
Formalization of Bond Graph using HOL Light

By

Ujala Qasim

NUST-2016-173058-MS-CSE-09

Supervisor:

Dr. Osman Hasan

A thesis submitted in partial fulfillment of the requirements for the degree of

Masters of Science in Computational Science and Engineering

Department of Computational Engineering

Research Centre for Modelling and Simulation (RCMS),

National University of Sciences and Technology (NUST), Islamabad,

Pakistan.

(September 2020)



Annex A to NUST Letter No. 

0972/102/Exams/Thesis-Cert 

dated 23 Dec 16. 

THESIS ACCEPTANCE CERTIFICATE 

 

Certified that final copy of MS/MPhil thesis written by Mr/Ms ___________________ 

Registration No. ________________________ of __RCMS___ has been vetted by undersigned, 

found complete in all aspects as per NUST Statutes/Regulations, is free of plagiarism, errors, and 

mistakes and is accepted as partial fulfillment for award of MS/MPhil degree. It is further 

certified that necessary amendments as pointed out by GEC members of the scholar have also 

been incorporated in the said thesis.  

 

Signature with stamp: ___________________________ 

Name of Supervisor: ____________________________ 

Date: ________________________________________ 

 

 

Signature of HoD with stamp: _____________________ 

Date: ________________________________________ 

 

 

Countersign by 

Signature (Dean/Principal): ________________ 

Date: __________________________________ 

 



Approval

It is certified that the contents and form of the thesis entitled “Formalization

of Bond Graph using HOL Light” submitted by Ujala Qasim have been

found satisfactory for the requirement of the degree. This thesis is submitted

to the Research Centre for Modelling and Simulation (RCMS) in partial

fulfillment of the requirements for the degree of Masters of Science in the field of

Computational Science and Engineering, Department of Computational

Engineering, University of National University of Sciences and Technology

(NUST), Islamabad, Pakistan.

Advisor: Dr. Osman Hasan

Signature:

Date:

Committee Member 1: Dr. Salma Sherbaz

Signature:

Date:

Committee Member 2: Dr. Junaid Ahmad Khan

Signature:

Date:

ii



Dedicated to my Parents and Brother

iii



Certificate of Originality

I hereby declare that this submission is my own work and to the best of my

knowledge it contains no materials previously published or written by another

person, nor material which to a substantial extent has been accepted for the award

of any degree or diploma at National University of Sciences & Technology (NUST)

Research Centre for Modelling & Simulation (RCMS) or at any other educational

institute, except where due acknowledgement has been made in the thesis. Any

contribution made to the research by others, with whom I have worked at NUST

RCMS or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own

work, except for the assistance from others in the project’s design and conception

or in style, presentation and linguistics which has been acknowledged.

Author Name: Ujala Qasim

Signature:

iv



Acknowledgements

First and foremost, I would like to express my sincere gratitude to my advisor

Dr. Osman Hasan for the continuous support, patience, immense knowledge and

encouragement through out my MS research. He gave me the valuable chance to

join his research group and learn so much from SAVe family. His guidance helped

me in all the time of research and writing of this thesis. I could not have imagined

having a better advisor and mentor.

I am indebted to Dr. Adnan Rashid, who not only inspired and encouraged me

but also followed the progress of my work and provided valuable feedback at various

stages. His continued support and guidance has been critical to my research.

Besides that, I would like to thank members of my thesis committee, Dr.

Salma Sherbaz and Dr. Junaid Ahmad Khan. Their encouragement and insightful

comments in study and research helped in the completion of my thesis.

Last but not the least, I would like to thank my family for loving and supporting

me throughout my life. Without them, I could have never made it this far.

v



Table of Contents

Page

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 HOL Light Theorem Prover . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Terms and Types . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Writing Proofs . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.4 HOL Light Symbols . . . . . . . . . . . . . . . . . . . . . . 7

2.1.5 Multivariable Calculus Theories in HOL Light . . . . . . . . 8

2.2 Bond Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Generalized Variables . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.4 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.5 Terminologies of Bond Graph . . . . . . . . . . . . . . . . . 13

vi



2.2.6 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Algorithm/Flow for Bond graph based Formal Analysis . . . . . . . 17

2.4 Some Rules/Assumptions for the Formalization of Bond Graphs . . 19

3 Formalization of Bond Graph Representation . . . . . . . . . . . . . . . 22

3.1 Bond Graph Representation . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Generalized Variables . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3 Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Power Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.1 Active Elements . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5.2 Passive Elements . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Modulus of Transducers . . . . . . . . . . . . . . . . . . . . . . . . 26

3.7 Laws of a Junction . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.8 Strong Bond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.9 Skipped Bonds and Summation Law of Last Junction . . . . . . . . 29

3.10 Causal Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.10.1 Backward Path . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.10.2 Forward Path . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.11 Selection of Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.11.1 Path Selection for Equality Law of a Junction . . . . . . . . 41

3.11.2 Path Selection for Summation Law of a Junction . . . . . . 42

3.12 Presence of a Branch . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.13 Presence of a Causal Loop . . . . . . . . . . . . . . . . . . . . . . . 46

3.14 Cases of a BG Represention . . . . . . . . . . . . . . . . . . . . . . 48

3.15 Cases Selection Procedure . . . . . . . . . . . . . . . . . . . . . . . 49

3.15.1 Bond Selection . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.15.2 Junction Selection . . . . . . . . . . . . . . . . . . . . . . . 52

vii



3.16 State-Space Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Formal Verification of Stability of Bond Graphs . . . . . . . . . . . . . . 54

4.1 Polynomial Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Matrix Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Case Study: Anthropomoric Mechatronic Prosthetic Hand . . . . . . . . 62

5.1 Formal Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Formal Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 State-Space Representation . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Stability Analysis in MATLAB . . . . . . . . . . . . . . . . . . . . 70

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A Proof Tactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

viii



List of Tables

2.1 HOL Light Symbols and Functions . . . . . . . . . . . . . . . . . . 7

2.2 Basic Components of Bond Graph . . . . . . . . . . . . . . . . . . . 12

2.3 Terminologies of a Bond Graph Representation . . . . . . . . . . . 13

ix



List of Figures

1.1 Proposed Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Bond Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 MSD System and its Corresponding Bond Graph Representation . . 14

2.3 Algorithm for Bond Graph based Analysis of Systems . . . . . . . . 18

2.4 Representations of a Bond Graph . . . . . . . . . . . . . . . . . . . 20

4.1 Stability Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Bond Graph of Anthropomoric Mechatronic Prosthetic Hand . . . . 63

5.2 Stable Index Finger (Flex. & Ext.) . . . . . . . . . . . . . . . . . . 70

x



Abstract

Bond graph is a unified graphical approach for describing the dynamics of complex

engineering and physical systems and is widely adopted in a variety of energy

domains, such as, electrical, mechanical, medical, thermal and fluid mechanics.

Traditionally, these dynamics are analyzed using paper-and-pencil based proof

methods and computer-based techniques. However, both of these techniques suffer

from their inherent limitations, such as, human-error proneness, approximations of

results and limited computer resources. Thus, these techniques cannot be trusted

for performing the bond graph based dynamical analysis of systems from the safety-

critical domains like robotics and medicine. Formal methods in particular, theorem

proving, can overcome the shortcomings of the traditional methods and provide an

accurate analysis of the systems. It has been used for analyzing the dynamics of

engineering and physical systems. In this thesis, we propose to use higher-order-

logic theorem proving for performing the bond graph based analysis of the physical

systems. In particular, we provide a formalization of bond graph, which mainly

include conversion of a bond graph model to its corresponding mathematical model

(state-space model) and verification of its various properties, such as, stability.

To illustrate the practical effectiveness of our proposed approach, we present the

formal stability analysis of a prosthetic mechatronic hand using HOL Light theorem

prover. Moreover, to facilitate a non-HOL user, we encode our formally verified

stability theorems in MATLAB to perform the stability analysis of the prosthetic

mechatronic hand.

xi



Chapter 1

Introduction

1.1 Background

Bond Graph (BG) is a linear, labelled, directed and domain-independent graphical

approach for modelling dynamics of physical systems and is widely adopted for

capturing the dynamics of physical systems belonging to multidisciplinary energy

domains, such as, electromechanical, hydroelectric and mechatronics. The concept

of bond graphs was introduced by H.M. Paynter [20] of Massachusetts Institute of

Technology (MIT) in 1961, to describe the dynamics of different systems belonging

to interdisciplinary domains and exhibiting analogous dynamical behaviour. The

first step in BG based dynamical analysis of a system is to apply causal equations

on different components of a system. Next step involves solving the set of equations

simultaneously to obtain the corresponding set of differential equations. These

equations are then transformed into state-space representations.

1.2 Motivation

For capturing the dynamics of the physical systems, there are some other graphical

approaches namely, Signal-flow graphs and Block diagram representations. However,

BG models are considered as a better approach due to their ability to communicate

seamlessly between different components belonging to multidisciplinary domains

based on bi-directional flow of information and this provide a deep insight to



the computational structure of the physical systems. Due to their distinguishing

features provided above, bond graphs have been widely used in automobiles [28],

biological systems [8], aerospace [10,11] and transportation systems [16].

Traditionally, the BG based analysis is performed using paper-and-pencil proof

method. However, the analysis is prone to error due to high human involvement for

analyzing complex physical systems and thus could not ensure absolute accuracy

of the analysis. Similalry, computer based symbolic and numerical techniques

have been widely used analyzing BG based models of the systems. Some of the

widely used tools are ENPORT [13,23], DESIS [7], MTT [3], CAMP-G [12] and

20-sim [1]. The numerical methods involves the approximation of the mathematical

expressions and results due to the finite precision of computer arithmetic. It also

involves a finite number of iterations based on limited computational resources and

computer memory. Similarly, the symbolic techniques are based on a large numbers

of unverified symbolic algorithms present in the core of the associated tools. Based

on the above-mentioned limitations, the computer-based methods cannot be trusted

for performing the bond graph based analysis of the safety-critical systems, such

as, aerospace, medicine and transportation where an inaccurate analysis can lead

to disastrous consequences.

Formal methods are computer-based mathematical analysis techniques that

involve constructing a mathematical model based on an appropriate logic and

verification of its various properties based on deductive reasoning. Higher-order-

logic theorem proving is a widely adopted formal methods for performing the

accurate analysis of the engineering and physical systems. In this thesis, we

propose a higher-order-logic based framework, as represented in Figure. 1, for bond

graph based analysis of physical systems. It mainly involves the formalization of

bond graph and verification of its various properties using multivariate calculus

theories of HOL Light theorem prover [14]. To illustrate the practical effectiveness

2



of our proposed framework, we formally analyze the dynamics of mechatronic

prosthetic hand [24] based on the formalization of bond graph. To the best of our

knowledge, bond graph theory has not been formalized in any of higher-order-logic

theorem provers.

1.3 Proposed Methodology

The main objective of this thesis is the development of a theorem proving based

framework for the formal bond graph representation based analysis of the physical

and multidisciplinary engineering systems. Our proposed framework, depicted in

Figure 1.1 accepts the linear BG representation of a system and its corresponding

parameters, such as, values of its different components from a user.

Formal	Modelling
Elements	and	

Laws	of	Junctions
Causal	Paths,	
Loop,	Branch		

State-Space	ModelCases	of	BG	Model

Formalization	of	Bond	Graph

Multivariate	Theories
of	HOL	Light

Complex

Differentiation

Integral

Vector

Higher-order	Logic

Formally	Verified	Properties	of
Bond	Graph	and	Stability

HOL	Light	Theorem	Prover

Formal	Model

Formal	Analysis

StabilityComplex	Matrices

Values	of	BG
Parameters

BG	of	a
System

Theorems

Figure 1.1: Proposed Framework

The first step is the development of the mathematical model (state-space

representation), which involves the conversion of BG representation to a set of

3



differential equations. It is based on application of the laws of junctions and causality

of paths on the BG representation of the underlying system. The development of

the state-space model from a set of differential equations is based on complex-valued

vectors and matrices, which are developed as a part of the proposed formalization.

The next step is to use the state-space models of the BG representation to formally

analyze various dynamical properties, such as, stability, of the underlying system.

For practical illustration of the proposed formalization, we present a formal analysis

of anthropomorphic mechatronic prosthetic hand [24].

1.4 Thesis Organization

The rest of the thesis is organized as follows: In Chapter 2, we provide preliminaries

that includes a brief introduction of HOL Light theorem prover, multivariable

calculus theories of HOL Light, basic concepts of bond graphs along with the

extraction of state equations from a working example of mass-spring-damper

system, an algorithm describing the step for the formal analysis of bond graphs and

some set of assumptions or rules for the formal modelling of bond graphs. Chapter

3 presents the formalization of the fundamental components of BG representations

of different systems. We provide the definition of stability in Chapter 4 of the

thesis. Chapter 4 presents the formal verification of various properties of BG model,

definition of stability, general stability theorems for stability analysis of a BG

representation of a system and the properties of stability analysis. Next, in Chapter

5, we illustrate the practical effectiveness of the proposed formalization of bond

graphs by successfully applying it for the formal verification of the anthropomoric

mechatronic prosthetic hand and stability analysis of the corresponding hand.

Finally, Chapter 6 concludes the thesis and outlines some future research directions.

4



Chapter 2

Preliminaries

In this chapter, we provide an introduction to the HOL Light theorem prover and

a brief overview about the multivariate calculus theories of HOL Light. We also

describe bond graph representations with an example, algorithms (steps) for the

bond graph based analysis of systems’ dynamics and some set of assumptions for

the proposed formalization of bond graphs. The purpose is to introduce the basic

concepts of both HOL Light and bond graph that are necessary for understading

the rest of the thesis.

2.1 HOL Light Theorem Prover

HOL Light is an interactive theorem prover developed by John Harrison in 1996 at

the University of Cambridge. It belongs to the HOL theorem prover family and is

used for conducting proofs in higher-order logic. HOL Light has been extensively

used as a tool for the formal verification of both hardware and software systems

along with the formalization of pure mathematical theorems.

For secure theorem proving, the logic in HOL Light is built on top of the strongly-

typed functional programming language known as objective CAML (OCaml).

HOL Light has the smallest trusted core (i.e., approximately 400 lines of OCaml

code) compared to all other HOL theorem provers. Soundness is assured as every

new theorem must be verified by applying the basic axioms and primitive inference

rules or any other previously verified theorems/inference rules.



2.1.1 Terms and Types

The logic of HOL Light is based on λ-calculus (lambda-calculus). There are four

kinds of term: constants, variables, function applications and function abstractions.

