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Abstract

Many generalization of fractional operator have been introduced. In this thesis we study
one of these generalization called ¢-fractional operator. We introduce the generalized
Mellin transform called &-Mellin transform for the generalized fractional operators. We
discuss some properties of £&-Mellin transform. £-Mellin transform of various fractional

integral and derivative have been established.
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Chapter 1

Introduction to fractional calculus

In the start of the chapter we review some spacial functions that will be helpful in
upcoming chapters. Next we discuss literature about fractional calculus. Some impor-
tant fractional operators Riemann-Liouville (RL), Caputo, Hadamard, Hadamard-type
and Weyl are studied. Also we discuss some important properties of these operator.
After this we review the generalization of these fractional operator called ¢-fractional

operators and their properties.

1.0.1 Euler’s gamma function

Euler’s gamma function was introduced by Leonhard Euler to generalize the factorial
(the product of a positive integer less than or equal to a given positive integer) to non
integer values. It plays an essential role in field of mathematics and was also studied by
Legendre, Gauss, Gudermann, Liouville and many others. It belongs to the category
of special transcendental functions. It also appears in various areas of mathematics

such as integration, number theory, hyper-geometric series etc.

Definition 1.0.1. The Euler’s gamma function I : |0, 00 — R is defined as
INa) = / u® " exp(—u)du, a >0, (1.1)
0

where u 1s a dummy variable.



Here are some properties of Gamma function such as

I'(1) =1,
I'l+a) =al'(a).

We can identify gamma function for negative values of « as

F(a):M, a>—1, a#0.

«

For different values of o we get I'(2) = 11, I'(3) =2, I'(4) = 3!,-- - I'(a) = (a — 1)!

which shows that gamma function is the generalization of factorial function.

1.0.2 Beta function

Now we discuss the spacial type of function related to gamma function which occurs in
computation of many definite integrals. The Beta function B(m;, ms) was developed
by Legendre, Whittaker and Watson in 1990. Beta function is known as the Eulerian
integral of first kind and it can be defined as:

1
B(my,mg) = / u™ (1 — )™ du. (1.2)
0
Relation of gamma function with beta function for positive my, mo is
['(m1)I'(ms)
B(my,my) = — 22 1.3
(1, m2) [(my + mo) (13)

1.0.3 Mittag-LefHer function

In 1903, first time classical Mittag-Leffler function E,(u) was introduced by Magnus
Gosta Mittag-LefHler in the form of special function as

Z Tlam 1) a € C, such that Re(a) > 0. (1.4)

m=0
After that Wiman [3] introduced the two-parameter Mittag-Leffler function E, s(u) as

m

mZ:D Tlam+9)’ a € C, such that Re(a) > 0. (1.5)



1.1 Fractional operators

In this section we discuss some important definitions and properties of fractional op-
erators. First useful definition of fractional integral and derivative was introduced by
Riemann and Liouville. After that many definitions of fractional integral and deriva-
tive were introduced by different mathematician [3]. For instant Caputo and Hadamard

operators are more papular in literature.

Lemma 1.1.1. Let f: [a, b — R be a continous function and let F : [a, b] — R, be
defined by

F(u) :/ f(s)ds.
Then, F is differentiable and
F'=f. (1.6)

Notations

a) We denote differential operator <+ by D that maps a differentiable function on
p au Y p

to its derivative, i.e
_4 _

Df(w) = 5 = f'(u).

(b) We denote integral operator by I, that maps a integrable function f defined on

la, b], onto its primitive centered at a, i.e.
Liw= [ f)s

(c) For nth order differential and integral operator we use the symbols D" and I}
respectively, where n € N. i.e. D" := DD" ! and I" := [,I" ! for n > 2. Eq

(1.6) can be written in our notation as
DI.f = f. (1.7)
Similarly,

D2[§ — D(DIa)Iaf; Dm+n — DmDn



Making use of (1.7), we have
DI f = f, for neN.

Lemma 1.1.2. For u € [a,b] and m € N, we have a Riemann integrable function f
defined on |a, b|

1) = gy [ = s

(m —
Proof. We would write

Lit) = [ Fs)as

and the 2nd iterate becomes

= [ [ fedsids,

By interchanging the order of integration, we get

I?f(u) = /au /Slu f(s1)dsads;.

Because f(s1) is independent of sy, therefore we get

B = [ 0 [ dsads = [ = 95(s)as

1

Similarly, we can prove that

B =5 [ =92 fs)s

and by integrating m-times, we get

I ) = ——

Now replacing m by —m, we get

DI f(u) = I, f() = 1m) /“( 1) 4

(- u—s)mtl
Above expression is the definition of fractional derivative. But for m > —1 this is an

improper integral for (s — u) — 0 and integral diverges for m > 0. And the improper

4



integral converges for m € (—1,0). Integral also converges for negitive values of m.

Hence it is fractional integral. If b be the lower limit then we can write the above

expression as,
1 b f(s)
Dy fu = .
= o, Gt

Lemma 1.1.3. Let f € C?[a,b] with o, 3 € N s.t a > . Then
DPf = D[P,

Proof. Since
DIof(u) = f(u),
it implies
D127 f(u) = f(u).
Appling operator D, S-times on both sides, we get
DD P17 f(u) = D’ f(u)
D> PP f(u) = DP f(x), o D*P = D*DP

DI~ f(u) = D’ f (u).

(1.8)

If 5 is replaced by any m > 0, relation (1.8) is valid for particular class of functions

unless @ — > 0. And this leads to the definition of RL-differential operator.

1.1.1 Riemann-Liouville (RL) fractional integral

O

Definition 1.1.4. An integrable function f defined on Lila,b]. For v > 0, the

left /right-sided RL-fractional integral of a function f are defined as

I 0) = g [ 9 s

(a
IS = [ =0T s

(cv

(1.9)

(1.10)



Theorem 1.1.1. Let ay,a > 0 and ¢ € Ly[a,b]. Then, almost every where
I g =102 g, (1.11)
hold on |a,b]. If ¢ € Cla,b] or ay + ag > 1, then (1.11) holds every where on [a,b].

Proof. We have

1 u ot t _Ta2_1 o
it J, (00 [ e

By Fubin’s theorem, we have

[ 2o (u) =

600 = ey |, [ w0 et
! o(7) / (u — )1 (t — 7)*2 L dtdr.

()T (az) /a
The substitution t = 7 + s(u — 7) = dt = ds(x — 7) yields

I 000) = g [ o) [ =)= ) sl = o) = s

2)
1 “ a1tas—1 ! — s a1*1802*1 sdr
:m/a $(7)(u = 7) /0<1 ) dsdr.

In view of (1.3), we get

o) = s | o=y
= 19 ().
O
Corollary 1.1.5. By the assumption of above theorem we have
I 22 = 12210 6. (1.12)
Example. 1: Let f(u) = (u — v)" for some n > —1 and m > 0, then
™ fu) = %(u ey (1.13)

6



Proof. From eq (1.21), we have
I f / f(s)(u—s)"ds
= T(m)/ (5 —¢)"(u — s)™ 'ds

e \ .
:W/C(S_C) (u—c—s+c)" ds

:ﬁ/cu(s—c)"(u—c)m_l (1— =

—C

Using change of variable i
u—c

=0

1

1) = ey [ (o= )= "0 = 0 = e

1 b n m+n—1+1 —v m—1 v
= W/c v (u — ¢) (1 )"
= —(U_C)Wm uv" — )"
-y -

(u—c)™™ T(n+ 1)T'(m)
I'(m) T(m+n+1)

. F(n + 1) m-+n
- F(m—i—n—i—l)(u_c) '

[]

Example. 2: We compute fractional integral I§ of a function f(u) = exp(nu),

where 1, u > 0.

For a € N we have I f(u) = n~*exp(nu) with n > 0. For j ¢ N we use the series

of exponantial function

~J



Making use of (1.13), we have

7 INGER A
F'G+1) I'G+a+1)

¢

15 f (u)

7=0

puite
F'G+a+1)
(u)*e
F'j+a+1l)
Example. 3: We compute fractional integral I§ of a function f(u) = sin(Au), where

A, a > 0.

