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ABSTRACT

The most common endocrine tumor is thyroid carcinoma (TC). The clinical

significance of thyroid carcinoma with respect to the recurrence of the disease state

has been reviewed recently. Current therapy includes surgery (thyroidectomy) and

radiotherapy that are not affordable and may indicate the risk of relapse. Although

there are drugs available in the market; however, side-effects and drug-resistance

limit their full potential to be used. Since the expression analysis identifies important

cellular processes or metabolic pathways which are important during the phase of

infection. Therefore, identifying effective therapeutic targets through microarray and

high throughput sequencing technology might serve a purpose in the treatment of the

thyroid carcinoma in its early stages. In order to achieve the objectives of the study,

Microarray and RNA-seq data analysis have been performed. We analyzed different

datasets of thyroid carcinoma induced in order to find similarities and differences

between expression profiles. After identification of expression level of mRNAs and

miRNAs, targets of miRNAs are also predicted. The data analysis has revealed 36

common differentially expressed genes (DEGs) for thyroid carcinoma. Out of these

genes, only (Zinc finger and BTB domain containing protein 44) ZBTB44 is not

considered a prognostic therapeutic target for thyroid cancer but for other carcinomas

patients in literature, which needs further investigation to overcome the disease. While

remaining differentially expressed genes are also validated through literature review.

Pathway analysis is then performed on the all DEGs that shows their involvement

in following pathways; Proteoglycans in cancer, Transcriptional misregulation in

cancer, PI3K-AKT signaling pathway, WNT signalling pathway and MAPK signaling

pathway. This study can provide the basis for further validation through systems

biology approach and wet lab techniques.
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Chapter 1

INTRODUCTION

1.1 Thyroid Carcinoma

Now the most commonly diagnosed tumor is thyroid cancer, which is on the

upswing, presumably due to the massive use of prevalent imaging research. It provides

a useful model for the other cancers since there are distinct histological features in its

different forms. At the time of diagnosis, the treatment and the prognosis of thyroid

carcinoma varies based on the nature of tumor and its stage (Nikiforov, 2008). The

thyroid lesions may come through cells of parafollicular C or follicular (thyrocytes).

Medullary thyroid carcinoma is the only tumor type that originates via parafollicular C

cells. They constitute a very small portion (2-4 per cent) of all thyroid tumors. While,

various types of thyroid malignancies originate through follicular cells. Every group

has unique molecular, medical, and histopathological requirements. There are two

distinct types of benign tumour: follicular adenoma (FA) and autonomous adenoma

(AA). They are usually associated with production of thyroid hormones and high and

low ability to take up iodide, respectively (Saiselet et al., 2016).

In the united states, thyroid cancer is the most prevalent cancer in women, and in

2015, an estimated 62,000 new cases occurred in both men and women (Cabanillas

et al., 2016). Most clinicians would also meet a patient with that kind of illness at

a certain stage in their professional life. While the prevalence is gradually rising,

thyroid cancer mortality has minimally evolved across the previous 5 decades. The

complexity confronted by doctors who diagnose thyroid carcinoma is to manage

the treatment approach such that individuals with mild-risk disease or stable thyroid

nodules are not mis-treated. At a certain period, individuals with more severe or high-

risk illness need to be identified who require a more intensive care plan. Thyroid

2



Chapter 1 1.1 Thyroid Carcinoma

carcinoma in most cases display a spectrum of clinical action abroad from indolent

tumors with low mortality to very severe malignancies, such as anaplastic thyroid

cancer. To tailor treatment appropriately, it is therefore crucial to undertake a proper

diagnostic workup before treatment is started (Cabanillas et al., 2016).

1.1.1 Molecular pathogenesis and mechanisms

The molecular pathogenesis and thyroid cancer mechanisms arise when the ex-

tracellular mitogenic stimulus or growth factor activates the receptor tyrosine kinases

(RTKs), resulting in the intracellular domain receptor dimerisation and activation by

autophosphorylation of tyrosine residues shwn in Figure 1.1 (Xing, 2013). Through

a sequence of adaptor proteins, the activated receptor contributes to stimulation of

receptor tyrosine kinases (RAS) situated at the inside of the cell membrane. The

stimulated RAS binds to the plasma membrane and employs the (rapidly accelerated

fibrosarcoma) RAF proteins. The activated serine-threonine kinase (BRAF) is then

phosphorylated which further activated the mitogen-activated protein kinase (MAP-

K/ERK) or (MEK). In nucleus, ERK is triggered through phosphorylation (P) where

the tumor suppressor genes and tumor- promoter genes are upregulated and thyroid

iodide driving genes are downregulated (Xing, 2013).

Figure 1.1. Molecular pathogenesis and thyroid cancer mechanisms.

In Figure 1.2; The BRAF mutation activates the MAPK pathway, which is

3



Chapter 1 1.1 Thyroid Carcinoma

highly prevalent in PTC. In comparison, RAS/PTEN mutation found in the remaining

categories of thyroid cancer (FTC, ATC, MTC) triggers another pathway P13-ACT.

Both pathways caused the thyroid –specific genes to be silenced and the iodide han-

dling machinary turned off. Iodide uptake in the thyroid cells is therefore decreased,

resulting in an increasing loss of radioiodine therapy (Xing, 2013).

Figure 1.2. Silencing of thyroid-specific genes in thyroid cells.

The treatment procedure involves the surgical removal of the entire thyroid

gland (thyroidectomy) which removes all visible thyroid tissue. Still, following surgery,

the re-occurrence of the state of the disease was noticed. Hence, radioactive iodine

treatment has been suggested to cure the possible relapse. In this mechanism, io-

dide function by entering thyroid cells through the transporters of sodium iodide and

emitting beta-rays of short wavelength causing acute cell death (Figure 1.3).

Figure 1.3. Radioactive iodine ablation and treatment.

The therapy has recently been approved for multi-kinase or tyrosine kinase

4



Chapter 1 1.1 Thyroid Carcinoma

inhibitors. Though no overall survival impact has yet been seen. Since they also have

severe health effects and must be restricted just for individuals with deadly illnesses

(Nguyen et al., 2015)

1.1.2 Risk Factors

The risk factors include;

• Hereditary and epigenomic variations are the primary factors of thyroid cancer.

Common sources of these mutations include the abnormalities in anaplastic

lymphoma kinase (ALK), isocitrate dehydrogenase 1 (IDH1), TP53, β -catenin

(CTNNB1), translocations (RET – PTC and paired box 8 (PAX8)–peroxisome

proliferator-activated receptor-π (PPARG)), BRAF (BRAFV600E), RAS, PIK3CA,

PTEN, and incorrect gene methylation (Xing, 2013).

• Molecular pathogenesis of thyroid carcinoma focuses on different signaling

routes, such as MAPK, PI3K–AKT, RASSF1–mammalian STE20-like pro-

tein kinase 1 (MST1) forkhead box O3 (FOXO3), WNT–β -catenin, hypoxia-

inducing factor 1α (HIF1α) and TSH-receptor (TSHR) (Xing, 2013).

• The progression of thyroid cancer is a mechanism for developing hereditary

and epigenetic mutations with associated progressive aberration in the signal-

ing pathway. All of these are accompanied by multiple secondary molecular

changes that intensify and harmonize their effect on thyroid tumor origin, both

in the cell and in the tumor microenvironment (Xing, 2013).

• Abnormal inhibition of thyroid iodide-driving genes and subsequent destruc-

tion of thyroid cancer radioactive iodine avidity induced by BRAF-V600E is a

particular molecular pathology mechanism in thyroid carcinoma that induces

rejection of radioiodine therapy (Xing, 2013).

5



Chapter 1 1.1 Thyroid Carcinoma

Figure 1.4. Risk factors involved in thyroid carcinoma.

1.1.3 Prevalence

Thyroid carcinoma (TC) accounts for around 1 per cent of all reported patholo-

gies globally, by around 140,000 occurrences and 35,000 fatalities reported in 2002.

Many thyroid cancers are avaricious malignant tumors with a median survival mea-

sured at approximately 85% in Europe and 95% in the United States for five years.

The combined total likelihood of suffering cancer in women before 65 years of age

was estimated at 0.2 per cent and in men at 0.1 per cent (Dal Maso et al., 2009).

The American National Cancer Institute recorded that the median age at diagnosis

for thyroid cancer in the years 2005–2009 was 50 years, with an estimated 56,460

new cases and 1,780 deaths from thyroid cancer in the United States in 2012 (Liu

et al., 2013). Despite the positive prognosis of this disease, 15–20 percent of distinct

cases of thyroid cancer (DTC) and most anaplastic cases remain resistant to specific

therapeutic strategies such as radioactive iodine (RAI). In addition, nearly 30 per

cent of cases of medullary thyroid cancer (MTC) demonstrate resistance after surgery.

When classified as "advanced thyroid cancers," patients with these severe types have

a 5-year survival rate of less than 50 percent, compared with the 5-year survival rate

of around 98 percent for patients with iodine-sensitive DTC (Naoum et al., 2018).

6



Chapter 1 1.2 Types of Thyroid Cancer

1.2 Types of Thyroid Cancer

Its histological characteristics have identified four different forms of thyroid

carcinoma;

• Papillary thyroid cancer (PTC)

• Anaplastic thyroid cancer (ATC)

• Follicular thyroid cancer (FTC)

• Medullary thyroid cancer (MTC)

1.2.1 Papillary thyroid cancer (PTC)

Papillary thyroid carcinoma (PTC) is the most common thyroid cancer his-

totype and constitutes around 1 per cent of human malignancies. Patients with PTC

appear to have a good prognosis at the time of diagnosis, particularly in those younger

than 45 years. Nonetheless, following initial diagnosis, approximately 5 percent of pa-

tients with PTC report a recurrence within 5 years. A tumor is located in the resected

contralateral lobe in patients with local or distant recurrence following lobectomy

in more than 60 per cent of the cases. In addition, PTC is often multifocal, with a

recorded frequency varying significantly from 18% to 87%, 61% of which are bilat-

eral (Abdullah et al., 2019).

Most papillary carcinomas are associated with the existence of > 1 biologically dis-

tinct target, identified in 18–87 percent of recorded cases of PTCs. Nevertheless,

indeed there is a gap in knowledge on how this phenomenon occurs from various

individual tumors or from the intrathyroid spread of a basic single tumor mass. Given

the discrepancies between several studies in molecular techniques, the general conclu-

sion was that PTC multiplicity may result either from multicentricity or intrathyroid

spread (Chmielik et al., 2018).

7
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1.2.2 Anaplastic thyroid cancer (ATC)

One of the most lethal illnesses remains anaplastic thyroid cancer (ATC). It

accounts for 1.7 per cent of all U.S. thyroid cancers. Geographical prevalence, how-

ever, varies from 1.3% to 9.8%. Overall, the average lifespan of patients is 5 months,

and fewer than 20 per cent withstand one year (Smallridge and Copland, 2010).

The American Joint Cancer Committee (AJCC) classifies ATC into Stage IVA, B &

C. Stages IVA are intrathyroid tumors; the primary tumor has evidence of gross ex-

trathyroid extension in Stage IVB, and distant metastases in Stage IVC patients. ATC

reveals a diverse collection of genetic mutations from a greater incidence of genes

involved in the signaling pathways to β -catenin, PI3 K and MAPK (mitogen-activated

protein kinase) effectors. Mutations of the BRAF and RAS genes are extremely com-

mon in anaplastic carcinoma, reaching approximately fifty percent. Another extremely

prevalent molecular phenomenon of anaplastic thyroid carcinoma is PIK3CA copy

number gain, which often intertwines between several somatic alterations including

BRAF mutations. A typical of ATC gene mutation is TP53, with a prevalence of about

70 percent in ATC cases, but it is not found in distinguished thyroid tumors (O’Neill

and Shaha, 2013).

1.2.3 Follicular Thyroid Carcinoma (FTC)

FTC is the commonest form of thyroid carcinoma (TC) after papillary thyroid

carcinoma (PTC). they have always been more aggressive compared with PTC, tend

to become much more developed mostly at onset of disease, are far less prone to

conventional treatment, and hence more frequently cause morbidity. Because of its re-

semblance to FAs, preoperative diagnosis of FTC is very difficult, and the distinction

between the two tumors is generally based mostly on the existence of vascular or cap-

sular invasion. Not only FA and FTC became identical in terms of histopathological

characteristics but also have a shared genetic history. In both FTCs and FAs, PAX8

/ PPARπ and RAS somatic mutations transformations were found, the primary FTC

8
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abnormalities. This carcinoma displays significantly lower phenotypic diversity than

papillary; about 80% of follicular cancer reports include trabecular or microfollicular

formation, but also well-formed colloid follicles are located in about 20% of cases. If

even a small number of individuals with repetitive follicular tumors with capsular in-

trusion had metastasis that might be clarified by molecular and cellular heterogeneity

(Chmielik et al., 2018).

1.2.4 Medelullary thyroid cancer (MTC)

Medullary thyroid carcinoma (MTC) is produced by calcitonin (CT) forming

parafollicular or C cells and accounts for 5-10 percent of all thyroid cancers. MTC is

inherited for around 25 per cent of cases. The discovery of an MTC in a patient has

many effects. Essentially, the severity of the disorder should be measured, pheochro-

mocytoma and hyperparathyroidism should be tested for, and whether the MTC is

sporadic or inherited should be determined by a direct RET proto-oncogene study

(Leboulleux et al., 2004).

MTC is usually quite well-defined and unencapsulated. MTCs are generally unilat-

eral in occasional cases, while inherited tumors are normally multi, and bilateral.

MTC’s heterogeneity occurs primarily as simultaneous differentiation between fol-

licular and parafollicular cell lines. PTC and MTC may occur as overlapping and

synchronous tumors that are anatomically distinct. They create a so-called collision

tumor, when MTC and PTC combine. All components are closely intermixed in

mixed medullary-follicular (papillary) carcinoma (MMFC), and display anatomical

and histopathological characteristics from both forms within a certain tumour. The

MMFCs are exceedingly small, representing 0.15 per cent among all thyroid cancers

(Chmielik et al., 2018).

9
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1.3 High Throughput Sequencing Techniques

The compilation of the human genome project enhances the understanding

of primary genome sequences. It leads the researchers towards a deep understanding

of the biological cause of the disease. Starting from a rough draft of the sequenced

genome to human diversity and disease and enter into a nascent era of personalized

medicine. This is because of all the significant advancements in DNA sequencing

techniques over the past few years. Sequencing has progressed far beyond in such a

way that after the analysis of DNA sequences, the other biological components such

as RNA and protein sequences have also been analyzed. It enables us to show their

interactions in complex biological networks. Medical application of sequences has

been made accessible due to increasing throughput and decreasing cost (Soon et al.,

2013). The very first draft of the sequence of human genomes was compiled in 2001.

After that, the sequence of many organisms was sequenced. Classical methods of

sequencing, i.e., Sanger DNA sequencing, had low throughput with high cost (Reuter

et al., 2015).

Through high throughput sequencing (HTS) techniques, one can sequence thousands

and millions of molecules in a single run. Next-generation sequencing methods are

now becoming popular. Different popular platforms have been used for sequencing.

The pyrosequencing method was developed by 454 Life Sciences (also called Roche),

which uses luciferase enzyme to readout nucleotide signals and then added to DNA

templates. Illumina is another platform of sequencing that uses reversible dye termina-

tor techniques. It adds a single nucleotide to the DNA template in each cycle. SOLiD

sequencing by Life Technologies adopts two base sequencing methods through the

process of ligation by using an enzyme. Increased throughput with increased and easy

accessibility and lower cost broad the spectrum of research and enlightens the way

of developing a rich catalog of HTS applications. DNA microarray technology was

one of the original methods of sequencing based on intensities of probes labeled with

10
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different dyes for different phenotypes (Soon et al., 2013).

1.3.1 Microarray Analysis

The microarray technology is used to identify the differential expression of

genes. Microarray also permits the analysis of DNA sequence variation, proteomics

levels, tissue level, and cell-level studies. Microarray relies on the hybridization cycle.

In hybridization, cDNA is hybridized to probes to form a complementary sequence.