The special feature of HOL Light is that every term has a well-defined type (number,

set, function, etc.) Semantically, types denote sets and terms denote members of

these sets.

2.1.2 Theories

A HOL Light theory is a collection of types, constants, axioms, definitions and

theorems and is built in a hierarchical structure. A theory can inherit definitions

and theorems from other available HOL Light theories. These theories are available

to a user and can be reloaded in the HOL Light system by an easy command. We

utilized HOL Light theories of boolean algebra, arithmetic, real, complex numbers,

sets, lists, vectors, differentiation and integration in our work. The availability

of these built-in mathematical theories is the main motivation behind choosing

HOL Light for our proposed work.

2.1.3 Writing Proofs

HOL Light supports two types of interactive proof styles namely forward and

backward. In forward proof, the user starts with already proved theorems and

applies inference rules to reach the desired theorem. While in the backward proof,

the user starts with the desired theorem and applies tactics (ML function that

breaks a goal into simpler subgoals) to reduce it to simpler intermediate subgoals.

The user can prove some of these intermediate goals by matching assumptions or

axioms. These steps are repeated for the remaining subgoals until the user is left

with no further subgoals and this concludes that the desired theorem is proved. In

6



simple words, backward proof method is the reverse of the forward proof method.

Mostly, backward proof method is prefered over forward method as it does not

requires the exact details of a proof in advance unlike forward method.

There are many automatic proof procedures and proof assistants available in

HOL Light which help the user in concluding a proof efficiently. To prove a goal,

user provides necessary tactics to the proof editor while other steps are proved

automatically by automatic proof procedures.

2.1.4 HOL Light Symbols

The following Table provides some frequently used mathematical interpretations of

HOL Light symbols and functions in this thesis.

HOL Light Symbols Standard Symbols Meaning

/\ and Logical and

\/ or Logical or

∼ not Logical negation

==> −→ Implication

<=> = Equality

!x.t ∀x.t For all x : t

λx.t λx.t Function that maps x to t(x)

num {0,1,2,. . . } Positive Integers data type

real All real numbers Real data type

complex All complex numbers Complex data type

SUC n (n + 1) Successor of natural number

&a N→ R Typecasting from Integers to Reals

EL n L element nth element of list L

Append L1 L2 append Combine two lists together

LENGTH L length Length of list L

(a,b) a × b A pair of two elements

FST fst(a,b) = a First component of a pair

SND snd(a,b) = b Second component of a pair

{x|P(x)} {x |P(x)} Set of all x such that P(x)

Table 2.1: HOL Light Symbols and Functions

7



2.1.5 Multivariable Calculus Theories in HOL Light

In HOL Light, a n-dimensional vector is represented as a RN column matrix with

all of its elements as real number. All of the vector operations are then handled as

matrix manipulations. Thus, a complex number is defined by the data-type R2, i.e,

a column matrix having two elements. Similarly, a real number can be expressed by

a 1-dimensional vector R1 or a number on the real line R. In multivariate calculus

theories of HOL Light, all theorems have been formally verified for functions with

data-type RN → RM.

We provide some of the frequently used HOL Light functions in our proposed

formalization.

Definition 1 Cx

` ∀a. Cx a = complex (a,&0)

The function Cx accepts a real number and returns its equivalent complex number

with imaginary part equal to zero. Here the operator & type-casts a natural number

to its corresponding real number.

Definition 2 Re and lift

` ∀z. Re z = z$1

` ∀x. lift x = (lambda i. x)

The function Re accepts a complex number and returns its real part. The

notation z$i represents the ith component of a vector z. The function lift accepts

a real number and maps it to a 1-dimensional vector using lambda operator.

Definition 3 Integral and Derivative of a Vector-valued Function

` ∀f i. integral i f = (@y.(f has integral y) i)

` ∀f net. vector derivative f net =

(@f’.(f has vector derivative f’) net)

8



The function integral accepts an integrand function f:RN → RM and a vec-

tor space i:RN → B, which defines the region of integration and returns the

corresponding vector integral. Here B is the boolean data type. The function

has integral defines the same relationship in the relational form. The function

vector derivative accepts a function f:R1 → RM that needs to be differentiated

and a net:R1 → B that defines the point at which function f has to be differen-

tiated and returns a vector of data-type RM representing the differential of f at

net. The function has vector derivative defines the same relationship in the

relational form. The Hilbert choice operator @:(α→ bool)→ α returns value of

the integral and differential, if they exist.

2.2 Bond Graphs

In this section, we describe the theory behind bond graphs in detail as well as an

illustrative example that goes through the steps of extracting system equations.

The concept of bond graph (BG) was introduced by H.M. Paynter and he believed

that the energy and power are two fundamental variables of all physical systems’

interactions. BG is a domain independent graphical approach for modelling physical

systems to describe the dynamic behaviour. The ability of BG to model large

and complex systems from simple and universal concepts makes it an attractive

technique for formalization.

2.2.1 Notation

A Bond graph [6] (BG) is a directed graph consisting of bonds and components

that are connected together as shown in Figure 2.2. A power bond is the most

powerful component of a BG bridging any two components of BG and providing

an exchanged power between them. It is represented by a half arrow whose head

9



indicates the direction of a positive power flow, as shown in Figure 2.1. It represents

a bond with positive direction towards B and negative power direction towards A.

A Be

f

Power
Variables

Power
Direction

Causal
Stroke

Figure 2.1: Bond Representation

2.2.2 Generalized Variables

BG models are based on three different types of analogies/groups known as signal,

component and connection analogies [10]. There are four types of signals in BG

known as effort (e), flow (f), integrated effort (p) and integrated flow (q) signals.

These signals capture information about different phenomenas of a domain/area. In

the hydraulic domain, total pressure (e), volume flow rate (f), pressure momentum

(p) and volume (q) are represented by these corresponding signals [5], respectively.

Since power is a product of effort and flow signals, therefore, a power bond is

composed of effort and flow signals (variables) as shown in Figure 2.1. The other two

signals, i.e., integrated effort and flow signals belong to a class of energy variables.

The integrated effort or generalized momentum is mathematically expressed as a

time integral over the effort signal, as follows:

p(t) =

∫ t

e(t)dt = p0 +

∫ t

0

e(t)dt (2.1)

Where p0 represents the value of p at time t = 0. Similarly, the integrated flow also

known as generalized displacement is mathematically described as a time integral

10



of a flow signal.

q(t) =

∫ t

f(t)dt = q0 +

∫ t

0

f(t)dt (2.2)

Where q0 represents the value of p at time t = 0. Therefore, the effort and

flow signals are mathematically represented as the differentials of the generalized

momentum and displacement, respectively.

e(t) = ṗ(t) (2.3)

f(t) = q̇(t) (2.4)

2.2.3 Causality

The simulation of a bond graph model is primarily based on the order of the

computation of the effort and flow variables. This order is represented by a

perpendicular bar (causal stroke) added to an end of a bond (tail of the arrow, as

shown in Figure 2.1), thus indicating the corresponding variables acting as an input

(cause) and output (effect), respectively. This cause and effect phenomenon is

generally known as causality, indicating the direction of the effort and flow signals

(variables) in a bond graph model. In Figure 2.1, e is the input to A and f is the

output from A. Similarly, f acts as the input to B and e acts as an output.

A user should have prior knowledge of causality, i.e., how to assign it manually,

to construct the bond graph models of the complex physical systems. Many

approaches exist in the literature [17] for a systematic assignment of the casuality.

However, Sequential Causality Assignment Procedure (SCAP) is preferred [4, 6]

due to the systematic process and provides state-space representation of a system.

11



2.2.4 Components

There are nine basic elements/components, catagorized into four groups according

to their characteristics, as shown in the following Table 2.2.

Group Name Symbol Causal Equation Meaning and Causality Rule

S
u

p
p

ly Effort Source

Flow Source

𝑒(𝑡) is known

𝑓 𝑡 is known

Output of Se, Sf is effort and flow

Rule: causality is compulsory 

It is an input for a system

P
a

ss
iv

e 
E

le
m

en
ts

(Generalized)

Resistor

𝑒(𝑡) = 𝑅. 𝑓(𝑡)

𝑓(𝑡) =
𝑒(𝑡)

𝑅

Output is an effort

Rule: free causality

Output is a flow variable

(Generalized)

Inductor

𝑓(𝑡) =
1

𝐼
׬ 𝑒 𝑡 𝑑 𝑡 =

𝑃(𝑡)

𝐼

𝑒(𝑡) = ሶ𝐼. 𝑓(𝑡)

Flow is an output

Rule: integral causality

Effort is an output

Rule: derivative causality

(Generalized)

Capacitor

𝑒 𝑡 =
1

𝐶
𝑓׬ 𝑡 𝑑 𝑡 =

𝑞(𝑡)

𝐶

𝑓(𝑡) = ሶ𝐶. 𝑒(𝑡)

Effort is an output

Rule: integral causality

Flow is an output

Rule: derivative causality

R
ev

er
si

b
le

T
ra

n
sf

o
rm

a
ti

o
n (Generalized)

Transformer

(Generalized)

Gyrator

𝑒1 = 𝑚. 𝑒2 , 𝑓2 = 𝑚. 𝑓1

𝑒2 =
1

𝑚
. 𝑒1 , 𝑓1 =

1

𝑚
. 𝑓2

𝑒1 = 𝑟. 𝑓2 , 𝑒2 = 𝑟. 𝑓1

𝑓2 =
1

𝑟
. 𝑒1 , 𝑓1 =

1

𝑟
. 𝑒2

Only one effort and one flow are 

inputs

Rule: only one causal stroke near 

TF

Two efforts and two flows are 

inputs

Rule: two or no causal stroke near 

GY

D
is

tr
ib

u
ti

o
n

Common 

effort junction,

0-junction, 

flow junction

Common flow 

junction,

1-junction, 

effort junction

𝑒2 = 𝑒1 = 𝑒3 = 𝑒4 ,

𝑓2 −𝑓1 −𝑓3 − 𝑓4 = 0

𝑓2 = 𝑓1 = 𝑓3 = 𝑓4 ,

𝑒2 − 𝑒1− 𝑒3− 𝑒4 = 0

Only one effort is input

Rule: only one bond can have 

causal stroke towards 0-junction

Only one flow is input

Rule: only one bond can have 

causal stroke away from 1-

junction

Se

Sf

E
n

er
g

y
 S

to
re

D
is

si
p

at
o

r
Ju

n
ct

io
n

s

R

R

I

I

C

C

TF

TF

GY

GY

:m

:m

:r

:r

0

1

e 

e 

e 

e 

e 

e 

f 

f 

f 

f 

f 

f 

𝑓1 𝑓2

𝑒1 𝑒2

𝑒1

𝑓2𝑓1

𝑒2

𝑒1 𝑒2

𝑓1 𝑓2

𝑓1

𝑒2𝑒1

𝑓2

𝑒1 𝑓1
𝑒2

𝑓2
𝑒3 𝑓3

𝑒4

𝑓4

𝑒2

𝑓2
𝑒3 𝑓3

𝑒1 𝑓1

𝑒4

𝑓4

T
ra

n
sd

u
ce

rs

e 

e 

f 

f 

S
o

u
rc

es

Table 2.2: Basic Components of Bond Graph

Component analogies are further catagorized into three groups namely supply,

passive elements and reversible transformation. The supply group contains sources

of power variables. The Passive elements contains storage elements I and C as well

12



as dissipative element R. The reversible transformation group contains transducers

TF and GY to convert one form of energy to another. Connection analogies consist

of junctions 0 and 1 capturing the summation and equality laws.

2.2.5 Terminologies of Bond Graph

This table provides description of some important terminologies/properties of BG

depicted in Figure 2.2 and 2.4.

Name Description

Strong Bond A single bond that cause effort in 0-junction and flow in
1-junction

Passive Element
A one port element which stores input power as poten-
tial energy (C-element), as kinetic energy (I-element) or
transforms it into dissipative power (R-element)

Causal Bond Graph A bond graph is called causally completed or causal if the
causal stroke known as causality is added on an end of
each bond

Causal Path

A sequence of bonds with/without a transformer in be-
tween having causality at the same end of all bonds and a
sequence of bonds with a gyrator in between, and all the
bonds of one side of the gyrator having same end causality
while all the bonds on the other side with causality on
opposite end. That means gyrator changes the direction of
effort/flow variables [4]. A causal path can be a backward
or forward or both depending upon the junction structure,
elements and causality

Branch
A branch is a series of junctions having parent-child re-
lationship. Two different sequences of junctions can be
connceted with a common bond or a two-port element.
Thus, one of the junction’s sequence acts as parent branch
and the other one as child

Causal Loop
A causal loop is a closed causal path with bonds (of the
child branch) either connected to a similar junction or two
different junctions of the parent branch

Table 2.3: Terminologies of a Bond Graph Representation

13



2.2.6 Illustrative Example

In this section, we illustrate a bond graph based analysis of a most commonly used

example of Mass-Spring-Damper (MSD) system [18] in the mechanical domain.

Figure 2.2 represents MSD system and its corresponding bond graph representation.

m

k

b

F 1

I:m

C:k

1Se:F R:b
2

3

4

(a) Mass-Spring-Damper (MSD) System (b) Bond Graph

Figure 2.2: MSD System and its Corresponding Bond Graph Representation

Generally, the bond graph representation capturing the dynamics of a system is

based on the transformation/mapping of system’s components to their bond graph

model counterpart and it varies according to the systems from various domains,

such as, electrical, mechatronic and medicine [26]. For the case of MSD system

(Figure 2.2a), the Force F is mapped to Se. Similarly, the Mass (m) is mapped to I.

Moreover, Spring (k) and Damper (b) are mapped to energy storing element C and

passive element R, as shown in Figure 2.2b [6]. In MSD system, sum of all forces

acting on the mass is equal to zero, i.e., equilibrium state. All of the components

move with the same velocity when applied force. The force and velocity are mapped

onto the effort and flow variables. The 1 junction means that the value of flow

variable (velocity) through all connected bonds (components) is the same, and

the summation of effort variables (force) considering the power direction of bonds

is equal to zero, as shown in Table 2.2. Each bond is labelled by a number and

14



causality is assigned on every bond by following SCAP approach. Thus, the BG

represented in Figure 2.2b is known as causal bond graph. In 1 junction, only one

bond is responsible for the flow variable (cause), known as strong bond, which is

bond number 2 as illustrated in Figure 2.2b.

