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Abstract

Visual recognition in aerial imagery plays an important role in a wide range of applica-

tions such as surveillance, monitoring, detection and management of natural and man-

made disasters. Current advances in deep learning show promising results for computer

vision tasks of classification, detection, segmentation and tracking. The meta-learning

branch of deep learning seeks to train models that learn new concepts with few labeled

examples, to save data annotation cost and solve the problem of data scarcity. Recent

works show the superior performance of metric-learning approaches for meta-learning

among others. This research evaluates two state-of-the-art metric-learning methods,

namely Prototypical Networks and Relation Networks, in remote sensing imagery and

explores avenues to improve performance by utilizing efficient networks with different

depths for feature extraction and jointly training on multi-domain data. The perfor-

mance of the same efficient networks is also evaluated for object detection in satellite

imagery, to aid in the wise selection of feature extraction backbone for a meta-learning

object detector. Our results suggest that Prototypical Networks are faster to train

and more accurate than Relation Networks when the number of training classes are

limited. Furthermore, jointly training on natural and satellite imagery for few shot

classification is shown to slightly improve accuracy, given a suitable feature extraction

backbone. Finally, we conclude that MobileNet v2 might serve as the potential network

design to begin design space exploration of feature extraction backbones targeted for

accurate and efficient meta-learning as it outperforms its competitors in both the tasks

of object detection and few shot classification.

xiii



Chapter 1

Introduction

1.1 Motivation

Visual recognition in aerial imagery has many important applications such as in surveil-

lance, urban planning, transportation planning, traffic supervision, environmental mon-

itoring and man-made or natural disaster management.

Two branches of visual recognition are scene classification and object detection. Scene

classification aims at developing a semantic-level understanding of the whole image

and assign semantic labels to each scene class. Conversely, object detection aims at

recognizing different scene components or entities in an image and assign object level

labels to each entity along with recognizing its location or bounding box coordinates.

The effectiveness of any method used for any visual recognition problem depends heav-

ily upon its ability to exploit multiple cues from the image to generate better discrimi-

native features, and also the level of spatial patterns recognized by a method. Research

in the last few decades has progressed from pixel-level to object-level to semantic-level

understanding of the images. Yet still, traditional hand-engineered features and even

the shallow-learning-based features have limited description ability which may even be

impoverished in challenging scenarios. Hence, research has taken a shift in the last two

decades to deep-learning features for their powerful representation of both the local

and global information in an image. Loosely inspired from the human visual system,

1



Chapter 1: Introduction

convolutional neural networks are the most popular deep learning method for visual

recognition.

The success of deep learning lies in both the availability of appropriate data and ac-

curate models. The emergence of challenging benchmarks through the last decade has

steered the development of novel network designs with remarkable accuracy. However,

in the context of visual recognition in aerial imagery using embedded platforms, these

network designs face a few limitations:

1. The design of these networks is not optimized for resource-constrained environ-

ments.

2. The object size in aerial imagery is very small compared to the image size which

poses a challenge to state-of-the-art detectors that have degraded performance in

detecting tiny targets.

3. The availability of data in some domains like satellite imagery is insufficient to

obtain the desired accuracy through the standard training procedure.

4. The images collected through different technologies have great variation and dis-

parity to effectively create a data distribution shift which leads to degraded ac-

curacy.

Therefore, an integrated solution is needed that has the ability to learn from little

amount of data, detect small objects in satellite imagery and is optimized for embedded

platforms. On a note, we find that the terms aerial imagery and satellite imagery

are used interchangeably in the literature although aerial imagery is inclusive of low-

altitude top-view images taken through unmanned aerial vehicles (UAVs). As such, we

also sometimes refer to satellite images as aerial images in this work.

1.2 Problem Statement

This thesis concentrates on evaluating state-of-the-art technologies for visual recogni-

tion in remote sensing imagery. To be specific, the research addresses the two problems

2



Chapter 1: Introduction

of scene classification and object detection separately. For scene classification, the per-

formance of state-of-the-art solutions for scarce and diverse data known as few shot

learning is compared with efficient backbones. Whereas for object detection, we employ

a state-of-the-art detector by applying modest alterations to improve computational

efficiency. We perceive that this work may serve as the stepping-stone to tackle the

challenges presented by aerial imagery.

1.3 Objectives

• To compare the performance of state-of-the-art few shot learning methods on

aerial imagery.

• To assess the performance of efficient networks for feature extraction in the few

shot learning scenario.

• To analyze the generalizability of few shot learning methods to distinct domains.

• To examine the accuracy of efficient backbones for object detection in satellite

imagery.

1.4 Thesis Organization

The thesis is organized into six chapters, the details of each are as follows:

1. Introduction: Describing the evolution and limitations of visual recognition sys-

tems and defining the objectives of this research.

2. Literature Review: Reviewing the different available datasets and discussing the

development of deep learning methods to identify research gaps.

3. Proposed Methodology: Overviewing the problem and the proposed approach.

4. Implementation: Presenting the implementation details.

3



Chapter 1: Introduction

5. Results and Discussion: Presenting the results of experiments and analysing the

patterns.

6. Conclusion: Arriving at conclusions while setting the stage for future work.

4



Chapter 2

Literature Review

Deep learning is a data-driven technology that owes greatly to the organization or

invention of publicly available benchmarks for recent breakthroughs in the field, as

it pushes the development of new algorithms, while allowing comparison to the base-

lines using standard evaluation protocols. In this section, we first review the available

datasets related to the problem. Then, we discuss the available deep learning methods

and identify the gap in knowledge.

2.1 Benchmarks

In this section, we review the classification and detection benchmarks designed for both

the standard deep learning approach and the few shot learning approach in the domains

of natural and satellite imagery. We divide this section into the following subsections:

(a) natural scenes, (b) few shot learning and (c) satellite imagery.

2.1.1 Natural Scenes Datasets

Natural scenes or imagery taken on ground has received the most attention in the deep

learning world. In 2009, CIFAR dataset was proposed by Krizhevsky [28]. It consists

of two subsets CIFAR10 and CIFAR100, each with 60,000 color images of size 32x32.

CIFAR10 consists of 10 classes with 6000 images in each class, while CIFAR100 consists

5



Chapter 2: Literature Review

of 100 classes with 600 images per class. Everingham et al. [29] proposed PASCAL

Visual Object Classes (VOC) Challenge the same year. The dataset consists of 19.7K

images and 20 object classes. The challenge offers five tasks of classification, detection,

segmentation, action classification and person layout.

In 2010, Russakovsky et al. [26] proposed the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) that has 1000 object classes with about 1.46 million annotated

images. The challenge offers three tasks of image classification, single-object local-

ization and object detection. Lin et al. [27] proposed Microsoft Common Object in

Context (COCO) dataset in 2014, which contains about 328K images of 91 object

types, for detection and segmentation tasks. The Open Images Dataset V4 was pro-

posed by Kuznetsova et al. [30] in 2018, which consists of about 9.2M images, with

19.8K concepts for classification, 600 object classes for detection and 57 classes for

visual relationship recognition.

The increase in the scale of benchmarks from 120K images and 110 classes in CIFAR

to 9.2M images and 19.8K concepts in Open Images is due to the fact that machines

are not efficient learners of new concepts, like humans. A child may learn about a

new object class by looking at a single instance of that object, while a computer would

require many object instances to learn about the object category. However, it should be

noted here that these large scale datasets are costly to acquire and annotate. Research

in the direction to enable the computers to learn new concepts from a few examples is

known as few shot learning, for which we briefly discuss three benchmark datasets.

2.1.2 Few Shot Learning Datasets

To the best of our knowledge, the first dataset for few shot learning was proposed

by Lake et al. [25] as The Omniglot Challenge. The dataset is about handwritten

character recognition with 1623 characters from 50 different alphabets. However, it

lacks the complexity offered by images of natural scenes. Vinyals et al. [15] proposed

to create MiniImageNet from the ImageNet dataset [26] as the latter is notoriously

large, but they did not release it. Ravi and Larochelle [31] proposed their own version

6



Chapter 2: Literature Review

of MiniImageNet, consisting of 60,000 images with 600 images per class for 100 classes.

