pd

ω2
pi

),

and

c = λ2
DFek

2
zω

2
ciω

2
pd + V 2

Ak
2
zω

2
pi(1 +

ω2
pd

ω2
pi

+
ω2
pdk

2
x

ω2
pik

2
z

+
ω4
pd

c2k2
z
ω2
pi).

For λ2
DFek

2
z � 1, ρ2

Fek
2
x � 1, V 2

Ad � c2, ω2
cd � ω2 � ω2

ci the simplified form of coefficients "a",

"b" and "c" can be written as :

a ≈ 1,

b ≈ −[V 2
Adk

2
z + ω2

dlh + c2k2
xλ

2
DFek

2
z + λ2

DFek
2
zω

2
pi],

and

c ≈ λ2
DFek

2
z [ω2

ciω
2
pd + V 2

Ak
2
zω

2
pi].

Equation (3.175) can be solved by using the quadratic formula and also implanting above condi-

tions, results will give quantum modified relation of dust shear Alfven waves. From quadratic formula

ω2 =
−b±

√
b2 − 4ac

2a
(3.176)

By substituting values of "a", "b" and "c",we get

ω2 =
(V 2
Ak

2
z + ω2

dlh + λ2
DFek

2
zω

2
pi + λ2

DFek
2
zc

2k2
x ±

√
(V 2
Adk

2
z + ω2

dlh + λ2
DFek

2
zω

2
pi + λ2

DFek
2
zc

2k2
x)2 − 4(1)λ2

DFek
2
zω

2
ciω

2
pd − 4λ2

DFek
4
zV

2
Aω

2
pi

2(1)

(3.177)
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ω2 =
(V 2
Adk

2
z + ω2

dlh + λ2
DFek

2
zω

2
pi + λ2

DFek
2
zc

2k2
x ±

√
(V 4
Ak

4
z + ω4

dlh + λ4
DFek

4
zω

4
pi + λ4

DFek
4
zc

4k4
x + 2V 2

Ak
2
zω

2
dlh + 2V 2

Ak
4
zc

2k2
xλ

2
DFe + 2V 2

Ak
4
zλ

2
DFeω

4
pi + 2ω2

dlh + 2ω2
dlhλ

2
DFek

2
zω

2
pi + 2c2k2

xλ
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After solving, we get,
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for real frequency and neglecting the last term as λ2
DFek

2
z � 1 we get,
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after cancelling the terms we get,
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ω2 = V 2
Ak
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When quantum effect is eliminated by taking kx = 0, then standard dispersion relation becomes,

ω2 = V 2
Ak

2
z + ω2

dlh (3.184)

here ω2
dlh = ω2

pd(
ω2
ci

ω2
pi

) is the lower hybrid frequency.

For the dispersion relation of dust shear alfven wave in classical plasma, again considering eq.(1.83)
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Ak

2
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2
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2
z (3.185)
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After using the values of ω2
dlh and defining, we get ρ2
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]. (3.187)
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4. CONCLUSION

In this chapter, we will graphically represent dispersion relation of dust shear Alfven waves in quantum

plasmas, We will plot ω vs k for eq. (3.151) and eq. (3.183). The typical parameter in interstellar

and magnetospheric environments are B0 = 106G,mi = mp, Zd =
(noi−nop)

nop
.

In GRAPH 1 we have considered magnetized dust to be at θ = 5. Also, qd = Zdeesu, noe =

1027cm−3, TFe = (3pi2noe)
2
3

h̄2

2mekB
,m_dmi=109 , noi = 1.001× 1027cm−3, nod = 10−6 × noicm−3.

For magnetized dust k = 0− 3.25cm−1 and for unmagnetized dust k = 0− 5.6× 104cm−1, when

there is no dust noe=noi, we will be using standard values of me and mp, plank constant, Boltzmann

constant, electron charge and ion charge in cgs system.



4.1 CASE 1

In fig(1) the graph is plotted between ω and k for the case of magnetized dust. It shows the comparison

of quantum and non-quantum dust shear Alfven waves. While considering the propagation of waves

particles quantization has great importance. This fact is clarified from fig(1). In dust shear Alfven

wave in quantum plasma phase speed is much larger. Differences will increase for small wavelengths.

The Alfven speed of ions is greater than the speed of dust particles due to the inertia, therefore phase

speed of shear Alfven wave is smaller for dust and is larger for ion a quantum dusty magnetoplasma.

Now an angle variation is made between the propagation vector and magnetic field. As we increase

the angle, beyond some critical value, the wave goes to lower frequencies as shown in fig (2) and fig

(3).
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4.2 CASE 2

In case of unmagnetized dust, Fig (4) elaborates the behavior of quantum modified shear Alfven waves

when quantum effects are incorporated and in the presence of dust, frequency is enhanced at long

wavelengths (smaller k). Similar response has been observed by quantized and no quantized medium.
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When small wavelengths are considered i.e. larger K value, quantum behaviour becomes significant.

Fig (5) shows the effects of dust dynamics at large spatial scale lengths. Wave motion is also affected

physically due to the presence of dust.
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At larger K i.e. small wavelengths dust effects are not visible and the wave does not observe the

pressure of dust and therefore with or without dust medium will show the same behaviour.
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Fig(6) and fig(3) gives us the same description.

This dust modified shear Alfven waves is a natural mode of quantum dusty magnetoplasma which

consists of electrons, ions, and dust in the presence of a static magnetic field.

As we have already considered that electrons are quantized and magnetized while ions are magne-

tized and dust particles are magnetized/unmagnetized in quantum plasmas.

As pure Alfven waves propagate parallel to a magnetic field and are not affected in quantized

plasmas, but when low frequency shear Alfven waves propagate at small angles they get modified by

quantum effects. In this thesis, we have investigated the electromagnetic shear Alfven waves in quan-

tum dusty magnetoplasma. The new frequency involves the effects of magnetized, quantum electrons,

magnetized ions, and dust particles, these conditions limit the propagation of electromagnetic waves

in quantum dusty plasma environments in the presence of an ambient (static) magnetic field.

Parametric cascading of long-wavelength electromagnetic waves can produce electromagnetic noise

in emission spectra from space plasma environments. Auroral Kilo-metric radiation and earthbound
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dust plasma clouds observed at earth polar summer meso may also be explained in terms of nonlinear

interactions of large amplitudes low-frequency electromagnetic waves.
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