To obtain a mathematical model (state-space model) of the given BG represen-

tation, we need to apply laws of components and junctions given in Table 2.2. The

mathematical equations of various components are expressed as follows:

e1(t) = F (t) (2.5)

f2(t) =
1

m
∗ (e0 +

∫ t

0

e2(t) d(t))

By using Equation 2.1, we can rewrite the equation for mass (m) as:

f2(t) =
p2(t)

m
(2.6)

Similarly, an equation for the spring can be represented in terms of energy variable

(q) by using Equation 2.2.

e3(t) =
1

k
∗ (f0 +

∫ t

0

f2(t) d(t))

e3(t) =
q3(t)

k
(2.7)

The equation of the dissipative component (damper) depends algebraically on the

input as:

e4(t) = b . f4(t)

Now, we apply both laws of 1 junction, i.e., summation and equality for the case

of MSD system. Since there is only one bond, i.e,. Bond 1, which has a positive

15



power direction, as shown in Figure 2.2b. Therefore, all of the effort variables

except e1 have negative sign in the application of the summation law.

e1 − e2 − e3 − e4 = 0 (2.8)

Similarly, since Bond 2 is the strong bond, as shown in Figure 2.2b. Therefore, the

equality law for 1 junction is mathematically expressed as follows:

f2 = f1 = f3 = f4 (2.9)

Next, to obtain the state equations, i.e., equations of the energy storing components,

we use equations of the components, i.e., Equations (2.5, 2.7, ??) in Equation (2.8).

F (t)− e2(t)−
1

k
. q3(t)− b . f4(t) = 0

We are calculating state equation for mass (Bond 2) and all the entries of the above

equation are in the form of generalized momentum (p) and generalized displacement

(q) except variable f4(t). Thus, to convert f4(t) into an energy variable (p or q),

we follow the causal strokes of the bonds till we reach an energy storing (I, C)

or a source (Se, Sf) component with integral causality. In Figure 2.2b, we follow

the causal strokes from Bond 4 to 2 and by back propagation f2,4 of the causal

strokes in junction structure (1 junction), we can rewrite above equation using

Equation 2.9:

F (t)− e2(t)−
1

k
. q3(t)− b . f2(t) = 0

By using Equation 2.6 and 2.3, above equation can be rewritten as:

ṗ2(t) = e2(t) = − b

m
. p2(t)−

1

k
. q3(t) + F (t) (2.10)

16



Similarly, the equation for the storage component k is as follows:

f3(t) = f2(t)

By using Equation 2.6 and 2.4 in the above equation, we obtain final form of the

state equation for component k (Bond 3) as follows:

q̇3(t) = f3(t) =
1

m
. p2(t) (2.11)

Finally, by applying various properties of vectors and matrices, Equations (2.10)

and (2.11) can be transformed to their corresponding state-space models as follows:

ẋ(t) = A . x(t) +B . u(t)

ṗ2(t)
q̇3(t)

 =

− b

m
− 1

k
1

m
0

p2(t)
q3(t)

+

1

0

[F (t)
]

(2.12)

The above state-space model corresponding to the BG representations is used for

analyzing various properties of the systems, such as, stability.

2.3 Algorithm/Flow for Bond graph based For-

mal Analysis

This section provides an algorithm (step that need to be followed) for performing

the bond graph based formal analysis of the dynamics of systems.

Step 1: Take a bond graph representation as an input from the user. The input

BG should be:

(a) Causally completed

17



(b) Simplified after applying the simpification rules if necessary

Simplified Causal
 Bond Graph

Single Jun.
Bond Graph

Laws of a Junction

No

Terminating
Causal 
Element

ODEs, DAEs

Forward 
Path

Backward
Path

No

Yes

Case Selection

State-space
Representation

1

2

3

4

5

6

7

8

9

Goto 6

Simplifications
10

Causal Path

11

Yes

Analyze System
Properties12

Figure 2.3: Algorithm for Bond
Graph based Analysis of Systems

Step 2: Apply different cases depending on

the junction, its components and their causal-

ity.

Step 3: Apply laws of a junction, i.e., the equal-

ity or summation laws, one by one, based on the

nature of the bond causality and junction.

Step 4: If the BG representation has only one

junction, go to Step 9, otherwise move to the

next step.

Step 5: Start following a causal path.

Step 6: When a terminating causal element is

found in the path, go to Step 9, otherwise, go

to the next step.

Step 7: Follow forward or backward path, or

both, based on the causality of bonds and the

nature of a junction.

Step 8: Go back to Step 6.

Step 9: Extract Ordinary Differential Equa-

tions (ODEs) and Differential Algebraic Equa-

tions (DEAs) of the components of a junction.

Step 10: Simplify the differential equations to

obtain the state equations.

Step 11: Generate state-space models from the

state equations.

Step 12: Analyze various properties of the system, such as, stability.

18



2.4 Some Rules/Assumptions for the Formaliza-

tion of Bond Graphs

This section provides rules that are followed, to obtain a relabeled BG represen-

tation, during the formalization of the bond graphs in HOL Light. Figure 2.4

provides two different representations of an arbitrary bond graph, i.e., the given BG

representation and the relabelled BG representation after applying some rules/as-

sumptions to facilitate the corresponding formalization of the bond graphs. The

rules for the formalization of the bond graph representation are as follows:

1. Arrange all one-port components/elements on the top of the corresponding

junction and label all bonds of a junction in anti-clockwise direction as shown, in

Figure 2.4b.

2. A bond Bpqr is labelled according to its branch p, junction q and bond position

r in a BG representation using integers. This applies to all bonds present in a BG

representation. For example, Bond 1 in Figure 2.4a is relabelled as Bond 113, as

shown in Figure 2.4b. Bond 113 is the third bond of the first junction, which is an

element of the first (parent) branch. Similarly, Bond 11 of Figure 2.4a is relabelled

as Bond 211 representing the first bond of the first junction that lies in second

(child) branch, as shown in Figure 2.4b.

3. One port (a connecting bond, Se/Sf, I, C, R) and two port (TF, GY) com-

ponents/elements of a BG are also distinguished by using integers from 0 to 6,

respectively. For example, in Figure 2.4b, Bond 133 or 142 is a connecting bond/-

common bond (connecting 0 and 1 junction), so integer 0 is assigned to it in our

formalization of BG. To recognize TF and GY, integer 5 and 6 are used respectively

in HOL Light. Bond 113 and 143 are connected to a source component (Se), thus,

the integer value 1 is assigned to it.

4. The causality of a bond towards respective junction is represented by the

19



Boolean variables T and F for the causal stroke in the opposite direction of the

junction. The causality of Bond 133 is F with respect to 0 junction, whereas, the

causality of Bond 142 is T with respect to 1 junction.

5. The direction of a bond is a Boolean variable T when it is towards the junction

and F for the opposite direction. Bond 113 has a positive direction, therefore, it is

represented by T and Bond 112 is represented by F in HOL Light.

m
Se 11 GY 1 TF 01 4 5 7 8 10

2

I
6

Se
n

14

I

R

R1 12C

I
3

9
13

11

(a) Bond Graph Representation

m
Se 11 GY 1 TF 0

113 114 122 123 132 142

IR
111112

I
121

Se
141

n
133

143

IR1 213C 211

131 212

(b) Relabelling of Bond Graph Using Rules

Figure 2.4: Representations of a Bond Graph

6. The modulus of a two-port component is represented in the form of a list

containing modulus of effort and flow variables. A two-port component (GY, TF)

consists of two equations as described in Table 2.2. For example, in Figure 2.4a,

the list of the transformer component for the Bond 7 and 8 is in the form of
[1
n
, n
]

and
[
n,

1

n

]
, respectively.

7. 1 junction is represented by a Boolean value T and F presents the 0-junction.

8. If a branch appears on a junction, its presence is represented by T and the

absence by F. Only 0 junction has a branch in Figure 2.4, so its presence in

HOL Light is represented by a Boolean variable T.

20



9. If a junction has a single or multiple branches, the bond numbers associated to

the connecting/common bonds of a parent branch are used to differentiate branches.

Otherwise, integer 0 is used. The branch on 0 junction is recognized by value 131,

because Bond 131 is the connecting bond of both branches.

21



Chapter 3

Formalization of Bond Graph

Representation

This chapter provides formal definitions of the building blocks of bond graph which

can be utilized to formalize a wide variety of systems in the higher-order-logic. We

have built our formalization of bond graph upon foundational definitions discussed

in Section 2.1.5.

3.1 Bond Graph Representation

This section provides the formalization based on the higher-order-logic of the bond

graph representation using HOL Light. A bond is generally represented by its

various components, such as, causality, power direction, branch (common bond),

type of element (Se, Sf, I, C, R, TF, GY), effort and flow. We model a bond as a

6-tuple using the type abbreviation in HOL Light to define new types as follows:

Definition 4 Bond Graph

new type abbrev (”bond”, ‘:causality # direction # (branch # num)

# ele type # mod # (effort # flow)‘)

new type abbrev (”bonds”, ‘:(bond) list‘)

new type abbrev (”jun”, ‘:jun num # jun type # bonds‘)

new type abbrev (”jun list”, ‘:(jun) list‘)



where the first element of the 6-tuple captures the causality of the bond. Similarly,

the second element, i.e., direction models power direction. The third element of

the 6-tuple, i.e., (branch # num) provides the information of a branch as a pair of

Boolean and an integer data type, where the first element of pair represents branch

presence and the second element models the position of common bond. The next

two elements of the 6-tuple, i.e., ele type and mod model the type of a component

(it can take integer values from 0 to 6) and the modulus of the two-port elements

in the form of a list consisting values of the complex data type as described in

Section 2.4, respectively. The last element of the 6-tuple is itself a pair of function

of type R1 → R2, providing the effort and flow of the bond. Similarly, the second

type (bonds) provides a list of bonds of a single junction of a BG representation.

The next type (jun) is a 3-tuple composed of junction number (integer), type

of a junction (it takes a Boolean value True and False for the junctions 1 and

0, respectively) and bonds of a junction. Finally, the type jun list provides a

list of all the junctions that are present in a BG, thus capturing the overall BG

representation of a system.

3.2 Generalized Variables

As discussed in Section 2.2.2, e and f are power variables while momentum and

displacement represents energy variables. Their formalized functions are as

follows:

Definition 5 Generalized Variables of Bond Graph

` ∀e f. power e f = (λt. e t ∗ f t)

` ∀e. momentum e p0 =

(λt. p0 + integral (interval [lift(&0), t]) e)

` ∀f. displacement f q0 =

23



(λt. q0 + integral (interval [lift(&0), t]) f)

` ∀e. momentum der e p0 =

(λt. vector derivative (momentum e p0) (at t))

` ∀f. displacement der f q0 =

(λt. vector derivative (displacement f q0) (at t))

3.3 Causality

Now, we model the causality of a bond, as discussed in Section 2.2.3 and is

formalized in HOL Light as the following recursive functions.

Definition 6 Causality

` ∀j i k. causalityf j i 0 = 0 ∧

causalityf j i (SUC k) =

(if causality j i (SUC k) = F then SUC k

else causalityf j i k)

` ∀j i k. causalityt j i 0 = 0 ∧

causalityt j i (SUC k) =

(if causality j i (SUC k) = T then SUC k

else causalityt j i k)

The causalityf accept a list of junction j, an element i of the list j and a

bond k of the junction i, and returns the causality of the bond k, i.e., it returns a

Boolean value T for the case of direction of bond away from a junction, as described

in Section 2.4. Similarly, the function causalityt returns true (T) if the direction

of a bond k is towards a junction i.

24



3.4 Power Direction

A power bond carries information of causality as well as its power direction as

shown in Figure 2.1. Its formalized function is as follows:

Definition 7 Direction of a Bond

` ∀j i k. bond direction cond j i k =

(if bond direction j i k = T then Cx (&1) else -- Cx (&1)

The function bond direction accepts a list of junction j, an element i of j and

a bond k of the junction i and returns T for a positive power direction, otherwise

it returns false. It basically extracts the second element of the 6-tuple capturing a

bond graph representation. Moreover, the function bond direction cond assigns

the complex numbers 1 and -1 to the Boolean values T and F, respectively.

3.5 Components

In this section, we provide formalized functions for the components namely, Se,

Sf, I, C, R, TF, GY, 0 and 1 junctions, of a BG representation, as discussed in

Section 2.2.4. There are two types of one-port components as follows:

3.5.1 Active Elements

In bond graphs, sources are called active elements with one variable equal to zero.

srce supply effort to the system and srcf supply flow to the system.

Definition 8 Active Elements

` ∀e. srce e = (λt. Cx e)

` ∀f. srcf f = (λt. Cx f)

25



3.5.2 Passive Elements

These are the passive elements of bond graph as described in Table 2.2. Both

integral and differential causal elements are formalized. compliancee represents

integrally causal C-element and compliancef captures differential causality.

Definition 9 Passive Elements

` ∀R f. rese R f = (λt. Cx R ∗ f t)

` ∀R e. resf R e = (λt. Cx
(&1
R

)
∗ e t)

` ∀C f. compliancee C f q0= (λt. Cx
(&1
C

)
∗ displacement f q0 t)

` ∀C e. compliancef C e = (λt. Cx C ∗ vector derivative e (at t))

` ∀L f. inductore L f = (λt. Cx L ∗ vector derivative f (at t))

` ∀L e. inductorf L e p0 = (λt. Cx
(&1
L

)
∗ momentum e p0 t)

3.6 Modulus of Transducers

A two-port element consists of two equations with different modulus for different

variables (effort and flow), as shown in Table 2.2.

Definition 10 Modulus of Two-Port Elements

` ∀j i k. modulus cond j i k =

(if causality j i k = T then EL 1 (modulus j i k)

else EL 0 (modulus j i k))

The function modulus cond verifies the causality of a bond towards a junction and

provides first element (flow variable) of the list modulus accordingly. Similarly, if

the causality of a bond is not towards the junction then the modulus of efffort

variable is returned.

26



3.7 Laws of a Junction

A single junction consists of multi-ports and captures equality and summation

laws for variables (effort, flow) depending on the type of junction (0,1). We

formalize each case separately and provide the equality laws for the junctions 0

and 1 (presented as Equation (2.9) for MSD system example in Section 2.2.6) of a

bond graph representation in HOL Light as follows:

Definition 11 Equality Laws

` ∀j i k1 k2 t. jun 0 e j i k1 k2 t =

bond effort j i k1 t = bond effort j i k2 t

` ∀j i k1 k2 t. jun 1 f j i k1 k2 t =

bond flow j i k1 t = bond flow j i k2 t

The functions jun 0 e and jun 1 f provide laws of equality for junctions 0 and

1, respectively. The function jun 0 e accepts a list of junctions j:(jun)list, an

element i of the list j representing a junction (0 junction), where the equality law

is applied and two different bonds k1 and k2 of the junction i, and returns law of

equality as an equation of effort. It uses the function bond effort to capture the

effort (e) variable. The function jun 1 f provides law of equality as an equation of

flow for 1 junction using the function bond flow.

