
Approval Prediction for Software Enhancement

Report using Deep Neural Network

By

Sadeem Ahmad Nafees

Fall 2017-MS-CS&E 00000203427

Supervisor

Dr. Mian Ilyas Ahmad

Department of Computational Science and Engineering

Research Center for Modelling and Simulation (RCMS)

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

January 2020

Approval Prediction for Software Enhancement

Report using Deep Neural Network

By

Sadeem Ahmad Nafees

00000203427

Supervisor

Dr. Mian Ilyas Ahmad

A thesis submitted in conformity with the requirements for the

degree of Master of Science in

Computational Science and Engineering

Research Center for Modelling and Simulation,

National University of Sciences and Technology (NUST)

Islamabad, Pakistan

January 2020

Declaration

I, Sadeem Ahmad Nafees declare that this thesis titled “Approval Prediction for Soft-

ware Enhancement Report using Deep Neural Network” and the work presented in it

are my own and has been generated by me as a result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a Master of Science degree

at NUST

2. Where any part of this thesis has previously been submitted for a degree or any other

qualification at NUST or any other institution, this has been clearly stated

3. Where I have consulted the published work of others, this is always clearly attributed

4. Where I have quoted from the work of others, the source is always given. With the

exception of such quotations, this thesis is entirely my own work

5. Where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself

Sadeem Ahmad Nafees,

00000203427

i

Copyright Notice

• Copyright in text of this thesis rests with the student author. Copies (by any

process) either in full, or of extracts, may be made only in accordance with in-

structions given by the author and lodged in the Library of RCMS, NUST. Details

may be obtained by the Librarian. This page must form part of any such copies

made. Further copies (by any process) may not be made without the permission

(in writing) of the author.

• The ownership of any intellectual property rights which may be described in this

thesis is vested in RCMS, NUST, subject to any prior agreement to the con-

trary, and may not be made available for use by third parties without the written

permission of RCMS, which will prescribe the terms and conditions of any such

agreement.

• Further information on the conditions under which disclosures and exploitation

may take place is available from the Library of RCMS, NUST, Islamabad.

ii

This thesis is dedicated to my beloved parents

iii

Acknowledgments

“Education is simply the soul of a society as it passes from one gener-

ation to another”.

Alhamdulillah, all praises to ALLAH for the strengths and His blessing in completing

this thesis. Special appreciation goes to my supervisor, Dr Mian Ilyas Ahmad, for his

supervision and constant support. His invaluable help of constructive comments and

suggestions throughout the experimental and thesis works have contributed to the suc-

cess of this research. Not forgotten, my appreciation to my general evaluation committee

members, Dr. Muhammad Tariq Saeed and Dr. Shehzad Rasool for his support and

knowledge regarding this topic. Last but not least, my deepest gratitude goes to my

beloved parents who supported me financially and spiritually and also to my brother,

sisters for their endless love, prayers and encouragement.

Sadeem Ahmad Nafees

iv

Contents

1 Introduction 1

1.1 Enhancement Report . 1

1.2 Problem statement . 5

1.3 Research objective . 6

1.4 Motivation . 7

1.5 Thesis Layout . 7

2 Literature Review 8

2.1 Text classification . 8

2.2 Text classification through machine learning 10

2.2.1 Priority prediction . 11

2.2.2 Severity prediction . 12

2.2.3 Enhancement prediction . 13

2.3 Text classification through deep learning 14

2.3.1 Convolutional neural network . 15

2.3.2 Long-short-term memory . 17

v

Contents

2.4 Proposed Research Work . 19

3 Methodology 20

3.1 Data Preparation . 21

3.1.1 Dataset . 21

3.1.2 Preprocessing . 21

3.1.3 Emotion Calculation . 23

3.1.4 Features selection . 24

3.2 CNN for Text Classification . 27

4 Results & Discussion 28

4.1 Performance Analysis . 28

4.2 Results Generation Process . 29

4.3 Results . 31

4.3.1 Comparison with the baseline approaches 31

4.3.2 Effect of multiple inputs . 32

4.3.3 Preprocessing Impact . 33

4.3.4 Comparison with machine/deep learning algorithms 34

4.4 Threats to Validity . 35

5 Conclusion & future work 37

5.1 Conclusion . 37

5.2 Future Work . 38

vi

Contents

References 39

vii

List of Abbreviations

Abbreviations

CNN Convolutional Neural Network

LSTM Long Short Term Memory

POS Part of speech

NLP Natural Language Processing

Word2vec word to vector

MNB Multinomial Naive Bayes

SVM Support Vector Machine

APER Approval Prediction for Software Enhancement Report using Deep

Neural Network

SAAP Sentiment based Approval Prediction for Enhancement Report

AAP Automatic Approval Prediction for Software Enhancement Requests

viii

List of Tables

4.1 Results of Different Approaches . 31

4.2 Effect of multiple inputs . 33

4.3 Preprocessing Impact . 34

4.4 Comparison with machine/deep learning algorithm 35

ix

List of Figures

1.1 Sample of Bug Report. 2

1.2 Sample of Enhancement Report. 3

1.3 Process of Enhancement. 4

1.4 Problem statement. 6

2.1 Text Classification with Machine Learning 11

2.2 Architecture of CNN . 16

2.3 Output of Activation Functions . 17

3.1 Preprocessing Steps . 22

3.2 Features Selection Model . 25

3.3 Overview of CNN Classifier . 27

x

Abstract

Software applications obtain enhancement requests on a large scale to fulfil user require-

ments through a bug tracking system, which is an important application for keeping

record of the bugs in the software development process. Conventionally, software de-

velopers used to manually check these requests. However, manual inspection of these

requests turns out to be a boring, hectic and time-consuming activity. Therefore, an

automatic prediction system is required which can reject or approve an enhancement

report without manual check. Existing approaches target this problem through machine

learning techniques such as Multinomial Naive Bayes and Support Vector Machine. In

this work we utilize a deep learning based approach for approval prediction of enhance-

ment reports that include the following steps: First, we preprocess each enhancement

report using natural language processing techniques. Then we perform emotion analysis

of each preprocessed enhancement reports using Senti4SD to compute its sentiment.

Next we combine the summary and description of enhancement report as a sequence of

words to learn the features with some attention mechanism using deep recurrent neural

network (RNN). Finally, on the basis of features selection model and sentiment we train

deep neural network based classifier, the convolutional neural network (CNN) to predict

the approval prediction of enhancement report. We evaluate the proposed approach on

an open-source bug tracking system. Results of numerical evaluation suggest that the

proposed approach significantly outperforms the existing approaches and achieve the

accuracy of 82.15%, precision 90.56%, recall 80.10% and f-measure as 85.01%.

Keywords: Text Classification, Deep Learning, Software Engineering, Enhancement

Report

Chapter 1

Introduction

Software applications are designed to perform different tasks in order to fulfil the user

requirements. Often software applications receive large number of bugs through different

bug tracking systems, which are tools that keep the record of bugs in the process of

software development. In this chapter we present the concept of software enhancement

report and define the problem of its approval prediction. Also we specify the research

objectives and contributions of our work.

1.1 Enhancement Report

There are different bug tracking systems that are used to register bug reports for a

specific software application. A typical bug report highlights an error or imperfection

in the working of a process or software application that may produce an unwanted

result. The report contains several attributes like bug id, title, severity, reported date,

environment, status and descriptions. A sample of bug report from bugzila [1] is shown

in Figure 1.1.

The importance of bug report can be categorized into two main parameters, priority

1

Chapter 1: Introduction

Figure 1.1: Sample of Bug Report.

and severity. These parameters are decided by the user who register the bug. One

important type of severity is enhancement where the bug report suggest an enhancement

in the software and therefore it also called enhancement report. Enhancement report

suggest update/amendments of some features in the software application in order to

resolve the issue. Therefore, for the success of software application it is necessary to

update/amendments of feature enhancement with time in order to fulfil user needs. A

sample of enhancement report used in [2] is shown in Figure 1.2.