Triantafillou et al. [24] note that the typical approach adopted in most few shot learning

methods is to train and test the models on two non-overlapping subsets from the same

dataset, with all the classes having the same number of samples, a concept known as

class-balance. They argue that the real-world data suffers from class imbalance and

training on class-balanced dataset would train the model for an unrealistic problem.

They further state that the purpose of few shot learning is to generalize to data from

different domains. Thus, they propose Meta-Dataset which is significantly large-scale

and comprised of data from different domains, and further introduce class-imbalance

to make the problem more realistic.

2.1.3 Satellite Imagery Datasets

Satellite imagery datasets may be for scene classification or object detection. Here we

discuss briefly about five scene classification and four object detection benchmarks.

For scene classification, the UC-Merced Land-Use dataset [32] is the earliest among the

five. It consists of 2,100 images divided into 21 land-use scene classes with 100 aerial

images in each class. All images are in the red, blue, green (RGB) color space, each

measuring 256x256 pixels, with a spatial resolution of 0.3m. However, it lacks variations

and diversity and hence suffers from saturation of accuracy. Another benchmark is the

WHU-RS19 dataset [33] which is composed of 1,005 aerial scene images with about 50

images per class for 19 scene classes. The images are in the spectral bands of RGB, with

a spatial resolution of up to 0.5m, measuring 600x600 pixels. This dataset has high

variations in illumination, scale, orientation and resolution, and is hence challenging

but suffers from small number of images per class. The third benchmark is the RSC11

dataset [34] which has a total of 1,232 images of size 512x512 in the RGB spectrum

with a spatial resolution of 0.2m. The 11 scene classes represent complicated scenes

and the between-class similarity increases the difficulty of discrimination between them.

However, the number of scene classes is relatively small.

Two state-of-the-art benchmarks are the AID [35] and NWPU-RESISC45 [36] datasets.

7
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The AID dataset has a total of 10,000 images for 30 scene classes with different number

of images for each scene class, ranging from 220 to 420. All the images are in the RGB

color space and of size 600x600 with spatial resolution varying from 8m to 0.5m. On

the other hand, the NWPU-RESISC45 dataset is composed of 31,500 images divided

into 45 scene classes with 700 images per class. The spatial resolution varies from 30m

to 0.2m, and the images are of size 256x256 in the RGB color space. Both the datasets

are large scale with rich variations, high intra-class diversity and smaller inter-class

dissimilarity.

For object detection, the earliest dataset mentioned in the literature for multi-class

object detection was proposed by Cheng and Han [37] in 2014 as NWPU-VHR10 which

has 800 images from which 715 images are RGB and 85 are pan-sharpened color infrared

images. The spatial resolution of the RGB images ranges from 0.5m to 2m while that

of infrared images is 0.08m. The dataset consists of 10 geospatial object classes and is

widely used in the earth observation community. Another dataset is VEDAI, proposed

by Razakarivony and Jurie [38] in 2015, to aid the development of new algorithms

for multi-class small object detection in aerial imagery. It has a total of 1210 images

of size 1024x1024 pixels, with a spatial resolution of 12.5 cm, in the RGB and near

infrared color space. The dataset has nine different vehicle classes and is challenging

due to complex background. Nevertheless, both these datasets are not large scale as

the object instances in either of the two is not more than 4000.

To cater for the need of a large scale dataset for object detection in satellite images,

Xia et al. proposed DOTA [39] in 2017 while Li et al. proposed DIOR [40] in 2018.

Both these datasets are large scale with object instances numbering to about 190K in

each, with large variations in orientations, spatial resolution, between-class sizes and

within-class sizes, as well as high background complexity. Yet there are a number

of differences between the two. The DOTA dataset provides additional information

about the spatial resolution, has greater variety of object density, the image sizes vary

between 800x800 to 4000x4000, the total number of images is 2806 and the number of

object classes is 15. Conversely, the DIOR dataset has fixed image size of 800x800, with

23,463 images and is composed of 20 object classes that have high inter-class similarity

8
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and intra-class diversity.

2.2 Data Driven Deep Learning Methods

Reviewing the evolution of benchmark datasets, we next discuss the development of

deep learning methods owing to these benchmarks. As convolutional neural networks

(CNNs) are the most prevalent deep learning method among the computer vision com-

munity for outstanding performance in learning visual recognition tasks, in this sub-

section, we only review the development of CNNs through the last decade. Firstly, we

discuss the CNN architectures for classification and then briefly overview the network

designs for detection.

2.2.1 CNNs for Classification

Due to the limitations of hand-crafted features and the fruitful performance of deep

learning networks, the last decade has seen the shift of research focus from ‘feature

engineering’ to ‘network engineering’. Hereunder, we only discuss two directions of

research in network design related to our work: (1) design of efficient networks, (2)

design of few shot learning networks.

Design of Efficient Networks

Scientists have adopted different directions into design space exploration of neural net-

works to increase efficient use of model parameters for performance gains in accuracy;

to optimize the networks for real-time applications; to meet the memory and power

constraints; and to build simplified modular units in order to reduce complexity while

increasing scalability, all with the prime goal of designing neural networks with better

generalizability besides optimal accuracy under limited resource budget.

The seminal work for convolutional neural networks was proposed at the end of the

twentieth century by LeCun et al. , known as LeNet [41]. The network has two convo-
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lutional layers each followed by a pooling layer and two fully connected (FC) layers at

the end. However, the development of novel algorithms only took a quantum leap with

the emergence of AlexNet [1] proposed by Krizhevsky et al., which outperformed all

hand-engineered approaches on the ILSVRC2012. A distinguishing feature of AlexNet

from LeNet was its increased capacity, both in terms of the total number of layers

(depth) and the number of channels in each layer (width). AlexNet is composed of five

convolutional layers with different number of channels for each layer, the least of which

is 96, while the maximum is 384. The convolutional layers are followed by three FC

layers, from which the first two have 4096 channels while the last has 1000 channels

(see figure 2.1).

Figure 2.1: AlexNet architecture [1].

Following the success of AlexNet, Lin et al. proposed Network In Network (NIN) [2]

in which they use 1 × 1 kernels to add further non-linearity to the network to enhance

discriminability (see fig 2.2). They also discuss that large models of the likes of AlexNet

are computationally expensive and prone to over-fitting. The authors note that most of

the parameters of such large models belong to the FC layers and as an alternative they

propose global average pooling (GAP) in which a 3-D feature map of size ‘H × W × C’

(where H, W and C refer to the height, width and depth of the feature map) is converted

into a feature map of size ‘H × W × N ’ (where N refers to the number of classes labels

from which the target image is to be assigned a class label). Thereafter, an average

of this feature map is computed in the H and W dimensions to obtain a feature map

of size N which is then fed to the SoftMax layer for computation of class probabilities
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for classification. This alternative to FC layers reduces over-fitting as it requires no

parameters to train.

Figure 2.2: Network In Network module [2].

Figure 2.3: Inception v1 module with the split-transform-merge strategy [3].

Simonyan and Zisserman proposed VGG networks [42] in which they show that increas-

ing network depth improves accuracy. They also introduce factorized convolutions and

argue that a stack of kernels with small receptive fields is equivalent to kernels with

large receptive fields and advantageous due to the reduction in model parameters and

increased ability to add more non-linearity. They further adopt a modular approach

in designing the network and propose to double the number of channels whenever the

image is down-sampled to half, to keep the complexity of all modules similar. Con-

currently, Szegedy et al. proposed GoogleNet based on the Inception v1 module [3],

in which they use different kernel sizes in a split-transform-merge fashion to capture

visual information at different scales (see figure 2.3). They further exploit the 1 × 1
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filters for dimension reduction, resulting in a computationally efficient design which

allows the network depth to reach 22 layers.

Nevertheless, deep networks suffer from vanishing/exploding gradients problem. Ioffe

and Szegedy proposed batch normalization [43] while He et al. proposed advanced

initialization along with learnable activation [44] to combat the problem, hence enabling

faster convergence. Yet, He et al. [4] note that increasing network depth leads to

accuracy saturation and adding more layers would cause performance degradation. As

a solution, they propose ResNet which is based on residual connections that are used

to add the output of the preceding module to the output of the succeeding module (see

figure 2.4), in order to ensure that stacking more layers would only lead to improved

performance.

