
  

Modelling and Simulation of 2-Dimensional Maxwell Nanofluid 

Using Cattaneo Christov Heat Flux Model 

 

 

 

Kiran Mushtaq 

(Fall 2016-MS CSE-9 00000172507) 

A dissertation submitted in partial fulfillment of the requirements for 

Master 

in 

Computational Science and Engineering 

Supervised by 

Dr. Junaid Ahmad Khan 

Research Center for Modelling and Simulation 

National University of Sciences and Technology 

Sector H-12, Islamabad, Pakistan 

February 2020 

  



i 
 

 

Modelling and Simulation of two dimensional Maxwell nanofluid using 

Cattaneo Christov heat flux model 

 

 

Kiran Mushtaq 

(Fall 2016-MS CSE-9 00000172507) 

A dissertation submitted in partial fulfillment of the requirements for 

Master 

in 

Computational Science and Engineering 

Supervised by 

Dr. Junaid Ahmad Khan 

 

Research Center for Modelling and Simulation 

National University of Sciences and Technology 

Sector H-12, Islamabad, Pakistan 

February 2020 

 

  



ii 
 

 

 

 

 

 

Dedicated to 

 

 

 

 

 

 

My Mother  
(Shamim Akhter) 

  



iii 
 

 

Acknowledgment 

 

 

I am going to start with the thanks of ALLAH, who gave the vigor to fulfill my jobs.  

Every students projects own debt to their predecessors to their teachers, their parents and family 

and their friends. 

 I gratefully acknowledge my deep indebtedness to my supervisor Dr. Junaid Ahmad khan 

(Assistance Professor, RCMS, NUST), for his never ending promotion, provocation, precious 

supervision and his valuable time throughout my work, along with him I would like to be 

beholden to my GEC member Dr. Adnan Maqsood (HOD Research, RCMS, NUST), Dr. Ammar 

Mushtaq (Assistance Professor, RCMS, NUST) and Dr. Salma Sherbaz (Assistance Professor, 

RCMS, NUST). 

This goal was unable to achieve without the support of my parents (Mr. and Mrs. Mushtaq 

Ahmed), my husband (Mr. Musharraf Ahmad Khan), my kids (Emma and Haider), my father in-

law (Mr. Mahmood Ahmad Khan) and my brothers.  

I am also grateful to the RCMS, NUST department who supports me a lot, without their 

corporation it was impossible to complete my MS Program. 

 

Kiran Mushtaq 

 

 

 

 



iv 
 

Table of Contents 
 

Chapter 1  Introductory Background .............................................................................................. 2 

1.1 History................................................................................................................................... 2 

1.1.1 Nanofluid ....................................................................................................................... 2 

1.1.2 Applications of nanofluid .............................................................................................. 3 

1.2 Definitions............................................................................................................................. 4 

1.3 Literature Review.................................................................................................................. 6 

1.4 General Equations ............................................................................................................. 9 

1.4.1 Continuity Equation ....................................................................................................... 9 

1.4.2 Momentum Equation ..................................................................................................... 9 

1.4.3 Energy Equation........................................................................................................... 12 

1.5 Solution Methodology ........................................................................................................ 19 

Chapter 2 Simulations by homogeneous model ........................................................................... 21 

2.1 Introduction ......................................................................................................................... 21 

2.2 Problem Statement .............................................................................................................. 21 

2.3 Mathematical Modeling ...................................................................................................... 21 

2.4 Numerical Solution ............................................................................................................. 23 

2.5 Numerical Results and Discussion...................................................................................... 24 

2.6 Conclusion .......................................................................................................................... 27 

Chapter 3 Simulations by non- homogeneous model ................................................................... 31 

3.1 Introduction ......................................................................................................................... 31 

3.2 Problem Formulation .......................................................................................................... 31 

3.3 Numerical Method .............................................................................................................. 34 

3.4 Results and Discussions ...................................................................................................... 35 

3.5 Conclusion .......................................................................................................................... 37 

Chapter 4 Simulations by revised Cattaneo Christov model ........................................................ 43 

4.1 Introduction ......................................................................................................................... 43 

4.2 Mathematical Modeling ...................................................................................................... 43 

4.3 Solution Methodology ........................................................................................................ 46 

4.4 Numerical Results and Discussion...................................................................................... 47 

4.5 Conclusion .......................................................................................................................... 53 



v 
 

Chapter 5 Conclusion and Future work ........................................................................................ 55 

References: .................................................................................................................................... 56 

 

 

List of Abbreviations 

    - Cartesian coordinates 

    - Velocity component in x, y - directions 

  - Temperature 

  - Time 

  - Fluid pressure 

   - Prandtal number 

  - Thermal conductivity 

   - Specific heat capacity 

  - viscosity 

  - density 

   - Lewis number 

   - Nusselt number 

  - convective heat transfer 

   - Biot number 

   - Schmidt number 

  - mass diffusivity 

  - shear stress 

  - heat flux 

   - Brownian motion diffusion 

   - Thermophoretic diffusion 

  - Nanoparticles volume fraction 

   - fluid temperatur 

   - Ambient temperature 



vi 
 

   - Wall temperature 

   - Stream function 

  - Similarity variable 

   - fluid relaxation parameter 

   - Thermal relaxation parameter 

    - Local Nusselt number 

   - Skin friction coefficient  

   - fluid relaxation time 

   - Thermal relaxation time 

 

List of Tables 

Table 1.1 Boundary layer assumptions, the order of magnitude .................................................. 11 

Table 2.1 comparison of skin friction between the previous knowledge ..................................... 25 

Table 2.2 Thermo physical properties of non-Newtonian fluid and few nanoparticles………….24 

Table 2.3 Results of Nusselt number with variation of different parameters for five different 

nanofluids ...................................................................................................................................... 28 

Table 3.1 Numerical results of reduce Nusselt number for variation of different parameters…..41 

Table 4.1 Numerical results of reduced Nusselt number for variations of different parameters .. 52 
 

 

 

List of Figures 

Figure 2.1 Effect of different nanofluids on      ……………………………………………... 28  

Figure 2.2 Effect of Alumina       on       for different values of  φ…………………………28 

Figure 2.3 Effect of Silver    on       for different values of  φ………………………………..28 

Figure 2.4 Effect of Silver    with    on θ(η) for different values of  φ………………………..28  

Figure 2.5 Effect of Titanium Oxide with Bi on θ(η) for different values of  φ…………………28 

Figure 2.6 Effect of Copper Oxide (CuO) with   on θ(η) for different values of  φ…………….28 



vii 
 

Figure 2.7 Effect of Copper (Cu) with    and   on local Nusselt number for different values of  

Bi…………………………………………………………………………………………………29 

Figure 2.8% Difference of copper (Cu) with    and   on local Nusselt number for different 

values of  Bi…………………………...…………………………………………………………29 

Figure 2.9 Effect of Silver (    with     and   on local Nusselt number for different values of  

S………………………………………………………………………………………………….29 

Figure 2.10 % Difference of Silver (    with    and   on local Nusselt number for different 

values of  

S…………………………………………………………………………………………………29 

Figure 2.11 Effect of Silver    with    and   on skin friction coefficient for different values of  

S………………………………………………………………………………………………...29 

Figure 3.1 Effects of     and S on   ……………………………..…………………………….37 

Figure 3.2 Effects of     and S on  ……………………………………………………...……..37 

Figure 3.3 Effects of      and Nt on   …………………………………………………..….…..37 

Figure 3.4 Effect of  Pr and Sc on  ……………………………..……………………………..37 

Figure 3.5 Effect of Bi on  ……………………………………………………………………37 

Figure 3.6 Effect    and S on  ……………………………………………………………….37 

Figure 3.7 Effect of Nt, Nb on  …………………………………………………….………...38 

Figure 3.8 Effect of  Pr and Sc on  …………………………………………………………..38 

Figure 3.9 Effects of     on   ………………………………………………………………....38 

Figure 3.10 Effect of     on  ………………………………………………………….……...38 

Figure 3.11 Effect of   ,     on        for  ………………………………………….………38 

Figure 3.12 % Difference of   ,     on        for  ………………………………….………38 

Figure 3.13 Effect of        on        for  ………………………………………….……….39 

Figure 3.14 % Difference of       on        for   ……………………………….….……….39 

Figure 3.15 Effect of    on        for  ……………………………………………….……...39 

Figure 3.16 % Difference of     on        for  ………………………………………….…...39 

Figure 3.17 Effect of   ,    on        for    ………………………………………………...39 

Figure 3.18 % Difference of   ,    on        for   ………………………………………….39 

Figure 3.19 Effect of        on        for   …………………………………………………40 



viii 
 

Figure 3.20 % Difference of        on        for   ……………………………………….…40 

Figure 3.21 Effects of     and S on       ………………………………………………….….40 

Figure 4.1 Effect of    and   on   …………………………………………………………..…48 

Figure 4.2 Effect of    and   on  ………………………………………………………….…..48 

Figure 4.3 Effect of    and    on  ……………………………………………………..…...…48 

Figure 4.4 Effect of    and    on  …………………………………………………..……….48 

Figure 4.5 Effect of    and    on  ……………………………………………..……….….….48 

Figure 4.6 Effect of    on  ………………………………………………………………....…48 

Figure 4.7 Effect of    and   on  ……………………………………………………….....….49 

Figure 4.8 Effect of    and    on  ………………………………………………………....…49 

Figure 4.9 Effect of    and    on  ………………………………………………….………..49 

Figure 4.10 Effect of    and    on  …………………………………………………….…….49 

Figure 4.11 Effect of     on  ……………………………………………………………….…49 

Figure 4.12 Effect of     and   on skin friction coefficient………………………...…………..49 

Figure 4.13 Effect of    and    on        for  …………………………………..…………..50 

Figure 4.14 Effect of    and    on       for  ………………………………………..….….50 

Figure 4.15 Effect of    and    on        for  ………………………………………..….….50 

Figure 4.16 Effect of     on        for  …………………………………………..………….50 

Figure 4.17a Effects of      and Nt on   …………………………………………….………..52 

Figure 4.17b Effects of      and Nt on   …………………………………….………………..52 

Figure 4.18a Effect of  Pr and Sc on  ………………………………………………………...52 

Figure 4.18b Effect of  Pr and Sc on  ………………………………………………………..52 

Figure 4.19a Effect of Nt, Nb on  …………………………………………………………....53 

Figure 4.19b Effect of Nt, Nb on  …………………………………………………………...53 

Figure 4.20a Effect of  Pr and Sc on  …………………………………………………….….53 

Figure 4.20b Effect of  Pr and Sc on  …………………………………………………….….53 

 

 



1 
 

Abstract 

 

Boundary layer flows have a vast application in various fields due to heat transfer. Now scientist 

and researchers are using nanofluids, which is an engineered heat transfer fluid prepared by 

nanometer sized particles, for enhancing the heat transfer rate. As our main work was on 

Maxwell materials (which are also known as Maxwell fluids) the governing equations for 

nanofluid were developed by combining upper convective Maxwell fluid model and Cattaneo 

Christov heat flux model. In order to formulate the mathematical model of nanofluid, non- 

homogeneous model and homogeneous model were considered. Simulations were performed on 

Ethanol based non-Newtonian nanofluid for 2-dimension boundary layer flow due to the linearly 

stretching sheet. As in non-homogeneous model heat flux is the sum of conductive heat flux and 

diffusive heat flux due to nanoparticles, while doing literature review it was observed that the 

part of diffusive heat flux is neglected in the derivation of energy equation for non-homogeneous 

model using Canttaneo-Christov heat flux model which is incorporated in this thesis. The 

numerical results were obtained using Keller-Box method and bvp4c in Matlab. Thermal 

relaxation parameter and fluid relaxation parameter are exhibiting the increasing behavior on 

thermal boundary layer profile and skin friction coefficient respectively with homogeneous 

model. In non-homogeneous model Prandtl number, thermal relaxation parameter and Brownian 

motion parameter are reducing the thickness of thermal boundary layer and concentration 

boundary layer. For revised Canttaneo-Christov heat flux model we have obtained unrealistic 

results for high values of Brownian motion parameter. The results are present in both tabular and 

graphically in their respective chapters and the conclusions are present at the end. 
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Chapter 1  

Introductory Background 

 
In this chapter we have discussed the background of the boundary layer, nanofluid, along and the 

basics definitions of different parameters which were used in the given exposition. Derivation of 

governing equations for non-Newtonian fluid is described, at the end of this chapter the solution 

methodology is discussed. 