Statistical analysis of enhancement report shows that considerable amount of reports

were filed for enhancement. Thunderbird product (free email application) registered

1857 enhancement from 10,000 bug reports in between 01-02-2000 to 25-12-2005. Some

of the enhancement report were not showing enhancement, because the user has less

knowledge about the application or the quality of report is not good and this gives rise

to misunderstanding between developer and users [3]. It has been observed that from

2

Chapter 1: Introduction

Figure 1.2: Sample of Enhancement Report.

35 different software applications, 75% of the enhancement reports were not approved

[2]. This approval of the enhancement is decided by the developer manually. Since the

number of enhancement reports (18.57% of bug repot) are continuously increasing, that

is difficult for the developer to manually approve or reject the enhancement report. This

means that an automated approach is required for approval/rejection of enhancement

report before sending it to the developers. This process is shown in Figure 1.3. The

benefit of an automated approach is it can help developers to save their time and efforts

by prioritizing the useful and important enhancement reports from a large number of

reports so that the more valuable reports could be managed efficiently.

In order to automatically predict the approval/rejection of enhancement report, authors

in [2] proposed an approach that is based on machine learning classifier. They used the

dataset that is extracted from open source application ‘Bugzilla’ which includes 40,000

3

Chapter 1: Introduction

Figure 1.3: Process of Enhancement.

enhancement reports. Firstly, they performed preprocessing on each enhancement re-

port by applying natural language processing techniques, extracted features from it and

then converted it into vector form. Secondly, they fed each preprocessed enhancement

report into the classifier and trained the classifier (Logistic Regression, Support Vector

Machine, Multinomial Naïve Bayes and Random Forest). Results showed that the Multi-

nomial Naïve Bayes achieved a higher accuracy than other algorithms. To the extension

of this work, authors [4] proposed an approach that automatically predict the sentiment

based approval of enhancement report. They utilized same dataset which included the

40,000 enhancement reports. To differentiate his approach from [2], they just added

one extra feature which is sentiment and checked how sentiments effect the approval of

enhancement report. They performed preprocessing on each enhancement report by ap-

plying natural language processing techniques and counted sentiments through senti4sd,

converted it into vector form. After this they split the data into train/test and applied

different machine learning algorithms like Logistic Regression, Multinomial Naïve Bayes,

4

Chapter 1: Introduction

Support Vector Machine, Random Forest and Bernoulli Naïve Bayes. Results showed

that the Support Vector Machine performs better and also increase the performance in

term of accuracy and f-measure up to 9.82% and 53.66% respectively.

In this thesis, a new approach based on sentiment analysis using deep learning classi-

fier will be proposed. For this purpose, we will perform preprocessing using “natural

language processing” techniques and handling the stack trace, URL, hex code, tokeniza-

tion, stop word removal and lower case conversion on collecting enhancement reports

and extract unique words from it. After this we will calculate emotions of each processed

enhancement report using senti4SD classifier that are based on sentiment in order to ob-

serve the effect on the approval of an enhancement. After this we combine the summary

and description of enhancement report as a sequence of words to learn the representation

using deep RNN with attention mechanism. In last step, we train deep neural network

based classifier to predict the approval prediction of enhancement report. Our result-

s show that the deep learning model outperformed previously used machine learning

approaches.

1.2 Problem statement

As discussed before, a major number of enhancement reports are rejected due to low

quality of reports. This process of rejection is done manually by their developers, which

is time consuming and boring. The problem is to analyze the description of enhance-

ment report and automatically predict the acceptance and rejection of software en-

hancement. This is possible through a text classification procedure for which one can

use machine/deep learning techniques. Since deep learning techniques often gives better

results, our focus will be the use of deep learning classification for approval/rejection

5

Chapter 1: Introduction

prediction. This is shown in Figure 1.4.

Figure 1.4: Problem statement.

1.3 Research objective

Some of the key research objective are listed below:

• The use of natural language processing techniques for extracting unique words

from the description of enhancement report.

• The use of senti4SD classifier to calculate emotions of each processed enhancement

report in order to observe the effect of emotions that predict approval/rejection of

an enhancement.

• The use of long-short term memory with attention mechanism to learn the sequence

of words and give weightage to words according to their importance.

• The use of deep learning based classifier on extracted features and sentiments to

predict the approval prediction of enhancement report.

6

Chapter 1: Introduction

1.4 Motivation

Software industry spend more than 90% of software development cost on software main-

tenance and evolution activities [5]. A major factor in the maintenance of software is

bug tracking and software enhancement. The study of enhancement prediction has the

potential to reduce the time and effort of developers and cost of the software houses in

term of new requirements. In particular the study helps the developers (employed or

freelancers) and software houses (public and private) that are dealing with large-scale

software systems. The main crux of this work is to use a text classification framework

which can also be used in many other application. Some important application of text

classification include classification of emails to spam/non-spam, language detection and

client feedback detection.

1.5 Thesis Layout

In chapter 2, we discussed the immense research efforts that have been carried out in

the field of bug/enhancement prediction and showed how our problem is related to the

existing literature. In chapter 3, we present the proposed methodology to solve the

problem of enhancement report prediction. In chapter 4, we show the results of the

proposed methodology and compared them with existing approaches. In chapter 5, we

describe future work and conclusion of the proposed work.

7

Chapter 2

Literature Review

In this chapter the problem of text classification and sentiment analysis is discussed using

both machine learning and deep learning techniques. Also we present the approaches

used for priority and severity prediction through machine/deep learning.

2.1 Text classification

Classification of text is the process in which tags/labels are assigned according to their

content. Due to unstructured textual information (available in the form of chats, emails,

social media and web pages) extracting knowledge from it manually can be difficult and

time-consuming. Therefore, most of the businesses are shifted to automatic classification

of text due to ease and cost-effectiveness. The task of text classification is to categorize

a text document into two or more pre-defined classes.

Sentiment analysis plays vital role in software engineering to analyze the users attitude

while writing the report, whether it is positive or negative. It is observed in [6] that a text

document can be categorized into different classes of sentiments, such as SURPRISE,

ANGER, SADNESS, HAPPINESS, DISGUST and FEAR. Two additional classes have

8

Chapter 2: Literature Review

been added in [7], which are ANTICIPATION and TRUST.

A comparison between different sentiment analysis tools (Alchemy, SentiStrength and

NLTK) is provided in [8], where two existing studies were replicated with different

sentiment analysis tools. It has been observed that some of the existing results cannot

be reproduced with the given tools.

In [9], qualitative and quantitative analysis of sentiment analysis tools are performed

where 5600 manually registered JIRA reports are used. Their results showed that for

detecting sentiments in text, SentiStrength-SE shows better performance as compared

to existing domain independent tool such as Natural Language Toolkit, Stanford NLP

and SentiStrength. In another paper [10], the same authors also developed another tool

named DEVA for sentiment analysis in text. It also captures the emotional state of the

report as well as sentiment analysis. For quantitative analysis of DEVA, they used 1795

JIRA reports, the evaluation results show that precision and recall is more than 82%

and 78%.

Another important tool has been developed in [11] where a dataset of 2000 manually

tagged review comments are used. In evaluation of their model, they executed a hun-

dred 10-fold cross validation of different supervised machine learning algorithms (i.e.

linear support vector machine, support vector machine with stochastic gradient descent,

random forest, decision tree, adaptive boosting, multilayer perceptron, naïve bayes and

gradient boosting tree). Assessment results showed that gradient boosting tree perform

better than other algorithms, for which the mean accuracy, precision and recall are 83%,

67.8% and 58.4%.