The microarray technique is used for the analysis of multiple genes expressed effi-

ciently. It allows the scientific community to understand the pathology of genetic

causes occurs in the human body. Recent studies showed the advancement of microar-

ray technology. Microarray analysis allows the mapping of chromosomal aberrations

by using different platforms such as Affymetrix, Illumina, Agilent, and nano string

(Hegde et al., 2000). The process is shown in Figure 1.5

Figure 1.5. In the first step, mRNA is extracted from normal and tumor samples.
These mRNAs are reverse transcribed into cDNA through the process of reverse tran-
scription. Then add a fluorescent dye to label it. Finally, these cDNAs are hybridized
with probes that are present on the microarray chip.
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1.3.2 RNA sequencing

Next-generation sequencing technologies enlightens the path towards the era

of genome sequencing by introducing advanced sequence-based technologies along

with the advantages of high-throughput, sensitivity, and speed. The RNA-sequencing

technique is now being used widely for transcriptome analysis to facilitate the re-

searchers to find solutions to biological problems (Han et al., 2015). RNA-seq allows

the sequencing of transcripts by high-throughput sequencing technologies. For whole-

genome transcriptome profiling, RNA-seq becomes a useful approach as compared

to the microarray. It can be used for transcriptome analysis, such as the detection tran-

scripts counts, allelic expression, and splice junctions. There is no need for prior probe

selection in this method and is free from all the biases that one has faced during the

hybridization of microarray. RNA-seq technology is beneficial for gene and transcript

based analysis. It is comprised of a few steps. Firstly, small complementary DNA

sequences (cDNA) are formed through fragments of RNA samples, and then these

fragments are subjected to high throughput sequencing machine. Second, the small

generated sequences are mapped to the reference genome. Third, gene and transcript

counts have been estimated. Fourth, then data are normalized, and by using statistical

and methods of machine learning for the identification of genes that are differentially

expressed (DEGs) are identified. In the end, the produced data can help solve the bio-

logical problem. As the demand for RNA-seq has been increased, different software,

pipelines, and tools have developed for differential expression analysis (Costa-Silva

et al., 2017). The whole mechanism has been shown in Figure 1.6
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Figure 1.6. Firstly, RNA is isolated from a sample than RNA is converted to cDNA
fragments through the process of reverse transcription. Reads are aligned to the refer-
ence genome. The reads which are mapped can be used to measure expression levels
of genes or transcripts.

1.4 Messenger RNA

Gene expression means the formation of its corresponding proteins, which

constitutes of two significant steps. The process of transcription started in the nucleus.

The genetic information from DNA is towards messenger RNA (mRNA) molecule.

The sequence of DNA is served as a template for complementary base-pairing with

the help of enzyme RNA polymerase II for the formation of pre-mRNA. It is further

processed to form mature mRNA. The mRNA then moved out of the nucleus into

the cytoplasm. It attached to the ribosomes and translated into protein (Tomari and

Zamore, 2005). The whole process has been shown in the Figure 1.7
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Figure 1.7. DNA is transcribed into RNA which further translated into protein. Pro-
cess of reverse transcription convert RNA into double stranded DNA. The Figure has
been adapted from (Clancy and Brown, 2008).

1.5 Micro RNA

MicroRNAs are small, double-stranded, non-coding RNAs that intervene gene

expression at the post-transcriptional level. It regulates gene expression by deregu-

lating the mRNAs. MicroRNAs are about 22-25 nucleotides in length and bind to 3’

untranslated region of mRNA. MicroRNAs are transcribed through RNA polymerase

II. After the process of transcription, primary miRNA is converted into precursor

miRNA by RNAse III endonuclease within the nucleus. Finally, Exportin-5 trans-

ports precursor miRNA to the cytoplasm where Dicer (another RNAse III) transforms
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it into functional miRNA (Peng and Croce, 2016). This process is shown in Figure

1.8

Figure 1.8. MicroRNAs are transcribed through RNA polymerase II. After that pri-
mary miRNA is converted into precursor miRNA by RNAse III endonuclease in
nucleus. Finally, Exportin-5 transports pre-cursor miRNA to the cytoplasm where
Dicer transforms it into functional miRNA. The Figure has been adapted from (Peng
and Croce, 2016).

1.6 Pathway Analysis

In natural sciences research, pathway analysis is a leading tool meant to

provide the research community with holistic information about the relation of the

molecules and their impact on a specific signaling event. Besides analyzing the data,

it also helps in intersecting the biological samples by finding genes that are some-

how functionally related to each other and grouping them accordingly. Interpretation
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of the data has become possible due to computational and statistical analysis that

also supports the true meaning of molecular events in the context of any disease

(García-Campos et al., 2015). Several software tools are developed for better pathway

analysis that ultimately leads to understanding in different fields like metabolomics,

proteomics, and genomics. Some of the publicly available pathway analysis tools are;

DAVID, Reactome, pathvisio, KEGG, and Cytoscape. These tools help researchers

to identify critical pathways in diseases (Xia and Wishart, 2010).
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LITERATURE REVIEW

This chapter illustrates the review of studies that has been carried out on

thyroid carcinoma. The aim is to summarize the findings and outcomes of significant

conducted studies, the responsible etiological agents and the use of microarray and

high throughput sequencing techniques in context with the disease.

2.1 Role of miRNA, mRNA and lncRNA in Thyroid Carcinoma

miRNA and lncRNA emerge as key figures of the many molecules and mech-

anisms identified in recent years in the field of oncology. This happened because of

their action on the regulation of known cancer genes and/or their products (tumor sup-

pressor genes, oncogenes, and apoptotic proteins). In past, it’s also been proposed that

benign and malignant tumors can be differentially dignosed with the help of some of

the miRNAs and/or lncRNAs. However little content is known about their role in prog-

nosis. Interestingly, there are some miRNAs which have been observed repetitively

dysregulated, especially in papillary thyroid carcinoma such as; , miR-181b, miR-187,

miR-221, miR-146b and miR-222. In some studies, the same set of molecules was

associated with tumor aggressiveness. Sadly, the specific collection of miRNAs dif-

fers from report to report, making any concrete conclusions currently difficult or even

impossible to draw. The ambiguity of the existing information on lncRNAs is enor-

mous because these long (over 200nt) RNAs can play a role at both the transcriptional

and the post-transcriptional gene regulation level. NAMA, AK023948, lncRNAs and

PTCSC3AA belong to the (still) reduced number of PTC-associated lncRNAs. To far

it has not been possible to establish any function for lncRNA in the diagnosis and

treatment of patients with thyroid carcinoma (Tavares et al., 2016).

There had been an elaborated review of the literature evaluating those researches
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which showed or cited the evidence of direct interaction (e.g., luciferase assays) be-

tween the recognised miRNA and its suggested target(s) for mRNA against thyroid

carcinoma. Reference was made to details about 44 different miRNAs. Many of those

miRNAs are identified in the tumor biology which are involved as potential major

elements. Nonetheless, some studies usually include only 9 miRNAs. Six of these

are well known for their presence in many other forms of cancer: miR-145-5p, miR-

221-3p, miR-222-3p, miR-21-5p, and miR-101-3p. Only half of the studies published

on human thyroid carcinoma cell lines, however, conducted luciferase assays. There-

fore, further confirmation regarding the direct suppression of the targeted mRNA(s)

is needed for the remaining studies (Saiselet et al., 2016).

2.2 Role of miR-592 expression in thyroid carcinoma

A further detailed thyroid cancer analysis showing its incidence that accounts

for more than ninety eight percent of all thyroid malignant tumors. The undifferenti-

ated thyroid carcinoma (UTC) is one of the most vigorous malignancies in humans

while the Papillary thyroid carcinoma (PTC) may just have a mild course of action.

The number of different of genes have been identified to participate in thyroid car-

cinoma pathogenicity. In case of UTC and medullary thyroid carcinoma (MTC),

effective therapeutic agents are almost non-existent once thyroid cancer has spread

to distant organs. Primary prevention is usually feasible to allow for the possibility

of cure. Nevertheless, our growing understanding of the genes involved in thyroid

oncogenesis will help to establish more successful therapeutic approaches. Previous

researches have also been examined which revealed that different microRNAs (miRs)

are abnormally expressed in thyroid carcinoma and play a significant role in mali-

cious thyroid cancer. The abnormal expression of miR-592 has been documented

extensively in multiple forms of human cancer; moreover, its pattern of expression

and functional areas in thyroid cancer incompletely understood. In order to determine

the expression pattern of miR-592 in thyroid cancer tissues and cell lines, a reverse
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transcription-quantitative polymerase chain reaction was conducted. The findings

suggested that miR-592 in thyroid carcinoma samples was massively reduced, and its

down-regulation was correlated with tumor-node-metastasis and lymph node metasta-

sis. Thyroid cancer individuals with poor miR-592 expression showed a considerably

low survival rate compared with individuals with severe miR-592 expression. An ele-

vated level of miR-592 leads to reduced cell proliferation , migration and incursion of

thyroid carcinoma.. However, the neuro-oncological ventral antigen 1 (NOVA1) has

been reported in thyroid infected cells as a novel target gene of miR-592. The findings

demonstrate that in vitro and in vivo, the NEAT1 / miR-592 / NOVA1 pathway can

play critical role in the regulation of thyroid cancer malignancy (Yoo et al., 2019).

2.3 Role of miR-146b Expression in Thyroid Carcinoma

The recent research has shown that downregulation of microRNA-146b (miR-

146b) is related to PTC viciousness and pathogenesis. Next we highlighted the current

understanding of the biological functions, controlled target genes and therapeutic po-

tential of miR-146b in PTC and explored how well these findings offered better guid-

ance into the main role of miR-146b as a pathogenic regulator that promotes cellular

differentiation as well as a diagnostic predictor for tumor progression in PTC patients.

Together with the existing views on miRNAs in a wide range of human tumors, the

analysis will ideally transform these revised results on miR-146b into more detailed

diagnostic and therapeutic information on treatment in PTC patients before surgery

and follow-up approaches. Even though the underlying principles and therapeutic

research of miR-146b have yet to be fully understood, miR-146b expression in PTC

not only predicts a specific complementary method for diagnosis and prediction, but

can also serve as a potential biomarker and therapeutic target for PTC in the coming

years (Chou et al., 2017).
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Table 2.1. Genes implicated in thyroid tumorigenesis.

Cancer types Oncogenes Tumor suppressor genes
Papillary thyroid carcinoma RET,MET,RAS,BRAF p53
Medullary thyroid carcinoma RET -
Anaplastic thyroid carcinoma BRAF p53

2.4 Significant Differentially Expressed Genes

There is another detailed analysis containing data on gene expression of sev-

enty eight thyroid carcinoma (C) samples, seventeen thyroid adenoma (A) samples,

and four healthy thyroid epithelial tissues (N), retrieved through the Genome Expres-

sion Omnibus (GEO) database via the GSE27155 entry/accession ID. Of the one

hundred and ninty (96 highly expressed in A), 294 (102 overexpressed in C) and 425

(with 183 overexpressed in C), respectively, Differentially Expressed Genes (DEGs)

found between A vs N, C vs N and C vs A. In the N versus C genome expression

analysis, MLLT3, RUNX1, FOSB, EGR2, KIT, and CTGF were suggested as helpful

diagnostic tools for the enhanced group/cluster. EGR2 was identified as one of the

five genes over a decade ago to efficiently recognize disease with an accuracy of 98.5

percent in follicular carcinoma diagnosis through regression technique. Along the

complete absence of genetic variations, the lower or undetectable c-kit expression-

pattern tried to argue against the significant role of c-kit in the prevalence of undiffer-

entiated thyroid cancer cells, and RUNX1 was classified to be one of the forty three

most appropriate genetic markers in PTC. The C vs. A distinction describes a total of

14 core genes, BCL2, CTGF, MMP7, EGR1, KDR, TIMP1, APOE, VWF, CCND1,

BCL2L1, LGALS3, MCL1, DDIT3, and PGF. In conclusion, for the identification of

DEGs, gene expression patterns of carcinoma cells in individuals with thyroid adeno-

ma/cancer were compared with healthy epithelial cells, producing three comparative

tables in pairs. The screened DEGs from GEO2R were successively characterized

using review of the GO and pathway enrichment (Wang et al., 2018).

In this review, three datasets were combined consisting 114 Papillary Thyroid Carci-

20



Chapter 2 2.5 Signalling Pathways and Networks

noma (PTC) tissues and 126 healthy tissues, which included the greatest population

of PTC tissue samples in related bioinformatics analyses, and reported 831 Differen-

tially Expressed Genes (DEGs) containing 410 up-regulated and 421 down-regulated.

Furthermore, the PPI network was designed for DEGs and explored the list of top ten

hub genes (LRRK2, CD44, CCND1, JUN, DCN, BCL2, ACACB, TGFB1, CXCL8,

and CXCL12) with maximum connectivity. At last, the three most influential modules

were filtered out from the PPI network. Hence, in these modules the resultant genes

have been connected to chemokine signaling pathways, cancer pathways, and PI3K-

Akt signaling pathways. In addition, experimental verification is necessary to validate

our expected output through the bioinformatics review. Therefore, in next step, the

low expression of DCN, BCL2, ACACB, JUN, and CXCL12 and the up-regulation of

these reported genes CXCL8, LRRK2, CD44, TGFB1, and CCND1 were confirmed

by RT-PCR tests in thirty two groups of PTC samples and their corresponding healthy

tissue. Amongst all, the hub genes were classified as clinical important genes CXCL8,

DCN, BCL2, and ACACB through expression profile of 504 PTC samples from the

Cancer Genome Atlas (TCGA) group. In the meantime, addressing the particularly

clinically relevant genes (DCN, BCL2, CXCL8, and ACACB), would provide ther-

apeutic interventions for PTC diagnosis. Nevertheless, there seems to be a big chal-

lenge to have these genes transmitted clinically for stratification of patients, used as

biological markers for diagnosis as well as for immunotherapeutic or for oncovaccine

production (Li et al., 2019).

2.5 Signalling Pathways and Networks

Throughout this research, a network-based integrative analysis of Follicular

Thyroid Carcinoma (FTC) and lesion transcriptomes of benign follicular thyroid ade-

noma (FTA) were used to classify essential genes and pathways that vary among them.

A dataset of microarray gene expression (GSE82208, samples = 52) was used, ob-

tained from the tissues of FTC and FTA to classify those genes which expressed differ-
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ently. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

tools were then used to investigate potential significant pathways and protein-protein

interactions (PPIs) were analyzed to determine hub genes. In this study, 598 DEGs,

133 over-expressed genes and 465 down-regulated genes were reported in FTCs. 4

important pathways such as progesterone-mediated oocyte maturation signaling, cell

cycle pathways , one carbon pool by folate, and p53 signalling were discovered which

connected to DEGs having over-expressed FTCs. While eight pathways connected

to DEGs with lower relative FTC expression-profile were identified. Furthermore,

top 10 GO categories were closely related to FTC-over-expressed DEGs and 80 with

low-expressed DEG (Hossain et al., 2020).

Different strategies such as whole genome sequencing (WGS) presented tremendous

insight into the genetic abnormalities that are responsible for formation, development

and de-differentiation of numerous categories of thyroid carcinomas. Such activities

have resulted in the emergence of the MAPK and PI3 K signaling cascades as the key

activation pathways involved in thyroid tumor progression. However, the existence

of these important pathways is massively complicated, with thousands of elements,

numerous crosstalk points, various subcellular morphological features and the ability

to control several cellular processes potentially. As novel therapies, small-molecule in-

hibitors that target main kinases of these pathways offer great potential and many have

entered medical research. Although some notable statements have been published,

the production of susceptibility remains a concern and constraints patient reward.

Throughout this study, the latest findings on the key components of the MAPK and

PI3 K pathways were addressed, which included their activation mechanisms in phys-

iological and pathological contexts, their genetic alterations regarding the various

forms of thyroid carcinomas and the more important therapeutic agents designed to

inhibit their function (Zaballos and Santisteban, 2017).
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2.6 Potential Therapeutic Targets and Biomarkers

The research found that the symmetric chain of the main class II histocom-

patibility complex was CD74 and also a receptor for the inhibitory component of

macrophage migration (MIF). MIF and CD74 were associated with histopathologic

and solid tumor development and metastatic spread. It is observed in this study that

sixty and sixty five percent of papillary thyroid cancers were positive for immunohis-

tochemical staining of MIF and CD74, accordingly. For MIF anaplastic thyroid cancer

was negative, but often positive for expression of CD74. Regular thyroid tissue and

follicular adenocarcinomas have been adverse to expression of CD74. There was no

affiliated clinicopathological criterion to the expression of MIF. Diagnosis in thyroid

cancer cells with anti-CD74 antibody inhibited cell development, colony formation,

vascular endolethial growth and cell tissue regeneration. Conversely, recombinant

MIF treatment caused an enhancement in cell invasion. Treatment with anti-CD74

decreased phosphorylation of AKT, and triggered activation of AMPK. Our results

indicate that overexpression of CD74 is closely linked with intensive tumor level, and

may serve as a potential therapeutic. Briefly , we study CD74 expression specification

in thyroid carcinoma and illustrate that anti-CD74 antibody therapy efficiently medi-

ates tumor cells morphology. While the findings seem to negate the initial hypothesis

that CD74/MIF mediates the connection among both inflammation and thyroid car-

cinoma. Our findings indicate that CD74 may serve as a therapeutic target in highly

developed thyroid carcinoma (Cheng et al., 2015).

In general, strong prognosis of follicular thyroid carcinoma (FTC) degrades if the tu-

mor does not hold radioactive iodine. Moreover, increased competition for this group

of patients is on new druggable targets. After this, the prognostic and biological role

of survivin and XIAP in FTC was studied in detail. The expression of XIAP and

survivin was analyzed through tissue microarray in 44 FTC and subsequent non -

cancerous thyroid samples. shRNAs induced inhibition of both apoptosis protein in-
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hibitors (IAPs), or particular small molecule antagonists, and biochemical changes

were reported in vitro and in vivo. Production of survivin associated with progres-

sive tumor stage and persistent disease. Moreover, survivin has proven an unbiased

adverse prognostic marker. Knockdown of XIAP or survivin resulted in a significant

decrease in viable cells and propagation, stimulated caspase3/7 and was affiliated with

reduction in vivo cancer progression. A decrease in enzyme activity, differentiation

and cell cycle phase caused by IAP-targeting compounds with an increase in apop-

tosis. YM155 a small Survivin expression molecule inhibitor strongly suppressed

tumor growth in vivo. Both IAPs show important functional effects in FTC tumori-

genesis and therefore demonstrate to be potential targets in patients with developed

FTC (Werner et al., 2017).