1.1 History 
 

Boundary layer is a compelling part in fluid mechanics. It forms in the layer of fluid in the 

immediate vicinity of bounding surface. In this area the viscosity effect is very important. In 1904, a 

group of mathematicians and scientists gathered in Germany for third international mathematics 

congress. In this conference Ludwig Prandtl [1] presented the concept of boundary layer theory. 

Prandtl’s PhD student Blasius solved first boundary layer problem to overcome the conundrum 

of turbulence. He solved this problem by using analytical techniques and obtains the solution in 

terms of series expansion. Crane [2] did the work on the extension of Blasius flow in 1970 that is 

boundary layer on stretching sheet. Mostly it happens in the making of plastic sheets. He focused 

on heat conduction in the linear stretching sheet. 

1.1.1 Nanofluid  
 

In twenty first century it has seen a marvelous development in technological industry. “The 

concept of Nano science is based on a phrase “there’s a plenty of room at the bottom” by the 

noble prize-winning physicist Richard Feynman in 1959. He proposed the concept of micro 

machines. In 1974 scientist Norio Taniguchi used the term nanotechnology. Masuda at el 

discovered in 1993 that both viscosity and thermal conductivity can be enhanced by dispersing 

nanometer-sized metallic particles in the fluid, following them in 1995 Choi and Eastman [3] 
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prepared nanofluid successfully in Argonne laboratory USA. After that nanofluids grab the 

attention of the researchers almost all over the world. 

Nanofluid is a suspension which is made by non-metallic or a metallic particle in any kind of 

fluid such as liquid, gas etc. After having these particles this fluid has a better response of heat 

transfer [4].  

We have two types of nanofluid. Metallic nanofluid which fluid have a metallic nanoparticles 

such as aluminum, copper, nickel etc, known as metallic nanofluid and nonmetallic nanofluid 

which fluids are having nonmetallic nanoparticles such as metal oxide, allotropes of carbon 

(diamond, graphite) etc.  

Nanofluid has some very special qualities such as:  

 Rise in thermal conductivity.  

 Better stability.  

 Reduction of clogging and erosion.  

 Better heat transfer ability.  

1.1.2 Applications of nanofluid  
 

It has a various fields of application in engineering such as:  

 Electronic cooling  

 Transportation (Engine cooling/Vehicle thermal management)  

 Nuclear system cooling  

 Medical equipment’s  

 Heat exchanger  

 Transformer  

 Rotating machinery  

 Gas turbine rotors  

 Air cleaning mechanic’s  

 heating, Chillers Other applications (Heat pipes, Fuel cell, Solar water, Drilling, 

Lubrications)  
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1.2 Definitions 
Some useful terminologies are described below: 

 Prandtl number is a dimensionless quantity, which is defined as a ratio between the 

kinematic viscosity and a thermal diffusivity. 

   
                   

                   
 

 
 ⁄

 
   ⁄

 
   

 
 

(1.1) 

Where                       ,                          ,             

 Lewis number is a dimensionless number and describes as a ratio between the 

thermal diffusivity and the mass diffusivity. 

   
                   

                
 

 
   

⁄

 
 

 

    
 

(1.2) 

Where                       ,   density,    specific heat capacity,   =mass diffusivity 

 Nusselt number is used to calculate the heat transfer between a moving fluid and a 

solid body. It is also a dimensionless quantity and defined as 

   
                        

                        
 

 

 
 ⁄
 

  

 
 

(1.3) 

Where                                       ,         ,                         

 Biot number is a dimensionless quantity and is used to calculate the heat transfer at 

and inside the surface of solid body. 

   
   

 
 

(1.4) 

Where                              ⁄ ,                                        , 

                       

 Schmidt number is a dimensionless quantity and defined as the ration between the 

kinematic viscosity and mass diffusivity. 

   
                   

                
 

 

 
 

(1.5) 
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 Sherwood number helps to calculate mass transfer and define as the ratio between 

convective mass transfer and a diffusion rate. It is also a dimensionless number. 

   
                        

              
 

 

 
 ⁄

 
  

 
 

(1.6) 

Where                                        ,                         ,   

                   

Rayleigh number exhibits the instability of layer of fluid which becomes due to the density 

and temperature difference. 

 Brownian motion defined as a random motion of particles (which are dispersed in a 

fluid) as the consequences of their collision with the other moving particles in the fluid. 

 Thermophoresis defined as a response of a different moving particle towards the 

temperature gradient in a fluid. 

 Darcy model describes the flow of fluid through the porous medium which was 

formulated by Henry Darcy. 

 Similarity Parameters the dimensionless solution depends on the group of non-

dimensional parameters. These parameters are known as similarity parameters. 

 Newtonian fluids a fluid which holds the linear relationship between the shear stress 

and rate of change of deformation are known as Newtonian fluid. Air and water are the 

example of Newtonian fluids. 

   
  

  
 

(1.7) 

 

 Non-Newtonian fluids a fluid which holds the non-linear relationship between the 

shear stress and rate of change of deformation are known as non-Newtonian. Except 

water and air all fluids are the example of non-Newtonian fluids. 

   (
  

  
*
 

 
(1.8) 
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1.3 Literature Review 
 

Nanofluids are formed with nanoparticles and base fluids; they are designed to have high thermal 

conductivity. Earlier heat transfer rate of nanofluid was calculated by traditional fluid 

correlations such as Dittus-Boelter’s but it does not gives accurate solutions in high temperature 

and rough surface.  

In generally nanofluid exhibits high thermal conductivity effect, this behavior is due to thermal 

dispersion and the reason of the intensified turbulence is the motion of nanoparticles. To check 

the validity of this assumption Buongiorno [5] consider the seven slip mechanisms in 2006. 

These mechanisms produce relative velocity between nanoparticles and base fluid. After that 

work we came to conclude that among these seven slip mechanisms only Brownian diffusion and 

Thermophoresis parameters are dominant in nanofluids. In sight of these results Buongiorno 

describes nanofluid with a non-homogenous equilibrium models for mass, momentum and heat 

transfer, so to neglect the transfer of energy which is due to dispersion of nanoparticles. 

In 2008 Christov has proposed the new version of Fourier’s law which is known as Cattaneo 

Christov heat flux model. According to Fourier law temperature raises abruptly in spite of that 

Christov considered some relaxation time. Tzou [6] worked in 2008 about the thermal 

uncertainty in nanofluids. He focuses to observe the combined behavior of Brownian motion and 

Thermophoresis of nanoparticles, also he observed that the critical Reyleigh number for 

nanofluids exhibit lower than for regular fluid. Highly promoted turbulence increases the energy 

y bearing capacity of nanofluids, because of this entire overall heat transfer coefficient increases 

rather than increase in thermal conductivity alone. The important equations are calculated by 

using non-dimensional parameters. In 2009 Kuznetsov and Nield [7] calculated the effect of 

nanofluids on natural convection boundary layer flow in a porous medium. He considered the 

Darcy model for momentum equation with simplest boundary conditions. He calculated the 

Nusselt number Nu by using the Brownian motion Nb, Lewis number Le, Thermophoresis 

parameter Nt, Buoyancy-ratio parameter Nr, which depict the wall heat flux. Incompressible 

Newtonian fluid with gravity acting downwards was considered by Straughan [8] in 2009. For 

heat flux phenomena Cattaneo Christov model was taken by author. 
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Khan and Pop [9] exhibit first paper on stretching sheet in nanofluids in 2010. They considered a 

nanofluid model which is based on Brownian motion and Thermophoresis for laminar fluid flow. 

They calculated the reduce Sherwood number and reduced Nusselt number by using the 

Brownian motion and Thermophoresis parameter for different values of Prandtl number and 

Lewis number (Schmidt number in actuality error in paper ). After their analysis we came to 

know that the reduce Nusselt number is a decreasing function for all dimensionless parameters 

instead of that for all values of Lewis number, Brownian motion and Thermophoresis, the reduce 

Sherwood number is an increasing function for higher Prandtl number and decreasing function 

for lower Prandtl number.  

In 2010 Kuznetsov and Nield [10] again worked on nanofluid natural convective boundary layer 

flow which past a vertical plate. Now they concentrated on analytical solution. They considered a 

nanofluid model which includes the effect of Brownian motion and Thermophoresis parameter. 

The solution was depended on five different parameters. The analysis depicts for all the values of 

Buoyancy-ratio, Brownian motion, Thermophoresis parameter the reduced Nusselt number is a 

decreasing function. Cortell [11] worked on numerical comparison of Blasius and Sakiadis flow.  

In 2011 Makinde and Aziz [12] focused on numerical study of the boundary layer flow of 

nanofluids which forms due to linearly stretching sheet. They also considered the model which 

incorporates the effect of Brownian motion and Thermophoresis. After the solution it was 

noticed that the thickness of thermal boundary layer increases with the strong effect of Brownian 

motion, thermophoresis. Lewis number (Schmidt number) shows a small effect on temperature 

distribution. For fixed Thermophoresis, Brownian motion, Prandtl number, Lewis number the 

concentration profile increases with the increased Biot number but as the Lewis number 

increases the concentration profile decreases. When the Brownian motion and Thermophoresis 

parameter intensify with the fixed Prandtl number, Lewis number and Biot number the reduce 

Nusselt number decreases and the reduce Sherwood number increases.  

Hatami et al. [13] concentrated on laminar flow. He worked on boundary layer flow of 

nanofluids on rotating disk. For thermal conductivity Chon model and for viscosity Brinkman 

model considered. Fourth order Runge Kutta Fehlberg and least method was used to solved the 

governing equations. After the calculation it depicts that temperature increases with the 

increment on s. For coupled flow (a flow in which temperature gradient produce both an electric 
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current flow and heat flow) Shihao Han considered an upper convective Maxwell fluid with 

Cattaneo Christov heat flux model on stretching sheet in 2014.  

