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Abstract

A comparison of constant and variable fluid properties with variable heat flux over a

sheet for Maxwell fluidois done in the presence of thermal radiation, magnetic parame-

ter, and thermaloconductivity. The governing partialodifferential equations (PDEs) are

converted into a set of associated non-linear ordinary differentialoequations (ODEs),

which are then explaine numerically using pertinent boundary conditions for distinct

physical parameters by using bvp4c in MATLAB. On the velocity, temperature profiles,

as well as the local skin-friction coefficient and the local Nusselt number, the effects of

various parameters such as viscosity, thermal conductivity, unsteadiness, Deborah num-

ber, thermal radiation, magnetic parameter, and Darcy number are introduced and ex-

plained. The numerical results are compared to those previously published. The result

show that for both constant and variable fluid propertiesoskin friction coefficient esca-

late withothe increase in magnetic parameter, unsteadiness parameter,oDarcy number,

thermal conductivityoandoDeborah number. Constant fluid properties are indepen-

dent of heat generation/absortion parameter. For both cases localoNusselt number

decreasesowith the increase in magnetic parameter, Deborahonumber, heat genera-

tion/absortion parameter and Darcy number. "
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Chapter 1

Introduction

1.1 Introduction

A substance whichodeforms under the pressureoof shear stress is calledoa fluid. The

study of fluids in motion oroat rest, as well as it’s effects on theoboundaries, which

can be solid surfaces or with other fluidsois labelled as fluid mechanics. The inter-

pretation of fluid in motion is knownoas fluid dynamics while the analysis of fluidsoat

rest is tagged as fluid statics. Gases and liquids both fall in the category ofofluids.

The amount of fluid that passes through a point per unitotime is called flow. The

fluid flow across a stretchingosurface has previously attracted a lot of attention.oThis

is due to its wide range of uses such as Plasticofilms, polymeroextrusion, glass fibre

etc. Because of its numerous uses in engineering, the non-Newtonian fluidsoflow across

a stretching surface has gotten a lot of attention in recent decades.oChemical engineer-

ing, and polymer fluids, plastic and rubber sheet production, and solidificationoliquid

crystals, hot rolling, and crystal growing are all its examples. Numerous astrophysical

phenomena,oastrionics, and engineeringoprocesses rely on fluid flow together with heat

transfer methods with MHD applications [1, 2].

Investigating some of the underlying key processes that affect the heat transfer sur-

face is one technique to improve the performance of heat mechanisms [3, 4]. The

work [5-10]oprovides a generalisation for fluid flow models in the context of unsteady

flow. The heat flux is another key factor that can have an impact on the heat process

mechanism. As a result, a number of research [11-13] have been published on these

1



themes, demonstrating that the fluid flow, in combination with the heat flux, is critical

in several industrial operations. Liu et al. [14] were the first to develop a variable heat

flux framework that is compatible with unsteady fluidoflow models under a variety of

situations. Our understanding of the specific nature of heat transmission mechanisms,

however, is still lacking. Non-Newtonian fluid modelling studies present exciting dif-

ficulties for engineers, numerical analyst,ophysicists, and IT worker. Rajagopal [15]

investigated accurate explanation for a class of unsteady unidirectional fluid flows of

a second-grade fluid in four flow scenarios. Furthermore, the consequences of stress

relaxation are impossible toopredict. The flow of a Newtonian fluid in a thin liquid

film over an unstable stretched sheet was initially explored by Wang [16]. The Maxwell

model, that contains a branch of rate-type fluids, has gained popularity because it may

anticipate stress relaxation. Applying a similarity method to transform the presiding

boundary layer equations into ordinary differentialoequations, some authors [17-20] in-

vestigated the problem of flow along with heat transfer for the Maxwell fluid above a

stretching surface. Tan et al. [17]oproposed the fractional calculus technique to the

constitutiveorelationship model of a generalised Maxwell fluid. Hayat et al. [18] in-

vestigated theothree-dimensional flow of a non-Newtonian Maxwell fluid caused by a

stretching surface with convective boundary conditions.

Mukhopadhyay [19] investigates unsteady two-dimensional flow of an MHDonon-Newtonian

Maxwell fluid over a stretching surface with a specified surface temperature in the pres-

ence of a heat source/sink. Megahed et al.[21] explore the effect of unsteady laminar

MHD flow over an unsteady stretched sheet in the company of thermal radiation and

changing heat flux.[20] Megahad et al. [22] investigated the effects of variable fluid

characteristics on laminar MHD Newtonian flow together with theoheat transfer past

an unsteady stretching sheet implanted in a porous medium, particularly when variable

heat flux was present.

In the above mentioned studies no attention was given to theoconstant fluid proper-

ties. The goal of the present research is to elaborate a comprehensive comparison of

constant and variable fluid properties with variable heat flux over a sheet for Maxwell

fluid.
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1.2 Types of Fluids

1.2.1 Compressible vs Incompressible Fluids

An incompressible fluid flow is the one in which density variations areonegligible. All

liquids are treated as incompressible fluids. On contrary, the fluid flows that are charac-

terizedoby a varying density are said to beocompressible. Most commonly encountered

gases are compressible fluids. Continuityoequations for compressible andoincompressible

flows are respectively:

ρt + O.(ρV) = 0

and

O.V = 0

1.2.2 Ideal vs Real Fluids

Ideal flows are theoincompressible and irrotational fluid flows. In such fluids, shearing

forceobetween the fluid and the bounding surface is absent. On the other hand, fluid

flows involving viscosity or surfaceoshearing forces are termed as real flows.

1.2.3 Steady vs Unsteady Fluid Flow

In steady flows, all the physical quantitieso(such as density, velocity, acceleration etc)

do not vary with time. Mathematically,ofor any quantity χ one has:

χt = 0

For unsteady flow, the physicaloquantities exhibit time dependency. Therefore,

χt 6= 0

where χ is any physical quantity.
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1.2.4 Laminarovs TurbulentoFluid Flow

Laminar flow is a kind of flow in which each fluid particleofollows a definite path an

streamlines do not cross each other. Turbulent flow, on the other hand, do not exhibit

a regular pattern of flow that leads to the rapid changes in physical properties of the

fluid. For example, the flows in a pipe at low speed and flow of water along theoedges

of river/lake, falls in laminar flows. When a dye drop is injectedoin water, it spreads in

all possible directions without following any proper pattern, thereby making the flow

turbulent.

1.2.5 Newtonianovs Non-NewtonianoFluid

Fluids are continuouslyodeforming objects and behave differently subjected to an ap-

plied shear stress. The response of fluids under applied stress determines whether the

fluids obey a linearly viscous modelo(also called as ”Newton’s law of viscosity”) or a non-

linear one. Although, linear viscous model is capable of explainingocertain important

concepts like skin-drag, lift phenomena and separation, etc. but it fails to predict

certain physical phenomenon like rod-climbing, die-swelling, shear-thinning,oshear-

thickening and viscoelasticity to name a few. This inadequacy of Newton’s law of

viscosity to predict such anomalous behaviors serves as a stimulus for

researchers to work in the area. Fluids exhibitingosuch behaviors are termed non-

Newtonian.