In the risk assessment of recurrence using SVM algorithm researchers further con-

ducted a study to evaluate significance of the 4 independent lncRNA genetic markers

as a predictor. Results of this study have examined the usefulness and possible impact

of the 4 independent biomarkers of lncRNA in forecasting the recurrence risk. It was

concluded that the present study conducted genome-wide analysis for the expression

of lncRNA in the PTC infected individuals from the large population of TCGA and

showed altering patterns of expression among cancer and non – cancerous specimens

as well as between recurring samples and samples free of recurrences. four lncRNAs

including RP11-508M8.1, AC026150.8, RP11-536N17.1, and CTD-2139B15.2 have

been reported by a lncRNA signature, that can be used as an alternative diagnostic

indicator to rigorously determine the recovery and relapse of PTC individuals. Such

recognized lncRNAs, further with experimental prediction methods in prospective

cohort studies, may support as potential therapeutic triggers and biomarkers for PTC

infected patients (Li et al., 2017).

Several drugs have also been reported, approved from U.S based Food and

Drug Administration (FDA) for the thyroid cancer treatment;
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Table 2.2. Drugs approved by FDA for thyroid cancer treatment.

Sorafenib Vandetanib Axitinib Sunitinib
Lenvatinib Motesanib Cabozantinib Pazopanib

The medications currently available have side effects to their respective targets,

i.e. asthenia, hypertension, nausea and myositis and drug resistance, which restrict

their maximum potential for use. Following are the causes of drug resistance found

in literature;

• All tumors of about 2.0 cm in size but limited to the thyroid gland are now

classified as Thyroid Cancer (T1), while previously only tumors of around 1.0

cm were classified as T1. This may lead to undertreatment in some patients

, leading them to a higher risk of recurrence due to a less intensive initial

diagnosis (Grande et al., 2012) & (Naoum et al., 2018).

• There is recent evidence that thyroid cancer is a disease of the stem cells with in-

finite growth capacity and resistance to traditional therapeutic regimens (Naoum

et al., 2018).

• Elevated levels of Tg (thyroglobulin) after surgery that causes immunologic

destabilisation (Grande et al., 2012) & (Naoum et al., 2018).

2.7 Study Rationale

• Despite of major advances in screening and treatment, which includes radiolog-

ical tests, ultrasound, MRI, and surgical resection, mortality rates continue to

rise.

• There were many reported genes as well miRNAs but their expressions were

different according to different regions.
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• For better understanding of molecular basis of the disease of different regions

we have to study that from sequence level and have to check both mRNA and

miRNA expressions.

2.8 Problem Statement & Proposed Solution

Reoccurrence is the major problem for thyroid cancer patients because drugs

show resistance to the treatment. As,overall pathogenicity still needs to be explored

at molecular level. Therefore, we need to identifying effective therapeutic targets

through gene expression profiles based on differential expressed genes and pathways

via microarray and high throughput sequencing data

2.9 Objectives

• Identification of differentially expressed genes (DEGs) using microarray and

high throughput sequencing technology through datasets of thyroid carcinoma

of different platform

• To find common pathways and metabolic processes in which differentially

expressed genes are involved
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MATERIALS AND METHODS

The primary purpose of this research is the use of microarray, RNA Seq to find

DEGs, and transcripts of miRNAs and mRNAs that can serve as therapeutic targets.

These DEGs are further used to perform pathway analysis through the approach of

systems biology. The general workflow used in this study has been shown in Figure

3.1

Figure 3.1. General workflow of the study.

3.1 Datasets Retrieval

Datasets of Thyroid Carcinoma are selected from publicly available reposito-

ries such as Array Express and NCBI-Gene Expression Omnibus (GEO). Table 3.1

shows the sample information regarding the microarray analysis of thyroid carcinoma

datasets. While Table 3.2 shows datasets for RNA seq analysis.
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Table 3.1. Datasets for microarray analysis of thyroid carcinoma.

Accession No Organism Phenotype Region Platform Samples

E-GEOD-65144 Homo Sapiens
Diseased/
Normal USA

Affymetrix
(µ-array) 25

E-GEOD-3467 Homo Sapiens
Diseased/
Normal USA

Affymetrix
(µ-array) 17

E-GEOD-40807 Homo Sapiens
Diseased/
Normal France

Agilent
(µ-array) 80

Table 3.2. Sample information regarding RNA seq analysis.

Accession No Organism Phenotype Region Platform Samples

GSE57780 Homo Sapiens
Diseased/
Normal Belgium

RNA seq
(miRNAs) 6

GSE57780 Homo Sapiens
Diseased/
Metastasis Belgium

RNA seq
(miRNAs) 6

GSE64912 Homo Sapiens
Diseased/
Normal Italy

RNA seq
(mRNAs) 22

3.2 Microarray Analysis

For Microarray data analysis, a recently published maEndToEnd (end to end

differential gene expression) pipeline for the Affymetrix platform was used (Klaus

and Reisenauer, 2016). Whereas in the datasets of Agilent single-channel platform,

different codes are utilized for background correction and between array normaliza-

tion. The complete analysis is performed on R studio (R 3.5.1) by using R script

(Team, 2018). This pipeline was based on various packages.

General Bioconductor packages

• Biobase

Data collection as quantitative values i.e. gene expressions are calculated in several

samples with several features i.e. molecules and genes. It is a standard micro-array

expression data container, which can also be used for other data types i.e. medication

panels (Huber et al., 2015).
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• OligoClasses

It includes class descriptions, validity tests, and methods of initialization for classes

used in the packages oligo (Carvalho and Scharpf, 2011).

Quality control and preprocessing packages

• Oligo

This evaluate Probe level oligonucleotide arrays and actually facilitates arrays of Nim-

bleGen and Affymetrix (CEL files) (Carvalho and Irizarry, 2010).

• ArrayQualityMetrics

This manages almost all of the latest microarray techniques and is suitable for use

in integrated applications for research or for automated data analysis, and even for

personal access (Kauffmann et al., 2009).

Analysis and statistics packages

• Limma

It is used for analysis of linear concepts and microarray deferentially expressed data

(Ritchie et al., 2015).

• ClusterProfiler

This executes methodologies for analysis and visualization of functional patterns (GO

and KEGG) of clusters of genes (Yu et al., 2012).

Plotting and color options packages

• ggplot2 & pheatmap

For visualizing and plotting the genomics data (Gentleman, 2018) & (Fisher et al.,

2019).
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Figure 3.2. Workflow for microarray analysis.

3.2.1 maEndToEnd pipeline

As indicated by the name, Bioconductor packages were arranged end to end

to analyze microarray data for the Affymetrix platform. An R version of 3.6.1 was

used for analysis. maEndToEnd was installed using BiocManager, which is explicitly

made for the installation of packages that are designed for handling and analysis of

high throughput data of RNA seq and microarray. Once it is installed, the library

of maEndToEnd was called. While the library of all the integrated packages would

automatically be called by calling maEndToEnd (Klaus and Reisenauer, 2016).

3.2.2 Data Import

Expression data from all the datasets are imported using the Bioconductor

package ArrayExpress. ADF (array design format), IDF (investigation description

format), SDRF (sample and data relationship format), raw data files, and processed

data files are fetched. In these files, the IDF, SDRF, and raw data files are utilized

in our analysis. Raw data obtained from the Affymetrix platform is in the form of

CEL files, while Agilent raw data is present in the form of text files. Both consist of

measured probe intensities (Klaus and Reisenauer, 2016).
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A) SDRF file

It contains essential information on the samples, such as the cel file. SDRF

file imports with the read.delim function in order to acquire the sample annotation. To

create an Expression Set for our data, the SDRF table is sorted by selecting columns

of interest into an AnnotatedDataFrame from the Biobase package. The package

Biobase contains genomic data (Klaus and Reisenauer, 2016).

B) The Expression Set

This class contained different sources of information. This information, later

on, converted into a single, convenient structure. The expression set consists of assay

data, Metadata, and experiment data (Klaus and Reisenauer, 2016).

3.2.3 Quality Assessment

Quality assessment is performed to check the quality of the gene expression

data based on arrays and to detect quality errors or problems (Cohen Freue et al., 2007).

After normalization, it is an essential step of the analysis for which Bioconductor

package arrayQualityMatrics is used. Principal Component Analysis (PCA) plot,

boxplot, Relative log expression (RLE) plot are generated using package oligo and

ggplot. An expression data is usually analyzed by taking a logarithmic scale, so we

took log2 of the raw expression data. To check the quality of the data, different plots

were produced by using different packages (Wickham, 2016).

A) PCA plot

PCA deals with multi-dimensional data and reduces the dimensionality along

with simplifying the complexity. It clusters the data according to different phenotypes

or treatment groups by finding patterns in the absence of a reference (Ringnér, 2008).

PCA graph is generated, which represents expression data in the form of points to

show the samples with different phenotypes. It is performed based on a log intensity

scale. PCA was performed on both raw and processed data that has been given as

input. The data is composed of two phenotypes i.e. tumor vs. normal (Klaus and
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Reisenauer, 2016).

B) Boxplot

Boxplots are generated to statistically analyze the biological expression data

and present us with its distribution. It consists of an upper quartile (Q3), median and

lower quartile(Q1), and Q3-Q1 gives us interquartile range (IQR). To find outliers

in our data, Q3+1.5xIQR and Q1-1.5xIQR are calculated. Boxplots are generated in

which each box represented a sample on the basis of probe intensities. It displays

the intensity differences between samples and signifies whether the data should be

normalized or not (Thirumalai et al., 2017).

C) RLE plot

To visualize and analyze undesirable variation in gene expression data, RLE

plots are generated, also to check if normalization has been performed accurately

(Gandolfo and Speed, 2018). RLE is performed to calculate the median of log2 inten-

sities for the expression of raw data. For each probe-set, the values of RLE data are

computed by taking the ratio of the expression values by subtracting median expres-

sion values across arrays. An RLE plot is generated on the data to check the quality

as log2 intensities must be centered near zero along with a similar spread (Gandolfo

and Speed, 2018).

D) Robust Multi-array Average (RMA)

Oligo, a Bioconductor package used for preprocessing oligonucleotide mi-

croarray datasets. It allows the user to perform background correction, normalization,

and summarization in a single go by using the RMA algorithm. The package provides

a combined framework for parallel execution of different steps with the support of

Bioconductor (Carvalho and Irizarry, 2010). In this study, quantile normalization is

used for the standardization of the raw data. Quantile normalization is such an adjust-

ment method that considers the statistical distribution of samples in a dataset is the

same. The observed distributions of all samples are normalized to the equal median

by taking an average of each quantile across all samples. Summarization is another
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critical step as in a microarray experiment. Multiple probes are located at numerous

locations that are needed to summarize into one quantity (Hicks and Irizarry, 2015)

3.2.4 Preprocessing

Preprocessing was performed using background adjustment, calibration, and

summarization. These are briefly described below.

A) Background Adjustment

After the quality assessment of microarray data, the background of experimen-

tal values was adjusted. It is performed to cope with non-specific hybridization of a

probe with target and optimal noise generated by the scanner. The scanner catches the

fluorescence signals due to the insignificant or non-specific binding of a target with a

probe. Consequently, the background of the probe intensities must be adjusted prior

to further analysis to get significant results (Irizarry et al., 2003).

B) Calibration

It refers to the normalization of experimental microarray data. Associating

and relating to experimental values generated from different microarray chips give

rise to issues like complications with microarray chips, varied laboratory conditions,

and batch effects. To tackle these issues, calibration across biochips is essential. After

calibration, experimental values from different biochips were comparable. Quantile

normalization was implemented to that step (Irizarry et al., 2003).

C) Summarization

It is an essential step to perform after calibration while handling data from

the Affymetrix platform. Probes are merely the oligonucleotide sequences of about

25 base pairs. In the Affymetrix platform, each transcript is depicted by many probes.

Thus the background adjusted and calibrated experimental values of probe intensities

must be transformed into single values for every specific gene. That transformation

values from multiple probes would help access the relative quantity of the RNA

transcripts. Robust multiple average (RMA) algorithm was used to summarize the
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background adjusted and calibrated experimental data of intensities of probes (Giorgi

et al., 2010).

3.2.5 Heatmap

Heatmap is a graphical visualization of the multivariate high-throughput data.

It shows the similarity level of the gene expression patterns of expression data by clus-

tering different samples. Heatmap is generated to analyze distance within and among

the samples where the distance algorithm used is Manhattan (Klaus and Reisenauer,

2016).

3.2.6 Linear models

Linear models are a general class of models that is used on continuous data

such as gene expression values. The gene expression data obtained from microarray

experiments usually consists of log-ratios or log intensity values on which linear

modeling is performed by using the package limma as it can model and fit a wide

range of genomic data. To perform differential expression analysis, the limma package

is utilized, which works on both single-channel and two-color channel microarray

data. Linear modeling is performed using the limma package to find DEGs. Empirical

Bayes (eBayes) method is used, which is already administered in the limma package.

It borrowed information across genes and modeled the relationship between gene

expression and the variance of the genes. In the process of linear models, two matrices

are formed; design and contrast matrix (Robinson et al., 2010).

A) Design matrix

The design matrix is constructed to check the variation in gene expression

data. A design matrix has entries of zeros and ones. Row names of the design matrix

were patients, while the column names were the defined variables of the linear model

i.e., phenotype abbreviations. One in column depicts turning on of phenotype of a

respective sample while zero represents turning off of phenotype of respective row
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(Klaus and Reisenauer, 2016).

B) Contrast matrix

The factors defined by the design matrix are then allowed to be joined into

a contrast of interest by forming a contrast matrix. In the later matrix, each contrast

relates to a comparison of interest between the disease and control samples (Klaus

and Reisenauer, 2016).

3.2.7 Differential expression analysis

DEGs are obtained after fitting the linear model for gene expression data by

applying the topTable function. Results are sorted by t-statistics (Ritchie et al., 2015).

In this study, a significant cut-off for negative log of p.value equals to 0.05 and log2FC

(log2 fold change) equals to 0.5 was set to extract the genes that were differentially

expressed.

3.2.8 For Agilent platform

The dataset E-GEOD-40807 is from an Agilent platform. For microarray data

analysis of miRNA from the Agilent platform, the AgiMicroRna package was used.

A) AgiMicroRna

As this study also includes datasets of miRNAs of different platforms, so

different packages are used to find differentially expressed miRNAs. AgiMicroRna

has such useful functionality for the preprocessing, quality control, and differential

expression analysis of Agilent microRNA array data. The package uses a limma

package for gene expression analysis of microRNAs by fitting the linear model http:

//bioconductor.org/packages/AgiMicroRna/.

B) miRWalk

The database used to identify the targeted genes of differentially expressed

microRNAs. It contains validated targets associated with genes, pathways, diseases,

cell lines, etc. of humans, rats, and mice. It is the only database that finds the com-
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plementary binding sites of microRNAs on complete genomes includes a promoter,

5’ UTR, CDS, and 3’ UTR. The results are validated through 8 microRNAs target

predicted programs i.e., miRanda, miRDB, PITA, PicTar and TargetScan, DIANA-

microT (Dweep et al., 2014).

3.2.9 Volcano-plot

Volcano-plot, a type of scatter-plot, is generated to obtain and visualize the

highly expressed DEGs, whether they are up- or down-regulated. It compares the

expression level of each gene and shows log2FC plotted against the negative log of

P.value (W. Li, 2012). To visualize the DEGs volcano-plot is formed using the Biocon-

ductor package EnhancedVolcano. By setting a cut-off value, enhanced volcano-plot

highlights the DEGs of interest with high or low expression (Blighe et al., 2019).

3.3 RNA sequencing Analysis

RNA-seq analysis is performed using workflow adapted from galaxy shown

in Figure 4.3 on three publicly available thyroid carcinoma datasets shown in Table

3.2 to obtain DEGs.

Figure 3.3. Workflow for RNA-seq analysis.
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3.3.1 Galaxy Pipeline

Galaxy is a simple interface to powerful tools that is available at https://

usegalaxy.eu/ accessed on January 10, 2020. It automatically manages the tools and

their updates. Galaxy is present in the form of publicly available web service and

downloadable package. Galaxy contains different tools for the analysis of genomics,

comparative genomics, and functional genomics data. It is used to execute complex

level analysis of high throughput data, including RNA-Seq. A pipeline in the galaxy

platform is made to perform quality control, preprocessing, mapping to the human

reference genome, and normalization. For this purpose, some tools are used that

are available in the Galaxy interface. These tools are FastQC, RseQC, HISAT2, and

StringTie. Galaxy interface provides users with data storage of 250 GB for high-

throughput analysis (Blankenberg et al., 2010).