In 2015 Mustafa et al. [14] worked on so called Bӧdewadt boundary layer flow. Bӧdewadt flow 

is rotating flow far away from the rotating disk. After applying the similarity transformation, the 

governing equations are highly non-linear. After the solution of the equations it is clearly seen 

that temperature profile is decreasing even for an ordinary strength. This result is very significant 

in practical application, as it shows due to this system may be cool down soon.  

Abu Bakar et al. [15] worked on boundary layer of stretching sheet by using non-homogeneous 

model. By using the similarity parameters transformed the governing partial differential 

equations into non-linear ordinary differential equations. He applied the shooting method to 

solve these equations. After the result it is clearly seen that with the increment of φ Brownian 

motion and thermophoresis parameters decreases and the heat transfer rate increases. Cattaneo 

christov heat flux model with upper convective Maxwell fluid over a exponentially stretching 

surface was examined by Ahmad et al. [16]. 

Ali and Sandeep [17] in 2016 focused on magneto hydrodynamic casson-ferrofluid over a cone 

with nonlinear radiation effects and variable source/sink, Cattaneo Christov heat flux model was 

considered. Anticipatedly nanoparticles were moving in the base fluid but the motion of 

nanoparticles become uniformly after applying the magnetic field. 3-dimension Cattaneo 

Christov heat flux model with Maxwell fluid was examined by Munir and Shehzad [18]. In this 

case sheet was stretching bi-directionally. In same year rotating flow of upper convective 

Maxwell fluid with Cattaneo Christov heat flux model was observed by Mustafa et al. [19]. 

MHD 3-dimension of UCM fluid over a bi-directional stretching surface was examined by 

Rubab and Mustafa [20] and Cattaneo Christov heat flux model was taken by her instead of 

Fourier law. 

MHD Maxwell fluid with Cattaneo heat flux model on non-Darcy porous medium was under 

consideration by Muhammad et al. [21] in 2017. Imran et al. [22] introduced a chemical reaction 

model with Maxwell fluid in 2017. In the same year for mass transfer MHD flow of an upper 

convective Maxwell fluid and for heat transfer Cattaneo Christov heat flux model over a 

stretching sheet was focused by Shahid et al. [23]. Thermal radiation and chemical reaction 

effects are also considered. 



9 
 

First time turbulent non-Newtonian nanofluids were investigated in 3-D micro tube by Rahimi et 

al. [24]. The researcher obtained the results which are fruitful for those who work on cooling 

system in electronic devices. Performance of non-Newtonian with TiO2 nanoparticles and the 

solution of carboxymethyl cellulose in square channel was under consideration by Amani et al. 

[25]. Non-Newtonian nanofluids with aluminum oxide through the applications of different slip 

conditions was studied by Goodarzi et al. [26]. Flow and heat transfer of pseudo-plastic non-

Newtonian nanofluids with suction injection was followed by Maleki and Reza [27]. He also did 

the comparison between the behavior of Newtonian nanofluid and non-Newtonian nanofluid. In 

non-Newtonian fluid nonlinear jerk equation of velocity for non-uniform oscillation was studded 

by Zongmin and Zhang [28]. This particular model is established by experimental data. 

Casson nanofluid flow past over a swirling cylinder with Cattaneo-Christov heat flux was 

discussed by Alebraheem and Ramzan [29] in 2019. Sodium alginate non-Newtonian nanofluid 

between two vertical flat plates focused by Saadatmandi and Shateri [30]. Parand t al. [31] 

worked on Powell-Eyring non-Newtonian fluid over a stretching sheet. Unsteady natural 

convective flow of Newtonian, non-Newtonian fluid in a square closure was presented by 

Pishkar et al. [32]. G. Sarojamma et al. [33] considered Cattaneo-Christov heat flux model with 

autocatalytic chemical reaction in 2019. 

 

1.4 General Equations 
 

The continuity, momentum and energy equation of Newtonian, non-Newtonian fluid are given 

below. Let us consider an isothermal, incompressible, steady flow. Where   is the velocity vector,   

is the density,   is the viscosity of fluid. 

1.4.1 Continuity Equation 
Continuity equation of Newtonian and non-Newtonian is same and given below: 

      (1.9) 

1.4.2 Momentum Equation 
Momentum equation is given as: 
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            (1.10) 

Where        , we are not considering any pressure terms    . Now the above equation 

becomes 

            

 

(1.11) 

Where   is extra stress tensor defined as       where             is first Rivlin 

Ericksen tensor. The above is the momentum equation for Newtonian fluid. In case of Maxwell 

fluid the   is defined by the following relation 

(    

 

  
*       

(1.12) 

In this equation   is fluid relaxation time, 
 

  
 is convective time derivative. For any vector A we 

have 

 

  
     

 

  
                       

(1.13) 

Now applying   on both sides of equation (1.12) 

  (    

 

  
*           

 

(1.14) 

(    

 

  
*          

(1.15) 

From equation (1.11) replace the value of    , so the above equation becomes, 

(    

 

  
*  

  

  
       

(1.16) 

From equation (1.13) for i=1, j=1, 2, 3 

 

  
(
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(1.17) 

 

And the following terms are defined as 
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(1.18) 

Table 1.1 Boundary layer assumptions, the order of magnitude 

 

Variables Order of 

magnitude 

    

 

  
 

  

    

 

  
 

 

 
 

     

By using all these above equations, equation (1.16) becomes for x - component 

 
  

  
  

  

  
   (  

   

   
    

   

    
   

   

   
)   (

   

   
 

   

   
) 

(1.19) 

 

Where   is the kinematic viscosity, similarly the equation for y - component  

 
  

  
  

  

  
   (  

   

   
    

   

    
   

   

   
)   (

   

   
 

   

   
) 

(1.20) 

 

Now use the boundary layer assumption, the order of magnitude. The above equation (1.20) 

vanishes and equation (1.19) becomes 
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   (  

   

   
    

   

    
   

   

   
)   (

   

   
) 

(1.21) 

 Momentum equation for nanofluid 

We will follow two different types of models for transportation of nanofluid. 

 Homogeneous  

 Non-Homogeneous 

In homogeneous [34] model viscosity is 
   

   
 instead of 

 

 
, so the momentum equation becomes 

 
  

  
  

  

  
   (  

   

   
    

   

    
   

   

   
)  

   

   
(
   

   
) 

 

(1.22) 

Where density of nanofluid is    , dynamic viscosity of nanofluid       , they are defined as: 

    
  

        
   

                 (1.23) 

Where   is the nanoparticle volume fraction,    is the dynamic viscosity of base fluid,    is the 

density of the base fluid,    is the density of the nanoparticle material. The equation(1.21) 

remains same in homogeneous [35] model. 

 

1.4.3 Energy Equation 
Energy equation is given as: 

                 (1.24) 

Where   is the heat flux using Fourier law, T is the temperature and      is specific heat 

capacity. 

Heat flux in Cattaneo Christov heat flux model is obtained by following relationship: 

(    

 

  
*        

(1.25) 
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 Energy equation for nanofluid 

For transportation of nanofluid in energy equation we will follow the same models. First we will 

focus on homogeneous model then a detailed derivation of non-homogeneous model. 

 Homogeneous Model 

In Cattaneo Christov heat flux for homogeneous model the kinematic viscosity changes, the 

above equation (1.25) becomes: 

(    

 

  
*         

(1.26) 

After simplifying the above equation (1.26), it becomes 
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(1.27) 

Where     is the thermal diffusivity of nanofluid, it is defined as: 

    
   

       
  

(1.28) 

   

  
 

(      )           

(      )          
  

(1.29) 

             (   )           (1.30) 

Where   is the nanoparticle volume fraction,     is the thermal conductivity of nanofluid, in 

which    is thermal conductivity of base fluid and    is the thermal conductivity of the 

nanoparticle material and         is the effect of heat capacity of nanofluid, in which (   )  is 

the effective heat capacity of base fluid and (   )  is the effective heat capacity of nanoparticle 

material. 

 Non-Homogeneous Model 

Cattaneo Christov [36] heat flux model for non-homogeneous model in literature is given as: 

(    

 

  
*        (1.31) 
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(1.32) 

Where    is a fluid relaxation time,   is a heat flux and defined as            ,   is a 

thermal conductivity and      shows nanoparticles term,    is the specific enthalpy and defined 

as       ,    is a diffusive mass flux and defined as             ,      is defined as      

       , in which   is a Brownian motion diffusion coefficient,      is defined as      

     
  

  
, in which    is a Thermophoretic diffusion coefficient. The above equation (1.31) is 

used in present literature and the derivation is already available. 

While having the literature review it was notified that the part of heat flux due to nanoparticles 

diffusion is neglected as in equation (1.31), after including that part in the derivation of energy 

equation using Cattaneo-Christov heat flux model and non-homogeneous model is given below: 

   (
  

  
     *              

(1.33) 

In the above equation      shows nanoparticles behavior term. 

Equation (1.31) after adding diffusive heat flux term becomes  

(    

 

  
*            

(1.34) 

(    (
  

  
                 *+            

(1.35) 

Applying    On both sides of the above equation, so the above equation becomes 

  (    (
  

  
                 *+                

(1.36) 

Now  
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        (
  

  
                 *                  

 

(1.37) 

      (  (
  

  
*                              +

                       

(1.38) 

 

As we have                       , as we are considering steady flow 
  

  
  . 

                                             

                                   

 

(1.39) 

                                                

 

(1.40) 

         {      }                      (1.41) 

 

From equation (1.33) replace the value of     in above equation,  

    (
  

  
     *           (  {(    (

  

  
     *        * }*

                     

 

(1.42) 

   (
  

  
     *    (  {(    (

  

  
     *        * }*

              

(1.43) 

 

For steady flow 
  

  
  , 

            (  {(                 ) })               (1.44) 
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Now solve this part first, 

  {(                 ) }

 (                 )       (                 ) 
(1.45) 

 

As      , 

  {(                 ) }     (                 )

   ( (          )           * 
(1.46) 

 

We have        and              
  

  
   so,            (      

     
  

  
   ) 

and           (      
     

  

  
   )         (      

     
  

  
   )  

 

Replace the value of           in equation (1.46) 

  {(                 ) }

   ( (          )  (      
     

  

  
   *    

    (      
     

  

  
   * * 

 

(1.47) 

  {(                 ) }

   ( (   )  
       (    

   
  

  
   * (   )   

 (   ) (     
   

  

  
    * * 

 

(1.48) 
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  {(                 ) }

  (   )   {       }

 (   ) {  (    
   

  

  
   *  

   (     
   

  

  
    * } 

(1.49) 

Replace this value in equation (1.44) 

(   ) 
         ( (   ) 

  {       }

 (   ) {  (    
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   (     
   

  

  
    * }*               

 

(1.50) 

Replace the value of        (          
  

  
   )        in above equation 

(   ) 
         ( (   )   {       }  (   ) {  (    

   

  

  
   )     (     

   
  

  
    ) })        (        

  
  

  
   )         

 

(1.51) 

(   ) 
         ( (   )   {       }  (   ) {  (    

   

  

  
   )     (     

   
  

  
    ) })  

      (   ) (         
  

  
      )   

(1.52) 

 

It is the vector form of Cattaneo Christov heat flux model for nanofluid. In order to get its partial 

differential equation put the values of   opretaor. 