Figure 2.4: Residual connection [4].

Figure 2.5: Inception v3 module. Notice that the 5 × 5 convolution from the Inception v1
is factorized into two stacked 3 × 3 convolutions [5].

Meanwhile, Szegedy et al. [5] note that the complexity of Inception v1 architecture
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makes it inefficient in terms of scalability and hence discuss some principles of scal-

ability which they follow to propose Inception v3. The authors adopt the factorized

convolutions to replace kernels with large receptive fields (see figure 2.5) in the pro-

posed network and further discuss the usability of separable convolutions that use n×1

kernel followed by 1 × n instead of an n × n filter (see figure 2.6).

Figure 2.6: Inception v3 module with separable convolutions [5].

In the follow-up work, Szegedy et al. [45] propose a more uniform and simplified archi-

tecture built on the inception module to increase scalability which they name Inception

v4, in which they also utilize separable convolutions. The authors also evaluate the

effects of introducing residual connections on the Inception network and conclude that

the improvement in accuracy was not significant, but training speed was dramatically

improved. Conversely, Xie et al. [6] adopt the split-transform-merge strategy from the

Inception module into the ResNet architecture by exploiting group convolutions for

splitting while using summation for merging (see figure 2.7) and conclude that the size

of transformation or cardinality is an essential dimension besides depth and width,

which allows to increase model accuracy while maintaining complexity.
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Figure 2.7: ResNext module illustrating cardinality [6].

Another extension of ResNet was proposed by Huang et al. as DenseNet [7] in which

the authors introduce dense connectivity by feeding the output of each layer to all the

subsequent layers to introduce feature reuse while reducing redundancies (see figure

2.8). In the follow-up work [8], the authors further condense the network by learning

important dense connections that are arranged as groups using group convolutions

while removing superfluous connections through pruning (see figure 2.9).

Figure 2.8: A five layer DenseNet [7].

A more dedicated work on small neural networks was proposed by Iandola et al. [9]

in which the authors discuss the importance of small networks for efficient distributed

training, feasible embedded deployment and faster training and develop a disciplined

approach to build networks with few parameters while preserving accuracy. For the

given purpose, they propose to replace 3 × 3 filters with 1 × 1 filters and reduce the

number of input channels to 3 × 3 kernels. The authors propose the fire module in
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Figure 2.9: CondenseNet procedure [8].

which they first squeeze the input channels, then expand using two sets of filters of

sizes 3 × 3 and 1 × 1 and finally concatenate the outputs from both sets of kernels

(see figure 2.10). With the given strategy, they achieve the accuracy of AlexNet with

50 times fewer parameters. Furthermore, although the authors at first suggested to

downsample late in the network to improve accuracy but thereafter found that it leads

to increased computational complexity [46] and hence suggest evenly-spaced downsam-

pling which is in accordance to the principle suggested by Szegedy et al. [5] to decrease

the representation size gently from the input to the output. Gholami et al. [47] extend

the work by using aggressive channel reduction, separable convolutions and residual

type connections to further reduce the model parameters.

Figure 2.10: Fire module [9].

Another line of work to reduce network parameters adopts depthwise separable convolu-

tions in which channel-wise spatial convolution is performed first followed by pointwise
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(1×1) convolution. Chollet [48] proposed to replace Inception modules with depthwise

separable convolutions to propose a novel architecture Xception and achieved accuracy

improvements on ImageNet and JFT datasets. Howard et al. also adopt depthwise

separable convolutions to propose a novel architecture MobileNet v1 [49] in which they

further incorporate two hyperparameters of width and resolution multipliers for control-

ling the model capacity. The width multiplier is used to decrease/increase the number

of channels at each stage while the resolution multiplier is implicitly set by setting the

input resolution. Sandler et al. [10] extend the work by proposing linear bottlenecks

in which they first expand the number of channels according to the expansion ratio

using pointwise (1 × 1) convolutions, then perform channel-wise spatial convolutions

and finally squeeze the channels using pointwise convolutions but do not apply any

non-linear activation to the last layer to prevent information loss. The authors further

introduce an inverted residual connection into the block by which the input to the

linear bottleneck is added to its output (see figure 2.11). The full architecture built

from these modules is referred as MobileNet v2.

Figure 2.11: Inverted Residual block [10].

Another competing architecture contemporary to MobileNet was proposed by Zhang

et al. [11] in which the authors pay attention to efficiently increase the number of

channels for more powerful representation, for which they propose to use pointwise

group convolutions to reduce computation. However, using pointwise convolutions

in groups blocks cross-channel information flow leading to weakened representations,

hence defeating the purpose. Therefore, they propose to use a channel shuffle operation

to shuffle the information across channels to mitigate the adverse side effect of group

convolutions (see figure 2.12). Ma et al. [12] improve the work by first developing the

16



Chapter 2: Literature Review

Figure 2.12: Channel shuffle operation of ShuffleNet v1 [11].

Figure 2.13: Channel split operation of ShuffleNet v2 [12].

principles to design efficient networks and then proposing a modified architecture in

which they remove group convolutions as it increases the memory access cost. They

further introduce a channel split operation which splits the input channels into two

branches, from which no operation is performed on one branch and it acts as a residual

connection, while pointwise convolution followed by depthwise separable convolution

is performed on the other branch. Finally, both the branches are concatenated and fed

into the channel shuffle operator (see figure 2.13). The complete architecture is named

ShuffleNet v2.

A more recent work by Mehta et al. [13] proposed an efficient spatial pyramid (ESP)
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Figure 2.14: ESP module of ESPNet v1 [13].

module which is built using the reduce-split-transform-merge strategy (see figure 2.14).

The reduction is done using the pointwise convolutions while the splitting and trans-

forming is performed using a spatial pyramid of dilated convolutions and the outputs

from all pyramidal levels are concatenated. As a note, dilated convolutions inject ze-

ros between the convolution kernels to increase the effective receptive field. The use

of spatial pyramids leads to gridding artifacts that are solved by hierarchical feature

fusion (HFF). The authors also introduce a skip connection in the ESP module to

improve information flow. To further increase network efficiency, the authors propose

extremely efficient spatial pyramid (EESP) [14] in the subsequent work, in which they

replace the pointwise convolutions with group pointwise convolutions and decompose

the dilated convolutions into depthwise dilated separable convolutions from the original

ESP module (see figure 2.15). The resulting network is called ESPNet v2 and is more

power-efficient than MobileNet v2 or ShuffleNet v2.

We note here that the journey of network design began with the objective of powerful

discriminative feature learning. With the ever-growing popularity of deep learning

applications, resource efficiency was later incorporated in design to meet the commercial

demands. We observe that as the last few years have seen the shift from feature design

to network design, research is now progressing from feature learning to network learning

to tackle the forthcoming challenges [50–54].

18



Chapter 2: Literature Review

Figure 2.15: EESP module of ESPNet v2 [14].

Design of Few Shot Learning Networks

Few shot learning [55] aims at learning new concepts from limited examples, more

like humans, to reduce the efforts for data collection, save the computational cost

of model re-training and improve generalization to unseen classes from completely

different domains. The standard approach for training deep learning models is to

randomly initialize the weights and train on large-scale labeled datasets with gradient-

based optimizer for thousands of iterations until the models converge to a good solution.

However, training the models using this standard approach on little data leads to over-

fitting, hence poor generalizability.

A straightforward solution to prevent over-fitting is to augment the data by applying

various transformations on the train set. Recent approaches learn appearance vari-

ations in the base classes and hallucinate data by generating the learned variations

for the novel classes [56]. However, this approach is data-focused and usually works

together with model-focused few shot learning approaches. Another simple yet intu-

itive solution is to first train the model on a large-scale labeled dataset from a related
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distribution and thereafter fine-tune the last few layers on the target distribution. This

concept of knowledge transfer from source domain to target domain is referred in the

literature as transfer learning [57]. Nonetheless, a major demerit of this approach is

that feature transferability deteriorates as the difference between the source and target

domains increases [58].