A) Data import

The data from different datasets are imported from the ENA database (as it

directly links to Galaxy software) in the form of FastQ files. One of the datasets is

paired-end while two data sets are single end. The FastQ files are in the format of text

files, which consists of raw sequence reads.

B) Quality control

On the raw data, which is in FastQ.gz format, to check the quality of raw

sequence data obtained from high throughput sequencing technology, FastQC version

0.72 is utilized to check for any biases. In the process, a quality control report is

obtained, which might consist of some technical or biological errors. The quality

of data is visually represented in a graphical form. FastQC is performed to check

the quality scores, sequence quality, per sequence GC content, adapter content, and

sequence duplication level (Andrews et al., 2010).

C) Trim Galore

Trim Galore is a wrapped script that is used to trim any nature of adapter

contents if present in the sequence. It increases the quality of data as well. Trim
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Galore will try to auto-find whether the Illumina universal, Nextera transposase, or

Illumina small RNA adapter sequence is used. If adapters are their in sequence, it

identifies the nature of adapters and trims these adapters to enhance the quality of

sequence (Leggett et al., 2013).

D) Alignment

Alignment is performed once the FastQC files with better quality scores are

achieved. The files obtained after analysis on the FastQ quality trimmer tool are

selected for the sequence alignment. HISAT2 version 2.1.0 is an alignment tool that

aligns reads to the reference genome (Hg38), which exists in it by default. In the end,

a BAM file is generated, which contains the aligned sequence reads (Kim et al., 2015)

& (Rosenbloom et al., 2015).

E) Read duplicates

Read duplication (RSeQC) version 2.6.4 tool is used to identify sequence and

mapping based duplicate reads. RSEQC package consists of modules like basic and

RNA-seq specific modules, which helps in evaluating sequence data. The BAM file

is then analyzed for identifying the principal component analysis (PCR) duplicates

by using a read duplication tool. It is a quality control tool for RNAseq data through

which we know about the level of duplication in our data due to PCR replicates. The

data is then visualized graphically through RSEQC plots (Wang et al., 2012).

F) MarkDuplicates and RmDup

The aligned duplicate reads in BAM files are marked or located with the help

of the MarkDuplicate tool. Through a default method, it ranks the reads by sums of

their base quality score and so it differentiates the duplicate reads from the original

sequence. MarkDuplicate tool is used to identify and mark the replicates in our se-

quence data present in the form of the BAM file. While RmDup tool version 2.0.1 is

used for duplicates deletion, which helps in removing the duplicates as reads with the

highest mapping quality is removed (Li et al., 2009).
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G) StringTie

StringTie tool is used for transcriptome analysis. StringTie can also perform

an abundance estimation. StringTie provides estimated abundance in the form of

FPKM and RPKM. FPKM estimation is used for paired-end, and single-end reads.

It has high coverage to estimate the abundance of FPKM and RPKM than other

tools (Pertea et al., 2015). For the assembly of transcripts a reference annotation

file of GRCH38 is used in GTF format and creates essential multiple isoforms. For

differential expression analysis, ballgown output files are retrieved to calculate the

expression values of genes and transcripts (Guo et al., 2017).

H) Differential expression analysis through Ballgown

The Ballgown package of R can be used to read the data for downstream

analysis. Ballgown uses a flexible linear model framework for differential expression

analysis. It uses the StringTie files to plot the read level coverage for transcripts of

interest. Ballgown can work with any assembly tool that produces assembled tran-

scripts and expression estimates as an output. The Ballgown object loads the data

for the expression level of introns, exons, and transcripts for genomics measurements

(Frazee et al., 2014)

3.3.2 Pathway Analysis

Pathway analysis is performed on the DEGs obtained from microarray and

RNA-seq data analysis. The DAVID database was used for analysis, which is an online

database and provides us with functional annotation tools (Dennis et al., 2003). Vali-

dation is performed by using Enrichr on the pathways obtained from KEGG. Enrichr

is a publicly available and published web-server for performing Gene Set Enrichment

Analysis (GSEA). It consists of a wide range of gene set libraries for analysis and

helps in biological discoveries with the help of the gathered biological knowledge

(Kuleshov et al., 2016). KEGG is a database in itself, while DAVID utilizes KEGG as

a reference. KEGG consists of computationally generated manually drawn organism-
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specific pathways. The database contains knowledge about the molecular interactions,

networks, and reactions in the metabolism, human diseases, drugs, genome and cel-

lular along with organism systems. Major pathways involved in different diseases,

along with sub-pathways, can also be studied in the KEGG database (Kanehisa et al.,

2017).
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RESULTS

The principal goal of this study is to identify differential expression of genes

through microarray and RNA-seq analysis. Pathway analysis is performed to analyse

common pathways in all the datasets. Datasets of mRNAs and miRNAs of different

regions and platforms have been used in order to identify differentially expressed

genes. In the end, comparative analysis on the basis of identified pathways give us a

common pathway among all datasets.

4.1 Results of Microarray Data Analysis

The results of microarray data analysis of Thyroid Carcinoma are discussed

with the help of figures and tables.

4.1.1 Microarray Dataset-1 (E-GEOD-65144)

On the dataset E-GEOD-65144, analysis was performed on 25 Homo sapien

samples where the organism part was thyroid tissue. Thirteen normal samples and

12 anaplastic thyroid carcinoma samples were selected. First, we used PCA-plots,

boxplots, and RLE-plots to analyze the quality of the raw and calibrated data. Then

heatmap and enhanced volcano-plot were also generated to enable the quick visual

identification of genes that were also statistically significant.

Figure 4.1 represents the PCA-plot for the log2 transformation of the raw

expression data containing two groups of samples (Normal and ATC). Principal com-

ponent analysis (PCA) was performed for the dimension reduction of high dimen-

sional data. Samples were color-coded w.r.t phenotypes. In the PCA plots, the blue

dots represent the normal condition, while orange dots represent the infected samples.
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Chapter 4 4.1 Results of Microarray Data Analysis

The first principal component (PC1) is plotted on the x-axis, and the second principal

component (PC2) plotted on the y-axis.

Figure 4.1. PCA-plot of the raw expression data (E-GEOD-65144).

The PCA plot of the raw data shows very little difference between the two

phenotypes (orange and blue dots) along the PC1. Therefore, it was hard to differen-

tiate two phenotypes based on the raw data. The raw data was then calibrated and

summarized before the PCA. In calibration, the background was adjusted, followed

by quantile normalization and summarization. Figure 4.2 shows the PCA-plot of the

summarized data. In this plot, the different phenotypes are separately clustered, and

there is a significant difference between these two phenotypes along the PC1.

Figure 4.2. PCA-plot of the normalized data (E-GEOD-65144).

Figure 4.1 and 4.2 highlights the significance of the calibration chosen for this

specific dataset which was also supported by the boxplots of the raw and calibrated

data, shown in Figures 4.3A & 4.3B respectively. In these boxplots, each box rep-
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resents the probe intensity of an individual sample, and the center-line of each box

represents median intensity. The samples of both normal and ATC phenotypes can

be seen on the x-axis, while the y-axis shows the expression values of genes. The

boxplot of the raw data highlights the variation among samples alongwith outliers, as

shown in Figure 4.3A. This variation among samples was reduced by calibrating the

raw data. The boxplot of this calibrated data is shown in Figure 4.3B
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(a) Boxplot of raw data.
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(b) Boxplot of calibrated data.

Figure 4.3. (A) Boxplot of raw data & (B) Boxplot of calibrated data (E-GEOD-
65144).

To further support the notion of calibration of the raw data, RLE plots were

also extracted for both raw and calibrated data, shown in Figures 4.4A and 4.4B

respectively. As shown in figure, the calibration of the raw data made sample medians

symmetric along the zero line.

After calibration we were able to get two distinct phenotypes with their sample

intensity symmetric around zero. The next step was to look at the distance between

the individual samples because highly correlated samples (small distances) represents

a phenotype. We used the heat map to highlight this correlation among the samples.

In Figure 4.5, the phenotypes are color coded (brown for normal samples and green
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(a) RLE plot of raw data.
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(b) RLE plot of calibrated data.

Figure 4.4. (A) RLE plot of raw data & (B) RLE plot of calibrated data (E-GEOD-
65144).

for ATC samples). Each row represents a sample and are labelled with their IDs. The

dendrogram indicates distance between the samples. Large distance between the sam-

ples is indicated by low intensity shade (lighter tone). The small distance between the

samples is indicated by high color intensity (color tone towards red shade).

As mentioned earlier that before Principle Component Analysis (PCA), data standard-

isation is necessary. Prior implementing PCA, we must standardise the data, otherwise

PCA would not be able to find the optimal key components. Therefore it was hard

to differentiate two phenotypes based on the raw data. The raw data was then cali-

brated and summarized before the PCA. Therefore different phenotypes are separately

clustered. PCA can be used primarily for highly correlated variables. PCA does not

work well to reduce data if the relationship is weak between variables. However, the

manhattan distance is based on absolute value which could produce more consistent

performance. So the next step was to look at the distance between the individual

samples because highly correlated samples (small distances) represents a phenotype.

We used the heat map to highlight this correlation among the samples. So if the corre-

lation among two samples was low, it showed larges distance between them indicated
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by lighter color tone and vise versa.

Figure 4.5. Heatmap of the summarised data (E-GEOD-65144).

Enhanced volcano-plot was generated to visualize the deferentially expressed

genes (DEGs). In Figure 4.6, Log 2 transformed fold changes (log2FC) are plotted

on the x-axis while the negative log of p-values are plotted on the y-axis. Each cell

in a plot is a gene. The cells of the plot are color coded. The threshold for p-values

is 0.05 whereas log2FC is 0.5. In negative log scale, smaller p-values appears at top

whereas the higher p-values are at the base of the y-axis.

In this plot, grey color of cells indicate that cells have not crossed both the set

criteria of p-value and fold change. The green cells have only passed the fold change

criterion. Red cells are the significant DEGs as they have crossed both the thresholds

of significance and fold change. The negative value of fold change indicates the

under-expression of genes w.r.t normal while positive fold change indicates the over-

expression of genes w.r.t normal reference. The plot shows relatively same number of

over-expressed and under-expressed genes in ATC w.r.t normal condition.
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Figure 4.6. Enhanced Volcano plot of the summarised data (E-GEOD-65144).

Through differential expression analysis 49809 DEGs are obtained out of

which top10 DEGs are shown in Table 4.1. For these ten DEGs, probe IDs along with

gene symbols are given along with the log2 fold change and p.value. The negative

and positive log2FC values are showing the down- and up-regulation of the DEGs.
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Table 4.1. Top 10 DEGs from dataset 1 (E-GEOD-65144).

S.NO PROBEID SYMBOL logFC P.Value

1 240008_at NA 0.871986 1.72E-06

2 227498_at SOX6 0.637477 8.91E-06

3 242146_at SNRPA1 1.130373 3.45E-05

4 238620_at NA 0.526659 5.95E-05

5 226041_at NAPEPLD 0.696292 6.56E-05

6 218340_s_at UBA6 0.988885 0.000208

7 202057_at KPNA1 0.540031 0.000248

8 238459_x_at SPATA6 0.708539 0.000309

9 219584_at PLA1A -0.56462 0.000345

10 220770_s_at ZBED8 0.664875 0.000347

4.1.2 Microarray Dataset 2 (E-GEOD-3467)

The dataset 2 belongs to papillary thyroid carcinoma with the accession num-

ber E-GEOD-3467 and it has seventeen samples. Among these, eight samples rep-

resent the phenotype of tumor whereas other nine samples are of non-tumor nature.

We followed the same pipeline as we did for the first dataset. First we compared raw

with calibrated data using PCA plots, boxplots, and RLE plots. After this comparison

heatmap and volcano plots were used to highlight the characteristics of the calibrated

data.

Figures 4.7A and 4.7B shows the PCA plots for the raw and calibrated data for this

dataset. There was no difference between the two plots. In this dataset the calibration

did not affect the distribution of the samples as the sample were fairly random and

there was no clear categorization of two phenotypes.
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(a) PCA plot of raw data. (b) PCA plot of calibrated data.

Figure 4.7. (A) PCA plot of raw data (B) PCA plot of calibrated data (E-GEOD-
3467).

Although the calibration did not help in categorizing the phenotypes it reduced

the variation in the sample medians. A significant improvement regarding sample

medians was achieved via calibration. Figures 4.8A and 4.8B represents the box plot

of raw and calibrated data respectively.
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(a) Boxplot of raw data.
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Figure 4.8. (A) Boxplot of raw data & (B) Boxplot of calibrated data (E-GEOD-
3467).

Another advantage of calibrating raw data from this dataset can be highlighted

using RLE plots. As shown in figures 4.9A and 4.9B, the sample medians were more
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Chapter 4 4.1 Results of Microarray Data Analysis

symmetric around zero for the calibrated data as compared to the raw data.
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(a) RLE plot of raw data.
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(b) RLE plot of calibrated data.

Figure 4.9. (A) RLE plot of raw data & (B) RLE plot of calibrated data (E-GEOD-
3467).

After looking at the distribution of two phenotypes in this dataset it was ob-

vious that similar phenotypes are not clustered together (see figures 4.7A and 4.7B).

To further investigate the data, heatmap for this dataset was generated to understand

sample to sample distance relationship. This heatmap is shown in Figure 4.10 which

depicts that some tumor samples are not clustered with other tumor samples and share

large distances (lighter tone). Similarly, there were few samples of normal state that

were not clustered with other normal samples.
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Chapter 4 4.1 Results of Microarray Data Analysis

Figure 4.10. Heatmap of the summarised data (E-GEOD-3467).

Figure 4.11 represents the volcano plot of E-GEOD-3467 where threshold for

p-values is 0.05 and log2FC is 0.5. As the over-expression increases, so does the value

of positive fold changes. The negative sign of fold change is the indicator of under-

expression of the genes in disease state w.r.t reference. The number of DEGs would

increase if the tumor samples were analysed with reference to normal individuals.
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Chapter 4 4.1 Results of Microarray Data Analysis

Figure 4.11. Enhanced Volcano Plot of the summarised data (E-GEOD-3467).

Top 10 deferentially expressed genes have been shown in Table 4.2.
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Table 4.2. DEGs of phenotype Normal vs PTC of E-GEOD-3746.

S.No PROBEID SYMBOL logFC P.Value

1 240008_at NA 0.871986 1.72E-06

2 227498_at SOX6 0.637477 8.91E-06

3 242146_at SNRPA1 1.130373 3.45E-05

4 238620_at NA 0.526659 5.95E-05

5 226041_at NAPEPLD 0.696292 6.56E-05

6 218340_s_at UBA6 0.988885 0.000208

7 202057_at KPNA1 0.540031 0.000248

8 238459_x_at SPATA6 0.708539 0.000309

9 219584_at PLA1A -0.56462 0.000345

10 220770_s_at ZBED8 0.664875 0.000347

4.1.3 Microarray Dataset 3 (E-GEOD-40807)

This study also includes the analysis of microRNA (miRNAs). The messenger

RNA (mRNA) targets of the deferentially expressed miRNA are identified using

miRwalk database. On dataset E-GEOD-40807, analysis was performed on eighty

samples of medullary thyroid carcinoma where forty tumor and 40 normal samples

were selected. As the platform is Agilent, the data was normalized before the analysis.

The PCA plot, RLE plot and the box plots of the normalized data were then generated

to look at the distribution of the phenotypes.

Figure 4.12 shows the PCA-plot, which was generated after the data was normalized.

In this plot, the different phenotypes were separately clustered along the first principal

component (PC1).
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Figure 4.12. PCA plot of the summarised data (E-GEOD-40807).

The RLE-plot was then generated to look at the distribution of sample medians

in the normalized data. Figure 4.13 shows that the medians of the normal and tumor

samples were aligned around zero with a normal distribution.
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Figure 4.13. RLE plot of the summarised data (E-GEOD-40807).

The box plot of the normalized data also showed that the sample medians are normally

distributed As shown in Figure 4.14 the Quartile 1 and 2 along with maximum and

minimum are normally distributed and the medians of all samples are approximately

at five.
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Figure 4.14. Boxplot of the summarised data (E-GEOD-40807).

After highlighting the effects of normalization of the data we started our anal-

ysis on the normalized data. An enhanced volcano-plot was generated where the

threshold for p-value was 0.05 and log2FC was 0.5.

Figure 4.15 highlights the deferentially expressed genes (DEGs) by their probe IDs.

Right side of the plot represents up-regulated DEGs while left side are down-regulated

DEGs with negative value of log2FC.
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Figure 4.15. Enhanced Volcano plot of the summarised data (E-GEOD-40807).

Total of 2466 DEGs were retrieved from differential expression analysis out

of which top10 DEGs are mentioned in Table 4.3.
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Table 4.3. miRNAs of phenotype Normal vs MTC of E-GEOD-40807.