18 
 

 
  

  
  

  

  
   [  

   

   
   

   

   
    

   

    
 ( 

  

  
  

  

  
*
  

  

 ( 
  

  
  

  

  
*
  

  

 
(   ) 
(   ) 

(   (
   

   
 

   

   
)
  

  
    (

   

   
 

   

   
)
  

  

 
  

  
 (

   

   
 

   

   
)
  

   
 

  

  
 (

   

   
 

   

   
)
  

  
     

   

   

     
   

     
     

   

     
     

   

   
 

  

  
  

   

   

 
  

  
  

   

     
 

  

  
  

   

     
 

  

  
  

   

   
)]

 
 

     
(
   

   
 

   

   
)

 
     
     

*  (
  

  

  

  
 

  

  

  

  
*  

  

  
(
  

  
*
 

 
  

  
(
  

  
*
 

+ 

(1.53) 

Use the boundary layer assumptions, the order of magnitude. The above equation (1.53) becomes 
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(1.54) 
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So above equation is the partial differential equation of Cattaneo christov heat flux model with 

nanofluids. 

 Equation of Transportation of nanoparticles 

 

Now the equation for nanoparticle concentration without any chemical reaction can be written as  

  

  
       

 

  
     

(1.55) 

In which   is the nanoparticle volume fraction and    is defined as             . Replace the 

value of    in above equation, 
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(1.56) 
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(1.57) 
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(1.58) 

We are considering the steady state flow and after using boundary layer assumptions, the order 

of magnitude. The above equation becomes 
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)  
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) 

(1.59) 

 

1.5 Solution Methodology  
 

The governing equations are partial differential equation and in order to solve these equations 

first of all we used similarity parameters. With the help of these parameters we will be able to 

convert our partial differential equation into ordinary differential equation, also these parameters 

non-dimensionalized our equations. After that we will take help with a renounced numerical 

method namely Keller-box method. This method works with the collaboration of newton’s 

linearization technique which is described by Cebeci and Bradshanin 1948, the basic idea of 

Keller-box method is to write the governing equation in form of first order system. For this 
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purpose insert few dependent variables to decrease the order of ordinary differential equations. 

After that use the centered-difference scheme for the derivatives and average to get the finite 

difference equation [37] then apply the newton’s method. The resulting equations are written in 

matrix vector form and these equations are solved by block tridiagonal elimination method.  
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Chapter 2 

Simulations by homogeneous model 

 

2.1 Introduction 
 

In this chapter we discussed about the flow and heat transfer of non-Newtonian nanofluids 

(upper convective Maxwell fluid) over a stretching sheet with convective boundary conditions. 

We are considering Ethanol as a non-Newtonian fluid as its Prandtl number is 18.05. To fulfill 

this purpose we utilize homogeneous with using five different types of nanoparticles namely 

Copper Oxide (CuO), Copper (Cu), Sliver (Ag), Titanium Oxide (TiO2), Alumina (AI2 O3). For 

heat transport Catteno-Christov heat flux model is considered by us. The performance of 

different parameters such as stretching parameter, thermal relaxation parameter, suction 

parameter and Biot number are examined and exhibits their action by plotting graphs. 

2.2 Problem Statement 
 

Investigate the flow and heat transfer behaviour of Maxwell nanofluid incorporate with Cattaneo 

Christov heat flux model. 

 

2.3 Mathematical Modeling 
 

Let us consider 2-dimension incompressible, steady flow of non-Newtonian nanofluid over a 

stretching sheet. Fluid is moving due to the stretching and suction of surface. Convective heat 

transfer is also considered due to the presence of hot fluid which is below the surface. 
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The derivation of governing equations of mass, momentum and energy by using the 

homogeneous is discussed in chapter 1 (equation 1.9, 1.22 and 1.27) these equations are given 

below: 
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(1.22) 
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(1.27) 

Where     the density of nanofluid is,     is the dynamic viscosity of nanofluid,     is the 

thermal diffusivity of nanofluid. 

Boundary conditions for our problem are given below 

                       

  

  
   (    )             

                        

(2.1) 

Where     represents the velocity components,    depicts the vertical velocity on surface.      

Shows the suction velocity,      shows the injection velocity.   denotes the temperature,    is 

fluid temperature    shows the ambient temperature,    shows the convective heat temperature. 

    is thermal conductivity which is defined in equation (1.28). 

For these equations we are going to use the following similarities transformations. 
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(2.2) 
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By using these similarities transformation, the required PDE’s are transformed into following 

ordinary differential equations and also boundary conditions are transformed. 

(   
  

 

        (     
  

  
*
,            

             (2.3) 

(

 
       

  (     
    

    

)

    
 

)

 
 

          
        (2.4) 

                                                 

                                 (2.5) 

Where        is the relaxation parameter,        is thermal relaxation parameter,   
  

√  
 

is suction parameter,    
(   ) 

  
  is a Prandtl number. 

Local Nusselt number and skin friction coefficient are defined as respectively     
   

  (     )
 , 

   
  

   
. Where    (    

  

  
|    ) and    (    

  

  
|    ). 

After using the non-dimensional quantities in local Nusselt number and skin friction coefficient, 

they transformed as: 

          
   

  
 

(2.6) 

   
 

        
       

(2.7) 

2.4 Numerical Solution 
 

The system of above non-dimensionalized equations (2.3) and (2.4), of momentum and energy 

equations with their corresponding boundary conditions (2.5) are solved by using the Keller-box 

method. As our system is in form of third ordered equation so first we reduced our system of 

equations (2.3) and (2.4) into first order equation by inserting these new variables: 
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(2.8) 

These variables transformed our system as: 

    
                        (2.9) 

       
                 (2.10) 

Where    
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)

  and    
      

  (     
    
    

)

 

Now in ordered to get the finite difference equation we use centered difference derivatives and 

averages, after that follow the Newton’s method to linearize the non-linear system of our 

equations.  Then these linearized difference equation write as the system of matrix vector form 

which is known as tridiagonal matrix form and these matrices solved by using Block-Elimination 

method. For this purpose use the MATLAB code with tolerance 10
-6.

 

2.5 Numerical Results and Discussion 
 

Before keeping an eye on the results of physical effects we are going to validate our results with 

the previous knowledge. For the purpose of affirmation taking the value of skin friction 

coefficient with Abel et al. [38], Megahed et al. [39], Sadeghy et al. [40], Mukhopadhyay et al. 

[23], Shahid et al. [23]. These values are calculated for       , which negates the 

presences of   relaxation parameter and magnetic field. Table 2.1 performs the association of the 

present results with the previous knowledge and the results of the given table show the 

reasonable settlement. Table 2.2 has thermo physical properties of non-Newtonian fluid 

(Ethanol) with few nanoparticles. 
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Table 2.1 comparison of skin friction between the previous knowledge with 

the present results for        

 

 Abel et al. 

[38]  
Megahedet 

al. [39] 
Sadeghy et 

al. [40]  
Mukhopadhyay et 

al. [23] 
Shahid et al. 

[23]  
Present 

results 

    -0.999962 -0.999978 -1.000000 -0.999996 -1.000000 -1.000000 

 

  

Table 2.2 Thermo physical properties of non-Newtonian fluid and few 

nanoparticles 

       
                           

Ethanol 2840 789 0.169 

Silver (Ag)  

 

235 10500  

 

429 

 

Titanium Oxide(TiO2) 

 

686.2 

 

4250 

 

8.9538 

 

Copper oxide (CuO) 

 

531.8 

 

6320 

 

76.5 

 

Copper (Cu) 

 

385  

 

8933 

 

401  

 

Alumina (Al2O3) 

 

765  

 

3970 

 

40 

 

 

Now the focus on the investigation of the physical effects for the multiple parameters such as 

  relaxation parameter,    thermal relaxation parameter, S Suction parameter, Pr Prandtl 

number, Bi Biot number and for the different values of concentration  .  Figure 2.1 shows the 

effect of different nanofluids on      . The diagram leads us to make the conclusion that velocity 

boundary layer profile of Alumina Oxide is the largest among of all nanoparticles it is also noted 

that its density is the lowest among all, followed by Titanium Oxide. Nanoparticles of Titanium 
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Oxide are denser than Alumina, Copper Oxide, Copper and Silver respectively, on the other hand 

there boundary layer thickness are smaller. The figure shows that the thickness of the velocity 

boundary layer profile depends on density. Figure 2.2, 2.3 shows the behavior of velocity 

boundary layer profile for Alumina Oxide and Silver with different values of phi. Figure 2.2 

portrait that increment in concentration does not leaves a major impact on profile, on the other 

hand in figure 2.3 increment in concentration does leaves a major impact on profile for silver 

based nanofluid. As we know that the density of Alumina Oxide is less than the others. 

Therefore, velocity boundary layer profile with the augmentation of concentration is clearly 

affected by density of nanoparticles and showed that concentration influence is significant for 

denser nanoparticles. Increasing nanoparticle concentration reduces velocity boundary layer and 

this behavior is significant in denser nanoparticle. Figure 2.4 represents the effects of thermal 

boundary layer with the variation of concentration and thermal relaxation parameter. With the 

advancement of thermal relaxation parameter thermal boundary layer decreases and opposite 

behavior depicted by increasing concentration. Figure 2.5 shows the positive impact on the 

thermal boundary layer with the increment of Biot number and this actions remains the 

consistence with the rest of nanofluids. Increasing suction decrease thermal boundary layer 

which is clearly seen by figure 2.6 and this effect is not only valid for Copper Oxide nanofluid 

but also for all other nanoparticles. Figure 2.7 and 2.8 shows the behavior of thermal relaxation 

parameter and concentration of nanoparticles for different values of Biot number. As the 

behavior of these parameters is almost same for all nanoparticles so here it is only given with the 

copper. It is clearly depicted in figure, that the increasing values of concentration, thermal 

relaxation parameter and Biot number, profile of Nusselt number is showing increasing behavior 

for these parameters. Figure 2.8 shows the percentage difference in Fig. 2.7 we can observe same 

slope for all profile however Fig. 2.8 display that increasing relaxation parameter and Biot 

number reduce profile slope/rate of change. Variation of relaxation parameter does not leaves a 

significant impact on rate of change of surface temperature whereas suction parameter shows the 

significant impact as depict in Fig. 2.9, the effect of relaxation parameter remains same for all 

nanofluids considered. Figure 2.10 depicts the effect of relaxation parameter, suction as a 

function of concentration in terms of percentage difference to observe rate of change, with 

increasing value of relaxation parameter slop of local Nusselt number decreases and it also 

decreases with suction. Figure 2.11 portrait effects of relaxation parameter and suction both 
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influence the skin friction coefficient. As they arise so do the coefficient. Table 2.3 shows the 

numerical results of Nusselt number with the various values of different parameters for five 

different nanofluids. 