Recently a new sentiment analysis tool Senti4SD has been developed in [12] for text

classification. With a gold standard data set of Stack Overflow questions, answers, and

9

Chapter 2: Literature Review

comments, they trained and validated their tool. Notably, the dataset was manually

annotated for the polarity of emotions. Results indicate that the tool has removed

the neutral and positive posts in the emotionally negative classified text by previous

sentiment analysis tools.

2.2 Text classification through machine learning

With the rapid spread of the internet and the growth in online information, the tech-

nology has come to play a very important role in the automated classification of huge

amounts of text data. Computer performance improved significantly in the 1990s, al-

lowing to handle large amounts of text information. This contributed to using machine

learning approach, which is a method of automatically developing classifiers from the

text data given in a classification tag/label. This method provides excellent efficiency

and ensures resource preservation. Most commonly used method in machine learning

(Support Vector machine [4] and Multinomial Naïve Bayes [2]) for enhancement report

prediction which contains the textual information. In machine learning, a document is

represented as a n dimension vector in text classification task,

Documents = {d1, d2, ..., dn} (2.2.1)

Where d1 , d2 and dn show the n number of document. There are two values for each

feature of a document vector if a specific word appears in document, such as Bag-of-

words.

10

Chapter 2: Literature Review

Figure 2.1: Text Classification with Machine Learning

2.2.1 Priority prediction

Usually, there are five levels of the priority for each bug report that can be represented

as P1, P2, P3, P4 and P5. P1 shows the highest priority and P5 shows the lowest priority.

Prioritizing the bug report manually is time consuming and boring task. To assign the

automatic priority of bug report, Kanwal and Maqbool proposed a machine learning

based recommender [13]. They used the machine learning algorithm Naïve Bayes and

Support vector machine to train their model on open source dataset of Eclipse and

compare the results to find out the classifier which gives the highest accuracy. The

evaluation results showed that on the text features (i.e., long description of bug report

and summaries) SVM outperforms other algorithms. On the contrary, the evaluation on

categorical features (severity, platform and component) shows Naïve Bayes to be better.

In addition, they also experimented with the text and categorical features, combined,

and showed that the highest accuracy is achieved with Support vector machine.

Authors [14] utilized Support vector machine,k-nearest neighbor, Naïve Bayes and Ar-

tificial Neural Network to automatically prioritize the newly reported bug into different

categories from P1 to P5 . They evaluated the results through cross validation and

showed that Naive Bayes shows best results with >70% accuracy, whereas, SVM, KNN

and ANN achieve <70% accuracy on Eclipse dataset. The problem with the proposed

approach is that its prediction accuracy highly depends upon the quality of summaries of

11

Chapter 2: Literature Review

the bug reports. For priority, prediction of bug reports, authors [15] proposed a DRONE

approach that are based on emotion analysis. Their approach focused on how emotion

effects the priority prediction of bug report. For evaluation, they used Eclipse, which

are open source project and suggested that proposed approach is outperform from the

state-of-the-art.

2.2.2 Severity prediction

There are different types of severity levels in Bugzilla for a bug report which are cate-

gories into Normal, Major, Blocker, Critical, Trivial, Enhancement and Minor. Menzies

and his colleague were the first researchers who worked on bug classification field on

NASA project [16]. They proposed an automated method, named SEVERIS (Severity

issue assessment). Their method predicted the severity of a reported bug. They scaled

the severity of each bug report in the range of one to five. This method is the combina-

tion of machine learning and text mining techniques that are applied on bug reports. To

extract the most relevant feature from each bug report text mining technique is used, for

assigning the appropriate severity level using machine learning algorithms. Evaluation

results showed that proposed approach classifies the bug into different categories with

accuracies ranging from 65% to 98%.

Extended work of Menzies and his colleague, authors [17] introduced an automated

method to predict the severity of a reported bug and also increased the performance of

prediction by utilizing different open source projects like Eclipse, Gnome and Mozilla.

Basically, they categorized the severity level into two groups, severe and non-severe.

The non-severe group includes trivial and minor while major, critical and blocker are

placed in the severe group. To categorize a given bug report into severe and non-severe

12

Chapter 2: Literature Review

they used the Naïve Bayes algorithm and shows that the proposed methodology achieves

good accuracy in term of precision and recall ranging from 65% to 75% and 70% to 85%,

respectively. Authors in [17] only uses Naïve Bayes classifier to automatically predict

the severity of a bug report.

Authors [18] extended his work by comparing Support Vector Machine, Multinomial

Naïve Bayes, K-nearest Neighbor and Naïve Bayes on the similar dataset [17]. They

utilized similar features to predict the severity of bug report and found that Multinomial

Naïve Bayes classifier outperforms on open source project Eclipse, Gnome and achieve

the accuracy between 48% to 93%. Drawback of this work is that they used small

dataset and MNB perform well on smallest data.

As the extension of previously mentioned work, Roy and Rossi introduce a method that

uses the text mining technique with bigram (arrangement of two organized elements

from a string of text) to increase the performance of classification model [19]. For this

purpose, they adopted the Naïve Bayes classifier on most commonly used dataset of

Eclipse and Mozilla. They applied the χ2 to get the most important features from the

text on both single and bigram tokens. Their results show that the proposed model

performs better than previous one.

2.2.3 Enhancement prediction

Nizamani was the first researcher who worked on the enhancement report classification

and introduced a method based on machine learning to automatically predict whether

a reported enhancement report will be approved or rejected [2]. For this purpose, they

used the open source dataset of ‘Bugzilla’ which includes 40,000 enhancement reports

of 35 different applications like Calendar, Firefox, Core and Thunderbird. Firstly, they

13

Chapter 2: Literature Review

performed preprocessing on each enhancement report by applying natural language pro-

cessing techniques such as stop word removal, lemmatization and stemming and extract-

ed the features in a vector form. Secondly, they feed each preprocessed report into the

classifier and train the classifier. They used the machine learning algorithms such as

Logistic Regression, Support Vector Machine, Multinomial Naïve Bayes and Random

Forest to predict the approval of the enhancement report. Evaluation results showed

that the Multinomial Naïve Bayes achieves a higher accuracy than other algorithms.

As the extension of above mention work, authors [4] proposed a method that automat-

ically predict the emotion based approval of enhancement report. They utilized same

dataset that include the 40,000 enhancement report from ‘Bugzilla’. To differentiate

his approach with Nizamani's they just added one extra feature which is sentiment

and check how much sentiments are effected by the approval of enhancement report.

When the data is preprocessed he also counted the sentiments of the words through

Senti4SD [12] corpus and converted it into vector form. After that they split the data

into train/test and apply different machine learning algorithm such as Logistic Regres-

sion, Multinomial Naïve Bayes, Support Vector Machine, Random Forest and Bernoulli

Naïve Bayes. They validated the results through cross application technique and their

evaluation results showed that the proposed approach with SVM achieved good results

in term of accuracy, precision, recall and f-measure score that is 77.90%, 86.28%, 66.45%

and 74.53%.

2.3 Text classification through deep learning

Deep learning is an advanced discipline of machine learning that learns to perform

the classification task from sound, images and text. In deep learning most commonly

14

Chapter 2: Literature Review

used algorithms are convolutional neural network (CNN) and long-short term memory

(LSTM), both are discussed in detail.

2.3.1 Convolutional neural network

Convolutional neural networks are very close to simple neural networks, that consist

of multiple neurons with learning weights and biases. Each neuron takes some inputs,

performs a dot product, and a non-linear function may follow it. A single differentiable

score function is still expressed throughout the entire system: from inputs to output

classes. The architecture of a convolutional neural network is shown in Figure 2.2 [20].

The sliding window, referred to as stride, is passed along the input with a defined step

size [21]. A stride of 1 means moving the sliding window to include the next input

instantly. This results in an overlap for any filter size, n, above 1.