NE

.
Il
=)

—= ,’7—06

Using the series expension of sin(u), we have
Au)? - (Au)?

3! * 50
OO )\u 2j+1
Z (25 + 1)!

Jj=0

f(u) = sin(Au) = Au —

Applying [§ on both sides

2 )+t
B =15 3 G

Using (1.13), we get

NIHD(25+1+1)

Z (u)2j+1+a
= 27+ D)2 +1+14+«)
2.5

NZHIT(25 + 2)
(27 +DIN(2j + 2+ )

o Z )\2]+1 2] + 2) (u)2j+1+a
(27 +DIN(2j +2+ )

1 (/\u)2]+oz+l
B FZF(2j+a+1)'

Theorem 1.1.2. Let f be a continous function defined on [a,b], and f, be uniformly

( )2j+1+oz

convergent sequence. Then we have

(£ 1im fu(w)) = (lim 12 ()

n—oo

oo



1.e sequence of function converges uniformly.

Proof. We know that f be the limit of f,,. Consider

12 ful) — 12 f(u :‘ / o) = oy ds = s [ o= o
= ‘W W(s) — f(8) (u—s8)*"tds
1 o
STa)/ fals) = F()l(u — 5)°1ds
1 Oé
< w11 [ = as
1 _ )\
12 ()~ ()I_F(a)llfn fll =
<t flelo—ar
Expression on left side approches to zero as n — oco. O]

1.1.2 Riemann-Liouville (RL) fractional derivative

Definition 1.1.6. For k—1 < a <k, k= [a]. The left and right sided RL-fractional
derivative of a function f can be defined with the help of (1.8), as

"D 0 = (%) [ st s, (114)

k  pb
RLD?_f(u)z(—l)kﬁ (%) /u(s—u)’f—a—lf(s)ds. (1.15)

Lemma 1.1.7. Fork —1<a; <k, k= [ay] and ay € N such that as > a1, then we

have
Dot = D[22, (1.16)
Proof. Since ag > [y ], thus
Doz — DfaﬂDarfaﬂ[gz*faﬂ[a[aﬂfal
— D[al]IJ;al.'*al

i (63}
— D™,



]

Lemma 1.1.8. The differential operator D% f exists nearly all over the interval [a,b]

1
for [ € A'a,b] and a € [0,1]. Also D2f € L, forp € [LE] and

D¢ f(u) i —a) ( fa /f (u—s) “ds)

Proof. By using Eq (1. 16) we have
D2 f(u) =

1_adu/ O’ /‘f dﬁ (u—s)"*ds

Dwmo:fa%zﬁi/'Om e /L/f u—SQMM%
:Fﬂia)(u—a du/t/f u—SQM@).

By Fubini’s theorem, we have
apy_ L f(a) d [* . (u—v)™"
D“f(u)_f‘(l—&)((u—a)o‘—i_@/(z S ) l1—« dv).

Example. 4: Let f(u) = (u—c¢)* for A > —1 and k > 0,
then by (1.16) and (1.13), we have

)" %ds

DE f(u) = D*LIIFIF £ (u)

— DIk

F<>‘ + 1) ( . C)[k]—k—‘r)\
T((k] —k + A+ 1)

F'(A+1) _
IS WL U A

The expression on right side vanish when & — A € N because the degree [k] — (K — \)

of polynomial is less than the order of derivative [k]. That is

Di(u— )" =0 Vik>0ne{1,2 - [k]}.
And when k£ — X ¢ N, we get
F'(A+1) B
ki, A _ Ak
Di(u —c) F()\+1—k)(u c) .

10



1.1.3 The Caputo differential operator

There are certain impediments observed in utilizing the RL-differential operator for
presenting the present reality. RL-derivative of constant is not zero. So in 1967 another

definition is presented by Caputo to solve this problem.
Definition 1.1.9. Assume a > 0, and k = [«], then
“Dg f(u) = I;7*D" f(u)

[t
_/a R sy P s

The operator © D2 is said to be o order Caputo differential operator.

1.1.4 Hadamard fractional integral and derivative

The Hadamard fractional integral was introduced by Jacques Hadamard in 1892 and

stated as:

Definition 1.1.10. For a > 0 and the function f € Lyla,b]. Then the Hadamard

fractional integral operator is defined as

1 v Uy a—1 ds
Hrya _ _ —
19 f(u) = o) / (W) S, u>a, (1.17)
and if f € AC"[a,b] then the Hadamard derivative is defined as
1 d.r [ U\ k—a—1 ds
H na _ _ -
D“f(u)_F(k—a)(udu) /a (lns) f(s)s, (1.18)

where k—1 < a < k, k = [«]. Butzer et al. [19] added a simple modification in the
definition of Hadamard operators, to introduce a new concept known as Hadamard-type

fractional operator.

1.1.5 Hadamard-type fractional calculus

Definition 1.1.11. For u € [a,b] and k — 1 < a < k, left Hadamard-type fractional

integral and derivative of order o > 0 is defined as

M) = [ (5) (0D (119
HT Do f(y) = mf—__ca)(u%)%c / (%) (In g)’f“f(s%. (1.20)



1.2 Fractional integral and derivative operator with
respect to another function ¢

In this section we will study the generalization of classical fractional operators. For
1 d

&/(u) du
ator. We have discussed some important properties which will be useful for upcoming

the sake of simplicity we introduce the notation D, = for differential oper-

chapters.

Definition 1.2.1. Let o > 0, an integrable function f defined over [a,b](finite or
infinite) and & € Ca,b] an strictly increasing function s.t £'(u) # 0 for all u € [a, b].
Then the RL-fractional integrals of a function f with respect to another function € are

defined as
RL f(u) / €/() () — £(5))° 1 (s)ds, (1.21)

RLIo f(u) / €(5)(E(s) — E(u)™ " f(s)ds. (122)

And for k — 1 < a < k the RL-fractional derivative of a function f with respect to a

function & are defined as

RL Do = L L ku's u) — &(s))Fo f(s)ds
D3y e f(u) = ( )/af()(ﬁ() §(s)) f(s)ds,  (1.23)

m
=
==

k  rb
M0 f(0) = e (i) [ CONES) — ) s (12

If we put £(s) = s in (1.21) - (1.24) it will become standard RL-fractional integral and
derivative. And if we put £(u) = log(u) then it will become Hadamard frational integral

and derivative respectively.

Definition 1.2.2. [11] Let a > 0, [a, b] be infinite or finite interval, k = |a] + 1 and
f, & be two functions from C'la,b] where £(u) is an increasing function s.t & (u) # 0
for all u € [a,b]. Then the Caputo fractional derivative of a function f with respect to

12



another function & are defined as

“Dg o f(u) = 1078 <ﬁ%) f(u), (1.25)
Dy of (w) = I~ ?<—ﬁ%) flu). (1.26)
We may write (1.25) and (1.26) as
Dy of (u) = 172(De)* f(u), (1.27)
D () = 12 (Do) f(w). (1.25)

Definition 1.2.3. [12] Let o,t € C' with Re(a) > 0, an integrable function f defined
over [a, b] (finite or infinite) and & € C'[a,b] an increasing function s.t &' (u) # 0 for all
€ [a,b]. Then the Hadamard-type fractional integral of a function f with respect to

another function £ is defined as

"I = 5 | ' ( ;ifj))t (zog%)a_lﬂs)%ds. (1.20)

Definition 1.2.4. [20] Let f and g be piecewise continuous functions of &-exponential
order, defined on finite interval [0, S]. Then, the &-convolution of f and g is the function

f * ge defined by
o= [l ()] o,

_ / FIEHEE(S))g(s)E (5)ds. (1.31)

Theorem 1.2.1 (Convolution property). Let f and g be piecewise continuous func-

tions of &-exponential order, defined on finite interval [0, S]. Then
fu) * ge(u) = fe(u) * g(u). (1.32)

Proof. Making substitution £* (%) =vforv— c0ass — 0and v — 0 as
s

s — oo in the definition (1.30) we get,

s s = [ (e (520 ) o §ae
— gu) * fe(w)

13



1.3 Function spaces

In this section we will review some important function spaces that will be used in the

next chapters.