2.6 Conclusion 
 

Effects of Upper-Convective Maxwell nanofluid with Cattaneo Christov heat flux model is 

examined in this chapter. Numerical computations are performed by Keller-box method. The major 

points of this work are summarized below:  

 

1. Relaxation parameter is an increasing function of skin friction coefficient. 

2. Skin friction coefficient and Nusselt number are increasing function of concentration. 

3. Increase in thermal relaxation parameter increases Nusselt number  

4. Increase in Biot number increases thermal penetration depth and Nusselt number. 

5. Increase in Suction parameter increases skin friction coefficient and Nusselt number. 

6. The slope of Nusselt number reduces with relaxation parameter     , thermal relaxation 

parameter     , Biot number      and suction    . 
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Table 2.3  Results of Nusselt number with variation of different parameters 

for five different nanofluids 

 

        S Bi Ag- 

Ethanol 

TiO2- 

Ethanol 

CuO - 

Ethanol 

Cu - 

Ethanol 

AI2O3- 

Ethanol 

0.05 0.5 0.05 0.4 10 5.4631 5.4877 5.5289 5.5295 5.5118 

0.1 5.8223 5.8827 5.9688 5.9691 5.9325 

0.2 6.5369 6.6981 6.8874 6.8853 6.8059 

0.1 0.1 5.8586 5.9038 5.9942 6.0002 5.9534 

0.5 5.8223 5.8827 5.9688 5.9691 5.9325 

0.5 0.01 5.4827 5.5359 5.6149 5.6137 5.5841 

0.05 5.8223 5.8827 5.9688 5.9691 5.9325 

0.05 0 3.5452 3.6051 3.6462 3.6340 3.6383 

0.4 5.8223 5.8827 5.9688 5.9691 5.9325 

0.4 5 4.0522 4.0628 4.1207 4.1228 4.1013 

10 5.8223 5.8827 5.9688 5.9691 5.9325 
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Figure 2.1 Effect of different nanofluids on       Figure 2.2 Effect of Alumina       with    on 

      for different values of  φ 

Figure 2.3 Effect of Silver    with   on       for 

different values of  φ 

Figure 2.4 Effect of Silver    with    on θ(η) 

for different values of  φ 

Figure 2.5 Effect of Titanium Oxide with Bi on 

θ(η) for different values of  φ 

Figure 2.6 Effect of Copper Oxide (CuO) with   

on θ(η) for different values of  φ 
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Figure 2.7 Effect of Copper (Cu) with    and   on 

local Nusselt number for different values of  Bi 

 

Figure 2.8% Difference of copper (Cu) with    

and   on local Nusselt number for different 

values of  Bi 

Figure 2.9 Effect of Silver (    with     and   on 

local Nusselt number for different values of  S 

 

Figure 2.10 % Difference of Silver (    with    

and   on local Nusselt number for different 

values of  S 

 

Figure 2.11 Effect of Silver    with     and   on skin friction coefficient for different values of  S 
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Chapter 3 

Simulations by non-homogeneous model 
 

3.1 Introduction 
 

This chapter deals with the same problem as in chapter 2 the difference is the nanofluid model in 

the previous chapter we used homogeneous (Tiwari Das) model however in this chapter we are 

using non-homogeneous (Buongiorno) model along with standard Cattaneo Christov heat flux 

model. This model shows the importance of Brownian diffusion and thermophoresis parameter. 

Suitable similarity transformation leads us towards the system of non-linear differential equation. 

This system is solved numerically by using the Keller-box method. 

3.2 Problem Formulation 
 

Let us considered the 2-dimension, steady, incompressible flow over linearly stretching sheet. 

The sheet is stretching in x-direction with velocity      where   is constant, also suction 

effects considered on surface      . Maxwell model is considered for Maxwell fluid and for 

heat transfer Cattaneo-Christov model is considered. Let   shows the temperature whereas    be 

the surface temperature and    denotes the ambient temperature of fluid. Let   shows the 

concentration of nanoparticle whereas    depicts the concentration of nanoparticle on surface 

and    denotes the ambient concentration of nanoparticles. 

After considering the non-homogeneous model for nanofluids, we can express our equations of 

conservation of mass, momentum and energy in form of partial differential equation as 

(discussed the derivation in chapter 1, equation 1.9, 1.21 1.32 and 1.59): 

  

  
 

  

  
   

(1.9) 
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(1.21) 

 

Where     represents the velocity component along     axis,    is the fluid relaxation time,   

is the kinematic viscosity. 
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(1.32) 

Where     are the velocity component along     axis respectively,   is temperature,    is a 

thermal relaxation time,   is a thermal conductivity,       is the specific heat capacity of  base 

fluid,       is the specific heat capacity of particles,    is Brownian diffusion coefficient,     is 

the Thermophoretic diffusion coefficient and    shows the ambient temperature. 
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(1.59) 

Where     represents the velocity components,   is the nanoparticles concentration,    is 

Brownian diffusion coefficient,    is the Thermophoretic diffusion coefficient and    shows the 

ambient temperature. 

Now the required boundary conditions for the considered specific problem are 

                    
  

  
   (    )     

  

  
              

(3.1) 
                                                              

In which   is a thermal conductivity,    is the convective heat transfer coefficient of fluid 

and     is fluid temperature. In the above equations using the following suitable similarity 

transformation, 
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(2.2) 

     
    
     

               
    

     
 

(3.2) 

By using the given similarities transformation, Eq. (1.9) identically satisfy and  the required 

PDE’s are transformed into following ordinary differential equations and also boundary 

conditions are transformed . 

      
              

             (3.3) 
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(3.4) 

    
  

  
            

(3.5) 

                                                              

(3.6) 
                                        

Where    is the elasticity parameter,    is the thermal relaxation parameter,       ⁄  is a 

Prandtl number,                        ⁄  is the Brownian motion parameter,    

                      ⁄  is the Thermophoresis parameter,       ⁄  is a Schmidt 

number,     √  ⁄  is a suction parameter and    
 

 
√

 

 
  is Biot number.  

Local Nusselt number    is defined as: 

    
   

  (     )
 (3.7) 

Where    (    
  

  
|    ), using this local Nusselt number becomes  

           (3.8) 

 

Skin friction coefficient    also defined as: 
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(3.9) 

Where     (    
  

  
|    ) and using this Skin friction coefficient becomes 

          (3.10) 

 

3.3 Numerical Method 
 

The above non-dimensionalized equations (3.3), (3.4), (3.5) of mass, momentum, energy and 

concentration equation with their concerned boundary conditions (3.6) are solved by using the 

Keller-Box method. For this purpose, firstly introduce the new dependent variables. 

                        

(3.11) 
               

               

 These variables transformed the above system of third ordered differential equations (3.3), (3.4), 

(3.5) into the system first ordered differential equation and it becomes, 

      
                     (3.12) 

(
 

  
    

 *                          
(3.13) 

   
  

  
          

(3.14) 

In order to gets the finite difference equation, the above equations solved by using the centered 

difference scheme for derivatives and averages, after that using Newton’s method to linearize the 

non-linear system of our equations.  Then these linearized difference equation write as the 

system of matrix vector form which is known as tridiagonal matrix form and these matrices 

solved by using Block-Elimination method. For this purpose use the MATLAB code with 

tolerance 10
-6

. 
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3.4 Results and Discussions 
 

In this section we are going to analysis the physical effects for different parameter    relaxation 

parameter,   Suction parameter,    thermal relaxation parameter, Pr is Prandtl number, Sc is 

Schmidt number, Nt is Thermophoresis parameter, Nb is Brownian motion parameter, Bi is Biot 

number. Figure 3.1 shows    and   effects on velocity profile. It presents the increase in suction 

parameter will decrease the velocity boundary layer profile in spite of that it shows increment in 

case of injection. For the relaxation parameter, velocity boundary layer profile decreases with the 

increment in parameter. In figure 3.2 with the increasing value of     temperature boundary layer 

profile also increases despite to that on the other hand with the increasing value of suction 

thermal boundary layer decreases. In case of injection thermal boundary increases and shows the 

opposite reaction than the suction. So from the figure 3.1 and 3.2 we can make a decision that in 

case of suction/injection velocity and thermal boundary layer both shows the same reaction 

regardless of that they both depict the contrasting behavior with relaxation parameter. Figure 3.3 

illustrate decline with the increasing value of     which means that if thermal relaxation time 

increases it shows decreasing affects on temperature boundary layer, also this figure portrait with 

the accumulation of thermophoresis parameter thermal boundary layer also increases. On the 

thermal boundary layer, Schmidt number is not showing any significant effects but with the 

enlarging Prandtl number it is clearly notified that thermal boundary layer depreciates, we can 

take this decision from figure 3.4. That means kinematic viscosity left opposite effects on 

temperature profile. Prandtl>10 shows non-Newtonian fluid, so if kinematic viscosity increases 

in non-Newtonian fluid the thickness of thermal boundary layer becomes lesser. The effect of 

Biot number on thermal boundary layer shows in figure 3.5. Biot number is the ratio between the 

convective heat transfer coefficient and the thermal conductivity. The accumulation in 

convective heat transfer coefficient depicts the same response in the thickness of thermal 

boundary layer.  

The figure 3.6 – 3.10 shows the behavior of concentration profile with different parameters. 

Figure 3.6 shows the performance of relaxation parameter along with suction parameter on 

concentration boundary layer thickness. It depicts that enlarging relaxation parameter also lifting 

concentration profile upward side, same response is noticed for injection and against of that in 
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case of suction concentration profile dragging downward side. The response of Brownian motion 

parameter and Thermophoresis parameter is published in figure 3.7. The both parameters are 

showing opposite response towards each other as with the expansion of Thermophoresis 

parameter the thickness of concentration profile rises. But on the other hand with the 

accumulation in Brownian motion parameter the boundary layer profile of concentration 

decreases. Figure 3.8 represent the performance of Prandtl number and Schmidt number on 

concentration boundary layer. Schmidt number is the ratio between the viscous diffusion and 

mass diffusion so concentration profile shrinks due to less mass diffusion but with the thermal 

diffusion this profile shrinks.  Biot number is the ratio of heat transfer coefficient and thermal 

conductivity. Concentration profile not only arises but also drags towards infinity with the 

addition of heat transfer coefficient; figure 3.9 clearly leaves the impact of this action. Increment 

in thermal relaxation parameter shows the incorporate response in concentration boundary layer 

profile, figure 3.10. Performance of relaxation parameter and thermal relaxation parameter for 

different values of suction is representing by figure 3.11. Increasing value of    shows 

decreasing behavior in spite of that thermal relaxation parameter shows its opposite behavior, it 

arises with boosted values. This diagram also portrait increase in reduced Nusselt number with 

suction. Figure 3.12 depicts almost same rate of change for these values and these parameters 

have linear function. Expansion of Prandtl number illustrates development with the expanded 

value of Schmidt number and also for suction it is shown in figure 3.13. Figure 3.14 shows their 

rate of change, means for the larger values of Prandtl number increase the surface temperature 

but there relative rate of change will reduce, also the heat transfer rate is a non-linear function of 

Schmidt number. Increase in thermophorises parameter reduces the heat transfer rate as shown in 

figure 3.15. Thermophorises parameter is a non-linear function and with its increasing value its 

rate of change also increases this can be seen by figure 3.16. Figure 3.17 and 3.18 characterize 

the behavior of relaxation parameter and thermal relaxation parameter on        for Biot 

number, both parameter portrait declines with larger values. Nusselt number rate of change 

decreases with the increase of thermal relaxation parameter. On the other hand behavior of 

Prandtl number and Schmidt number is opposite of Biot number. Nusselt number is a non-linear 

function of Schmidt number and rate of change increases with bigger values of the parameters 

shown in figure 3.19 and 3.20. Behavior of skin friction coefficient shows by figure 3.21, 

increasing the value of relaxation parameter shows more resistance on surface.  
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Table 3.1 represents the numerical results of reduces Nusselt number with variation of different 

parameters. 