Pooling layers apply a specified process along the input to be sub-sampled [21]. Pooling

can be used to decrease the dimensionality on the output of convolutional layer. From

the input matrix, Max Pooling requires the highest value within its filter size, nmaxpool.

This is implemented as a sliding window, as the intention to decrease the size of the

consequence by adding convolutional filters to the input of the convolutional layer, where

the stride is typically set to be the same as nmaxpool.

A loss function is used as a measurement of how accurate or inaccurate mapping of a

neural network [22]. Loss function provides a higher value when the network is supposed

to have done worse. The weights of the network are then optimized to give as small loss

as possible to the network. this is achieved with backpropagation and gradient descent.

Minimization of the loss function is done through gradient descent to estimate the

weights during training [22]. The gradients are calculated by back-propagation for each

15

Chapter 2: Literature Review

Figure 2.2: Architecture of CNN

layer, for example, beginning from the output (using the loss function) and moving back

through the network. Then the weights are updated with a slight move in the gradient

descent direction.

Multiple non-linear activation functions that can be used to calculate a node’s final

output in a neural network. Typically, a softmax activation function is used in the final

layer for a classification task [22]. The tanh and sigmoid activation functions are other

activation functions that are typically used within the hidden layers of a neural network.

16

Chapter 2: Literature Review

These can be considered as smoother step-function versions. A relu activation function

is typically used for convolutional neural networks. Figure. 2.3 shows the output of

these activation functions.

Figure 2.3: Output of Activation Functions

The concept of overfitting is a major issue when training a neural network [23]. To

reduce the level of overfitting, a practically tested approach is dropout [24]. Each node

in the neural network from a particular layer is removed with a probability pdrop, and

the probability 1− pdrop is retained. Only the weights that contributed to the outcome

will be updated during backpropagation. I.e. Only the node weights that have been

decided to be retained will be updated. Practically speaking, this can be seen as a

network ensemble that uses an extremely elevated weight sharing level [24]. therefore,

dropout refers to a model's robustness.

2.3.2 Long-short-term memory

LSTM is modified version of recurrent neural network and also fix the problem of van-

ishing gradient. Vanishing gradient problem occurs when the loss function gradient

approaches to zero and making the network difficult to train. There is an internal state

in each Long-short term memory cell. For each input, by adding and subtracting the

information that are stored in internal state is updated [25]. The next state of LSTM

is calculated by these formulas:

17

Chapter 2: Literature Review

ft = σ (wf ∗ xt + bf) (2.3.1)

it = σ (wi ∗ xt + bi) (2.3.2)

c̃t = tanh(wc ∗ xt + bc) (2.3.3)

ct = ft ∗ ct−1 + it ∗ c̃t (2.3.4)

Where t represents the input index of the current state. ft represents as forget gate, it

represents as input gate and both are calculated at input index t. wf and wi are the

corresponding weight matrices of the input gate and forget gate, although bf and bi are

the corresponding biases. X is input for each LSTM cell consisting of the input index t

state concatenation and the output of the previous LSTM cell, ht−1. ct represents the

internal state of the LSTM. Hidden state of the LSTM is calculated by:

ht = σ(wo ∗ xt + bo) ∗ tanh(ct) (2.3.5)

Where wo represents the output weight matrix and bo is the biases.

In recent year, researchers are participating in deep-learning to solve software engineer-

ing tasks such as, predict defect in software [26], extract requirements from Natural

Language Text [27] and generate source code [28], and achieved good results against

machine learning algorithm.

To automatically predict the priority of bug report, authors [29] proposed an Artificial

Neural network-based technique on international health care dataset of five different

products of bug reports and validate the results through 3-fold cross validation. Their

results suggest that the proposed approach performs well and produces good results in

the form of f1-score, precision and recall. On the other hand, to automatically predict

18

Chapter 2: Literature Review

the severity of bug report, authors [30] proposed a deep neural network based approach

on the history data of bug report. They validate the results through cross product

validation and results show that the proposed approach performs well and increase the

performance in the form of f-measure upto 7.90%.

According to authors [31], different software engineering task such as, duplication of

bug reports, bug report summarization, bug localization and bug triage have resolved

effectively by utilizing deep learning techniques. These tasks motivate us to deploy

deep learning techniques such as CNN, RNN, and LSTM to automatically predict the

enhancement reports.

2.4 Proposed Research Work

In the existing literature, we know that the automatic prediction of enhancement reports

has been successfully implemented using machine learning techniques and for some other

applications deep learning techniques have performed better as compared to standard

machine learning techniques. Therefore in this research, we propose a deep learning

technique to automatically predict the approval/rejection of enhancement reports and

compare the performance of the classifier with machine learning classifier. The details

of our approach are discussed in chapter 3.

19

Chapter 3

Methodology

In this chapter, we presented the details of our proposed approach that categories an

enhancement report into rejected and approved classes. The first step is to get the

dataset of enhancement reports that contain status, summary and description of the

enhancement. The data is then preprocessed through different natural language pro-

cessing techniques that includes stop word removal, spell correction, tokenization, and

lowercase conversion as well as removal of unnecessary information (special characters

and URLs). Next is to compute the sentiment of each unique word in the enhancement

report using Senti4SD. The same unique words that are used for sentiment analysis are

also used to learn the features with some attention mechanism using deep recurrent neu-

ral network (RNN). Using the extracted features and sentiments of the text we train a

deep neural network based classifier, the convolutional neural network (CNN) to predict

the approval of enhancement report.

20

Chapter 3: Methodology

3.1 Data Preparation

3.1.1 Dataset

Bug tracking system allows users to report a bug when a problem is occurring by using

different software applications. To maintain the quality of software applications, bug

tracking system keeps the records of reported bug and provides platform for the devel-

opers to solve their bugs. We use dataset of enhancement report that is extracted from

a real software application named Bugzilla. Enhancement report is usually formalized

as

er =< td, rs > (3.1.1)

where td shows the textual description and rs shows the resolution of the report.

3.1.2 Preprocessing

We preprocess the dataset of enhancement report using different natural language pro-

cessing techniques which include stop word removal, lemmatization, spell correction,

tokenization, and lowercase conversion. Fig 3.1. Shows all steps that involved in pre-

processing.

In first step, we remove the noisy data from the text (i.e. hex code and URLs).

Tokenization

In this step, enhancement report is tokenized into separate words, by utilizing white

spaces involved in the textual description. For example, “Add a copy Annotations

function to the annotation service" after tokenization “Add", “a", “copy", “Annotations",

21

Chapter 3: Methodology

Figure 3.1: Preprocessing Steps

“function", “to", “the", “annotation", “service".

Spell checking

In this step of preprocessing, we perform spell checking and correct the mistakes found

in the spellings. For example spell checker corrects the “quikly" with “quickly".

Stop-Word Removal

In this step, we remove all the words that do not carry meaningful information and

those words are not required for the training of the model. Examples are, “is, am, are,

he, she, it," ... etc.

Inflection

In this step, we perform inflection that transformed the plural words into their singular

words. For example, “Bugs" into “Bug".

22

Chapter 3: Methodology

Lemmatization

In this step, we perform lemmatization that changes each word into its root form, because

they carry the same meaning. For example, the words “playing", “plays" and “played"

are transformed into “play".

Lower case conversion

In this step of preprocessing, we convert all uppercase characters of tokenized words into

lowercase and store them as the preprocessed report. For example, “Add" into “add"

and “Annotation" into “annotation”.

Final preprocessed enhancement report is formalized as,

er =< t
′
d, rs > (3.1.2)

where t′d shows the description in the form of text and rs shows the resolution of the

report.