Next, we formalize the summation laws for the junctions 0 and 1 of a bond

graph representation in HOL Light as follows:

Definition 12 Summation Laws

` ∀j i t. jun 1 e j i t = vsum (0. . .bonds lenght j i - 3)

(λk. bond effort wd j i k t)

` ∀j i t. jun 0 f j i t = vsum (0. . .bonds lenght j i - 3)

(λk. bond flow wd j i k t)

27



The function jun 1 e accepts a list of junctions j:(jun) list, an element i

of the list j, representing a 1 junction, and a time variable t and returns the

summation of the effort variables of all bonds in the junction i, i.e., 1 junction

except the last two bonds. Here, the function bond effort wd models the effort

variable of a bond with power direction. Similarly, the function jun 0 f provides

a summation law for 0 junction by skipping the last two bonds. Moreover, any

two junctions are connected by a common bond, For example, junction 0 and 1 are

connected by Bond 10 as shown in Figure 2.4a and by the laws of summation and

equality, their flow variables for both junctions are mathematically expressed as:

f8(t)− f9(t)− f10(t) = 0, f8(t) = n ∗ f7(t), f10(t) = f14(t)

We can simplify above equations by substituting the value of flow variables of

common bond and transformer (TF), i.e., Bond 10 and 8, from second and third

equation to first equation, resulting into the following equation:

n ∗ f7(t)− f9(t)− f14(t) = 0

So, in order to obtain final form of the equations, we eliminate these intermediate

steps (substitution of equations) by excluding last two bonds of a junction.

3.8 Strong Bond

A strong bond is responsible for providing effort and flow in 0 and 1 junctions,

respectively, and its formalized definitions are as follows:

Definition 13 Strong Bond

` ∀j i. strong bond f j i = causalityf j i (bonds length j i - 1)

` ∀j i. strong bond t j i = causalityt j i (bonds length j i - 1)

28



The functions strong bond f and strong bond t use the functions causalityf

and causalityt that check all bonds of a junction to detect the strong bonds with

causality towards a junction and in the opposite direction of a junction, respectively.

Here, the function bond length provides the total number of bonds of a single

junction.

3.9 Skipped Bonds and Summation Law of Last

Junction

Next, we model the bonds (second last and last) that are skipped during summation

law of the last junction as follows:

Definition 14 Skipped Bonds of the Last Junction

` ∀j i t. bw last jun e j i t = (if i = 0

then snd last bond dir j i ∗ snd last bond e j i t

else Cx (&0))

` ∀j i t. bw last jun f j i t = (if i = 0

then snd last bond dir j i ∗ snd last bond f j i t

else Cx (&0))

` ∀j i t. fw last jun e j i t = (if i = 0

then last bond dir j i ∗ last bond e j i t

else Cx (&0))

` ∀j i t. fw last jun f j i t = (if i = 0

then last bond dir j i ∗ last bond f j i t

else Cx (&0))

In the summation laws, provided as Definition 12, we skiped last two bonds of

a junction that need to be modeled. By following a causal path (backward and

29



forward), if we reach at the first junction (in backward path) or the last junction

(in forward path) , i.e., i = 0 of a list j, we must add those skipped bonds , i.e., the

second last and last bond, of junction i with a power direction, otherwise add a

zero. The function bw last jun e provides the effort variable with power direction

modeled as snd last bond dir of the second last bond of the junction i, when

following a backward causal path. Similarly, following a forward causal path, the

function fw last jun e provides the effort variable with power direction modeled

as last bond dir of the last bond of the junction i.

Definition 15 Summation Law on the Last Junction

` ∀j i t. bw jun e sum j i t =

(jun 1 e j i t) + (bw last jun e j i t)

` ∀j i t. bw jun f sum j i t =

(jun 0 f j i t) + (bw last jun f j i t)

` ∀j i t. fw jun e sum j i t =

(jun 1 e j i t) + (fw last jun e j i t)

` ∀j i t. fw jun f sum j i t =

(jun 0 f j i t) + (fw last jun f j i t)

The functions bw jun e sum and fw jun e sum accept a list of junctions j:(jun)

list, an element i of the list j and a time variable t and returns the summation of

the effort variables of 1 junction (last junction in the junction list j) including the

second last and last bonds of the junction i, when following a backward and forward

paths, respectively. Similarly, the functions bw jun f sum and fw jun f sum provide

summation of the flow variables of 0 junction including second last and last bonds

of the junction i, following the backward and forward paths.

30



3.10 Causal Paths

A causal path is a sequence of bonds consisting common bond/two-port components

in between and is followed to find the variables of the state equations. A Causal

path consists of forward, backward or both as described in Table 2.2.5.

3.10.1 Backward Path

The backward path follows causality of the bonds appearing in the list of junctions,

in such a way that we reach at a terminating causal element. The formalized

function of a backward path is as follows:

Definition 16 Backwrad Path

` ∀j i t. backwrd path j 0 t = Cx(&0) ∧

backwrd path j (SUC i) t) =

[P1] (if (type of jun j (SUC i) = F) ∧

(snd last bond type j (SUC i) = 0 ∨

snd last bond type j (SUC i) = 5) ∧

(type of jun j i = F) ∨

(type of jun j (SUC i) = T) ∧

(snd last bond type j (SUC i) = 0 ∨

snd last bond type j (SUC i) = 5) ∧

(type of jun j i) = F) ∨

(type of jun j (SUC i) = T) ∧

(snd last bond type j (SUC i) = 6) ∧

(type of jun j i = F) ∨

(type of jun j (SUC i) = F) ∧

(snd last bond type j (SUC i) = 6) ∧

(type of jun j i) = F)

31



[P2] then if (strong bond t j i =

snd last bond of jun j i) ∧ ∼(i = 0)

then last bond modulus cond j i ∗ backwrd path j i t

else if (strong bond t j i =

last bond of jun j i) ∧ ∼(i = 0)

then last bond dir cond j i ∗

last bond modulus cond j i ∗

(bw jun f sum j i t + backwrd path j i t)

else if (strong bond t j i =

last bond of jun j i) ∧ (i = 0)

then last bond dir cond j i ∗

last bond modulus cond j i ∗

bw jun f sum j i t

else last bond modulus cond j i ∗

bond effort j i (strong bond t j i) t

[P3] else if (type of jun j (SUC i)) = T) ∧

(snd last bond type j (SUC i)) = 6) ∧

(type of jun j i) = T) ∨

(type of jun j (SUC i) = T) ∧

(snd last bond type j (SUC i) = 0 ∨

snd last bond type j (SUC i) = 5) ∧

(type of jun j i) = T) ∨

(type of jun j (SUC i) = F) ∧

(snd last bond type j (SUC i)) = 0 ∨

snd last bond type j (SUC i) = 5) ∧

(type of jun j i) = T) ∨

(type of jun j (SUC i) = F) ∧

32



(snd last bond type j (SUC i) = 6) ∧

(type of jun j i) = T)

[P4] then if (strong bond f j i =

snd last bond of jun j i) ∧ ∼(i = 0)

then last bond modulus cond j i ∗ backwrd path j i t

else if (strong bond f j i =

last bond of jun j i) ∧ ∼(i = 0)

then last bond dir cond j i ∗

last bond modulus cond j i ∗

(bw jun e sum j i t + backwrd path j i t)

else if (strong bond f j i =

last bond of jun j i) ∧ (i = 0)

then last bond dir cond j i ∗

last bond modulus cond j i ∗

bw jun e sum j i t

else last bond modulus cond j i ∗

bond flow j i (strong bond f j i) t)

else Cx(&0)

To find a causal path, we must have information about the starting and the

upcoming junction of the path, type of the common bond between two junctions

and a strong bond. The first part, i.e., P1 of the function beckward path specifies

a causal path starting from an arbitrary junction i (of any type, i.e., 0 junction

or 1 junction) and a 0 junction (modeled using Boolean value F as an upcoming

junction i in the path and both these junctions (junction i and 0 junction) share a

common bond or a two-port element. The function snd last bond type captures

the type of sharing bond. In P2, the function strong bond t checks if the strong

bond, with causality towards the junction, of the upcoming junction i is the last,

33



second last or an arbitrary bond alongwith its position in the list of junction j.

If the strong bond with causality towards the junction i (strong bond t) is the

last bond of the junction i and the value of i is not equal to zero, i.e., it is not

the first junction, the function bw jun f sum applies the summation law on the

junction i alongwith power direction last bond dir cond and the modulus of

last bond last bond modulus cond, and keep following backwrd path, until we

reach a terminating element. The part P3 of the function backward path is quite

similar to part P1 of the function, except the upcoming junction is now 1 junction.

Finally, part P4 behaves is in the similar way as part P2, using strong bond f for

the causality of a strong bond in the opposite direction of the junction i. In other

words, the function backwrd path consists of different combinations of junctions

(0 or 1), common bonds (connecting bond, TF or GY) and strong bonds (with

causality towards or in the opposite direction of a junction), and provides their

equations accordingly.

3.10.2 Forward Path

A forward path is similar to that backward path except the position of junctions

and bonds and its formalized form is as follows:

Definition 17 Forwrad Path

` ∀j i t. fwrd path (j:jun list) 0 t = Cx(&0) ∧

fwrd path j (SUC i) t) =

[P1] (if (type of jun (rev j) (SUC i) = F) ∧

(last bond type (rev j) (SUC i) = 0) ∨

last bond type (rev j) (SUC i) = 5) ∧

(type of jun (rev j) i) = F) ∨

(type of jun (rev j) (SUC i) = T) ∧

(last bond type (rev j) (SUC i) = 0 ∨

34



last bond type (rev j) (SUC i) = 5) ∧

(type of jun (rev j) i = F) ∨

(type of jun (rev j) (SUC i) = T) ∧

(last bond type (rev j) (SUC i) = 6) ∧

(type of jun (rev j) i) = F) ∨

(type of jun (rev j) (SUC i) = F) ∧

(last bond type (rev j) (SUC i) = 6) ∧

(type of jun (rev j) i = F)

[P2] then if (strong bond t (rev j) i = last bond of jun (rev j) i)

∧ ∼(i = 0)

then snd last bond modulus cond (rev j) i ∗

fwrd path j i t

else if (strong bond t (rev j) i =

snd last bond of jun (rev j) i) ∧ ∼(i = 0)

then snd last bond dir cond j i ∗

snd last bond modulus cond (rev j) i ∗

(fw jun f sum (rev j) i t + fwrd path j i t)

else if (strong bond t (rev j) i =

snd last bond of jun (rev j) i) ∧ (i = 0)

then snd last bond dir cond j i ∗

snd last bond modulus cond (rev j) i ∗

fw jun f sum (rev j) i t

else snd last bond modulus cond (rev j) i ∗

bond effort (rev j) i (strong bond t (rev j) i) t

[P3] else if (type of jun (rev j) (SUC i) = T) ∧

(last bond type (rev j) (SUC i) = 6) ∧

(type of jun (rev j) i) = T) ∨

35



(type of jun (rev j) (SUC i) = T) ∧

(last bond type (rev j) (SUC i) = 0 ∨

last bond type (rev j) (SUC i) = 5) ∧

(type of jun (rev j) i = T) ∨

(type of jun (rev j) (SUC i) = F) ∧

(last bond type (rev j) (SUC i) = 0 ∨

last bond type (rev j) (SUC i) = 5) ∧

(type of jun (rev j) i = T) ∨

(type of jun (rev j) (SUC i) = F) ∧

(last bond type (rev j) (SUC i) = 6) ∧

(type of jun (rev j) i) = T)

[P4] then if (strong bond f (rev j) i =

last bond of jun (rev j) i) ∧ ∼(i = 0)

then snd last bond modulus cond (rev j) i) ∗

fwrd path j i t

else if (strong bond f (rev j) i =

snd last bond of jun (rev j) i) ∧ ∼(i = 0)

then snd last bond dir cond j i ∗

snd last bond modulus cond (rev j) i ∗

(fw jun e sum (rev j) i t + fwrd path j i t)

else if (strong bond f (rev j) i =

snd last bond of jun (rev j) i) ∧ (i = 0)

then snd last bond dir cond j i ∗

snd last bond modulus cond (rev j) i ∗

fw jun e sum (rev j) i t

else snd last bond modulus cond (rev j) i ∗

bond flow (rev j) i (strong bond f (rev j) i) t

36



else Cx(&0)

The function fwrd path accepts a list of junctions j, an element i of the list j

and a time variable t and returns variable (effort or flow) or summation equation

depending upon the structure of junctions, causality and elements. The parts P1

and P3 of the function fwrd path are quite similar to that of backwrd path except

the reversed list of junctions (rev j). Moreover, parts P2 and P4 are quite similar

to that of backwrd path except the placement of last and second last bonds.

Definition 18 Matching Junctions

` ∀j n i. jun num match j 0 i = jun num (rev j) 0 ∧

jun num match j (SUC n) i =

(if i = jun num (rev j) (SUC n) then SUC n

else jun num match j n i)

` ∀j i. jun match j i = jun num match j (LENGTH j - 1) i

` ∀j i t. final fwrd path j i t = fwrd path j (jun match j i) t

Since, fwrd path function reverse the list of junctions j, thus the position of each

entry (junction) of the list j changes in this process. However, we placed junction

number jun num in the 6-tuple as described in Definition 4, which remains un-

changed in the reversion preocess. Thus for accuracy, it is necessary to match the ith

junction of the reversed list with the jun num by using the function jun num match.

There is only one junction in the reversed list that has a matching junction number,

as each junction of a BG representation is assigned a number uniquely. The function

jun match checks all the junctions of list j for matching a junction and the final

definition of forward path final fwrd path uses that resulting junction.

It is possible for a system to have bond graph representation with only one

junction. as shown in Figure 2.2. In this case, there is no causal path (backward

37



or forward), except the last and second last bonds with the effort or flow variables.