Definition 1.3.1. The space Ly(a,b), (1 < p < 00) consists of all Lebesque complex-

valued measurable functions k : [a,b] — C' for which ||k||, < oo, where

1
b 1
||k||p:( / |k<u>|ﬁdu)p, | <p< oo

and

lk]|co = ess sup |k(u)].

a<u<b

Definition 1.3.2. Let —co < a < b < 0o and m € Ny. We denote by C™a,b] a space
of funtions k which are m times continuously differentiable on [a,b] with the norm

m

kllom = I1Ele =D max|k(u)],
q=0 q

:Ouehﬂ
form =0, C°a,b] = Cla, b)].

Definition 1.3.3. The space X[ (a,b)(c € ;1 < p < o0), consists of all Lebesgue

measurable functions k : [a,b] — R for which HkHXCpg < 00, with norm defined as

b ! U -
el = ([ lethpsan) . (1.33)

and

1Bl xee, = ess sup [§(u)[k(w)]].

a<u<b

1
And the space ng(a, b) coincides with the Ly(a,b) space, when ¢ = —.
’ p

14



1.4 Weyl fractional integral and derivative with re-
spect to another function

Definition 1.4.1. For Re(a) € (0,1) and & be strictly increasing function with & (u) #
0. Then the Weyl fractional integral of f(u) with respect to a function &(u) is

Wl = s [ €0 =€) @ eds w0 (13
Above result can be rewritten as the Weyl transform of f(u) with respect to &, defined
by
W lf () = Felu—a) = o [ (60— @) F¢(5)ds
¢ ot - T(@) Ju '
Example. 5: If f(u) = e=%®) Re(a) > 0, we have
W[~ ®)] = G;Li(x). (1.35)

Using equation (1.34), we have.

aOé

Similarly, we can solve for a function f(u) = {(u)™* by using defination (1.34) and

making change of variable v = %, and properties of the beta function.
Welg(u)™] = W/u (&(s) = &(u)*7E(s) 7 (s)ds
a—p 1
— (5(;1/“();) /0 (U);L—oz—1<1 _ v)a_ldv
_ F(:u - Oé) a—p
=TT (§(u)*", 0 < Re(ar) < Re(p).



Example. 6: For a > 0, we have

W sin aé(u)] = a”“sin (a

W “[eos a§(u)] = a % cos (a

—~
[\

We know that from equation (1.35),

) —iaf(u)
Wga[eimg( )] ( za)a
—iag(u) aT aT
= W (C’os 5 ZSW?)
a”“[cos a&(u) cos a_27r — isin % cos a&(u)
— 1.cos %Sm a&(u) —sin a&(u) sin %]
=a <cos <a£(u) + %)) —1 (sin (ag(u) + %))
W leos ag(u) —isin af(u)] = a " cos (aé(u) + O;—W> —da”%sin (ag(u) + %)
We*[cos a(u)] = a™" cos (a&(u) + O;l>
W %[sin a§(u)] = a™*sin <a§(u) + ?) :

Theorem 1.4.1. For aq,as > 0, we have exponent law for &-type Weyl fractional

operator as

W [We 22 f(u)] = W2 [ f(w)).

§,—o0 &,—o0 £,—oo

Proof. Consider

Wl Ve "5 ] = frmiprey [ (€ =€) [ (et =gy
X €(5)€(7) f(7)drds,

16



By Fubini’s theorem and Dirichlet formula, we have

W W f(u / / J=1(g(s) — ()]
Xf/(s)f/( )f )dsdr

1r / ¢ [ e -
X (5(5) )21 (s)dsdr
- 7 / ¢ [ 6w - )+ g0 - ey
X (f( ) Y2 e (s)dsdr
)r / ¢ / W - ()
(D o
Making the change of variable v = g(( )) é((:)) we get
ijféo [ngﬁo 1F / 5 / u 5(7_))04171 (1 . U)Oq—l
X (f(U)—£ )2ty 1(§(u) (7)) dvdr

1 “ / ! a1taz—1
o / _Em) / (Eu) — £(n)

x (1 —wv)"" Lye2=ldudr

et Ay ()

~ o SO — gy ar

= W (w)].

I'(ar)l ()
F(Ozl + Oég)

Derivative of Weyl fractional integral
Lemma 1.4.2. For a > 0, and f be integrable function defined on R,.. We have

De[Wef(u)] = W [De f (u)]

17



Proof. From definition (1.34)

]‘ /
- | et ()€ (5)ds.

Using change of variable £(s) — &(u) = &(v)

/ £ F(EN(E () + E(0))E () do.

1

Now applying D, = @%, we get
DAW, ()] = oy [ 600" g 4o € (€00 + € @)
1 a 1 /
— g [ €O DAHE € + €@
1 a 1
- e / (€(s Def()€/(5)ds
- Wg_a [De f(u

Weyl Fractional derivative with respect to another function

Definition 1.4.3. [1]] For a positive number [ with k > [, where k is a smallest
integer. We have k — B = a > 0 and & be strictly increasing function with & (u) # 0.
Then the Weyl fractional derivative of a function f with respect to another function &

1s defined by

WEf(w)] = BE W "D [f(w)]

_ (_1)k 1ik = s) — ukfﬁfl $)E' () ds
e (o) [ e -y e s

—n)

(1.36)

where B = —De.
Example. 7: For f(u) = e=%®) with ¢ > 0, we have

W [ee0] = Feek),

18



By Definition 1.4.3 and making use of (1.35), we have

Wi e W] = BE[W e ™)
= Eg [c_ae_cf(”)]

(i) (gaae ™)
() o)

Repeating the same process (k — 1)-times, we get
Wgﬁ[e—cf(u)] — otk —c(w)
= Pe%W) cP=k—a.
Replacing 5 by —a we get (1.35).

Similarly, we can prove following result as we proved for Weyl fractional integral of

a function with respect to another function.

o TB+1) 0\ n
WEE) ™ = =gy s,
B

Wﬁ[cos a&(u)] = ¢ cos (af( ) — 5 > :

WP sin ag(w)] = sm(asu )

given that o, 8 € [0, 1].
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Chapter 2

Caputo fractional derivative with
respect to another function

Many generalization have been introduced for classical fractional operator by different
mathematician. One of these generalization is &-fractional operator. In [2] Samko
introduced RL-fractional integral and derivative with respect to another function. In
[11] Almeida use the idea to devlop the defination of Caputo fractional derivative
with respect to another function. In this chapter we have reviwed a paper on Caputo
fractional derivative of a function with respect to another function by Ricardo Almeida
[11]. We have reviewed the definition of {-Caputo derivative . Also we have discussed
some basic properties of this opertor. As we know that the classical definition of Caputo
fractional derivative is obtained from RL-fractional derivative. Similarly the definition
of ¢&-Caputo fractional derivative is also obtained from RL-fractional derivative with
respect to another function. To do this, we will use the Definition 1.2.1 of generalized

RL-fractional derivative. The definition of £-Caputo fractional derivative is as follow:

For 8 € R, k = []+1, I be the interval that may be finite or infinite. f, £ € C*a, b]
functions such that ¢ is increasing and &'(s) # 0, for all s € I. The left /right ¢-Caputo

fractional derivative of f of order [ is given by

Dl et =17 (g ) s

Dy of (w) = 1~ ?( g,(u)di) fu).

20



For the sake of simplicity we use the symbol

150 = (gt )kf(u),

when g = k, the above definition becomes

D2 e f(u) = I () = £ (),
Dy o f(u) = (DR ) = (1R ).

And if 8 ¢ N, then

“D S0 = 7 = e D ), 2.1)
°D]of0) = 5= / s P s (22)
For the case § € (0, 1), we have
D, f(u) k ﬁ / (u ((s)ds,
CDﬁ k ﬁ /f )8

Now we study the case f > 0, for £&-Caputo fractional derivative. We solve the result
for only left fractional derivative, method for right side will be same with necessery

changing.