3.1.3 Emotion Calculation

In natural language processing to calculate the sentiment analysis of the writer is a

primary task. To check the given opinion of a reporter about a report is positive or

negative, we calculate the sentiments of the report from the given text [32]. Different

tools are available to calculate the sentiment from a document like EmoTxt [33], SentiCR

[11], Senti4SD [12], SentiStrengthSE [9], DEVA [10] and SentiWordNet [34]. We choose

Senti4SD because it represents state of the art tool and performs well rather than

SentiStrengthSE, SentiCR and SentiStrength to classify the documents. It also provides

effective and efficient results. Senti4SD calculate the sentiment of the report when we

23

Chapter 3: Methodology

pass the description of report er to it and stored in the form as,

er =< td, se, rs > (3.1.3)

where td shows the description in the form of text, se shows the sentiment and rs shows

the resolution of the report.

3.1.4 Features selection

Bag of words is a simple representation of words which is used in natural language

processing as a multiset (bag). It is a frequently used model for text classification based

on frequency of words. Bag of words model extract features from each enhancement

report in the form of words frequency. The main drawback of this model, it does not

consider the semantic relationship between the words and order of the words in the given

enhancement report.

To avoid the bag of words model problems Mikolov's proposed a method named word2vec

based on skip-gram model [35]. Utilizing word2vec modelling, we convert each word

into a fixed-length vector form that captures a large number of semantic and synthetic

relationship between the words. Basically it is a neural network that predicts the words

to nearby their context. It consider the words from given enhancement report that have

same semantic meaning and context in the text. The drawback of word2vec model is, it

learns the semantic relationship between the words on an individual basis rather than

the sequence of words.

Discrepancies regarding bag of word model and word2vec model, it has been observed

that remarkable enhancement related to words sequence, words syntax and words lin-

guistic relationship is much needed. Solving these problem features selection model has

24

Chapter 3: Methodology

Figure 3.2: Features Selection Model

been introduced. Fig 3.2 shows the features selection model [36]. For this purpose, we

use LSTM cell as a memory unit in the hidden layer [37] because these cells can mem-

orize the word sequence and solve the problem of vanishing gradient [38]. Particularly,

proposed model can memorize the word sequence in both directions forward and back-

wards in order to make the representation more valuable for the learning of features.

In addition, proposed model deals with extracted words mentioned in above section for

feature learning as an attention mechanism during classification [39].

Firstly, we use the repository to extract the |M|-dimensional representation to con-

struct the features selection model for each enhancement report. Secondly, by using

|M|-dimensional representation, we learn the |P|-dimensional word2vec representation.

Finally, we use the |P|-dimensional representation to check the features with LSTM cells

and it gives |R|-dimensional features of the given enhancement report. Moreover, pro-

posed model has a sequence network (RNN) which consist of a hidden layer with n units

25

Chapter 3: Methodology

(h= h1, h2, . . . , hn). The RNN input is the word2vec representation (u = u1, u2, . . . ,

un) and its output is the |R|-dimensional features (O = O1, O2, . . . , On). In features

selection model each hidden unit continuously performs the same function which alters

the word ui and a previous state ti−1 into the next state ti and output word Oi.

f : {ti−1, ui} → {ti, Oi} (3.1.4)

In addition, to learn the most important words from enhancement we utilize attention

mechanism and the attention vector is derived from the weighted summation of all

outputs Oi which can be defined as,

bn =
n∑
i=1

biOi (3.1.5)

where bi is the weight of each word ui which defines the classification importance of ui.

Proposed model consists of 300 units of LSTM, 0.2 dropout, 0.001 learning rate, binary

cross-entropy based loss function with adam optimizer and set the training to 100 epochs.

In comparison, a term frequency based representation of BOW and word2vec, the size

of features selection model is much smaller. When we select the repository size as

300 for BOW representation, the size of features selection model is recorded to be less

than the word2vec representation (4 |T |) (< 1200) [35]. For example, if we use the

40,000 enhancement reports with 200,000 vocabulary words. Bag of word (BOW) model

produces a feature matrix of size 40,000 * 200,000, at the same time features selection

model produce a compact and dense vector of feature matrix of size 40,000 * 1200.

26

Chapter 3: Methodology

Figure 3.3: Overview of CNN Classifier

3.2 CNN for Text Classification

We use convolutional neural network to predict the approval of enhancement report.

Figure. 3.3 shows the layout of CNN classifier. For the following two reasons, we choose

CNN. First of all, CNN is able to learn the deep semantic relation between the words

[40]. Second, different filter sizes can be used to avoid RNN’s gradient problem [41].

Initially, we input two parts the features and sentiment of each enhancement to CNN.

Deep learning based classifier includes 3 layers of CNN, 128 filters (neuron number), 1

kernel size (filter size), binary cross-entropy loss function, and activation (neuron final

value) tanh. Second, to transform the input into a 1-dimensional vector, we move the

output of the CNN to a flatten layer [42]. Importantly, with the same setting, we input

the sentiment into a separate CNN and output is forward to a separate flatten layer.

Finally, we fully connect the neurons between layers using the dense layer and map both

inputs (features and sentiment) into a single prediction (output) using the output layer.

The output predicts the given enhancement report status (approved/rejected).

27

Chapter 4

Results & Discussion

This chapter consist of implementation of our proposed approach “Approval Prediction

for Software Enhancement Report using Deep Neural Network (APER)". Where we

proposed the updated version of Umer's and Nizamani's approaches. We provided the

complete comparison against existing approach with newly implemented approach and

analyzed the performance of APER on 10 open-source Mozilla ecosystem applications.

By investigating the following research question, we analyzed the APER performance.

4.1 Performance Analysis

Question 1: Does APER outperform than the existing approaches?

The proposed approach APER performance improvement against existing approaches is

evaluated by the first question. For the following reasons, we selected two approaches,

sentiment-based approval prediction for enhancements (SAAP) [4] and an automatic

approval prediction for enhancements (AAP) [2]. First, both SAAP and AAP are

proposed for the approval prediction of enhancements as our approach. Second, both

approaches are proposed recently and are the only approaches that represent the state-

28

Chapter 4: Results & Discussion

of-the-art.

Question 2: How do particular inputs (Sentiments and Features selection) affect APER

performance?

Second question studies the impact of both inputs (Sentiments and Features selection).

To investigate its impact on APER performance, we give one input at a time.

Question 3: How does preprocessing effect APER performance?

Third question evaluates APER performance with or without preprocessing to investi-

gate the preprocessing effect on APER.

Question 4: In the approval prediction of enhancements, does the proposed deep

learning classifier outperform machine / deep learning classifier?

A comparison between the proposed classifier and other classifier is provided by the

fourth question. We use CNN as our classifier because it has been declared recently as

the best machine learning algorithm for software documents [4].

4.2 Results Generation Process

To analyze APSERDN performance, we preprocess each reported enhancement report

through different natural language processing techniques like stop word removal, POS

tagging, spell correction, tokenization, and lowercase conversion and also remove unnec-

essary information like special characters and URLs from text. we count the sentiment

of each enhancement report using Senti4SD. After this, we combine the summary and

description of enhancement report as a sequence of words to learn the representation

using deep RNN with attention mechanism. We carry out a cross-application evaluation

to decrease validity threats by dividing all er enhancements into Qi sections according

29

Chapter 4: Results & Discussion

to their application where i = 1, 2, ..., 10. We gather er not from Qi as training set (Tr)

and enhancement Qi as testing set (Ts), for the ith cross-application evaluation. These

steps are following for the cross-application evaluation. We gather Tr from er

Tri =
⋃

jε[1,10]∧j 6=i
Qj (4.2.1)

to train different machine and deep learning algorithms including Support Vector Ma-

chine (SVM), Long-Short Term Memory (LSTM), Convolutional Neural Network (C-

NN), also train the algorithms from SAAP [4] and AAP [2] on training set (Tr). We

predict each testing set (Ts) of enhancement using trained algorithm CNN, SVM, SAAP

and AAP and calculate the accuracy, precision, recall, f-score, Mathews correlation co-

efficient (MCC) and odds ratio (OR), respectively. To analyze the APER performance

we used the well-known classification metrics (accuracy, precision, recall and f-measure).