To address this challenge, some works propose a meta-learning approach in which the

data classes are first split into train, validation and test sets. Thereafter, few shot

tasks are generated from the train set and the model is optimized to minimize the

loss between the support and query samples. The hyper-parameters are tuned on the

validation set and the model’s ability to generalize to unseen tasks is evaluated on the

test classes. A popular approach that adopts such a strategy may be referred to as

optimized adaptation, as it learns the weights that capture the common features in the

train classes. The learnt weights may then serve as a good initialization to further

fine-tune the model on the test classes [59]. Extensions to such methods include sim-

plifying the approach [60] and learning the update direction and learning rate besides

initialization [61].

Another line of work adopts the meta-learning approach to learn a discriminative met-

ric space in which the query images are classified by determining the similarity with

the support images, which obviates the need for fine-tuning. In effect, metric learning

methods exploit only the feature extraction layers of CNNs, and the classification layers

are replaced by similarity measuring module. Siamese Networks [62] are the earliest

CNN-based metric learning method proposed by Koch which consist of two identical

networks, that is, both the architecture and parameters are same. The feature embed-

ding of the support images are computed by one network while the other computes the

embedding for the query images and the L1 component-wise distance between the two

embedding is computed for classification.

Subsequently, Vinyals et al. proposed Matching Networks [15] that use CNN or long

short-term memory (LSTM) with attention mechanism for computing the feature em-

bedding of the support set, while utilize CNN or bidirectional LSTM to compute query

embedding and classify by measuring the cosine similarity (see figure 2.16). Snell et al.

20



Chapter 2: Literature Review

Figure 2.16: Matching Networks [15].

adopt an even simpler approach in their proposed Prototypical Networks [16], in which

class prototypes are computed by taking the mean of feature embeddings of the sam-

ples from the same class and classification is done on the basis of Euclidean distance

between the prototype embedding and query embedding (see figure 2.17). A bit differ-

ently, Sung et al. proposed Relation Networks [17] that consist of two modules. The

first module is the feature embedding module that is used to compute the feature em-

beddings from the support or query samples. The novelty of the approach lies in the

other module termed as the relation module that instead of adopting fixed metrics,

learns a non-linear deep distance metric to compare the support and query items (see

figure 2.18).

Figure 2.17: Feature embeddings in the Prototypical Network [16]. Here c1, c2 and c3 refer
to the class prototypes and x is the query sample whose Euclidean distance
from the class prototypes is being computed.
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Figure 2.18: Relation Networks [17]. Notice that in the relation module, the feature em-
bedding coloured orange belong to the query sample. The query embedding
is concatenated with each embedding from the support samples to learn a
non-linear relation between objects belonging to the same class.

Recent studies by Chen et al. [63] and Triantafillou et al. [24] show that transfer learning

and metric learning are competitive approaches to address the problem of few shot

learning. Chen et al. [63] argue that the transfer learning approach has been severely

underestimated and especially for cross-domain scenarios where the novel classes are

very different from the base classes, it outperforms the metric learning approaches.

The results reported by Triantafillou et al. [24] also partially support the argument.

Finally, Chen et al. [63] also study the effect of reducing intra-class variation by increas-

ing the backbone depth and conclude that it leads to higher accuracy and fine-tune

methods show comparable performance to metric learning methods. However, it is

worth noting that the performance of transfer learning approach in such scenarios owes

greatly to data augmentation which is not a necessity for meta-learning approaches.

2.2.2 Architectures for Detection

Traditional detection approaches adopted sliding windows for object localization along

with hand-engineered features for object classification. In 2013, Uijlings et al. pro-
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posed Selective Search [64], a hand-engineered object proposal method to replace the

computationally expensive sliding windows. Consequently, Girshick et al. proposed Re-

gions with CNN (R-CNN) classifier [65] to replace the hand-engineered classification

techniques while utilizing selective search for object proposals. In the follow-up work,

although Girshick [66] further improved the architecture to propose Fast R-CNN but

the selective search algorithm created a computation bottleneck.

To remedy the problem, Ren et al. proposed Faster R-CNN [18] which is composed of

a backbone for feature extraction, followed by a region proposal network (RPN) as a

replacement for selective search and Fast R-CNN for object classification along with

fine localization. The backbone generates feature maps from the input image, that

are fed to the RPN which computes the intersection over union (IOU) between default

bounding box positions (anchor boxes) and the ground truths and keeps only those

anchor boxes whose IOU is above the given threshold. These anchor boxes are then

proposed as regions of interest (ROIs) to the Fast R-CNN head, that first warps the

proposed ROIs to fixed size by ROI Pooling and thereafter computes the class scores

and regresses the offsets between the anchor boxes and ground truths to obtain accurate

bounding box positions (see figure 2.19 for the illustration of the architecture).

Figure 2.19: Faster R-CNN illustration [18].

Dai et al. [19] note that the FC layers in the Faster R-CNN architecture are computa-

tionally expensive as they do not share computation and propose to replace them with
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convolutional layers to generate position-sensitive score maps. They further propose

position-sensitive ROI pooling that takes votes from the score maps to generate the

final prediction. The full architecture is referred as Region-based Fully Convolutional

Network (RFCN). We consider this work to be in striking resemblance with the work

of Lin et al. [2] who proposed global average pooling as a replacement for the FC layers

(refer to figure 2.20 for visualization of the architecture).

Figure 2.20: R-FCN architecture [19].

It is worth noting that the region-based methods perform detection in two stages, where

the first stage performs binary classification to differentiate object regions from the

background along with coarse localization of the objects and the second stage further

processes those regions for multi-class classification and fine localization. Although

such approaches are accurate, yet they are relatively slow for real-time applications

and unsuitable for embedded systems for high computational requirements.

Redmon et al. steered research in another direction to develop a one-stage detector

and proposed You Only Look Once (YOLO) [20]. The intuition behind the working

of YOLO is that the convolutional layers extract features followed by two FC layers

where the last FC layer generates the prediction of the shape S × S + (B × 5 + C) (see

figure 2.21). Here ‘S’ denotes the height and width of the score map and (B × 5 + C)

refers to the number of channels. In effect, the system partitions the input image into

an ‘S ×S’ grid, where each grid cell generates ‘B’ bounding boxes with five predictions
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Figure 2.21: YOLO architecture [20].

from which two correspond to the center coordinates (x, y) of the boxes relative to the

grid cell, while another two correspond to the height and width of the boxes relative

to the whole image and the fifth prediction corresponds to the box objectness score

computed through the IOU between the ground truth boxes and the predicted boxes,

and finally, ‘C’ refers to the conditional class probabilities, corresponding to the classes

in the dataset, which is only computed if the center of an object is present in the

corresponding grid cell. All in all, the proposed system outperforms other methods

in speed and generalizability from natural images to other domains like artwork but

also suffers from high localization errors as well as struggles to generalize to objects in

unusual configurations and also in detecting small objects appearing in groups.

Meanwhile, Liu et al. tread a similar path to propose Single Shot MultiBox Detector

(SSD) [21] with a few distinct features from YOLO. Firstly, instead of developing a

custom feature extraction backbone, they use the VGG-16 [42] architecture in which

they replace the two FC layers consisting of 4096 channels with two convolutional

layers, each with 1024 channels but the former with kernel sizes 3 × 3 and the latter

with 1 × 1. The final 1000-channel FC layer is removed to make the network fully

convolutional. Secondly, the authors add some auxiliary layers to the VGG base to

generate additional feature maps for detection. Thirdly, to enable detections at multiple

scales, feature maps are generated from all the auxiliary layers in addition to some layers
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from the base. Fourthly, each cell from each feature map is associated with multiple

anchor boxes of various sizes and aspect ratios to efficiently discretize the space of

possible output box shapes. Lastly, predictions are made by feeding the multi-scale

feature maps to final convolutional layers that predict the bounding box offsets and

class probabilities. For illustration, refer to figure 2.22.

Figure 2.22: SSD architecture [21].