4



1.3 BoundaryoLayer flow

A thin layer surrounding the boundary, in which the viscosity effects are significant

and important in determining the fluid flow, is known asoboundary layer. It acts as a

buffer region between the free stream region and the wall. All these flows that follow

the boundary layer theory (proposed by Prandlt in 1904) are termed as boundary layer

flows.

Figure 1.1: Boundary Layer Flow. (internet)

1.4 DimensionlessoParameters

1.4.1 PrandatloNumber

It is the fraction of kinematicoviscosity to thermalodiffusivity. Numerically it is defined

as:

Pr =
ν

α
,

where α is the thermalodiffusivity that is further is defined as α = k
ρCp

in which k

represents thermal conductivity, ρ denotes density and Cp is specific heat capacity at

constant pressure and ν is the kinematic viscosity.

1.4.2 ReynoldsoNumber

It is the ratio of inertial force to the viscous force. Reynolds number allows us to

differentiate whether the flow is laminaroor turbulent. At low Re we have laminar
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regime (i.e. Re < 2000) and for high Reynoldsonumber (Re > 4000) we have turbulent

regime. Mathematically,

Re =
vL

ν
,

where L is characteristic length, ν is kinematicovelocity of the fluid and v is of fluid

velocity.

1.4.3 ThermaloConductivity

The intrinsic property of a material which explains the materialsocapability to conduct

heat is known as thermal conductivity i.e κ.

1.4.4 NusseltoNumber

When there is a heat transfer from convectionoflow to conduction flow in fluids across

the boundary. The heat transfer is perpendicular to surface of the boundary. Mathe-

matically,

Nu =
QL

k
,

where L is length of the disk/sheet, k is thermal conductivityoof the fluid and Q is

convective heat transfer coefficient.

1.5 obvp4c

Flows occurring in physical world are governedoby complex non-linear partial differen-

tial equations. These equations may haveono solution, or may have a finite number,

or may have infinitely many solutions.oIn order to get a solution MATLAB programs

require the user to provide with the initial guesses for the solution required and also

for the parameters involved in the governing equations.oMATLAB built in package

bvp4c, which implements collocation method,ois capable of solving a nonlinear bound-

ary value problem. In order to utilize this technique, the third order equations are

reduced to ordinary differential equations of first order. The guesses are provided for

more accurate results. Changesocan be made in step size to increase accuracy. To get

more detailed understanding of this technique Refs. [23] and [24] can be consulted.

6



Chapter 2

Numerical Resultsofor Newtonian
FluidoFlow over an Unsteady
StretchingoSheet with VariableoHeat
Flux

This chapter discusses flow over an unsteady stretching sheet in the presence of porous

medium, variable heatoflux and thermal radiation. In Section 2.1 we discuss the math-

ematical formulation of the flow model. In Section 2.2 the governingoequations are

solved numerically using bvp4c in MATLAB. In Section 2.3 the validation of pro-

posedomethod is given, and finally in the Section 2.4, the results are described with

the aid of graphs.

2.1 Mathematical Formulation

A laminar boundary layer flow is considered. The flow is viscous, incompressible and

two dimensional. Heat transfer because of an unsteady stretching sheet is also con-

sidered. The physical properties such as fluid viscosity, thermal conductivity, and the

surface velocity which are µ, κ and Uw, respectively. Variableoheat flux q∗(x, t) is also

involved in this model i.e.

q∗(x, t) = −κeff
∂T

∂y
= T0

dxr

(1− at)m+ 1
2

, (1)
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where

T0= referenceotemperature,

a= positiveoconstant,

d= constant,

r= spaceoindex,

m= timeoindex,

And B is the transverseomagnetic field can be interpolated as follows [25]:

B =
B0

(1− at) 1
2

, (2)

where B0 is a constant. The physicalophenomenon canobe described by the following

partial differentialoequations. Liu et al. [14]

ux + vy = 0, (3)

ut + uux + vuy =
1

ρ∞
(µuy)y −

σB2u

ρ∞
− µu

ρ∞κ
, (4)

Tt + uTx + vTy =
1

ρ∞Cp
(κTy)y −

1

ρ∞Cp
(qr)y, (5)

where x and y are directions, while v and u are velocity components. Also t, ρ∞, σ,

k, T, Cp and qr are the time, fluid densityo(away from sheet), electrical conductivity,

porosity of porous medium,otemperature of the fluid,ospecific heat at constantopressure

and radiativeoheat flux respectively. Parsad et al. [26] introduced qr in terms of T as:

qr = −
4σ∗

3k∗
∂T 4

∂y
, (6)

where k∗ and σ∗ are the Rosseland mean absorption coefficient and the Stefan-Boltzmann

constant, respectively. Expanding T4 about T into the Taylor series and neglecting

higher order partial derivatives we get:

T 4 ≈ 4T 3
∞T − 3T 4

∞.

Boundaryocondition corresponding tooconsidered model is taken as,

u = Uw, v = 0,−κeffTy = q∗(x, t), at y = 0 (7)

u→ 0, T → T∞ as y →∞. (8)
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where

κeff = κ+
16σ∗T 3

∞
3K∗

T∞ is theotemperature of the fluid, and Uw is defined as

Uw =
bx

1− at
. (9)

The similarityovariables are defined as, [22]:

η =

(
b

ν∞(1− at)

) 1
2

y, (10)

ψ = (ν∞b)
1
2xf(η),

θ(η) =
T − T∞

( q(x,t)
κ∞

)
√

ν∞
b
(1− at) 1

2

,

(11)

where θ(η), and f(η) are the dimensionless temperature and dimensionless velocity

function respectively. Also ψ(x, y) is the stream function and the kinematic velocity

at ambient is ν∞.

The fluid viscosity (µ) and thermaloconductivity (ε) are the functions of temperature.

µ

µ∞
= e−αθ,

κ

κ∞
= (1 + εθ), (12)

where

µ∞ = viscosityoat the surrounding,

α = dimensionlessoviscosity,

κ∞ = thermal conductivityoaway from the surface,

ε = thermaloconductivity.

Equation of continuity is satisfied by using similarity variables in Eq (10) and (11).

And Eq (4) and (5) are as follow after converting partial differential equation into

ordinary differential equation by using similarity variables

e−αθ (f ′′′ − θ′αf ′′)−Mf ′ − e−αθγf ′ − S
(
f ′ +

η

2
f ′′
)
− f ′2 + ff ′′ = 0, (13)

1

Pr

[
(1 +R + εθ) θ′′ + εθ′2

]
− rf ′θ + fθ′ − S

(η
2
θ′ +mθ

)
= 0, (14)

9



and the converted boundaryoconditions are:

f(0) = 0, f ′(0) = 1, θ′(0) = − 1

1 + εθ +R
, (15)

f ′ → 0, θ → 0 as η →∞. (16)

Here R and ε are the thermal radiation parameter and the thermal conductivity

parameter, respectively and heat flux depends on them. The parameter R = 16σ∗T 3
∞

3κ∞k∗

is the radiation parameter, M = σB2

bρ∞
ois the magneticofield, Pr = µ∞Cp

κ∞
is the Prandtl

number, γ = µ∞(1−at)
ρ∞kb

is the local Darcy number, S = a
b
is the unsteadiness parameter.