We model this scenario in HOL Light as follows:

Definition 19 Unit Junction

` ∀j i t. backwrd path e j i t =

(if LENGTH j - 1 = 0 then snd last bond e j i t

else backwrd path j i t)

` ∀j i t. backwrd path f j i t =

(if LENGTH j - 1 = 0 then snd last bond f j i t)

else backwrd path j i t)

` ∀j i t. final fwrd path e j i t =

(if LENGTH j - 1 = 0 then last bond e j i t)

else final fwrd path j i t)

` ∀j i t. final fwrd path f j i t =

(if LENGTH j - 1 = 0 then last bond f j i t)

else final fwrd path j i t)

The functions backwrd path e and backwrd path f checks the length of the

junction list j and if it is equal to zero then there is no backward path except

the second last bond with the effort and flow variables, respectively. If this

condition is not true, then there is a causal path. Similarly, final fwrd path e and

final fwrd path f extract the effort and flow of the last bond in the case of only

one junction, otherwise, there is a forward path to follow in a BG representation.

Next, we model the causal paths as the following HOL Light function:

Definition 20 Causal Paths

` ∀j i t. causal paths j i t =

last bond dir j i ∗ final fwrd path j i t +

snd last bond dir j i ∗ backwrd path j i t

38



A causal path consists of forward or backward path or both depending upon

the causality, position and structure of the junction. For example, in Figure 2.4a,

to obtain summation equation (for flow variable) of Bond 9, we follow both forward

and backward paths by eliminating last two bonds of 0 junction, but the power

direction of the skipped bonds is important in the law of summation, that’s why

we multiply power direction of the last bond (last bond dir) with forward path

(final fwrd path) and add it to backward path (backwrd path) multiplied with

power direction of the second last bond (snd last bond dir).

3.11 Selection of Paths

Selection of path depends upon the position and causality of a junction (0,1).

Following are the formalized funtions for these cases.

Definition 21 Path Selection based on the Position of Junction

` ∀j i t. search path e j i t =

(if i = 0

then snd last bond dir j i ∗ snd last bond e j i t +

last bond dir j i ∗ final fwrd path e j i t

else if i = LENGTH j - 1

then last bond dir j i ∗ last bond e j i t +

snd last bond dir j i ∗ backwrd path e j i t

else Cx(&0))

` ∀j i t. search path f j i t =

(if i = 0

then snd last bond dir j i ∗ snd last bond f j i t +

last bond dir j i ∗ final fwrd path f j i t

else if i = LENGTH j - 1

39



then last bond dir j i ∗ last bond f j i t +

snd last bond dir j i ∗ backwrd path f j i t

else Cx(&0))

The functions search path e and search path f search a path for the effort

and flow variables, respectively, based on the position (first or last) of a junction in

a junction list j.

Definition 22 Path Selection Based on Integral Causality

` ∀j i t. path select t j i t =

(if (strong bond t j i = last bond of jun j i)

∧ ∼(i = LENGTH j - 1)

then final fwrd path j i t

else if (strong bond t j i = snd last bond of jun j i)

∧ ∼(i = 0)

then backwrd path j i t

else bond effort j i (strong bond t j i) t)

` ∀j i t. path select f j i t =

(if (strong bond f j i = last bond of jun j i)

∧ ∼(i = LENGTH j - 1)

then final fwrd path j i t

else if (strong bond f j i = snd last bond of jun j i)

∧ ∼(i = 0)

then backwrd path j i t

else bond flow j i (strong bond f j i) t)

The energy storing elements I and C exhibit integral causality, i.e., component

C has a causality towards a junction, whereas I has a causality in the opposite

40



direction. The function path select t selects a path by matching a strong bond

(strong bond t) with last or second last bond of the junction i and its position in

the list of junctions j. Similarly, the path select f choses a path depending upon

the strong bond (strong bond f), second last bond (snd last bond of jun), last

bond (last bond of jun) of the junction i and the position of the junction.

3.11.1 Path Selection for Equality Law of a Junction

A junction consists of both equality and summmation laws. We have formalized

law of equality for a junction (0,1) in HOL Light, as described in Definition 11.

Now, we formalize the function of equality law for the case, when a junction is

follwing a causal path as follows:

Definition 23 Path Selection based on the Type of the Junction

` ∀j i k t. path selection j i k t =

(if type of jun j i = F

then (bond effort j i k t = path select t j i t)

else (bond flow j i k t = path select f j i t))

The function path selection selects a path for equality laws based on the

type of a junction, which can be 0 or 1.

Similarly, we formalize equality law for the differential causal elements of a

junction following causal path as follows:

Definition 24 Path Selection Based on Differential Causality

` ∀j i k t. path selection der j i k t =

(if (type of jun j i = F) then

(λt. vector derivative (bond effort j i k) (at t)) =

(λt. vector derivative (path select t j i) (at t))

else

41



(λt. vector derivative (bond flow j i k) (at t)) =

(λt. vector derivative (path select f j i) (at t)))

The causal elements I and C exhibiting the differential causality are provided in

Table 2.2. The function path selection der provides equality law by taking a

derivative on both sides of the equation, obtained using information of the type of

junction and the causality of the strong bond.

Definition 25 Path Selection based on the Free Causality

` ∀j i k t. res path selection j i k t =

(if causality j i k = F

then if type of jun j i = F

then bond effort j i k t = path select t j i t

else jun sum final j i t

else if type of jun j i = F

then jun sum final j i t

else bond flow j i k t = path select f j i t)

The resistive component of a bond graph representation has a free causality, i.e.,

its causality follows a structure of junctions rather than that of its components.

The function res path selection covers all possible cases for the resistive element

having free causality and provides both summation jun sum final and the equality

law based on the causality of a resistive element and the type of a junction.

3.11.2 Path Selection for Summation Law of a Junction

Here, We provide formalized functions of the summation law (following a causal

path) based on the causality, type and position of a junction as follows:

42



Definition 26 Summation Law based on the Type of Junctions

` ∀j i t. middle jun sum j i t =

(if type of jun j i = T

then jun 1 e j i t + causal paths j i t

else jun 0 f j i t + causal paths j i t)

` ∀j i t. side jun sum j i t =

(if (type of jun j i = T) then

then jun 1 e j i t + search path e j i t

else jun 0 f j i t + search path f j i t)

The function type of jun accepts a list of junctions j, an element i of the

list j and returns T for a 1 junction, otherwise it returns F. The function

middle jun sum combines summation law for effort and flow variables to the

Boolean values T and F, respectively, alongwith the causal paths (causal paths).

A junction (0 or 1) attached with junctions on both sides or on one side only

is known as middle or side junction respectively. The function side jun sum is

quite similar to that of middle jun sum except the paths, search path e and

search path f. These paths are selected based on the type of junction. In Fig-

ure 2.4a, 0 junction is representing a middle junction, while 1 junctions on both

sides of the BG representation are side junctions.

Definition 27 Summation Law based on the Position of a Junction

` ∀j i t. jun sum j i t =

(if i = 0 ∨ i = LENGTH j - 1

then side jun sum j i t

else middle jun sum j i t)

The summation law of a junction depends on its position in a BG representation.

The function jun sum checks the position of a junction (first or last) and applies

43



sumation law by (side jun sum), otherwise it applies sumation law on the middle

jun (middle jun sum).

Definition 28 Summation Law of a Junction

` ∀j i t. jun sum final j i t = (jun sum j i t = Cx(&0))

The summation law of a junction is, the sum of all the effort or flow variables

equal to zero, thus, the function jun sum final provides the final form (summation

equal to zero) of summation law.

Definition 29 Summation Law based on the Differential Causality

` ∀j i t. jun sum der j i t =

(λt. vector derivative (jun sum j i) (at t)) =

(λt. vector derivative (λt. vec 0) (at t))

The function jun sum der accepts a list of junctions j, an element i of the list j

and a time variable t, and returns a differential form of the summation law.

3.12 Presence of a Branch

The concept of a branch is of great importance and is given in Table 2.2.5. It is

discussed in Section 2.4 with the help of an example, and its formalized function is

as follows:

Definition 30 Branch Presence

` ∀j j1 p q p1 q1 t. branch presence j j1 p q p1 q1 t =

(if (branch j p q = T) ∧ (branch j1 p1 q1 = T)

then if branch num j p q = branch num j1 p1 q1

then if type of ele j1 p1 q1 = 6

then APPEND

44



[bond effort j p q t =

EL 1 (modulus j1 p1 q1) ∗ bond flow j1 p1 q1 t]

[bond flow j p q t =

EL 0 (modulus j1 p1 q1) ∗ bond effort j1 p1 q1 t]

else APPEND

[bond effort j p q t =

EL 0 (modulus j1 p1 q1) ∗ bond effort j1 p1 q1 t]

[bond flow j p q t) =

EL 1 (modulus j1 p1 q1) ∗ bond flow j1 p1 q1 t]

else [ ]

else [ ])

` ∀ j j1 t. branch main j j1 t =

(if j = [ ] ∨ j1 = [ ]

then [ ]

else REVERSE (branch jun j j1 (LENGTH j - 1) t))

The function branch presence accepts two different list of junctions j,j1, a

junction p of the list j, a bond p1 of the junction j, a different junction q of the

list j1, a bond q1 of the junction j1 and a time variable t, and returns a list of

equations capturing the equality laws (for effort and flow) for common bonds of

j and j1. Here j and j1 represent parent and child branch, respectively. The

presence of a branch in a BG representation is associated with Boolean value T in

the 6-tuple. In a BG representation, multiple branches may appear on a junction, so

in order to distinguish them, we assign a number branch num to them as described

in Section 2.4. The connecting/common bond of two branches can be a two-port

element (TF, GY) or a simple power bond. The function type of ele returns

Boolean value T, if the connecting bond is a gyrator (GY) and provides respective

equations (effort and flow) with the modulus of GY, otherwise, it returns F and

45



provides respective equations (effort and flow) with the modulus of transformer

(TF) or a connecting bond (with modulus 1). For example, in Figure 2.4b, Bond

131 or 212 is a common bond connecting 0 junction to 1 junction. The function

branch main accepts two list of junctions j,j1, which are connected together, and

a time variable t, and returns empty list, if the lists j or j1 are empty. Otherwise,

the function branch jun checks all the junction of list j for branch presence.

3.13 Presence of a Causal Loop

The causal loop is a type of a branch with both ends attached to a junction as

described in Table 2.2.5 and its formalized function is as follows:

Definition 31 Causal Loop Presence

` ∀j i k i1 n t. loop presence j i k i1 n t =

(if branch j i1 n = T

then if branch num j i k = branch num j i1 n

then if type of ele j i1 n = 6

then APPEND

[bond effort j i k t =

EL 1 (modulus j i1 n) ∗ bond flow j i1 n t]

[bond flow j i k t =

EL 0 (modulus j i1 n) ∗ bond effort j i1 n t]

else APPEND

[bond effort j i k t =

EL 0 (modulus j i1 n ∗ bond effort j i1 n t]

[bond flow j i k t =

EL 1 (modulus j i1 n) ∗ bond flow j i1 n t])

else [ ]

46



else [ ])

The function loop presence accepts a list of junctions j, a junction i of the list

j, a bond k of the junction i, a junction i1 of the list j, a bond n of the junction

i1 and a time variable t, and provides a list of equations capturing the equality

laws (for effort and flow) for common bonds. Firstly, the function loop presence

checks the presence of a branch on the junction i1, match the branch numbers of

both junctions i and i1 (to check that they are connected together or not) and

check the presence of gyrator component (integer value 6) as it changes effort to

flow and vice versa. If the branch numbers of both junctions do not match or there

is no branch then the returned list is empty.

Definition 32 Recursive Function for Loop Bonds

` ∀j i k i1 n t. loop bonds j i k i1 0 t =

(if 0 = k then [ ] else loop presence j i k i1 0 t) ∧

loop bonds j i k i1 (SUC n) t =

(if SUC n = k then [ ]

else APPEND (loop presence j i k i1 (SUC n) t)

(loop bonds j i k i1 n t))

` ∀j i k m t. loop bonds lst j i k i1 t =

loop bonds j i k i1 (bonds length j i1 - 1) t

The function loop bonds ensures that if a loop (a branch with both ends

connected to junctions) exists on any junctions then both of its starting and the

ending bonds (k, n) do not have similar bond numbers, i.e, to distinguish both

connecting bonds of the loop. The function loop bonds lst accepts a list of

junctions j, a junction i of the list j, a bond k of the junction i, a junction i1

from the list j and ensures the presence of a loop in a junction i1 by checking all

of its bonds using (bonds length).

47



Definition 33 Recursive Function for Loop Junctions

` ∀j i m i1 t. loop jun j i k 0 t = loop bonds lst j i k 0 t ∧

loop jun j i k (SUC i1) t =

APPEND (loop bonds lst j i k (SUC i1) t)

(loop jun j i k i1 t)))

` ∀j i k t.loop jun lst j i m t = loop jun j i k (LENGTH j - 1) t

A causal loop is a closed causal path with bonds either connected to a similar

junction or two different junctions as described in Table 2.3. The function loop jun

ensures the presence of a loop in a junction i1 by checking junctions of the j

recursively. The function loop jun lst checks all the junctions of the list j to find

the junction on which, connecting bond of the loop is connected.

Definition 34 Causal Loop

` ∀j i k t. causal loop j i k t =

(if (branch j i k = T) ∧ ∼(branch num j i k = 0)

then REVERSE (loop jun lst j i k t)

else [ ]

A causal loop ensures the presence of a loop in a BG representation and provides

its equations by using function loop jun lst.

3.14 Cases of a BG Represention

Here, we define some cases of a BG representation based on our formalization as

follows:

Definition 35 Cases

` ∀j i t. frst ordr ele a j i t = [jun sum final j i t]

48



` ∀j i k t. frst ordr ele b j i k t = [path selection j i k t]

` ∀j i k t. zero ordr ele j i k t = [res path selection j i k t]

` ∀j i t. diff causal ele a j i t = [jun sum der j i t]

` ∀j i k t. diff causal ele b j i k t = [path selection der j i k t]

` ∀j i k t. branch type a j i k t =

APPEND [jun sum final j i t] (causal loop j i k t)

` ∀j i k t. branch type b j i k t =

APPEND [path selection j i k t] (causal loop j i k t)

The function frst ordr ele a and frst ordr ele b model all those cases,

where the junction, components and causality appear in such a way that summation

and equality laws are deducted, respectively. For example, in Figure 2.4b, all

1 junctions with a component I (having integral causality) provides summation law

and the 1 junction with component C (having integral causality) provides equality

law by following causal paths. The function zero ordr ele models junctions with

resistive component (R). The functions diff causal ele a and diff causal ele b

are similar to first order cases except the elements with differential causality. These

functions provide differential equations of the BG representation. Lastly, the

functions branch type a and branch type b are also similar to first order cases

except the presenece of a causal loop.