S.NO SystematicName logFC P.Value

1 hsa-miR-375 4.162761 2.35E-12

2 hsa-miR-375 3.872235 3.43E-11

3 hsa-miR-487b 1.566938 1.77E-10

4 hsa-miR-10a 1.773394 3.51E-10

5 hsa-miR-487b 1.71407 8.46E-10

6 hsa-miR-200a 1.442414 1.14E-09

7 hsa-miR-429 1.599356 1.52E-09

8 hsa-miR-153 1.830175 2.00E-09

9 hsa-miR-429 1.569651 3.03E-09

10 hsa-miR-136* 1.021476 3.08E-09

Targets of miRNAs has been predicted through miRWalk with the cutoff of

0.05 for pvalue. Few targets of miRNAs have been shown Table 4.4

Table 4.4. miRNAs targets of E-GEOD-40807 using miRWalk.

miRNAs
Targeted

mRNAs

hsa-miR-375 -

hsa-miR-133b RAB3B

hsa-miR-129-5p VAMP1

hsa-miR-127-3p RGS14

hsa-miR-429 BTBD11

hsa-miR-557 TCN2

hsa-miR-142-3p SYT2
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Chapter 4 4.2 Results of RNA-seq Data Analysis

4.2 Results of RNA-seq Data Analysis

The results of RNA-seq data analysis of Thyroid Carcinoma are discussed

below in pictorial and tabular forms.

4.2.1 RNA-seq Dataset 1 (E-GEOD-64912)

Analysis is performed on 22 Homo sapiens samples with an accession number

E-GEOD-64912. It includes four normal and eighteen diseased samples.

In Figure 4.16A Boxplot represents distribution of samples on basis of FPKM expres-

sion values of the data. In this plot, each box represents normal and diseased samples

on x-axis while on y-axis are the FPKM expression values displaying variation in the

data. Mid layer in each box of boxplot represents medians of expression values while

upper and lower layers represents first and third quartile. It shows us outliers in the

data that are represented by dotted lines. Medians of all the samples are lying around

2.

Figure 4.16B represents principle component analysis (PCA) which is used for di-

mension reduction where the expression data is clustered according to their groups

(i-e; normal and diseased samples). But large number of diseased samples are close

enough to normal samples because they are highly correlated to each other. These

samples can be excluded but this is not a good approach because exclusion of the

such samples may lead to lose some information. Therefore, both PC1 and PC2 fails

to differentiate the diseased samples from the normal ones. So PCA is not the suitable

technique to differentiate the phenotypes in that scenario.

Figure 4.16C depicts a heatmap that represents expression patterns of genes across all

samples along with distance. Manhattan distance is used to cluster genes and samples

based on expression patterns and displayed with the help of dendrogram. The map is

also annotated with the phenotype. Distance among the diseased samples are coded

with light color intensity (top right) indicates large distance which represents that
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these are less closely related to each other than normal. While on top left of the plot,

distance from diseased to normal samples are coded with high color intensity (red)

indicates small distance (closely related).

(a) Boxplot (b) PCA plot

(c) Heatmap

Figure 4.16. Boxplot (A), PCA plot (B) and heatmap (C) of E-GEOD-64912.

In Figure 4.17, the enhanced volcano-plot is showing deferentially expressed

genes (DEGs) where log2FC on the x-axis is plotted against negative log of p.value

on the y-axis. DEGs are visualized by giving a threshold of p.value equals to 0.05 and

log2FC equals to 0.5. The DEGs (red color) on left side of the plot are down-regulated

while the ones on right side of the plot are up-regulated. The plot shows relatively

higher number of over expressed genes w.r.t normal condition.
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Figure 4.17. Enhanced volcano plot of E-GEOD-64912.

26035 DEGs are obtained in the differential expression analysis process, out

of which top10 DEGs are listed in Table 4.5.
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Table 4.5. Top 10 DEGs of phenotype Normal vs Diseased of E-GEOD-64912.

S.no geneNames Transcript-IDs P-value Log2FC

1 ISG15 ENSG00000187608.10 0.027034 -0.91855

2 TNFRSF4 ENSG00000186827.11 0.006495 -0.99232

3 UBE2J2 ENSG00000160087.20 0.046834 0.71336

4 INTS11 ENSG00000127054.20 0.019537 -1.16895

5 INTS11 ENSG00000127054.20 0.02912 1.642657

6 CPTP ENSG00000224051.7 0.000343 -0.91356

7 DVL1 ENSG00000107404.20 0.013896 -1.575

8 MXRA8 ENSG00000162576.16 0.029839 -2.17209

9 VWA1 ENSG00000179403.12 0.015297 -0.98636

10 AL691432.2 ENSG00000272106.1 0.005452 0.894066

4.2.2 RNA-seq Dataset 2 (GSE57780)

This dataset is comprised of nine samples. Among these, three samples repre-

sent the phenotype of tumor, other three depicts normal and remaining three samples

are of metastatic nature. To ease our analysis, dataset is divided into two parts. In first

part analysis is performed on normal vs tumor samples while in other part analysis is

performed on normal vs metastatic samples.
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(A) Normal vs Tumor (GSE57780)

In Figure 4.18A, distribution of samples is represented with boxplot where

median of the expression data almost lie at the same point 2.5. Each box in the plot

symbolizes one sample. Outliers are also detected in the plot.

Figure 4.18B represents PCA plot of GSE57780 where each cell in PCA plot accounts

for one sample. As shown in plot, the sample size is small therefore we can easily

discriminate between two phenotypes i.e. normal (orange) and tumor (blue).

In Figure 4.18C, heatmap shows distance between the samples where Manhattan

distance is applied. The diagonally arranged boxes express the distance of specific

sample from its self that must be zero. The dendogram at the top of the heatmap

depicts closeness and the order of clustering. It is cleared from the top left of the plot

that distance among the tumor samples is indicated by low color intensity depicts

large distance (less closely related) as compared to normal samples represented by

high color intensity. Likewise, at bottom right of the plot, distance from tumor to

normal is indicated by high color tone (red) shows more closely relation.
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(a) Boxplot

(b) PCA plot

(c) Heatmap

Figure 4.18. Boxplot (A), PCA plot (B) and heatmap (C) of GSE57780 (Normal vs
Tumor).

In enhanced volcano-plot, log2FC is plotted against negative log of p.value

displaying deferentially expressed genes (DEGs) as shown in Figure 4.19. A threshold

of negative log of p.value equal to 0.05 and log2FC equals to 0.5 is set for obtaining

DEGs. The red cells with positive fold change values are up-regulated and those with

negative values of fold change are down regulated genes.
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Figure 4.19. Enhanced volcano plot of GSE57780 (Normal vs Tumor).

The plot shows nearly equal number of over-expressed and under-expressed

genes. Top10 out of 1102 DEGs are listed in Table 4.6.
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Table 4.6. Top 10 DEGs of phenotype Normal vs Tumor of GSE57780 (Normal vs
Tumor).

S.No geneNames transcriptNames P-value Log2FC

1 MTND1P23 ENST00000416931.1 0.019897 2.494101

2 MTND2P28 ENST00000457540.1 0.002122 3.071711

3 MIR6730 ENST00000622213.1 0.002575 2.390667

4 AC254633.1 ENST00000606790.1 0.006038 1.444086

5 MIR3605 ENST00000583214.3 0.003397 0.646543

6 MIR30C1 ENST00000385227.1 0.006684 -0.74109

7 MIR3116-1 ENST00000584654.1 0.035682 2.276628

8 MIR3116-2 ENST00000636415.1 0.036797 2.338783

9 RNU1-120P ENST00000363009.1 0.020832 1.228026

10 RNY4P25 ENST00000459254.1 0.002299 -0.8075

Targets of miRNAs has been predicted through miRWalk with the cutoff of

0.05 for P-value. Few targets of miRNAs have been shown Table 4.7

Table 4.7. miRNAs for Normal vs Tumor (GSE57780).

Micro RNAs
Targeted

mRNAs

MIR1179 METTL8

MIR1181 DPP8

MIR3154 IYD

MIR3605 -

MIR30C1 -

MIR3929 PDS3
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(B) Normal vs Metastasis (GSE57780)

Figure 4.20A depicts the boxplot of log 2 transformed data of all samples. It

is cleared from the plot that medians of all samples are lying around a single point

2.5.

Figure 4.20B represents Principal Component Analysis of the data which is performed

for the dimension reduction of high dimensional data. PCA has transformed the cor-

relations between all samples in a 2-D graph. Plot shows that PC1 is discriminating

the data with 84.7% variance.

Figure 4.20C depicts the heatmap clustering analysis of GSE57780. It is cleared at

the bottom right from the heatmap, that distance from the metastatic samples to nor-

mal samples is small indicated by high color intensity (red). Similarly, at top left of

the plot distance among the diseased samples is large, indicated by low color tone

(towards yellow) and distance among normal samples is represented by high color

intensity. The heatmap nicely clusters the samples in that scenario.
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(a) Boxplot

(b) PCA plot

(c) Heatmap

Figure 4.20. Boxplot (A), PCA plot (B) and heatmap (C) of GSE57780 (normal Vs
metastasis).

Figure 4.21 shows enhanced volcano plot between normal and metastasis

samples, where log2FC is plotted against negative log of p.value. To visualize the

deferentially expressed genes (DEGs), a threshold of negative log of p.value equals to

0.05 and log2FC equals to 0.5 is applied. The positive value of fold change indicates

over-expression and negative value depicts under expression of genes w.r.t normal

reference. The plot shows relatively equal number of up regulated and down regulated

genes. Top10 out of 1046 DEGs are listed in Table 4.8.
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Figure 4.21. Enhanced volcano plot of GSE57780 (normal Vs metastasis).

68



Chapter 4 4.2 Results of RNA-seq Data Analysis

Table 4.8. Top 10 DEGs of phenotype Normal vs Metastasis of GSE57780.

S.no geneNames transcriptNames P-value Log2FC

1 MIR6730 ENST00000622213.1 0.00184 -2.85628

2 MIR6731 ENST00000614863.1 0.039961 -1.69756

3 MIR30C1 ENST00000385227.1 0.044831 0.657086

4 MIR7156 ENST00000620979.1 0.03105 -1.57877

5 MIR214 ENST00000385214.1 0.031473 1.016545

6 MIR199A2 ENST00000385289.1 0.031377 1.25806

7 MIR3121 ENST00000579680.1 0.015857 -0.9284

8 MIR181B1 ENST00000385240.1 0.048351 -1.91924

9 MIR181A1 ENST00000385026.1 0.046181 -1.8392

10 SNORA77 ENST00000408716.1 0.036127 1.289324

Targets of miRNAs has been predicted through miRWalk with the cutoff of

0.05 for p-value. Few targets of miRNAs have been shown Table 4.9

Table 4.9. miRNAs for Normal vs Metastasis (GSE57780)

Micro RNAs
Targeted

mRNAs

MIR944 SYN2

MIR599 REL

MIR6730 -

MIR3131 BAHD1

MIR1179 METTL8

MIR1273c DLC1
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4.3 Comparative Analysis of Microarray Datasets

The microarray data analysis was performed on three datasets. Two datasets

were of mRNA type while remaining one was of miRNA type. Target genes were

found for differentially expressed miRNAs. Deferentially expressed genes (DEGs)

for every dataset were obtained at p-value = 0.05 and log2FC = 0.5.

• 280 common DEGs were obtained among all the microarray datasets of thyroid

carcinoma shown in Figure 4.22

Figure 4.22. Common DEGs among microarray datasets.

4.4 Comparative Analysis of RNA-seq Datasets

Comparative analysis on the DEGs of RNA-Seq analysis was performed. Two

datasets were of miRNA type while remaining one was of mRNA type.

• 1247 common DEGs were obtained among all the RNA-seq datasets of thyroid

carcinoma shown in Figure 4.23
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Figure 4.23. Common DEGs among RNA-seq datasets.

However, as depicted in Figure 4.24, 36 common genes were obtained after compara-

tive analysis on DEGs obtained from thyroid carcinoma datasets of microarray and

RNA-Seq analysis.

Figure 4.24. Common DEGs among RNA-seq and microarray datasets.

71



Chapter 4 4.5 Pathway Analysis

4.5 Pathway Analysis

Pathway analysis for both microarray and RNA-seq datasets was performed

via Enrichr. KEGG pathway database is selected to know about common pathways

in which the DEGs are involved. Top pathways in order of significance are given

below.Tables i.e. 4.10 for E-GEOD-65144, 4.11 for E-GEOD-3467, 4.12 for E-GEOD-

40807 and 4.13 for common DEGs among all datasets, shows the pathways involved

during microarray analysis of Deferentially Expressed Genes (DEGs) for Thyroid

Carcinoma separately.

While Tables such as 4.14 for E-GEOD-64912, 4.15 for GSE57780 (Normal

vs Tumor), 4.16 GSE57780 (Normal vs Metastasis) and 4.17 for common DEGs

among all datasets, shows the pathways involved during RNA seq analysis of Defer-

entially Expressed Genes (DEGs) for Thyroid Carcinoma separately.

4.6 Microarray Datasets Pathway Analysis

The list of top 10 pathways involved in all three microarray datasets along

with number of genes and P-Value are shown below. Pathways involved in dataset 1

(E-GEOD-65144) of microarray shown in Table 4.10.
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Table 4.10. Pathways involved in DEGs obtained for dataset E-GEOD-65144.

S.no Pathways No of genes P-value

1 Cell cycle 74/124 9.51E-08

2 AGE-RAGE signaling pathway 60/100 1.17E-06

3 Proteoglycans in cancer 105/201 2.60E-06

4 FoxO signaling pathway 74/132 2.78E-06

5 Autophagy 72/128 3.19E-06

6 Prostate cancer 57/97 5.39E-06

7 Focal adhesion 101/199 1.98E-05

8 Rap1 signaling pathway 104/206 2.01E-05

9 Endocytosis 120/244 2.33E-05

10 PI3K-Akt signaling pathway 166/354 2.40E-05

Pathways involved in dataset 2 (E-GEOD-3467) of microarray shown in Table

4.11.
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Table 4.11. Pathways involved in DEGs obtained for dataset E-GEOD-3467.

S.no Pathways No of genes P-value

1 NF-kappa B signaling pathway 13/95 3.11E-06

2 Chagas disease (American trypanosomiasis) 12/103 3.89E-05

3 Wnt signaling pathway 15/158 5.08E-05

4 NOD-like receptor signaling pathway 16/178 5.61E-05

5 IL-17 signaling pathway 11/93 7.06E-05

6 TNF signaling pathway 12/110 7.46E-05

7 Epithelial signaling in H-pylori infection 9/68 1.34E-04

8 Human cytomegalovirus infection 17/225 2.79E-04

9 Osteoclast differentiation 12/127 2.94E-04

10 Proteoglycans in cancer 13/201 0.00540

Pathways involved in dataset 3 (E-GEOD-40807) of microarray shown in

Table 4.12
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Table 4.12. Pathways involved in DEGs obtained for dataset E-GEOD-40807.

S.no Pathways No of genes P-value

1 Axon guidance 155/181 7.09E-14

2 MAPK signaling pathway 226/295 1.92E-09

3
Signaling pathways regulating pluripotency

of stem cells
116/139 2.83E-09

4 Pathways in cancer 383/530 3.98E-09

5 Proteoglycans in cancer 159/201 9.49E-09

6 ErbB signaling pathway 75/85 1.23E-08

7 Colorectal cancer 75/86 3.93E-08

8 Neurotrophin signaling pathway 99/119 5.67E-08

9 Cellular senescence 128/160 7.65E-08

10 Chronic myeloid leukemia 67/76 8.16E-08

Pathways involved in 280 common DEGs obtained for microarray analysis

shown in Table 4.13
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Table 4.13. Pathways in common DEGs for microarray.

S.no Pathways No of genes P-value

1 Wnt signaling pathway 7/158 0.006

2 Hippo signaling pathway 7/160 0.007

3 Bladder cancer 3/41 0.019

4 Proteoglycans in cancer 7/201 0.023

5 Valine, leucine and isoleucine degradation 3/48 0.029

6 Platelet activation 5/124 0.030

7 Hepatocellular carcinoma 6/168 0.031

8 Vascular smooth muscle contraction 5/132 0.038

9 mRNA surveillance pathway 4/91 0.038

10
Signaling pathways regulating pluripotency

of stem cells
5/139 0.046

4.7 RNA-seq Datasets Pathway Analysis

The list of top 10 pathways involved in all three RNA-seq datasets along

with number of genes and P-Value are shown below. Pathways involved in dataset 1

(E-GEOD-64912) of RNA-seq shown in Table 4.14.
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Table 4.14. Pathways involved in DEGs obtained for dataset E-GEOD-64912.

S.no Pathways No of genes P-value

1 Adherens junction 23/72 2.42E-05

2 Transcriptional misregulation in cancer 44/186 4.84E-05

3 Pathways in cancer 99/530 1.10E-04

4 Fluid shear stress and atherosclerosis 34/139 1.69E-04

5 Spliceosome 33/134 1.82E-04

6 Small cell lung cancer 25/93 2.54E-04

7 Longevity regulating pathway 26/102 4.79E-04

8 Autophagy 30/128 8.47E-04

9 Colorectal cancer 22/86 0.00119

10 Proteoglycans in cancer 40/201 0.00373

Pathways involved in dataset 2 (GSE57780-Normal vs Tumor) of RNA-seq

shown in Table 4.15.
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Table 4.15. Pathways involved in DEGs for dataset GSE57780 (Normal vs Tumor).