In equation (13). and (14). temperature and velocity fields are coupled to each other.

Crane [27] solved the velocity field systematically for steady problem S = 0, R = 0,

M = 0, γ = 0 i.e when the thermal radiation,omagnetic field andoporous parameter are

not present and α = 0 i.e viscosity is not a function of temperature, with f = 1− e−η.

Figure 2.1: Physical model. [22]

2.2 Quantitiesoof Interest

The dimensionlessophysical parameters are theoskin friction and the local Nusselt num-

ber.

10



2.2.1 Skin Friction Coefficient

The skin friction coefficient is written as;

CfxRe
1
2
x = −2eαθ(0)f ′′(0). (17)

2.2.2 Local NusseltoNumber

The local Nusselt number is defined as;

NuxRe
1
2
x =

1

θ(0)
, (18)

where the local Reynolds number is Re = Uwx
ν∞

.

2.3 NumericaloSolution

In this section we discuss numerical method to solve the Eq. (13) and Eq. (14). We

use MATLAB built-in function bvp4c. bvp4c is based on collocation technique. The

basic functions used in bvp4c are bvp4c and bvpinit. To solve BVP in bvp4c we convert

ODEs into a system of first orders ODE. Thus, first order ODE is:

u1 = f,

u2 = u′1,

u3 = u′2,

u4 = θ,

u5 = u′4. (19)

Then equation (13). and (14). are written to a system of first order ODEs that are as

follow:

u′1 = u2,

u′1(0) = 0

u′2 = u3,

u2(0) = 1

(20)

11



u′3 = αu5u3 + eαu4
(
u22 − u1u3 + S

(η
2
u3 + u2

)
+Mu2

)
+ γu2, u3(0) = ε1, (21)

u′4 = u5,

u′5(0) =
−1

1 + R+ εu4(0)
,

u′5 =
1

1 + R+ εu4

(
Pr
(
ru2u4 − u5 + S

(
eta

2
u5 +mu4

))
− εu25

)
, u5(0) = ε2,

12



Table 2.1: Contrast of θ(0) values when S = M = α = γ = 0, r = 1 with Parsad et
al.[31] (for Newtonian case (n=1),ε = 0.0, 0.1and β = 0)

ε Pr Prasad et al.[31] Present work
0 0.7 1.2470 1.2491
0 1.0 0.9986 0.9998
0 2.0 0.6575 0.6566
0 5.0 0.3922 0.3910
0.1 0.7 1.3714 1.3751
0.1 1.0 1.0758 1.0751
0.1 2.0 0.6894 0.6896
0.1 5.0 0.4032 0.4032

2.4 Validation ofoMethod

Several wall temperature values θ(0), thermaloconductivity parameter ε and Prandtlonumber

Pr have been comparedoto those of the earlier steady-state problem of Prasad et al.

[31] to assess the validity and correctness of the present numerical scheme. The results

are displayed in table. It can be seen that, our results are very similar to those of

Prasad et al. [31]
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2.5 Results

Although there is a hugeoparameter domain tooscout, we find that computationsofor

bigger values of controllingoparameters are especially difficult due to numerical con-

vergence issues. As a result, we give data for a small set of physical factors selected

to discuss the main patterns in this section. This section discusses the effects of the

Darcy number γ, magnetic parameter M, radiation parameter R, viscosity parameter

α, unsteadiness parameter S, Prandtl number Pr and variable thermal conductivity ε.

The parameter values are M = 0.5, R = 1, Pr = 0.71, S = 0.5 and α = ε = r = m = 0.4

as input to get the results. Figures (2.1)-(2.7) summarise the findings.

The variations of the magnetic parameter on velocity and temperature profiles are

shown in Figures 2.1 (a) and 2.1 (b). The dimensionless temperature risesofor boost

up values of magnetic parameter M according to these figures. Inflation of the magnetic

parameter causes velocity to decelerate, as shown in Figure 2.1 (a). The Lorentzois

generated by increasing the Hartmann number.

Figures 2.2 (a) and 2.2 (b) show the impact of different R values on thermal and velocity

profiles. It illustrates that when R increases, the thicknessoof the thermaloboundary

layer and the temperature distribution improve. Higher R values provide greater tem-

perature to the fluid flow, resulting in an increase in temperature and thermal boundary

layer thickness, whereas lower R values have the reverse effect (see Figure 2.2 (b)).

Figures 2.4 (a) and 2.4 (b) exhibit velocityoand temperature curves for various values

of the parameter γ, respectively. As shown in both figures, a bigger value of the γ

parameter corresponds to a low velocity distribution and a high temperature distribu-

tion.

The graphical results in Figures 2.5 (a) and 2.5 (b) describe that as α increases, the

velocity distribution decreases, while theosheet temperature θ(0) and dimensionless

temperature rise.

The dimensionless velocity and temperature altering the unsteadiness parameter S are

revealed in Figures 2.6 (a) and 2.6 (b). It’s worth noting that the temperature has

a maximumodistribution when the unsteadinessoparameter S is minimal, as a result
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of the imposed thermal boundary condition. A similar pattern may be seen in the

velocity profiles.

Figures 2.7 (a) and 2.7 (b) show the effect of various values of the ε on velocity and

temperature. Figure 2.7 (a) convey that when the value of ε rises, the velocity also

rises. Also, a bigger value of ε generates a significant shoot up in the temperature

beside the sheet, as seen in Figure 2.7 (b).
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Figure 2.2: (a) Dimensionless Velocityofor M. (b) Dimensionless Temperatureofor M.
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Figure 2.3: (a) Dimensionless Velocityofor R. (b) DimensionlessoTemperature for R.
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Figure 2.4: (a) Dimensionless Velocityofor γ. (b) Dimensionless Temperatureofor γ.
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Figure 2.5: (a) Dimensionless Velocityofor α. (b) Dimensionless Temperatureofor α.

0 1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f' (
)

De=0.1, \gamma=0.2,  m=1, r=1,S_{1}=0.1, \epsilno=0.2, Pr=1,\alpha=0.2, M=0.5, R=0.2

S=0.5

S=0.8

S=1.2

0 5 10 15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(
)

M=0.1, =0.2,  m=1, r=1,S
1
=0.1, =0.2, Pr=1,S=0.8, M=0.5, R=0.2

S=0.5

S=0.8

S=1.2

Figure 2.6: (a) Dimensionless Velocityofor S. (b) Dimensionless Temperatureofor S.
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Figure 2.7: (a) Dimensionless Velocityofor ε. (b) Dimensionless Temperatureofor ε.

Table 2 shows how changes in the ε, R, α, S, and M affect the LocaloNusselt num-

ber and theoSkin-friction coefficient. Table 2 shows that as the S, M, R, γ, and ε

increase, so does skin-friction coefficient, whereas the Nusselt number rises as the S,

ε, and R increase. Additionally, as the magnetic parameter, viscosity parameter, and

Darcy number increase, the local Nusselt number drops.
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Table 2.2: Fluctuations of skinofriction and Nusseltonumber for several values of
S,R, α, oM, ε, oγ, andoR along with m=Pr=r=1.