Lin et al. introduced an important improvement apart from the basic architecture as

feature pyramid networks (FPN) [22], to enhance model accuracy. Although the authors

use the FPN on top of Faster RCNN, it is a generic module which may be added on top

of any detection architecture. A feature pyramid network consists of three components

namely, bottom-up pathway, lateral connections and top-down pathway. The bottom-

up pathway is the feed-forward path of the model which consists of multiple stages

where an input feature map is down-sampled at every stage. The output feature maps

from the bottom-up pathway are generated from multiple stages in the bottom-up

pathway and are fed to the lateral connections that up-sample the feature maps to the

same size as the feature maps in the previous stage. Finally, in the top-down pathway,

the up-sampled feature maps from the latter layers are added to the feature maps in

the earlier layers to create semantically strong maps at each scale (see figure 2.23 for

illustration). The introduced module significantly improves the average precision (AP)

of Faster RCNN from 47.3 to 56.9 on the COCO minival set.

Consequently, Lin et al. [23] note that although the single stage detectors have a speed

advantage, yet they lag behind the two stage detectors in accuracy. For the purpose,

the authors make three major changes in the SSD architecture. Firstly, they adopt the
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Figure 2.23: Illustration of feature pyramid networks [22].

FPN into the feature extraction backbone of SSD, to obtain stronger features are mul-

tiple scales. Secondly, instead of using shared auxiliary layers for object classification

and box regression, they use two separate sub-networks for each task. Finally, they in-

troduce a loss function termed as focal loss by tweaking the standard cross-entropy loss,

to down-weight the loss assigned to well-classified examples and focus on the sparse

set of hard examples. The resultant architecture is named RetinaNet which improves

the mean average precision of one stage detectors while maintaining competitive speed

(see figure 2.24 for illustration).

Figure 2.24: Illustration of RetinaNet [23].

Finally, it is worth mentioning that to avoid multiple detections of same object in-

stances, overlapping detections above a certain threshold are suppressed, a technique

known as non-maximum suppression (NMS) [67].
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2.3 Research Gap

Following the bird’s eye view of the available benchmarks, efficient network designs,

few shot learning methods and object detection architectures, we now point out some

problems not yet addressed.

2.3.1 Meta-Learning for Aerial Scene Classification

To the best of our knowledge, the only work adopting meta-learning for aerial scene

classification was carried out by [68] in which the authors exploited an optimized adap-

tation method to address the challenges of data scarcity and disparity in the domain of

remote sensing images. Other studies by [69] and [70] do utilize convolutional networks

for metric-learning to achieve state-of-the-art performance, but not in the context of

meta-learning. Hence, we find it interesting to investigate the performance of few shot

metric learning approaches on aerial scene classification.

2.3.2 Backbones for Few Shot Learning Methods

Reviewing on one side the progress made in the design of efficient networks for feature

extraction and on the other side the developments made in the area of few shot learn-

ing for image classification, we notice that both efforts are on different parts of the

network and combining them might prove fruitful. We observe that the feature extrac-

tion backbone commonly used in state-of-the-art few shot learning methods for feature

extraction has only four convolutional layers. The apparent reason for using shallow

backbones for meta-learning is that the earlier layers learn more generic features while

deeper layers learn specific features [58]. Increasing the depth of a meta-learning net-

work too much may lead it to lose its genericity which would deem the network unfit

for meta-learning. However, increasing the depth to some extent has been shown to

improve accuracy as the representation power increases. Thus, it is an interesting direc-

tion to search for an optimal depth that provides the best trade-off between genericity

and representation power, as it would help develop better lightweight few shot learning
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networks.

2.3.3 Domain Transfer Between Different Meta-Domains

Although researchers have studied the generalizability of meta-learning models in cross-

domain scenarios, however, we note that the base and target domains in such scenarios

both belong to the same meta-domain. For instance, Chen et al. [63] compared the

performance of different meta-learning methods with transfer learning, on domain shift

from miniImageNet to CUB datasets. Similarly, Triantafillou et al. [24] compared the

cross-domain generalizability of models trained jointly on all the datasets in the Meta-

Dataset versus the models trained only on the ILSVRC2012. Likewise, Zhai et al.

[68] evaluated the performance of various methods for the task of domain transfer from

source to target datasets using different combinations of three aerial scene classification

datasets. We observe that the datasets considered in the first two studies belong to

the meta-domain of natural images, while those in the last study belong to aerial

imagery. We argue that to achieve human-level intelligence, meta-learning methods

should generalize well to various meta-domains. Therefore, it would be fascinating to

explore methods to achieve the intended performance.

2.3.4 Modern Detectors with Lightweight Backbones for Ob-

ject Detection in Aerial Imagery

Li et al. [40] evaluated 12 different representative detection methods on their proposed

benchmark. Nevertheless, we note that the backbones of the detectors being evaluated

are not computationally efficient. Performance evaluation of these modern detectors

with state-of-the-art backbones is an exciting path to pursue.
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2.4 Conclusion

In this thesis, we primarily focus on aerial scene classification and perform experi-

ments to evaluate the performance of metric learning approaches with varying back-

bone depths while also considering the scenario of cross-meta-domain generalizability.

Thereafter, we pursue the experiments for object detection in remote sensing imagery.
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Proposed Methodology

3.1 Problem Overview

Metric learning has been proven fruitful for aerial scene classification [69, 70], yet

few shot metric learning approaches have not been evaluated on satellite imagery.

Recent studies that have compared state-of-the-art few shot learning approaches show

that metric learning methods display superior performance to optimized adaptation

methods [24, 63]. Therefore, inspired from the work of [68] that adopt an optimized

adaptation method for aerial scene classification, we instead choose few shot metric

learning approaches for the task.

We find it necessary to mention here that some studies show transfer learning as a

competitive approach to meta-learning [24, 63]. Nonetheless, an analysis of the results

reported by Triantafillou et al. [24] reveals two interesting insights:

1. Finetune approach (transfer learning) has higher accuracy than Prototypical Net-

works (a representative metric learning method) when the base data distribution

has higher complexity and the target data distribution has lower complexity.

Conversely, when both the base and target distributions are of high complex-

ity, then Prototypical Networks generally outperform the finetune approach (see

figures 3.1 and 3.2).

2. Jointly training on the base and target distributions almost always leads to higher
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Figure 3.1: Analysis of the results reported in the Meta-Dataset paper [24]. We consider
the five datasets: Omniglot [25], Aircraft, Quick Draw, Traffic Signs and Tex-
tures, to be of low complexity. ILSVRC denotes training only on the ILSVRC
dataset (the base distribution) while Joint refers to training jointly on all the
ten datasets in the Meta-Dataset.

accuracy for Prototypical Networks compared to training solely on the base dis-

tribution. In contrast, joint training mostly leads to an accuracy drop for the

finetune method and only helps in some cases when the target distribution has

lower complexity (see figures 3.1 and 3.2).

Considering these two insights from the analysis, we prefer metric learning over transfer

learning in this work.

Another important point to note is that the datasets used for joint training in [24] all

belong to the meta-domain of natural imagery. We have not come across any work

studying the performance of jointly training on datasets from distinct meta-domains.

We perceive that as the available datasets for aerial imagery have limited number of

classes, training meta-learning models on small number of classes might lead to over-

fitting. A possible solution is to train the models on a dataset of natural images and

use them directly on aerial images. However, the great disparity between the two

meta-domains may not lead to better generalizability, hence joint training might lead

to improved results.
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Figure 3.2: Analysis of the results reported in the Meta-Dataset paper [24]. We consider
the five datasets: ILSVRC [26], Birds, Fungi, VGG Flower and MS COCO
[27], to be of high complexity. ILSVRC denotes training only on the ILSVRC
dataset (the base distribution) while Joint refers to training jointly on all the
ten datasets in the Meta-Dataset.

Further improvements in accuracy may be achieved by increasing network depth as

suggested by Chen et al. [63] but very deep networks may lose genericity which is

an essential feature of meta-learning models. Thus, a study examining the network’s

performance by varying its depth is required similar to [42]. Finally, considering the

unavailability of a dataset of aerial imagery for few shot detection, we instead adopt

the standard approach for object detection by training on a large scale dataset with

efficient networks, with hope that it would aid in wise selection of network designs for

few shot object detection in satellite imagery.