3.5 Conclusion 
 

This chapter studies the effects of non-homogeneous model on Upper-Convective Maxwell 

nanofluid with Cattaneo Christov heat flux model. The results relaxation parameter, thermal 

relaxation parameter, suction, and Biot number are in agreement with the previous study of chapter 2. 

The additional effects of non-homogeneous model are summarized below:  

 

1. Prandtl number increase reduce the thermal boundary layer and increase Nusselt number, but 

the slope of Nusselt number reduces with the increase in Prandtl number. 

2. Skin friction coefficient is an increasing function of relaxation parameter. 

3. Thermophoresis parameter reduce Nusselt number while slope of Nusselt number increases. 

4. Temperature and concentration profile increase with thermophoresis parameter. 

5. Brownian motion parameter reduces concentration profile. 

6. Schmidt number reduces the penetration depth of temperature and concentration but remain 

neutral for Nusselt number.  
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Figure 3.1 Effects of     and S on    Figure 3.2 Effects of     and S on   

Figure 3.3 Effects of      and Nt on    Figure 3.4 Effect of  Pr and Sc on   

 

Figure 3.5 Effect of Bi on   Figure 3.6 Effect    and S on   
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Figure 3.7 Effect of Nt, Nb on   
 

Figure 3.8 Effect of  Pr and Sc on   

Figure 3.9 Effects of     on    
Figure 3.10 Effect of     on   

Figure 3.11 Effect of   ,     on        for   
 

Figure 3.12 % Difference of    ,     on        
for   
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Figure 3.13 Effect of         on        for   Figure 3.14 % Difference of        on        

for    

Figure 3.15 Effect of     on        for   Figure 3.16 % Difference of     on        for   

Figure 3.17 Effect of   ,    on        for    Figure 3.18 % Difference of   ,    on        

for    
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Figure 3.19 Effect of         on        for    Figure 3.20 % Difference of         on        

for    

 

 

Figure 3.21 Effects of     and S on        
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Table 3.1 Numerical results of reduce Nusselt number for variation of 

different parameters 

 

                              

0.5 0.05 0.1 0.5 0.5 15 20 0.1 0.0972063 

1 0.0971746 

1.5 0.0971433 

0.5 0.01 0.0971634 

0.05 0.0972063 

0.07 0.097227619 

0.05 0 0.0960739 

0.1 0.0972063 

0.1 0.1 0.0974718 

0.5 0.0972063 

1 0.0967914 

0.5 0.5 0.0972063 

1 0.0972063 

1.5 0.0972063 

0.5 10 0.0964325 

15 0.0972063 

20 0.0976554 

15 10 0.0971891 

15 0.0971989 

20 0.0972063 

20 1 0.537005 

10 0.0578211 
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Chapter 4 

Simulations by revised Cattaneo Christov 

model  
 

4.1 Introduction  
 

In this chapter the basic problem is the same as in previous difference is the use of Cattaneo 

Christov model in association with non-homogeneous model Heat flux   in original Cattaneo 

Christov heat flux model is defined by the following differential equation. 

(    

 

  
*       (1.33) 

However in non-homogeneous model it state that effective heat flux is the sum of conductive 

heat flux and heat flux due the nanoparticle diffusion as             therefore we feel that 

it is logical to modify the above equation as follows 

(    

 

  
*            (1.35) 

As (1.33) is for homogeneous mixture whereas (1.35) should represent nonhomogeneous 

mixture. The detailed derivation is given is chapter 1.  

4.2 Mathematical Modeling 
 

Let us consider a 2-dimension, steady incompressible fluid over a stretching sheet. The sheet is 

moving with velocity      in x-direction, where   is constant.       Suction effects on 

surface. Maxwell model is considered for non-Newtonian fluid. Cattaneo-Christov heat flux 

model with nanofluid is adopted for heat transport. Let u, v is the velocity component along x-, 

y-axis, T denotes the temperature    and    are temperature at wall and ambient temperature 

respectively.   is concentration of nanoparticles and   ,    are the concentration on wall and 

ambient concentration of nanoparticles respectively. Transportation of nanoparticles is observed 

by using non-homogeneous model.  
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By considering all the above assumptions the detailed derivation of our mathematical model is 

given in chapter 1 equatigon 1.9, 1.21, 1.54 and 1.59 and given below: 
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) (1.59) 

 

Where    is the fluid relaxation time,    is a thermal relaxation time,   is a thermal conductivity, 

  is the kinematic viscosity.       is the specific heat capacity of particles,       is the specific 

heat capacity of  non-Newtonian fluid,    is Brownian diffusion coefficient and    is the 

Thermophoretic diffusion coefficient. The above equations are the required partial differential 

equations with the following boundary conditions. 
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   (    )     

  

  
              

 

                 
  

  
      

      
  

  
                      

(4.1) 

First condition at     shows the stretchiness in sheet, second condition represents suction 

effect on the surface if      shows the suction velocity and      shows injection velocity, 

and third condition shows convective heat transfer in which   is a thermal conductivity,    is the 

convective heat transfer coefficient of fluid,    is fluid temperature.    represents ambient 

temperature and    represents ambient concentration of nanoparticles respectively. The 

following similarity transformation is used in the above equations in order to attain required 

ordinary differential equation.  

   √
 

 
               √        

(2.2) 

     
    
     

               
    

     
 

(4.2) 

Equation (1.9) satisfies by using these transformations and equation (1.21), (1.54) and (1.59) are 

converted into following ordinary differential equations. 

      
              

             (4.3) 

                 (   
  

 

  
       

 *    

     
         

                             

           

(4.4) 

    
  

  
            

(4.5) 

Where        is the relaxation parameter, Nt is Thermophoresis parameter and defines as 

                         ⁄ ,        is thermal relaxation parameter,    

        ⁄ ,     is a Prandtl number and define as      ⁄ , Brownian motion parameter 

define as                        ⁄  and       ⁄  is a Schmidt number. Their 

boundary conditions are also transformed in following form: 
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(4.6)                                          

                         

In which     √  ⁄  is a suction parameter and Bi is a Biot number which is defines as    

 

 
√

 

 
.  

The skin friction coefficient is defined as: 

   
  
   

 
(4.7) 

 

And local Nusselt number is defined as: 

    
   

  (     )
 

(4.8) 

 

In which    (    
  

  
|    ) and    (    

  

  
|    ) after using these, our skin friction 

coefficient and local Nusselt becomes as: 

           (4.9) 

          (4.10) 

. 

4.3 Solution Methodology  
 

In order to solve the above non-dimensionalized ordinary differential equations (4.3), (4.4) and 

(4.5) along with their boundary conditions (4.6) we will follow an implicit finite difference 

scheme known as Keller-box method. In first step import few new dependent variables 
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. 

                       

(4.11) 
                       

                        

Insert these variables (4.11) in above equations (4.3), (4.4) and (4.5) so they transformed into 

first order differential equations: 

      
                     (4.12) 

               (   
  

 

  
       *                  

                             

(4.13) 

  
  

  
         

(4.14) 

In order to gets the finite difference equation, the above equations solved by using the centered 

difference scheme for derivatives and averages, after that using Newton’s method to linearize the 

non-linear system of our equations.  Then these linearized difference equation write as the 

system of matrix vector form which is known as tridiagonal matrix form and these matrices 

solved by using Block-Elimination method. For this purpose use the MATLAB code with 

tolerance 10
-6

. 

 

4.4 Numerical Results and Discussion  
 

In this section we will discuss the numerical results of nonlinear differential equation (4.12)-

(4.14) which are calculated by using the Keller-box method. These results are for different 

parameters such as    relaxation parameter,    thermal relaxation parameter,   Suction 

parameter,    is Biot number,    is Thermophoresis parameter,    is Brownian motion 

parameter,    is Prandtl number,    is Schmidt number and   . 
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In figure 4.1 we present the effect of relaxation parameter and suction parameter on      . 

Increasing value of relaxation parameter and suction parameter shows the reduction in velocity 

boundary layer thickness. Effect of these two parameters on temperature boundary layer 

represents in figure 4.2, bigger value of these parameters shows the increment in thermal 

boundary layer. Variation of thermal relaxation parameter depicts the mix behavior towards the 

thermal boundary layer on the other hand increment in Biot number increase boundary layer as 

shown in figure 4.3. The figure 4.4 is representing the demeanor of thermophoresis parameter 

and browning motion parameter on thermal boundary layer. Thermophoresis parameter increases 

  whereas Brownian motion parameter reduces. Prandtl number and Schmidt number 

performance is in figure 4.5, which is clearly seen that due to Prandtl number thermal boundary 

decreases and with Schmidt number thermal boundary layer reduces. Figure 4.6 showing the 

behavior of    and it depicts that increasing value of    thermal boundary layer also increases. 

Figure 4.7 – 4.11 are presenting the concentration profile of nanoparticles. Relaxation parameter 

leaves positive impact on concentration boundary layer but suction drags downwards 

concentration boundary layer profile according to figure 4.7. Thermal relaxation parameter 

showing the mix behavior and Biot number both is showing the decreasing profile in figure 4.8. 

Figure 4.9 representing the actions of Brownian motion parameter and Thermophoresis 

parameter on concentration boundary layer. It is clearly seen that concentration boundary layer 

arises with bigger values of   , and    is showing increasing behavior towards this profile. 

Figure 4.10 is showing the performance of Prandtl number and Schmidt number. So 

concentration profile showing the decreasing behavior with increasing value of Prandtl number 

and Schmidt number is also presenting the decreasing behavior towards it. In figure 4.11    is 

presenting the mix demeanor towards the concentration bounder layer. Figure 4.12 is 

representing the skin friction coefficient attitude and it is showing the decreasing behavior with 

the increasing value of relaxation parameter. Figure 4.13 is showing effect of    and    on rate 

of change of surface temperature as a function of S,    is showing reduction in the rate of change 

of surface temperature on the other hands    is depicting mix behavior. Figure 4.14 representing 

the performance of Brownian motion parameter and Thermophoresis parameter on        for 

suction. With    surface heat transfer rate is increasing and    showing a decreasing behavior. 