M R γ α S ε −f ′′(0) 1
θ(0)

0 0.2 0.2 0.2 0.8 0.2 1.25980 1.38944
0.5 1.42306 1.36269
1 1.56849 1.34093
0.5 0 1.41848 1.27138

0.5 1.42861 1.48658
1 1.43564 1.66778

0.2 0 1.36686 1.37188
0.5 1.50277 1.35021
1 1.62566 1.33214

0.2 0 1.51445 1.37507
0.5 1.29007 1.34321
1 1.08033 1.30834

0.2 0.5 1.34063 1.23844
0.8 1.42306 1.36269
1.2 1.52572 1.50799
0.5 0 1.42127 1.31627
0.8 0.5 1.42538 1.42386
1.2 1 1.42859 1.51041
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Chapter 3

Maxwell FluidoFlow over an
UnsteadyoStretching Sheet with
VariableoHeat Flux

In this chapter we will discuss the flow of Maxwell fluid over an unsteadyostretching

sheet with variableoheat flux. Section 3.1 discusses theoflow model and mathemati-

caloformulation of the model, Section 3.2 discusses the numerical solution of the govern-

ing ODEs by using bvp4c in MATLAB. Then in Section 3.3 we discuss the validationoof

our proposed method, at last we will discuss the resultsowith the help of graphs.

3.1 FlowoModel

This section will introduce the appropriateodescription for all the governing equations

of the laminaroboundary layer fluid for an incompressibleotwo dimensionaloviscous

fluid flow and the heat devolve due to an unsteady stretching sheet. The governing

physical properties are surface velocity, fluid velocity and thermal conductivity of fluid.

Liu et al. [14] introduced in detail the Variableoheatoflux, which is also involved in

this model.

q∗(x, t) = −κeff
∂T

∂y
= T0

dxr

(1− at)m+( 1
2
)
, (3.1)

where

T0= referenceotemperature,
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a= positiveoconstant,

d= constant,

r= spaceoindex,

m= timeoindex,

And the applied transverseomagneticofield B can be interpolated as follows [25]:

B =
Bo

(1− at) 1
2

(3.2)

where Bo is a constant.

This particular form for the B will allow the existence of the dimensionlessomagnetic

field parameter commanding the velocity inside the boundaryolayer.

The supervised time-dependent boundary layer equations for mass,energy conservation

and momentum are given by

ux + vy = 0, (1)

ut + uux + vuy =
1

ρ∞
(µuy)y −

σB2

ρ∞
(u+ λ1vuy)−

µu

ρ∞k
− λ1[u2uxx + v2uyy + 2uvuxy],

(2)

Tt + uTx + vTy =
1

ρ∞Cp
(κTy)y −

1

ρ∞Cp
(qr)y +

Q
ρCp

(T − T∞), (3)

where u and v are the velocity components along the x and y directions, respectively. t,

ρ∞, µ, T, λ1, κ, Q, Cp and σ is the time, fluid density, fluid viscosity,fluid temperature,

relaxation time, permeabilityoofothe porousomedium, heat source parameter, specific

heat at constant pressure and the electrical conductivity respectively. qr is the radia-

tive heat flux as introduced by Parsad et al. [26] as follows:

qr = −
4σ∗

3k∗
∂T 4

∂y
(4)

where σ∗ is the Stefan Boltzmann constant and k∗ is the Rosseland mean absorption

coefficient. If the temperature differences within the flow are sufficiently small then by

expending T 4 into Taylor series about T also neglecting the higher order terms. Then

we get,

T 4 ≈ 4T 3
∞T − 3T 4

∞ (3.3)
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boundaryocondition correspondingoto considered model is taken as,

u = Uw, v = 0,−κeffTy = q(x, t) at y = 0, (5)

u→ 0, T → T∞ as y →∞. (6)

where

κeff = κ+
16σ∗T 3

∞
3K∗

T∞ is the temperatureoof the fluid at the surrounding and Uw is the surfaceovelocity

which can be identified as:

Uw =
bx

1− at
. (3.4)

The similarityovariables are defined as:

η =

(
b

ν∞(1− at)

) 1
2

y (7)

ψ = (ν∞b)
1
2xf(η)

θ(η) =
T − T∞

( q(x,t)
κ∞

)
√

ν∞
b
(1− at) 1

2

(8)

where the streamofunction is ψ(x, t), ν∞ is the kinematic viscosity at the surrounding,

θ(η) and f(η) are the dimensionlessotemperature and stream function respectively.

The µ and κ depends on temperatureoas follows [32,33]:
µ

µ∞
= e−αθ,

κ

κ∞
= (1 + εθ) (9)

whereoµ∞ is theoviscosity at the surrounding,oα is the dimensionless viscosity parameter,κ∞
is the thermal conductivity away from the surface, and ε is the conductivity parameter.

Now we will discuss two cases, case Ao(Constant Fluid Properties) and case Bo(Variable

Fluid Properties).

3.1.1 CaseoA: ConstantoFluid Properties

In Case A weokeep α and ε as constant. Using Eq.(7) and Eq.(8) continuity equa-

tiono(1) is satisfied.

u =
∂ψ

∂y
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Firstly we find values of terms.

u =
bxf ′

1− at
,

v = −∂ψ
∂x

,

v = −
√

ν∞b

1− at
f(η),

ux + vy = 0,

ux =
bf ′

1− at
,

vy = −
bf ′

1− at
,

now put all values in equation of continuityoto satisfy it.

bf ′

1− at
− bf ′

1− at
= 0

0 = 0

equation of continuity is satisfied, now we will find momentum equation.

ut + uux + vuy =
1

ρ∞

∂(µuy)

∂y
− σB2u

ρ∞
− µu

ρ∞κ
− λ1[u2ux2 + v2uy2 + 2uvuxy],
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firstly we find the values of all the terms and then insert in the equation.

ut =
abxf ′

(1− at)2
+

abxηf ′′

2(1− at)2
,

ux =
bf ′

1− at
,

uux =
b2xf ′2

(1− at)2
,

uy =
bxf ′′

1− at

√
b

ν∞

1√
1− at

,

vuy = −
b2ff ′′x

1− at
,

1

ρ∞
µuy =

1

ρ∞
µ∞

b
3
2xf ′′

√
ν∞(1− at)

3
2

,

1

ρ∞

∂

∂x
(µuy) =

µ∞b
2xf ′′′

ρ∞ν∞(1− at)2
,

µu

ρ∞κ
=

µ∞bxf
′

ρ∞ν∞(1− at)κ
,

Now we calculate

−λ1[u2ux2 + v2uy2 + 2uvuxy]

u2ux2 = 0,

v2uy2 =
b3xf 2f ′′

(1− at)3
,

2uvuxy = −
2b3xff ′f ′′

(1− at)3
,

Put values

−λ1[u2ux2 + v2uy2 + 2uvuxy] = −λ1[
b3xf 2f ′′

(1− at)3
− 2b3xff ′f ′′

(1− at)3
]