These equations are:

Acc = T+ + T−

T+ + T− + F+ + F−
(4.2.2)

Pr = T+

(T+ + F+) (4.2.3)

Re = T+

(T+ + F−) (4.2.4)

f − score = 2 ∗ Pr ∗Re
(Pr +Re) (4.2.5)

where T+ means true positive which is the total amount of enhancement report that

were correctly predicted by the classifier as approved. T− means true negative which is

the total amount of enhancement report that were correctly predicted by the classifier

as rejected. F+ is false positive denoting the total amount of rejected enhancement

reports predicted by the classifier as approved. F− is false negative which shows the

total amount of approved enhancement reports predicted by the classifier as rejected.

30

Chapter 4: Results & Discussion

We calculate MCC and OR respectively to verify the quality and efficiency of each

classifier. The matthews coefficient of correlation is used as a measure of the quality of

binary (two-class) classifications in machine learning. MCC is essentially a correlation

coefficient between the binary classifications of observed and predicted class, it returns

the value from −1 to +1. A +1 coefficient is an ideal prediction, 0 no better than a

random prediction, and -1 suggests a complete inconsistency between prediction and

observation.

MCC = T+ ∗ T− − F+ ∗ F−√
(T+ + F+)(T+ + F−)(T− + F+)(T− + F−)

(4.2.6)

OR =
T+

F+

F−

T−

(4.2.7)

4.3 Results

4.3.1 Comparison with the baseline approaches

We compared APER, SAAP, and AAP performance results. We performed cross-

application validation for this purpose and presented it in Table 4.1 the average analysis

results of all techniques.

Table 4.1: Results of Different Approaches

Approaches Acc Pr Re F-Score MCC OR

APER 82.15% 90.56% 80.10% 85.01% 0.492 17.005

SAAP 77.90% 86.28% 66.45% 74.53% 0.487 16.189

AAP 70.94% 48.12% 52.59% 48.50% 0.355 12.491

As columns show the approaches result, rows show the results of APER, SAAP, and

AAP.

31

Chapter 4: Results & Discussion

We get the following conclusions, from table 4.1: APER perform better than SAAP

in term of accuracy, precision, recall and f-measure up to 5.46%, 4.98%, 20.54% and

14.06%. SAAP also perform better than AAP in term of accuracy, precision, recall and

f-measure up to 15.80%, 88.20%, 52.31% and 75.28%. MCC > 0 and OR > 1 average

results are true for APER and verify the proposed approach quality and effectiveness.

Whereas the APER is correct, many false +ve and false −ve are observed. For instance,

proposed approach predict the accepted report as a rejected “Create Bookmarks Widget

with placement dependent on Bookmarks Bar status" and rejected report as accepted

“Reloading resources handled by external applications". To explore the false +ve and

false −ve we randomly selected 1,000 enhancement report from repository, noticed that

due to limited (Threshold) frequency of important words that is 3, APER ignore some

words from the given enhancement report. Considerably, because APER performs best

at the frequency limit (Threshold) 3, we set the frequency limit 3. However, the basic

reason for incorrect classifications was not fully understood. We should investigate the

basic reason for incorrect classification in the future and find out solutions to decrease

incorrect classifications.

4.3.2 Effect of multiple inputs

We compared APER performance results with and without different inputs, as features

selection model and sentiment. Table 4.2 presents analysis results of APER by enabling

and disabling some inputs. The first column provides input settings while the table rows

show the APERs performance against each input.

We get following conclusions, from table 4.2: We observed that features selection model

is enough for approval prediction of software enhancement. while the performance of

32

Chapter 4: Results & Discussion

Table 4.2: Effect of multiple inputs

Input Acc Pr Re F-Score MCC OR

Features + Sentiment 82.15% 90.56% 80.10% 85.01% 0.492 17.005

Sentiment only 39.77% 51.38% 37.89% 43.62% 0.347 8.253

Features only 81.94% 87.53% 80.04% 83.62% 0.491 17.003

APER is reduced when we only used the features selection model in term of accuracy,

precision, recall and f-measure up to 0.26%, 3.46%, 0.07% and 1.66%. But it helps APER

to significantly improve the performance on SAAP and AAP. On the other hand, when

we only use the sentiments it significantly reduces the performance of APER in term of

accuracy, precision, recall and f-measure up to 106.56%, 76.26%, 111.40% and 94.89%.

We conclude that on the basis of previously done analysis when we disable the features

selection model it significantly impact on APER performance. however, sentiment and

features selection model are important to improve the performance for APER.

4.3.3 Preprocessing Impact

The textual data of enhancement report contains noisy information (e.g. hex code, punc-

tuation and stop-word). Noisy information is irrelevant, which can directly impact on

any machine learning or deep learning model performance. So, we perform preprocessing

on textual data using NLP techniques to remove the noisy information of enhancement

report. Through, preprocessing we not only increase the performance but also decrease

the computational cost of the algorithms.

We compared APER performance results by using with or without preprocessing tech-

niques. In Table 4.3, We also show the APER performance result with enabling or

33

Chapter 4: Results & Discussion

disabling preprocessing techniques. Where, columns show the performance of APER,

rows show the results with or without preprocessing.

Table 4.3: Preprocessing Impact

Preprocessing Acc Pr Re F-Score MCC OR

Enable 82.15% 90.56% 80.10% 85.01% 0.492 17.005

Disable 81.47% 87.92% 73.24% 79.91% 0.416 16.848

We get following conclusion, from Table 4.3. When we enable preprocessing techniques

APER achieves significant performance in term of accuracy, precision, recall and f-

measure up to 0.83%, 3.00%, 9.37% and 6.38%. While, when we check the APER

performance on disabling preprocessing techniques. It decreases the Mathews Correla-

tion Coefficient to 0.416 and Odd Ratio to 16.848. MCC (0.416) > 0 and OR (16.848)

> 1 average results are true for APER and verify the proposed approach quality and

effectiveness. we conclude that on the basis of previously done analysis when we dis-

able the preprocessing techniques. it decreases the APER performance and show that

preprocessing is crucial for approval prediction of software enhancement report.

4.3.4 Comparison with machine/deep learning algorithms

We compared APER performance with SVM because it’s finest algorithm in machine

learning for software engineering document [4] and LSTM is proved to be beneficial in

natural language processing [43]. Specifically, for the comparison of chosen classifiers, we

gave the same preprocessed enhancement report, features and their sentiment. We use

Long-short-term memory with the provided setting (dropout = 0.2, Activation function

= sigmoid and loss function = binary-cross entropy) and Support Vector Machine with

34

Chapter 4: Results & Discussion

default Setting.

We show the classifier results in Table 4.4. Column shows the classifier and rows show

the results of all classifier that we used.

Table 4.4: Comparison with machine/deep learning algorithm

Algorithms Acc Pr Re F-Score MCC OR

CNN 82.15% 90.56% 80.10% 85.01% 0.492 17.005

LSTM 80.73% 91.56% 74.81% 82.34% 0.484 16.917

SVM 77.95% 82.85% 71.58% 76.80% 0.465 14.984

We get the following conclusion, from Table 4.4: The CNN performs better than the

LSTM classifier in term of accuracy, precision, recall and f-measure up to 1.76%, -1.09%,

7.07% and 3.24%. Because, CNN perform well on long input as our input text, does not

require tedious and time-consuming feature modeling. CNN also useful for local and

position invariant features. CNN also performs better than the SVM classifier in term

of accuracy, precision, recall and f-measure up to 2.37%, 5.52%, 4.60% and 5.03%. SVM

has to handle high dimension input size that required high computation, while features

selection model significantly reduces the length of feature set. we conclude that on the

basis of previously done analysis in the approval prediction of software enhancement

report CNN performs better than other classifiers.