3.2 Our Approach

To address the problems described above, we follow the approach below:

1. Selection of State-of-the-Art Few Shot Metric Learning Methods:

Based on recent reports, we select Prototypical Networks [16] and Relation Net-
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works [17] for our experiments.

2. Validation of Implementation:

We validate our implementations of the two few shot learning methods by com-

paring our results on the MiniImageNet [15] few shot classification benchmark

with the reported results.

3. Experiments on Aerial Imagery:

We select the NWPU-RESISC45 [36] dataset for our experiments on satellite

imagery as it is state-of-the-art with high intra-class diversity and inter-class

similarity, and has relatively larger number of classes besides large number of

images per class.

4. Joint Training:

We evaluate if joint training leads to performance improvement by testing on the

NWPU-RESISC45 test classes. For the given purpose, we first evaluate the cross-

domain generalizability from MiniImageNet [15] to NWPU-RESISC45 [36] and

then compare the performance with models trained jointly on both the datasets.

5. Analyse Depth Effects:

We choose three efficient networks (MobileNet v2 [10], ShuffleNet v2 [12] and

ESPNet v2 [14]) for our experiments and study the effects of varying network

depth by using seven depth levels.

6. Detection in Satellite Imagery:

We then use the same three efficient networks (MobileNet v2 [10], ShuffleNet

v2 [12] and ESPNet v2 [14]) for feature extraction in the detection experiments.

The detection architecture chosen is RetinaNet as it shows the best performance

on the DIOR dataset and we replace its ResNet-50 backbone with the efficient

backbones to compare the performance.
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Implementation

In this chapter, we present the details about the experimental setup. In particular,

we mention the resources utilized, explain the process of data preparation, relate the

implementations used, outline the procedure adopted to modify the network architec-

tures to suit the relevant scenario, and describe the choice of hyper-parameters and

training procedure in different experimental settings.

4.1 Resources

We implement the neural networks using the PyTorch framework [71] for its Pythonic

and object-oriented programming style, and mid-level complexity that allows more

intuition, flexibility and control than Keras [72] while handling inherent intricacies

internally thus providing a simpler interface than TensorFlow [73]. For the experiments,

we use free instances of NVIDIA Tesla K80 GPU provided by Google Colaboratory

[74]. The GPU has 68 GB memory, 12 GB RAM and compute capability of 3.7, thus

supported by CUDA library [75] from NVIDIA which requires the compute capability

to be at least 3.0.
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4.2 Data Preparation

Hereunder, we relate the datasets used in our experiments, how they were split into

the train, validation and test sets and the sizes we used for the images. Furthermore,

we also describe the data sampling techniques and the format we used to store data.

4.2.1 Datasets

For scene classification experiments, we used the MiniImageNet [15] and NWPU-

RESISC45 [36] datasets whereas for object detection, we used the DIOR dataset [40].

4.2.2 Data Splits

The details of how different datasets were split for relevant experiments are presented

below:

1. Validation Experiments:

To validate our experiments, we used the MiniImageNet benchmark and the splits

proposed by Vinyals et al. [15] that use 64 classes for train set, 16 for validation

set and 20 for test set.

2. Aerial Scene Classification Experiments:

For experiments on the NWPU-RESISC45 dataset [36], from the 45 classes we

use 20 for training, five for validation and 20 for testing. The names of the scene

classes used in each split are given in Table 4.1.

3. Domain Transfer Experiments:

For experiments on how well the meta-learning models generalize from natural im-

ages to satellite images, we use MiniImageNet for training and NWPU-RESISC45

for testing. For the train set, we merge the train and test sets of MiniImageNet

proposed by Vinyals et al. [15] and for the test set, we merge the train and test

sets of NWPU-RESISC45 dataset. Finally, we merge the validation sets of both

the datasets to create the validation set.
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4. Joint Training Experiments:

In order to evaluate the effectiveness of joint training, we train jointly on Mini-

ImageNet [15] and NWPU-RESISC45 [36] datasets. For the stated purpose, we

merge the train sets of both datasets to create the new train set and create the

other splits in a similar fashion.

5. Detection Experiments:

For detection experiments, we use the splits of DIOR dataset proposed by Li

et al. [40], which has 5862 images in the train set, 5863 images in the validation

set and 11,738 images in the test set.

Splits Categories
Train baseball-diamond, beach, chaparral, circular-farmland, forest,

freeway, golf-course, island, meadow, medium-residential,
mobile-home-park, overpass, railway-station, rectangular-farmland,
roundabout, sea-ice, snow-berg, sparse-residential, stadium, wetland

Validation cloud, harbor, mountain, storage-tank, thermal-power-station
Test airplane, airport, basketball-court, bridge, church, commercial-area,

dense-residential, desert, ground-track-field, industrial-area, intersection,
lake, palace, parking-lot, railway, river, runway, ship, tennis-court, terrace

Table 4.1: NWPU-RESISC45 Splits

4.2.3 Image Sizes

For the experiments involving MiniImageNet [15] and NWPU-RESISC45 [36], we re-

size the images to 126 × 126 pixels taking inspiration from [24] whereas for DIOR

experiments, we keep the original image size of 800 × 800 pixels.

4.2.4 Data Storage Format

We note that the usual format of storing data is to store images in a folder and the

annotations in a file which consists of paths to the images. While loading data, the

images are read from the paths using image processing libraries. However, this approach

is time-consuming and slows down the training process. Considering this and the small
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size of our classification datasets, we instead store the data splits for classification

experiments as a list of tuples, consisting of image tensors and the corresponding

labels, in pickle format and load them to GPU RAM for faster training.

4.2.5 Data Samplers

Unlike traditional deep learning samplers that randomly sample data from the whole

dataset according to the batch size, few shot learning requires customized samplers

appropriate to the method. For a class-balanced scenario, which also is our case, the

few shot sampler takes in three inputs:

1. the number of classes from which the data is to be selected (n-way),

2. the number of examples that serve as the meta-training/support set (k-shot) and

3. the number of examples that would be used for meta-testing of the model (k-

query).

The sampler first randomly selects ‘n-way’ classes from the given data split, then picks

a sum of ‘k-shot’ and ‘k-query’ images from each class and returns the selection as a

batch. It is also important to note that later data processing techniques may require

the sampled batch to be in a specific order. For our case, we used different samplers

for Prototypical Networks and Relation Networks. Table 4.2 shows an example of how

data is arranged by the two samplers.

Method Sampled Batch
Prototypical Networks A,B,C,A,B,C,A,B,C
Relation Networks A,A,A,B,B,B,C,C,C

Table 4.2: Data samplers for few shot learning methods. Please note that A, B and C
represent three classes making it a 3-way scenario while the repetition of an
item from each class for three times makes it a 3-shot scenario.
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4.3 Network Implementations

For few shot learning, we adopt the re-implementation of Prototypical Networks by

Chen [76] and modify the original implementation of Relation Networks by Sung [77]

to harmonize with Chen’s implementation [76]. As for efficient networks, we use the

official implementations available in PyTorch’s [71] torchvision library for MobileNet

v2 [10] and ShuffleNet v2 [12] while use the original implementation of ESPNet v2 by

Mehta et al. [14]. Lastly, we use the RetinaNet implementation by MMDetection Open

Toolbox [78].

4.4 Modifications to Networks

We conduct our experiments for classification and detection separately. For classifica-

tion, we perform the experiments in two phases which we refer to as the initial phase

and the follow-up phase. The details of networks used for the different experiments are

given below.

4.4.1 Initial Experiments

For the initial experiments, we use a convolutional network with four layers (Conv-

4) in order to validate our implementations to the reported works. For Prototypical

Networks [16], we use the Conv-4 implementation by Chen [76] while for Relation

Networks [17], we use the implementation by Sung [77]. We set the results from Conv-4

as the baseline to compare the performance of three efficient networks namely, ESPNet

v2 [14], MobileNet v2 [10] and ShuffleNet v2 [12]. For each network, we discard the

classification layers and only keep the feature extraction layers. We further reduce

the number of channels in the final layer of each network to 512 channels to get the

final feature map of size 512 × 4 × 4 = 8192 for an input of size 126 × 126 pixels.