= − λ1b
3x

(1− at)3
(f 2f ′′′ − 2ff ′f ′′),

now
σB2

µ∞
(u+ λ1vuy) =

σB2bx

µ∞(1− at)
(f ′ −Deff ′′)
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Now put all values in momentumoequation.

abxf ′

(1− at)2
+

abxηf ′′

2(1− at)2
+

b2xf ′2

(1− at)2
− b2ff ′′x

1− at
=

µ∞b
2xf ′′′

ρ∞ν∞(1− at)2

− σB2bx

µ∞(1− at)
(f ′ −Deff ′′)− µ∞bxf

′

ρ∞ν∞(1− at)κ

− λ1b
3x

(1− at)3
(f 2f ′′′ − 2ff ′f ′′),

multiply on both sides by (1−at)2
b2x

,

a

b
f ′+f ′2−ff ′′+ a

2b
f ′′η = f ′′′−σB

2
0

ρ∞b
(f ′−Deff ′′)− µ∞

ρ∞k∞b
(1−at)f ′− λ1b

(1− at)
(
f 2f ′′ + 2ff ′f ′′

)
,

Now using

M =
σB2

bρ∞
, γ =

µ∞(1− at)
ρ∞kb

, De =
λ1(t)b

(1− at)
, S =

a

b

Sf ′ + f ′2 + S
η

2
f ′′ − ff ′′ = e−αθ (f ′′′ − θ′αf ′′)−M(f ′ −Deff ′′)− e−αθγf ′

−De
(
f 2f ′′ + 2ff ′f ′′

)
,

e−αθ (f ′′′ − θ′αf ′′)−Mf ′ − e−αθγf ′ − S
(
f ′ +

η

2
f ′′
)
− f ′2 + ff ′′ −De

(
f 2f ′′ + 2ff ′f ′′

)
= 0,

f ′′′−M(f ′−Deff ′′)−γf ′−S
(
f ′ +

η

2
f ′′
)
−f ′2+ff ′′−De

(
f 2f ′′ + 2ff ′f ′′

)
= 0. (10)

above equation is the momentumoequation.

Now we solve for Energy equation.

Tt + uTx + vTy =
1

ρ∞Cp

∂

∂y
(κTy)−

1

ρ∞Cp
(qr)y +

Q

ρCp
(T − T∞),

firstly we will find the values of terms that are included in the energyoequation.

Tt =
Todx

r

κ∞

√
ν∞
b

maθ

(1− at)m+1
+

Todx
raη

2κ∞(1− at)m+1

√
ν∞
b
θ′,

uTx =
Todx

2rbf ′

κ∞(1− at)m+1

√
ν∞
b
θ,
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vTy = −
Todx

rf

κ∞(1− at)m+1

√
ν∞bθ

′,

1

ρ∞Cp

∂

∂y
(κTy) =

1

ρ∞Cp

Todx
r(1 + θ)

(1− at)m+1

√
b

ν∞
,

1

ρ∞Cp
(qr)y = −

16T 3
∞

ρ∞Cp3K∗
σ∗Todx

r

κ∞(1− at)m+1

√
b

ν∞
θ′′,

Q

ρCp
(T − T∞) =

QoTodx
r

ρCpκ∞(1− at)m+ 1
2

√
ν∞
b
θ,

putting all values in theoenergy equation we get,
Todx

r

κ∞

√
ν∞
b

maθ

(1− at)m+1
+

Todx
raη

2κ∞(1− at)m+1

√
ν∞
b
θ′

+
Todx

2rbf ′

κ∞(1− at)m+1

√
ν∞
b
θ − Todx

rf

κ∞(1− at)m+1

√
ν∞bθ

′ =

1

ρ∞Cp

Todx
r(1 + θ)

(1− at)m+1

√
b

ν∞
+

16T 3
∞

ρ∞Cp3K∗
σ∗Todx

r

κ∞(1− at)m+1

√
b

ν∞

+
QoTodx

r

ρCpκ∞(1− at)m+ 1
2

√
ν∞
b
θ,

multiply the above equation on both sides by (1−at)m+1κ∞√
ν∞bTodxr

,

we get,

a

b
mθ +

a

b
ηθ′ + f ′rθ − fθ′ = (1 + θ)κ∞

ρ∞Cpν∞
θ′′ +

1

ρ∞Cpν∞

(
16T 3

∞σ
∗

3K∗κ∞

)
+
Qo(1− at)

1
2

ρCpb
,

now using the non-dimentional parameters in above equation;

S =
a

b
,R =

16σ∗T 3
∞

3κ∞K∗
, P r =

µ∞Cp
κ∞

, ρ∞ =
µ∞
ν∞

, S1 =
Qox

ρCpUw

R

Pr
θ′′ +

(1 + θ)

Pr
θ′′ + fθ′ − rf ′θ − S

(η
2
θ +mθ

)
+ S1θ = 0

1

Pr
(1 +R + θ) θ′′ + fθ′ − rf ′θ − S

(η
2
θ′ +mθ

)
+ S1θ = 0 (11)

Above equation is the Energy equation. The corresponding boundary conditions are;

f(0) = 0f ′(0) = 1, θ′(0) = − 1

1 +R
(12)

f ′ → 0, θ → 0 as η →∞ (13)
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where R is the radiation parameter, M = σB2

bρ∞
is the magnetic field, R = 16σ∗T 3

∞
3κ∞k∗

is the radiation parameter, Pr = µ∞cp
κ∞

is the Prandtl number, γ = µ∞(1−at)
ρ∞kb

is the

local Darcy number, S = a
b
is the unsteadiness parameter, S1 = Qox

ρCpUw
is the heat

generation/absorption parameter, De = λ1(t)b
(1−at) is the Deborah number. λ1 = λo(1−at)

can be taken for similarity solution λ1, then De = bλo, where λo is a constant.

3.1.2 CaseoB: VariableoFluid Properties

Case B is the VariableoFluid properties. Using Eq.(7) and Eq.(8) continuityoEq.(1) is

satisfied.

u =
∂ψ

∂y
,

firstlyowe find values of terms.

u =
bxf ′

1− at
,

v = −∂ψ
∂x

,

v = −
√

ν∞b

1− at
f(η),

ux + vy = 0,

ux =
bf ′

1− at
,

vy = −
bf ′

1− at
,

now put all values in equationoof continuityoto satisfy it.
bf ′

1− at
− bf ′

1− at
= 0,

0 = 0

equation ofocontinuity is satisfied, now we will find momentumoequation.

ut + uux + vuy =
1

ρ∞

∂(µuy)

∂y
− σB2u

ρ∞
− µu

ρ∞κ
− λ1[u2ux2 + v2uy2 + 2uvuxy],
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firstly we find theovalues of all the termsoand then insert in the equation.

ut =
abxf ′

(1− at)2
+

abxηf ′′

2(1− at)2
,

ux =
bf ′

1− at
,

uux =
b2xf ′2

(1− at)2
,

uy =
bxf ′′

1− at

√
b

ν∞

1√
1− at

,

vuy = −
b2ff ′′x

1− at
,

5
1

ρ∞
µuy =

1

ρ∞
µ∞e

−αθ b
3
2xf ′′

√
ν∞(1− at)