S.no Pathways No of genes P-value

1 Ras signaling pathway 165/232 3.49E-08

2 Oxytocin signaling pathway 113/153 2.09E-07

3 Pathways in cancer 340/530 4.89E-07

4 Rap1 signaling pathway 145/206 6.28E-07

5 Axon guidance 129/181 8.72E-07

6 MAPK signaling pathway 198/295 1.58E-06

7 Glioma 60/75 1.81E-06

8 Proteoglycans in cancer 140/201 2.50E-06

9 Leukocyte transendothelial migration 83/112 6.69E-06

10 GABAergic synapse 68/89 7.71E-06

Pathways involved in dataset 3 (GSE57780-Normal vs Metastasis) of RNA-

seq shown in Table 4.16.

78



Chapter 4 4.7 RNA-seq Datasets Pathway Analysis

Table 4.16. Pathways involved in DEGs for dataset GSE57780 (Normal vs Metasta-
sis).

S.no Pathways No of genes P-value

1 Axon guidance 145/181 4.83E-10

2 Proteoglycans in cancer 153/201 1.08E-07

3 Cellular senescence 125/160 1.19E-07

4 MAPK signaling pathway 215/295 1.61E-07

5 Adrenergic signaling in cardiomyocytes 112/145 1.51E-06

6 Adherens junction 61/72 1.51E-06

7 Leukocyte transendothelial migration 89/112 2.09E-06

8 Sphingolipid signaling pathway 93/119 4.72E-06

9 ErbB signaling pathway 69/85 7.31E-06

10 Cell adhesion molecules (CAMs) 110/145 8.44E-06

Pathways involved in 1247 common DEGs obtained for RNA-seq analysis

shown in Table 4.17
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Table 4.17. Pathways involved in common DEGs for RNA-seq analysis.

S.no Pathways No of genes P-value

1 Transcriptional misregulation in cancer 26/186 9.35E-05

2 Mitophagy 13/65 1.59E-04

3 Proteoglycans in cancer 26/201 3.30E-04

4 Autophagy 19/128 3.65E-04

5 Adherens junction 13/72 4.56E-04

6 Pathways in cancer 53/530 4.67E-04

7 Endocytosis 28/244 0.00135

8 Leukocyte transendothelial migration 16/112 0.00155

9 Cellular senescence 20/160 0.00231

10 Fluid shear stress and atherosclerosis 18/139 0.00253
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DISCUSSION

As stated in chapter 1, thyroid carcinoma is increasingly prevailing across all

over the world over time. The right and timely diagnosis of carcinoma is a challenge.

To tailor treatment appropriately, it is crucial to undertake a proper diagnostic workup

before treatment is started (Cabanillas et al., 2016). Therefore, the discovery of ther-

apeutic targets would help in quick diagnosis of disease at molecular level. By this,

the survival rate will increase by many folds.

To our understanding from literature, the complexity in thyroid carcinoma was not

properly understood, although many metabolic and signaling pathways were reported

which elaborates the mechanism and pathogenicity of the disease to some extent. But

there were some loop-holes in understanding the molecular basis of the disease asso-

ciated with their etiological agents. Expression profiling of mRNAs and miRNAs gain

importance after advancement in high throughput sequencing techniques as it enlight-

ens the path for researchers to find potential therapeutic targets of the disease. High

throughput sequencing techniques make it very easy to understand the pathogenicity

of the disease. There is a need to completely understand the pathogenicity of the

disease and to identify biomarkers and potential therapeutic targets for the disease.

Different studies reported many genes and miRNAs as biomarkers but they didn’t use

multiple data of different regions and also did not use integrated sequencing analysis

techniques to predict the biomarkers and therapeutic targets.

Biomarkers can be categorized into four types: diagnostic , prognostic, therapeutic

and predictive. A diagnostic biomarker enables the cancer to be identified early in

a non-invasive manner, and hence the secondary cancer prevention. A predictive

biomarker enables the prediction of the patient’s reaction to a targeted therapy and

thus identifies sub-populations of patients likely to benefit from a specific therapy.
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A prognostic biomarker is a clinical or biological function that provides information

about the disease’s probable course; it provides information about the patient’s out-

come. In general, a therapeutic biomarker is a protein that could be used as a therapy

target (Carlomagno et al., 2017). A prognostic biomarker provides information on the

overall cancer outcome of patients irrespective of treatment (Oldenhuis et al., 2008).

The study was designed to interpret the meaning behind the microarray and high

throughput data of thyroid carcinoma. The aim was to predict the potential thera-

peutic targets for the disease. In order to acheive goals and objective of the study,

microarray data analysis using R based published pipeline and RNA-seq data analysis

using Galaxy were performed.

Pathway analysis was then performed to interpret and detect the effect of differen-

tial expression of group of genes in disease state at biological network level using

DAVID and Enrichr software. The purpose of using datasets of different regions is

to check any kind of genetic variations that may be different from region to region.

Although microarray and RNA-seq have already performed on selected datasets at ex-

perimental level but they did not compare their results of differential expressions with

other datasets of the same disease. We performed the whole analysis again by using

some computational and statistical techniques i.e. the use of different quality checks,

algorithms for normalization and clustering to statistically visualize and analyze the

differentially expressed genes and miRNAs. We have generated different plots to

check the distribution and variation of samples. Box plot shows the distribution of

the data between upper quarties, medians, lower quartiles, minimum and maximum

values and also give information about outliers if exist.

Comparative analysis was then performed on all microarray datasets with threshold

of p-value=0.05 and log2FC=0.5 shown on Figure 4.22, 280 common DEGs were ob-

tained among all the microarray datasets of thyroid carcinoma. While in Figure 4.23,

1247 common DEGs were obtained among all the RNA-seq datasets of thyroid carci-

noma when comparative analysis was performed. DisGeNET is a flexible tool that can
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be used for various research purposes, including the analysis of the genetic implica-

tions and co-morbidities of human diseases, the study of the characteristics of disease

genes, the production of hypotheses on the therapeutic action of medicinal products

and the adverse effects, and the validation of disease genes which are predicted com-

putationally (Pinero et al., 2020). Therefore to check the association between gene

and its corresponding disease, DAVID and DisGeNet plateforms were used. As illus-

trated in Figure 4.24, comparative analysis between microarray and RNA-seq datasets

revealed 36 common significant genes i.e. (discs large MAGUK scaffold protein 1)

DLG1, (ADP ribosylation factor like GTPase 1) ARL1, (solute carrier family 39 mem-

ber 14) SLC39A14, (atlastin GTPase 2) ATL2, (zinc finger protein 148) ZNF148,

(UBX domain protein 4) UBXN4, (DLG associated protein 4) DLGAP4, (dead-box

helicase 40) DHX40, (N-acylsphingosine amydohydrolase 1) ASAH1, (mucin 15,

cell surface associated) MUC15, (jade family PHD finger 1) JADE1, (Ras related

glycolysis inhibitor and calcium channel regulator) RRAD, (zinc finger protein 644)

ZNF644, (thioredoxin like 1) TXNL1, (centosomal protein 68) CEP68, (interleukin

enhancer binding factor 3) ILF3, (syntrophin beta 2) SNTB2, (protein inhibitor of

activated stat 1) PIAS1, (transgelin) TAGLN, (eukaryotic translation initiation factor

5) EIF5, (serine and arginine rich splicing factor 10) SRSF10, (SMAD family member

1) SMAD1, (scavenger receptor class B member 2) SCARB2, (deiodinase, iodothy-

ronine type 2) DIO2, (Rho GTPase activating protein 5) ARHGAP5, (solute carrier

family 25 member 36) SLC25A36, (myeloid/lymphoid or mixed lineage leukemia;

translocated to 10) MLLT10, (dead-box helicase 17) DDX17, (activity regulated cy-

toskeletal) ARC, (heterogeneous nuclear ribonucleoprotein A3) HNRNPA3, (prolyl

endopeptidase like) PREPL, (zinc finger and BTB domain containing 44) ZBTB44,

(elongator acytyltransferase complex subunit 2) ELP2, (caldesmon 1) CALD1, (lamin

A/C) LMNA and (solute carrier family 4 member 4) SLC4A4. Out of these 36 differ-

entially expressed genes, only ZBTB44 was not considered a prognostic therapeutic

target for thyroid cancer but for other carcinomas patients which needs further in-
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vestigation to overcome the disease. While remaining were also validated through

literature.

The genes with highest significance (lowest p-value) from every subset of dataset are

stated in previous chapter. Those genes could be regarded as potential therapeutic tar-

gets for thyroid carcinoma. FAP, CTHRC1, LOX, NA, SOX6, SNRPA1, EPB41L4A,

RGS14, BLOC1S5 were the highest significant genes from the differential expression

results of microarray data analysis, which could be proposed as potential therapeu-

tic targets to diagnose the disease. The previous studies also validated the role of

FAP, LOX, NA, SOX6, SNRPA1 in tumor formation in thyroid carcinoma (Sada

et al., 2019), (Pan et al., 2019). ISG15, TNFRSF4, UBE2J2, ARHGAP19, METTL8,

TBX22 were also proposed as potential therapeutic targets in RNA-seq data analysis.

A study proposed ISG15 as significant potential biomarker for thyroid carcinoma (Lin

et al., 2019). The role of UBE2J2 in thyroid cancer prognosis is also reported by the

study (Hosseini et al., 2019). A research also reported that METTL8 leads to thyroid

cancer progression (Gao et al., 2019). In a recent study TBX22 is proposed as poten-

tial therapeutic target in prognosis of papillary thyroid cancer (Chang et al., 2016).

One of the findings seem to negate the initial hypothesis that CD74/MIF mediates

the connection among both inflammation and thyroid carcinoma. But their findings

indicate that CD74 may serve as a therapeutic target in highly developed thyroid car-

cinoma (Cheng et al., 2015).

Pathway enrichment analysis is performed by utilizing the DEGs acquired from mi-

croarray and RNA-seq analysis to find important metabolic and signaling pathways

in which these are enriched. Pathways of all datasets have been identified. Compar-

ative analysis on the basis of pathways has been performed where Proteoglycans

in cancer, Transcriptional misregulation in cancer, PI3K-Akt signaling pathway, Wnt

signalling pathway and MAPK signalling pathway and many other are involved in thy-

roid carcinoma. While Proteoglycans in cancer is found to be common. Many of the

important significant genes in these pathways have been associated with the disease.
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A previous study declared that transcriptional misregulation in cancer plays critical

role in migration and proliferation of tumor cells which contibutes to understanding

of genetic basis of papillary thyroid carcinoma (Ao et al., 2018). Another study re-

ported that an essential constituents of the extracellular matrix, Proteoglycans (PGs),

were associated with cancer pathogenicity. Moreover, expression profiles of PGs and

their integrating proteins were characterized as being unique to the development of

diseases in various forms of cancer. Notably, PGs largely regulate the bio-activity

of hormones, growth factors, and cytokines and also the triggering of their specific

receptor that control recurrence levels, phenotypic diversity and gene expression in

different types of tumours (Baciu et al., 2017) & (Nikitovic et al., 2018). A research

also analyzed that pathway (PI3K-PKB/AKT) one of the most important molecular

signal transduction involved in key cellular activities. The persistent activation in its

downstream effectors by multiple abnormal receptor tyrosine kinases (RTKs) and

hereditary abnormalities results in high cell growth in a wide range of cancers includ-

ing thyroid carcinomas. Normally such pathway is deactivated by tumor suppressor

phosphatase. It demonstrated the importance of dual role of mTOR and AKT and

analyze that over expression of mTOR/AKT signaling pathway enhance the chances

of tumor growth. They also identified some genetic alterations in isoform of PI3K

(Nozhat and Hedayati, 2016). There were some other pathways that were reported like

PTEN/PDK1/BRAF, Ras/Raf/MAPK signaling pathways (Zaballos and Santisteban,

2017).

Genes associated with reported pathways are deferentially expressed during our Mi-

croarray and RNA-seq analysis. In this study we focused on some entities or pathways.

Rest of the pathways will be our major concerns of future. We will design a pathway

and further analyze it by using quantitative modeling approach of systems biology.
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CONCLUSION AND FUTURE

PERSPECTIVES

This study has proposed the therapeutic targets by using high throughput se-

quencing techniques. Microarray and RNA-sequencing based analysis are performed

by using different datasets of mRNAs and miRNAs. Differentially expressed mRNAs

and miRNAs has been identified. Targets of miRNAs are also analyzed. Motive of the

study is to perform differential expression analysis to obtain differentially expressed

genes (DEGs), comparative study of DEGs through pathway analysis. Comparative

analysis of microarray datasets revealed 280 common genes and 1247 common genes

in RNA-seq datasets. Differential expression analysis shows the upregulated and

downregulated genes which is further used to perform pathway analysis. The genes

are declared as significant because ’Apoptosis’ and ‘Proliferation’ are found to be

sensitive towards those genes. Protoglycans in cancer is appeared as common path-

way in all the datasets of microarray and RNA-seq used in this study. To analyse

complex mechanisms, expression and interactions, further investigation through wet

lab techniques is necessary. To minimize the susceptibility of cancer, the differential

level and alterations in those significant genes should be observed in thyroid carci-

noma patients. Further study on remaining pathways by using different approaches

of systems biology and wet lab techniques can provides us more important targets

associated with the disease.
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Appendix A

Source code of microarray analysis for
Affymetrix

if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")

# The following initializes usage of Bioc devel
BiocManager::install(version=’3.9’)
BiocManager::install("maEndToEnd")

browseVignettes("maEndToEnd")
suppressPackageStartupMessages({library("maEndToEnd")})

install.packages("devtools")
library(devtools)

devtools::install_github("r-lib/remotes")
library(devtools)
library(remotes)
packageVersion("remotes") # has to be 1.1.1.9000 or later

BiocManager::install("pd.hugene.1.0.st.v1")
BiocManager::install("GenomeInfoDbData")
BiocManager::install("Cairo")
BiocManager::install("arrayQualityMetrics")

remotes::install_github("b-klaus/maEndToEnd", ref="master")

#General Bioconductor packages
library(Biobase)
library(oligoClasses)

#Annotation and data import packages
library(ArrayExpress)
library(pd.hugene.1.0.st.v1)
library(hugene10sttranscriptcluster.db)
library(hgu133plus2.db)
library(pd.hg.u133.plus.2)

#Quality control and pre-processing packages
library(oligo)
library(arrayQualityMetrics)

#Analysis and statistics packages
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library(limma)
library(topGO)
library(ReactomePA)
library(clusterProfiler)

#Plotting and color options packages
library(gplots)
library(ggplot2)
library(geneplotter)
library(RColorBrewer)
library(pheatmap)

#Formatting/documentation packages
#library(rmarkdown)
#library(BiocStyle)
library(dplyr)
library(tidyr)

#Helpers:
library(stringr)
library(matrixStats)
library(genefilter)
library(openxlsx)
#library(devtools)
library(maEndToEnd)

getwd()
setwd(’D:/aqsadataset1’)
raw_data_dir <- getwd()

#raw_data_dir <- tempdir()

if (!dir.exists(raw_data_dir)) {
dir.create(raw_data_dir)

}
#anno_AE <- getAE("E-GEOD-65144", path = raw_data_dir, type = "raw")

raw_data_dir <- ("D:/aqsadataset1/data1")

if (!dir.exists(raw_data_dir)) {
dir.create(raw_data_dir)

}
sdrf_location <- file.path(raw_data_dir, "E-GEOD-65144.sdrf.txt")
SDRF <- read.delim(sdrf_location)
write.csv(SDRF,"sdrf.csv")
rownames(SDRF) <- SDRF$Array.Data.File
SDRF <- AnnotatedDataFrame(SDRF)
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getwd()
raw_data <- getwd()

raw_data <- oligo::read.celfiles(filenames = file.path(raw_data_dir,
SDRF$Array.Data.File),

verbose = FALSE, phenoData = SDRF)
stopifnot(validObject(raw_data))

#head(Biobase::pData(raw_data))
Biobase::pData(raw_data)

Biobase::pData(raw_data) <- Biobase::pData(raw_data)[, c("Source.Name",
"Characteristics..

organism.",
"FactorValue..tissue

.type.")]

Biobase::exprs(raw_data)[1:5, 1:5]
exp_raw <- log2(Biobase::exprs(raw_data))
PCA_raw <- prcomp(t(exp_raw), scale. = FALSE)

percentVar <- round(100*PCA_raw$sdev^2/sum(PCA_raw$sdev^2),1)
sd_ratio <- sqrt(percentVar[2] / percentVar[1])

dataGG <- data.frame(PC1 = PCA_raw$x[,1], PC2 = PCA_raw$x[,2],
Phenotype = pData(raw_data)$FactorValue..tissue.type.