Theorem 2.0.1. [11] If f,& € C**Ya,b], then for all 8 > 0,

u) — &(a))kr u
DL ot = o @+ =y [ (€0 — o) LA s,
and
_ )P, b o
D} () = (- >k<‘5§‘3€+ﬁ( D0 - i | (60 - )
< (1)L s)as
Proof. By definition (2. 1) we have
Dl o) = = . €€ = () s

21



Using integration by parts

“D, f(u)

/ —(s )P ds
/ €s @ s

e (E(u) = &(s ))k 5

_F(k—ﬁ)[ " 1

1 Y (Eu) = &) d

+F(k;—ﬁ)/a k— 3 gole ds
|

T T(k+1-8)
|

T/, (€ =) s

(6w — E(a)

g
T(k—B+1) Je(a) +

In this part of theorem

Consider (2.1),

D, flu) = ‘2(&,(1”)%) fw).

If k= p for € N, we get

k
18w = (g ) 7@

D o f(w) = £ f(u).

When 5 ¢ N, then

DL of0) = g | €1k g s) s

22
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When 5 — (kK —1)", we get

iy, Plef )= = | €€ — e o
1 u
ey / €(5)(€(u) — é(s))ofg““}(S)ds
= [ g e
[k—1]
_ / o ()ds
= ¥ w) - £570).
When § — k™,
Jim DL f(w) = 150 ()
= I f(w).
Consider |.|| : Cla, b] — R,
IFlle = mas |f(u)].

€lab]
And |||l o0 : C¥[a,b] — R,
3

k
1l =D 15 e
n=0

Theorem 2.0.2. [11] For 8 > 0, £-Caputo fractional derivative are bounded operator

1°D2, (flle < K\Ifl\cékb
1°Dy- flle < K| £ll e

(€() ~ £(@)*~"

here K =
where Tk 1= f)

Proof. Since we know that
k
)] < £ 1l e u € la, b]. (2.3)

23



From (2.1), we have
1 u
D, dle = | k—ﬁ | e e o

Tk — mm/ €s ()77 1 (s)lds
1y (k]
W]/ §()(E(w) = E()* £ s)lds.

Using (2.3), we get

1 v, s
“ D5 ef(w)] < F(k—ﬁqgﬁé €(s)(€(u) — &(s))"7 I llpads

||f|| i "
[(k Cﬁ)ue[a b]/ §'(s)(&(u) — 5(5))k_5_1d8

I7ley (ew) - gay2
TTk-B) k-8
1F 1l
Zm(f )
= K fllopn-

—&(a)*”

Also we can conclude from above

‘D f(0) =C Dy*fla) =0

Theorem 2.0.3. [11/For 8 >0, and f € C*[a,b], we have

DY, f(u) =Dl . | f(u) - ) gﬁg@w——a@»"ﬁ?%a4,
C B _ « 1 n ¢l
Dy f(u) =Dy ¢ | f(u) - ;ﬂﬂw—é@)&(wl

Proof. By Definition, we know that

D0 = (i) e | e e egas
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Right hand side gives

k— [n]
Lk - ). N[ Z () - (@) 1 >]
- (o) [ etorem e “1[ ) SEE g <a>>”] ds.

Now using Integration by parts on above expression

) n ¢l
(k- B).DZ, f(u)—Z (&(w) — &(a)" £ (a)

oy
- (o) 176 - Z T g et (- [ —eoten - )

+/u
[ S e ] e - ),
~ (gt | [f<s> > et -« >>d] :

u — &(s))F— k=1 fln] a
p [ SO [fg[”(s)—zfé ”n<s<s>—a<a>>“§'<s>] ds].

k—p
When we put upper limit second integral vanishes and first one will vanish for lower

limit. So first term vanish completely and we are left with

k—1 p[n] a
Dk - 800 [f<u>—2ff ( )<§<u>—5<a>>"f;]<a>]

n!

(1 AN e =) [y N @ ]
_<5'<u>du>/a k— B [fd) D fn i) &) ]d.

Now applying derivative with respect to w,

n!
n=0

S n ¢l
D(k—B).D2 ¢ | flu) = (€(u) —&(a)" fe" (a)

LA\ L k= B &),

<s'<u> du) /() / k- B )
k—1 [n]

[ i n_l) f(a))“] ds



Repeating this procedure, we get

k=1 [l
Die [f(U)—Z fnf (e - @) >]

DY, | fu) - Z vt 2 (6(u) — &) £ (a)
T / ‘e I s
= CDﬂ+ gf
Thus of for all n =0, ...... -1, f[n]( ) = 0 then CD5+,£f(u) = Di’gf(u). O

Lemma 2.0.1. [11/Forn € R, and

where n > k, then for B > 0, we have

Dy ef (0) = prr— 7€) = (@)™, (2.4)
D]l ) = €)= ), (2.5
Proof. Since
Flu) = (§(u) — &(a)"!
1] 1 d () o 0) — (a2 (g
f ) = g g €0 = €@)™" = Zos (= D(EW) — @) W)
F) = (n = 1)(E(u) — &(a))"
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Agian differentiating, we get

fg[Q](U) = (7] — 2)(7] — 1)(5(71) _ g(a))n_g'

Repeating the process (n — 2)-times, we get

fé[k](u) — (77 _ n) e (77 _ 1)(§(u) _ §<a))n—k—1

_ ===k 1)
- (n—k— 1) (&(u) — £(a)
= %(5(1&) - g(a))n—k—l — %({(u) _ {(a))”_k_l_

Now consider (2.1), and making use of above result, we get

u . [1_%r—6—1

_ k’) (5(16) - g(a))k—5—1(€<u> _ §(a>>n—k—1

Seol-gmal il -

Making the change of variable v = (£(s) — &(a))/(&(u) — &(a)), implies that

27



Using eq (1.2), we get

CDZJr{f(”) =

Now using (1.3), we obtain

_ —fla n—p-1
CDf—&-,gf(u) - F(kf o /B)F(’r] o ]{7) F(n o k + kj . /6) (5( ) é-( )

_ F(77) w) — &(a n—pg—1

=T -7 (§(u) = &(a))™""

O

Example. [11] Consider f(u) = (£(u) — £(0))? with a = 0 and n = 3, using (2.4)

in given function we get

Dl of ) = gty (€u) — €0
(2 0 — 2-3
- (€0 —€0)
When 5 =1, we get
D (1) = Frgpy (€)= €00 = e — £0)

2(&(u) — £(0)).

In particular, £ < n € N, we have

D3 60) =€) = T €)= ()"
D} (€0) =€) = = (60 — )"



On the other hand k& > n € Ny, we have
“DJ. (€)= &(@)" = D} (&(b) = E(w)" = 0.
Since DE(¢(u) — &(a))" = DE((b) — &(u))" = 0.
Lemma 2.0.2. [11] Forw € R, 8 > 0 and we have a function
f(u) = Ba(w(€(u) — £(a))”),
where Ey is the Mittage-Lefler function, then
DY, o f(u) = wf(w).

Proof. Consider function and using (1.4), we have

) B\n
f(u) = Bs(w(€(u Z —S@))",

DLSO=Y 5 gjﬁ 7 Dl () — @)™

By (2.4) for n — 1 = fn,

Daref 0 Z 5n:1FF(5n+1) (€(w) — ()"

I
=
S
_|_
—
|
=

S <w<§<u>—5<
» (31

Now consider the case w =1, a = 0, we have

fu) = E(&(u) - £(0))°.

Derivative for above function becomes

CDer,gf(u) = f(u)

n=1

For 8 =1, we get
“Dys ¢ f(u) = exp(&(u) — £(0)).