3
2

,

1

ρ∞

∂

∂x
(µuy) = −

µ∞b
2xαe−αθθ′f ′′

ρ∞ν∞(1− at)2
+

µ∞b
2xe−αθf ′′′

ρ∞ν∞(1− at)2
,

σB2u

ρ∞
=

σB2bx

ρ∞(1− at)
(f ′ −Deff ′′),

µu

ρ∞κ
=

µ∞bxe
−αθf ′

ρ∞ν∞(1− at)κ
,

Now we calculate

−λ1[u2ux2 + v2uy2 + 2uvuxy],

u2ux2 = 0,

v2uy2 =
b3xf 2f ′′

(1− at)3
,

2uvuxy = −
2b3xff ′f ′′

(1− at)3
,

Put values

−λ1[u2ux2 + v2uy2 + 2uvuxy] = −λ1[
b3xf 2f ′′

(1− at)3
− 2b3xff ′f ′′

(1− at)3
]

= − λ1b
3x

(1− at)3
(f 2f ′′′ − 2ff ′f ′′),
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Now put all values in momentumoequation.

abxf ′

(1− at)2
+

abxηf ′′

2(1− at)2
+

b2xf ′2

(1− at)2
− b2ff ′′x

1− at
= −µ∞b

2xαe−αθθ′f ′′

ρ∞ν∞(1− at)2
+

µ∞b
2xe−αθf ′′′

ρ∞ν∞(1− at)2

− σB2bx

ρ∞(1− at)
(f ′ −Deff ′′)− µ∞bxe

−αθf ′

ρ∞ν∞(1− at)κ

− λ1b
3x

(1− at)3
(f 2f ′′′ − 2ff ′f ′′),

abxf ′

(1− at)2
+

abxηf ′′

2(1− at)2
+

b2xf ′2

(1− at)2
− b2ff ′′x

1− at
= − µ∞b

2x

ρ∞ν∞(1− at)2
(
−αe−αθθ′f ′′ + e−αθf ′′′

)
− σB2

0bx

ρ∞(1− at)2
(f ′ −Deff ′′)− µ∞bxe

−αθf ′

ρ∞ν∞(1− at)κ

− λ1b
3x

(1− at)3
(f 2f ′′′ − 2ff ′f ′′),

multiplyoon both sides by (1−at)2
b2x

a

b
f ′ + f ′2 − ff ′′ + a

2b
f ′′η =

(
−e−αθf ′′ + e−αθf ′′′

)
− σB2

0

ρ∞b
(f ′ −Deff ′′)− µ∞

ρ∞k∞b
(1− at)f ′e−αθ

− λ1b

(1− at)
(
f 2f ′′ + 2ff ′f ′′

)
,

Now using

M =
σB2

bρ∞
, γ =

µ∞(1− at)
ρ∞kb

, De =
λ1(t)b

(1− at)
, S =

a

b

Sf ′ + f ′2 + S
η

2
f ′′ − ff ′′ = e−αθ (f ′′′ − θ′αf ′′)−M(f ′ −Deff ′′)− e−αθγf ′

−De
(
f 2f ′′ + 2ff ′f ′′

)
,

e−αθ (f ′′′ − θ′αf ′′)−M(f ′ −Deff ′′)− e−αθγf ′−

S
(
f ′ +

η

2
f ′′
)
− f ′2 + ff ′′ −De

(
f 2f ′′|+ 2ff ′f ′′

)
= 0,

e−αθ (f ′′′ − θ′αf ′′)−M(f ′−Deff ′′)−e−αθγf ′−S
(
f ′ +

η

2
f ′′
)
−f ′2+ff ′′−De

(
f 2f ′′ + 2ff ′f ′′

)
= 0.

(14)
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above equation is the momentum equation.

Now we solve for Energy equation.

Tt + uTx + vTy =
1

ρ∞Cp

∂

∂y
(κTy)−

1

ρ∞Cp
(qr)y +

Q

ρCp
(T − T∞),

firstly we willofind the values of terms that areoincluded in the energy equation.

Tt =
Todx

r

κ∞

√
ν∞
b

maθ

(1− at)m+1
+

Todx
raη

2κ∞(1− at)m+1

√
ν∞
b
θ′,

uTx =
Todx

2rbf ′

κ∞(1− at)m+1

√
ν∞
b
θ,

vTy = −
Todx

rf

κ∞(1− at)m+1

√
ν∞bθ

′,

1

ρ∞Cp

∂

∂y
(κTy) =

1

ρ∞Cp

Todx
r(1 + εθ)

(1− at)m+1

√
b

ν∞
+

Todx
rε

ρ∞Cp(1− at)m+1

√
b

ν∞
θ′2,

1

ρ∞Cp
(qr)y = −

16T 3
∞

ρ∞Cp3K∗
σ∗Todx

r

κ∞(1− at)m+1

√
b

ν∞
θ′′,

Q

ρCp
(T − T∞) =

QoTodx
r

ρCpκ∞(1− at)m+ 1
2

√
ν∞
b
θ,

putting allovalues in the energyoequation we get,

Todx
r

κ∞

√
ν∞
b

maθ

(1− at)m+1
+

Todx
raη

2κ∞(1− at)m+1

√
ν∞
b
θ′

+
Todx

2rbf ′

κ∞(1− at)m+1

√
ν∞
b
θ − Todx

rf

κ∞(1− at)m+1

√
ν∞bθ

′ =

1

ρ∞Cp

Todx
r(1 + εθ)

(1− at)m+1

√
b

ν∞
+

Todx
rε

ρ∞Cp(1− at)m+1

√
b

ν∞
θ′2

+
16T 3

∞
ρ∞Cp3K∗

σ∗Todx
r

κ∞(1− at)m+1

√
b

ν∞
+

QoTodx
r

ρCpκ∞(1− at)m+ 1
2

√
ν∞
b
θ,

multiply the aboveoequation on both sides by (1−at)m+1κ∞√
ν∞bTodxr

, we get,

a

b
mθ+

a

b
ηθ′+f ′rθ−fθ′ = (1 + εθ)κ∞

ρ∞Cpν∞
θ′′+

εθ′2

ρ∞Cpν∞
+

1

ρ∞Cpν∞

(
16T 3

∞σ
∗

3K∗κ∞

)
+
Qo(1− at)

1
2

ρCpb
,
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now using the non-dimentionaloparameters in above equation:

S =
a

b
, R =

16σ∗T 3
∞

3κ∞K∗
, Pr =

µ∞Cp

κ∞
, ρ∞ =

µ∞
ν∞

, S1 =
Qox

ρCpUw
.