)

write.csv(dataGG,"dataGG.csv")

ggplot(dataGG, aes(PC1, PC2)) +
geom_point(aes(colour = Phenotype)) +
ggtitle("PCA plot of log-transformed raw expression data") +
xlab(paste0("PC1, VarExp: ", percentVar[1], "%")) +
ylab(paste0("PC2, VarExp: ", percentVar[2], "%")) +
theme(plot.title = element_text(hjust = 0.5))+
coord_fixed(ratio = sd_ratio) +
scale_shape_manual(values = c(4,15)) +
scale_color_manual(values = c("darkorange2", "dodgerblue4"))
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oligo::boxplot(raw_data ,las=2, cex.axis= 0.35,

main = "Boxplot of log2-intensitites for raw data")

arrayQualityMetrics(expressionset = raw_data,
outdir = tempdir(),
force = TRUE, do.logtransform = TRUE,
intgroup = c("FactorValue..tissue.type."))

head(ls("package:hgu133plus2.db"))

#ls("pd.hg.u133.plus.2")
#head(ls("package:pd.hg.u133.plus.2"))

palmieri_eset <- oligo::rma(raw_data, normalize = FALSE)

warnings()

?rma

row_medians_assayData <-
Biobase::rowMedians(as.matrix(Biobase::exprs(palmieri_eset)))

RLE_data <- sweep(Biobase::exprs(palmieri_eset), 1,
row_medians_assayData)

RLE_data <- as.data.frame(RLE_data)
write.csv(RLE_data,"RLE_data.csv")
RLE_data_gathered <-
tidyr::gather(RLE_data, patient_array, log2_expression_deviation)

ggplot2::ggplot(RLE_data_gathered, aes(patient_array,
log2_expression_deviation)) +

geom_boxplot(outlier.shape = NA) +
ylim(c(-2, 2)) +
theme(axis.text.x = element_text(colour = "aquamarine4",

angle = 90, size = 6.5, hjust = 1 ,
face = "bold"))

dev.off()

RLE_data_gathered
#RMA calibration of the data
palmieri_eset_norm <- oligo::rma(raw_data)

palmieri_eset_norm
#RLE after normalization
row_medians_assayData <-
Biobase::rowMedians(as.matrix(Biobase::exprs(palmieri_eset_norm)))

RLE_data <- sweep(Biobase::exprs(palmieri_eset_norm), 1,
row_medians_assayData)
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RLE_data <- as.data.frame(RLE_data)
RLE_data_gathered <-
tidyr::gather(RLE_data, patient_array, log2_expression_deviation)

ggplot2::ggplot(RLE_data_gathered, aes(patient_array,
log2_expression_deviation)) +

geom_boxplot(outlier.shape = NA) +
ylim(c(-2, 2)) +
theme(axis.text.x = element_text(colour = "aquamarine4",

angle = 90, size = 6.5, hjust = 1 ,
face = "bold"))

dev.off()

write.csv(RLE_data_gathered,"RLE_data_gathered.csv")
palmieri_eset_norm <- oligo::rma(raw_data)

exp_palmieri <- Biobase::exprs(palmieri_eset_norm)
write.csv(exp_palmieri,"exp_palmieri.csv")
PCA <- prcomp(t(exp_palmieri), scale = FALSE)
percentVar <- round(100*PCA$sdev^2/sum(PCA$sdev^2),1)
sd_ratio <- sqrt(percentVar[2] / percentVar[1])
dataGG <- data.frame(PC1 = PCA$x[,1], PC2 = PCA$x[,2],

Phenotype = pData(raw_data)$FactorValue..tissue.type
.)

ggplot(dataGG, aes(PC1, PC2)) +
geom_point(aes(colour = Phenotype)) +
ggtitle("PCA plot of calibrated, summarized data") +
xlab(paste0("PC1, VarExp: ", percentVar[1], "%")) +
ylab(paste0("PC2, VarExp: ", percentVar[2], "%")) +
theme(plot.title = element_text(hjust = 0.5)) +
coord_fixed(ratio = sd_ratio) +
scale_shape_manual(values = c(4,15)) +
scale_color_manual(values = c("darkorange2", "dodgerblue4"))

#boxplot

oligo::boxplot(palmieri_eset_norm,las=2, cex.axis= 0.4,

main = "Boxplot of log2-intensitites for the normalized
data")

#heatmaps
phenotype_names <- ifelse(str_detect(pData

(palmieri_eset_norm)$FactorValue..
tissue.type.,

"nor"), "normal.", "ATC.")
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annotation_for_heatmap <-
data.frame(Phenotype = phenotype_names)

row.names(annotation_for_heatmap) <- row.names(pData(palmieri_eset_norm
))

write.csv(annotation_for_heatmap,"annotation_for_heatmap.csv")
dists <- as.matrix(dist(t(exp_palmieri), method = "manhattan"))
write.csv(dists,"dists.csv")
rownames(dists) <- row.names(pData(palmieri_eset_norm))
hmcol <- rev(colorRampPalette(RColorBrewer::brewer.pal(9, "YlOrRd"))

(255))
colnames(dists) <- NULL
diag(dists) <- NA
ann_colors <- list(
Phenotype = c(normal. = "chartreuse4", ATC. = "burlywood3"))

pheatmap(dists, col = (hmcol),
annotation_row = annotation_for_heatmap,
annotation_colors = ann_colors,
legend = TRUE,
treeheight_row = 0,
legend_breaks = c(min(dists, na.rm = TRUE),

max(dists, na.rm = TRUE)),
legend_labels = (c("small distance", "large distance")),
main = "Clustering Heatmap for the calibrated samples")

#Median intensities
palmieri_medians <- rowMedians(Biobase::exprs(palmieri_eset_norm))
hist_res <- hist(palmieri_medians, 100, col = "cornsilk1", freq = FALSE

,
main = "Histogram of the median intensities",
border = "antiquewhite4",
xlab = "Median intensities")

#with threshold

man_threshold <- 2.3
hist_res <- hist(palmieri_medians, 100, col = "cornsilk", freq = FALSE,

main = "Histogram of the median intensities",
border = "antiquewhite4",
xlab = "Median intensities")

abline(v = man_threshold, col = "coral4", lwd = 2)

#Transcripts that do not have intensities larger than the threshold in
at least as many arrays as the smallest

#experimental group are excluded.

no_of_samples <-
table(paste0(pData(palmieri_eset_norm)$FactorValue..tissue.type.))
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no_of_samples

samples_cutoff <- min(no_of_samples)
idx_man_threshold <- apply(Biobase::exprs(palmieri_eset_norm), 1,

function(x){
sum(x > man_threshold) >= samples_cutoff})

table(idx_man_threshold)

palmieri_manfiltered <- subset(palmieri_eset_norm, idx_man_threshold)

#hugene10sttranscriptcluster.db
anno_palmieri <- AnnotationDbi::select(hgu133plus2.db,

keys = (featureNames(
palmieri_manfiltered)),

columns = c("SYMBOL", "GENENAME"),
keytype = "PROBEID")

anno_palmieri <- subset(anno_palmieri, !is.na(SYMBOL))

#Removing multiple mappings

anno_grouped <- group_by(anno_palmieri, PROBEID)
anno_summarized <-
dplyr::summarize(anno_grouped, no_of_matches = n_distinct(SYMBOL))

head(anno_summarized)

anno_summarized

anno_filtered <- filter(anno_summarized, no_of_matches > 1)
head(anno_filtered)
probe_stats <- anno_filtered
nrow(probe_stats)
write.csv(probe_stats,"probe_stats.csv")
ids_to_exlude <- (featureNames(palmieri_manfiltered) %in%

probe_stats$PROBEID)
table(ids_to_exlude)

palmieri_final <- subset(palmieri_manfiltered, !ids_to_exlude)
validObject(palmieri_final)

head(anno_palmieri)
fData(palmieri_final)$PROBEID <- rownames(fData(palmieri_final))
fData(palmieri_final) <- left_join(fData(palmieri_final),

anno_palmieri)

# restore rownames after left_join
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rownames(fData(palmieri_final)) <- fData(palmieri_final)$PROBEID
validObject(palmieri_final)

tissue <- str_replace_all(Biobase::pData(palmieri_final)$FactorValue..
tissue.type.,

" ", "_")
tissue <- ifelse(tissue == "anaplastic_thyroid_carcinoma_(ATC)",

"ATC","normal")

##########
# Matrix
design_matrix <- model.matrix(~ 0 + tissue)
write.csv(design_matrix,"design matrix.csv")
contrast_matrix_C <- makeContrasts( tissueATC-tissuenormal, levels =

design_matrix)
contrast_matrix_C
write.csv(contrast_matrix_C,"contrast_matrix_C.csv")
fit <- lmFit(palmieri_final, design_matrix)

# contrast_matrix_C)
fit2 <- contrasts.fit(fit, contrast_matrix_C)
fit2 <- eBayes(fit2)
table_T <- topTable(fit2, number = Inf)
write.csv(table_T,"DEGs.csv" )
BiocManager::install("EnhancedVolcano")
library(EnhancedVolcano)
EnhancedVolcano(table_T,

lab = table_T $SYMBOL,
x = "logFC",
y = "P.Value",
pCutoff = 0.05,
FCcutoff =0.5,
title = "ATC vs Normal")

t1 <- subset(table_T, P.Value < 0.05)
t2 <- subset(t1, logFC < -0.5 | logFC> 0.5)
write.csv(t2,"final DEGs with cutoff.csv")

103



Appendix B

Source Code for Ballgown-RNA-seq

BiocManager::install("ballgown")
library(ballgown)

library(genefilter)
library(plyr)
library(devtools)

#########################
library(ballgown)
getwd()

setwd("D:/rnaseq")
dwe<- "D:/rnaseq"
pheno = read.csv("PHENO.csv")

bg = ballgown(dataDir= dwe, samplePattern=’sample’, meas=’all’, pData=
pheno)

save(bg, file=’bg.rda’)
structure(bg)$exon
bg

bg_filt = subset(bg,"rowVars(texpr(bg)) >1",genomesubset=TRUE)
bg_table = texpr(bg_filt, ’all’)
bg_gene_names = unique(bg_table[, 9:10])
transcript_expression = as.data.frame(texpr(bg_filt))
head(transcript_expression)
row.names(transcript_expression)

############################### files ##############
write.csv(transcript_expression, "transcripts.csv")
write.csv(bg_gene_names, "bg_gene_names.csv")
write.csv(bg_table, "bg_table.csv")
write.csv(results_genes, "results_genes.csv")
write.csv(results_transcripts, "results_transcripts.csv")

##################transcripts analysis##############
results_transcripts = stattest(bg_filt,

feature="transcript",covariate="phenotype",
adjustvars = NULL,

getFC=TRUE, meas="FPKM")
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results_genes = stattest(bg_filt, feature="gene",
covariate="phenotype", adjustvars = NULL, getFC=

TRUE,
meas="FPKM")

results_transcriptsmer =
data.frame(geneNames=ballgown::geneNames(bg_filt),

geneIDs=ballgown::geneIDs(bg_filt), transcriptNames=
ballgown::transcriptNames(bg_filt),

results_transcripts)

results_transcripts = arrange(results_transcripts,pval)
results_genes = arrange(results_genes,pval)

write.csv(results_transcripts, "chrX_transcript_results.csv",
row.names=FALSE)

write.csv(results_genes, "chrX_gene_results.csv",
row.names=FALSE)

tra <- subset(results_transcripts,results_transcripts$pval<0.05)
gen <- subset(results_genes,results_genes$pval<0.05)

write.csv(tra, "filtered transcripts.csv")
write.csv(gen, "filtered genes.csv")

#############################PCA-plot###############

pca_data=prcomp(t(transcript_expression))
percentVar <- round(100*pca_data$sdev^2/sum(pca_data$sdev^2),1)
percentVar
sd_ratio <- sqrt(percentVar[2] / percentVar[1])
sd_ratio
sd_ratio = 1.5
dataGG <- data.frame(PC1 = pca_data$x[,1], PC2 =pca_data$x[,2],

Phenotype = pheno$phenotype)
dataGG
ggplot(dataGG, aes(PC1, PC2)) +
geom_point(aes(colour = Phenotype)) +
ggtitle("PCA plot") +
xlab(paste0("PC1, VarExp: ", percentVar[1], "%")) +
ylab(paste0("PC2, VarExp: ", percentVar[2], "%")) +
theme(plot.title = element_text(hjust = 0.5))+
coord_fixed(ratio = sd_ratio) +
scale_shape_manual(values = c(4,15)) +
scale_color_manual(values = c("darkorange2", "dodgerblue4"))

##################### Box plot #######################
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tropical= c(’darkorange’, ’dodgerblue’,
’hotpink’, ’limegreen’, ’yellow’)

palette(tropical)

fpkm = texpr(bg_filt,meas="FPKM")
fpkm = log2(fpkm+1)
boxplot (fpkm,col=as.numeric(pheno$phenotype),las=2,ylab=’log2(FPKM+1)

’)

###############################ABLINE plots##############

transcript_gene_table = indexes(bg_filt)$t2g
head(transcript_gene_table)
#Each row of data represents a transcript. Many of these transcripts

represent the same gene.
#Determine the numbers of transcripts and unique genes#
length(row.names(transcript_gene_table))
length(unique(transcript_gene_table[,"g_id"]))

counts=table(transcript_gene_table[,"g_id"])
write.csv(counts, "COUNT table.csv")

c_one = length(which(counts == 1))
c_more_than_one = length(which(counts > 1))
c_max = max(counts)
hist(counts, breaks=50, col="bisque4", xlab="Transcripts per gene",

main="Distribution of transcript count per gene")
legend_text = c(paste("Genes with one transcript =", c_one), paste("

Genes with more than one transcript =", c_more_than_one), paste("
Max transcripts for single gene = ", c_max))

legend("topright", legend_text, lty=NULL)

#Plot #2 - the distribution of transcript sizes as a histogram
full_table <- texpr(bg_filt , ’all’)
hist(full_table$length, breaks=50, xlab="Transcript length (bp)", main

="Distribution of transcript lengths", col="steelblue")
########################################################

data_colors=(c("white", "blue", "#007FFF", "cyan","#7FFF7F", "yellow",
"#FF7F00", "red", "#7F0000",

"white", "blue","#007FFF", "cyan","#7FFF7F", "yellow", "#
FF7F00", "red", "#7F0000",

"yellow", "#FF7F00", "red", "#7F0000","green","cyan"))

min_nonzero=1
#Set the columns for finding FPKM and create shorter names for figures
data_columns=c(1:22)
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short_names=c("S1","S2","S3","S4","S5","S6","S7","S8", "S9","S10","S11
","S12","S13","S14","S15","S16","S17","S18","S19","S20","S21","S22")

#Plot #3 - View the range of values and general distribution of FPKM
values for all libraries Create boxplots for this purpose

#Display on a log2 scale and add the minimum non-zero value to avoid
log2(0)

boxplot(log2(transcript_expression [,data_columns]+min_nonzero), col=
data_colors, names=short_names, las=2, ylab="log2(FPKM)", main="
Distribution of FPKMs ")

##################################################
colors = colorRampPalette(c("blue", "blue", "#007FFF", "cyan","#7FFF7F

", "yellow", "#FF7F00", "red", "#7F0000"))
#smoothScatter(x=log2(x+min_nonzero), xlab="FPKM (SRR218_N, Replicate

1)", ylab="FPKM (SRR219_N, Replicate 2)", main="Comparison of
expression values for a pair of replicates", colramp=colors, nbin
=200)

#Compare the correlation ’distance’ between all replicates
transcript_expression[,"sum"]=apply(transcript_expression[,data_columns

], 1, sum)
#Identify the genes with a grand sum FPKM of at least 5 - we will

filter out the genes with very low expression across the board
i = which(transcript_expression[,"sum"] > 5)
#Calculate the correlation between all pairs of data
r=cor(transcript_expression[i,data_columns], use="pairwise.complete.obs

", method="pearson")
r
#Plot #8 - Convert correlation to ’distance’, and use ’multi-

dimensional scaling’ to display the relative differences between
libraries

d=1-r
data_columns=c(1:22)
write.csv(data_columns, "DAta columns.csv")
mds=cmdscale(d, k=2, eig=TRUE)
par(mfrow=c(1,1))
plot(mds$points, type="n", xlab="", ylab="", main="MDS distance plot ",

xlim=c(-0.25,0.25), ylim=c(-0.25,0.25))
points(mds$points[,1], mds$points[,2], col="grey", cex=2, pch=16)
text(mds$points[,1], mds$points[,2], short_names, col=data_colors)

#########################################
sig=which(results_transcriptsmer$pval<0.05)
results_transcriptsmer
sig
results_transcriptsmer[,"de"] = log2(results_transcriptsmer[,"fc"])

write.csv(results_transcriptsmer,"file de.csv")
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hist(results_transcriptsmer[sig,"de"], breaks=50, col="seagreen", xlab
="log2(Fold change Normal-Diseased)",
main="Distribution of differential expression values")

abline(v=-2, col="black", lwd=2, lty=2)
abline(v=2, col="black", lwd=2, lty=2)
legend("topleft", "Fold-change > 4", lwd=2, lty=2)

################################# enhanced volcano
###########################

library(EnhancedVolcano)

library(ggrepel)
EnhancedVolcano(results_transcriptsmer,

lab = results_transcriptsmer$de,
x = "de",
y = "pval",
pCutoff = 0.05,
FCcutoff = 0.5,
title = "RNAseq-dataset")

trans <- subset(results_transcriptsmer, pval < 0.05)
trans <- subset(trans, de < -0.5 | de > 0.5)
write.csv(trans,"DEGs with cutoffvolcano (pval vs de).csv")