3.15 Cases Selection Procedure

The case selection procedure mainly depends upon the causality, type of components

and the junction. In this procedure, every bond of a junction present in a bond

graph representation is examined.

Definition 36 Case Selection

` ∀j i k t. case selection j i k t =

49



(if (type of jun j i = T) ∧ (type of ele j i k = 2) ∧

(causality j i k = F) ∨ (type of jun j i = F) ∧

(type of ele j i k = 3) ∧ (causality j i k = T)

then frst ordr ele a j i t

else if (type of jun j i = T) ∧ (type of ele j i k = 3) ∧

(causality j i k = T) ∨ (type of jun j i = F) ∧

(type of ele j i k = 2) ∧ (causality j i k = F)

then frst ordr ele b j i k t

else if

(type of jun j i = T) ∧ (type of ele j i k = 4) ∧

(causality j i k = T) ∨ (type of jun j i = F) ∧

(type of ele j i k = 4) ∧ (causality j i k = F) ∨

(type of jun j i = T) ∧ (type of ele j i k = 4) ∧

(causality j i k = F) ∨ (type of jun j i = F) ∧

(type of ele j i k = 4) ∧ (causality j i k = T)

then zero ordr ele j i k t

else if

(type of jun j i = T) ∧ (type of ele j i k = 2) ∧

(causality j i k = T) ∨ (type of jun j i = F) ∧

(type of ele j i k = 3) ∧ (causality j i k = F)

then diff causal ele b j i k t

else if

(type of jun j i = T) ∧ (type of ele j i k = 3) ∧

(causality j i k = F) ∨ (type of jun j i = F) ∧

(type of ele j i k = 2) ∧ (causality j i k = T)

then diff causal ele a j i t

else if

50



((type of jun j i = T) ∧ (branch j i k = T) ∧

(causality j i k = F)) ∧ (type of ele j i k = 0 ∨

type of ele j i k = 5 ∨ type of ele j i k = 6) ∨

((type of jun j i = F) ∧ (branch j i k) = T) ∧

(causality j i k) = T)) ∧ (type of ele j i k = 0 ∨

type of ele j i k = 5 ∨ type of ele j i k = 6)

then branch type a j i k t

else if

((type of jun j i = T) ∧ (branch j i k = T) ∧

(causality j i k = T)) ∧ (type of ele j i k = 0 ∨

type of ele j i k = 5 ∨ type of ele j i k = 6) ∨

((type of jun j i = F) ∧ (branch j i k = T) ∧

(causality j i k = F)) ∧ (type of ele j i k = 0 ∨

type of ele j i k = 5 ∨ type of ele j i k = 6)

then branch type b j i k t

else [ ])

The case selection takes a list of junctions j, an element i of the list j, a

bond number k and a time variable t and provides a suitable case for a junction

depending on the causality of bonds, type of elements and the type of junction.

3.15.1 Bond Selection

The following formalized function is for the bonds of a junction. It applies case

selection procedure on every bond of a junction.

Definition 37 Recursive Function for the Bonds of a Junction

` ∀j i k t. bond selection j i 0 t = case selection j i 0 t ∧

bond selection j i (SUC k) t =

51



APPEND (case selection j i (SUC k) t) (bond selection j i k t)

` ∀j i k t. bond selection lst j i t =

bond selection j i (bonds length j i - 1) t

The function bond selection is a recursive function, which applies case selection

to the bonds of a junction. The function bond selection lst applies case selection

to all the bonds of a junction .

3.15.2 Junction Selection

Now, we apply case selection procedure on every junction of a bond graph repre-

sentation, which is in the form of a list in our formalization of HOL Light.

Definition 38 Recursive function for Junctions

` ∀j i t. jun selection j i t = bond selection lst j 0 t ∧

jun selection j (SUC i) t =

APPEND (bond selection lst j (SUC i) t) (jun selection j i t)

` ∀j t. bg main j t =

(if j = [ ] then [ ] else

REVERSE (jun selection j (LENGTH j - 1) t))

The function jun selection is a recursive function, which applies the function

bond selection lst to all the bonds of the junction i of the list j. The function

bg main is the main function of BG formalization, which accepts only two param-

eters, i.e., a list of junctions j and time variable t, and returns all the required

equations of a BG representation by applying the function jun selection on all

the junctions of the list j.

52



3.16 State-Space Model

Finally, the state-space model for a bond graph representation is formalized as

follows:

Definition 39 State-space Representation

` ∀A B x x der u.

ss model A B x x der u = (x der = A ∗∗ x + B ∗∗ u)

The function ss model accepts a system matrix A:CN×N , input matrix B:CP×N ,

state vector x:CN , derivative of state vector with respect to time x der:CN and

input vector u:CP , and provide a state-space model.

53



Chapter 4

Formal Verification of Stability of

Bond Graphs

In this chapter, we provide the stability property of BG representation, various

properties of complex matrices and the general stability theorems for stability

analysis of a BG representation of a system.

Stability is an important control characteristic of physical systems that dampens

out any oscillation in the performance of the system caused by various disturbances,

and thus restores systems to the equilibrium conditions [19]. Thus, a stable

system provides a stable response/output to a bounded input. The bond graph

representation of a system is expressed as state-space models, which are based on

vectors and matrices, in particular system matrix. Stability of a system depends

on the location of the poles in a complex plane, which are the eigenvalues of the

system’s matrix. Based on the location of the poles in a complex plane, any system

can be categorized as of three types, namely, stable, marginally stable and unstable

system. For a stable and unstable system, the eigenvalues of the system’s matrix

lie in the left and right half of the complex plane, respectively. In Figure 4.1, green

and red dots are representing eigenvalues of a stable and unstable system in the

left and right half of the complex plane, respectively. Similarly, for a marginally

stable system, the eigenvalues of the system’s matrix lie on the imaginary axis of

the complex plane. Yellow dots (eigenvalues) exactly lie on the imaginary axis

representing a marginally stable system as shown in the following Figure 4.1.



0 0.5 1 1.5 2-0.5-1-1.5-2

0

0.5

1

1.5

-0.5

-1

-1.5

Figure 4.1: Stability Regions

For a system matrix A, the characteristic equation is described as:

Ax = cx

Where x is the eigenvector and c represents the eigenvalues. We can find out the

eigenvalues of the system matrix A by solving the following equations involving

determinant of a matrix.

|A− cI| = 0

Where I is an identity matrix. Stability has been formalized in HOL Light for the

case of polynomial. However, it cannot incorporate the stability of the state-space

models. We model the notion of stability, incorporating the state-space models, in

HOL Light as follows:

Definition 40 Stability

` ∀A. stable sys A =

55



∼ ({c | cdet (A - c %%% cmat (Cx (&1))) = Cx (&0) ∧

Re (c) < &0} = EMPTY)

` ∀A. unstable sys A =

∼ ({c | cdet (A - c %%% cmat (Cx (&1))) = Cx (&0) ∧

Re (c) > &0} = EMPTY)

` ∀A. marginally stable sys A =

∼ ({c | cdet (A - c %%% cmat (Cx (&1))) = Cx (&0) ∧

Re (c) = &0} = EMPTY)

The functions stable sys:CN×N → bool accepts a complex-valued matrix A

and returns a Boolean value (T), if both conditions are satisfied, i.e., the first

condition provides the eigenvalues of the state-space matrix A, whereas, the second

condition ensures that the real part of the eigenvalues (roots) lie in left half of

the complex plane and ensure a stable system. Here, cdet models a determinant

of a complex-valued matrix. Similarly, cmat provides a complex-valued identity

matrix. Moreover, the operator %%%:C → CN×M → CN×M , provides a scalar

multiplication of a complex-valued matrix. Similarly, the functions unstable sys

and marginally stable sys provide an unstable and a marginally stable system,

respectively.

Next, we verify some important properties of the state-space models of the given

bond graph representations, when they represent some special kind of matrices,

such as, upper triangular, lower triangular and diagonal [22, 25]. We formalize

these matrices as follows:

Definition 41 Complex Matrices

` ∀A. ut cmatrix A = (!i j.1 ≤ i ∧ i ≤ dimindex(:M) ∧

1 ≤ j ∧ j ≤ dimindex(:N) ∧

(j < i)

56



⇒ (A$i$j = Cx(&0))

` ∀A. lt cmatrix A = (!i j.1 ≤ i ∧ i ≤ dimindex(:M) ∧

1 ≤ j ∧ j ≤ dimindex(:N) ∧

(i < j)

⇒ (A$i$j = Cx (&0))

` ∀A. diagonal cmatrix A = !i j.1 ≤ i ∧ i ≤ dimindex(:M) ∧

1 ≤ j ∧ j ≤ dimindex(:N) ∧

∼ (i = j)

⇒ (A$i$j= Cx (&0))

The function ut cmatrix models a complex-valued upper triangular matrix, which

is a square matrix with all of its entries below the main diagonal are zero. Similarly,

a square matrix whose entries above the main diagonal are zero is called lower

triangular matrix and is formalized in HOL Light as a function lt matrix. The

function diagonal cmatrix provides a digonal matrix, which is a special case of

triangular matrices and have all its entries, other than diagonal, equal to zero.

Next, we formally verify important properties of complex matrices, providing

stability, unstability and marginal stability under different conditions, as follows:

Theorem 1 Stable Matrix Property

` ∀A. (diagonal cmatrix A ∨ lt cmatrix A ∨ ut cmatrix A) ∧

(stable diagonal ele cond A) ⇒ stable sys A

For a system to be stable, two conditions are necessary to meet as described

in Definition 40. The eigenvalues of a diagonal, lower or upper triangular ma-

trix lie on the digonal entries. Thus, the above theorem states that a system

matrix A in the form of diagonal, lower or upper triangular matrix, with all the

digonal entries located in the left half of the complex plane, is stable. The condi-

tionstable diagonal ele cond verifies that the real part of diagonal entries of A

57



is less than zero (left half plane).

Theorem 2 Un-Stable Matrix Property

` ∀A. (diagonal cmatrix A ∨ lt cmatrix A ∨ ut cmatrix A) ∧

(unstable diagonal ele cond A) ⇒ unstable sys A

The above theorem states that a system matrix A in the form of diagonal, lower

or upper triangular matrix is unstable, with all of its digonal entries (eigenvalues)

in the right half of the complex plane, i.e, real part of the entries is greator than

zero.

Theorem 3 Marginally Stable Matrix Property

` ∀A. (diagonal cmatrix A ∨ lt cmatrix A ∨ ut cmatrix A) ∧

(marg stable diagonal ele cond A) ⇒ marginally stable sys A

Similarly, the above theorem states that the given matrix is marginally stable

marginally stable sys if it is in the form of a diagonal, lower or upper triangular

matrix and the eigenvalues are located on the imaginary axis of the complex plane.

4.1 Polynomial Stability

For analyzing stable polynomials (quadratic and cubic in our case), we used already

formalized quadratic and cubic formulas [2] and on the same note, we defined our

polynomials to verify stability conditions. We verified unstable and marginally

stable polynomials additionally.

Lemma 1 Stability of Polynomials

` ∀a b c.

[A1] ∼
(
Cx (&0) = Cx a

)
∧

[A2]
(
&0 <

b

a
∧
(
b pow 2 - &4 ∗ a ∗ c < &0 ∨

58



b pow 2 - &4 ∗ a ∗ c = &0
)
∨

&0 < b pow 2 - &4 ∗ a ∗ c ∧(
a < &0 ∧

(
b <

√
(b pow 2 - &4 ∗ a ∗ c) ∨√

(b pow 2 - &4 ∗ a ∗ c) < -- b
)
∨

&0 < a ∧
(√

(b pow 2 - &4 ∗ a ∗ c) < b ∨

-- b <
√
(b pow 2 - &4 ∗ a ∗ c)

)))
⇒ ∼

(
!x. Cx a ∗ x pow 2 + Cx b ∗ x + Cx c = Cx (&0) ∧

Re x < &0 ⇔ x IN {}
)

` ∀a b1 c1 d1 r x.

[A1] ∼
(
Cx (&0) = Cx a

)
∧

[A2] (Cx b = Cx b1 + Cx (a ∗ r) ∧

[A3] Cx c = Cx c1 + Cx (b1 ∗ r) ∧

[A4] Cx d = Cx (c1 ∗ r)) ∧

[A5]
(
&0 < r ∨

&0 <
b1

a
∧
(
b1 pow 2 - &4 ∗ a ∗ c1 < &0 ∨

b1 pow 2 - &4 ∗ a ∗ c1 = &0
)
∨

&0 < b1 pow 2 - &4 ∗ a ∗ c1 ∧(
a < &0 ∧

(
b1 <

√
(b1 pow 2 - &4 ∗ a ∗ c1) ∨√

(b pow 2 - &4 ∗ a ∗ c) < -- b1
)
∨

&0 < a ∧
(√

(b1 pow 2 - &4 ∗ a ∗ c1) < b1 ∨

-- b1 <
√
(b1 pow 2 - &4 ∗ a ∗ c1)

)))
⇒ ∼

(
!x.Cx a ∗ x pow 3 + Cx b ∗ x pow 2 +

Cx c ∗ x + Cx d = Cx (&0) ∧ Re x < &0 ⇔ x IN {}
)

First lemma provides formally verified results for the stable quadratic polynomial

and covers all possible cases depending upon the nature of the discriminant and

coefficients of the polynomial. Second lemma presents set of conditions for a cubic

polynomial to be stable. Assumption 1 ensures that the given polynomial is cubic

59



and next three assumptions are for the factor decomposition of the polynomial.x is

a complex variable while all other variables are of real data type.

4.2 Matrix Stability

In the state-space representation, we deal with matrices and its corresponding

operations. For the stability of a given system, entries of the matrix A are analyzed

in these theorems. We have verified theorems for the stable, unstable and marginally

stable matrices in HOL Light. In this thesis, we only present stable matrices of

dimension 2 and 3.

Theorem 4 Stable Matrix

` ∀a11 a12 a21 a22.

[A1] &0 < (-- a11 - a22) ∧

[A2]
(
(-- a11 - a22) pow 2 - &4 ∗ (a11 ∗ a22 - a12 ∗ a21) < &0 ∨

(-- a11 - a22) pow 2 - &4 ∗ (a11 ∗ a22 - a12 ∗ a21) = &0
)
∨(

&0 < (-- a11 - a22) pow 2 - &4 ∗ (a11 ∗ a22 - a12 ∗ a21) ∧(√
(-- a11 - a22) pow 2 - &4 ∗ (a11 ∗ a22 - a12 ∗ a21) <

(-- a11 - a22) ∨ (a11 + a22) <√
(-- a11 - a22) pow 2 - &4 ∗ (a11 ∗ a22 - a12 ∗ a21)

)))
⇒ stable sys

Cx a11 Cx a12

Cx a21 Cx a22


` ∀a11 a12 a13 a21 a22 a23 a31 a32 a33 b1 c1 d1 r.