R
Pr

θ′′ +
ε

Pr
θ′2 +

(1 + εθ)

Pr
θ′′ + fθ′ − rf ′θ − S

(η
2
θ +mθ

)
+ S1θ = 0,

1

Pr
[
(1 + R+ εθ) θ′′ + εθ′2

]
+ fθ′ − rf ′θ − S

(η
2
θ′ +mθ

)
+ S1θ = 0. (15)

Above equation is the energyoequation. The corresponding boundaryoconditions are;

f(0) = 0, f ′(0) = 1, θ′(0) = − 1

1 + εθ + R
, (16)

f ′ → 0, θ → 0 as η →∞. (17)

where ε is the conductivityoparameter. It can be noted that the velocity and temper-

atureofields are coupledoto each other, that can be seen in Eq. (12) and Eq. (13).

Crane [26] solved the velocity field systematically for steady problem S = 0, R = 0,

M = 0, γ = 0 i.e when the thermal radiation,porous parameter and magnetic field are

not present and α = 0 i.e. viscosity is not a function of temperature, with f = 1− e−η.

3.2 PhysicaloParameters

The dimensionless physicaloparameters the skinofriction coefficient and local Nusselt

number are defined as:

3.2.1 Skin-FrictionoCoefficient:

The skin-Frictionocoefficient is written as;

ConstantoFluid Properties

Cfx = −2Re
− 1

2
x f ′′(0) (14)

Variable fluidoProperties

Cfx = −e−αθRe
− 1

2
x f ′′(0) (15)
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3.2.2 LocaloNusselt Number:

The local Nusseltonumber is written as:

Nux =
Re

1
2
x

θ(0)

where Rex = Uwx
ν∞

is the local Reynolds number.

3.3 NumericaloSolution

We will solve for both cases for Constant, and variable fluid properties.

3.3.1 CaseoA: ConstantoFluid Properties

The boundary value problem (Bvp) stated by equation (10) and (11) with boundary

conditions (12) and (13) is solved using MATLAB package bvp4c.

y1 = f ⇒ y′1 = f ′ = y2

y2 = f ′ ⇒ y′2 = f ′′ = y3

y3 = f ′′ ⇒ y′3 = f ′′′ =
1

1−Dey21

(
M(y2 −Dey1y3) + γy2 + S(y2 + y3

η

2
) + y22 − y1y3 − 2Dey1y2y3

)

y4 = θ ⇒ y′4 = θ′ = y5

y5 = θ ⇒ y′5 = θ′′ =
1

(1 +R)
Pr(rf ′θ − fθ′ + S(

η

2
θ′ +mθ)− ε(θ′)2 − S +1 θ)
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3.3.2 CaseoB: VariableoFluid Properties

The boundary value problem (bvp) stated by equation (14) and (15) with boundary

conditions (16) and (17) is solved using MATLAB package bvp4c.

y1 = f ⇒ y′1 = f ′ = y2, y2 = f ′ ⇒ y′2 = f ′′ = y3

y3 = f ′′ ⇒ y′3 = f ′′′ =
1

e−αy4 −Dey21(
e−αy4αy5y3 +M(y2 −Dey1y3) + γe−αy4y2 + S(y2 + y3

η

2
) + y22 − y1y3 − 2Dey1y2y3

)
y4 = θ ⇒ y′4 = θ′ = y5, y5 = θ ⇒ y′5 = θ′′ =

1

(1 +R + εθ)
Pr(rf ′θ − fθ′

+S(
η

2
θ′ +mθ)− ε(θ′)2 − S +1 θ)

3.4 Validationoof Method

Comparison of constant and variable fluid propertiesowith variable heat flux over a

sheet for Maxwellofluid is done by usingotechnique of bvp4c in MATLAB. To know

the accuracy and reliability of the current numerical results, various values of Deborah

number De have been compared to those of former problems of Abel et al. [34] and

Megahed et al. [22]. The results ofocontrast/comparison are given in table 1.

3.5 ResultsoandoDiscussion

In this section, we present the results of some physical parameteres that are selected

to discuss the major trends. Impactoof viscosity parameter, Deborah number, ther-

maloconductivity, Darcy number, magnetic parameter,oradiationoparameter, unsteadi-

nessoparameter, heat generation/absorptionoparameter, Prandtlonumber is discussed

in this section. The values of the parameters are α = R = γ = ε = 0.2, S1 = De = 0.1,

M = 0.5, S = 0.8, Pr = r = m = 1 as input to get results for completeoproduction.

Figure 3.1 (a) shows the effect of M which is the magneticoparameter on the flow ve-

locity f ′(η). The flow velocity decreases slightly as M increases in Figure 3.1 (a) due

to the applied transverse magnetic field which yields a dragoforce in the form of the
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Lorentz force, reducing the magnitude of the velocity. Meanwhile, as seen in Figure

3.1 (b), as the magnetic fieldoM is increased, the temperature of the flow gradually

increases.

Figures 3.2 (a) and 3.2 (b) under the effect of the parameter ε estimate both the di-

mensionless velocityoandotemperature of an unsteady flow of non-Newtonian fluid with

varying ε. The velocity f ′(η) values of ε are negligible, as seen in Figure 3.2 (a). Also,

a huge conductivityoparameter causes a significant fall in the temperature beside the

sheet, as shown in Figure 3.2 (b).

The impact of increasing the parameter α on dimensionless velocity can be seen in Fig-

ure 3.3 (a), which leads to a drop in dimensionless velocity f ′(η). Similarly, raising the

valueoof the same parameter raises the dimensionless temperature, as seen in Figure

3b.

In figures 3.4 (a) and 3.4 (b) shows the effect of Darcy number γ on f ′(η) and θ(η)

respectively. When γ increases the velocity profile decreases. It is discovered that when

Darcy number increases, the permeability of the porous medium decreases, resultingoin

a marked reduction in fluid activity. While theotemperature profile increases with the

increase in γ. The reason for this is because when the Darcy number rises, the fluid per-

meabilityoof porous substances rises, and colder fluid’s interactionowith heated walls

decreases. As a result, the temperature difference between the porous substance and

the wall between them increases, and theodimensionless temperature rises with it.

Figures 3.5 (a) and 3.5 (b) depictothe evolution of the velocityoandotemperature

fields on the boundaryolayer region as a function of the R values for the thermal ra-

diation parameter. As can be seen in Figure 3.5 (a), the magnitude of the velocity

increases slowly as R rises. In addition, the temperature insideothe thermaloboundary

layer, where the change in the R takes place, firstly falls and then rises.

The effect of De on the dimensionless velocity can be seen in figure 3.6 (a). It can be

seen that increase in De results the lower value of the dimensionless velocity at any

givenpoint above the sheet. Figure 3.6 (b) illustrates that at any point the dimension-

less temperature θ(η) rises with the rising Deborah number. So, by choosing a coolant
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which have a small De, can improve the cooling of the heated sheet.

The focus is now on the curves that show how the unsteadiness parameter S affects

the dimensionless velocity and the temperature . These curves are shown in Figures

3.7 (a) and 3.7 (b), respectively. It’s worth noting that as the unsteadiness parameter

is increased, the velocity profile drops. While, with an increase in S, the temperature

drops. This demonstrates the essential fact that the rate of cooling is much faster for

higher values of the S, but smaller values of the S may take longer to cool.