4.4 Threats to Validity

Although the labeling of Software Engineering reports is usually not accurate [4]. The

first threat to construct validity is the possibility of inaccurate enhancement report la-

35

Chapter 4: Results & Discussion

beling. So, we consider the enhancement report that are reused will be labelled correctly,

but incorrect labeling can affect the APER performance. The selection of evaluation

metrics is the second threat to construct validity. Because the confusion metrics that

are selected for enhancement report classification are the most adopted and well-known

metrics.

The threat to internal validity is we use the senti4SD for sentiment analysis of en-

hancement report because it performs better than the other available repository. Other

repositories may be used to affect APER performance. The second internal validity

threat is SAAP and AAP implementation. To minimize the threat, the implementation

and outcomes of approaches are double-checked. Furthermore, some unfolding errors

can affect APER performance. The third internal validity threat is related to the CN-

N hyperperameters that we used to train the classifier as mentioned in above section.

Changing other default parameters can affect APER performance.

The performance of APER against other datasets is a threat to external validity. As

mentioned in above section, we only test APER on 10 open source applications. The

addition of other inter / intra domain of enhancement report can affect APER perfor-

mance.

36

Chapter 5

Conclusion & future work

In this chapter, we have presented the conclusion and future work that acquired from

our proposed work.

5.1 Conclusion

We proposed a combined natural language processing, sentiment and deep learning based

approach that automatically predicts the approval of enhancement reports. The results

are compared with existing machine or deep learning algorithms such as support vector

machine (SVM), long short-term memory (LSTM), multinomial naive bayes (MNB) and

convolutional neural networks (CNN). It has been observed that the proposed approach

achieves higher accuracy, precision, recall and f-measure (82.15%, 90.56%, 80.10% and

85.01%) than the existing approaches. One of the important contribution in this research

is to leveraged LSTM for sequence generation instead of previous feature learning tech-

niques. We believe that our approach will help developers to save their time and address

user-requirements in a more efficient manner.

37

Chapter 5: Conclusion & future work

5.2 Future Work

The main part of this work is to predict the approval of enhancement report automat-

ically using combination of machine or deep learning techniques. An important future

direction of our proposed work is to utilize deep learning classifiers on a large amount

of inter/intra domain to further improve the overall performance. Another aspect is to

enhance the performance of proposed approach by using different emotions. Further-

more, it will be interesting to see the effect of increasing the dataset on the approval

prediction of an enhancement report. Also labels of the known dataset can be predicted

through this approach, which is another important future direction.

38

References

[1] Link. https://bugzilla.mozilla.org/enter_bug.cgi?format=__default__&

product=bugzilla.mozilla.org/. Accessed: 2019-10-10.

[2] Zeeshan Ahmed Nizamani, Hui Liu, David Matthew Chen, and Zhendong Niu. Au-

tomatic approval prediction for software enhancement requests. Automated Soft-

ware Engineering, Oct 2017. ISSN 1573-7535. doi: 10.1007/s10515-017-0229-y.

URL https://doi.org/10.1007/s10515-017-0229-y.

[3] Adrian Schröter, Cathrin Weiss, Rahul Premraj, Nicolas Bettenburg, Sascha

Just, and Thomas Zimmermann. What makes a good bug report? IEEE

Transactions on Software Engineering, 36:618–643, 2010. ISSN 0098-5589. doi:

doi.ieeecomputersociety.org/10.1109/TSE.2010.63.

[4] Qasim Umer, Hui Liu, and Yasir Sultan. Sentiment based approval prediction

for enhancement reports. Journal of Systems and Software, 155:57 – 69, 2019.

ISSN 0164-1212. doi: https://doi.org/10.1016/j.jss.2019.05.026. URL http://www.

sciencedirect.com/science/article/pii/S0164121219301104.

[5] Tao Zhang, He Jiang, Xiapu Luo, and Alvin TS Chan. A literature review of

research in bug resolution: Tasks, challenges and future directions. The Computer

Journal, 59(5):741–773, 2016.

39

https://bugzilla.mozilla.org/enter_bug.cgi?format=__default__&product=bugzilla.mozilla.org/
https://bugzilla.mozilla.org/enter_bug.cgi?format=__default__&product=bugzilla.mozilla.org/
https://doi.org/10.1007/s10515-017-0229-y
http://www.sciencedirect.com/science/article/pii/S0164121219301104
http://www.sciencedirect.com/science/article/pii/S0164121219301104

References

[6] Paul Ekman. An argument for basic emotions. Cognition & emotion, 6(3-4):169–

200, 1992.

[7] Robert Plutchik. Emotion. A psychoevolutionary synthesis, 1980.

[8] Robbert Jongeling, Proshanta Sarkar, Subhajit Datta, and Alexander Serebrenik.

On negative results when using sentiment analysis tools for software engineer-

ing research. Empirical Software Engineering, 22(5):2543–2584, Oct 2017. ISSN

1573-7616. doi: 10.1007/s10664-016-9493-x. URL https://doi.org/10.1007/

s10664-016-9493-x.

[9] Md Rakibul Islam and Minhaz F. Zibran. Sentistrength-se: Exploiting domain

specificity for improved sentiment analysis in software engineering text. Jour-

nal of Systems and Software, 145:125 – 146, 2018. ISSN 0164-1212. doi:

https://doi.org/10.1016/j.jss.2018.08.030. URL http://www.sciencedirect.com/

science/article/pii/S0164121218301675.

[10] Md Rakibul Islam and Minhaz F. Zibran. Deva: Sensing emotions in the valence

arousal space in software engineering text. In Proceedings of the 33rd Annual ACM

Symposium on Applied Computing, SAC ’18, pages 1536–1543, New York, NY,

USA, 2018. ACM. ISBN 978-1-4503-5191-1. doi: 10.1145/3167132.3167296. URL

http://doi.acm.org/10.1145/3167132.3167296.

[11] Toufique Ahmed, Amiangshu Bosu, Anindya Iqbal, and Shahram Rahimi. Senticr:

A customized sentiment analysis tool for code review interactions. In Proceedings of

the 32Nd IEEE/ACM International Conference on Automated Software Engineer-

ing, ASE 2017, pages 106–111, Piscataway, NJ, USA, 2017. IEEE Press. ISBN 978-

1-5386-2684-9. URL http://dl.acm.org/citation.cfm?id=3155562.3155579.

40

https://doi.org/10.1007/s10664-016-9493-x
https://doi.org/10.1007/s10664-016-9493-x
http://www.sciencedirect.com/science/article/pii/S0164121218301675
http://www.sciencedirect.com/science/article/pii/S0164121218301675
http://doi.acm.org/10.1145/3167132.3167296
http://dl.acm.org/citation.cfm?id=3155562.3155579

References

[12] Fabio Calefato, Filippo Lanubile, Federico Maiorano, and Nicole Novielli. Sentiment

polarity detection for software development. Empirical Softw. Engg., 23(3):1352–

1382, June 2018. ISSN 1382-3256. doi: 10.1007/s10664-017-9546-9. URL https:

//doi.org/10.1007/s10664-017-9546-9.

[13] Jaweria Kanwal and Onaiza Maqbool. Bug prioritization to facilitate bug report

triage. Journal of Computer Science and Technology, 27(2):397–412, 2012.

[14] Gitika Sharma, Sumit Sharma, and Shruti Gujral. A novel way of assessing soft-

ware bug severity using dictionary of critical terms. Procedia Computer Science,

70(Supplement C):632 – 639, 2015. ISSN 1877-0509. doi: https://doi.org/10.1016/

j.procs.2015.10.059. URL http://www.sciencedirect.com/science/article/

pii/S1877050915032238. Proceedings of the 4th International Conference on Eco-

friendly Computing and Communication Systems.

[15] Qasim Umer, Hui Liu, and Yasir Sultan. Emotion based automated priority pre-

diction for bug reports. IEEE Access, 6:35743–35752, 2018.