29
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Theorem 2.0.4. [11] For 3> 0 and f € C*[a,b], we have

]5 CDﬁ kl f[n]( ) n
P ODN fu) = fu) =) (€ () — E(a)”,

n!
1 b
I D) f(u) = flu) = (—1)"=——

Proof. By definition (1.25), we have

C ps( L d ; kB K]
D+£f( ) a*f f’( ) f(u)_ja‘i‘ f€ (u)
15

k k
e CDL f(w) = 1) 1 ),
Now by semigroup property and applying integration by parts, we get

If+§CDB+§f( ) +§f§k( )

/ (s Yo 1) ds

- / (6(u) — €)1 ”<>
= F L — € / 7 s)ds
-[ %wu)—s@)“ @ ds)as

1 k—1 plk—1
= [l W —£@) £ a)
“ . u k—2 L d k-2 s
[ (=106 = €62 ) g e
1 (k—1)




gy | (€0~ €A s

G e — )

[aﬁtg CDfﬂgf(“) =

Repeating same procedure, we get

1 v d i
7. OD e 0) = gy [ (60 =€) s

)
k=1 ],
-3 ) - e
n=k—2 ’
. k-1 gl
~ [ L s~ 3 2 ) ey
1l
= )~ @)~ 32 2 ) — ey
k=1 ],
7.0 ) = 1) = 32 D) — gy

For the particular case 8 € (0,1), we have

154—7,5 CD5+7§f(u> = f(u) = f(a).

Taylor formula can be obtained from above theorem

k=1 ],
) = 3 I ) - sty + 12, D2 i)

Theorem 2.0.5. [11/For 3 >0 and f € C*[a,b], we have

CDf—!—,g]er’gf(u) = f(u)
Cfo,glbﬁigf(u) = f(u)
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Proof. Using definition (2.1) and let F(u) = If+ ¢ f(u), we have

D (Il e = e [ € PR ()ds.
Consider
P = 17 [ €06 €6 s
B0 = 15 (g ) [ €660 -6 ohas
Fl(u) = % 5,(1“) a”g'<s><ﬁ — (€(u) — £()772¢ (u) f(s)ds
R =G [ e - )2 rs)ds
R = P00 [ e - oy s
Fé[k_l]<“>:(ﬁ (i—l)(ﬂ 5 ii; k)| / &l
~ e | ce DS (s)ds

Now Integrating by parts

F[k 1](

/ —¢'(s s))?*ds
/< [ el

(€(u) — &(s ))B g
TG = k+1)[ f(s) Gkt 1) la

)kl
/f ﬁ k+> s

(&(u) — &(a))PH 1
T(5 — k+1)[f<“) B—k+1)

Bk+1 )
/f e (o)

32
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fla)  (B—k+1)(u) — 5(@)/3—1@6/(“)}
FB—k+1) €@ -k+1)

1 (5—]€—|—1) u W) — (PR (w) F(s)ds
5 [t @y e

P(B—k+1)&w)(B—k+1
— f(a’) _k 1 u i
- m(ﬁ(u) — &)+ m/g (€(w) — £(a)P* f'(s)ds.

Using above result in (2 7), we get
DL (I ) = s | €0 9y Y (e - o)

TB—k+1) u ok sds
= ,H)/G<5<> E())" ™ (s)dsd

- <k—5>f(<%) F+ 1) / €/ (5)(E(u) — &(s)F
1

X u) — B=k g
(el e (k ﬁ) (B—k+1)
/ / &l TITHE(s) =€)V (y)dyds.

Using Dirichlet’s formula

fa)(€(u) = &)t [, £(s) — &(a)
I'(k—=p)0(B —k+1) /a £ls) (1 g(u) - g(@)

_ 1
< () = €(0) s
x / / €() (Ew) — E(s)F PN (E(s) — Ew))P F (y)dsdy.
Using the change of variable v = £(s) — &(a)/¢(u) — &(a),

c f(a) e
D5+5[5+§f() T ArG k71 /(1 V)P (0) Pk dy

kﬂrlﬁk+ //5 )

x (E(y) = €())7 f'(s)dyds

+

°Dl, 10, f(u) =

D (e e (u) = Tk — )]1:((%) F D) Lk —=B)I(B—k+1)
1 u /
“Th—BT(B—k+1) / [k = B)T(B =k +1)f(s)ds




Theorem 2.0.6. [11/For 8> 0 if f1, fo € C¥[a,b], then

k-1

DI fi(u) = DL fo(u) & fi(u) = folw) + Y ealé(w) = &(a)",

n=0

where ¢, 1s constant.
Proof. 1t °DJ}, fi(u) = D7, fo(u), that is
CD5+,§(fl(u> — fa(u)) =
Applying left integral operator to both sides
I, ODI (fi(u) = fa(w)) = I (0).
]f+5 CDfﬂg(fl(“) — f2(u)) =0.

Using theorem (2.0.4), we get

fi(u) = fa(u) —

n!
RN "
flw = o) + 30 LI ) gy
PN
Taking ¢, = W,
fulw) = falw) + 3 enlelw) — €(0)"

Now conversly suppose

— folw) + 3 enl€lw) — (@)™

Applying left &-Caputo fractional derivative of order S on both sides

Dy  Jiu) = °DZ fow) CD%Z% )
k-1

°DE, filu) = DL folu) + 3 ealCDE, )(E(w) — E(a)"
n=0
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Using (2.6), we get

DI fi(u) = “DL,  fou)
“D, fi(uw) = DI, folu).

Theorem 2.0.7. [11] For 3 > 0 and f € C™*[a,b], for all n,m € N, we have

(CD )" f(2)
I'(fn+1)

(1,

a+ 75

) (“Dy )" f(w) = (€(u) — &(a)™”.

For some z € (a,u).
Proof. By semigroup property for fractional integral

(1,

CL+ 75

)”:]5 ]ﬁ ._]5

at&tate T ratg
_ BHBHB++E 7B
=1} =17

Now consider

(Ier,g)n(CDfﬂg)mf(u) = Lffg(CDng,g)mf(u)

_ ! u's w) — E(s)PHE D, )™ F(s)ds
= w05 | €€ =€) DL g sy
Making use of mean value theorom for integral, we get
(1) "D )" f(u) = ﬁ(ch+,g)mf(Z) /au €' (s)(E(u) — &(5))"Hds
1 m n
= m(cDié) F(2)(E(u) = &(s))7

Theorem 2.0.8. [11] For 3 >0 and f € C™[a,b], for allm € N, we have

B 1 d " o B+m
CDa+,g <W@) flu) = CDajyg fw).
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Proof. From definition (2.1), we have

CDf% (Wlu) dd ) ( 63 )/ k—ﬁ—l
) du
R (FmEEE) / e
x (I (s)ds

= DT f(w).

(1) = &(s))+m=P=mD

In general we know

(simide) CDhlw # CDEES )

For £(u) = u, result does not hold. From Theorom 2.0.8, we define
n=p—-(k—1)€(0,1), we have
CD’6+£f( ) _C 77+mf[k 1]( )

a+§

Theorem 2.0.9. [11] For 3 > 0 and f € C™*[a,b], for all m € N, we have

L d\" _ B+m - 1(5 U) f ))Mk’g [n+k]
(8(“)@) a+5f( ) CD 5f +ZF( N m+1)f ()

Proof. From (2.1), we have

B+m [k-+m]
CDI f(u) kﬁ/f )T (s)ds

n=0

Integrating by parts, we get

1L\ Ld\" () — @) 1
(o) Pt =(grga) sy X @ ey
< [ (6w - e L s
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Multiplying and dividing by &’(s), we have

1 d | E(u) — £ |
<e<u>d) Darel (u ) (k—ﬁ) ) + 5=
y / , k- 1§,§>df[’f]<s>dsJ
1 d 1) (el )
<§'<u>%> Darel :(' _) T(k - B) fe'(a)
4 [ ZEOTE ey
F

Integrating again
1 d\" o (1 AN () = €)M
(etwan) P = (era) [Z M kg1 & @

1 k-1 4]
g [ €O 7 s)as).