Figure 8a and 8b shows the effect of heat generation and absorption parameter S1. f ′η

decreases as S1 decreases so does momentum boundary layer thickness. While, the θ(η)

increases with the increase in S1. Table 2 is presented to illustrate the behaviour
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Figure 3.1: (a) Dimensionless Velocityofor M. (b) Dimensionless Temperatureofor M.
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Figure 3.2: (a) Dimensionless Velocityofor ε. (b)Dimensionless Temperatureofor ε.

of theoSkin-friction Coefficient and the Local Nusselt Number with variations in vis-

cosity parameter, Deborah Number, thermal conductivity, Darcy number, magnetic
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Figure 3.3: (a) Dimensionless Velocityofor α. (b) Dimensionless Temperatureofor α.
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Figure 3.4: (a) Dimensionless Velocityofor γ. (b) Dimensionless Temperatureofor γ.
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Figure 3.5: (a) Dimensionless Velocityofor R. (b) Dimensionless Temperatureofor R.

parameter, radiation parameter,unsteadiness parameter, heat generation/absorption

parameter for both Case A and Case B, and then a comparison is done between them

by compairing the trend of local skin-friction coefficient and the local Nusselt number.

For Case A the skin friction rises with the greater values of M, S, γ, and De. While α,

R, ε and S1 remains constant.The local Nusselt number falls with the rising values of
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Figure 3.6: (a) Dimensionless Velocityofor De. (b) Dimensionless Temperatureofor De.
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Figure 3.7: (a) Dimensionless Velocityofor S. (b) Dimensionless Temperature distribu-
tionofor S.
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Figure 3.8: (a) Dimensionless Velocityofor S1. (b) Dimensionless Temperatureofor S1.

M, γ,S1 and De. And it remains constant with the higher values of α.

Now for Case B the skin-friction rises with the rising values of M,γ,α, S, ε and De. The

local Nusselt number boost up with the rising values of R and ε. while it falls with the

rising values of M, γ, α, S, S1 and De.

36



Table 3.1: Contrast of skinofriction coefficientofor different value of De.

De Abel et al.[34] Megahed et al.[22] Present Work
0 0.999962 0.999978 0.999999
0.2 1.051948 1.051945 1.051844
0.4 1.101850 1.101848 1.101883
0.6 1.150163 1.150160 1.150161
0.8 1.196692 1.196690 1.196666
1.2 1.285257 1.285253 1.285255
1.6 1.368641 1.368641 1.368642
2 1.447617 1.447616 1.447615
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Table 3.2: Variation of skinofriction and localoNusselt number for both Constant and
Variable fluid properties, when r = m = 1,Pr = 7.

CFP VFP
M R γ α S ε S1 De −f ′′(0) 1

θ(0) −e−αθf ′′(0) 1
θ(0)

0 0.2 0.2 0.2 0.8 0.2 0.1 0.1 1.3566 3.8210 1.3345 3.5381
0.5 1.5395 3.7820 1.5098 3.5026
1 1.6952 3.7478 1.6663 3.4685
0.5 0.1 1.5359 3.6339 1.5090 3.3305

0.5 1.5359 4.1873 1.5118 3.9576
1 1.5359 4.7677 1.5139 4.5917

0.2 0 1.4691 3.7963 1.4464 3.5146
0.5 1.6310 3.7619 1.6000 3.4823
1 1.7780 3.7313 1.7391 3.4537

0.2 0 1.5359 3.7820 1.5359 3.5091
0.5 1.5359 3.7820 1.4505 3.4883
1 1.5359 3.7820 1.4043 3.4655

0.2 0.2 1.3833 3.2681 1.3545 2.9523
0.5 1.4609 3.5286 1.4336 3.2337
0.8 1.5359 3.7820 1.5098 3.5012
0.8 0 1.5359 3.7820 1.5126 3.7739

0.1 1.5359 3.7820 1.5113 3.6329
1 1.5359 3.7820 1.4988 2.8276

0.2 0 1.5359 3.9006 1.5111 3.6201
0.15 1.5359 3.7208 1.5091 3.4398
0.16 1.5359 3.7084 1.5090 3.4274
0.1 0 1.5144 3.7880 1.4890 3.5069

0.2 1.5573 3.7760 1.5306 3.4951
0.3 1.5786 3.7700 1.5513 3.4899
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Chapter 4

Conclusions

A brief description of previous knowledge is given in Chapter 1. It includes the def-

initions to some important fluids that areocompressible, incompressible, real,oideal,

steady , unsteady, laminar , turbulent, Newtonian and non-Newtonian fluids. It also

included thr boundaryolayer flow. Some dimensionless parameters are also explained

e.g Reynolds, Prandtl, Deborah andoNusselt number etc. At the end bvp4c is also

explained.

In Chapter 2, the impacts ofovariable characteristics and variableoheat flux in a laminar

flow of anoincompressible fluid through an unsteady stretching surface embeddedoin a

porousomedium have been studied using numerical solutions. The bvp4c is used to solve

the numerically obtained similar ordinary differential equations. For variousophysical

parameters, all values of parameters relating to the prevailing shear stress for fluidoflow

and heat transfer are arranged in the table. The bvp4c was used to solve the numer-

icallyocomputed highly nonlinear ODEs that characterise our physical problem. We

discovered that the local Nusseltonumber is highly influenced by the values of the S,

ε, R, γ, M and α are influencedoto a lesser extent. The rate of heat transmission was

also shown to decrease when the viscosity and magnetic parameters increased. Fur-

thermore, it was discovered that as the unsteadiness, radiation parameters and thermal

conductivity rose, the rate of cooling for the surface is increased.

In chapter (3) comparisonoof constant and variable fluid properties with variable heat

flux over a sheet for Maxwell fluid is done. bvp4coin MATLAB is used to solved
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the obtained ordinary differential equations for both the cases constant fluid proper-

ties and variable fluid properties. For different physicaloparameters all the values of

parameters correspondingoto predominateothe shearostress for fluid flow along with

heatotransfer are arranged in the table. The nonlinear ODEs obtainedodescribe our

physical problem were solvedonumerically by bvp4c in MATLAB. The notable findings

of the problemoare outlined below:

• For both cases skin-frictionocoefficient rises with the rising values of M, S, γ, ε

and De.

• There is no decrease in the skin-frictionocoefficient for both cases. While the heat

generation/absorption parameter values of skin-friction remains constant for Case

A i.e. constant fluidoproperties are independent of heat generation/absorptionoparameter.

• For both the cases local Nusseltonumber increases with the increase in thermal

radiation.

• For both the cases Nusseltonumber falls with the rise in magnetic parameter,

γ, Deborah number and heat generation/absorption parameter. While viscos-

ityoparameter’s value for Nusselt number remains constant for Case A.

• The temperature profileoincreasesowith the increaseoof α, De, γ, M, R and S1.

While it decreases with the increase of R, S and ε

• The velocity profile increasesowith the increase of ε, and R. While it decreases

with the increase of α, S1, S,γ, M and De.

• The Skin-frictionocoefficient and localoNusselt number values foroConstant Fluid

propertiesois greater than the values of Variable FluidoProperties.
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