[16] Tim Menzies and Andrian Marcus. Automated severity assessment of software

defect reports. In 2008 IEEE International Conference on Software Maintenance,

pages 346–355. IEEE, 2008.

[17] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals. Predicting the severity

of a reported bug. In 2010 7th IEEE Working Conference on Mining Software

Repositories (MSR 2010), pages 1–10, May 2010. doi: 10.1109/MSR.2010.5463284.

[18] Ahmed Lamkanfi, Serge Demeyer, Quinten David Soetens, and Tim Verdonck.

Comparing mining algorithms for predicting the severity of a reported bug. In

Proceedings of the 2011 15th European Conference on Software Maintenance and

41

https://doi.org/10.1007/s10664-017-9546-9
https://doi.org/10.1007/s10664-017-9546-9
http://www.sciencedirect.com/science/article/pii/S1877050915032238
http://www.sciencedirect.com/science/article/pii/S1877050915032238

References

Reengineering, CSMR ’11, pages 249–258, Washington, DC, USA, 2011. IEEE

Computer Society. ISBN 978-0-7695-4343-7. doi: 10.1109/CSMR.2011.31. URL

http://dx.doi.org/10.1109/CSMR.2011.31.

[19] N. K. S. Roy and B. Rossi. Towards an improvement of bug severity classification.

In 2014 40th EUROMICRO Conference on Software Engineering and Advanced

Applications, pages 269–276, Aug 2014. doi: 10.1109/SEAA.2014.51.

[20] Ye Zhang and Byron Wallace. A sensitivity analysis of (and practitioners’ guide

to) convolutional neural networks for sentence classification. arXiv preprint arX-

iv:1510.03820, 2015.

[21] Viktor Stagge. Categorizing software defects using machine learning. LU-CS-EX

2018-17, 2018.

[22] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. book in

preparation for mit press. URL¡ http://www. deeplearningbook. org, 2016.

[23] Igor V Tetko, David J Livingstone, and Alexander I Luik. Neural network studies.

1. comparison of overfitting and overtraining. Journal of chemical information and

computer sciences, 35(5):826–833, 1995.

[24] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

The journal of machine learning research, 15(1):1929–1958, 2014.

[25] Christopher Olah. Understanding lstm networks. 2015.

[26] Rajni Jindal, Ruchika Malhotra, and Abha Jain. Software defect prediction using

neural networks. In Proceedings of 3rd International Conference on Reliability,

Infocom Technologies and Optimization, pages 1–6. IEEE, 2014.

42

http://dx.doi.org/10.1109/CSMR.2011.31

References

[27] Hong Liang, Xiao Sun, Yunlei Sun, and Yuan Gao. Text feature extraction based

on deep learning: a review. EURASIP journal on wireless communications and

networking, 2017(1):1–12, 2017.

[28] Akshay Sethi, Anush Sankaran, Naveen Panwar, Shreya Khare, and Senthil Mani.

Dlpaper2code: Auto-generation of code from deep learning research papers. In

Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[29] Lian Yu, Wei-Tek Tsai, Wei Zhao, and Fang Wu. Predicting defect priority based

on neural networks. In International Conference on Advanced Data Mining and

Applications, pages 356–367. Springer, 2010.

[30] Waheed Yousuf Ramay, Qasim Umer, Xu Cheng Yin, Chao Zhu, and Inam Illahi.

Deep neural network-based severity prediction of bug reports. IEEE Access, 7:

46846–46857, 2019.

[31] Xiaochen Li, He Jiang, Zhilei Ren, Ge Li, and Jingxuan Zhang. Deep learning in

software engineering. arXiv preprint arXiv:1805.04825, 2018.

[32] Edward Loper and Steven Bird. Nltk: The natural language toolkit. In Proceedings

of the ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural

Language Processing and Computational Linguistics - Volume 1, ETMTNLP ’02,

pages 63–70, Stroudsburg, PA, USA, 2002. Association for Computational Linguis-

tics. doi: 10.3115/1118108.1118117. URL https://doi.org/10.3115/1118108.

1118117.

[33] Fabio Calefato, Filippo Lanubile, and Nicole Novielli. Emotxt: A toolkit for e-

motion recognition from text. 2017 Seventh International Conference on Affective

43

https://doi.org/10.3115/1118108.1118117
https://doi.org/10.3115/1118108.1118117

References

Computing and Intelligent Interaction Workshops and Demos (ACIIW), pages 79–

80, 2017.

[34] Stefano Baccianella, Andrea Esuli, and Fabrizio Sebastiani. Sentiwordnet 3.0: An

enhanced lexical resource for sentiment analysis and opinion mining. In in Proc. of

LREC, 2010.

[35] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Dis-

tributed representations of words and phrases and their compositionality. In Pro-

ceedings of the 26th International Conference on Neural Information Processing

Systems - Volume 2, NIPS’13, pages 3111–3119, USA, 2013. Curran Associates Inc.

URL http://dl.acm.org/citation.cfm?id=2999792.2999959.

[36] Senthil Mani, Anush Sankaran, and Rahul Aralikatte. Deeptriage: Exploring the

effectiveness of deep learning for bug triaging. In Proceedings of the ACM India

Joint International Conference on Data Science and Management of Data, pages

171–179. ACM, 2019.

[37] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural com-

putation, 9:1735–80, 12 1997. doi: 10.1162/neco.1997.9.8.1735.

[38] H Sak, Andrew Senior, and F Beaufays. Long short-term memory recurrent neural

network architectures for large scale acoustic modeling. Proceedings of the An-

nual Conference of the International Speech Communication Association, INTER-

SPEECH, pages 338–342, 01 2014.

[39] Minh-Thang Luong, Hieu Pham, and Christoper Manning. Effective approaches to

attention-based neural machine translation. 08 2015. doi: 10.18653/v1/D15-1166.

44

http://dl.acm.org/citation.cfm?id=2999792.2999959

References

[40] W. Y. Ramay, Q. Umer, X. C. Yin, C. Zhu, and I. Illahi. Deep neural network-

based severity prediction of bug reports. IEEE Access, 7:46846–46857, 2019. ISSN

2169-3536. doi: 10.1109/ACCESS.2019.2909746.

[41] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Improving neural networks by preventing co-adaptation of feature

detectors. 2012. URL http://arxiv.org/abs/1207.0580.

[42] Keras. Flatten layer. RetrievedNov01,2018fromhttps://github.com/

keras-team/keras/blob/master/keras/layers/core.py#L467.

[43] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Recent

trends in deep learning based natural language processing [review article]. IEEE

Computational Intelligence Magazine, 13:55–75, 2018.

45

http://arxiv.org/abs/1207.0580
Retrieved Nov 01, 2018 from https://github.com/keras-team/keras/blob/master/keras/layers/core.py#L467
Retrieved Nov 01, 2018 from https://github.com/keras-team/keras/blob/master/keras/layers/core.py#L467

	Main Title
	Title Page
	Declaration
	Copyright Notice
	Dedication
	Acknowledgments
	Contents
	Introduction
	Enhancement Report
	Problem statement
	Research objective
	Motivation
	Thesis Layout

	Literature Review
	Text classification
	Text classification through machine learning
	Priority prediction
	Severity prediction
	Enhancement prediction

	Text classification through deep learning
	Convolutional neural network
	Long-short-term memory

	Proposed Research Work

	Methodology
	Data Preparation
	Dataset
	Preprocessing
	Emotion Calculation
	Features selection

	CNN for Text Classification

	Results & Discussion
	Performance Analysis
	Results Generation Process
	Results
	Comparison with the baseline approaches
	Effect of multiple inputs
	Preprocessing Impact
	Comparison with machine/deep learning algorithms

	Threats to Validity

	Conclusion & future work
	Conclusion
	Future Work

	References