Furthermore, we notice that these efficient networks are built from basic modules such

that the chain of modules is between two convolutional layers. With this observation,
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we use two depth levels for each network, full and half depth. In full depth, we keep all

the modules whereas in half depth, we reduce the number of modules almost to half.

We evaluate these networks on three tasks:

1. Generalization to unseen classes in aerial imagery by using the NWPU-RESISC45

dataset [36].

2. Domain transfer from natural to aerial imagery by training on MiniImageNet [15]

and testing on NWPU-RESISC45 [36].

3. Joint training on MiniImageNet [15] and NWPU-RESISC45 [36] to assess perfor-

mance gains over domain transfer.

Thereafter, we perform a set of follow-up experiments to further study the effects of

varying depth, the details of which are presented underneath.

4.4.2 Follow-up Experiments

In the follow-up experiments, we make two major changes to the networks. Firstly,

we change the number of channels in the final layer of backbones from 512 to 128

channels in order to reduce network capacity, hence lowering the chances of over-fitting.

Secondly, we adopt a different scheme of varying depths than the one in the previous

experiments. We note that the efficient networks we had selected have different stages,

where each stage has a particular configuration of basic modules. Observing that

ESPNet v2 [14] and ShuffleNet v2 [12] have three stages of the basic modules, we

choose to use three depth levels. For the first level, we only keep the first stage of

the basic modules and similarly keep two and three stages for second and third levels

respectively. As for MobileNet v2 [10], it has seven stages of the basic modules, so we

decide to use three, five and seven stages for first, second and third levels respectively.

Not to mention, these networks of different depths would downsample the image to

different sizes but it would be desirable for the output to be of the same size. Hence,

we increase the stride of convolutional layers and additionally insert a max-pool layer

where necessary to make the network strides equal.
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4.4.3 Detection Experiments

We use the RetinaNet architecture for object detection in satellite imagery and make

only two modifications to the original implementation. Firstly, we replace the ResNet

[4] backbone for feature extraction with the selected efficient networks and secondly,

we modify the number of input channels to feature pyramid network accordingly.

4.5 Training Procedure

For classification experiments, we perform the experiments in two settings of 5-way

1-shot and 5-way 5-shot. Additionally, for initial experiments, we also train and test

in 20-way settings for domain transfer and joint training experiments. We train our

models for 200 epochs with learning rate = 0.001 using the Adam optimization scheme

[79]. Two other important hyper-parameters are the number of sampled batches which

are in factmini-datasets generated from the meta-data and the number of query samples

(k-query) in a sampled batch. We keep the sampled batches = 500 for both phases of

the experiments and use k-query = 5 for the initial experiments while k-query = 15 and

k-query = 10 for 5-way 1-shot and 5-way 5-shot settings of the follow-up experiments

respectively.

In the detection experiments on DIOR dataset [40], we use ImageNet pretrained back-

bones for training while the other layers are randomly initialized. We utilize the SGD

optimizer with learning rate = 0.001 and train for 12 epochs. Finally, we keep the

original image size of 800 × 800 pixels and the mini-batch size = 2.
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Results and Discussion

We evaluate three state-of-the-art efficient networks with five configurations on five

datasets for few shot classification in 5-way 1-shot and 5-way 5-shot settings. We

detail below the results obtained from our experiments.

5.1 Validation of Implementations

We first validate our implementations to the reported results on the MiniImageNet

dataset [15]. Table 5.1 shows that our results lag behind the reported ones by 2%

for Prototypical Networks and 4% for Relation Networks. We attribute this difference

to the difference in hyper-parameters settings. Furthermore, the difference of 4% for

Relation Networks is because we use the same hyper-parameters used for Prototypical

Networks and do not optimize them for Relation Networks.

ProtoNet RelationNet
5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

Reported 49.42 68.2 50.44 65.32
Ours 47.31 68.05 47.84 61.74

Table 5.1: Accuracy comparison of our implementations with the reported results on the
MiniImageNet benchmark
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5-way 1-shot 5-way 5-shot
ProtoNet RelationNet ProtoNet RelationNet

Conv-4 (baseline) 45.68 46.02 65.38 50.59

ESPNet

First 45.69 41.63 64.25 52.16
Second 47.96 43.39 65.15 55.2
Third 44.59 42.41 60.58 54.95
Half 49.78 42.84 58.85 51.38
Full 48.19 40.74 63.23 42.20

MobileNet

First 47.46 45.16 63.9 54.43
Second 49.26 44.42 66.32 55.97
Third 48.14 45.82 66.14 58.95
Half 51.36 42.94 67.63 53.64
Full 51.02 39.88 67.69 52.25

ShuffleNet

First 48.51 40.36 65.55 53.26
Second 48.11 44.78 66.25 54.99
Third 48.15 44.87 67.24 52.27
Half 46.32 40.03 65.22 53.40
Full 48.11 41.78 64.84 50.91

Table 5.2: Comparison of average accuracy between Prototypical Networks and Relation
Networks on the NWPU-RESISC45 dataset, where first, second, third, half and
full refer to different depth levels of the networks.

5.2 Generalization to Unseen Classes

To evaluate the ability to recognize unseen classes given only a few examples, we train

and test Prototypical Networks and Relation Networks with different backbones on the

NWPU-RESISC45 dataset [36]. The results are shown in Table 5.2 and depicted in

figure 5.1

Our results suggest that Prototypical Networks clearly outperform Relation Networks

in all scenarios. The apparent reason to this is that although Relation Networks learn a

non-linear distance metric which may be more discriminative than Euclidean distance,

the learning of such a metric itself requires large amounts of training. Another probable

reason might be that the relation module in Relation Networks which is responsible

for learning the distance metric is a neural network and the current design of the

network might not be suitable for aerial imagery with high within-class diversity and

between-class similarity. Finally, the poor performance of Relation Networks in part is

also attributed to the unoptimized hyper-parameters. Another observation we make is
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(a) 5-way 1-shot (ProtoNet) (b) 5-way 1-shot (RelationNet)

(c) 5-way 5-shot (ProtoNet) (d) 5-way 5-shot (RelationNet)

Figure 5.1: Average accuracy on NWPU-RESISC45 test classes. ProtoNet and RelationNet
refer to Prototypical Network and Relation Network respectively, while first,
second, third, half and full refer to different depth levels of the feature extraction
backbone.

that the MobileNet v2 with half and full depth configurations provide the maximum

accuracy advantage compared to other networks and configurations.

5.3 Effectiveness of Joint Training

We evaluate the effectiveness of joint training in two scenarios. In the first scenario,

we use the model weights from training on MiniImageNet and test on the NWPU-

RESISC45 test-set. In the second scenario, we use the results obtained from NWPU-

RESISC45 experiments. We compare the results of joint training to both sets of results

to examine if it improves the performance.
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5.3.1 Domain Transfer vs. Joint Training

Triantafillou et al. evaluated different few shot learning methods on the Meta-Dataset.

For evaluation, the authors compare the performance of models trained only on Ima-

geNet [26] with those trained on all the datasets in the Meta-Dataset. They conclude

that the performance gain achieved by training on the Meta-Dataset is not significant

compared to training only on ImageNet and in some cases joint training leads to per-

formance drop. We however observe that this might be due to the fact that all the

datasets in the Meta-Dataset belong to the domain of natural images and despite that

the datasets belong to different data distributions, they still have high degree of similar-

ity. Thus, we evaluate if joint training on two highly dissimilar data distributions leads

to performance improvement over domain transfer from one to another distribution

and our results clearly suggest that models jointly trained have superior performance

(see tables 5.3 and 5.4, and Figure 5.2).