Repeating this process (m — 2)-times, we get the result

1

L d\" = (E(u) — () Hrbm
(otmin) et 0= Xt gyt @+ Dl ef )

k=0
]
fs[k](a) =0forallk=n,n+1,..... ,n+m — 1, in above theorem, we get
1 d\" ¢ pBim
(siae) CDiefti = DTS

Theorem 2.0.10. [11] Let 3,1 > 0 be such that there ezxist somen € N, withn, B+n €
[n—1,n]. Then for f € C"[a,b] the following hold

C’Dﬁ

at,¢

DI, flw) = “DIFLf(u).
Proof. By assumption S+n = n, for § € [n—1,n], we can write [ =n—1=+n—1

D} f(w) “DY, f(w) = ODJ, I
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Using Theorem 2.0.5, we have
D o f(w) DY, f(u) = fE = DI f(u).

Now if 5+ n < n, then for g € (0,1) and [n] = [+ n] = k — 1, so by Theorem 2.0.3,

we have
r k—1 1
°D}. f(u) =D, Hy — (@) fMa )]
- -1y
D “Dls f () = Dl ¢ | “Dl o f(w) = Y 15(6(w) = £(@)* “Dj o (a )].
L k=0

Since CDZJr,gf(a) =0, we get

°Dl. “DI f(u) =Dl °DL  f(u).

1 d
Since we know that D5+£ = (W@> Ii+§ and “D", gf( u) = aJr]ng nf€n+1]( ),

therefore we have

1 o8 plitien g [n+1]

CDf-Fé‘CDn-Fgf( a+£ at§ ( )

- (ew
(1
- (ew

_ CDﬁJer(u

I +n]+1—(8+ [B+n]+1
af ([z/in] Bnﬁfﬁ ul (u)

) 1 EI /3 51[5+7I]+1 7, ff[5+77]+1 (u)

%I@ %I& %I&

Theorem 2.0.11. [11] If f > 0 and f € C"[a,b], then
CD:+@ °D’ +5f( u) = CDk+§f( ).
Proof. Since we know that CDQZ gf(a) =0, so by Theorem 2.0.3, we get

“Dyve “Djv ef (u) = D DY (f(u)

at&
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C k=B C B Ld " e 81416 fl5}+1
DI CDS, flu) = (5/@)@) I 7 7 ()
L d\TT L AN e g
- (owa) (o) @
1 d k—[8]-1 1 d [B]+1
(o) (ewm) '@
= “Dyif(w)

Theorem 2.0.12. [11] For 8 >0, g € Cla,b], and h € C*[a,b], then we have
b b
8 5 [ 9(u) :
/a g(u) “D. h(u)du / D, ( (u)> h(t)€ (u)du+

3 L d k=B, [k—n—1] '
[ (_f%um) Liche " )|

a

IS}

—_

Proof. By (2.1), we have
[ o 02 gt = o ot [ ee — e W s

_F(k—m/agu/ags (€(u) = &))" 15/(15)

X di h[gk_l] (s)dsdu
s

~ e [ sttt — € b s

Using drichlet formula, we get

d _
C b _ k B-1 % k1]
/a g9(u) “ Dy h(u)du = k: ﬁ / / o he (s)dsdu
d _
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Integrating by parts, we get

b

ﬁ [/ubg<s><£<s> =€) b “‘)L

i [ [ e - st 1

_ ﬁ [/ubms)(s(s) = &(u)* s b (“)E

e [ (o) [ see - ewy—-as

d _
x = h[gk A w)du.

b
/ g(u) Cth&h(u)du =

Again integrating by parts

/abg(u) PP, h(u)du = ﬁ Mbg(s

T— {_81 di{ubg(s)(f(s)—5<“>)k_ﬁ_1d$] hék_ﬂa
1

S~—
~—~
o
—~
»
N—
™
—
N
S~—
S~—
i
k¥
L
QL
)
>
M
—
<
N—
| I
o

I'(k —B)

- B " gs)(E(s) - £l ]

X h[gk_m (u)du

- Z (‘wlu)%)n r(kl—

Repeating process (k — 2)— times, we get

[ ot - Z( ) sl ) - ewytas
b( n

=0

X hg“ ](u)] +

3
X [/bf ))kﬁlds] di h(u)é (u)du
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Chapter 3

Generalized Mellin transform

3.1 Introduction

The idea of integral transform arises from the Fourier integral formula. Integral trans-
form are use to solve initial value problem and intial-boundry value problems for linear
differential equation. Real life problems mostly involve time. And is taken as infinite
in the domain. For this purpose mostly used integral transforms are Laplace, Fourier
and Mellin transform.

Mellin transform is closely connected to Laplace and Fourier transformation. The
formula for Mellin and inverse Mellin transform are derived from Fourier transform.
First time Riemann used the transformation to study the zeta function in his memor.
Cahen [13] further extend this work. It was the R. H. Mellin who first gave the
systematic formulation of the Mellin transform and its inverse.

Mellin transform is very useful in many areas of engineering and physics. Problems
regarding number theory, mathematical statistics, and the theory of asymptotic ex-
pansions can be solved using Mellin transform. There are many application of Mellin
transformation that the computational solution of a potential problem in a Wedge-
shaped region function is most famous, resolution of linear differential equation in
electrical engineering is another important application.

So much work have been done on this field by different mathematician. In this
chapter we have introduce the generalization of Mellin transform and discuss some

properties. Also we apply this transform on some generalized fractional operators.
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3.2 Mellin transform

Since we know that f satisfies the Dirichlet conditions in (—a,a), therefore complex
Fourier series can be written as
= Z cpexplinmz/a), (3.1)

where

en= o / £ (n) exp(—inmn/a)dn. (3.2)

The function f is periodic of period 27. Since we know that Fourier series is valid for
the problems over finite interval and Fourier integral are valid for the problems over
(—o0,00). Now we want to find the integral representation of (3.1) by letting a — oo.
Let k,, = “F then 6k = k, — k,—1 = = and using (3.2) in (3.1), we get

= % Z ok [ ' f(n) exp(—inkn)dn} exp(izky,). (3.3)

k, becomes k and 0k becomes dk when a — co. So the summition can be replaced by
integral in (3.3), we get

1 o o
—/ {/ f(n) exp(—ink)dn} exp(izk)dk. (3.4)

f@) = 5

From above defination (3.4), we get the formula for Fourier transform and it’s inverse,

which can be written as

F(g(t)) = G(s) e Stg(t)dt, (3.5)

)
F7HG(s)) = g(t) \/ﬂ/ e G(s (3.6)

Using the change of variable e’ = y and is = u—v ( where u is constant ) = e'dt = dy

and ids = —dv in (3.5) and (3.6), we get

Gio =)= = [ aloa) 37)
olloz) = <= [ 4Gl — iy (35)
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Now we substitute %y‘“g(log(y)) = f(y) and G(iv — iu) = f(v) to define Mellin and

inverse Mellin transform as

Mf(y) = f(v) = /OOO v f(y)dy, (3.9)
VW =0 =g [ i (3.10

where f(y) defined on (0, 00) and Mellin variable v is complex number in general.

3.2.1 Basic properties of Mellin transform

In the following; we are going to summarize some basic properties of classical Mellin

transform.

Theorem 3.2.1. Let f Lebesgue integerable function over Ry. Some basic properties

of Mellin transform of function are as follow.

(a) M[f(au)]=aPf(p), a>0, (Scaling property).

(b) M[u®f(u)] = f(p+a), (Shifting property).

(€) Mif) = ().

a

(h) M[f(u)* g(u)] = f(p)g(p), (Convolution type).
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Application of Mellin transform

Mellin transform is very useful in solving differential equations. In this section we

discuss one of the application of Mellin transform.