############################## HEAT_MAP###############
library(stringr)
library(pheatmap)
pheno$phenotype

disease_names <- ifelse(str_detect(pheno$phenotype,
"diseased"), "Diseased", "Normal")

annotation_for_heatmap <- data.frame(Phenotype = disease_names)
annotation_for_heatmap
row.names(annotation_for_heatmap) <- pheno$sample

##
dists <- as.matrix(dist(t(transcript_expression), method = "manhattan")

)

dists
rownames(dists) <- pheno$sample #sample names
rownames(dists)
hmcol <- rev(colorRampPalette(RColorBrewer::brewer.pal(9, "YlOrRd"))

(255))
colnames(dists) <- NULL
diag(dists) <- NA
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ann_colors <- list(Disease= c(Diseased= "blue4", Normal = "cadetblue2")
)

pdf("Heatmap.pdf",width=10,height=7,paper=’special’)
pheatmap(dists, col = (hmcol),

annotation_row = annotation_for_heatmap,
annotation_colors = ann_colors,
legend = TRUE,
treeheight_row = 0,
legend_breaks = c(min(dists, na.rm = TRUE),

max(dists, na.rm = TRUE)),
legend_labels = (c("small distance", "large distance")),
main = "Clustering heatmap for the calibrated samples")

dev.off()
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Appendix C

Source code of microarray analysis for
Agilent platform

#agilent single channel

#libraries

library(limma)
library(convert)
library(Biobase)
library(openxlsx)
library(ggplot2)
library(oligo)
library(oligoClasses)
library(arrayQualityMetrics)
library(simpleaffy)
library(RColorBrewer)
library(pheatmap)
library(geneplotter)
library(stringr)
library(ArrayExpress)
library(gplots)
library(dplyr)
library(tidyr)
library(matrixStats)
library(genefilter)
#BiocManager::install("simpleaffy")

# Directory Setup
Tutorial_agilent <- "D:/dataset3"

# If Directory exist then good otherwise make one.

Tutorial_agilent
if(!dir.exists(Tutorial_agilent)){
dir.create(Tutorial_agilent)

}

#set working directory

setwd("D:/dataset3")
raw_data_dir <- file.path(getwd(), "rawDataMAWorkdown")

if(!dir.exists(raw_data_dir)){
dir.create(raw_data_dir)

}
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# Fetching of data

#anno_AE <- getAE("E-GEOD-70394", path=raw_data_dir, type="raw")

# Targets

#targets <- readTargets(path = raw_data_dir,"targets1.txt",verbose=TRUE
)

targets=readTargets(infile="targets1.txt",verbose=TRUE)
getwd()

# Now reading Files (normalization)
x <- read.maimages(targets, path=raw_data_dir, source="agilent",green.

only=TRUE)

y <- backgroundCorrect(x, method="normexp", offset=16)

y <- normalizeBetweenArrays(y, method="quantile")

y.ave <- avereps(y, ID=y$genes$ProbeName)

# Just Analysis

y.ave$E

y.ave$genes

y.ave$targets

############################################################

## creating ExpressionSet object for merging this analysis to the end
to end workflow tutorial:

SDRF <- AnnotatedDataFrame(targets)

all(colnames(y.ave)==rownames(SDRF))

eset<-new("ExpressionSet", exprs=as.matrix(y.ave),phenoData=SDRF)

pData(eset)

fData(eset)

exprs(eset)

pData(eset)$Treatment
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## principal component analysis

PCA_raw <- prcomp(t(exprs(eset)), scale. = FALSE)

percentVar <- round(100*PCA_raw$sdev^2/sum(PCA_raw$sdev^2),1)
sd_ratio <- sqrt(percentVar[2] / percentVar[1])

## plotPCA

dataGG <- data.frame(PC1 = PCA_raw$x[,1], PC2 = PCA_raw$x[,2],
Treatment = pData(eset)$Treatment)

write.csv(dataGG,"dataGG.csv")

pdf("PCAplot.pdf",width=8,height=8,paper=’special’)
ggplot(dataGG, aes(PC1, PC2)) +
geom_point(aes(shape = Treatment, colour = Treatment)) +
ggtitle("PCA plot of normalized data") +
xlab(paste0("PC1, VarExp: ", percentVar[1], "%")) +
ylab(paste0("PC2, VarExp: ", percentVar[2], "%")) +
theme(plot.title = element_text(hjust = 0.5))+
scale_shape_manual(values = c(4,15)) +
scale_color_manual(values = c("darkorange2", "dodgerblue4"))

dev.off()

## histogram of log 2 raw intensities

pdf("boxplot_normalized.pdf", width=10, height=10)
oligo::boxplot(eset,col=viridis_pal(option ="C")(n=6),las=2, cex.axis=

0.4)
dev.off()

arrayQualityMetrics(expressionset = eset,
outdir = tempdir(),
force = TRUE, do.logtransform = TRUE,
intgroup = "Treatment")

#RLE

row_medians_assayData <-
Biobase::rowMedians(as.matrix(Biobase::exprs(eset)))

RLE_data <- sweep(Biobase::exprs(eset), 1, row_medians_assayData)

RLE_data <- as.data.frame(RLE_data)
RLE_data_gathered <-
tidyr::gather(RLE_data, patient_array, log2_expression_deviation)

write.csv(RLE_data,"RLEdata.csv")
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#RLE plot

pdf("log2_expressionplot.pdf",width=8,height=8,paper=’special’) #RLE
graph

ggplot2::ggplot(RLE_data_gathered, aes(patient_array,
log2_expression_deviation)) +

geom_boxplot(outlier.shape = NA) +
ylim(c(-2, 2)) +
theme(axis.text.x = element_text(colour = "aquamarine4",

angle = 60, size = 6.5, hjust = 1 ,
face = "bold"))

dev.off()

#heatmap

phenotype_names <- ifelse(str_detect(pData
(eset)$Treatment,
"Normal" ), "Normal", "Tumor")

annotation_for_heatmap <-
data.frame(Phenotype=phenotype_names)

row.names(annotation_for_heatmap) <- row.names(pData(eset))
dists <- as.matrix(dist(t(exprs(eset)), method = "manhattan"))

rownames(dists) <- row.names(pData(eset))
hmcol <- rev(colorRampPalette(RColorBrewer::brewer.pal(9, "YlOrRd"))

(255))
colnames(dists) <- NULL
diag(dists) <- NA

ann_colors <- list(Phenotype = c( Tumor = "chartreuse4" ,Normal = "
burlywood3" ))

#Heatmap plot

pdf("heat_plot.pdf",width=8,height=8,paper=’special’)
pheatmap(dists, col = (hmcol),

annotation_row = annotation_for_heatmap,
annotation_colors = ann_colors,
legend = TRUE,
treeheight_row = 0,
legend_breaks = c(min(dists, na.rm = TRUE),

max(dists, na.rm = TRUE)),
legend_labels = (c("small distance", "large distance")))

dev.off()

## histogram
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palmieri_medians <- rowMedians(Biobase::exprs(eset))
pdf("HISTOGRAMplot.pdf",width=10,height=10,paper=’special’)
hist_res <- hist(palmieri_medians, 100, col = "cornsilk1", freq = FALSE

,
main = "Histogram of the median intensities",
border = "antiquewhite4",
xlab = "Median intensities")

dev.off()
man_threshold <- 4.2 #YA pochna ha

pdf("HISTOGRAMplotline.pdf",width=10,height=10,paper=’special’)
hist_res <- hist(palmieri_medians, 100, col = "cornsilk", freq = FALSE,

main = "Histogram of the median intensities",
border = "antiquewhite4",
xlab = "Median intensities")

abline(v = man_threshold, col = "coral4", lwd = 2)

dev.off()

#linear model

f <- factor(targets$Treatment, levels = unique(targets$Treatment))

#design matrix

design <- model.matrix(~0 + f)

colnames(design) <- levels(f)

write.csv(design, "DESIGN_MATRIX.csv")

#fitting

fit <- lmFit(y.ave, design)

#contrast matrix

contrast.matrix <- makeContrasts("Tumor-Normal", levels=design)

write.csv(contrast.matrix, "contrastmatrix.csv")

fit2 <- contrasts.fit(fit, contrast.matrix)

fit2 <- eBayes(fit2)

output <- topTable(fit2, adjust="BH", coef="Tumor-Normal", genelist=y.
ave$genes, number=Inf)
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output

write.csv(output, "DEGs.csv")

fit2$genes

# Valcano plot
volcano_names <- ifelse(abs(fit2$coefficients)>=5,

fit2$genes, NA)
pdf("volcanoplot.pdf", width=10, height=10)
volcanoplot(fit2, coef = 1L, style = "p-value", highlight = 100,

names = volcano_names,
xlab = "Log2 Fold Change", ylab = NULL, pch=16, cex=0.35)

dev.off()

BiocManager::install("EnhancedVolcano")
library(EnhancedVolcano)
pdf("ENHANCED.pdf", width=10, height=10)
EnhancedVolcano(output,

lab = output $SystematicName,
x = "logFC",
y = "P.Value",
pCutoff = 0.05,
FCcutoff =0.5,
title = "MTC vs Normal")

dev.off()

t1<- subset(output, P.Value < 0.05)
t2 <- subset(t1, logFC < -0.5|logFC> 0.5)

write.csv(t2,"final DEGs with cutoff.csv")
#agilent single channel

#libraries

library(limma)
library(convert)
library(Biobase)
library(openxlsx)
library(ggplot2)
library(oligo)
library(oligoClasses)
library(arrayQualityMetrics)
library(simpleaffy)
library(RColorBrewer)
library(pheatmap)
library(geneplotter)
library(stringr)
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library(ArrayExpress)
library(gplots)
library(dplyr)
library(tidyr)
library(matrixStats)
library(genefilter)
#BiocManager::install("simpleaffy")

# Directory Setup
Tutorial_agilent <- "D:/dataset3"

# If Directory exist then good otherwise make one.

Tutorial_agilent
if(!dir.exists(Tutorial_agilent)){
dir.create(Tutorial_agilent)

}

#set working directory

setwd("D:/dataset3")
raw_data_dir <- file.path(getwd(), "rawDataMAWorkdown")

if(!dir.exists(raw_data_dir)){
dir.create(raw_data_dir)

}

# Fetching of data

#anno_AE <- getAE("E-GEOD-70394", path=raw_data_dir, type="raw")

# Targets

#targets <- readTargets(path = raw_data_dir,"targets1.txt",verbose=TRUE
)

targets=readTargets(infile="targets1.txt",verbose=TRUE)
getwd()

# Now reading Files (normalization)
x <- read.maimages(targets, path=raw_data_dir, source="agilent",green.

only=TRUE)

y <- backgroundCorrect(x, method="normexp", offset=16)

y <- normalizeBetweenArrays(y, method="quantile")

y.ave <- avereps(y, ID=y$genes$ProbeName)
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# Just Analysis

y.ave$E

y.ave$genes

y.ave$targets

############################################################

## creating ExpressionSet object for merging this analysis to the end
to end workflow tutorial:

SDRF <- AnnotatedDataFrame(targets)

all(colnames(y.ave)==rownames(SDRF))

eset<-new("ExpressionSet", exprs=as.matrix(y.ave),phenoData=SDRF)

pData(eset)

fData(eset)

exprs(eset)

pData(eset)$Treatment

## principal component analysis

PCA_raw <- prcomp(t(exprs(eset)), scale. = FALSE)

percentVar <- round(100*PCA_raw$sdev^2/sum(PCA_raw$sdev^2),1)
sd_ratio <- sqrt(percentVar[2] / percentVar[1])

## plotPCA

dataGG <- data.frame(PC1 = PCA_raw$x[,1], PC2 = PCA_raw$x[,2],
Treatment = pData(eset)$Treatment)

write.csv(dataGG,"dataGG.csv")

pdf("PCAplot.pdf",width=8,height=8,paper=’special’)
ggplot(dataGG, aes(PC1, PC2)) +
geom_point(aes(shape = Treatment, colour = Treatment)) +
ggtitle("PCA plot of normalized data") +
xlab(paste0("PC1, VarExp: ", percentVar[1], "%")) +
ylab(paste0("PC2, VarExp: ", percentVar[2], "%")) +
theme(plot.title = element_text(hjust = 0.5))+
scale_shape_manual(values = c(4,15)) +
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scale_color_manual(values = c("darkorange2", "dodgerblue4"))
dev.off()

## histogram of log 2 raw intensities

pdf("boxplot_normalized.pdf", width=10, height=10)
oligo::boxplot(eset,col=viridis_pal(option ="C")(n=6),las=2, cex.axis=

0.4)
dev.off()

arrayQualityMetrics(expressionset = eset,
outdir = tempdir(),
force = TRUE, do.logtransform = TRUE,
intgroup = "Treatment")

#RLE

row_medians_assayData <-
Biobase::rowMedians(as.matrix(Biobase::exprs(eset)))

RLE_data <- sweep(Biobase::exprs(eset), 1, row_medians_assayData)

RLE_data <- as.data.frame(RLE_data)
RLE_data_gathered <-
tidyr::gather(RLE_data, patient_array, log2_expression_deviation)

write.csv(RLE_data,"RLEdata.csv")

#RLE plot

pdf("log2_expressionplot.pdf",width=8,height=8,paper=’special’) #RLE
graph

ggplot2::ggplot(RLE_data_gathered, aes(patient_array,
log2_expression_deviation)) +

geom_boxplot(outlier.shape = NA) +
ylim(c(-2, 2)) +
theme(axis.text.x = element_text(colour = "aquamarine4",

angle = 60, size = 6.5, hjust = 1 ,
face = "bold"))

dev.off()

#heatmap

phenotype_names <- ifelse(str_detect(pData
(eset)$Treatment,
"Normal" ), "Normal", "Tumor")

annotation_for_heatmap <-
data.frame(Phenotype=phenotype_names)

row.names(annotation_for_heatmap) <- row.names(pData(eset))
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dists <- as.matrix(dist(t(exprs(eset)), method = "manhattan"))

rownames(dists) <- row.names(pData(eset))
hmcol <- rev(colorRampPalette(RColorBrewer::brewer.pal(9, "YlOrRd"))

(255))
colnames(dists) <- NULL
diag(dists) <- NA

ann_colors <- list(Phenotype = c( Tumor = "chartreuse4" ,Normal = "
burlywood3" ))

#Heatmap plot

pdf("heat_plot.pdf",width=8,height=8,paper=’special’)
pheatmap(dists, col = (hmcol),

annotation_row = annotation_for_heatmap,
annotation_colors = ann_colors,
legend = TRUE,
treeheight_row = 0,
legend_breaks = c(min(dists, na.rm = TRUE),

max(dists, na.rm = TRUE)),
legend_labels = (c("small distance", "large distance")))

dev.off()

## histogram

palmieri_medians <- rowMedians(Biobase::exprs(eset))
pdf("HISTOGRAMplot.pdf",width=10,height=10,paper=’special’)
hist_res <- hist(palmieri_medians, 100, col = "cornsilk1", freq = FALSE

,
main = "Histogram of the median intensities",
border = "antiquewhite4",
xlab = "Median intensities")

dev.off()
man_threshold <- 4.2 #YA pochna ha

pdf("HISTOGRAMplotline.pdf",width=10,height=10,paper=’special’)
hist_res <- hist(palmieri_medians, 100, col = "cornsilk", freq = FALSE,

main = "Histogram of the median intensities",
border = "antiquewhite4",
xlab = "Median intensities")

abline(v = man_threshold, col = "coral4", lwd = 2)

dev.off()

#linear model

f <- factor(targets$Treatment, levels = unique(targets$Treatment))
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#design matrix

design <- model.matrix(~0 + f)

colnames(design) <- levels(f)

write.csv(design, "DESIGN_MATRIX.csv")

#fitting

fit <- lmFit(y.ave, design)

#contrast matrix

contrast.matrix <- makeContrasts("Tumor-Normal", levels=design)

write.csv(contrast.matrix, "contrastmatrix.csv")

fit2 <- contrasts.fit(fit, contrast.matrix)

fit2 <- eBayes(fit2)

output <- topTable(fit2, adjust="BH", coef="Tumor-Normal", genelist=y.
ave$genes, number=Inf)

output

write.csv(output, "DEGs.csv")

fit2$genes

# Valcano plot
volcano_names <- ifelse(abs(fit2$coefficients)>=5,

fit2$genes, NA)
pdf("volcanoplot.pdf", width=10, height=10)
volcanoplot(fit2, coef = 1L, style = "p-value", highlight = 100,

names = volcano_names,
xlab = "Log2 Fold Change", ylab = NULL, pch=16, cex=0.35)

dev.off()

BiocManager::install("EnhancedVolcano")
library(EnhancedVolcano)
pdf("ENHANCED.pdf", width=10, height=10)
EnhancedVolcano(output,

lab = output $SystematicName,
x = "logFC",
y = "P.Value",
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pCutoff = 0.05,
FCcutoff =0.5,
title = "MTC vs Normal")

dev.off()

t1<- subset(output, P.Value < 0.05)
t2 <- subset(t1, logFC < -0.5|logFC> 0.5)

write.csv(t2,"final DEGs with cutoff.csv")
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