5-way 1-shot
ProtoNet RelNet

Transfer Joint Transfer Joint
Conv-4 36.22 39.78 37.21 42.72

ESPNet_Half_Depth 40.02 45.49 32.56 20.61
ESPNet_Full_Depth 37.41 45.05 33.74 41.94

MobileNet_Half_Depth 35.99 45.26 32.97 37.57
MobileNet_Full_Depth 35.19 43.41 32.66 38.23
ShuffleNet_Half_Depth 38.04 43.21 31.61 35.46
ShuffleNet_Full_Depth 35.37 45.87 32.03 40.93

Table 5.3: Average Accuracy comparison between domain transfer and joint training on
the NWPU-RESISC45 test classes (5-way 1-shot). Note that Transfer refers to
training on MiniImageNet train classes and testing on NWPU-RESISC45 test
classes, which is a transfer from natural to satellite imagery, while Joint refers
to training jointly on MiniImageNet and NWPU-RESISC45 train classes and
testing on NWPU-RESISC45 test classes.

On a note, we would like to mention that we did not use the full ImageNet dataset

for our experiments due to memory and time constraints and opted to instead use

MiniImageNet in this work.
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5-way 5-shot
ProtoNet RelNet

Transfer Joint Transfer Joint
Conv-4 60.81 66.03 47.96 52.82

ESPNet_Half_Depth 55.31 63.89 40.14 49.66
ESPNet_Full_Depth 52.14 63.41 45.56 50.50

MobileNet_Half_Depth 53.39 66.00 45.64 47.12
MobileNet_Full_Depth 52.01 64.91 41.35 51.83
ShuffleNet_Half_Depth 53.14 62.41 39.21 55.04
ShuffleNet_Full_Depth 50.34 62.90 39.62 50.24

Table 5.4: Average Accuracy comparison between domain transfer and joint training on
the NWPU-RESISC45 test classes (5-way 5-shot). Note that Transfer refers to
training on MiniImageNet train classes and testing on NWPU-RESISC45 test
classes, which is a transfer from natural to satellite imagery, while Joint refers
to training jointly on MiniImageNet and NWPU-RESISC45 train classes and
testing on NWPU-RESISC45 test classes.

5.3.2 Sole Training vs. Joint Training

After we confirm the effectiveness of joint training, we analyse whether it also gives

a performance advantage over training solely on aerial imagery. For the purpose,

we compare the results from the NWPU-RESISC45 and joint training experiments.

Analysing the results from figure 5.3 and 5.4, we conclude that joint training usually

gives poorer performance than sole training while in some cases it shows comparable or

slightly superior results. Therefore, we infer that provided a well-designed backbone,

joint training would provide superior performance than sole training.

5.4 Effects of Varying Depth

Searching for optimal depth to increase representation power without compromising

genericity would push forward the performance and development of meta-learning mod-

els. We started with the assumption that the accuracy of models increase with depth

due to the ability to learn more powerful representations but after a threshold, the

accuracy drops due to loss in genericity.

We analyse the results in 5.1 and conclude that the effects of depth are unclear from the

graphs. Therefore, we perform another set of experiments with Prototypical Networks
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(a) 5-way 1-shot (ProtoNet) (b) 5-way 5-shot (ProtoNet)

(c) 5-way 1-shot (RelationNet) (d) 5-way 5-shot (RelationNet)

Figure 5.2: Average Accuracy comparison between domain transfer and joint training on
the NWPU-RESISC45 test classes. Note that Transfer refers to training on
MiniImageNet train classes and testing on NWPU-RESISC45 test classes, which
is a transfer from natural to satellite imagery, while Joint refers to training
jointly on MiniImageNet and NWPU-RESISC45 train classes and testing on
NWPU-RESISC45 test classes.
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(a) ESPNet (ProtoNet) (b) MobileNet (ProtoNet) (c) ShuffleNet (ProtoNet)

(d) ESPNet (RelationNet) (e) MobileNet (RelationNet) (f) ShuffleNet (RelationNet)

Figure 5.3: Average Accuracy comparison between sole training and joint training on the
NWPU-RESISC45 test classes (5-way 1-shot). Note that RESISC refers to
training on NWPU-RESISC45 train classes and testing on NWPU-RESISC45
test classes, while Joint refers to training jointly on MiniImageNet and NWPU-
RESISC45 train classes and testing on NWPU-RESISC45 test classes.

(a) ESPNet (ProtoNet) (b) MobileNet (ProtoNet) (c) ShuffleNet (ProtoNet)

(d) ESPNet (RelationNet) (e) MobileNet (RelationNet) (f) ShuffleNet (RelationNet)

Figure 5.4: Average Accuracy comparison between sole training and joint training on the
NWPU-RESISC45 test classes (5-way 5-shot). Note that RESISC refers to
training on NWPU-RESISC45 train classes and testing on NWPU-RESISC45
test classes, while Joint refers to training jointly on MiniImageNet and NWPU-
RESISC45 train classes and testing on NWPU-RESISC45 test classes.
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(a) 5-way 1-shot (b) 5-way 5-shot

Figure 5.5: Analysis of increasing network depth with Prototypical Networks. The back-
bone network used is MobileNet v2 with seven different depth levels.

and MobileNet v2 backbone using seven depth levels to gain a deeper understanding

of the effects of increasing network depth. The results shown in figure 5.5 form a zig-

zag pattern and we observe that although in the 5-way 5-shot scenario, depth level

five of MobileNet v2 gives greater accuracy than depth level two, but we observe an

accuracy drop between the two levels. Therefore, we conclude that the current de-

sign of MobileNet v2 is not specifically designed for the problem of prototype learning.

We consider it an interesting future direction to develop feature extraction networks

specifically to enhance the accuracy of few shot metric learning, or in general, the

meta-learning approaches.

5.5 Detection in Satellite Imagery

For the detection task, we first train the RetinaNet detector with ResNet-50 backbone

and compare our results to the reported results in [40]. However, the authors did not

report the training settings used and so we used the standard training setting of the

MMDetection Toolbox [78] that uses the SGD optimizer with learning rate = 0.001,

momentum = 0.9, weight decay = 0.0001 and trained for 12 epochs. The comparison

of our results (see figure 5.6) to the reported results show that our results lag behind

the reported ones by a significant margin, which we consider to be due to a difference

in training settings.

Furthermore, we train the RetinaNet detector using the same settings with the ResNet-
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Figure 5.6: Comparison of our detection results on the DIOR test set with the reported
results using the RetinaNet architecture with ResNet-50 backbone.

(a) Detection results on first 10 classes in the DIOR dataset.

(b) Detection results on last 10 classes in the DIOR dataset.

Figure 5.7: Average precision of RetinaNet on DIOR test set with different backbones.

50



Chapter 5: Results and Discussion

Figure 5.8: Mean average precision of RetinaNet with four different backbones on the DIOR
test set.

50 backbone replaced by ESPNet v2, MobileNet v2 and ShuffleNet v2. The average

precision (AP) results are shown in figure 5.7, which show that MobileNet gives the

closest results to ResNet-50, while ShuffleNet shows to be the second closest and ESP-

Net gives the poorest performance on the detection task. The mean average precision

results are shown in figure 5.8.
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Conclusion

In this work we evaluated the performance of state-of-the-art metric learning ap-

proaches on aerial imagery. Our results suggest that Prototypical Networks show better

performance than Relation Networks on a satellite dataset with less number of classes.

We also found that jointly training on base and target tasks leads to slightly improved

performance provided appropriate feature extraction backbones. Moreover, our results

suggest a need to develop deep networks specially designed for the problem of meta-

learning as well as to prepare a dataset for meta-learning consisting of classes from

highly dissimilar domains like natural, satellite and biomedical imagery. Finally, we

find that from the three competitive efficient networks we selected, the MobileNet ar-

chitecture shows better performance in both the few shot scene classification and object

detection tasks. In future, we plan to further research the effects of different architec-

tural choices in the network design space to improve the few shot learning accuracy.

Using the network learning approaches [50–54] for feature extraction, and a combi-

nation of metric learning approaches [15–17] with optimized adaptation approaches

[59–61] for classification, might prove fruitful. Yet another fascinating direction would

be to develop a semi-supervised learning approach to cater for unlabeled examples in

the train set, similar to the work by [80]. In conclusion, for accurate few shot object

detection in satellite imagery, development of relevant dataset and stronger detection

architectures would be our next course of choice.
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