Example [22] We solve the Laplace equation in polar coordinates (r, ) to find the

potential u(r, ) in an infinite wedge. Consider
2y, (7, 0) + 1, (7, 0) + ugg(r,0) = 0, (3.11)
in an infinite wedge 0 < r < oo, —a < 0 < a,a € (0,7/2), with the boundary

conditions

u(r,a) =uy(r), for0<r<oo (3.12)
u(r,—a) =u_(r), for 0 <r < oo '
u(r,) — 0asr — o0, VO € (—a, ).
Applying Mellin transform on (3.11) with respect to the variable r and using prop-

erty (e) of Theorem 3.2.1, we get

M[r*u,.(r,0)] + Mru,(r,0)] + Mlug(r,0)] =
s(s+ 1)u(s,0) + (—s)u(s, 0) + tga(s,6) =0
)

(s, 0 9.
W—FS u(s,G) =0.
Solution of above differential equation is
u(s,0) = C(s) cos(fs) + D(s) sin(0s). (3.13)

Using boundary conditions (3.12) and solving, we get

Clo) = T () —i(s)

2cos as
Putting values of C' and D in (3.13), we get

sin(a +0)s  _
———tu
sin 2acs

i(s,0) = ity (s)
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sin 0s

Now making substitution g(s,6) = , we have

sin 2as

a(s,0) =us(s)g(s, a0 +6)+u_(s)g(s,a —0),

with v = 7/2a, v € (—1,1). By means of formula, namely

v r'sin vl sin fs
g(r,0) =M |— = — ,
g(r,0) 71+ 2rvcos vl + r2v sin 2acs

and with the help of the convolution theorem of the Mellin transform we obtain the

solution of our problem after a simple calculation:

u (r,0) =usVgla+6)+uVg(.a—0)

_vr¥cos s [/‘X’ s" "ty (0)
B 7r o S —2(rs)vsin vl + r2v

> s"tu_(0)
d —l<ov<l.
+ /0 s2V 4 2(rs)?sin v + 2 s v

3.3 Generalized Mellin transform

In this section we introduce the generalization of classical Mellin transform called &-
Mellin transform. We discuss some basic properties of this transformation and will
use on some fractional operator. The idea of this generalization comes from Fahd etal.

120].

Definition 3.3.1. The generalized Mellin transform with reapect to a function & of a

real valued function f(u) on (0,00) is defined as

Ml (u)] = fe(p) = / e fw)E (w)du, p >0, (3.14)

where £ is an increasing function. We also use the notation Me|[f(u),p] for Me[f(u)]

whenever emphisits on Mellin variable is needed.
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3.3.1 Properties of generalized Mellin transform

As we studied some properties of Mellin transform in the previous section. Now we

will prove those properties in generalized case of Mellin transform defined in (3.14).

Lemma 3.3.2. (Shifting property) Let f be Lebesgue integerable function over R, and

¢ be an increasing function s.t £(0) = 0. Then we have

Me{u f(u)} = fe(a+p). (3.15)

Proof. By using the Defination 3.3.1, we have

Me{u f(u)}y = / e ()€ (s)ds

= [ e
-/ T @ ()6 (5)ds
= fela+p).
L]

Lemma 3.3.3. The generalized Mellin transforms of derivatives of a function defined

on (0, 00) with £(wW)P f(u) = 0 asu =0 and u — oo is
M(D f(w)) = P iy, (3.16)
Proof. By the Definition 3.3.1,
Me(Def)) = [ € Def (wiu

Using D¢ = 7 ;u) % and applying integration by parts, we get

Me{Def(u)} = —(p — 1) / D fu)¢ (u)du

M{Def(u)} = —(p—1)f(p—1). (3.17)
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In a similar way we can prove for n = 2,
MDEw) = [ D ()€ (u)du
0
—f "(u)d

* 1 d
- | et et e

Me(DHw)} = [ L (wdu
_ e - /0 T - DE W) f (w)du

> L1 d ,
——=1) [ g g

——p-1) [ e fwdu

Applying Integration by parts, we get

M{D2(w)} = (p— 1)(p—2) / " e (u)du
=(p-Dp-2)Ff(p-2).

Repeating this process (n — 2)-times, we have
M{Dg(u)} = (=1)"(p = 1)(p=2)--- (p = n) f(p — n).
Now consider

~D)"p—1(p—2)(p—3)--(p—n)f(p —n)
—)"(=1)"1-p)2=p)B—p)- - (n—p)f(p—n)

Me{Dg(u)} =

=(n-pn—p-1)n-p—2)---B=p)2-p)1-p)flp—n)
=P -p=1E-p=2)-G=p)R-P0 =PI
Nl—p+mn) -
T ) flp—n)
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Lemma 3.3.4. For a function f defined on (0,00) with £(u) increasing function s.t

d
€(0) =0 and D, = f/éu)@’ we have

T'(p+n)
['(p)

provided that &P~% f*(u) vanish at u =0 and as u — oo for k =0,1,2,3,...(n — 1).

Me{&(u)" D¢ f(u)} = (=1)" f(), (3.18)

Proof. By Definition 3.3.1, we have

Me{&(u)De f(u)} = /OOO §p%f(u)du.

Applying integration by parts, we get

Me{&(u)De f(u)} = —p /0 & f(u)du (3.19)
= —pf(p). (3.20)
Similar argument can be used to prove (3.18). O

Lemma 3.3.5. The generalized Mellin transform of differential operator of a function

f defined on (0,00) with & increasing function s.t £(0) =0 and D¢ = 7L s
Me[(€(u)De)" f(w)] = (=1)"p" fe(p). (3.21)
Proof. Consider
Me[(§(w) De)? f (u)] = Me[(w) De(&(u) De) (u)].
Puting g(u) = &(u)De f(u) in above and using equation (3.20),

Me[(§(u) De)* f(u)] = M¢[¢(u) Deg(u)]
= —pM[g(u)]
= —pM¢[¢(u) D¢ f(u)]
= (=1)*p* Me[f (u)].

Now for n = 3,
Me[(&(u)De)’ f(u)] = Me[(§(w)De)(€(u) De)* f (w)].
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By using equation (3.20) and above result, we get

Me[(§(u)De)*f (u)] = (=1)°p* Me[f (u)].

Repeating this process for (n — 1)-times, we can prove

Me[(&(u) De)" f(u)] = (=1)"p" Me[f (u)].

]

Lemma 3.3.6. Let [ be Lebesque integerable function over Ry and £(u) be an increas-

ing function s.t £(0) = 0. The generalized Mellin transform of integral is

Mt f(] = Me | [ s 6] = S ik, 22

where I, represents the nth repeated integral.

/ (s

so that F'(u) = f(u)&’'(u) which implies ——

Proof. Taking

Now using equation (3.17) in above deﬁnltlon
Me[DeF (u); p| = =(p — 1) Me[F(u); p — 1].
Now replacing p with p + 1,
Me[DeF(u);p+ 1] = —pMe[F(u)]
Me | [ 1o eas| = ~Darl s+ 1

Putting n = 2 in left side of equation (3.22). And making use of above result, we get

vttt = e[ [ 150¢ 0
_ _lMg[[f(U);p‘F 1]

:—%Mg[/f d8p+1:|

_ (=1
p(p+1)M§[f( )p+2]
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Repeating this process for (n-2)-times, we get

(=D"

M[I¢ f (u)] = P)p+1D(p+2)(p+n-—1)

Me[f(u);p+n.
Now consider

P)p+1p+2)---(p+n-1).
Substituting p +n — 1 = —k in above expression

(~k)(=k = 1)(=k = 2)--- (=k —n + 1)

= (—1)"(k)(k+ 1)(k+2)- - (k+n—1)
(—1)"(k+n—1)(k+n)-- (k+ 1)(k)T(k)

(k)
_ (=1)"T(k+n)
(k)
_ ()T -n—p+n) (1" -p)
I(l—p—n) F1-p—n)
Using this in above result, we have
Ml 0] = =2 ) )

]

Lemma 3.3.7. (Convolution type theorem) If f and g Lebesgue integerable functions
defined on (0, oo) with increasing function £&. Then the generalized Mellin transform

of their covolution is

Me[f (u) * ge(u)] = fe(p) * ge(p), (3.23)
Me[fe(u) 0 g(u)] = fe(p)ge(1 — p). (3.24)

Proof. We prove this theorm by using Defination (3.14) and (1.30). By using Fubini’s

theorm and the Dirichlet technique, we have
oot [ (e (59) el
T e (e )

o1




Using the change of variable v = 71 (%),
Melf) s ae() = [ 065 [ e ey g weinds

[ e /gw
Je(p) * 3e(p).