[A1] Cx (-- a33 - a22 - a11) = Cx b1 + Cx r ∧

[A2] Cx (-- a13 ∗ a31 - a12 ∗ a21 - a23 ∗ a32 +

a22 ∗ a33 + a11 ∗ a33 + a11 ∗ a22) = Cx c1 + Cx (b1 ∗ r) ∧

[A3] Cx (-- a11 ∗ a22 ∗ a33 - a12 ∗ a31 ∗ a23 - a13 ∗

a21 ∗ a32 + a11 ∗ a23 ∗ a32 + a12 ∗ a21 ∗ a33 +

60



a13 ∗ a31 ∗ a22) = Cx (c1 ∗ r) ∧

[A4]
(
&0 < r ∨(
&0 < b1 ∧

(
b1 pow 2 - &4 ∗ c1 < &0 ∨

b1 pow 2 - &4 ∗ c1 = &0
)
∨(

&0 < b1 pow 2 - &4 ∗ c1 ∧
(
(b1 pow 2 - &4 ∗ c1) < b1 ∨

-- b1 <
√
(b1 pow 2 - &4 ∗ c1)

))))
⇒ stable sys


Cx a11 Cx a12 Cx a13

Cx a21 Cx a22 Cx a23

Cx a31 Cx a32 Cx a33


Above theorem provides all possible conditions on the entries of a 2×2 and 3×3

matrix to be stable. We used Lemma 1 in the formalization of matrix stability for

solving characteristics polynomial of the given matrix. This theorem is formally

verified using complex matrix theory built by us and multivariate complex and real

analysis theories available in the library of the HOL Light theorem prover.

61



Chapter 5

Case Study: Anthropomoric

Mechatronic Prosthetic Hand

In this chapter, we demonstrate the usefulness of our proposed framework by

utilizing it for the analysis of a real-time system. For illustration purposes, we

present the formal analysis of an Anthropomoric Mechatronic Hand by using the

formal library of BG representation, given in Chapter 3. Mechatronic robotic hand

is a safety-critical example of a real-time system.

Anthropomoric Mechatronic Hand [24] is a robotic hand consisting of electrical and

mechanical components and is capable of conducting movements like a human hand

and is widely used in robotics, such as industrial, service, surgical robots [9, 15, 21],

etc. A prosthetic robotic hand improves the lives of the handicapped individuals

by restoring the functions of the missing body parts. The accuracy and stability of

such systems are crucial to replicate the desired movements of a human hand.

A human hand consists of four fingers and a thumb involving flexion (flex.), ex-

tension (ext.), abduction (abd.), adduction (add.), up and down movements. The

flexion and extension are the movements of thumb and fingers, i.e., moving the

tip of the finger/thumb towards and away from the palm, respectively. Similarly,

adduction and abduction move the fingers/thumb towards and away from the

middle finger, respectively. Lastly, the up and down are the movements of the

thumb [27].

An anthropomoric mechatronic Prothestic hand replicates the structure of hu-



man hand consisting of bones, joints and muscles by using frames, pulley-string

mechanisms and electrical actuators, respectively.

Se 0 1 GY 1 TF 0 R

IR IR

Se_Battery_6V

Ra_3 Dm_3 Jm_3

Motor_3 Geer_3 D_3

J_3

321
322 323

331332
333 334

341
342 343315

316

1 GY 1 TF 0 R

IR IRRa_2 Dm_2 Jm_2

Motor_2 Geer_2 D_2

J_2

211
213

221222
223 224

231
232 233

1 GY 1 TF 0

CIR IRRa_4 Dm_4 Jm_4

Motor_4 Geer_4

K_2J_4

411
413

421422
423 424

431
432 442 R

D_4

441
4431433

1 GY 1 TF 0

CIR IRRa_1 Dm_1 Jm_1

Motor_1 Geer_1

K_1J_1

111
113

121122
123 124

131
132 142 R

D_1

141
1431133

1 GY 1 TF 0 R

IR IRRa_5 Dm_5 Jm_5

Motor_5 Geer_5 D_5

J_5

511
513

521522
523 524

531
532 533

311

312

313

314

Thumb
(Up/Down)

Thumb 
(Abd. and Add.)

Thumb 
(Flex. and Ext.)

Index Finger
(Flex. and Ext.)

Index Finger
(Abd. and Add.)

512

412

112

212

Figure 5.1: Bond Graph of Anthropomoric Mechatronic Prosthetic Hand

A bond graph representation of an anthropomoric mechatronic prosthetic hand

is given in Figure 5.1. It consists BG models for index fingers for the case of

abduction and adduction, and flexion and extention. It also contains BG models for

thumb in the case of flexion and extention, abduction and adduction, and up and

down. We formalize each of these index fingers and thumbs using our formalization

of BG representation, presented in Section 3.

63



5.1 Formal Modeling

The first step in our formalization is to model the robotic hand according to its type

configuration using BG formalization library. We model thumb (up and down), i.e.,

list of the junctions as the following HOL Light function:

Definition 42 Model of Thumb (Up & Down)

` ∀ e311 f311 e312 f312 e313 f313 e314 f314 f315 e316 f316 e321

e322 f322 e323 f323 e331 f332 e333 f333 e334 f334 e341 e342

Ra 3 Motor 3 Jm 3 Dm 3 Geer 3 J 3 D 3 S e p 0.

THUMB UP DOWN e311 f311 e312 f312 e313 f313 e314 f314 f315 e316

f316 e321 e322 f322 e323 f323 e331 f332 e333 f333 e334 f334

e341 e342 Ra 3 Motor 3 Jm 3 Dm 3 Geer 3 J 3 D 3 S e p 0 =

[0,F,[F,F,(T,311),0,[Cx (&1); Cx (&1)],(e311,f311);

F,F,(T,312),0,[Cx (&1); Cx (&1)],(e312,f312);

F,F,(T,313),0,[Cx (&1); Cx (&1)],(e313,f313);

F,F,(T,314),0,[Cx (&1); Cx (&1)],(e314,f314);

T,T,(F,0),1,[Cx (&1); Cx (&1)],(src e Se,f315);

F,F,(F,0),0,[Cx (&1); Cx (&1)],(e316,f316)];

1,T,[F,F,(F,0),4,[Cx (&1); Cx (&1)],(e321,res f Ra 3 e321);

T,T,(F,0),0,[Cx (&1); Cx (&1)],(e322,f322);

T,F,(F,0),6,[Cx
( &1

Motor 3

)
; Cx Motor 3],(e323,f323)];

2,T,[F,F,(F,0),2,[Cx (&1); Cx (&1)],

(momentum der e331 p 0, inertance f Jm 3 e331 p 0 t);

T,F,(F,0),4,[Cx (&1); Cx (&1)],(res e Dm 3 f332,f332);

T,T,(F,0),6,[Cx
( &1

Motor 3

)
; Cx Motor 3],(e333,f333);

T,F,(F,0),5,[Cx
( &1

Geer 3

)
; Cx Geer 3],(e334,f334)];

3,F,[F,F,(F,0),2,[Cx (&1); Cx (&1)],

64



(momentum der e341 p 0,inertance f J 3 e341 p 0);

F,T,(F,0),5,[Cx Geer 3; Cx
( &1

Geer 3

)
],(e342,f342);

T,F,(F,0),4,[Cx (&1); Cx (&1)],(res e D 3 f343,f343)]]

Where D 3, Ra 3, Dm 3 represent the damping of pulleys, resistance and damp-

ing of the motor, respectively. The real-valued constants Jm 3, J 3 represents

inertial mass of motor and frames, pulleys and strings, respectively. Motor 3,

Geer 3 are the rotio/modulus of the gyrator and gear, respectively. Similarly, we

model the index finger (Flex. and Ext.) in HOL Light as follows:

Definition 43 Model of Index Finger (Flex. & Ext.)

` ∀e411 e412 f412 e413 f413 e421 f422 e423 f423 e424 f424 e431

e432 f432 e433 f433 f441 e442 f442 f443 Ra 4 Motor 4 Jm 4

Dm 4 Geer 4 J 4 K 2 D 4 p 0 q 0.

INDEX FINGER FLEX EXT e411 e412 f412 e413 f413 e421 f422 e423

f423 e424 f424 e431 e432 f432 e433 f433 f441 e442 f442 f443

Ra 4 Motor 4 Jm 4 Dm 4 Geer 4 J 4 K 2 D 4 p 0 q 0 =

[0,T,[F,F,(F,0),4,[Cx(&1); Cx(&1)],(e411,res f Ra 4 e411);

T,T,(T,313),0,[Cx (&1); Cx (&1)],(e412,f412);

T,F,(F,0),6,[Cx
( &1

Motor 4

)
; Cx Motor 4],(e413,f413)];

1,T,[F,F,(F,0),2,[Cx (&1); Cx (&1)],

momentum der e421, inertance f Jm 4 e421 p 0;

T,F,(F,0),4,[Cx (&1); Cx (&1)], res e Dm 4 f422,f422);

T,T,(F,0),6,[Cx
( &1

Motor 4

)
; Cx Motor 4],(e423,f423);

T,F,(F,0),5,[Cx
( &1

Geer 4

)
; Cx Geer 4],(e424,f424)];

2,F,[F,F,(F,0),2,[Cx (&1); Cx (&1)],

(momentum der e431, inertance f J 4 e431 p 0);

F,T,(F,0),5,[Cx Geer 4; Cx
( &1

Geer 4

)
],(e432,f432);

65



T,F,(F,0),0,[Cx (&1); Cx (&1)],(e433,f433)];

3,T,[T,F,(F,0),3,[Cx (&1); Cx (&1)],

(compliance e K 2 f441 q 0, displacement der f441 q 0);

F,T,(F,0),0,[Cx (&1); Cx (&1)],(e442,f442);

T,F,(F,0),4,[Cx (&1); Cx(&1)],(res e D 4 f443,f443)]]

Where D 4, Ra 4, Dm 4 represent the damping of pulleys, resistance and damp-

ing of the motor, respectively. The real-valued constants Jm 4, J 4 represents

inertial mass of motor and frames, pulleys and strings, respectively. K 2 is the

stiffness of the strings and Motor 4, Geer 4 is the rotio of the gyrator and gear,

respectively.

Now, we formalize the differential algebraic equations of the given index finger

(Flex. & Ext.) as follows:

Definition 44 Equations of Index Finger (Flex. & Ext.)

` ∀e411 e412 f412 e413 f413 e421 f422 e423 f423 e424 f424 e431

e432 f432 e433 f433 f441 e442 f442 f443 Ra 4 Motor 4 Jm 4 Dm 4

Geer 4 J 4 K 2 D 4 p 0 q 0 t.

INDEX FINGER FLEX EXT EQ e411 e412 f412 e413 f413 e421 f422 e423

f423 e424 f424 e431 e432 f432 e433 f433 f441 e442 f442 f443

Ra 4 Motor 4 Jm 4 Dm 4 Geer 4 J 4 K 2 D 4 p 0 q 0 t =

[e411 t = (e412 t - Cx Motor 4 ∗ inertance f Jm 4 e421 p 0 t) ;

f412 t = res f Ra 4 e411 t ;

momentum der e421 p 0 t = (-- res e Dm 4 f422 t - Cx Geer 4 ∗

(compliance e K 2 f441 q 0 t + res e D 4 f443 t) +

Cx Motor 4 ∗ res f Ra 4 e411 t);

f422 t = inertance f Jm 4 e421 p 0 t;

momentum der e431 p 0 t = (compliance e K 2 f441 q 0 t +

66



res e D 4 f443 t);

displacement der f441 q 0 t = (-- inertance f J 4 e431 p 0 t +

Cx Geer 4 ∗ inertance f Jm 4 e421 p 0 t);

f443 t = (-- inertance f J 4 e431 p 0 t + Cx Geer 4 ∗

inertance f Jm 4 e421 p 0 t)]

Where the function INDEX FINGER FLEX EXT EQ is used to formalize equations

of the index finger (Flex. & Ext.).

5.2 Formal Verification

In the verification process, we ensure that the equations obtained from our formal-

ized BG models are same as the modeled equations. The INDEX FINGER FLEX EXT EQS

is the formally verified function for modeled equations INDEX FINGER FLEX EXT EQS

and function bg main provides differential equations of the INDEX FINGER FLEX EXT

as follows:

Theorem 5 Implementation of Index Finger Verifies Equations

` ∀e411 e412 f412 e413 f413 e421 f422 e423 f423 e424 f424 e431

e432 f432 e433 f433 f441 e442 f442 f443 Ra 4 Motor 4 Jm 4 Dm 4

Geer 4 J 4 K 2 D 4 p 0 q 0 t.

bg main (INDEX FINGER FLEX EXT e411 e412 f412 e413 f413 e421 f422

e423 f423 e424 f424 e431 e432 f432 e433 f433 f441 e442 f442 f443

Ra 4 Motor 4 Jm 4 Dm 4 Geer 4 J 4 K 2 D 4 p 0 q 0) t =

INDEX FINGER FLEX EXT EQ e411 e412 f412 e413 f413 e421 f422 e423

f423 e424 f424 e431 e432 f432 e433 f433 f441 e442 f442 f443

Ra 4 Motor 4 Jm 4 Dm 4 Geer 4 J 4 K 2 D 4 p 0 q 0 t

67



Following theorem provides the final form of equations for the index finger

(Flex. & Ext.) under some assumptions. First line of assumptions ensures that the

real-values constants present in the BG model of mechatronic hand are positive

values.

Theorem 6 Implementation of Index finger (Flex. & Ext.) Provides Simplified

Equations

` ∀e411 e412 f412 e413 f413 e421 f422 e423 f423 e424 f424 e431

e432 f432 e433 f433 f441 e442 f442 f443 Ra 4 Motor 4 Jm 4 Dm 4

Geer 4 J 4 K 2 D 4 p 0 q 0 t.