Prandtl number and Schmidt number both are showing the positive response towards        in 

figure 4.15 Increasing    reduces surface heat transfer rate as shown in figure 4.16. 
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Figure 4.1 Effect of    and   on       Figure 4.2 Effect of    and   on   

Figure 4.3 Effect of    and    on   Figure 4.4 Effect of    and    on   

Figure 4.5 Effect of    and    on   Figure 4.6 Effect of    on   
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Figure 4.7 Effect of    and   on   Figure 4.8 Effect of    and    on   

Figure 4.9 Effect of    and    on   Figure 4.10 Effect of    and    on   

Figure 4.11 Effect of     on   Figure 4.12 Effect of     and   on skin friction 

coefficient 
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Figure 4.13 Effect of    and    on        for   Figure 4.14 Effect of    and    on       for   

Figure 4.15 Effect of    and    on        for   Figure 4.16 Effect of     on        for   
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Table 4.1 Numerical results of reduced Nusselt number for variations of 

different parameters 

 

                                 

0.5 0.5 0.1 0.5 0.02 15 15 0.1 5 0.0962001 

0.9 0.0962388 

1.5 0.0961447 

0.5 0.1 0.0962182 

0.5 0.0962001 

1 0.0965349 

0.5 0.05 0.0940419 

0.1 0.0962001 

0.1 0.1 0.0975514 

0.3 0.0995651 

0.5 0.101194 

0.5 0.01 0.0870721 

0.02 0.0913148 

0.03 0.093306 

0.02 10 0.094676 

15 0.0962001 

20 0.0970834 

15 10 0.0961453 

15 0.0962001 

20 0.0962568 

15 0.1 0.0962001 

0.2 0.184996 

0.1 5 0.0962001 

10 0.096131 
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4.5 Conclusion 
 

In Chapter 3 and 4 we have tried to solve same problem using two different mathematical 

formulations. Chapter 3 formulations can be found in most of the literature available, during this 

study we have noticed that in available literature researchers neglected the part of heat flux due 

to nanoparticle diffusion which affect the governing ODEs of energy and concentration. This 

missing term is added in chapter 4 and re-formulates the problem. Although we have obtained 

the numerical results but solution show a nonrealistic and oscillatory behavior for this new 

problem when plotted for the same parameters. The realistic results for some particular 

ranges/smaller values of Brownian motion parameter are given above in fig4.2 to fig 4.6 while 

the nonrealistic is given in figures (b) below. 

 

Figures from Chapter 3 Figures from Chapter 4 

Figure 4.17a Effects of      and Nt on    Figure 4.17b Effects of      and Nt on    

Figure 4.18a Effect of  Pr and Sc on   Figure 4.18b Effect of  Pr and Sc on   
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Figure 4.19a Effect of Nt, Nb on   Figure 4.19b Effect of Nt, Nb on   

 

Figure 4.20a Effect of  Pr and Sc on   Figure 4.20b Effect of  Pr and Sc on   
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Chapter 5 

Conclusion and Future work 
 

In this exposition we focused on non-Newtonian (upper convective Maxwell fluid) along with 

Cattaneo Christov heat flux model and obtained the numerical results through homogeneous 

model and non-homogeneous model. Velocity boundary layer profiles for all three problems 

does not affects as its mathematical model remains same for them. On the other hand 

temperature profiles vary problem to problem. For homogeneous model Ethanol is taken as a 

base fluid along with five various types of nanoparticles. It is a homogenous model and it shows 

increases skin friction coefficient with suction and relaxation parameter. In spite of that local 

Nusselt number shows opposite affects with relaxation parameter. Recently researchers has 

started work on hybrid model of homogeneous model, so in future we can continue our work 

with Hybrid model and compare the results. Non-homogenous model of calculating nanofluid 

behavior is Buongiorno model and it’s also considers concentration profiles of nanoparticles. 

First we have examined the problem by using the same model, which is already presented in the 

literature. Relaxation parameter, thermal relaxation parameter, Prandtal number, Schmidt 

number all the parameters are showing positive response and Thermophoresis parameter is 

decreasing towards the reduced Nusselt number with suction. Reduced Nusselt number, along 

with relaxation parameter, thermal relaxation parameter, Prandtl number and Schmidt number is 

showing decreasing response for Biot number. Likewise the homogeneous model, in non-

homogeneous model skin friction coefficient is showing the increasing behavior with suction. 

During the study of non-homogeneous model it is notified that the part of heat flux due to 

nanoparticle diffusion is neglected which is an important term. We have added that term in 

governing equation of energy and solved first problem related to revise Cattaneo Christov model. 

In spite of the fact we obtained the numerical solutions but the solution shows oscillatory/ 

unrealistic behavior for the modified model. So through this problem not only grabbed the 

attention of researchers but also invites them to solve more problems using this revised model.  

 

  



56 
 

 

References: 
 

[1] J. D. Anderson, “Ludwig Prandtl’s boundary layer,” Phys. Today, vol. 58, no. 12, pp. 42–

48, 2005. 

[2] L. J. Crane, “Flow past a stretching plate,” Zeitschrift für Angew. Math. und Phys. ZAMP, 

vol. 21, no. 4, pp. 645–647, 1970. 

[3] S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with 

nanoparticles,” ASME Int. Mech. Eng. Congr. Expo., vol. 66, no. March, pp. 99–105, 

1995. 

[4] S. Mukherjee, “Preparation and Stability of Nanofluids-A Review,” IOSR J. Mech. Civ. 

Eng., vol. 9, no. 2, pp. 63–69, 2013. 

[5] J. Buongiorno, “Convective Transport in Nanofluids,” J. Heat Transfer, vol. 128, no. 3, p. 

240, 2006. 

[6] D. Y. Tzou, “Thermal instability of nanofluids in natural convection,” Int. J. Heat Mass 

Transf., vol. 51, no. 11–12, pp. 2967–2979, 2008. 

[7] A. V. Kuznetsov and D. A. Nield, “The Cheng-Minkowycz problem for natural 

convective boundary layer flow in a porous medium saturated by a nanofluid: A revised 

model,” Int. J. Heat Mass Transf., vol. 65, pp. 682–685, 2013. 

[8] B. Straughan, “Thermal convection with the Cattaneo-Christov model,” Int. J. Heat Mass 

Transf., vol. 53, no. 1–3, pp. 95–98, 2010. 

[9] W. A. Khan and I. Pop, “Boundary-layer flow of a nanofluid past a stretching sheet,” Int. 

J. Heat Mass Transf., vol. 53, no. 11–12, pp. 2477–2483, 2010. 

[10] A. V. Kuznetsov and D. A. Nield, “Natural convective boundary-layer flow of a nanofluid 

past a vertical plate,” Int. J. Therm. Sci., vol. 49, no. 2, pp. 243–247, 2010. 

[11] R. C. Bataller, “Numerical Comparisons of Blasius and Sakiadis Flows,” Malaysian J. 



57 
 

Ind. Appl. Math., vol. 26, no. 2, pp. 187–196, 2010. 

[12] O. D. Makinde and A. Aziz, “Boundary layer flow of a nanofluid past a stretching sheet 

with a convective boundary condition,” Int. J. Therm. Sci., vol. 50, no. 7, pp. 1326–1332, 

2011. 

[13] M. Hatami, M. Sheikholeslami, and D. D. Ganji, “Laminar fl ow and heat transfer of nano 

fl uid between contracting and rotating disks by least square method,” Powder Technol., 

vol. 253, pp. 769–779, 2014. 

[14] M. Mustafa, J. A. Khan, T. Hayat, and A. Alsaedi, “On Bödewadt flow and heat transfer 

of nanofluids over a stretching stationary disk,” J. Mol. Liq., vol. 211, pp. 119–125, 2015. 

[15] N. A. Abu Bakar, N. Bachok, and N. M. Arifin, “Boundary layer flow and heat transfer in 

nanofluid over a stretching sheet using Buongiorno model and thermophysical properties 

of nanoliquids,” Indian J. Sci. Technol., vol. 9, no. 31, pp. 1–9, 2016. 

[16] J. A. Khan, M. Mustafa, T. Hayat, and A. Alsaedi, “Numerical study of cattaneo-christov 

heat flux model for viscoelastic flow due to an exponentially stretching surface,” PLoS 

One, vol. 10, no. 9, pp. 1–10, 2015. 

[17] M. E. Ali and N. Sandeep, “Cattaneo-Christov model for radiative heat transfer of 

magnetohydrodynamic Casson-ferrofluid: A numerical study,” Results Phys., vol. 7, pp. 

21–30, 2017. 

[18] F. M. Abbasi and S. A. Shehzad, “Heat transfer analysis for three-dimensional flow of 

Maxwell fluid with temperature dependent thermal conductivity: Application of Cattaneo-

Christov heat flux model,” J. Mol. Liq., vol. 220, pp. 848–854, 2016. 

[19] M. Mustafa, T. Hayat, and A. Alsaedi, “Rotating flow of Maxwell fluid with variable 

thermal conductivity: An application to non-Fourier heat flux theory,” Int. J. Heat Mass 

Transf., vol. 106, pp. 142–148, 2017. 

[20] K. Rubab and M. Mustafa, “Cattaneo-Christov heat flux model for MHD three-

dimensional flow of Maxwell fluid over a stretching sheet,” PLoS One, vol. 11, no. 4, pp. 

1–16, 2016. 



58 
 

[21] T. Muhammad, A. Alsaedi, S. A. Shehzad, and T. Hayat, “A revised model for Darcy-

Forchheimer flow of Maxwell nanofluid subject to convective boundary condition,” 

Chinese J. Phys., vol. 55, no. 3, pp. 963–976, 2017. 

[22] M. I. Khan, M. Ijaz Khan, M. Waqas, T. Hayat, and A. Alsaedi, “Chemically reactive flow 

of Maxwell liquid due to variable thicked surface,” Int. Commun. Heat Mass Transf., vol. 

86, no. June, pp. 231–238, 2017. 

[23] A. Shahid, M. M. Bhatti, O. A. Bég, and A. Kadir, “Numerical study of radiative Maxwell 

viscoelastic magnetized flow from a stretching permeable sheet with the Cattaneo–

Christov heat flux model,” Neural Comput. Appl., vol. 30, no. 11, pp. 3467–3478, 2018. 

[24] A. Rahimi Gheynani et al., “Investigating the effect of nanoparticles diameter on turbulent 

flow and heat transfer properties of non-Newtonian carboxymethyl cellulose/CuO fluid in 

a microtube,” Int. J. Numer. Methods Heat Fluid Flow, vol. 29, no. 5, pp. 1699–1723, 

2019. 

[25] M. Amani, P. Amani, M. Bahiraei, and S. Wongwises, “Prediction of hydrothermal 

behavior of a non-Newtonian nanofluid in a square channel by modeling of 

thermophysical properties using neural network,” J. Therm. Anal. Calorim., vol. 135, no. 

2, pp. 901–910, 2019. 

[26] M. Goodarzi, “Slip velocity and temperature jump of a non-Newtonian nano fl uid , 

aqueous solution of carboxy-methyl cellulose / aluminum oxide nanoparticles , through a 

microtube,” Int. J. Numer. Methods Heat Fluid Flow, vol. 29, no. 5, pp. 1606–1628, 2018. 

[27] H. Maleki and M. Reza, “Flow and heat transfer in non-Newtonian nanofluids over porous 

surfaces,” J. Therm. Anal. Calorim., vol. 135, no. 3, pp. 1655–1666, 2019. 

[28] Z. Wu and R. Zhang, “Learning physics by data for the motion of a sphere falling in a 

non-Newtonian fluid,” Commun. Nonlinear Sci. Numer. Simul., vol. 67, pp. 577–593, 

2019. 

[29] J. Alebraheem, “Flow of nanofluid with Cattaneo – Christov heat flux model,” Appl. 

Nanosci.,vol. 35, no. 7, pp. 756, 2019. 

[30] A. Saadatmandi, “Sinc‑collocation method for solving sodium alginate (SA) 



59 
 

non‑Newtonian nanofluid flow between two vertical flat plate,” J. Brazilian Soc. Mech. 

Sci. Eng., vol. 41, p. 158, 2019. 

[31] K. Parand, “A rational approximation to the boundary layer flow of a non‑Newtonian 

fluid,” J. Brazilian Soc. Mech. Sci. Eng., vol. 41, p. 125, 2018. 