Similarly by using (3.14) and (1.31), we have

u) 0 gE(u / e u / G )g(5)€'(5)ds€ (u)du
=Ag@ﬂ@U’@%ﬁ@WMMWWMMd&

0

Using the change of variable v = £71(£(u)&(s)

/ / £(v dvds
:/ !A<a»pvwwwm@

= fe(p)ge(1 — p).

Me[fe(u) o g&(u)

]

3.4 The generalized Mellin transform of fractional in-
tegrals and derivatives

Now we compute Mellin transforms of left and right sided RL-integrals and derivatives

with respect to another function.

Theorem 3.4.1. If a € C, Re(a) > 0 with f(u) € X

vra(Ry) and € is an increasing

function. Then

M{™F IS f(u)} = Wf (p+a), Re(p+a)<l, u>a, (3.25)
M&Mﬁfﬂw}zréi)y« @), Re)>0, u<b (3.26)

provided fg(p + «) exists for p € C.
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Proof. Using definitions of fractional integral with respect to functions (1.21), Fubini’s

theorem and the Dirichlet technique, we have

ME(M Iz ()} = o [ €€ [ e Euels) s
Fja | s [T eeuewets) dus
Using the change of variable v = %, and relation of Beta function with Gamma
function, we have
M {13 o f (u) / F(s)(&(s))Prote (s) /01 v P71 — v)* duds
| 1O B~y 0o

——%5%;%14<«@wm*ﬂ@eme
:E%ﬁ%éﬁf@+@.

Similarly we can prove (3.26). 0

Theorem 3.4.2. If a € C, Re(a) > 0 with f(u) € X}, (Ry) and £ is an increasing

function. Then

Me{"*Dg, f(u)} = F(If(]f ;)“) f(p—a), Re(p) <1, u>a, (3.27)
M JW) = o P fo -0, Rep-a) >0 u<h (329)

provided fg(p — «) exists for p € C.
Proof. Apply Mellin transform on both sides of (1.23),

M{™ Dy (f(u)} = M{ DRI f )}
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By virtue of property (3.16) and relation (3.25), we get

I'l—p+n) _
M RLDa — M RL[n o . -
E{ at,¢ (U)} F(l — p) [ at (u)7 (p 77,)]
I'l-p+n)TQ-p+n—-—n+a);
- T-p Mi-prm 0=
'l-=p+a);
=———fp—a).
F(l _p) §( )
Formula (3.28) can be proved in similar way. ]

Theorem 3.4.3. If a € C, Re(a) > 0 with f(u) € X}

vraRy) and & is an increasing

function. Then

M{CDS f(u)} = % f(p—a), Re(p) <1, u>a, (3.29)
MACDE o f ()} = F;(—f)a)ﬂp —a),  Re(p-a)>0, u<b (330

provided fe(p — ) eists for p € C.
Proof. Apply Mellin transform on both sides of (1.27),
M{“Dg ¢ f(u)} = Me{ 1772 D¢ f(u)}.

By virtue of property (3.16) and relation (3.25), we get
I'l—p—n+a)

M{Dg ¢ f (u)} = MIDg f(u); (p+n — )]

I'(1=p)
'l—p—n+a)Il'(1-—p+n—na) ;
— —n+ -«
I'(1—p) F(1—p+n) Iele )
I'l-—p+a);
= ————fe(p— ).
Formula (3.30) can be proved in similar way. O

3.4.1 The generalized Mellin transform of Hadamard-type frac-
tional integral

Firstly we express the Hadamard-type fractional integral with respect to function de-
fined in (1.29) as Mellin convolution K x f as

mr ) = o = & (60 (59 ) rof s e
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where the function K is given by

0, for (0 <u < &71(1))

K(u)={ &)™ N . 3.32
W= S gy, for (w0 €7 (1) 332
[(a)
Lemma 3.4.1. Let a >0, p € C and c € R then K € X[, if Re(u) > 0.
Proof. From equations (1.33) and (3.32), we have
h 18 (w)
K| x1 / Y H(log £(u))*t >—du.
IKx:, = T(a) 1(1) (u)) ()
Using the change of variable log &(u) = v = £(u) = €¥, we have
1 oo
K - —[Re(pu—c)]v a—ld )
1K, = 757 | (v)"do
Integral is convergent for o > 0 and Re(u) > 0. O
Lemma 3.4.2. For a >0, p,s € C and Re(pp —s) > 0. Then
(M) () = (o — ) (333

Proof. Applying defination of Mellin transform (3.14) and using (3.32). And making

substitution £(u) = €¥ and v(u — s) = 7, we have

(M) = gy (€07 g €00

By using the definition of gamma function lemma is proved for u, s € R.
This result is also true for complex p and s by analytic continuation when Re(u —

s) > 0, and Re(u + s) > 0, respectively. ]

Lemma 3.4.3. Fora > 0,u € Cif Re(u) > 0 and f € X[, Then the Mellin transform
of "TI f is given by

M{™ I3 f(w)} = (1 = 8) 7 (Mef) ().
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Proof. According to (3.31) the Hadamard-type operator #71¢ Iy ¢S 1s a Mellin convola-

tion operator with the Kernel.

By lemma (3.4.4) then applying (3.23) to (3.31) and using (3.33), we obtain

M{"™ I [ (u)} = (MeK) (u)(Me f) (u)
= (1= 8)""(Mef)(u),

]

3.4.2 The generalized Mellin transform of Weyl fractional in-
tegral and derivative with respect to function

Theorem 3.4.4. Let « € C, Re(a) > 0 with f be integrable function defined on
(—00,00) and & is an increasing function then

['(p)

= F(p+a)f§(p+a)- (3.34)

Proof. Using the Definition (1.34)of Weyl fractional integral with respect to another

function
W lf )] = Flue) = s / T (€ls) — () ()€ (5)ds
~ o [T (-89 oeas
Putting h(s) — ) and g ( ( : )) ﬁ (1 - %)g (1 - %)

in above equatlon we get

Weeltw] = [ hislg (g—l (%)) O

where H (1 — %) is the Heaviside unit step function. Now applying generalized
s

Mellin transform, and making use of (3.23), we get
Me [Weelf(w)]] = Fe(p, @) = he(p)ge(p), (3.35)

26



where he(p) = Me{€(u)*f(u)} = fe(p + ) by (3.15), and also

i(r) = A@Lf)u—a>w1ﬂu—aw>
/6“ u))* ¢ (w)du
Bp, _ eIy _ T(p)

N N@ - Tp+a)l(a) Tlp+a)
So (3.35) becomes

M (W lF )] = s Feo ). (3.36)
[

Theorem 3.4.5. Let § > 0 be a positive real number and n is the smallest integer

greater than (B such that n — 1 < 8 < n. The generalized Mellin transform of Weyl

fractional deriwative is

['(p)
I'(p—B)

Proof. By the definition of Weyl fractional derivative (1.36) and using (3.16), we have

Me[WE f(u)] = felp — B).

M[W/E(u)] = Me[Erw, ") f(u))
= (—1)"M[DEW, "7 f(w)]

— (U e MV 0, =

Using (3.34), we get

MWEEw) = 2L L=z g
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Summary

In the begining we have discussed some spacial functions. We reviewed definitions of
some important fractional operators and their generalized form. Also we have studied

some properties of these fractional operators.

Next we have studied the Caputo fractional derivative with respect to another

function and some important result releated to this operator.

The classical Mellin transform is used to solve classical differential equation and
some fractional operator Riemann-Liouville, Caputo, Hadamard and Weyl fractional
operator. But when the operator are in generalized form as in our case £ -fractional
operator are used to solve. For this purpose we also need the generalization of the
integral transform. And here we introduced the generalization of Mellin transform
named as £ -Mellin transform. We discussed some basic properties of this generalized

Mellin transform and convolution theorem.
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