(&0 < Jm 4) ∧ (&0 < Ra 4) ∧ (&0 < J 4) ∧ (&0 < K 2) ∧

(f443 t = (-- inertance f J 4 e431 p 0 t +

Cx Geer 4 ∗ inertance f Jm 4 e421 p 0 t)) ∧

( f422 t = inertance f Jm 4 e421 p 0 t) ∧

(e313 t = e412 t) ∧ (e313 t = src e Se t)

⇒ bg main (INDEX FINGER FLEX EXT e411 e412 f412 e413 f413 e421

f422 e423 f423 e424 f424 e431 e432 f432 e433 f433 f441 e442

f442 f443 Ra 4 Motor 4 Jm 4 Dm 4 Geer 4 J 4 K 2 D 4) t =

[e411 t = (Cx Se - Cx Motor 4 ∗ inertance f Jm 4 e421 p 0 t);

f412 t = res f Ra 4 e411 t;

momentum der e421 p 0 t =

Cx
((-- Dm 4

Jm 4

)
-
((Geer 4) pow 2 ∗ D 4

Jm 4

)
-
((Motor 4) pow 2

Jm 4 ∗ Ra 4

))
∗

momentum e421 p 0 t + Cx
(Geer 4 ∗ D 4

J 4

)
∗ momentum e431 p 0 t +

Cx
(-- Geer 4

K 2

)
∗ displacement f441 q 0 t + Cx

(Motor 4 ∗ S e

Ra 4

)
;

f422 t = inertance f Jm 4 e421 p 0 t;

momentum der e431 p 0 t = Cx
(Geer 4 ∗ D 4

Jm 4

)
∗ momentum e421 p 0 t +

Cx
(-- D 4

J 4

)
∗ momentum e431 p 0 t + Cx

( &1

K 2

)
∗

displacement f441 q 0 t);

68



displacement der f441 q 0 t = Cx
(Geer 4

Jm 4

)
∗ momentum e421 p 0 t +

Cx
(- &1

J 4

)
∗ momentum e 431 p 0 t);

f443 t = (-- inertance f J 4 e431 p 0 t +

Cx Geer 4 ∗ inertance f Jm 4 e421 t)]

5.3 State-Space Representation

A state-space model accepts system matrix A:CN×N , input matrix B:CP×N , state

vector x:CN , state vector with derivative entries x der:CN and input vector

u:CP . The state-space representation of index finger movements (Flex. & Ext) in

HOL Light is as follows:

Theorem 7 State-Space Model

` ∀e421 e431 f441 Ra4 Motor4 Jm4 Dm4 Geer4 J4 D4 K2 Se t.

ss model


A B C

D E F

G H I



Cx
(Motor4

Ra4

)
Cx (&0)

Cx (&0)




p421(t)

p431(t)

q441(t)




p′421(t)

p′431(t)

q′441(t)

 [Se] =


p′421(t)

p′431(t)

q′441(t)

 =


A B C

D E F

G H I

 ∗ ∗


p421(t)

p431(t)

q441(t)

 +


Cx
(Motor4

Ra4

)
Cx (&0)

Cx (&0)

 ∗ ∗ [Se]

Where

p′421(t) = momentum der e421 p0 t

p′431(t) = momentum der e421 p0 t

q′441(t) = displacement der f441 q0 t

p421(t) = momentum e421 p0 t

p431(t) = momentum e421 p0 t

q441(t) = displacement f441 q0 t

69



A = Cx
((−Dm4

Jm4

)
-
((Geer4)pow2 ∗ D4

Jm4

)
-
((Motor4)pow2

Jm4 ∗ Ra4

))
B = Cx

(Geer4 ∗ D4
J4

)
, C = Cx

(−Geer4
K2

)
, D = Cx

(Geer4 ∗ D4
Jm4

)
E = Cx

(−D4
J4

)
, F = Cx

(&1
K2

)
, G = Cx

(Geer4
Jm4

)
H = Cx

(- &1

J4

)
, I = Cx (&0)

5.4 Stability Analysis in MATLAB

For the utilization of stability property, we modeled our formalized theorems of

matrices in MATLAB in the form of an algorithm to verify the status (stable,

marginally stable or unstable) of the given system and presented results in graphical

form as shown in Figure 5.2. All of the roots of a polynomial (eigenvalues) lie in

the left half of the complex plane, which means system of index finger (Flex. &

Ext.) is stable. Our work of formal stability analysis is of the automatic nature,

which makes it quite useful even for a beginner of formal methods.

-700 -600 -500 -400 -300 -200 -100 0

Real Axis (seconds -1)

-1.5

-1

-0.5

0

0.5

1

1.5

Im
ag

in
ar

y 
A

xi
s 

(s
ec

on
ds

-1
)

105 Eigenvalues Plot

Figure 5.2: Stable Index Finger (Flex. & Ext.)

The distinguishing features of our proposed formalization as compared to the

70



traditional analysis techniques are that, all of the parameters of BG are clearly

defined along with a data type, all of the variables and functions are of a generic

nature, i.e., universally quantified, soundness is assured in functions and theorems

as every new theorem can be verified by applying basic axioms and inference rules or

any other previously verified theorems/inference rules, and the algoritmic approach

for extracting equations. In traditional analysis techniques, like computer-based

simulations, we model each case of BG individually and there is a chance of error

due to the misinterpretation of the parameters. The verification and the formal

analysis of a BG representation ensure the accurate results and stability of a

dynamic system (Anthropomorphic Robotic Hand).

71



Chapter 6

Conclusions

6.1 Summary

In this thesis, we presented the formal analysis of Bond graph representations of

engineering and physical systems by utilizing higher-order-logic theorem proving.

In particular, this thesis mainly presents two important contributions. Firstly, it

provides the generic formalization of Bond graph, which includes formal defini-

tions of bonds, components, junctions, paths, branches, loops and the state-space

representation. It also presents the conversion of a Bond graph model to its

corresponding state-space model and the verification of stability and its various

properties. Secondly, it presents the results of the stability analysis in a graphical

form. For this purpose, we encoded our formally verified stability theorems in

MATLAB. We illustrated the practical effectiveness of our proposed framework by

utilizing the above mentioned steps to present the formal analysis of an Anthropo-

morphic Mechatronic Hand.

Our proposed framework, in particular the formalization of Bond graph involves

significant user interaction. Thus, in order to facilitate the HOL Light users of our

framework, we developed some important tactics which are useful for conducting

the proofs of the physical systems using our formalized library of Bond graph.

72



6.2 Future Work

The formalization of Bond graph provided in this thesis can be further extended

in order to strengthen the analysis of the current framework. The presence of

algebraic loops, namely, implicit algebraic equations in Bond graph is of great

importance, thus extending our formalization to cope up with algebraic loops will

be a good contribution. Moreover, our proposed formalization deals only with

Bond graphs that results into linear equations, thus, the formalization of Bond

graph can be extended to non-linear case.

73



References

[1] Simulator 20-sim. https://www.20sim.com/features/simulator/, 08 2019.

(Online; Acessed 28/7/2020 20:2).

[2] Asad Ahmed, Osman Hasan, and Falah Awwad. Formal stability analysis

of control systems. In International Workshop on Formal Techniques for

Safety-Critical Systems, pages 3–17. Springer, 2018.

[3] Donald J Ballance, Geraint P Bevan, Peter J Gawthrop, and Dominic J Diston.

Model transformation tools (mtt): the open source bond graph project. 2005.

[4] Wolfgang Borutzky. Derivation of mathematical models from bond graphs.

Bond Graph Methodology: Development and Analysis of Multidisciplinary

Dynamic System Models, pages 89–128, 2010.

[5] Wolfgang Borutzky. Bond graph modelling of engineering systems, volume 103.

Springer, 2011.

[6] Jan F Broenink. Introduction to physical systems modelling with bond graphs.

SiE whitebook on simulation methodologies, 31:2, 1999.

[7] M Delgado and C Brie. Desis-a modeling and simulation package based on

bond graphs. IFAC Proceedings Volumes, 24(4):215–220, 1991.

[8] Vanessa Dı́az-Zuccarini and César Pichardo-Almarza. On the formalization of

multi-scale and multi-science processes for integrative biology. Interface focus,

1(3):426–437, 2011.

[9] Immanuel Gaiser, Stefan Schulz, Artem Kargov, Heinrich Klosek, Alexander

Bierbaum, Christian Pylatiuk, Reinhold Oberle, Tino Werner, Tamim Asfour,

74

https://www.20sim.com/features/simulator/


Georg Bretthauer, et al. A new anthropomorphic robotic hand. In Humanoids

2008-8th IEEE-RAS International Conference on Humanoid Robots, pages

418–422. IEEE, 2008.

[10] Peter J Gawthrop and Geraint P Bevan. Bond-graph modeling. IEEE Control

Systems Magazine, 27(2):24–45, 2007.

[11] Jose Granda and Raymond Montgomery. Automated modeling and simulation

using the bond graph method for the aerospace industry. In AIAA Modeling

and Simulation Technologies Conference and Exhibit, page 5527, 2003.

[12] Jose J Granda and Jim Reus. New developments in bond graph modeling

software tools: the computer aided modeling program camp-g and matlab.

In 1997 IEEE International Conference on Systems, Man, and Cybernetics.

Computational Cybernetics and Simulation, volume 2, pages 1542–1547. IEEE,

1997.

[13] Michael K Hales and Ronald C Rosenberg. Enport model builder: An improved

tool for multiport modeling of mechatronic systems. SIMULATION SERIES,

33(1):152–157, 2001.

[14] J. Harrison. HOL Light: A Tutorial Introduction. In Mandayam Srivas and

Albert Camilleri, editors, Proceedings of the First International Conference

on Formal Methods in Computer-Aided Design (FMCAD’96), volume 1166 of

Lecture Notes in Computer Science, pages 265–269. Springer-Verlag, 1996.

[15] Mohammadali Honarpardaz, Mehdi Tarkian, Johan Ölvander, and Xiaolong

Feng. Finger design automation for industrial robot grippers: A review.

Robotics and Autonomous Systems, 87:104–119, 2017.

75



[16] Violina Iordanova, Hassane Abouaissa, and Daniel Jolly. Bond-graphs traffic

flow modelling and feedback control. IFAC Proceedings Volumes, 39(3):345–350,

2006.

[17] BJ Joseph and HR Martens. The method of relaxed causality in the bond

graph analysis of nonlinear systems. 1974.

[18] Javier Kypuros. System Dynamics and Control with Bond Graph Modeling.

CRC Press, 2013.

[19] Norman S Nise. CONTROL SYSTEMS ENGINEERING, (With CD). John

Wiley & Sons, 2007.

[20] Henry M Paynter. Analysis and Design of Engineering Systems. MIT press,

1961.

[21] Changju Rhee, Woojin Chung, Munsang Kim, Youngbo Shim, and Hyungjin

Lee. Door opening control using the multi-fingered robotic hand for the indoor

service robot. In IEEE International Conference on Robotics and Automation,

2004. Proceedings. ICRA’04. 2004, volume 4, pages 4011–4016. IEEE, 2004.

[22] Henry Ricardo. A modern introduction to linear algebra. CRC Press, 2009.

[23] R. C. Rosenberg, W. Feurzeig, and P. Wexelblat. Bond graphs and enport in

elementary physics instruction. IEEE Transactions on Man-Machine Systems,

11(4):170–174, 1970.

[24] Muhammad Tallal Saeed, Sardor Khaydarov, Biniam Legesse Ashagre, and

MS Zafar. Comprehensive bond graph modeling and optimal control of an

anthropomorphic mechatronic prosthetic hand. In 2019 IEEE International

Conference on Mechatronics and Automation (ICMA), pages 2006–2011. IEEE,

2019.

76



[25] Gilbert Strang. Introduction to linear algebra, volume 3. Wellesley-Cambridge

Press Wellesley, MA, 1993.

[26] Jean U Thoma. Introduction to Bond Graphs and their Applications. Elsevier,

2016.

[27] Lefan Wang, Turgut Meydan, and Paul Ieuan Williams. A two-axis goniometric

sensor for tracking finger motion. Sensors, 17(4):770, 2017.

[28] Lin-an Wang, Qiang Li, and Xiao-juan Liang. Modeling and dynamic sim-

ulation of electric power steering system of automobile using bond graph

technique. In 2010 Third International Symposium on Intelligent Information

Technology and Security Informatics, pages 744–747. IEEE, 2010.

77



Appendices

78



Appendix A

Proof Tactics

Tactic Description

BOND DIRECTION TAC
It simplifies the function that calculates
power direction of a bond

BOND MODULUS TAC
It simplifies the modulus of two-port com-
ponent function

BOND EFFORT TAC
It simplifies the function that calculates ef-
fort variable of a bond

BOND FLOW TAC
It simplifies function which calculates flow
variable of a bond

BACKWRD PATH TAC
It mainly simplifies the functions of back-
ward path which specifies path and strong
bond

FWRD PATH TAC
It simplifies the function of forward path
which specifies path direction and strong
bond

PATHS SELECTION TAC
Simplifies the functions which are responsi-
ble for selecting a path

BRANCH TAC
Simplifies the functions that check the pres-
ence of a branch on a bond of a junction

CAUSAL LOOP TAC

It simplifies the functions of causal loop that
are resposible for detecting the presence of
a loop and finding both connecting bonds of
a loop

CASE SELECTION TAC
It simplifies the functions which are respon-
sible for choosing a case

79


	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Introduction
	Background
	Motivation
	Proposed Methodology
	Thesis Organization

	Preliminaries
	HOL Light Theorem Prover
	Terms and Types
	Theories
	Writing Proofs
	HOL Light Symbols
	Multivariable Calculus Theories in HOL Light

	Bond Graphs
	Notation
	Generalized Variables
	Causality
	Components
	Terminologies of Bond Graph
	Illustrative Example

	Algorithm/Flow for Bond graph based Formal Analysis
	Some Rules/Assumptions for the Formalization of Bond Graphs

	Formalization of Bond Graph Representation
	Bond Graph Representation
	Generalized Variables
	Causality
	Power Direction
	Components
	Active Elements
	Passive Elements

	Modulus of Transducers
	Laws of a Junction
	Strong Bond
	Skipped Bonds and Summation Law of Last Junction
	Causal Paths
	Backward Path
	Forward Path

	Selection of Paths
	Path Selection for Equality Law of a Junction
	Path Selection for Summation Law of a Junction

	Presence of a Branch
	Presence of a Causal Loop
	Cases of a BG Represention
	Cases Selection Procedure
	Bond Selection
	Junction Selection

	State-Space Model

	Formal Verification of Stability of Bond Graphs
	Polynomial Stability
	Matrix Stability

	Case Study: Anthropomoric Mechatronic Prosthetic Hand
	Formal Modeling
	Formal Verification
	State-Space Representation
	Stability Analysis in MATLAB

	Conclusions
	Summary
	Future Work

	Appendices
	Proof Tactics