[32] I. Pishkar, B. Ghasemi, A. Raisi, and S. M. Aminossadati, “Numerical study of unsteady 

natural convection heat transfer of Newtonian and non-Newtonian fluids in a square 

enclosure under oscillating heat flux,” J. Therm. Anal. Calorim., vol. 1, no. m, 2019. 

[33] G. Sarojamma, R. V. Lakshmi, P. V. S. Narayana, and I. L. Animasaun, “Exploration of 

the Significance of Autocatalytic Chemical Reaction and Cattaneo-Christov Heat Flux on 

the Dynamics of a Micropolar Fluid,” J. Appl. Comput. Mech., vol. 6, no. 1, pp. 77–89, 

2020. 

[34] R. K. Tiwari and M. K. Das, “Heat transfer augmentation in a two-sided lid-driven 

differentially heated square cavity utilizing nanofluids,” Int. J. Heat Mass Transf., vol. 50, 

no. 2007, pp. 2002–2018, 2018. 

[35] J. Buongiorno, “Convective Transport in Nanofluids,” J. Heat Transfer, vol. 128, no. 3, p. 

240, 2006. 

[36] C. I. Christov, “On frame indifferent formulation of the Maxwell – Cattaneo model of 

finite-speed heat conduction,” Mech. Res. Commun., vol. 36, no. 4, pp. 481–486, 2009. 

[37] M. Z. Salleh, “Mathematical Model For The Boundary Layer Flow Due To A Moving Flat 

Plate,” University Teknologo Malaysia, 2014. (Phd. Thesis) 

[38] M. S. Abel, J. V Tawade, and M. M. Nandeppanavar, “MHD flow and heat transfer for the 

upper-convected Maxwell fluid over a stretching sheet,” Springer Link, vol. 47, no. 2, pp. 

385–393, 2012. 

[39] A. M. Megahed, “Variable fluid properties and variable heat flux effects on the flow and 

heat transfer in a non- Newtonian Maxwell fluid over an unsteady stretching sheet with 

slip velocity Variable fluid properties and variable heat flux effects on the flow and heat 

tra,” Chinese Phys. B, vol. 22, no. 9, p. 094701, 2013. 



60 
 

[40] K. Sadeghy, H. Hajibeygi, and S. Taghavi, “Stagnation-point flow of upper-convected 

Maxwell fluids,” Int. J. Non. Linear. Mech., vol. 41, pp. 1242–1247, 2006. 

 

  



61 
 

function Draft_bvp4c 

% F    F'    G    G'    H     T     T' 

% f(1) f(2)  f(3) f(4)  f(5)  f(6)  f(7) 

% clc 

% clear all 

L        = 10; 

 

ls       = {'-' '--' '-.' ':'}; 

lc       = {'r' 'g' 'b' 'k' 'y' 'c' 'm'}; 

% p = [0 0.05 0.1 0.2]; 

%% solution 

 

  

 

a1=1.4; 

a2=0.09; 

S1=0.2; 

Pr=11; 

Nb=0.05; 

Nt=0.5; 

NtNb = Nt/Nb; 

Sc=20; 

r=0.1; 

 

 

sol = bvpinit(linspace(0,L, 10), [0 0 0 0 0 0 0]);% [1 0 0 0 0]) 

linspace(0,6, 25) first value and other on linspace(0, 5, 25) 

for f and linspace(0,6, 25) for theta 

sol1 = bvp5c(@bvp3D, @bc3D, sol); 

xsol = linspace(0,L, 200); 

ysol = deval(sol1,xsol); 

 

ysol(:, 1) 

plot(xsol, ysol(2, :),'LineStyle',ls{1},'Color',lc{1}) 

hold on 

% plot(xsol, ysol(4, :),'LineStyle',ls{1},'Color',lc{2}) 

% hold on 

% plot(xsol, ysol(6, :),'LineStyle',ls{1},'Color',lc{3}) 

% hold on 

 

% F    F'    F''    T(0)   T'(0)    P(0)    P'(0) 

% f(1) f(2)  f(3)   f(4)    f(5)    f(6)     f(7) 

    function res = bc3D(f0, finf) 

         

        res  = [f0(1)-S1; f0(2)-1; finf(2); f0(5)+r*(1-f0(4)); 

finf(4); f0(7); finf(6)]; 
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    end 

 

    function fvec = bvp3D(t,f) 

         

        ff1     =  (f (2)^2 -f(1)*f(3) - 

2*a1*f(1)*f(2)*f(3))/(1-a1*f (1)^2); 

        ff2     =  (a2*f(1)*f(2)*f(5) - f(1)*f(5) - Nt*f (5)^2 - 

Nb*f(5)*f(7))/((1/Pr) -a2*f (1)^2); 

        ff3     =  -(NtNb*ff2 +Sc*f(1)*f(7)); 

        fvec  = [f(2); f(3); ff1; f(5); ff2; f(7); ff3]; 

        %         here only give derivatives with oder 

    end 

 

end 
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function Draft_bvp4c 

% F    F'    G    G'    H     T     T' 

% f(1) f(2)  f(3) f(4)  f(5)  f(6)  f(7) 

clc 

% clear all 

L        =5; 

 

ls       = {'-' '--' '-.' ':'}; 

lc       = {'r' 'g' 'b' 'k' 'y' 'c' 'm'}; 

% p = [0 0.05 0.1 0.2]; 

%% solution 

 

  

 

        a1=0.5; 

        a2=0.09; 

        S1=0.05; 

        Pr=11; 

        Nt=0.5; 

        Nb=0.05; 

        Tr=5; 

        NtNb = Nt/Nb; 

        Sc=20; 

        r=.1; 

 

sol = bvpinit(linspace(0,L, 10), [S1 0 0 0 0 0 0 0 0]);% [1 0 0 

0 0]) linspace(0,6, 25) first value and other on linspace(0, 5, 

25) for f and linspace(0,6, 25) for theta 

sol1 = bvp4c(@bvp3D, @bc3D, sol); 

xsol = linspace(0,L, 200); 

ysol = deval(sol1,xsol); 

 

ysol(:, 1) 

plot(xsol, ysol(2, :),'LineStyle',ls{1},'Color',lc{1}) 

 hold on 

% plot(xsol, ysol(4, :),'LineStyle',ls{1},'Color',lc{2}) 

% hold on 

% plot(xsol, ysol(7, :),'LineStyle',ls{1},'Color',lc{3}) 

% hold on 

 

% F    F'    F''    T(0)   T'(0)    T''(0)    P(0)    P'(0)   

P'''(0) 

% f(1) f(2)  f(3)   f(4)    f(5)    f(6)     f(7)     f(8)     

f(9) 

    function res = bc3D(f0, finf) 
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        res  = [f0(1)-S1; f0(2)-1; finf(2); finf(4); f0(5)+r*(1-

f0(4)); finf(5); finf(7); f0(8); finf(8)]; 

         % res  = [f0(1)-S1; f0(2)-1; finf(2); finf(4); 

f0(5)+r*(1-f0(4)); finf(5); finf(7); f0(8)+NtNb*f0(5); finf(8)]; 

    end 

 

    function fvec = bvp3D(t,f) 

         

        ff1     =  (f (2)^2 -f(1)*f(3) - 

2*a1*f(1)*f(2)*f(3))/(1-a1*f (1)^2); 

        ff2     =  -(NtNb*f(6) +Sc*f(1)*f(8)); 

        ff3     =  (a2*f(6)*f (1)^2-Nt*a2*f(1)*f(5)*f(6)-

(1/Pr)*f(6)+a2*f(1)*f(2)*f(5)-f(1)*f(5)-Nb*a2*f(1)*f(5)*ff2-

Nb*f(8)*f(5)-Nt*f (5)^2-

Nb*a2*(Tr+f(4))*f(1)*f(9))/(Nt*a2*(Tr+f(4))*f(1)); 

       

        fvec  = [f(2); f(3); ff1; f(5); f(6); ff2; f(8); ff3; 

f(9)]; 

        %         here only give derivatives with oder 

    end 

 

end 
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function Draft_bvp4c 

% F    F'    F''     T(0)   T'(0)     

% f(1) f(2)  f(3)    f(4)    f(5)        

clc 

clear all 

L        = 5; 

 

ls       = {'-' '--' '-.' ':'}; 

lc       = {'r' 'g' 'b' 'k' 'y' 'c' 'm'}; 

p = [0 0.05 0.1 0.2]; 

  %% solution 

  %                     rows    cps    ks 

  % Copper (Cu)         8933    385    401  

  % Copper oxide (CuO)  6320    531.8  76.5 

  % Silver (Ag)         10500   235    429 

  % Alumina (Al2O3)     3970    765    40  

  % Titanium Oxide(TiO2)4250    686.2  8.9538 

         

         a1=0.5; 

         a2=0.05; 

         S1=0.2; 

         rows= 6320; 

         rowf=789; 

         cps= 531.8; 

         cpf=2840; 

         ks= 76.5; 

         kf=0.169; 

         phi=0.1;  

          

         Pr=18.05; 

         r=10; 

         cf= 1/((1-phi+(phi*(rows/rowf)))*(1-phi)^2.5); 

         k=((ks+2*kf)-2*phi*(kf-ks))/((ks+2*kf)+phi*(kf-ks)); 

         V=(1-phi+phi*(rows*cps)/(rowf*cpf)); 

         ct=(1/Pr)*(k/V); 

   

          

          

    

               

          sol = bvpinit(linspace(0,L, 10), [0.4 1 -1.36 0.52 -

4.72]);% [1 0 0 0 0]) linspace(0,6, 25) first value and other on 

linspace(0, 5, 25) for f and linspace(0,6, 25) for theta 

        sol1 = bvp5c(@bvp3D, @bc3D, sol); 

        xsol = linspace(0,L, 200); 

        ysol = deval(sol1,xsol); 
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%         plot(xsol, ysol(1, :),'LineStyle',ls{1},'Color',lc{1}) 

%         hold on  

%          plot(xsol, ysol(2, 

:),'LineStyle',ls{1},'Color',lc{1}) 

%         hold on 

        plot(xsol, ysol(4, :),'LineStyle',ls{2},'Color',lc{2}) 

        hold on 

%         plot(xsol, ysol(4, :),'LineStyle',ls{3},'Color',lc{3}) 

%         hold on 

 

ysol(:, 1) 

 

%  ysol(3,1) 

 

% F    F'    F''    F'''(0)    T(0)   T'(0)    T''(0)  

% f(1) f(2)  f(3)   ff1       f(4)    f(5)    ff2       

    function res = bc3D(f0, finf) 

 

        res  = [f0(1)-S1; f0(2)-1; finf(2); finf(4); f0(5)+r*(1-

f0(4))]; 

    end 

 

    function fvec = bvp3D(t,f) 

 

        ff1     = (f (2)^2 -f(1)*f(3) - 

2*a1*f(1)*f(2)*f(3))/(cf-a1*f (1)^2); 

        ff2     = -(1-a2*f(2))*f(1)*f (5)/(ct-a2*f (1)^2); 

    

        fvec  = [f(2);f(3);ff1;f(5);ff2]; 

%         here only give derivatives with oder 

    end 

 

end 
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